From 2394bfc186f7b57a7b8b737b4b17e1140d756416 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 29 Jun 2010 19:08:33 +0000 Subject: * algebra/catdef.spad.pamphlet (OrderedType): New. --- src/ChangeLog | 4 + src/algebra/Makefile.in | 3 +- src/algebra/Makefile.pamphlet | 3 +- src/algebra/catdef.spad.pamphlet | 29 +- src/share/algebra/browse.daase | 2220 +-- src/share/algebra/category.daase | 4015 ++--- src/share/algebra/compress.daase | 1328 +- src/share/algebra/interp.daase | 10218 +++++------ src/share/algebra/operation.daase | 34120 ++++++++++++++++++------------------ 9 files changed, 25986 insertions(+), 25954 deletions(-) (limited to 'src') diff --git a/src/ChangeLog b/src/ChangeLog index e57e60e0..468cfe02 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,7 @@ +2010-06-29 Gabriel Dos Reis + + * algebra/catdef.spad.pamphlet (OrderedType): New. + 2010-06-29 Gabriel Dos Reis * algebra/catdef.spad.pamphlet (BasicType) [before?]: Declare here. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 6093c019..52db4771 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -346,6 +346,7 @@ $(OUT)/PDDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) $(OUT)/PDSPC.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) $(OUT)/DSEXT.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) $(OUT)/PDSPC.$(FASLEXT) $(OUT)/ORDTYPE.$(FASLEXT): $(OUT)/BASTYPE.$(FASLEXT) +$(OUT)/ORDSTRCT.$(FASLEXT): $(OUT)/ORDTYPE.$(FASLEXT) $(OUT)/HOMOTOP.$(FASLEXT) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ @@ -373,7 +374,7 @@ axiom_algebra_layer_0 = \ LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \ LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- \ - DSEXT DSEXT- ORDTYPE ORDTYPE- + DSEXT DSEXT- ORDTYPE ORDTYPE- ORDSTRCT axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 2d3e0908..f57b7839 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -300,6 +300,7 @@ $(OUT)/PDDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) $(OUT)/PDSPC.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) $(OUT)/DSEXT.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) $(OUT)/PDSPC.$(FASLEXT) $(OUT)/ORDTYPE.$(FASLEXT): $(OUT)/BASTYPE.$(FASLEXT) +$(OUT)/ORDSTRCT.$(FASLEXT): $(OUT)/ORDTYPE.$(FASLEXT) $(OUT)/HOMOTOP.$(FASLEXT) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ @@ -327,7 +328,7 @@ axiom_algebra_layer_0 = \ LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \ LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- \ - DSEXT DSEXT- ORDTYPE ORDTYPE- + DSEXT DSEXT- ORDTYPE ORDTYPE- ORDSTRCT axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet index 06723e56..76b0f796 100644 --- a/src/algebra/catdef.spad.pamphlet +++ b/src/algebra/catdef.spad.pamphlet @@ -245,9 +245,10 @@ BasicType(): Category == Type with ++ Category of types equipped with a total ordering. ++ Axioms: ++ forall(x,y) -++ x > y = y < x -++ x <= y = not(y > x) -++ x >= y = not(x < y) +++ x > y <=> y < x +++ x <= y <=> not(y > x) +++ x >= y <=> not(x < y) +++ x <= y and x >= y => x = y OrderedType(): Category == BasicType with < : (%,%) -> Boolean ++ \spad{x < y} holds if \spad{x} is less than \spad{y} in the @@ -282,6 +283,27 @@ OrderedType(): Category == BasicType with @ +\section{Ordered Structure} + +<>= +++ Author: Gabriel Dos Reis +++ Date Created: June 28, 2010 +++ Date Last Modified: June 28, 2010 +++ See Also: OrderedType +++ Description: +++ This domain turns any total ordering \spad{f} on a type \spad{T} into +++ a model of the category \spadtype{OrderedType}. +)abbrev domain ORDSTRCT OrderedStructure +OrderedStructure(T: Type,f: (T,T) -> Boolean): Public == Private where + Public == Join(OrderedType,HomotopicTo T) + Private == T add + coerce(x: %): T == rep x + coerce(y: T): % == per y + x < y == f(rep x,rep y) + +@ + + \section{category BMODULE BiModule} @@ -2032,6 +2054,7 @@ VectorSpace(S:Field): Category == Module(S) with <> <> +<> <> <> <> diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 87bcc93c..97047609 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2293583 . 3486815902) +(2293757 . 3486820627) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4460 . T) (-4458 . T) (-4457 . T) ((-4465 "*") . T) (-4456 . T) (-4461 . T) (-4455 . T)) +((-4461 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4457 . T) (-4462 . T) (-4456 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2117) +(-32 R -1959) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) +((|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4463))) +((|HasAttribute| |#1| (QUOTE -4464))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2117 UP UPUP -2182) +(-40 -1959 UP UPUP -3459) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4456 |has| (-419 |#2|) (-374)) (-4461 |has| (-419 |#2|) (-374)) (-4455 |has| (-419 |#2|) (-374)) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3794 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3794 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3794 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3794 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3794 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3794 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -2117) +((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2758 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2758 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2758 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2758 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2758 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2758 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-41 R -1959) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-317)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4460 |has| |#1| (-568)) (-4458 . T) (-4457 . T)) +((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4463 . T) (-4464 . T)) -((-3794 (-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|))))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-861))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|))))))) +((-4464 . T) (-4465 . T)) +((-2758 (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|))))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-861))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (LIST (QUOTE -1058) (QUOTE (-576))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4460 . T)) +((-4461 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2117) +(-54 |Base| R -1959) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -4148) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2627) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -4148) +(-62 -2627) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -4148) +(-63 -2627) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -4148) +(-64 -2627) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -4148) +(-65 -2627) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4148) +(-66 -2627) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -4148) +(-67 -2627) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4148) +(-68 -2627) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4148) +(-69 -2627) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -4148) +(-70 -2627) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -4148) +(-71 -2627) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -4148) +(-72 -2627) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -4148) +(-73 -2627) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -4148) +(-74 -2627) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -4148) +(-77 -2627) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -4148) +(-78 -2627) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -4148) +(-79 -2627) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4148) +(-80 -2627) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4148) +(-81 -2627) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -4148) +(-82 -2627) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4148) +(-83 -2627) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4148) +(-84 -2627) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4148) +(-85 -2627) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4148) +(-86 -2627) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4148) +(-87 -2627) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -4148) +(-88 -2627) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -4148) +(-89 -2627) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4463 . T)) +((-4464 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4463 . T) ((-4465 "*") . T) (-4464 . T) (-4460 . T) (-4458 . T) (-4457 . T) (-4456 . T) (-4461 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4459 . T) (-4462 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4450 . T)) +((-4464 . T) ((-4466 "*") . T) (-4465 . T) (-4461 . T) (-4459 . T) (-4458 . T) (-4457 . T) (-4462 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4460 . T) (-4463 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4451 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4460 . T)) +((-4461 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4465 "*")))) +((|HasAttribute| |#1| (QUOTE (-4466 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4463 . T)) +((-4464 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4464 . T)) +((-4465 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-576) (QUOTE (-927))) (|HasCategory| (-576) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1042))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3794 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1172))) (|HasCategory| (-576) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-927)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2758 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1120))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1120))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-112) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -2117 UP) +(-116 -1959 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-927))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1042))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-3794 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1172))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-927)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-928))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1043))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-2758 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1173))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4464))) +((|HasAttribute| |#1| (QUOTE -4465))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-3794 (-12 (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1120)))) (|HasCategory| (-130) (QUOTE (-861))) (-3794 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2758 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-861))) (-2758 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4465 "*") . T)) +(((-4466 "*") . T)) NIL -(-136 |minix| -1911 S T$) +(-136 |minix| -2704 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -1911 R) +(-137 |minix| -2704 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4463 . T) (-4453 . T) (-4464 . T)) -((-3794 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4464 . T) (-4454 . T) (-4465 . T)) +((-2758 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4460 . T)) +((-4461 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4460 . T)) +((-4461 . T)) NIL -(-149 -2117 UP UPUP) +(-149 -1959 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasAttribute| |#1| (QUOTE -4463))) +((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasAttribute| |#1| (QUOTE -4464))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1175,7 +1175,7 @@ NIL (-311 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1069)))) +((|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1070)))) (-312) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1198,7 +1198,7 @@ NIL NIL (-317) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-318 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1208,7 +1208,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -2117) +(-320 -1959) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1222,8 +1222,8 @@ NIL NIL (-323 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-927))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1042))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-3794 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1172))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-927))) (|HasCategory| $ (QUOTE (-146)))) (-3794 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-927))) (|HasCategory| $ (QUOTE (-146)))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1043))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-2758 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))) (-2758 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))))) (-324 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1234,9 +1234,9 @@ NIL NIL (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4460 -3794 (-12 (|has| |#1| (-568)) (-3794 (|has| |#1| (-1069)) (|has| |#1| (-485)))) (|has| |#1| (-1069)) (|has| |#1| (-485))) (-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) ((-4465 "*") |has| |#1| (-568)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-568)) (-4455 |has| |#1| (-568))) -((-3794 (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3794 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-21))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-1069))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3794 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3794 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1069)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3794 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1132)))) (-3794 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3794 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (LIST (QUOTE -1058) (QUOTE (-576))))) -(-327 R -2117) +((-4461 -2758 (-12 (|has| |#1| (-568)) (-2758 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) +((-2758 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2758 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2758 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2758 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2758 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1133)))) (-2758 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2758 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) +(-327 R -1959) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1246,8 +1246,8 @@ NIL NIL (-329 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-330 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1258,7 +1258,7 @@ NIL NIL (-332 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-804)))) (-333 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1274,19 +1274,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) (-336 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-337 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -2117) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-338 S -1959) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -2117) +(-339 -1959) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-340) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1308,54 +1308,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -2117 UP UPUP R) +(-345 S -1959 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -2117 UP UPUP R) +(-346 -1959 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -2117 UP UPUP R) +(-347 -1959 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-348 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-349 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-350 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (LIST (QUOTE -1058) (QUOTE (-576))))) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) (-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -2117 UP UPUP) +(-352 S -1959 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -2117 UP UPUP) +(-353 -1959 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4456 |has| (-419 |#2|) (-374)) (-4461 |has| (-419 |#2|) (-374)) (-4455 |has| (-419 |#2|) (-374)) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-354 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| (-928 |#1|) (QUOTE (-146))) (|HasCategory| (-928 |#1|) (QUOTE (-379)))) (|HasCategory| (-928 |#1|) (QUOTE (-148))) (|HasCategory| (-928 |#1|) (QUOTE (-379))) (|HasCategory| (-928 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-356 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1370,33 +1370,33 @@ NIL NIL (-360) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-361 R UP -2117) +(-361 R UP -1959) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-362 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| (-928 |#1|) (QUOTE (-146))) (|HasCategory| (-928 |#1|) (QUOTE (-379)))) (|HasCategory| (-928 |#1|) (QUOTE (-148))) (|HasCategory| (-928 |#1|) (QUOTE (-379))) (|HasCategory| (-928 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-363 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-364 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| (-928 |#1|) (QUOTE (-146))) (|HasCategory| (-928 |#1|) (QUOTE (-379)))) (|HasCategory| (-928 |#1|) (QUOTE (-148))) (|HasCategory| (-928 |#1|) (QUOTE (-379))) (|HasCategory| (-928 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-366 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -2117 GF) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +(-367 -1959 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1404,21 +1404,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -2117 FP FPP) +(-369 -1959 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-370 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-371 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-372 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4460 . T)) +((-4461 . T)) NIL (-373 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1426,7 +1426,7 @@ NIL NIL (-374) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-375 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1442,7 +1442,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-568)))) (-378 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4460 |has| |#1| (-568)) (-4458 . T) (-4457 . T)) +((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) NIL (-379) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1454,7 +1454,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374)))) (-381 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-382 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1463,14 +1463,14 @@ NIL (-383 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1120)))) +((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121)))) (-384 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4463 . T)) +((-4464 . T)) NIL (-385 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4458 . T) (-4457 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) NIL (-386 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1490,7 +1490,7 @@ NIL NIL (-390) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4446 . T) (-4454 . T) (-2641 . T) (-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4447 . T) (-4455 . T) (-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-391 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1498,11 +1498,11 @@ NIL NIL (-392 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-393 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL (-394) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1514,7 +1514,7 @@ NIL NIL (-396 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-397 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1526,7 +1526,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-861)))) (-399) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-400) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1538,13 +1538,13 @@ NIL NIL (-402 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL (-403) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -2117 UP UPUP R) +(-404 -1959 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1568,11 +1568,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -4148 |returnType| -4284 |symbols|) +(-410 -2627 |returnType| -1928 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -2117 UP) +(-411 -1959 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1586,15 +1586,15 @@ NIL NIL (-414) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-415 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4446)) (|HasAttribute| |#1| (QUOTE -4454))) +((|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#1| (QUOTE -4455))) (-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2641 . T) (-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-417 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1606,20 +1606,20 @@ NIL NIL (-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4450 -12 (|has| |#1| (-6 -4461)) (|has| |#1| (-464)) (|has| |#1| (-6 -4450))) (-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) +((-4451 -12 (|has| |#1| (-6 -4462)) (|has| |#1| (-464)) (|has| |#1| (-6 -4451))) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4451)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-420 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-421 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-422 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) +((|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-423 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1628,14 +1628,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -2117 UP A) +(-425 R -1959 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4460 . T)) +((-4461 . T)) NIL -(-426 R -2117 UP A |ibasis|) +(-426 R -1959 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1058) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1059) (|devaluate| |#2|)))) (-427 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1646,12 +1646,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-429 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4460 |has| |#1| (-568)) (-4458 . T) (-4457 . T)) +((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) NIL (-430 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1241))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1241)))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1242))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1678,37 +1678,37 @@ NIL ((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) (-437 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4463 . T) (-4453 . T) (-4464 . T)) +((-4464 . T) (-4454 . T) (-4465 . T)) NIL -(-438 R -2117) +(-438 R -1959) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-439 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4450 -12 (|has| |#1| (-6 -4450)) (|has| |#2| (-6 -4450))) (-4457 . T) (-4458 . T) (-4460 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#2| (QUOTE -4450)))) -(-440 R -2117) +((-4451 -12 (|has| |#1| (-6 -4451)) (|has| |#2| (-6 -4451))) (-4458 . T) (-4459 . T) (-4461 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#2| (QUOTE -4451)))) +(-440 R -1959) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-441 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) +((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-442 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4460 -3794 (|has| |#1| (-1069)) (|has| |#1| (-485))) (-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) ((-4465 "*") |has| |#1| (-568)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-568)) (-4455 |has| |#1| (-568))) +((-4461 -2758 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) NIL -(-443 R -2117) +(-443 R -1959) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -2117) +(-444 R -1959) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -2117) +(-445 R -1959) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1716,10 +1716,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -2117 UP) +(-447 R -1959 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-48))))) (-448) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1748,7 +1748,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -2117) +(-455 R UP -1959) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1786,16 +1786,16 @@ NIL NIL (-464) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-465 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4460 |has| (-419 (-970 |#1|)) (-568)) (-4458 . T) (-4457 . T)) -((|HasCategory| (-419 (-970 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-970 |#1|)) (QUOTE (-568)))) +((-4461 |has| (-419 (-971 |#1|)) (-568)) (-4459 . T) (-4458 . T)) +((|HasCategory| (-419 (-971 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-971 |#1|)) (QUOTE (-568)))) (-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4465 "*") |has| |#2| (-174)) (-4456 |has| |#2| (-568)) (-4461 |has| |#2| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1822,7 +1822,7 @@ NIL NIL (-473 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL (-474 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1830,8 +1830,8 @@ NIL NIL (-475 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-476 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1860,7 +1860,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -2117 R) +(-483 |lv| -1959 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1870,23 +1870,23 @@ NIL NIL (-485) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4460 . T)) +((-4461 . T)) NIL (-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|)))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120)))) +((-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|)))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121)))) (-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-489) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-490) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1894,29 +1894,29 @@ NIL NIL (-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|)))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1120))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|)))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102)))) (-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4465 "*") |has| |#2| (-174)) (-4456 |has| |#2| (-568)) (-4461 |has| |#2| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -1911 S) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-494 -2704 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4457 |has| |#2| (-1069)) (-4458 |has| |#2| (-1069)) (-4460 |has| |#2| (-6 -4460)) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1120)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-374))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3794 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasCategory| |#2| (QUOTE (-238))) (-3794 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1069))))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1120))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1120))))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1069))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196))))) (-3794 (|HasCategory| |#2| (QUOTE (-1069))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1120)))) (|HasAttribute| |#2| (QUOTE -4460)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2758 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2758 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2758 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -2117 UP UPUP R) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-497 -1959 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1926,12 +1926,12 @@ NIL NIL (-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-576) (QUOTE (-927))) (|HasCategory| (-576) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1042))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3794 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1172))) (|HasCategory| (-576) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-927)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2758 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4463)) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) +((|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-501 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1952,34 +1952,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -2117 UP |AlExt| |AlPol|) +(-506 -1959 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-507) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (LIST (QUOTE -1058) (QUOTE (-576))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -2117) +(-511 R UP -1959) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-512 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1120))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1120))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-112) (QUOTE (-102)))) (-513 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1992,10 +1992,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -2117 |Expon| |VarSet| |DPoly|) +(-516 -1959 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1196))))) +((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1197))))) (-517 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2042,36 +2042,36 @@ NIL ((|HasCategory| |#2| (QUOTE (-804)))) (-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) (-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4464))) +((|HasAttribute| |#3| (QUOTE -4465))) (-534 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4464))) +((|HasAttribute| |#7| (QUOTE -4465))) (-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4465 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2104,7 +2104,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-544 K -2117 |Par|) +(-544 K -1959 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2128,7 +2128,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -2117 |Par|) +(-550 K -1959 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2158,7 +2158,7 @@ NIL NIL (-557) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4461 . T) (-4462 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2178,13 +2178,13 @@ NIL NIL (-562 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|)))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1120))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102)))) -(-563 R -2117) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|)))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102)))) +(-563 R -1959) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -2117 UP UPUP R) +(-564 R0 -1959 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2194,7 +2194,7 @@ NIL NIL (-566 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2641 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4165 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-567 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2202,9 +2202,9 @@ NIL NIL (-568) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-569 R -2117) +(-569 R -1959) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2216,7 +2216,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -2117 L) +(-572 R -1959 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) @@ -2224,31 +2224,31 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -2117 UP UPUP R) +(-574 -1959 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -2117 UP) +(-575 -1959 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-576) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4445 . T) (-4451 . T) (-4455 . T) (-4450 . T) (-4461 . T) (-4462 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4446 . T) (-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-577) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -2117 L) +(-578 R -1959 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-579 R -2117) +(-579 R -1959) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1159)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -2117 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) +(-580 -1959 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2256,27 +2256,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -2117) +(-582 -1959) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2641 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4165 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -2117) +(-585 R -1959) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -2117 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) +(-586 -1959 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -2117) +(-587 R -1959) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2298,21 +2298,21 @@ NIL NIL (-592 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-593 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) (-594) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -2117) +(-595 R -1959) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -2117) +(-596 E -1959) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2320,10 +2320,10 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -2117) +(-598 -1959) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4458 . T) (-4457 . T)) -((|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-1196))))) +((-4459 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-599 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2350,19 +2350,19 @@ NIL NIL (-605 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3794 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-875)))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120)))) (|HasCategory| (-145) (QUOTE (-861))) (-3794 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2758 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2758 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-606 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-607 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) (-608 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4465 "*") |has| |#1| (-568)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-568)))) (-609) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) @@ -2376,7 +2376,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -2117 FG) +(-612 R -1959 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2386,12 +2386,12 @@ NIL NIL (-614 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-615 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#3| (QUOTE (-1120)))) +((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#3| (QUOTE (-1121)))) (-616 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2406,19 +2406,19 @@ NIL NIL (-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4460 -3794 (-2310 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4458 . T) (-4457 . T)) -((-3794 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4461 -2758 (-2673 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) +((-2758 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-620 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| (-1178) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-102)))) (-621 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-622 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4464 . T)) +((-4465 . T)) NIL (-623 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2427,7 +2427,7 @@ NIL (-624 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) +((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-625 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL @@ -2436,7 +2436,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -2117 UP) +(-627 -1959 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2458,20 +2458,20 @@ NIL NIL (-632 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4460 . T)) +((-4461 . T)) NIL (-633 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-860)))) -(-634 R -2117) +(-634 R -1959) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-635 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4458 . T) (-4457 . T) ((-4465 "*") . T) (-4456 . T) (-4460 . T)) -((|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) +((-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4457 . T) (-4461 . T)) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-636 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2486,7 +2486,7 @@ NIL NIL (-639 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4460 . T)) +((-4461 . T)) NIL (-640 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2496,30 +2496,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -2117) +(-642 R -1959) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -2117) +(-643 |lv| -1959) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-644) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -2904) (QUOTE (-52))))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1178) (QUOTE (-861))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (QUOTE (-1120)))) +((-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4438) (QUOTE (-52))))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1179) (QUOTE (-861))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (QUOTE (-1121)))) (-645 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-646 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4458 . T) (-4457 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) NIL (-647 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4460 -3794 (-2310 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4458 . T) (-4457 . T)) -((-3794 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4461 -2758 (-2673 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) +((-2758 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-648 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2531,7 +2531,7 @@ NIL (-650 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2298 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) +((-2662 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) (-651 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL @@ -2554,8 +2554,8 @@ NIL NIL (-656 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-657 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2566,8 +2566,8 @@ NIL NIL (-659 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-660 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2579,39 +2579,39 @@ NIL (-662 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4464))) +((|HasAttribute| |#1| (QUOTE -4465))) (-663 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-664 R -2117 L) +(-664 R -1959 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-665 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-666 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-667 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-668 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-669 -2117 UP) +(-669 -1959 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-670 A -2005) +(-670 A -2221) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-671 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL @@ -2626,7 +2626,7 @@ NIL NIL (-674 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-803)))) (-675 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2634,7 +2634,7 @@ NIL NIL (-676 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4458 . T) (-4457 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174)))) (-677 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2642,13 +2642,13 @@ NIL NIL (-678 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-679 -2117) +(-679 -1959) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-680 -2117 |Row| |Col| M) +(-680 -1959 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2658,8 +2658,8 @@ NIL NIL (-682 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4460 . T) (-4463 . T) (-4457 . T) (-4458 . T)) -((|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4465 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-3794 (|HasAttribute| |#2| (QUOTE (-4465 "*"))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((-4461 . T) (-4464 . T) (-4458 . T) (-4459 . T)) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2758 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-683) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2679,7 +2679,7 @@ NIL (-687 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-688) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2723,10 +2723,10 @@ NIL (-698 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then \\spad{x(i,j)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4465 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) (-699 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then \\spad{x(i,j)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL (-700 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2734,8 +2734,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568)))) (-701 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4463 . T) (-4464 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4465 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4464 . T) (-4465 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-702 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2744,7 +2744,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-704 S -2117 FLAF FLAS) +(-704 S -1959 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2754,11 +2754,11 @@ NIL NIL (-706) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4456 . T) (-4461 |has| (-711) (-374)) (-4455 |has| (-711) (-374)) (-2648 . T) (-4462 |has| (-711) (-6 -4462)) (-4459 |has| (-711) (-6 -4459)) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-3794 (|HasCategory| (-711) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-3794 (-12 (|HasCategory| (-711) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -918) (QUOTE (-1196))))) (-3794 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (-3794 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1042))) (|HasCategory| (-711) (QUOTE (-1222))) (-12 (|HasCategory| (-711) (QUOTE (-1022))) (|HasCategory| (-711) (QUOTE (-1222)))) (-3794 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-927))))) (-3794 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-927)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-927))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1080))) (|HasCategory| (-711) (QUOTE (-1222)))) (|HasCategory| (-711) (QUOTE (-1080))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927))) (-3794 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (|HasCategory| (-711) (QUOTE (-374)))) (-3794 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-3794 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4462)) (|HasAttribute| (-711) (QUOTE -4459)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (|HasCategory| (-711) (LIST (QUOTE -918) (QUOTE (-1196)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (|HasCategory| (-711) (QUOTE (-146)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-927)))) (|HasCategory| (-711) (QUOTE (-360))))) +((-4457 . T) (-4462 |has| (-711) (-374)) (-4456 |has| (-711) (-374)) (-4177 . T) (-4463 |has| (-711) (-6 -4463)) (-4460 |has| (-711) (-6 -4460)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-2758 (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-2758 (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197))))) (-2758 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2758 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1043))) (|HasCategory| (-711) (QUOTE (-1223))) (-12 (|HasCategory| (-711) (QUOTE (-1023))) (|HasCategory| (-711) (QUOTE (-1223)))) (-2758 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (-2758 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-1223)))) (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928))) (-2758 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374)))) (-2758 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-2758 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4463)) (|HasAttribute| (-711) (QUOTE -4460)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-146)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-360))))) (-707 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4464 . T)) +((-4465 . T)) NIL (-708 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2768,13 +2768,13 @@ NIL ((|constructor| (NIL "\\indented{1}{} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-710 OV E -2117 PG) +(-710 OV E -1959 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-711) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2641 . T) (-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-712 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2782,7 +2782,7 @@ NIL NIL (-713) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4462 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4463 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-714 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2800,7 +2800,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-718 S -3155 I) +(-718 S -2018 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2810,7 +2810,7 @@ NIL NIL (-720 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-721 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2820,25 +2820,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-723 R |Mod| -3735 -2144 |exactQuo|) +(-723 R |Mod| -2391 -4335 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-724 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-725 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-726 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) (-4460 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-727 R |Mod| -3735 -2144 |exactQuo|) +(-727 R |Mod| -2391 -4335 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4460 . T)) +((-4461 . T)) NIL (-728 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2846,11 +2846,11 @@ NIL NIL (-729 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL -(-730 -2117) +(-730 -1959) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4460 . T)) +((-4461 . T)) NIL (-731 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2874,7 +2874,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379)))) (-736 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4456 |has| |#1| (-374)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-737 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2884,7 +2884,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739 -2117 UP) +(-739 -1959 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2902,8 +2902,8 @@ NIL NIL (-743 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4465 "*") |has| |#2| (-174)) (-4456 |has| |#2| (-568)) (-4461 |has| |#2| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-877 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-744 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2918,16 +2918,16 @@ NIL NIL (-747 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) (-4460 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-861)))) (-748 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4453 . T) (-4464 . T)) +((-4454 . T) (-4465 . T)) NIL (-749 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4463 . T) (-4453 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4454 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-750) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL @@ -2938,7 +2938,7 @@ NIL NIL (-752 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4458 . T) (-4457 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL (-753 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2954,7 +2954,7 @@ NIL NIL (-756 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL (-757) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -3036,11 +3036,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-777 -2117) +(-777 -1959) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-778 P -2117) +(-778 P -1959) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3048,7 +3048,7 @@ NIL NIL NIL NIL -(-780 UP -2117) +(-780 UP -1959) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3062,9 +3062,9 @@ NIL NIL (-783) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4465 "*") . T)) +(((-4466 "*") . T)) NIL -(-784 R -2117) +(-784 R -1959) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3084,7 +3084,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-789 -2117 |ExtF| |SUEx| |ExtP| |n|) +(-789 -1959 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3098,28 +3098,28 @@ NIL NIL (-792 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2298 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2298 (|HasCategory| |#1| (QUOTE (-557)))) (-2298 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2298 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2298 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2298 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2662 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2662 (|HasCategory| |#1| (QUOTE (-557)))) (-2662 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2662 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2662 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2662 (|HasCategory| |#1| (LIST (QUOTE -1013) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-793 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-794 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-795 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-796 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL (-797 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-174)))) +((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-174)))) (-798) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL @@ -3163,28 +3163,28 @@ NIL (-808 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) +((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) (-809 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-810 -3794 R OS S) +(-810 -2758 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-811 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-3794 (|HasCategory| (-1019 |#1|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (|HasCategory| (-1019 |#1|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1019 |#1|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1019 |#1|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2758 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-812) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813 R -2117 L) +(-813 R -1959 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-814 R -2117) +(-814 R -1959) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3192,7 +3192,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-816 R -2117) +(-816 R -1959) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3200,11 +3200,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-818 -2117 UP UPUP R) +(-818 -1959 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-819 -2117 UP L LQ) +(-819 -1959 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3212,41 +3212,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-821 -2117 UP L LQ) +(-821 -1959 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-822 -2117 UP) +(-822 -1959 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-823 -2117 L UP A LO) +(-823 -1959 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-824 -2117 UP) +(-824 -1959 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-825 -2117 LO) +(-825 -1959 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-826 -2117 LODO) +(-826 -1959 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-827 -1911 S |f|) +(-827 -2704 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4457 |has| |#2| (-1069)) (-4458 |has| |#2| (-1069)) (-4460 |has| |#2| (-6 -4460)) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1120)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-374))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3794 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasCategory| |#2| (QUOTE (-238))) (-3794 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1069))))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1120))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1120))))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1069))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196))))) (-3794 (|HasCategory| |#2| (QUOTE (-1069))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1120)))) (|HasAttribute| |#2| (QUOTE -4460)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2758 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2758 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2758 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-828 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-829 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4465 "*") |has| |#2| (-374)) (-4456 |has| |#2| (-374)) (-4461 |has| |#2| (-374)) (-4455 |has| |#2| (-374)) (-4460 . T) (-4458 . T) (-4457 . T)) +(((-4466 "*") |has| |#2| (-374)) (-4457 |has| |#2| (-374)) (-4462 |has| |#2| (-374)) (-4456 |has| |#2| (-374)) (-4461 . T) (-4459 . T) (-4458 . T)) ((|HasCategory| |#2| (QUOTE (-374)))) (-830 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3258,7 +3258,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-861)))) (-832) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-833) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3286,7 +3286,7 @@ NIL NIL (-839 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) (-840) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3298,7 +3298,7 @@ NIL NIL (-842 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4463 . T) (-4453 . T) (-4464 . T)) +((-4464 . T) (-4454 . T) (-4465 . T)) NIL (-843) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3310,8 +3310,8 @@ NIL NIL (-845 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4460 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3794 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4461 |has| |#1| (-860))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2758 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-846 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3322,7 +3322,7 @@ NIL NIL (-848 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) (-4460 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) (-849) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3350,13 +3350,13 @@ NIL NIL (-855 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4460 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3794 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4461 |has| |#1| (-860))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2758 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-856) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-857 -1911 S) +(-857 -2704 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3370,1831 +3370,1835 @@ NIL NIL (-860) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4460 . T)) +((-4461 . T)) NIL (-861) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-863) +(-864) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-864 S R) +(-865 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) -(-865 R) +(-866 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-866 R C) +(-867 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-867 R |sigma| -1991) +(-868 R |sigma| -3642) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-868 |x| R |sigma| -1991) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +(-869 |x| R |sigma| -3642) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) -(-869 R) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) +(-870 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-870) +(-871) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-871) +(-872) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-872 S) +(-873 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-873) +(-874) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-874) +(-875) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-875) +(-876) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-876) +(-877) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-877 |VariableList|) +(-878 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-878) +(-879) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-879 R |vl| |wl| |wtlevel|) +(-880 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) (-4460 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-880 R PS UP) +(-881 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-881 R |x| |pt|) +(-882 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-882 |p|) +(-883 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-883 |p|) +(-884 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-884 |p|) +(-885 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-883 |#1|) (QUOTE (-927))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| (-883 |#1|) (QUOTE (-146))) (|HasCategory| (-883 |#1|) (QUOTE (-148))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-883 |#1|) (QUOTE (-1042))) (|HasCategory| (-883 |#1|) (QUOTE (-832))) (|HasCategory| (-883 |#1|) (QUOTE (-861))) (-3794 (|HasCategory| (-883 |#1|) (QUOTE (-832))) (|HasCategory| (-883 |#1|) (QUOTE (-861)))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-883 |#1|) (QUOTE (-1172))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-883 |#1|) (QUOTE (-237))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-883 |#1|) (QUOTE (-238))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| (-883 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -883) (|devaluate| |#1|)) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| (-883 |#1|) (QUOTE (-317))) (|HasCategory| (-883 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-883 |#1|) (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-883 |#1|) (QUOTE (-927)))) (|HasCategory| (-883 |#1|) (QUOTE (-146))))) -(-885 |p| PADIC) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-884 |#1|) (QUOTE (-928))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-148))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-884 |#1|) (QUOTE (-1043))) (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861))) (-2758 (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-1173))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-237))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-238))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -884) (|devaluate| |#1|)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (QUOTE (-317))) (|HasCategory| (-884 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))))) +(-886 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-3794 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1172))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-886 S T$) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-2758 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-887 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))))) -(-887) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) +(-888) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-888) +(-889) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-889) +(-890) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-890 CF1 CF2) +(-891 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-891 |ComponentFunction|) +(-892 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-892 CF1 CF2) +(-893 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-893 |ComponentFunction|) +(-894 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-894) +(-895) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-895 CF1 CF2) +(-896 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-896 |ComponentFunction|) +(-897 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-897) +(-898) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-898 R) +(-899 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-899 R S L) +(-900 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-900 S) +(-901 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-901 |Base| |Subject| |Pat|) +(-902 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2298 (|HasCategory| |#2| (QUOTE (-1069)))) (-2298 (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196)))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (-2298 (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196)))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196))))) -(-902 R A B) +((-12 (-2662 (|HasCategory| |#2| (QUOTE (-1070)))) (-2662 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (-2662 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) +(-903 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-903 R S) +(-904 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-904 R -3155) +(-905 R -2018) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-905 R S) +(-906 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-906 R) +(-907 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-907 |VarSet|) +(-908 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-908 UP R) +(-909 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-909 A T$ S) +(-910 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-910 T$ S) +(-911 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-911) +(-912) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-912 UP -2117) +(-913 UP -1959) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-913) +(-914) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-914) +(-915) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-915 R S) +(-916 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL -(-916 S) +(-917 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4460 . T)) +((-4461 . T)) NIL -(-917 A S) +(-918 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-918 S) +(-919 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-919 S) +(-920 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-920 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-921 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-921 S) +(-922 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4460 . T)) +((-4461 . T)) NIL -(-922 S) +(-923 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-923 S) +(-924 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4460 . T)) -((-3794 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) -(-924 R E |VarSet| S) +((-4461 . T)) +((-2758 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) +(-925 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-925 R S) +(-926 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-926 S) +(-927 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-927) +(-928) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-928 |p|) +(-929 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-929 R0 -2117 UP UPUP R) +(-930 R0 -1959 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-930 UP UPUP R) +(-931 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-931 UP UPUP) +(-932 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-932 R) +(-933 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-933 R) +(-934 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-934 E OV R P) +(-935 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-935) +(-936) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-936 -2117) +(-937 -1959) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-937 R) +(-938 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-938) +(-939) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-939) +(-940) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4465 "*") . T)) +(((-4466 "*") . T)) NIL -(-940 -2117 P) +(-941 -1959 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-941 |xx| -2117) +(-942 |xx| -1959) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-942 R |Var| |Expon| GR) +(-943 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-943 S) +(-944 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-944) +(-945) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-945) +(-946) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-946) +(-947) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-947 R -2117) +(-948 R -1959) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-948) +(-949) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-949 S A B) +(-950 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-950 S R -2117) +(-951 S R -1959) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-951 I) +(-952 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-952 S E) +(-953 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-953 S R L) +(-954 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-954 S E V R P) +(-955 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -900) (|devaluate| |#1|)))) -(-955 R -2117 -3155) +((|HasCategory| |#3| (LIST (QUOTE -901) (|devaluate| |#1|)))) +(-956 R -1959 -2018) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-956 -3155) +(-957 -2018) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-957 S R Q) +(-958 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-958 S) +(-959 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-959 S R P) +(-960 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-960) +(-961) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-961 R) +(-962 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-962 |lv| R) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-963 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-963 |TheField| |ThePols|) +(-964 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL ((|HasCategory| |#1| (QUOTE (-860)))) -(-964 R S) +(-965 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-965 |x| R) +(-966 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-966 S R E |VarSet|) +(-967 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-927))) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) -(-967 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-928))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) +(-968 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-968 E V R P -2117) +(-969 E V R P -1959) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-969 E |Vars| R P S) +(-970 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-970 R) +(-971 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-971 E V R P -2117) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-972 E V R P -1959) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-464)))) -(-972) +(-973) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-973) +(-974) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-974 R L) +(-975 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-975 A B) +(-976 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-976 S) +(-977 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-977) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-978) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-978 -2117) +(-979 -1959) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-979 I) +(-980 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-980) +(-981) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-981 R E) +(-982 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4461))) -(-982 A B) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4462))) +(-983 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4460 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) -(-983) +((-4461 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) +(-984) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-984 T$) +(-985 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-985 T$) +(-986 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-986 S T$) +(-987 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-987) +(-988) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-988 S) +(-989 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL -(-989 R |polR|) +(-990 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-464)))) -(-990) +(-991) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-991) +(-992) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-992 S |Coef| |Expon| |Var|) +(-993 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-993 |Coef| |Expon| |Var|) +(-994 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-994) +(-995) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-995 S R E |VarSet| P) +(-996 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-568)))) -(-996 R E |VarSet| P) +(-997 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4463 . T)) +((-4464 . T)) NIL -(-997 R E V P) +(-998 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-464)))) -(-998 K) +(-999 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-999 |VarSet| E RC P) +(-1000 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1000 R) +(-1001 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1001 R1 R2) +(-1002 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1002 R) +(-1003 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1003 K) +(-1004 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1004 R E OV PPR) +(-1005 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1005 K R UP -2117) +(-1006 K R UP -1959) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1006 |vl| |nv|) +(-1007 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1007 R |Var| |Expon| |Dpoly|) +(-1008 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317))))) -(-1008 R E V P TS) +(-1009 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1009) +(-1010) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1010 A B R S) +(-1011 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1011 A S) +(-1012 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1172)))) -(-1012 S) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173)))) +(-1013 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1013 |n| K) +(-1014 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1014) +(-1015) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1015 S) +(-1016 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL -(-1016 S R) +(-1017 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-300)))) -(-1017 R) +((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-300)))) +(-1018 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4456 |has| |#1| (-300)) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1018 QR R QS S) +(-1019 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1019 R) +(-1020 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4456 |has| |#1| (-300)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-557)))) -(-1020 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) (-1021 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1022 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1022) +(-1023) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1023 -2117 UP UPUP |radicnd| |n|) +(-1024 -1959 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4456 |has| (-419 |#2|) (-374)) (-4461 |has| (-419 |#2|) (-374)) (-4455 |has| (-419 |#2|) (-374)) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3794 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3794 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3794 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3794 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3794 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3794 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-1024 |bb|) +((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2758 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2758 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2758 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2758 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2758 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2758 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-1025 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-576) (QUOTE (-927))) (|HasCategory| (-576) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1042))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3794 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1172))) (|HasCategory| (-576) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-927)))) (|HasCategory| (-576) (QUOTE (-146))))) -(-1025) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2758 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +(-1026) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1026) +(-1027) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1027 RP) +(-1028 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1028 S) +(-1029 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1029 A S) +(-1030 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-1120)))) -(-1030 S) +((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-1121)))) +(-1031 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1031 S) +(-1032 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1032) +(-1033) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4456 . T) (-4461 . T) (-4455 . T) (-4458 . T) (-4457 . T) ((-4465 "*") . T) (-4460 . T)) +((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) NIL -(-1033 R -2117) +(-1034 R -1959) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1034 R -2117) +(-1035 R -1959) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1035 -2117 UP) +(-1036 -1959 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1036 -2117 UP) +(-1037 -1959 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1037 S) +(-1038 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1038 F1 UP UPUP R F2) +(-1039 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1039) +(-1040) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1040 |Pol|) +(-1041 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1041 |Pol|) +(-1042 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1042) +(-1043) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1043) +(-1044) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1044 |TheField|) +(-1045 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4456 . T) (-4461 . T) (-4455 . T) (-4458 . T) (-4457 . T) ((-4465 "*") . T) (-4460 . T)) -((-3794 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1058) (QUOTE (-576))))) -(-1045 -2117 L) +((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) +((-2758 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576))))) +(-1046 -1959 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1046 S) +(-1047 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1120)))) -(-1047 R E V P) +((|HasCategory| |#1| (QUOTE (-1121)))) +(-1048 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1048 R) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1049 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4465 "*")))) -(-1049 R) +((|HasAttribute| |#1| (QUOTE (-4466 "*")))) +(-1050 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317)))) -(-1050 S) +(-1051 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1052 S) +(-1053 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1053 S) +(-1054 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1054 -2117 |Expon| |VarSet| |FPol| |LFPol|) +(-1055 -1959 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1055) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (QUOTE (-1196))) (LIST (QUOTE |:|) (QUOTE -2904) (QUOTE (-52))))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-1196) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1120))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-102)))) (-1056) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4438) (QUOTE (-52))))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-102)))) +(-1057) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1057 A S) +(-1058 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1058 S) +(-1059 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1059 Q R) +(-1060 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1060) +(-1061) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1061 UP) +(-1062 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1062 R) +(-1063 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1063 R) +(-1064 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1064 T$) +(-1065 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1065 T$) +(-1066 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1066 R |ls|) +(-1067 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| (-792 |#1| (-877 |#2|)) (QUOTE (-1120))) (|HasCategory| (-792 |#1| (-877 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -877) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-877 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-877 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-877 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-877 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-792 |#1| (-877 |#2|)) (QUOTE (-102)))) -(-1067) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-1121))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -878) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-878 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-102)))) +(-1068) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1068 S) +(-1069 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1069) +(-1070) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4460 . T)) +((-4461 . T)) NIL -(-1070 |xx| -2117) +(-1071 |xx| -1959) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1071 S) +(-1072 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1072 S |m| |n| R |Row| |Col|) +(-1073 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1073 |m| |n| R |Row| |Col|) +(-1074 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4463 . T) (-4458 . T) (-4457 . T)) +((-4464 . T) (-4459 . T) (-4458 . T)) NIL -(-1074 |m| |n| R) +(-1075 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4463 . T) (-4458 . T) (-4457 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-3794 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-875))))) -(-1075 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4464 . T) (-4459 . T) (-4458 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2758 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) +(-1076 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1076 R) +(-1077 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1077 S T$) +(-1078 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1120)))) -(-1078) +((|HasCategory| |#1| (QUOTE (-1121)))) +(-1079) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1079 S) +(-1080 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1080) +(-1081) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1081 |TheField| |ThePolDom|) +(-1082 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1082) +(-1083) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4451 . T) (-4455 . T) (-4450 . T) (-4461 . T) (-4462 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1083) +(-1084) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (QUOTE (-1196))) (LIST (QUOTE |:|) (QUOTE -2904) (QUOTE (-52))))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1120))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-1120))) (|HasCategory| (-1196) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1120))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (QUOTE (-102)))) -(-1084 S R E V) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4438) (QUOTE (-52))))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (QUOTE (-102)))) +(-1085 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1196))))) -(-1085 R E V) +((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1013) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1197))))) +(-1086 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-1086) +(-1087) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1087 S |TheField| |ThePols|) +(-1088 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1088 |TheField| |ThePols|) +(-1089 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1089 R E V P TS) +(-1090 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1090 S R E V P) +(-1091 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1091 R E V P) +(-1092 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1092 R E V P TS) +(-1093 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1093) +(-1094) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1094) +(-1095) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1095 |f|) +(-1096 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1096 |Base| R -2117) +(-1097 |Base| R -1959) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1097 |Base| R -2117) +(-1098 |Base| R -1959) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1098 R |ls|) +(-1099 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1099 UP SAE UPA) +(-1100 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1100 R UP M) +(-1101 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4456 |has| |#1| (-374)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))))) -(-1101 UP SAE UPA) +((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) +(-1102 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1102) +(-1103) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1103) +(-1104) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1104 S) +(-1105 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1105) +(-1106) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1106 R) +(-1107 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1107 R) +(-1108 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1108 (-1196)) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-1108 (-1196)) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-1108 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-1108 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-1108 (-1196)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1108 S) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1109 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1109 R S) +(-1110 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL ((|HasCategory| |#1| (QUOTE (-860)))) -(-1110) +(-1111) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1111 R S) +(-1112 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1112 S) +(-1113 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1114 |#1|) (QUOTE (-1120)))) -(-1113 S) +((|HasCategory| (-1115 |#1|) (QUOTE (-1121)))) +(-1114 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1114 S) +(-1115 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1120)))) -(-1115 S L) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) +(-1116 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1116) +(-1117) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1117 A S) +(-1118 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1118 S) +(-1119 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4453 . T)) +((-4454 . T)) NIL -(-1119 S) +(-1120 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1120) +(-1121) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1121 |m| |n|) +(-1122 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1122 S) +(-1123 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4463 . T) (-4453 . T) (-4464 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1123 |Str| |Sym| |Int| |Flt| |Expr|) +((-4464 . T) (-4454 . T) (-4465 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-1124 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1124) +(-1125) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1125 |Str| |Sym| |Int| |Flt| |Expr|) +(-1126 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1126 R FS) +(-1127 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1127 R E V P TS) +(-1128 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1128 R E V P TS) +(-1129 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1129 R E V P) +(-1130 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1130) +(-1131) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1131 S) +(-1132 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1132) +(-1133) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1133 |dimtot| |dim1| S) +(-1134 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4457 |has| |#3| (-1069)) (-4458 |has| |#3| (-1069)) (-4460 |has| |#3| (-6 -4460)) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1120)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#3| (QUOTE (-374))) (-3794 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3794 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3794 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-3794 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-1120)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-1120)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1069)))) (|HasCategory| |#3| (QUOTE (-238))) (-3794 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1069))))) (-3794 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-1120))) (-3794 (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1120))))) (-3794 (-12 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1069))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1196))))) (-3794 (|HasCategory| |#3| (QUOTE (-1069))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1120)))) (|HasAttribute| |#3| (QUOTE -4460)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (LIST (QUOTE -916) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) -(-1134 R |x|) +((-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4461 |has| |#3| (-6 -4461)) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-374))) (-2758 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2758 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2758 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2758 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2758 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2758 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2758 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2758 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2758 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +(-1135 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-464)))) -(-1135) +(-1136) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1136 R -2117) +(-1137 R -1959) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1137 R) +(-1138 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1138) +(-1139) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1139) +(-1140) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1140) +(-1141) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4451 . T) (-4455 . T) (-4450 . T) (-4461 . T) (-4462 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1141 S) +(-1142 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4463 . T) (-4464 . T)) +((-4464 . T) (-4465 . T)) NIL -(-1142 S |ndim| R |Row| |Col|) +(-1143 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4465 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1143 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4466 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1144 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4463 . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4464 . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1144 R |Row| |Col| M) +(-1145 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1145 R |VarSet|) +(-1146 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1146 |Coef| |Var| SMP) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1147 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1147 R E V P) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(-1148 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1148 UP -2117) +(-1149 UP -1959) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1149 R) +(-1150 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1150 R) +(-1151 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1151 R) +(-1152 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1152 S A) +(-1153 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL ((|HasCategory| |#1| (QUOTE (-861)))) -(-1153 R) +(-1154 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1154 R) +(-1155 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1155) +(-1156) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1156) +(-1157) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1157) +(-1158) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1158) +(-1159) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1159) +(-1160) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1160 V C) +(-1161 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1161 V C) +(-1162 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-1160 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1120)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1120))) (-3794 (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1120)))) (-3794 (|HasCategory| (-1160 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-875)))) (-12 (|HasCategory| (-1160 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1120))))) (|HasCategory| (-1160 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-102)))) -(-1162 |ndim| R) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))) (-2758 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (-2758 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))))) (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) +(-1163 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4460 . T) (-4452 |has| |#2| (-6 (-4465 "*"))) (-4463 . T) (-4457 . T) (-4458 . T)) -((|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4465 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-374))) (-3794 (|HasAttribute| |#2| (QUOTE (-4465 "*"))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1163 S) +((-4461 . T) (-4453 |has| |#2| (-6 (-4466 "*"))) (-4464 . T) (-4458 . T) (-4459 . T)) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (-2758 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1164 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1164) +(-1165) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1165 R E V P TS) +(-1166 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1166 R E V P) +(-1167 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1167 S) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1168 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1168 A S) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1169 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1169 S) +(-1170 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1170 |Key| |Ent| |dent|) +(-1171 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#2|)))))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-3794 (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (QUOTE (-1120)))) -(-1171) +((-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#2|)))))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2758 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (QUOTE (-1121)))) +(-1172) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1172) +(-1173) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1173 |Coef|) +(-1174 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1174 S) +(-1175 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1175 A B) +(-1176 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1176 A B C) +(-1177 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1177 S) +(-1178 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1178) +((-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1179) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3794 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-875)))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120)))) (|HasCategory| (-145) (QUOTE (-861))) (-3794 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1120))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-1179 |Entry|) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2758 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2758 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +(-1180 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4463 . T) (-4464 . T)) -((-12 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2239) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -2904) (|devaluate| |#1|)))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-1120))) (|HasCategory| (-1178) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (-3794 (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (QUOTE (-102)))) -(-1180 A) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4438) (|devaluate| |#1|)))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (-2758 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (QUOTE (-102)))) +(-1181 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1181 |Coef|) +(-1182 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1182 |Coef|) +(-1183 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1183 R UP) +(-1184 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-317)))) -(-1184 |n| R) +(-1185 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1185 S1 S2) +(-1186 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1186) +(-1187) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1187 |Coef| |var| |cen|) +(-1188 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4465 "*") -3794 (-2310 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2310 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-927)))) (-4456 -3794 (-2310 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2310 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-927)))) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1172))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1132))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-374)))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1172))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1188 R -2117) +(((-4466 "*") -2758 (-2673 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2673 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4457 -2758 (-2673 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2673 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1189 R -1959) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1189 R) +(-1190 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1190 R S) +(-1191 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1191 E OV R P) +(-1192 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1192 R) +(-1193 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1193 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1194 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1195 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1132))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1195) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1196) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1215) +(-1216) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1216 S) +(-1217 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1217) +(-1218) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1218) +(-1219) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1219 R) +(-1220 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1220) +(-1221) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1221 S) +(-1222 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1222) +(-1223) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1223 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1224 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1225 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1225) +(-1226) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1226 R -2117) +(-1227 R -1959) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1227 R |Row| |Col| M) +(-1228 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1228 R -2117) +(-1229 R -1959) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -906) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -900) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -900) (|devaluate| |#1|))))) -(-1229 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -901) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -901) (|devaluate| |#1|))))) +(-1230 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-379)))) -(-1230 R E V P) +(-1231 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1231 |Coef|) +(-1232 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1232 |Curve|) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(-1233 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1233) +(-1234) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1234 S) +(-1235 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) -(-1235 -2117) +((|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) +(-1236 -1959) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1236) +(-1237) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1237) +(-1238) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1238 S) +(-1239 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-861)))) -(-1239) +(-1240) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1240 S) +(-1241 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1241) +(-1242) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1242) +(-1243) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1243) +(-1244) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1244) +(-1245) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1245) +(-1246) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1246 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1247 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1247 |Coef|) +(-1248 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1248 S |Coef| UTS) +(-1249 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) -(-1249 |Coef| UTS) +(-1250 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1250 |Coef| UTS) +(-1251 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1172)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-3794 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1132))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-3794 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1172)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1172)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-927))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1251 |Coef| |var| |cen|) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2758 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-2758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1252 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4465 "*") -3794 (-2310 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2310 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-927)))) (-4456 -3794 (-2310 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2310 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-927)))) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1172))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1132))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-374)))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1172))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1252 ZP) +(((-4466 "*") -2758 (-2673 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2673 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4457 -2758 (-2673 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2673 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1253 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1253 R S) +(-1254 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-860)))) -(-1254 S) +(-1255 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1120)))) -(-1255 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) +(-1256 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1256 R Q UP) +(-1257 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1257 R UP) +(-1258 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1258 R UP) +(-1259 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1259 R U) +(-1260 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1260 |x| R) +(-1261 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4465 "*") |has| |#2| (-174)) (-4456 |has| |#2| (-568)) (-4459 |has| |#2| (-374)) (-4461 |has| |#2| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-390))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -900) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-576))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-390)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -906) (QUOTE (-576)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (QUOTE (-576)))) (-3794 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (-3794 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1172))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (-3794 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1261 R PR S PS) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4460 |has| |#2| (-374)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2758 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2758 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2758 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1262 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1262 S R) +(-1263 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1172)))) -(-1263 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1173)))) +(-1264 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4461 |has| |#1| (-6 -4461)) (-4458 . T) (-4457 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-1264 S |Coef| |Expon|) +(-1265 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4112) (LIST (|devaluate| |#2|) (QUOTE (-1196)))))) -(-1265 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3569) (LIST (|devaluate| |#2|) (QUOTE (-1197)))))) +(-1266 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1266 RC P) +(-1267 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1267 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1268 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1268 |Coef|) +(-1269 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1269 S |Coef| ULS) +(-1270 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1270 |Coef| ULS) +(-1271 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1271 |Coef| ULS) +(-1272 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1272 |Coef| |var| |cen|) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) +(-1273 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4455 |has| |#1| (-374)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3794 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1273 R FE |var| |cen|) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2758 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1274 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4465 "*") |has| (-1272 |#2| |#3| |#4|) (-174)) (-4456 |has| (-1272 |#2| |#3| |#4|) (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-174))) (-3794 (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1058) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1058) (QUOTE (-576)))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-568)))) -(-1274 A S) +(((-4466 "*") |has| (-1273 |#2| |#3| |#4|) (-174)) (-4457 |has| (-1273 |#2| |#3| |#4|) (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-174))) (-2758 (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-568)))) +(-1275 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4464))) -(-1275 S) +((|HasAttribute| |#1| (QUOTE -4465))) +(-1276 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1276 |Coef1| |Coef2| UTS1 UTS2) +(-1277 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1277 S |Coef|) +(-1278 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasSignature| |#2| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2944) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) -(-1278 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3441) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) +(-1279 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1279 |Coef| |var| |cen|) +(-1280 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4465 "*") |has| |#1| (-174)) (-4456 |has| |#1| (-568)) (-4457 . T) (-4458 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3794 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1132))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4112) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3794 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2944) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1582) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1280 |Coef| UTS) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2758 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2758 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3441) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1966) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1281 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1281 -2117 UP L UTS) +(-1282 -1959 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-568)))) -(-1282) +(-1283) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1283 |sym|) +(-1284 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1284 S R) +(-1285 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1285 R) +((|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1286 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4464 . T) (-4463 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1286 A B) +(-1287 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1287 R) +(-1288 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4464 . T) (-4463 . T)) -((-3794 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3794 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3794 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-861))) (-3794 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1288) +((-4465 . T) (-4464 . T)) +((-2758 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2758 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2758 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2758 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-1289) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1289) +(-1290) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1290) +(-1291) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1291) +(-1292) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1292) +(-1293) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1293 A S) +(-1294 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1294 S) +(-1295 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4458 . T) (-4457 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1295 R) +(-1296 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1296 K R UP -2117) +(-1297 K R UP -1959) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1297) +(-1298) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1298) +(-1299) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1299 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1300 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4458 |has| |#1| (-174)) (-4457 |has| |#1| (-174)) (-4460 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1300 R E V P) +(-1301 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4464 . T) (-4463 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1301 R) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1302 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4457 . T) (-4458 . T) (-4460 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1302 |vl| R) +(-1303 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4460 . T) (-4456 |has| |#2| (-6 -4456)) (-4458 . T) (-4457 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4456))) -(-1303 R |VarSet| XPOLY) +((-4461 . T) (-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4457))) +(-1304 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1304 |vl| R) +(-1305 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4456 |has| |#2| (-6 -4456)) (-4458 . T) (-4457 . T) (-4460 . T)) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-1305 S -2117) +(-1306 S -1959) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1306 -2117) +(-1307 -1959) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4455 . T) (-4461 . T) (-4456 . T) ((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-1307 |VarSet| R) +(-1308 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4456 |has| |#2| (-6 -4456)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4456))) -(-1308 |vl| R) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4457))) +(-1309 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4456 |has| |#2| (-6 -4456)) (-4458 . T) (-4457 . T) (-4460 . T)) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-1309 R) +(-1310 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4456 |has| |#1| (-6 -4456)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4456))) -(-1310 R E) +((-4457 |has| |#1| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4457))) +(-1311 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4460 . T) (-4461 |has| |#1| (-6 -4461)) (-4456 |has| |#1| (-6 -4456)) (-4458 . T) (-4457 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4456))) -(-1311 |VarSet| R) +((-4461 . T) (-4462 |has| |#1| (-6 -4462)) (-4457 |has| |#1| (-6 -4457)) (-4459 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4457))) +(-1312 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4456 |has| |#2| (-6 -4456)) (-4458 . T) (-4457 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4456))) -(-1312) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4457))) +(-1313) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1313 A) +(-1314 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1314 R |ls| |ls2|) +(-1315 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1315 R) +(-1316 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1316 |p|) +(-1317 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4465 "*") . T) (-4457 . T) (-4458 . T) (-4460 . T)) +(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL NIL NIL @@ -5212,4 +5216,4 @@ NIL NIL NIL NIL -((-3 NIL 2293563 2293568 2293573 2293578) (-2 NIL 2293543 2293548 2293553 2293558) (-1 NIL 2293523 2293528 2293533 2293538) (0 NIL 2293503 2293508 2293513 2293518) (-1316 "ZMOD.spad" 2293312 2293325 2293441 2293498) (-1315 "ZLINDEP.spad" 2292378 2292389 2293302 2293307) (-1314 "ZDSOLVE.spad" 2282323 2282345 2292368 2292373) (-1313 "YSTREAM.spad" 2281818 2281829 2282313 2282318) (-1312 "YDIAGRAM.spad" 2281452 2281461 2281808 2281813) (-1311 "XRPOLY.spad" 2280672 2280692 2281308 2281377) (-1310 "XPR.spad" 2278467 2278480 2280390 2280489) (-1309 "XPOLY.spad" 2278022 2278033 2278323 2278392) (-1308 "XPOLYC.spad" 2277341 2277357 2277948 2278017) (-1307 "XPBWPOLY.spad" 2275778 2275798 2277121 2277190) (-1306 "XF.spad" 2274241 2274256 2275680 2275773) (-1305 "XF.spad" 2272684 2272701 2274125 2274130) (-1304 "XFALG.spad" 2269732 2269748 2272610 2272679) (-1303 "XEXPPKG.spad" 2268983 2269009 2269722 2269727) (-1302 "XDPOLY.spad" 2268597 2268613 2268839 2268908) (-1301 "XALG.spad" 2268257 2268268 2268553 2268592) (-1300 "WUTSET.spad" 2264060 2264077 2267867 2267894) (-1299 "WP.spad" 2263259 2263303 2263918 2263985) (-1298 "WHILEAST.spad" 2263057 2263066 2263249 2263254) (-1297 "WHEREAST.spad" 2262728 2262737 2263047 2263052) (-1296 "WFFINTBS.spad" 2260391 2260413 2262718 2262723) (-1295 "WEIER.spad" 2258613 2258624 2260381 2260386) (-1294 "VSPACE.spad" 2258286 2258297 2258581 2258608) (-1293 "VSPACE.spad" 2257979 2257992 2258276 2258281) (-1292 "VOID.spad" 2257656 2257665 2257969 2257974) (-1291 "VIEW.spad" 2255336 2255345 2257646 2257651) (-1290 "VIEWDEF.spad" 2250537 2250546 2255326 2255331) (-1289 "VIEW3D.spad" 2234498 2234507 2250527 2250532) (-1288 "VIEW2D.spad" 2222389 2222398 2234488 2234493) (-1287 "VECTOR.spad" 2220910 2220921 2221161 2221188) (-1286 "VECTOR2.spad" 2219549 2219562 2220900 2220905) (-1285 "VECTCAT.spad" 2217453 2217464 2219517 2219544) (-1284 "VECTCAT.spad" 2215164 2215177 2217230 2217235) (-1283 "VARIABLE.spad" 2214944 2214959 2215154 2215159) (-1282 "UTYPE.spad" 2214588 2214597 2214934 2214939) (-1281 "UTSODETL.spad" 2213883 2213907 2214544 2214549) (-1280 "UTSODE.spad" 2212099 2212119 2213873 2213878) (-1279 "UTS.spad" 2207046 2207074 2210566 2210663) (-1278 "UTSCAT.spad" 2204525 2204541 2206944 2207041) (-1277 "UTSCAT.spad" 2201648 2201666 2204069 2204074) (-1276 "UTS2.spad" 2201243 2201278 2201638 2201643) (-1275 "URAGG.spad" 2195916 2195927 2201233 2201238) (-1274 "URAGG.spad" 2190553 2190566 2195872 2195877) (-1273 "UPXSSING.spad" 2188198 2188224 2189634 2189767) (-1272 "UPXS.spad" 2185494 2185522 2186330 2186479) (-1271 "UPXSCONS.spad" 2183253 2183273 2183626 2183775) (-1270 "UPXSCCA.spad" 2181824 2181844 2183099 2183248) (-1269 "UPXSCCA.spad" 2180537 2180559 2181814 2181819) (-1268 "UPXSCAT.spad" 2179126 2179142 2180383 2180532) (-1267 "UPXS2.spad" 2178669 2178722 2179116 2179121) (-1266 "UPSQFREE.spad" 2177083 2177097 2178659 2178664) (-1265 "UPSCAT.spad" 2174870 2174894 2176981 2177078) (-1264 "UPSCAT.spad" 2172363 2172389 2174476 2174481) (-1263 "UPOLYC.spad" 2167403 2167414 2172205 2172358) (-1262 "UPOLYC.spad" 2162335 2162348 2167139 2167144) (-1261 "UPOLYC2.spad" 2161806 2161825 2162325 2162330) (-1260 "UP.spad" 2158912 2158927 2159299 2159452) (-1259 "UPMP.spad" 2157812 2157825 2158902 2158907) (-1258 "UPDIVP.spad" 2157377 2157391 2157802 2157807) (-1257 "UPDECOMP.spad" 2155622 2155636 2157367 2157372) (-1256 "UPCDEN.spad" 2154831 2154847 2155612 2155617) (-1255 "UP2.spad" 2154195 2154216 2154821 2154826) (-1254 "UNISEG.spad" 2153548 2153559 2154114 2154119) (-1253 "UNISEG2.spad" 2153045 2153058 2153504 2153509) (-1252 "UNIFACT.spad" 2152148 2152160 2153035 2153040) (-1251 "ULS.spad" 2141932 2141960 2142877 2143306) (-1250 "ULSCONS.spad" 2133066 2133086 2133436 2133585) (-1249 "ULSCCAT.spad" 2130803 2130823 2132912 2133061) (-1248 "ULSCCAT.spad" 2128648 2128670 2130759 2130764) (-1247 "ULSCAT.spad" 2126880 2126896 2128494 2128643) (-1246 "ULS2.spad" 2126394 2126447 2126870 2126875) (-1245 "UINT8.spad" 2126271 2126280 2126384 2126389) (-1244 "UINT64.spad" 2126147 2126156 2126261 2126266) (-1243 "UINT32.spad" 2126023 2126032 2126137 2126142) (-1242 "UINT16.spad" 2125899 2125908 2126013 2126018) (-1241 "UFD.spad" 2124964 2124973 2125825 2125894) (-1240 "UFD.spad" 2124091 2124102 2124954 2124959) (-1239 "UDVO.spad" 2122972 2122981 2124081 2124086) (-1238 "UDPO.spad" 2120465 2120476 2122928 2122933) (-1237 "TYPE.spad" 2120397 2120406 2120455 2120460) (-1236 "TYPEAST.spad" 2120316 2120325 2120387 2120392) (-1235 "TWOFACT.spad" 2118968 2118983 2120306 2120311) (-1234 "TUPLE.spad" 2118454 2118465 2118867 2118872) (-1233 "TUBETOOL.spad" 2115321 2115330 2118444 2118449) (-1232 "TUBE.spad" 2113968 2113985 2115311 2115316) (-1231 "TS.spad" 2112567 2112583 2113533 2113630) (-1230 "TSETCAT.spad" 2099694 2099711 2112535 2112562) (-1229 "TSETCAT.spad" 2086807 2086826 2099650 2099655) (-1228 "TRMANIP.spad" 2081173 2081190 2086513 2086518) (-1227 "TRIMAT.spad" 2080136 2080161 2081163 2081168) (-1226 "TRIGMNIP.spad" 2078663 2078680 2080126 2080131) (-1225 "TRIGCAT.spad" 2078175 2078184 2078653 2078658) (-1224 "TRIGCAT.spad" 2077685 2077696 2078165 2078170) (-1223 "TREE.spad" 2076143 2076154 2077175 2077202) (-1222 "TRANFUN.spad" 2075982 2075991 2076133 2076138) (-1221 "TRANFUN.spad" 2075819 2075830 2075972 2075977) (-1220 "TOPSP.spad" 2075493 2075502 2075809 2075814) (-1219 "TOOLSIGN.spad" 2075156 2075167 2075483 2075488) (-1218 "TEXTFILE.spad" 2073717 2073726 2075146 2075151) (-1217 "TEX.spad" 2070863 2070872 2073707 2073712) (-1216 "TEX1.spad" 2070419 2070430 2070853 2070858) (-1215 "TEMUTL.spad" 2069974 2069983 2070409 2070414) (-1214 "TBCMPPK.spad" 2068067 2068090 2069964 2069969) (-1213 "TBAGG.spad" 2067117 2067140 2068047 2068062) (-1212 "TBAGG.spad" 2066175 2066200 2067107 2067112) (-1211 "TANEXP.spad" 2065583 2065594 2066165 2066170) (-1210 "TALGOP.spad" 2065307 2065318 2065573 2065578) (-1209 "TABLE.spad" 2063276 2063299 2063546 2063573) (-1208 "TABLEAU.spad" 2062757 2062768 2063266 2063271) (-1207 "TABLBUMP.spad" 2059560 2059571 2062747 2062752) (-1206 "SYSTEM.spad" 2058788 2058797 2059550 2059555) (-1205 "SYSSOLP.spad" 2056271 2056282 2058778 2058783) (-1204 "SYSPTR.spad" 2056170 2056179 2056261 2056266) (-1203 "SYSNNI.spad" 2055352 2055363 2056160 2056165) (-1202 "SYSINT.spad" 2054756 2054767 2055342 2055347) (-1201 "SYNTAX.spad" 2050962 2050971 2054746 2054751) (-1200 "SYMTAB.spad" 2049030 2049039 2050952 2050957) (-1199 "SYMS.spad" 2045053 2045062 2049020 2049025) (-1198 "SYMPOLY.spad" 2044060 2044071 2044142 2044269) (-1197 "SYMFUNC.spad" 2043561 2043572 2044050 2044055) (-1196 "SYMBOL.spad" 2041064 2041073 2043551 2043556) (-1195 "SWITCH.spad" 2037835 2037844 2041054 2041059) (-1194 "SUTS.spad" 2034883 2034911 2036302 2036399) (-1193 "SUPXS.spad" 2032166 2032194 2033015 2033164) (-1192 "SUP.spad" 2028886 2028897 2029659 2029812) (-1191 "SUPFRACF.spad" 2027991 2028009 2028876 2028881) (-1190 "SUP2.spad" 2027383 2027396 2027981 2027986) (-1189 "SUMRF.spad" 2026357 2026368 2027373 2027378) (-1188 "SUMFS.spad" 2025994 2026011 2026347 2026352) (-1187 "SULS.spad" 2015765 2015793 2016723 2017152) (-1186 "SUCHTAST.spad" 2015534 2015543 2015755 2015760) (-1185 "SUCH.spad" 2015216 2015231 2015524 2015529) (-1184 "SUBSPACE.spad" 2007331 2007346 2015206 2015211) (-1183 "SUBRESP.spad" 2006501 2006515 2007287 2007292) (-1182 "STTF.spad" 2002600 2002616 2006491 2006496) (-1181 "STTFNC.spad" 1999068 1999084 2002590 2002595) (-1180 "STTAYLOR.spad" 1991703 1991714 1998949 1998954) (-1179 "STRTBL.spad" 1989754 1989771 1989903 1989930) (-1178 "STRING.spad" 1988541 1988550 1988762 1988789) (-1177 "STREAM.spad" 1985342 1985353 1987949 1987964) (-1176 "STREAM3.spad" 1984915 1984930 1985332 1985337) (-1175 "STREAM2.spad" 1984043 1984056 1984905 1984910) (-1174 "STREAM1.spad" 1983749 1983760 1984033 1984038) (-1173 "STINPROD.spad" 1982685 1982701 1983739 1983744) (-1172 "STEP.spad" 1981886 1981895 1982675 1982680) (-1171 "STEPAST.spad" 1981120 1981129 1981876 1981881) (-1170 "STBL.spad" 1979204 1979232 1979371 1979386) (-1169 "STAGG.spad" 1978279 1978290 1979194 1979199) (-1168 "STAGG.spad" 1977352 1977365 1978269 1978274) (-1167 "STACK.spad" 1976592 1976603 1976842 1976869) (-1166 "SREGSET.spad" 1974260 1974277 1976202 1976229) (-1165 "SRDCMPK.spad" 1972821 1972841 1974250 1974255) (-1164 "SRAGG.spad" 1967964 1967973 1972789 1972816) (-1163 "SRAGG.spad" 1963127 1963138 1967954 1967959) (-1162 "SQMATRIX.spad" 1960670 1960688 1961586 1961673) (-1161 "SPLTREE.spad" 1955066 1955079 1959950 1959977) (-1160 "SPLNODE.spad" 1951654 1951667 1955056 1955061) (-1159 "SPFCAT.spad" 1950463 1950472 1951644 1951649) (-1158 "SPECOUT.spad" 1949015 1949024 1950453 1950458) (-1157 "SPADXPT.spad" 1940610 1940619 1949005 1949010) (-1156 "spad-parser.spad" 1940075 1940084 1940600 1940605) (-1155 "SPADAST.spad" 1939776 1939785 1940065 1940070) (-1154 "SPACEC.spad" 1923975 1923986 1939766 1939771) (-1153 "SPACE3.spad" 1923751 1923762 1923965 1923970) (-1152 "SORTPAK.spad" 1923300 1923313 1923707 1923712) (-1151 "SOLVETRA.spad" 1921063 1921074 1923290 1923295) (-1150 "SOLVESER.spad" 1919591 1919602 1921053 1921058) (-1149 "SOLVERAD.spad" 1915617 1915628 1919581 1919586) (-1148 "SOLVEFOR.spad" 1914079 1914097 1915607 1915612) (-1147 "SNTSCAT.spad" 1913679 1913696 1914047 1914074) (-1146 "SMTS.spad" 1911951 1911977 1913244 1913341) (-1145 "SMP.spad" 1909426 1909446 1909816 1909943) (-1144 "SMITH.spad" 1908271 1908296 1909416 1909421) (-1143 "SMATCAT.spad" 1906381 1906411 1908215 1908266) (-1142 "SMATCAT.spad" 1904423 1904455 1906259 1906264) (-1141 "SKAGG.spad" 1903386 1903397 1904391 1904418) (-1140 "SINT.spad" 1902326 1902335 1903252 1903381) (-1139 "SIMPAN.spad" 1902054 1902063 1902316 1902321) (-1138 "SIG.spad" 1901384 1901393 1902044 1902049) (-1137 "SIGNRF.spad" 1900502 1900513 1901374 1901379) (-1136 "SIGNEF.spad" 1899781 1899798 1900492 1900497) (-1135 "SIGAST.spad" 1899166 1899175 1899771 1899776) (-1134 "SHP.spad" 1897094 1897109 1899122 1899127) (-1133 "SHDP.spad" 1884772 1884799 1885281 1885380) (-1132 "SGROUP.spad" 1884380 1884389 1884762 1884767) (-1131 "SGROUP.spad" 1883986 1883997 1884370 1884375) (-1130 "SGCF.spad" 1877125 1877134 1883976 1883981) (-1129 "SFRTCAT.spad" 1876055 1876072 1877093 1877120) (-1128 "SFRGCD.spad" 1875118 1875138 1876045 1876050) (-1127 "SFQCMPK.spad" 1869755 1869775 1875108 1875113) (-1126 "SFORT.spad" 1869194 1869208 1869745 1869750) (-1125 "SEXOF.spad" 1869037 1869077 1869184 1869189) (-1124 "SEX.spad" 1868929 1868938 1869027 1869032) (-1123 "SEXCAT.spad" 1866701 1866741 1868919 1868924) (-1122 "SET.spad" 1864989 1865000 1866086 1866125) (-1121 "SETMN.spad" 1863439 1863456 1864979 1864984) (-1120 "SETCAT.spad" 1862924 1862933 1863429 1863434) (-1119 "SETCAT.spad" 1862407 1862418 1862914 1862919) (-1118 "SETAGG.spad" 1858956 1858967 1862387 1862402) (-1117 "SETAGG.spad" 1855513 1855526 1858946 1858951) (-1116 "SEQAST.spad" 1855216 1855225 1855503 1855508) (-1115 "SEGXCAT.spad" 1854372 1854385 1855206 1855211) (-1114 "SEG.spad" 1854185 1854196 1854291 1854296) (-1113 "SEGCAT.spad" 1853110 1853121 1854175 1854180) (-1112 "SEGBIND.spad" 1852868 1852879 1853057 1853062) (-1111 "SEGBIND2.spad" 1852566 1852579 1852858 1852863) (-1110 "SEGAST.spad" 1852280 1852289 1852556 1852561) (-1109 "SEG2.spad" 1851715 1851728 1852236 1852241) (-1108 "SDVAR.spad" 1850991 1851002 1851705 1851710) (-1107 "SDPOL.spad" 1848324 1848335 1848615 1848742) (-1106 "SCPKG.spad" 1846413 1846424 1848314 1848319) (-1105 "SCOPE.spad" 1845566 1845575 1846403 1846408) (-1104 "SCACHE.spad" 1844262 1844273 1845556 1845561) (-1103 "SASTCAT.spad" 1844171 1844180 1844252 1844257) (-1102 "SAOS.spad" 1844043 1844052 1844161 1844166) (-1101 "SAERFFC.spad" 1843756 1843776 1844033 1844038) (-1100 "SAE.spad" 1841226 1841242 1841837 1841972) (-1099 "SAEFACT.spad" 1840927 1840947 1841216 1841221) (-1098 "RURPK.spad" 1838586 1838602 1840917 1840922) (-1097 "RULESET.spad" 1838039 1838063 1838576 1838581) (-1096 "RULE.spad" 1836279 1836303 1838029 1838034) (-1095 "RULECOLD.spad" 1836131 1836144 1836269 1836274) (-1094 "RTVALUE.spad" 1835866 1835875 1836121 1836126) (-1093 "RSTRCAST.spad" 1835583 1835592 1835856 1835861) (-1092 "RSETGCD.spad" 1831961 1831981 1835573 1835578) (-1091 "RSETCAT.spad" 1821897 1821914 1831929 1831956) (-1090 "RSETCAT.spad" 1811853 1811872 1821887 1821892) (-1089 "RSDCMPK.spad" 1810305 1810325 1811843 1811848) (-1088 "RRCC.spad" 1808689 1808719 1810295 1810300) (-1087 "RRCC.spad" 1807071 1807103 1808679 1808684) (-1086 "RPTAST.spad" 1806773 1806782 1807061 1807066) (-1085 "RPOLCAT.spad" 1786133 1786148 1806641 1806768) (-1084 "RPOLCAT.spad" 1765206 1765223 1785716 1785721) (-1083 "ROUTINE.spad" 1760627 1760636 1763391 1763418) (-1082 "ROMAN.spad" 1759955 1759964 1760493 1760622) (-1081 "ROIRC.spad" 1759035 1759067 1759945 1759950) (-1080 "RNS.spad" 1757938 1757947 1758937 1759030) (-1079 "RNS.spad" 1756927 1756938 1757928 1757933) (-1078 "RNG.spad" 1756662 1756671 1756917 1756922) (-1077 "RNGBIND.spad" 1755822 1755836 1756617 1756622) (-1076 "RMODULE.spad" 1755587 1755598 1755812 1755817) (-1075 "RMCAT2.spad" 1755007 1755064 1755577 1755582) (-1074 "RMATRIX.spad" 1753795 1753814 1754138 1754177) (-1073 "RMATCAT.spad" 1749374 1749405 1753751 1753790) (-1072 "RMATCAT.spad" 1744843 1744876 1749222 1749227) (-1071 "RLINSET.spad" 1744547 1744558 1744833 1744838) (-1070 "RINTERP.spad" 1744435 1744455 1744537 1744542) (-1069 "RING.spad" 1743905 1743914 1744415 1744430) (-1068 "RING.spad" 1743383 1743394 1743895 1743900) (-1067 "RIDIST.spad" 1742775 1742784 1743373 1743378) (-1066 "RGCHAIN.spad" 1741303 1741319 1742205 1742232) (-1065 "RGBCSPC.spad" 1741084 1741096 1741293 1741298) (-1064 "RGBCMDL.spad" 1740614 1740626 1741074 1741079) (-1063 "RF.spad" 1738256 1738267 1740604 1740609) (-1062 "RFFACTOR.spad" 1737718 1737729 1738246 1738251) (-1061 "RFFACT.spad" 1737453 1737465 1737708 1737713) (-1060 "RFDIST.spad" 1736449 1736458 1737443 1737448) (-1059 "RETSOL.spad" 1735868 1735881 1736439 1736444) (-1058 "RETRACT.spad" 1735296 1735307 1735858 1735863) (-1057 "RETRACT.spad" 1734722 1734735 1735286 1735291) (-1056 "RETAST.spad" 1734534 1734543 1734712 1734717) (-1055 "RESULT.spad" 1732132 1732141 1732719 1732746) (-1054 "RESRING.spad" 1731479 1731526 1732070 1732127) (-1053 "RESLATC.spad" 1730803 1730814 1731469 1731474) (-1052 "REPSQ.spad" 1730534 1730545 1730793 1730798) (-1051 "REP.spad" 1728088 1728097 1730524 1730529) (-1050 "REPDB.spad" 1727795 1727806 1728078 1728083) (-1049 "REP2.spad" 1717453 1717464 1727637 1727642) (-1048 "REP1.spad" 1711649 1711660 1717403 1717408) (-1047 "REGSET.spad" 1709410 1709427 1711259 1711286) (-1046 "REF.spad" 1708745 1708756 1709365 1709370) (-1045 "REDORDER.spad" 1707951 1707968 1708735 1708740) (-1044 "RECLOS.spad" 1706734 1706754 1707438 1707531) (-1043 "REALSOLV.spad" 1705874 1705883 1706724 1706729) (-1042 "REAL.spad" 1705746 1705755 1705864 1705869) (-1041 "REAL0Q.spad" 1703044 1703059 1705736 1705741) (-1040 "REAL0.spad" 1699888 1699903 1703034 1703039) (-1039 "RDUCEAST.spad" 1699609 1699618 1699878 1699883) (-1038 "RDIV.spad" 1699264 1699289 1699599 1699604) (-1037 "RDIST.spad" 1698831 1698842 1699254 1699259) (-1036 "RDETRS.spad" 1697695 1697713 1698821 1698826) (-1035 "RDETR.spad" 1695834 1695852 1697685 1697690) (-1034 "RDEEFS.spad" 1694933 1694950 1695824 1695829) (-1033 "RDEEF.spad" 1693943 1693960 1694923 1694928) (-1032 "RCFIELD.spad" 1691129 1691138 1693845 1693938) (-1031 "RCFIELD.spad" 1688401 1688412 1691119 1691124) (-1030 "RCAGG.spad" 1686329 1686340 1688391 1688396) (-1029 "RCAGG.spad" 1684184 1684197 1686248 1686253) (-1028 "RATRET.spad" 1683544 1683555 1684174 1684179) (-1027 "RATFACT.spad" 1683236 1683248 1683534 1683539) (-1026 "RANDSRC.spad" 1682555 1682564 1683226 1683231) (-1025 "RADUTIL.spad" 1682311 1682320 1682545 1682550) (-1024 "RADIX.spad" 1679135 1679149 1680681 1680774) (-1023 "RADFF.spad" 1676874 1676911 1676993 1677149) (-1022 "RADCAT.spad" 1676469 1676478 1676864 1676869) (-1021 "RADCAT.spad" 1676062 1676073 1676459 1676464) (-1020 "QUEUE.spad" 1675293 1675304 1675552 1675579) (-1019 "QUAT.spad" 1673781 1673792 1674124 1674189) (-1018 "QUATCT2.spad" 1673401 1673420 1673771 1673776) (-1017 "QUATCAT.spad" 1671571 1671582 1673331 1673396) (-1016 "QUATCAT.spad" 1669492 1669505 1671254 1671259) (-1015 "QUAGG.spad" 1668319 1668330 1669460 1669487) (-1014 "QQUTAST.spad" 1668087 1668096 1668309 1668314) (-1013 "QFORM.spad" 1667705 1667720 1668077 1668082) (-1012 "QFCAT.spad" 1666407 1666418 1667607 1667700) (-1011 "QFCAT.spad" 1664700 1664713 1665902 1665907) (-1010 "QFCAT2.spad" 1664392 1664409 1664690 1664695) (-1009 "QEQUAT.spad" 1663950 1663959 1664382 1664387) (-1008 "QCMPACK.spad" 1658696 1658716 1663940 1663945) (-1007 "QALGSET.spad" 1654774 1654807 1658610 1658615) (-1006 "QALGSET2.spad" 1652769 1652788 1654764 1654769) (-1005 "PWFFINTB.spad" 1650184 1650206 1652759 1652764) (-1004 "PUSHVAR.spad" 1649522 1649542 1650174 1650179) (-1003 "PTRANFN.spad" 1645649 1645660 1649512 1649517) (-1002 "PTPACK.spad" 1642736 1642747 1645639 1645644) (-1001 "PTFUNC2.spad" 1642558 1642573 1642726 1642731) (-1000 "PTCAT.spad" 1641812 1641823 1642526 1642553) (-999 "PSQFR.spad" 1641119 1641143 1641802 1641807) (-998 "PSEUDLIN.spad" 1640005 1640015 1641109 1641114) (-997 "PSETPK.spad" 1625438 1625454 1639883 1639888) (-996 "PSETCAT.spad" 1619358 1619381 1625418 1625433) (-995 "PSETCAT.spad" 1613252 1613277 1619314 1619319) (-994 "PSCURVE.spad" 1612235 1612243 1613242 1613247) (-993 "PSCAT.spad" 1611018 1611047 1612133 1612230) (-992 "PSCAT.spad" 1609891 1609922 1611008 1611013) (-991 "PRTITION.spad" 1608589 1608597 1609881 1609886) (-990 "PRTDAST.spad" 1608308 1608316 1608579 1608584) (-989 "PRS.spad" 1597870 1597887 1608264 1608269) (-988 "PRQAGG.spad" 1597305 1597315 1597838 1597865) (-987 "PROPLOG.spad" 1596877 1596885 1597295 1597300) (-986 "PROPFUN2.spad" 1596500 1596513 1596867 1596872) (-985 "PROPFUN1.spad" 1595898 1595909 1596490 1596495) (-984 "PROPFRML.spad" 1594466 1594477 1595888 1595893) (-983 "PROPERTY.spad" 1593954 1593962 1594456 1594461) (-982 "PRODUCT.spad" 1591636 1591648 1591920 1591975) (-981 "PR.spad" 1590028 1590040 1590727 1590854) (-980 "PRINT.spad" 1589780 1589788 1590018 1590023) (-979 "PRIMES.spad" 1588033 1588043 1589770 1589775) (-978 "PRIMELT.spad" 1586114 1586128 1588023 1588028) (-977 "PRIMCAT.spad" 1585741 1585749 1586104 1586109) (-976 "PRIMARR.spad" 1584593 1584603 1584771 1584798) (-975 "PRIMARR2.spad" 1583360 1583372 1584583 1584588) (-974 "PREASSOC.spad" 1582742 1582754 1583350 1583355) (-973 "PPCURVE.spad" 1581879 1581887 1582732 1582737) (-972 "PORTNUM.spad" 1581654 1581662 1581869 1581874) (-971 "POLYROOT.spad" 1580503 1580525 1581610 1581615) (-970 "POLY.spad" 1577838 1577848 1578353 1578480) (-969 "POLYLIFT.spad" 1577103 1577126 1577828 1577833) (-968 "POLYCATQ.spad" 1575221 1575243 1577093 1577098) (-967 "POLYCAT.spad" 1568691 1568712 1575089 1575216) (-966 "POLYCAT.spad" 1561499 1561522 1567899 1567904) (-965 "POLY2UP.spad" 1560951 1560965 1561489 1561494) (-964 "POLY2.spad" 1560548 1560560 1560941 1560946) (-963 "POLUTIL.spad" 1559489 1559518 1560504 1560509) (-962 "POLTOPOL.spad" 1558237 1558252 1559479 1559484) (-961 "POINT.spad" 1556922 1556932 1557009 1557036) (-960 "PNTHEORY.spad" 1553624 1553632 1556912 1556917) (-959 "PMTOOLS.spad" 1552399 1552413 1553614 1553619) (-958 "PMSYM.spad" 1551948 1551958 1552389 1552394) (-957 "PMQFCAT.spad" 1551539 1551553 1551938 1551943) (-956 "PMPRED.spad" 1551018 1551032 1551529 1551534) (-955 "PMPREDFS.spad" 1550472 1550494 1551008 1551013) (-954 "PMPLCAT.spad" 1549552 1549570 1550404 1550409) (-953 "PMLSAGG.spad" 1549137 1549151 1549542 1549547) (-952 "PMKERNEL.spad" 1548716 1548728 1549127 1549132) (-951 "PMINS.spad" 1548296 1548306 1548706 1548711) (-950 "PMFS.spad" 1547873 1547891 1548286 1548291) (-949 "PMDOWN.spad" 1547163 1547177 1547863 1547868) (-948 "PMASS.spad" 1546173 1546181 1547153 1547158) (-947 "PMASSFS.spad" 1545140 1545156 1546163 1546168) (-946 "PLOTTOOL.spad" 1544920 1544928 1545130 1545135) (-945 "PLOT.spad" 1539843 1539851 1544910 1544915) (-944 "PLOT3D.spad" 1536307 1536315 1539833 1539838) (-943 "PLOT1.spad" 1535464 1535474 1536297 1536302) (-942 "PLEQN.spad" 1522754 1522781 1535454 1535459) (-941 "PINTERP.spad" 1522376 1522395 1522744 1522749) (-940 "PINTERPA.spad" 1522160 1522176 1522366 1522371) (-939 "PI.spad" 1521769 1521777 1522134 1522155) (-938 "PID.spad" 1520739 1520747 1521695 1521764) (-937 "PICOERCE.spad" 1520396 1520406 1520729 1520734) (-936 "PGROEB.spad" 1518997 1519011 1520386 1520391) (-935 "PGE.spad" 1510614 1510622 1518987 1518992) (-934 "PGCD.spad" 1509504 1509521 1510604 1510609) (-933 "PFRPAC.spad" 1508653 1508663 1509494 1509499) (-932 "PFR.spad" 1505316 1505326 1508555 1508648) (-931 "PFOTOOLS.spad" 1504574 1504590 1505306 1505311) (-930 "PFOQ.spad" 1503944 1503962 1504564 1504569) (-929 "PFO.spad" 1503363 1503390 1503934 1503939) (-928 "PF.spad" 1502937 1502949 1503168 1503261) (-927 "PFECAT.spad" 1500619 1500627 1502863 1502932) (-926 "PFECAT.spad" 1498329 1498339 1500575 1500580) (-925 "PFBRU.spad" 1496217 1496229 1498319 1498324) (-924 "PFBR.spad" 1493777 1493800 1496207 1496212) (-923 "PERM.spad" 1489584 1489594 1493607 1493622) (-922 "PERMGRP.spad" 1484354 1484364 1489574 1489579) (-921 "PERMCAT.spad" 1483015 1483025 1484334 1484349) (-920 "PERMAN.spad" 1481547 1481561 1483005 1483010) (-919 "PENDTREE.spad" 1480771 1480781 1481059 1481064) (-918 "PDSPC.spad" 1479584 1479594 1480761 1480766) (-917 "PDSPC.spad" 1478395 1478407 1479574 1479579) (-916 "PDRING.spad" 1478237 1478247 1478375 1478390) (-915 "PDMOD.spad" 1478053 1478065 1478205 1478232) (-914 "PDEPROB.spad" 1477068 1477076 1478043 1478048) (-913 "PDEPACK.spad" 1471108 1471116 1477058 1477063) (-912 "PDECOMP.spad" 1470578 1470595 1471098 1471103) (-911 "PDECAT.spad" 1468934 1468942 1470568 1470573) (-910 "PDDOM.spad" 1468372 1468385 1468924 1468929) (-909 "PDDOM.spad" 1467808 1467823 1468362 1468367) (-908 "PCOMP.spad" 1467661 1467674 1467798 1467803) (-907 "PBWLB.spad" 1466249 1466266 1467651 1467656) (-906 "PATTERN.spad" 1460788 1460798 1466239 1466244) (-905 "PATTERN2.spad" 1460526 1460538 1460778 1460783) (-904 "PATTERN1.spad" 1458862 1458878 1460516 1460521) (-903 "PATRES.spad" 1456437 1456449 1458852 1458857) (-902 "PATRES2.spad" 1456109 1456123 1456427 1456432) (-901 "PATMATCH.spad" 1454306 1454337 1455817 1455822) (-900 "PATMAB.spad" 1453735 1453745 1454296 1454301) (-899 "PATLRES.spad" 1452821 1452835 1453725 1453730) (-898 "PATAB.spad" 1452585 1452595 1452811 1452816) (-897 "PARTPERM.spad" 1450593 1450601 1452575 1452580) (-896 "PARSURF.spad" 1450027 1450055 1450583 1450588) (-895 "PARSU2.spad" 1449824 1449840 1450017 1450022) (-894 "script-parser.spad" 1449344 1449352 1449814 1449819) (-893 "PARSCURV.spad" 1448778 1448806 1449334 1449339) (-892 "PARSC2.spad" 1448569 1448585 1448768 1448773) (-891 "PARPCURV.spad" 1448031 1448059 1448559 1448564) (-890 "PARPC2.spad" 1447822 1447838 1448021 1448026) (-889 "PARAMAST.spad" 1446950 1446958 1447812 1447817) (-888 "PAN2EXPR.spad" 1446362 1446370 1446940 1446945) (-887 "PALETTE.spad" 1445332 1445340 1446352 1446357) (-886 "PAIR.spad" 1444319 1444332 1444920 1444925) (-885 "PADICRC.spad" 1441560 1441578 1442731 1442824) (-884 "PADICRAT.spad" 1439468 1439480 1439689 1439782) (-883 "PADIC.spad" 1439163 1439175 1439394 1439463) (-882 "PADICCT.spad" 1437712 1437724 1439089 1439158) (-881 "PADEPAC.spad" 1436401 1436420 1437702 1437707) (-880 "PADE.spad" 1435153 1435169 1436391 1436396) (-879 "OWP.spad" 1434393 1434423 1435011 1435078) (-878 "OVERSET.spad" 1433966 1433974 1434383 1434388) (-877 "OVAR.spad" 1433747 1433770 1433956 1433961) (-876 "OUT.spad" 1432833 1432841 1433737 1433742) (-875 "OUTFORM.spad" 1422225 1422233 1432823 1432828) (-874 "OUTBFILE.spad" 1421643 1421651 1422215 1422220) (-873 "OUTBCON.spad" 1420649 1420657 1421633 1421638) (-872 "OUTBCON.spad" 1419653 1419663 1420639 1420644) (-871 "OSI.spad" 1419128 1419136 1419643 1419648) (-870 "OSGROUP.spad" 1419046 1419054 1419118 1419123) (-869 "ORTHPOL.spad" 1417531 1417541 1418963 1418968) (-868 "OREUP.spad" 1416984 1417012 1417211 1417250) (-867 "ORESUP.spad" 1416285 1416309 1416664 1416703) (-866 "OREPCTO.spad" 1414142 1414154 1416205 1416210) (-865 "OREPCAT.spad" 1408289 1408299 1414098 1414137) (-864 "OREPCAT.spad" 1402326 1402338 1408137 1408142) (-863 "ORDTYPE.spad" 1401563 1401571 1402316 1402321) (-862 "ORDTYPE.spad" 1400798 1400808 1401553 1401558) (-861 "ORDSET.spad" 1400498 1400506 1400788 1400793) (-860 "ORDRING.spad" 1399888 1399896 1400478 1400493) (-859 "ORDRING.spad" 1399286 1399296 1399878 1399883) (-858 "ORDMON.spad" 1399141 1399149 1399276 1399281) (-857 "ORDFUNS.spad" 1398273 1398289 1399131 1399136) (-856 "ORDFIN.spad" 1398093 1398101 1398263 1398268) (-855 "ORDCOMP.spad" 1396558 1396568 1397640 1397669) (-854 "ORDCOMP2.spad" 1395851 1395863 1396548 1396553) (-853 "OPTPROB.spad" 1394489 1394497 1395841 1395846) (-852 "OPTPACK.spad" 1386898 1386906 1394479 1394484) (-851 "OPTCAT.spad" 1384577 1384585 1386888 1386893) (-850 "OPSIG.spad" 1384231 1384239 1384567 1384572) (-849 "OPQUERY.spad" 1383780 1383788 1384221 1384226) (-848 "OP.spad" 1383522 1383532 1383602 1383669) (-847 "OPERCAT.spad" 1382988 1382998 1383512 1383517) (-846 "OPERCAT.spad" 1382452 1382464 1382978 1382983) (-845 "ONECOMP.spad" 1381197 1381207 1381999 1382028) (-844 "ONECOMP2.spad" 1380621 1380633 1381187 1381192) (-843 "OMSERVER.spad" 1379627 1379635 1380611 1380616) (-842 "OMSAGG.spad" 1379415 1379425 1379583 1379622) (-841 "OMPKG.spad" 1378031 1378039 1379405 1379410) (-840 "OM.spad" 1377004 1377012 1378021 1378026) (-839 "OMLO.spad" 1376429 1376441 1376890 1376929) (-838 "OMEXPR.spad" 1376263 1376273 1376419 1376424) (-837 "OMERR.spad" 1375808 1375816 1376253 1376258) (-836 "OMERRK.spad" 1374842 1374850 1375798 1375803) (-835 "OMENC.spad" 1374186 1374194 1374832 1374837) (-834 "OMDEV.spad" 1368495 1368503 1374176 1374181) (-833 "OMCONN.spad" 1367904 1367912 1368485 1368490) (-832 "OINTDOM.spad" 1367667 1367675 1367830 1367899) (-831 "OFMONOID.spad" 1365790 1365800 1367623 1367628) (-830 "ODVAR.spad" 1365051 1365061 1365780 1365785) (-829 "ODR.spad" 1364695 1364721 1364863 1365012) (-828 "ODPOL.spad" 1361984 1361994 1362324 1362451) (-827 "ODP.spad" 1349798 1349818 1350171 1350270) (-826 "ODETOOLS.spad" 1348447 1348466 1349788 1349793) (-825 "ODESYS.spad" 1346141 1346158 1348437 1348442) (-824 "ODERTRIC.spad" 1342150 1342167 1346098 1346103) (-823 "ODERED.spad" 1341549 1341573 1342140 1342145) (-822 "ODERAT.spad" 1339164 1339181 1341539 1341544) (-821 "ODEPRRIC.spad" 1336201 1336223 1339154 1339159) (-820 "ODEPROB.spad" 1335458 1335466 1336191 1336196) (-819 "ODEPRIM.spad" 1332792 1332814 1335448 1335453) (-818 "ODEPAL.spad" 1332178 1332202 1332782 1332787) (-817 "ODEPACK.spad" 1318844 1318852 1332168 1332173) (-816 "ODEINT.spad" 1318279 1318295 1318834 1318839) (-815 "ODEIFTBL.spad" 1315674 1315682 1318269 1318274) (-814 "ODEEF.spad" 1311165 1311181 1315664 1315669) (-813 "ODECONST.spad" 1310702 1310720 1311155 1311160) (-812 "ODECAT.spad" 1309300 1309308 1310692 1310697) (-811 "OCT.spad" 1307436 1307446 1308150 1308189) (-810 "OCTCT2.spad" 1307082 1307103 1307426 1307431) (-809 "OC.spad" 1304878 1304888 1307038 1307077) (-808 "OC.spad" 1302399 1302411 1304561 1304566) (-807 "OCAMON.spad" 1302247 1302255 1302389 1302394) (-806 "OASGP.spad" 1302062 1302070 1302237 1302242) (-805 "OAMONS.spad" 1301584 1301592 1302052 1302057) (-804 "OAMON.spad" 1301445 1301453 1301574 1301579) (-803 "OAGROUP.spad" 1301307 1301315 1301435 1301440) (-802 "NUMTUBE.spad" 1300898 1300914 1301297 1301302) (-801 "NUMQUAD.spad" 1288874 1288882 1300888 1300893) (-800 "NUMODE.spad" 1280228 1280236 1288864 1288869) (-799 "NUMINT.spad" 1277794 1277802 1280218 1280223) (-798 "NUMFMT.spad" 1276634 1276642 1277784 1277789) (-797 "NUMERIC.spad" 1268748 1268758 1276439 1276444) (-796 "NTSCAT.spad" 1267256 1267272 1268716 1268743) (-795 "NTPOLFN.spad" 1266807 1266817 1267173 1267178) (-794 "NSUP.spad" 1259760 1259770 1264300 1264453) (-793 "NSUP2.spad" 1259152 1259164 1259750 1259755) (-792 "NSMP.spad" 1255382 1255401 1255690 1255817) (-791 "NREP.spad" 1253760 1253774 1255372 1255377) (-790 "NPCOEF.spad" 1253006 1253026 1253750 1253755) (-789 "NORMRETR.spad" 1252604 1252643 1252996 1253001) (-788 "NORMPK.spad" 1250506 1250525 1252594 1252599) (-787 "NORMMA.spad" 1250194 1250220 1250496 1250501) (-786 "NONE.spad" 1249935 1249943 1250184 1250189) (-785 "NONE1.spad" 1249611 1249621 1249925 1249930) (-784 "NODE1.spad" 1249098 1249114 1249601 1249606) (-783 "NNI.spad" 1247993 1248001 1249072 1249093) (-782 "NLINSOL.spad" 1246619 1246629 1247983 1247988) (-781 "NIPROB.spad" 1245160 1245168 1246609 1246614) (-780 "NFINTBAS.spad" 1242720 1242737 1245150 1245155) (-779 "NETCLT.spad" 1242694 1242705 1242710 1242715) (-778 "NCODIV.spad" 1240910 1240926 1242684 1242689) (-777 "NCNTFRAC.spad" 1240552 1240566 1240900 1240905) (-776 "NCEP.spad" 1238718 1238732 1240542 1240547) (-775 "NASRING.spad" 1238314 1238322 1238708 1238713) (-774 "NASRING.spad" 1237908 1237918 1238304 1238309) (-773 "NARNG.spad" 1237260 1237268 1237898 1237903) (-772 "NARNG.spad" 1236610 1236620 1237250 1237255) (-771 "NAGSP.spad" 1235687 1235695 1236600 1236605) (-770 "NAGS.spad" 1225348 1225356 1235677 1235682) (-769 "NAGF07.spad" 1223779 1223787 1225338 1225343) (-768 "NAGF04.spad" 1218181 1218189 1223769 1223774) (-767 "NAGF02.spad" 1212250 1212258 1218171 1218176) (-766 "NAGF01.spad" 1208011 1208019 1212240 1212245) (-765 "NAGE04.spad" 1201711 1201719 1208001 1208006) (-764 "NAGE02.spad" 1192371 1192379 1201701 1201706) (-763 "NAGE01.spad" 1188373 1188381 1192361 1192366) (-762 "NAGD03.spad" 1186377 1186385 1188363 1188368) (-761 "NAGD02.spad" 1179124 1179132 1186367 1186372) (-760 "NAGD01.spad" 1173417 1173425 1179114 1179119) (-759 "NAGC06.spad" 1169292 1169300 1173407 1173412) (-758 "NAGC05.spad" 1167793 1167801 1169282 1169287) (-757 "NAGC02.spad" 1167060 1167068 1167783 1167788) (-756 "NAALG.spad" 1166601 1166611 1167028 1167055) (-755 "NAALG.spad" 1166162 1166174 1166591 1166596) (-754 "MULTSQFR.spad" 1163120 1163137 1166152 1166157) (-753 "MULTFACT.spad" 1162503 1162520 1163110 1163115) (-752 "MTSCAT.spad" 1160597 1160618 1162401 1162498) (-751 "MTHING.spad" 1160256 1160266 1160587 1160592) (-750 "MSYSCMD.spad" 1159690 1159698 1160246 1160251) (-749 "MSET.spad" 1157612 1157622 1159360 1159399) (-748 "MSETAGG.spad" 1157457 1157467 1157580 1157607) (-747 "MRING.spad" 1154434 1154446 1157165 1157232) (-746 "MRF2.spad" 1154004 1154018 1154424 1154429) (-745 "MRATFAC.spad" 1153550 1153567 1153994 1153999) (-744 "MPRFF.spad" 1151590 1151609 1153540 1153545) (-743 "MPOLY.spad" 1149061 1149076 1149420 1149547) (-742 "MPCPF.spad" 1148325 1148344 1149051 1149056) (-741 "MPC3.spad" 1148142 1148182 1148315 1148320) (-740 "MPC2.spad" 1147788 1147821 1148132 1148137) (-739 "MONOTOOL.spad" 1146139 1146156 1147778 1147783) (-738 "MONOID.spad" 1145458 1145466 1146129 1146134) (-737 "MONOID.spad" 1144775 1144785 1145448 1145453) (-736 "MONOGEN.spad" 1143523 1143536 1144635 1144770) (-735 "MONOGEN.spad" 1142293 1142308 1143407 1143412) (-734 "MONADWU.spad" 1140323 1140331 1142283 1142288) (-733 "MONADWU.spad" 1138351 1138361 1140313 1140318) (-732 "MONAD.spad" 1137511 1137519 1138341 1138346) (-731 "MONAD.spad" 1136669 1136679 1137501 1137506) (-730 "MOEBIUS.spad" 1135405 1135419 1136649 1136664) (-729 "MODULE.spad" 1135275 1135285 1135373 1135400) (-728 "MODULE.spad" 1135165 1135177 1135265 1135270) (-727 "MODRING.spad" 1134500 1134539 1135145 1135160) (-726 "MODOP.spad" 1133165 1133177 1134322 1134389) (-725 "MODMONOM.spad" 1132896 1132914 1133155 1133160) (-724 "MODMON.spad" 1129598 1129614 1130317 1130470) (-723 "MODFIELD.spad" 1128960 1128999 1129500 1129593) (-722 "MMLFORM.spad" 1127820 1127828 1128950 1128955) (-721 "MMAP.spad" 1127562 1127596 1127810 1127815) (-720 "MLO.spad" 1126021 1126031 1127518 1127557) (-719 "MLIFT.spad" 1124633 1124650 1126011 1126016) (-718 "MKUCFUNC.spad" 1124168 1124186 1124623 1124628) (-717 "MKRECORD.spad" 1123772 1123785 1124158 1124163) (-716 "MKFUNC.spad" 1123179 1123189 1123762 1123767) (-715 "MKFLCFN.spad" 1122147 1122157 1123169 1123174) (-714 "MKBCFUNC.spad" 1121642 1121660 1122137 1122142) (-713 "MINT.spad" 1121081 1121089 1121544 1121637) (-712 "MHROWRED.spad" 1119592 1119602 1121071 1121076) (-711 "MFLOAT.spad" 1118112 1118120 1119482 1119587) (-710 "MFINFACT.spad" 1117512 1117534 1118102 1118107) (-709 "MESH.spad" 1115294 1115302 1117502 1117507) (-708 "MDDFACT.spad" 1113505 1113515 1115284 1115289) (-707 "MDAGG.spad" 1112796 1112806 1113485 1113500) (-706 "MCMPLX.spad" 1108227 1108235 1108841 1109042) (-705 "MCDEN.spad" 1107437 1107449 1108217 1108222) (-704 "MCALCFN.spad" 1104559 1104585 1107427 1107432) (-703 "MAYBE.spad" 1103843 1103854 1104549 1104554) (-702 "MATSTOR.spad" 1101151 1101161 1103833 1103838) (-701 "MATRIX.spad" 1099738 1099748 1100222 1100249) (-700 "MATLIN.spad" 1097082 1097106 1099622 1099627) (-699 "MATCAT.spad" 1088604 1088626 1097050 1097077) (-698 "MATCAT.spad" 1079998 1080022 1088446 1088451) (-697 "MATCAT2.spad" 1079280 1079328 1079988 1079993) (-696 "MAPPKG3.spad" 1078195 1078209 1079270 1079275) (-695 "MAPPKG2.spad" 1077533 1077545 1078185 1078190) (-694 "MAPPKG1.spad" 1076361 1076371 1077523 1077528) (-693 "MAPPAST.spad" 1075676 1075684 1076351 1076356) (-692 "MAPHACK3.spad" 1075488 1075502 1075666 1075671) (-691 "MAPHACK2.spad" 1075257 1075269 1075478 1075483) (-690 "MAPHACK1.spad" 1074901 1074911 1075247 1075252) (-689 "MAGMA.spad" 1072691 1072708 1074891 1074896) (-688 "MACROAST.spad" 1072270 1072278 1072681 1072686) (-687 "M3D.spad" 1069873 1069883 1071531 1071536) (-686 "LZSTAGG.spad" 1067111 1067121 1069863 1069868) (-685 "LZSTAGG.spad" 1064347 1064359 1067101 1067106) (-684 "LWORD.spad" 1061052 1061069 1064337 1064342) (-683 "LSTAST.spad" 1060836 1060844 1061042 1061047) (-682 "LSQM.spad" 1058993 1059007 1059387 1059438) (-681 "LSPP.spad" 1058528 1058545 1058983 1058988) (-680 "LSMP.spad" 1057378 1057406 1058518 1058523) (-679 "LSMP1.spad" 1055196 1055210 1057368 1057373) (-678 "LSAGG.spad" 1054865 1054875 1055164 1055191) (-677 "LSAGG.spad" 1054554 1054566 1054855 1054860) (-676 "LPOLY.spad" 1053508 1053527 1054410 1054479) (-675 "LPEFRAC.spad" 1052779 1052789 1053498 1053503) (-674 "LO.spad" 1052180 1052194 1052713 1052740) (-673 "LOGIC.spad" 1051782 1051790 1052170 1052175) (-672 "LOGIC.spad" 1051382 1051392 1051772 1051777) (-671 "LODOOPS.spad" 1050312 1050324 1051372 1051377) (-670 "LODO.spad" 1049696 1049712 1049992 1050031) (-669 "LODOF.spad" 1048742 1048759 1049653 1049658) (-668 "LODOCAT.spad" 1047408 1047418 1048698 1048737) (-667 "LODOCAT.spad" 1046072 1046084 1047364 1047369) (-666 "LODO2.spad" 1045345 1045357 1045752 1045791) (-665 "LODO1.spad" 1044745 1044755 1045025 1045064) (-664 "LODEEF.spad" 1043547 1043565 1044735 1044740) (-663 "LNAGG.spad" 1039694 1039704 1043537 1043542) (-662 "LNAGG.spad" 1035805 1035817 1039650 1039655) (-661 "LMOPS.spad" 1032573 1032590 1035795 1035800) (-660 "LMODULE.spad" 1032341 1032351 1032563 1032568) (-659 "LMDICT.spad" 1031511 1031521 1031775 1031802) (-658 "LLINSET.spad" 1031218 1031228 1031501 1031506) (-657 "LITERAL.spad" 1031124 1031135 1031208 1031213) (-656 "LIST.spad" 1028706 1028716 1030118 1030145) (-655 "LIST3.spad" 1028017 1028031 1028696 1028701) (-654 "LIST2.spad" 1026719 1026731 1028007 1028012) (-653 "LIST2MAP.spad" 1023622 1023634 1026709 1026714) (-652 "LINSET.spad" 1023401 1023411 1023612 1023617) (-651 "LINEXP.spad" 1022144 1022154 1023391 1023396) (-650 "LINDEP.spad" 1020953 1020965 1022056 1022061) (-649 "LIMITRF.spad" 1018881 1018891 1020943 1020948) (-648 "LIMITPS.spad" 1017784 1017797 1018871 1018876) (-647 "LIE.spad" 1015800 1015812 1017074 1017219) (-646 "LIECAT.spad" 1015276 1015286 1015726 1015795) (-645 "LIECAT.spad" 1014780 1014792 1015232 1015237) (-644 "LIB.spad" 1012531 1012539 1012977 1012992) (-643 "LGROBP.spad" 1009884 1009903 1012521 1012526) (-642 "LF.spad" 1008839 1008855 1009874 1009879) (-641 "LFCAT.spad" 1007898 1007906 1008829 1008834) (-640 "LEXTRIPK.spad" 1003401 1003416 1007888 1007893) (-639 "LEXP.spad" 1001404 1001431 1003381 1003396) (-638 "LETAST.spad" 1001103 1001111 1001394 1001399) (-637 "LEADCDET.spad" 999501 999518 1001093 1001098) (-636 "LAZM3PK.spad" 998205 998227 999491 999496) (-635 "LAUPOL.spad" 996805 996818 997705 997774) (-634 "LAPLACE.spad" 996388 996404 996795 996800) (-633 "LA.spad" 995828 995842 996310 996349) (-632 "LALG.spad" 995604 995614 995808 995823) (-631 "LALG.spad" 995388 995400 995594 995599) (-630 "KVTFROM.spad" 995123 995133 995378 995383) (-629 "KTVLOGIC.spad" 994635 994643 995113 995118) (-628 "KRCFROM.spad" 994373 994383 994625 994630) (-627 "KOVACIC.spad" 993096 993113 994363 994368) (-626 "KONVERT.spad" 992818 992828 993086 993091) (-625 "KOERCE.spad" 992555 992565 992808 992813) (-624 "KERNEL.spad" 991210 991220 992339 992344) (-623 "KERNEL2.spad" 990913 990925 991200 991205) (-622 "KDAGG.spad" 990022 990044 990893 990908) (-621 "KDAGG.spad" 989139 989163 990012 990017) (-620 "KAFILE.spad" 987993 988009 988228 988255) (-619 "JORDAN.spad" 985822 985834 987283 987428) (-618 "JOINAST.spad" 985516 985524 985812 985817) (-617 "JAVACODE.spad" 985382 985390 985506 985511) (-616 "IXAGG.spad" 983515 983539 985372 985377) (-615 "IXAGG.spad" 981503 981529 983362 983367) (-614 "IVECTOR.spad" 980120 980135 980275 980302) (-613 "ITUPLE.spad" 979281 979291 980110 980115) (-612 "ITRIGMNP.spad" 978120 978139 979271 979276) (-611 "ITFUN3.spad" 977626 977640 978110 978115) (-610 "ITFUN2.spad" 977370 977382 977616 977621) (-609 "ITFORM.spad" 976725 976733 977360 977365) (-608 "ITAYLOR.spad" 974719 974734 976589 976686) (-607 "ISUPS.spad" 967156 967171 973693 973790) (-606 "ISUMP.spad" 966657 966673 967146 967151) (-605 "ISTRING.spad" 965584 965597 965665 965692) (-604 "ISAST.spad" 965303 965311 965574 965579) (-603 "IRURPK.spad" 964020 964039 965293 965298) (-602 "IRSN.spad" 961992 962000 964010 964015) (-601 "IRRF2F.spad" 960477 960487 961948 961953) (-600 "IRREDFFX.spad" 960078 960089 960467 960472) (-599 "IROOT.spad" 958417 958427 960068 960073) (-598 "IR.spad" 956218 956232 958272 958299) (-597 "IRFORM.spad" 955542 955550 956208 956213) (-596 "IR2.spad" 954570 954586 955532 955537) (-595 "IR2F.spad" 953776 953792 954560 954565) (-594 "IPRNTPK.spad" 953536 953544 953766 953771) (-593 "IPF.spad" 953101 953113 953341 953434) (-592 "IPADIC.spad" 952862 952888 953027 953096) (-591 "IP4ADDR.spad" 952419 952427 952852 952857) (-590 "IOMODE.spad" 951941 951949 952409 952414) (-589 "IOBFILE.spad" 951302 951310 951931 951936) (-588 "IOBCON.spad" 951167 951175 951292 951297) (-587 "INVLAPLA.spad" 950816 950832 951157 951162) (-586 "INTTR.spad" 944198 944215 950806 950811) (-585 "INTTOOLS.spad" 941953 941969 943772 943777) (-584 "INTSLPE.spad" 941273 941281 941943 941948) (-583 "INTRVL.spad" 940839 940849 941187 941268) (-582 "INTRF.spad" 939263 939277 940829 940834) (-581 "INTRET.spad" 938695 938705 939253 939258) (-580 "INTRAT.spad" 937422 937439 938685 938690) (-579 "INTPM.spad" 935807 935823 937065 937070) (-578 "INTPAF.spad" 933671 933689 935739 935744) (-577 "INTPACK.spad" 924045 924053 933661 933666) (-576 "INT.spad" 923493 923501 923899 924040) (-575 "INTHERTR.spad" 922767 922784 923483 923488) (-574 "INTHERAL.spad" 922437 922461 922757 922762) (-573 "INTHEORY.spad" 918876 918884 922427 922432) (-572 "INTG0.spad" 912609 912627 918808 918813) (-571 "INTFTBL.spad" 906638 906646 912599 912604) (-570 "INTFACT.spad" 905697 905707 906628 906633) (-569 "INTEF.spad" 904082 904098 905687 905692) (-568 "INTDOM.spad" 902705 902713 904008 904077) (-567 "INTDOM.spad" 901390 901400 902695 902700) (-566 "INTCAT.spad" 899649 899659 901304 901385) (-565 "INTBIT.spad" 899156 899164 899639 899644) (-564 "INTALG.spad" 898344 898371 899146 899151) (-563 "INTAF.spad" 897844 897860 898334 898339) (-562 "INTABL.spad" 895920 895951 896083 896110) (-561 "INT8.spad" 895800 895808 895910 895915) (-560 "INT64.spad" 895679 895687 895790 895795) (-559 "INT32.spad" 895558 895566 895669 895674) (-558 "INT16.spad" 895437 895445 895548 895553) (-557 "INS.spad" 892940 892948 895339 895432) (-556 "INS.spad" 890529 890539 892930 892935) (-555 "INPSIGN.spad" 889977 889990 890519 890524) (-554 "INPRODPF.spad" 889073 889092 889967 889972) (-553 "INPRODFF.spad" 888161 888185 889063 889068) (-552 "INNMFACT.spad" 887136 887153 888151 888156) (-551 "INMODGCD.spad" 886624 886654 887126 887131) (-550 "INFSP.spad" 884921 884943 886614 886619) (-549 "INFPROD0.spad" 884001 884020 884911 884916) (-548 "INFORM.spad" 881200 881208 883991 883996) (-547 "INFORM1.spad" 880825 880835 881190 881195) (-546 "INFINITY.spad" 880377 880385 880815 880820) (-545 "INETCLTS.spad" 880354 880362 880367 880372) (-544 "INEP.spad" 878892 878914 880344 880349) (-543 "INDE.spad" 878621 878638 878882 878887) (-542 "INCRMAPS.spad" 878042 878052 878611 878616) (-541 "INBFILE.spad" 877114 877122 878032 878037) (-540 "INBFF.spad" 872908 872919 877104 877109) (-539 "INBCON.spad" 871198 871206 872898 872903) (-538 "INBCON.spad" 869486 869496 871188 871193) (-537 "INAST.spad" 869147 869155 869476 869481) (-536 "IMPTAST.spad" 868855 868863 869137 869142) (-535 "IMATRIX.spad" 867683 867709 868195 868222) (-534 "IMATQF.spad" 866777 866821 867639 867644) (-533 "IMATLIN.spad" 865382 865406 866733 866738) (-532 "ILIST.spad" 863887 863902 864412 864439) (-531 "IIARRAY2.spad" 863158 863196 863377 863404) (-530 "IFF.spad" 862568 862584 862839 862932) (-529 "IFAST.spad" 862182 862190 862558 862563) (-528 "IFARRAY.spad" 859522 859537 861212 861239) (-527 "IFAMON.spad" 859384 859401 859478 859483) (-526 "IEVALAB.spad" 858789 858801 859374 859379) (-525 "IEVALAB.spad" 858192 858206 858779 858784) (-524 "IDPO.spad" 858005 858017 858182 858187) (-523 "IDPOAMS.spad" 857761 857773 857995 858000) (-522 "IDPOAM.spad" 857481 857493 857751 857756) (-521 "IDPC.spad" 856210 856222 857471 857476) (-520 "IDPAM.spad" 855955 855967 856200 856205) (-519 "IDPAG.spad" 855702 855714 855945 855950) (-518 "IDENT.spad" 855352 855360 855692 855697) (-517 "IDECOMP.spad" 852591 852609 855342 855347) (-516 "IDEAL.spad" 847540 847579 852526 852531) (-515 "ICDEN.spad" 846729 846745 847530 847535) (-514 "ICARD.spad" 845920 845928 846719 846724) (-513 "IBPTOOLS.spad" 844527 844544 845910 845915) (-512 "IBITS.spad" 843692 843705 844125 844152) (-511 "IBATOOL.spad" 840669 840688 843682 843687) (-510 "IBACHIN.spad" 839176 839191 840659 840664) (-509 "IARRAY2.spad" 838047 838073 838666 838693) (-508 "IARRAY1.spad" 836939 836954 837077 837104) (-507 "IAN.spad" 835162 835170 836755 836848) (-506 "IALGFACT.spad" 834765 834798 835152 835157) (-505 "HYPCAT.spad" 834189 834197 834755 834760) (-504 "HYPCAT.spad" 833611 833621 834179 834184) (-503 "HOSTNAME.spad" 833419 833427 833601 833606) (-502 "HOMOTOP.spad" 833162 833172 833409 833414) (-501 "HOAGG.spad" 830444 830454 833152 833157) (-500 "HOAGG.spad" 827465 827477 830175 830180) (-499 "HEXADEC.spad" 825470 825478 825835 825928) (-498 "HEUGCD.spad" 824505 824516 825460 825465) (-497 "HELLFDIV.spad" 824095 824119 824495 824500) (-496 "HEAP.spad" 823370 823380 823585 823612) (-495 "HEADAST.spad" 822903 822911 823360 823365) (-494 "HDP.spad" 810713 810729 811090 811189) (-493 "HDMP.spad" 807927 807942 808543 808670) (-492 "HB.spad" 806178 806186 807917 807922) (-491 "HASHTBL.spad" 804206 804237 804417 804444) (-490 "HASAST.spad" 803922 803930 804196 804201) (-489 "HACKPI.spad" 803413 803421 803824 803917) (-488 "GTSET.spad" 802316 802332 803023 803050) (-487 "GSTBL.spad" 800393 800428 800567 800582) (-486 "GSERIES.spad" 797706 797733 798525 798674) (-485 "GROUP.spad" 796979 796987 797686 797701) (-484 "GROUP.spad" 796260 796270 796969 796974) (-483 "GROEBSOL.spad" 794754 794775 796250 796255) (-482 "GRMOD.spad" 793325 793337 794744 794749) (-481 "GRMOD.spad" 791894 791908 793315 793320) (-480 "GRIMAGE.spad" 784783 784791 791884 791889) (-479 "GRDEF.spad" 783162 783170 784773 784778) (-478 "GRAY.spad" 781625 781633 783152 783157) (-477 "GRALG.spad" 780702 780714 781615 781620) (-476 "GRALG.spad" 779777 779791 780692 780697) (-475 "GPOLSET.spad" 779195 779218 779423 779450) (-474 "GOSPER.spad" 778464 778482 779185 779190) (-473 "GMODPOL.spad" 777612 777639 778432 778459) (-472 "GHENSEL.spad" 776695 776709 777602 777607) (-471 "GENUPS.spad" 772988 773001 776685 776690) (-470 "GENUFACT.spad" 772565 772575 772978 772983) (-469 "GENPGCD.spad" 772151 772168 772555 772560) (-468 "GENMFACT.spad" 771603 771622 772141 772146) (-467 "GENEEZ.spad" 769554 769567 771593 771598) (-466 "GDMP.spad" 766610 766627 767384 767511) (-465 "GCNAALG.spad" 760533 760560 766404 766471) (-464 "GCDDOM.spad" 759709 759717 760459 760528) (-463 "GCDDOM.spad" 758947 758957 759699 759704) (-462 "GB.spad" 756473 756511 758903 758908) (-461 "GBINTERN.spad" 752493 752531 756463 756468) (-460 "GBF.spad" 748260 748298 752483 752488) (-459 "GBEUCLID.spad" 746142 746180 748250 748255) (-458 "GAUSSFAC.spad" 745455 745463 746132 746137) (-457 "GALUTIL.spad" 743781 743791 745411 745416) (-456 "GALPOLYU.spad" 742235 742248 743771 743776) (-455 "GALFACTU.spad" 740408 740427 742225 742230) (-454 "GALFACT.spad" 730597 730608 740398 740403) (-453 "FVFUN.spad" 727620 727628 730587 730592) (-452 "FVC.spad" 726672 726680 727610 727615) (-451 "FUNDESC.spad" 726350 726358 726662 726667) (-450 "FUNCTION.spad" 726199 726211 726340 726345) (-449 "FT.spad" 724496 724504 726189 726194) (-448 "FTEM.spad" 723661 723669 724486 724491) (-447 "FSUPFACT.spad" 722561 722580 723597 723602) (-446 "FST.spad" 720647 720655 722551 722556) (-445 "FSRED.spad" 720127 720143 720637 720642) (-444 "FSPRMELT.spad" 719009 719025 720084 720089) (-443 "FSPECF.spad" 717100 717116 718999 719004) (-442 "FS.spad" 711368 711378 716875 717095) (-441 "FS.spad" 705414 705426 710923 710928) (-440 "FSINT.spad" 705074 705090 705404 705409) (-439 "FSERIES.spad" 704265 704277 704894 704993) (-438 "FSCINT.spad" 703582 703598 704255 704260) (-437 "FSAGG.spad" 702699 702709 703538 703577) (-436 "FSAGG.spad" 701778 701790 702619 702624) (-435 "FSAGG2.spad" 700521 700537 701768 701773) (-434 "FS2UPS.spad" 695012 695046 700511 700516) (-433 "FS2.spad" 694659 694675 695002 695007) (-432 "FS2EXPXP.spad" 693784 693807 694649 694654) (-431 "FRUTIL.spad" 692738 692748 693774 693779) (-430 "FR.spad" 686361 686371 691669 691738) (-429 "FRNAALG.spad" 681630 681640 686303 686356) (-428 "FRNAALG.spad" 676911 676923 681586 681591) (-427 "FRNAAF2.spad" 676367 676385 676901 676906) (-426 "FRMOD.spad" 675777 675807 676298 676303) (-425 "FRIDEAL.spad" 675002 675023 675757 675772) (-424 "FRIDEAL2.spad" 674606 674638 674992 674997) (-423 "FRETRCT.spad" 674117 674127 674596 674601) (-422 "FRETRCT.spad" 673494 673506 673975 673980) (-421 "FRAMALG.spad" 671842 671855 673450 673489) (-420 "FRAMALG.spad" 670222 670237 671832 671837) (-419 "FRAC.spad" 667228 667238 667631 667804) (-418 "FRAC2.spad" 666833 666845 667218 667223) (-417 "FR2.spad" 666169 666181 666823 666828) (-416 "FPS.spad" 662984 662992 666059 666164) (-415 "FPS.spad" 659827 659837 662904 662909) (-414 "FPC.spad" 658873 658881 659729 659822) (-413 "FPC.spad" 658005 658015 658863 658868) (-412 "FPATMAB.spad" 657767 657777 657995 658000) (-411 "FPARFRAC.spad" 656617 656634 657757 657762) (-410 "FORTRAN.spad" 655123 655166 656607 656612) (-409 "FORT.spad" 654072 654080 655113 655118) (-408 "FORTFN.spad" 651242 651250 654062 654067) (-407 "FORTCAT.spad" 650926 650934 651232 651237) (-406 "FORMULA.spad" 648400 648408 650916 650921) (-405 "FORMULA1.spad" 647879 647889 648390 648395) (-404 "FORDER.spad" 647570 647594 647869 647874) (-403 "FOP.spad" 646771 646779 647560 647565) (-402 "FNLA.spad" 646195 646217 646739 646766) (-401 "FNCAT.spad" 644790 644798 646185 646190) (-400 "FNAME.spad" 644682 644690 644780 644785) (-399 "FMTC.spad" 644480 644488 644608 644677) (-398 "FMONOID.spad" 644145 644155 644436 644441) (-397 "FMONCAT.spad" 641298 641308 644135 644140) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file +((-3 NIL 2293737 2293742 2293747 2293752) (-2 NIL 2293717 2293722 2293727 2293732) (-1 NIL 2293697 2293702 2293707 2293712) (0 NIL 2293677 2293682 2293687 2293692) (-1317 "ZMOD.spad" 2293486 2293499 2293615 2293672) (-1316 "ZLINDEP.spad" 2292552 2292563 2293476 2293481) (-1315 "ZDSOLVE.spad" 2282497 2282519 2292542 2292547) (-1314 "YSTREAM.spad" 2281992 2282003 2282487 2282492) (-1313 "YDIAGRAM.spad" 2281626 2281635 2281982 2281987) (-1312 "XRPOLY.spad" 2280846 2280866 2281482 2281551) (-1311 "XPR.spad" 2278641 2278654 2280564 2280663) (-1310 "XPOLY.spad" 2278196 2278207 2278497 2278566) (-1309 "XPOLYC.spad" 2277515 2277531 2278122 2278191) (-1308 "XPBWPOLY.spad" 2275952 2275972 2277295 2277364) (-1307 "XF.spad" 2274415 2274430 2275854 2275947) (-1306 "XF.spad" 2272858 2272875 2274299 2274304) (-1305 "XFALG.spad" 2269906 2269922 2272784 2272853) (-1304 "XEXPPKG.spad" 2269157 2269183 2269896 2269901) (-1303 "XDPOLY.spad" 2268771 2268787 2269013 2269082) (-1302 "XALG.spad" 2268431 2268442 2268727 2268766) (-1301 "WUTSET.spad" 2264234 2264251 2268041 2268068) (-1300 "WP.spad" 2263433 2263477 2264092 2264159) (-1299 "WHILEAST.spad" 2263231 2263240 2263423 2263428) (-1298 "WHEREAST.spad" 2262902 2262911 2263221 2263226) (-1297 "WFFINTBS.spad" 2260565 2260587 2262892 2262897) (-1296 "WEIER.spad" 2258787 2258798 2260555 2260560) (-1295 "VSPACE.spad" 2258460 2258471 2258755 2258782) (-1294 "VSPACE.spad" 2258153 2258166 2258450 2258455) (-1293 "VOID.spad" 2257830 2257839 2258143 2258148) (-1292 "VIEW.spad" 2255510 2255519 2257820 2257825) (-1291 "VIEWDEF.spad" 2250711 2250720 2255500 2255505) (-1290 "VIEW3D.spad" 2234672 2234681 2250701 2250706) (-1289 "VIEW2D.spad" 2222563 2222572 2234662 2234667) (-1288 "VECTOR.spad" 2221084 2221095 2221335 2221362) (-1287 "VECTOR2.spad" 2219723 2219736 2221074 2221079) (-1286 "VECTCAT.spad" 2217627 2217638 2219691 2219718) (-1285 "VECTCAT.spad" 2215338 2215351 2217404 2217409) (-1284 "VARIABLE.spad" 2215118 2215133 2215328 2215333) (-1283 "UTYPE.spad" 2214762 2214771 2215108 2215113) (-1282 "UTSODETL.spad" 2214057 2214081 2214718 2214723) (-1281 "UTSODE.spad" 2212273 2212293 2214047 2214052) (-1280 "UTS.spad" 2207220 2207248 2210740 2210837) (-1279 "UTSCAT.spad" 2204699 2204715 2207118 2207215) (-1278 "UTSCAT.spad" 2201822 2201840 2204243 2204248) (-1277 "UTS2.spad" 2201417 2201452 2201812 2201817) (-1276 "URAGG.spad" 2196090 2196101 2201407 2201412) (-1275 "URAGG.spad" 2190727 2190740 2196046 2196051) (-1274 "UPXSSING.spad" 2188372 2188398 2189808 2189941) (-1273 "UPXS.spad" 2185668 2185696 2186504 2186653) (-1272 "UPXSCONS.spad" 2183427 2183447 2183800 2183949) (-1271 "UPXSCCA.spad" 2181998 2182018 2183273 2183422) (-1270 "UPXSCCA.spad" 2180711 2180733 2181988 2181993) (-1269 "UPXSCAT.spad" 2179300 2179316 2180557 2180706) (-1268 "UPXS2.spad" 2178843 2178896 2179290 2179295) (-1267 "UPSQFREE.spad" 2177257 2177271 2178833 2178838) (-1266 "UPSCAT.spad" 2175044 2175068 2177155 2177252) (-1265 "UPSCAT.spad" 2172537 2172563 2174650 2174655) (-1264 "UPOLYC.spad" 2167577 2167588 2172379 2172532) (-1263 "UPOLYC.spad" 2162509 2162522 2167313 2167318) (-1262 "UPOLYC2.spad" 2161980 2161999 2162499 2162504) (-1261 "UP.spad" 2159086 2159101 2159473 2159626) (-1260 "UPMP.spad" 2157986 2157999 2159076 2159081) (-1259 "UPDIVP.spad" 2157551 2157565 2157976 2157981) (-1258 "UPDECOMP.spad" 2155796 2155810 2157541 2157546) (-1257 "UPCDEN.spad" 2155005 2155021 2155786 2155791) (-1256 "UP2.spad" 2154369 2154390 2154995 2155000) (-1255 "UNISEG.spad" 2153722 2153733 2154288 2154293) (-1254 "UNISEG2.spad" 2153219 2153232 2153678 2153683) (-1253 "UNIFACT.spad" 2152322 2152334 2153209 2153214) (-1252 "ULS.spad" 2142106 2142134 2143051 2143480) (-1251 "ULSCONS.spad" 2133240 2133260 2133610 2133759) (-1250 "ULSCCAT.spad" 2130977 2130997 2133086 2133235) (-1249 "ULSCCAT.spad" 2128822 2128844 2130933 2130938) (-1248 "ULSCAT.spad" 2127054 2127070 2128668 2128817) (-1247 "ULS2.spad" 2126568 2126621 2127044 2127049) (-1246 "UINT8.spad" 2126445 2126454 2126558 2126563) (-1245 "UINT64.spad" 2126321 2126330 2126435 2126440) (-1244 "UINT32.spad" 2126197 2126206 2126311 2126316) (-1243 "UINT16.spad" 2126073 2126082 2126187 2126192) (-1242 "UFD.spad" 2125138 2125147 2125999 2126068) (-1241 "UFD.spad" 2124265 2124276 2125128 2125133) (-1240 "UDVO.spad" 2123146 2123155 2124255 2124260) (-1239 "UDPO.spad" 2120639 2120650 2123102 2123107) (-1238 "TYPE.spad" 2120571 2120580 2120629 2120634) (-1237 "TYPEAST.spad" 2120490 2120499 2120561 2120566) (-1236 "TWOFACT.spad" 2119142 2119157 2120480 2120485) (-1235 "TUPLE.spad" 2118628 2118639 2119041 2119046) (-1234 "TUBETOOL.spad" 2115495 2115504 2118618 2118623) (-1233 "TUBE.spad" 2114142 2114159 2115485 2115490) (-1232 "TS.spad" 2112741 2112757 2113707 2113804) (-1231 "TSETCAT.spad" 2099868 2099885 2112709 2112736) (-1230 "TSETCAT.spad" 2086981 2087000 2099824 2099829) (-1229 "TRMANIP.spad" 2081347 2081364 2086687 2086692) (-1228 "TRIMAT.spad" 2080310 2080335 2081337 2081342) (-1227 "TRIGMNIP.spad" 2078837 2078854 2080300 2080305) (-1226 "TRIGCAT.spad" 2078349 2078358 2078827 2078832) (-1225 "TRIGCAT.spad" 2077859 2077870 2078339 2078344) (-1224 "TREE.spad" 2076317 2076328 2077349 2077376) (-1223 "TRANFUN.spad" 2076156 2076165 2076307 2076312) (-1222 "TRANFUN.spad" 2075993 2076004 2076146 2076151) (-1221 "TOPSP.spad" 2075667 2075676 2075983 2075988) (-1220 "TOOLSIGN.spad" 2075330 2075341 2075657 2075662) (-1219 "TEXTFILE.spad" 2073891 2073900 2075320 2075325) (-1218 "TEX.spad" 2071037 2071046 2073881 2073886) (-1217 "TEX1.spad" 2070593 2070604 2071027 2071032) (-1216 "TEMUTL.spad" 2070148 2070157 2070583 2070588) (-1215 "TBCMPPK.spad" 2068241 2068264 2070138 2070143) (-1214 "TBAGG.spad" 2067291 2067314 2068221 2068236) (-1213 "TBAGG.spad" 2066349 2066374 2067281 2067286) (-1212 "TANEXP.spad" 2065757 2065768 2066339 2066344) (-1211 "TALGOP.spad" 2065481 2065492 2065747 2065752) (-1210 "TABLE.spad" 2063450 2063473 2063720 2063747) (-1209 "TABLEAU.spad" 2062931 2062942 2063440 2063445) (-1208 "TABLBUMP.spad" 2059734 2059745 2062921 2062926) (-1207 "SYSTEM.spad" 2058962 2058971 2059724 2059729) (-1206 "SYSSOLP.spad" 2056445 2056456 2058952 2058957) (-1205 "SYSPTR.spad" 2056344 2056353 2056435 2056440) (-1204 "SYSNNI.spad" 2055526 2055537 2056334 2056339) (-1203 "SYSINT.spad" 2054930 2054941 2055516 2055521) (-1202 "SYNTAX.spad" 2051136 2051145 2054920 2054925) (-1201 "SYMTAB.spad" 2049204 2049213 2051126 2051131) (-1200 "SYMS.spad" 2045227 2045236 2049194 2049199) (-1199 "SYMPOLY.spad" 2044234 2044245 2044316 2044443) (-1198 "SYMFUNC.spad" 2043735 2043746 2044224 2044229) (-1197 "SYMBOL.spad" 2041238 2041247 2043725 2043730) (-1196 "SWITCH.spad" 2038009 2038018 2041228 2041233) (-1195 "SUTS.spad" 2035057 2035085 2036476 2036573) (-1194 "SUPXS.spad" 2032340 2032368 2033189 2033338) (-1193 "SUP.spad" 2029060 2029071 2029833 2029986) (-1192 "SUPFRACF.spad" 2028165 2028183 2029050 2029055) (-1191 "SUP2.spad" 2027557 2027570 2028155 2028160) (-1190 "SUMRF.spad" 2026531 2026542 2027547 2027552) (-1189 "SUMFS.spad" 2026168 2026185 2026521 2026526) (-1188 "SULS.spad" 2015939 2015967 2016897 2017326) (-1187 "SUCHTAST.spad" 2015708 2015717 2015929 2015934) (-1186 "SUCH.spad" 2015390 2015405 2015698 2015703) (-1185 "SUBSPACE.spad" 2007505 2007520 2015380 2015385) (-1184 "SUBRESP.spad" 2006675 2006689 2007461 2007466) (-1183 "STTF.spad" 2002774 2002790 2006665 2006670) (-1182 "STTFNC.spad" 1999242 1999258 2002764 2002769) (-1181 "STTAYLOR.spad" 1991877 1991888 1999123 1999128) (-1180 "STRTBL.spad" 1989928 1989945 1990077 1990104) (-1179 "STRING.spad" 1988715 1988724 1988936 1988963) (-1178 "STREAM.spad" 1985516 1985527 1988123 1988138) (-1177 "STREAM3.spad" 1985089 1985104 1985506 1985511) (-1176 "STREAM2.spad" 1984217 1984230 1985079 1985084) (-1175 "STREAM1.spad" 1983923 1983934 1984207 1984212) (-1174 "STINPROD.spad" 1982859 1982875 1983913 1983918) (-1173 "STEP.spad" 1982060 1982069 1982849 1982854) (-1172 "STEPAST.spad" 1981294 1981303 1982050 1982055) (-1171 "STBL.spad" 1979378 1979406 1979545 1979560) (-1170 "STAGG.spad" 1978453 1978464 1979368 1979373) (-1169 "STAGG.spad" 1977526 1977539 1978443 1978448) (-1168 "STACK.spad" 1976766 1976777 1977016 1977043) (-1167 "SREGSET.spad" 1974434 1974451 1976376 1976403) (-1166 "SRDCMPK.spad" 1972995 1973015 1974424 1974429) (-1165 "SRAGG.spad" 1968138 1968147 1972963 1972990) (-1164 "SRAGG.spad" 1963301 1963312 1968128 1968133) (-1163 "SQMATRIX.spad" 1960844 1960862 1961760 1961847) (-1162 "SPLTREE.spad" 1955240 1955253 1960124 1960151) (-1161 "SPLNODE.spad" 1951828 1951841 1955230 1955235) (-1160 "SPFCAT.spad" 1950637 1950646 1951818 1951823) (-1159 "SPECOUT.spad" 1949189 1949198 1950627 1950632) (-1158 "SPADXPT.spad" 1940784 1940793 1949179 1949184) (-1157 "spad-parser.spad" 1940249 1940258 1940774 1940779) (-1156 "SPADAST.spad" 1939950 1939959 1940239 1940244) (-1155 "SPACEC.spad" 1924149 1924160 1939940 1939945) (-1154 "SPACE3.spad" 1923925 1923936 1924139 1924144) (-1153 "SORTPAK.spad" 1923474 1923487 1923881 1923886) (-1152 "SOLVETRA.spad" 1921237 1921248 1923464 1923469) (-1151 "SOLVESER.spad" 1919765 1919776 1921227 1921232) (-1150 "SOLVERAD.spad" 1915791 1915802 1919755 1919760) (-1149 "SOLVEFOR.spad" 1914253 1914271 1915781 1915786) (-1148 "SNTSCAT.spad" 1913853 1913870 1914221 1914248) (-1147 "SMTS.spad" 1912125 1912151 1913418 1913515) (-1146 "SMP.spad" 1909600 1909620 1909990 1910117) (-1145 "SMITH.spad" 1908445 1908470 1909590 1909595) (-1144 "SMATCAT.spad" 1906555 1906585 1908389 1908440) (-1143 "SMATCAT.spad" 1904597 1904629 1906433 1906438) (-1142 "SKAGG.spad" 1903560 1903571 1904565 1904592) (-1141 "SINT.spad" 1902500 1902509 1903426 1903555) (-1140 "SIMPAN.spad" 1902228 1902237 1902490 1902495) (-1139 "SIG.spad" 1901558 1901567 1902218 1902223) (-1138 "SIGNRF.spad" 1900676 1900687 1901548 1901553) (-1137 "SIGNEF.spad" 1899955 1899972 1900666 1900671) (-1136 "SIGAST.spad" 1899340 1899349 1899945 1899950) (-1135 "SHP.spad" 1897268 1897283 1899296 1899301) (-1134 "SHDP.spad" 1884946 1884973 1885455 1885554) (-1133 "SGROUP.spad" 1884554 1884563 1884936 1884941) (-1132 "SGROUP.spad" 1884160 1884171 1884544 1884549) (-1131 "SGCF.spad" 1877299 1877308 1884150 1884155) (-1130 "SFRTCAT.spad" 1876229 1876246 1877267 1877294) (-1129 "SFRGCD.spad" 1875292 1875312 1876219 1876224) (-1128 "SFQCMPK.spad" 1869929 1869949 1875282 1875287) (-1127 "SFORT.spad" 1869368 1869382 1869919 1869924) (-1126 "SEXOF.spad" 1869211 1869251 1869358 1869363) (-1125 "SEX.spad" 1869103 1869112 1869201 1869206) (-1124 "SEXCAT.spad" 1866875 1866915 1869093 1869098) (-1123 "SET.spad" 1865163 1865174 1866260 1866299) (-1122 "SETMN.spad" 1863613 1863630 1865153 1865158) (-1121 "SETCAT.spad" 1863098 1863107 1863603 1863608) (-1120 "SETCAT.spad" 1862581 1862592 1863088 1863093) (-1119 "SETAGG.spad" 1859130 1859141 1862561 1862576) (-1118 "SETAGG.spad" 1855687 1855700 1859120 1859125) (-1117 "SEQAST.spad" 1855390 1855399 1855677 1855682) (-1116 "SEGXCAT.spad" 1854546 1854559 1855380 1855385) (-1115 "SEG.spad" 1854359 1854370 1854465 1854470) (-1114 "SEGCAT.spad" 1853284 1853295 1854349 1854354) (-1113 "SEGBIND.spad" 1853042 1853053 1853231 1853236) (-1112 "SEGBIND2.spad" 1852740 1852753 1853032 1853037) (-1111 "SEGAST.spad" 1852454 1852463 1852730 1852735) (-1110 "SEG2.spad" 1851889 1851902 1852410 1852415) (-1109 "SDVAR.spad" 1851165 1851176 1851879 1851884) (-1108 "SDPOL.spad" 1848498 1848509 1848789 1848916) (-1107 "SCPKG.spad" 1846587 1846598 1848488 1848493) (-1106 "SCOPE.spad" 1845740 1845749 1846577 1846582) (-1105 "SCACHE.spad" 1844436 1844447 1845730 1845735) (-1104 "SASTCAT.spad" 1844345 1844354 1844426 1844431) (-1103 "SAOS.spad" 1844217 1844226 1844335 1844340) (-1102 "SAERFFC.spad" 1843930 1843950 1844207 1844212) (-1101 "SAE.spad" 1841400 1841416 1842011 1842146) (-1100 "SAEFACT.spad" 1841101 1841121 1841390 1841395) (-1099 "RURPK.spad" 1838760 1838776 1841091 1841096) (-1098 "RULESET.spad" 1838213 1838237 1838750 1838755) (-1097 "RULE.spad" 1836453 1836477 1838203 1838208) (-1096 "RULECOLD.spad" 1836305 1836318 1836443 1836448) (-1095 "RTVALUE.spad" 1836040 1836049 1836295 1836300) (-1094 "RSTRCAST.spad" 1835757 1835766 1836030 1836035) (-1093 "RSETGCD.spad" 1832135 1832155 1835747 1835752) (-1092 "RSETCAT.spad" 1822071 1822088 1832103 1832130) (-1091 "RSETCAT.spad" 1812027 1812046 1822061 1822066) (-1090 "RSDCMPK.spad" 1810479 1810499 1812017 1812022) (-1089 "RRCC.spad" 1808863 1808893 1810469 1810474) (-1088 "RRCC.spad" 1807245 1807277 1808853 1808858) (-1087 "RPTAST.spad" 1806947 1806956 1807235 1807240) (-1086 "RPOLCAT.spad" 1786307 1786322 1806815 1806942) (-1085 "RPOLCAT.spad" 1765380 1765397 1785890 1785895) (-1084 "ROUTINE.spad" 1760801 1760810 1763565 1763592) (-1083 "ROMAN.spad" 1760129 1760138 1760667 1760796) (-1082 "ROIRC.spad" 1759209 1759241 1760119 1760124) (-1081 "RNS.spad" 1758112 1758121 1759111 1759204) (-1080 "RNS.spad" 1757101 1757112 1758102 1758107) (-1079 "RNG.spad" 1756836 1756845 1757091 1757096) (-1078 "RNGBIND.spad" 1755996 1756010 1756791 1756796) (-1077 "RMODULE.spad" 1755761 1755772 1755986 1755991) (-1076 "RMCAT2.spad" 1755181 1755238 1755751 1755756) (-1075 "RMATRIX.spad" 1753969 1753988 1754312 1754351) (-1074 "RMATCAT.spad" 1749548 1749579 1753925 1753964) (-1073 "RMATCAT.spad" 1745017 1745050 1749396 1749401) (-1072 "RLINSET.spad" 1744721 1744732 1745007 1745012) (-1071 "RINTERP.spad" 1744609 1744629 1744711 1744716) (-1070 "RING.spad" 1744079 1744088 1744589 1744604) (-1069 "RING.spad" 1743557 1743568 1744069 1744074) (-1068 "RIDIST.spad" 1742949 1742958 1743547 1743552) (-1067 "RGCHAIN.spad" 1741477 1741493 1742379 1742406) (-1066 "RGBCSPC.spad" 1741258 1741270 1741467 1741472) (-1065 "RGBCMDL.spad" 1740788 1740800 1741248 1741253) (-1064 "RF.spad" 1738430 1738441 1740778 1740783) (-1063 "RFFACTOR.spad" 1737892 1737903 1738420 1738425) (-1062 "RFFACT.spad" 1737627 1737639 1737882 1737887) (-1061 "RFDIST.spad" 1736623 1736632 1737617 1737622) (-1060 "RETSOL.spad" 1736042 1736055 1736613 1736618) (-1059 "RETRACT.spad" 1735470 1735481 1736032 1736037) (-1058 "RETRACT.spad" 1734896 1734909 1735460 1735465) (-1057 "RETAST.spad" 1734708 1734717 1734886 1734891) (-1056 "RESULT.spad" 1732306 1732315 1732893 1732920) (-1055 "RESRING.spad" 1731653 1731700 1732244 1732301) (-1054 "RESLATC.spad" 1730977 1730988 1731643 1731648) (-1053 "REPSQ.spad" 1730708 1730719 1730967 1730972) (-1052 "REP.spad" 1728262 1728271 1730698 1730703) (-1051 "REPDB.spad" 1727969 1727980 1728252 1728257) (-1050 "REP2.spad" 1717627 1717638 1727811 1727816) (-1049 "REP1.spad" 1711823 1711834 1717577 1717582) (-1048 "REGSET.spad" 1709584 1709601 1711433 1711460) (-1047 "REF.spad" 1708919 1708930 1709539 1709544) (-1046 "REDORDER.spad" 1708125 1708142 1708909 1708914) (-1045 "RECLOS.spad" 1706908 1706928 1707612 1707705) (-1044 "REALSOLV.spad" 1706048 1706057 1706898 1706903) (-1043 "REAL.spad" 1705920 1705929 1706038 1706043) (-1042 "REAL0Q.spad" 1703218 1703233 1705910 1705915) (-1041 "REAL0.spad" 1700062 1700077 1703208 1703213) (-1040 "RDUCEAST.spad" 1699783 1699792 1700052 1700057) (-1039 "RDIV.spad" 1699438 1699463 1699773 1699778) (-1038 "RDIST.spad" 1699005 1699016 1699428 1699433) (-1037 "RDETRS.spad" 1697869 1697887 1698995 1699000) (-1036 "RDETR.spad" 1696008 1696026 1697859 1697864) (-1035 "RDEEFS.spad" 1695107 1695124 1695998 1696003) (-1034 "RDEEF.spad" 1694117 1694134 1695097 1695102) (-1033 "RCFIELD.spad" 1691303 1691312 1694019 1694112) (-1032 "RCFIELD.spad" 1688575 1688586 1691293 1691298) (-1031 "RCAGG.spad" 1686503 1686514 1688565 1688570) (-1030 "RCAGG.spad" 1684358 1684371 1686422 1686427) (-1029 "RATRET.spad" 1683718 1683729 1684348 1684353) (-1028 "RATFACT.spad" 1683410 1683422 1683708 1683713) (-1027 "RANDSRC.spad" 1682729 1682738 1683400 1683405) (-1026 "RADUTIL.spad" 1682485 1682494 1682719 1682724) (-1025 "RADIX.spad" 1679309 1679323 1680855 1680948) (-1024 "RADFF.spad" 1677048 1677085 1677167 1677323) (-1023 "RADCAT.spad" 1676643 1676652 1677038 1677043) (-1022 "RADCAT.spad" 1676236 1676247 1676633 1676638) (-1021 "QUEUE.spad" 1675467 1675478 1675726 1675753) (-1020 "QUAT.spad" 1673955 1673966 1674298 1674363) (-1019 "QUATCT2.spad" 1673575 1673594 1673945 1673950) (-1018 "QUATCAT.spad" 1671745 1671756 1673505 1673570) (-1017 "QUATCAT.spad" 1669666 1669679 1671428 1671433) (-1016 "QUAGG.spad" 1668493 1668504 1669634 1669661) (-1015 "QQUTAST.spad" 1668261 1668270 1668483 1668488) (-1014 "QFORM.spad" 1667879 1667894 1668251 1668256) (-1013 "QFCAT.spad" 1666581 1666592 1667781 1667874) (-1012 "QFCAT.spad" 1664874 1664887 1666076 1666081) (-1011 "QFCAT2.spad" 1664566 1664583 1664864 1664869) (-1010 "QEQUAT.spad" 1664124 1664133 1664556 1664561) (-1009 "QCMPACK.spad" 1658870 1658890 1664114 1664119) (-1008 "QALGSET.spad" 1654948 1654981 1658784 1658789) (-1007 "QALGSET2.spad" 1652943 1652962 1654938 1654943) (-1006 "PWFFINTB.spad" 1650358 1650380 1652933 1652938) (-1005 "PUSHVAR.spad" 1649696 1649716 1650348 1650353) (-1004 "PTRANFN.spad" 1645823 1645834 1649686 1649691) (-1003 "PTPACK.spad" 1642910 1642921 1645813 1645818) (-1002 "PTFUNC2.spad" 1642732 1642747 1642900 1642905) (-1001 "PTCAT.spad" 1641986 1641997 1642700 1642727) (-1000 "PSQFR.spad" 1641292 1641317 1641976 1641981) (-999 "PSEUDLIN.spad" 1640178 1640188 1641282 1641287) (-998 "PSETPK.spad" 1625611 1625627 1640056 1640061) (-997 "PSETCAT.spad" 1619531 1619554 1625591 1625606) (-996 "PSETCAT.spad" 1613425 1613450 1619487 1619492) (-995 "PSCURVE.spad" 1612408 1612416 1613415 1613420) (-994 "PSCAT.spad" 1611191 1611220 1612306 1612403) (-993 "PSCAT.spad" 1610064 1610095 1611181 1611186) (-992 "PRTITION.spad" 1608762 1608770 1610054 1610059) (-991 "PRTDAST.spad" 1608481 1608489 1608752 1608757) (-990 "PRS.spad" 1598043 1598060 1608437 1608442) (-989 "PRQAGG.spad" 1597478 1597488 1598011 1598038) (-988 "PROPLOG.spad" 1597050 1597058 1597468 1597473) (-987 "PROPFUN2.spad" 1596673 1596686 1597040 1597045) (-986 "PROPFUN1.spad" 1596071 1596082 1596663 1596668) (-985 "PROPFRML.spad" 1594639 1594650 1596061 1596066) (-984 "PROPERTY.spad" 1594127 1594135 1594629 1594634) (-983 "PRODUCT.spad" 1591809 1591821 1592093 1592148) (-982 "PR.spad" 1590201 1590213 1590900 1591027) (-981 "PRINT.spad" 1589953 1589961 1590191 1590196) (-980 "PRIMES.spad" 1588206 1588216 1589943 1589948) (-979 "PRIMELT.spad" 1586287 1586301 1588196 1588201) (-978 "PRIMCAT.spad" 1585914 1585922 1586277 1586282) (-977 "PRIMARR.spad" 1584766 1584776 1584944 1584971) (-976 "PRIMARR2.spad" 1583533 1583545 1584756 1584761) (-975 "PREASSOC.spad" 1582915 1582927 1583523 1583528) (-974 "PPCURVE.spad" 1582052 1582060 1582905 1582910) (-973 "PORTNUM.spad" 1581827 1581835 1582042 1582047) (-972 "POLYROOT.spad" 1580676 1580698 1581783 1581788) (-971 "POLY.spad" 1578011 1578021 1578526 1578653) (-970 "POLYLIFT.spad" 1577276 1577299 1578001 1578006) (-969 "POLYCATQ.spad" 1575394 1575416 1577266 1577271) (-968 "POLYCAT.spad" 1568864 1568885 1575262 1575389) (-967 "POLYCAT.spad" 1561672 1561695 1568072 1568077) (-966 "POLY2UP.spad" 1561124 1561138 1561662 1561667) (-965 "POLY2.spad" 1560721 1560733 1561114 1561119) (-964 "POLUTIL.spad" 1559662 1559691 1560677 1560682) (-963 "POLTOPOL.spad" 1558410 1558425 1559652 1559657) (-962 "POINT.spad" 1557095 1557105 1557182 1557209) (-961 "PNTHEORY.spad" 1553797 1553805 1557085 1557090) (-960 "PMTOOLS.spad" 1552572 1552586 1553787 1553792) (-959 "PMSYM.spad" 1552121 1552131 1552562 1552567) (-958 "PMQFCAT.spad" 1551712 1551726 1552111 1552116) (-957 "PMPRED.spad" 1551191 1551205 1551702 1551707) (-956 "PMPREDFS.spad" 1550645 1550667 1551181 1551186) (-955 "PMPLCAT.spad" 1549725 1549743 1550577 1550582) (-954 "PMLSAGG.spad" 1549310 1549324 1549715 1549720) (-953 "PMKERNEL.spad" 1548889 1548901 1549300 1549305) (-952 "PMINS.spad" 1548469 1548479 1548879 1548884) (-951 "PMFS.spad" 1548046 1548064 1548459 1548464) (-950 "PMDOWN.spad" 1547336 1547350 1548036 1548041) (-949 "PMASS.spad" 1546346 1546354 1547326 1547331) (-948 "PMASSFS.spad" 1545313 1545329 1546336 1546341) (-947 "PLOTTOOL.spad" 1545093 1545101 1545303 1545308) (-946 "PLOT.spad" 1540016 1540024 1545083 1545088) (-945 "PLOT3D.spad" 1536480 1536488 1540006 1540011) (-944 "PLOT1.spad" 1535637 1535647 1536470 1536475) (-943 "PLEQN.spad" 1522927 1522954 1535627 1535632) (-942 "PINTERP.spad" 1522549 1522568 1522917 1522922) (-941 "PINTERPA.spad" 1522333 1522349 1522539 1522544) (-940 "PI.spad" 1521942 1521950 1522307 1522328) (-939 "PID.spad" 1520912 1520920 1521868 1521937) (-938 "PICOERCE.spad" 1520569 1520579 1520902 1520907) (-937 "PGROEB.spad" 1519170 1519184 1520559 1520564) (-936 "PGE.spad" 1510787 1510795 1519160 1519165) (-935 "PGCD.spad" 1509677 1509694 1510777 1510782) (-934 "PFRPAC.spad" 1508826 1508836 1509667 1509672) (-933 "PFR.spad" 1505489 1505499 1508728 1508821) (-932 "PFOTOOLS.spad" 1504747 1504763 1505479 1505484) (-931 "PFOQ.spad" 1504117 1504135 1504737 1504742) (-930 "PFO.spad" 1503536 1503563 1504107 1504112) (-929 "PF.spad" 1503110 1503122 1503341 1503434) (-928 "PFECAT.spad" 1500792 1500800 1503036 1503105) (-927 "PFECAT.spad" 1498502 1498512 1500748 1500753) (-926 "PFBRU.spad" 1496390 1496402 1498492 1498497) (-925 "PFBR.spad" 1493950 1493973 1496380 1496385) (-924 "PERM.spad" 1489757 1489767 1493780 1493795) (-923 "PERMGRP.spad" 1484527 1484537 1489747 1489752) (-922 "PERMCAT.spad" 1483188 1483198 1484507 1484522) (-921 "PERMAN.spad" 1481720 1481734 1483178 1483183) (-920 "PENDTREE.spad" 1480944 1480954 1481232 1481237) (-919 "PDSPC.spad" 1479757 1479767 1480934 1480939) (-918 "PDSPC.spad" 1478568 1478580 1479747 1479752) (-917 "PDRING.spad" 1478410 1478420 1478548 1478563) (-916 "PDMOD.spad" 1478226 1478238 1478378 1478405) (-915 "PDEPROB.spad" 1477241 1477249 1478216 1478221) (-914 "PDEPACK.spad" 1471281 1471289 1477231 1477236) (-913 "PDECOMP.spad" 1470751 1470768 1471271 1471276) (-912 "PDECAT.spad" 1469107 1469115 1470741 1470746) (-911 "PDDOM.spad" 1468545 1468558 1469097 1469102) (-910 "PDDOM.spad" 1467981 1467996 1468535 1468540) (-909 "PCOMP.spad" 1467834 1467847 1467971 1467976) (-908 "PBWLB.spad" 1466422 1466439 1467824 1467829) (-907 "PATTERN.spad" 1460961 1460971 1466412 1466417) (-906 "PATTERN2.spad" 1460699 1460711 1460951 1460956) (-905 "PATTERN1.spad" 1459035 1459051 1460689 1460694) (-904 "PATRES.spad" 1456610 1456622 1459025 1459030) (-903 "PATRES2.spad" 1456282 1456296 1456600 1456605) (-902 "PATMATCH.spad" 1454479 1454510 1455990 1455995) (-901 "PATMAB.spad" 1453908 1453918 1454469 1454474) (-900 "PATLRES.spad" 1452994 1453008 1453898 1453903) (-899 "PATAB.spad" 1452758 1452768 1452984 1452989) (-898 "PARTPERM.spad" 1450766 1450774 1452748 1452753) (-897 "PARSURF.spad" 1450200 1450228 1450756 1450761) (-896 "PARSU2.spad" 1449997 1450013 1450190 1450195) (-895 "script-parser.spad" 1449517 1449525 1449987 1449992) (-894 "PARSCURV.spad" 1448951 1448979 1449507 1449512) (-893 "PARSC2.spad" 1448742 1448758 1448941 1448946) (-892 "PARPCURV.spad" 1448204 1448232 1448732 1448737) (-891 "PARPC2.spad" 1447995 1448011 1448194 1448199) (-890 "PARAMAST.spad" 1447123 1447131 1447985 1447990) (-889 "PAN2EXPR.spad" 1446535 1446543 1447113 1447118) (-888 "PALETTE.spad" 1445505 1445513 1446525 1446530) (-887 "PAIR.spad" 1444492 1444505 1445093 1445098) (-886 "PADICRC.spad" 1441733 1441751 1442904 1442997) (-885 "PADICRAT.spad" 1439641 1439653 1439862 1439955) (-884 "PADIC.spad" 1439336 1439348 1439567 1439636) (-883 "PADICCT.spad" 1437885 1437897 1439262 1439331) (-882 "PADEPAC.spad" 1436574 1436593 1437875 1437880) (-881 "PADE.spad" 1435326 1435342 1436564 1436569) (-880 "OWP.spad" 1434566 1434596 1435184 1435251) (-879 "OVERSET.spad" 1434139 1434147 1434556 1434561) (-878 "OVAR.spad" 1433920 1433943 1434129 1434134) (-877 "OUT.spad" 1433006 1433014 1433910 1433915) (-876 "OUTFORM.spad" 1422398 1422406 1432996 1433001) (-875 "OUTBFILE.spad" 1421816 1421824 1422388 1422393) (-874 "OUTBCON.spad" 1420822 1420830 1421806 1421811) (-873 "OUTBCON.spad" 1419826 1419836 1420812 1420817) (-872 "OSI.spad" 1419301 1419309 1419816 1419821) (-871 "OSGROUP.spad" 1419219 1419227 1419291 1419296) (-870 "ORTHPOL.spad" 1417704 1417714 1419136 1419141) (-869 "OREUP.spad" 1417157 1417185 1417384 1417423) (-868 "ORESUP.spad" 1416458 1416482 1416837 1416876) (-867 "OREPCTO.spad" 1414315 1414327 1416378 1416383) (-866 "OREPCAT.spad" 1408462 1408472 1414271 1414310) (-865 "OREPCAT.spad" 1402499 1402511 1408310 1408315) (-864 "ORDTYPE.spad" 1401736 1401744 1402489 1402494) (-863 "ORDTYPE.spad" 1400971 1400981 1401726 1401731) (-862 "ORDSTRCT.spad" 1400798 1400813 1400961 1400966) (-861 "ORDSET.spad" 1400498 1400506 1400788 1400793) (-860 "ORDRING.spad" 1399888 1399896 1400478 1400493) (-859 "ORDRING.spad" 1399286 1399296 1399878 1399883) (-858 "ORDMON.spad" 1399141 1399149 1399276 1399281) (-857 "ORDFUNS.spad" 1398273 1398289 1399131 1399136) (-856 "ORDFIN.spad" 1398093 1398101 1398263 1398268) (-855 "ORDCOMP.spad" 1396558 1396568 1397640 1397669) (-854 "ORDCOMP2.spad" 1395851 1395863 1396548 1396553) (-853 "OPTPROB.spad" 1394489 1394497 1395841 1395846) (-852 "OPTPACK.spad" 1386898 1386906 1394479 1394484) (-851 "OPTCAT.spad" 1384577 1384585 1386888 1386893) (-850 "OPSIG.spad" 1384231 1384239 1384567 1384572) (-849 "OPQUERY.spad" 1383780 1383788 1384221 1384226) (-848 "OP.spad" 1383522 1383532 1383602 1383669) (-847 "OPERCAT.spad" 1382988 1382998 1383512 1383517) (-846 "OPERCAT.spad" 1382452 1382464 1382978 1382983) (-845 "ONECOMP.spad" 1381197 1381207 1381999 1382028) (-844 "ONECOMP2.spad" 1380621 1380633 1381187 1381192) (-843 "OMSERVER.spad" 1379627 1379635 1380611 1380616) (-842 "OMSAGG.spad" 1379415 1379425 1379583 1379622) (-841 "OMPKG.spad" 1378031 1378039 1379405 1379410) (-840 "OM.spad" 1377004 1377012 1378021 1378026) (-839 "OMLO.spad" 1376429 1376441 1376890 1376929) (-838 "OMEXPR.spad" 1376263 1376273 1376419 1376424) (-837 "OMERR.spad" 1375808 1375816 1376253 1376258) (-836 "OMERRK.spad" 1374842 1374850 1375798 1375803) (-835 "OMENC.spad" 1374186 1374194 1374832 1374837) (-834 "OMDEV.spad" 1368495 1368503 1374176 1374181) (-833 "OMCONN.spad" 1367904 1367912 1368485 1368490) (-832 "OINTDOM.spad" 1367667 1367675 1367830 1367899) (-831 "OFMONOID.spad" 1365790 1365800 1367623 1367628) (-830 "ODVAR.spad" 1365051 1365061 1365780 1365785) (-829 "ODR.spad" 1364695 1364721 1364863 1365012) (-828 "ODPOL.spad" 1361984 1361994 1362324 1362451) (-827 "ODP.spad" 1349798 1349818 1350171 1350270) (-826 "ODETOOLS.spad" 1348447 1348466 1349788 1349793) (-825 "ODESYS.spad" 1346141 1346158 1348437 1348442) (-824 "ODERTRIC.spad" 1342150 1342167 1346098 1346103) (-823 "ODERED.spad" 1341549 1341573 1342140 1342145) (-822 "ODERAT.spad" 1339164 1339181 1341539 1341544) (-821 "ODEPRRIC.spad" 1336201 1336223 1339154 1339159) (-820 "ODEPROB.spad" 1335458 1335466 1336191 1336196) (-819 "ODEPRIM.spad" 1332792 1332814 1335448 1335453) (-818 "ODEPAL.spad" 1332178 1332202 1332782 1332787) (-817 "ODEPACK.spad" 1318844 1318852 1332168 1332173) (-816 "ODEINT.spad" 1318279 1318295 1318834 1318839) (-815 "ODEIFTBL.spad" 1315674 1315682 1318269 1318274) (-814 "ODEEF.spad" 1311165 1311181 1315664 1315669) (-813 "ODECONST.spad" 1310702 1310720 1311155 1311160) (-812 "ODECAT.spad" 1309300 1309308 1310692 1310697) (-811 "OCT.spad" 1307436 1307446 1308150 1308189) (-810 "OCTCT2.spad" 1307082 1307103 1307426 1307431) (-809 "OC.spad" 1304878 1304888 1307038 1307077) (-808 "OC.spad" 1302399 1302411 1304561 1304566) (-807 "OCAMON.spad" 1302247 1302255 1302389 1302394) (-806 "OASGP.spad" 1302062 1302070 1302237 1302242) (-805 "OAMONS.spad" 1301584 1301592 1302052 1302057) (-804 "OAMON.spad" 1301445 1301453 1301574 1301579) (-803 "OAGROUP.spad" 1301307 1301315 1301435 1301440) (-802 "NUMTUBE.spad" 1300898 1300914 1301297 1301302) (-801 "NUMQUAD.spad" 1288874 1288882 1300888 1300893) (-800 "NUMODE.spad" 1280228 1280236 1288864 1288869) (-799 "NUMINT.spad" 1277794 1277802 1280218 1280223) (-798 "NUMFMT.spad" 1276634 1276642 1277784 1277789) (-797 "NUMERIC.spad" 1268748 1268758 1276439 1276444) (-796 "NTSCAT.spad" 1267256 1267272 1268716 1268743) (-795 "NTPOLFN.spad" 1266807 1266817 1267173 1267178) (-794 "NSUP.spad" 1259760 1259770 1264300 1264453) (-793 "NSUP2.spad" 1259152 1259164 1259750 1259755) (-792 "NSMP.spad" 1255382 1255401 1255690 1255817) (-791 "NREP.spad" 1253760 1253774 1255372 1255377) (-790 "NPCOEF.spad" 1253006 1253026 1253750 1253755) (-789 "NORMRETR.spad" 1252604 1252643 1252996 1253001) (-788 "NORMPK.spad" 1250506 1250525 1252594 1252599) (-787 "NORMMA.spad" 1250194 1250220 1250496 1250501) (-786 "NONE.spad" 1249935 1249943 1250184 1250189) (-785 "NONE1.spad" 1249611 1249621 1249925 1249930) (-784 "NODE1.spad" 1249098 1249114 1249601 1249606) (-783 "NNI.spad" 1247993 1248001 1249072 1249093) (-782 "NLINSOL.spad" 1246619 1246629 1247983 1247988) (-781 "NIPROB.spad" 1245160 1245168 1246609 1246614) (-780 "NFINTBAS.spad" 1242720 1242737 1245150 1245155) (-779 "NETCLT.spad" 1242694 1242705 1242710 1242715) (-778 "NCODIV.spad" 1240910 1240926 1242684 1242689) (-777 "NCNTFRAC.spad" 1240552 1240566 1240900 1240905) (-776 "NCEP.spad" 1238718 1238732 1240542 1240547) (-775 "NASRING.spad" 1238314 1238322 1238708 1238713) (-774 "NASRING.spad" 1237908 1237918 1238304 1238309) (-773 "NARNG.spad" 1237260 1237268 1237898 1237903) (-772 "NARNG.spad" 1236610 1236620 1237250 1237255) (-771 "NAGSP.spad" 1235687 1235695 1236600 1236605) (-770 "NAGS.spad" 1225348 1225356 1235677 1235682) (-769 "NAGF07.spad" 1223779 1223787 1225338 1225343) (-768 "NAGF04.spad" 1218181 1218189 1223769 1223774) (-767 "NAGF02.spad" 1212250 1212258 1218171 1218176) (-766 "NAGF01.spad" 1208011 1208019 1212240 1212245) (-765 "NAGE04.spad" 1201711 1201719 1208001 1208006) (-764 "NAGE02.spad" 1192371 1192379 1201701 1201706) (-763 "NAGE01.spad" 1188373 1188381 1192361 1192366) (-762 "NAGD03.spad" 1186377 1186385 1188363 1188368) (-761 "NAGD02.spad" 1179124 1179132 1186367 1186372) (-760 "NAGD01.spad" 1173417 1173425 1179114 1179119) (-759 "NAGC06.spad" 1169292 1169300 1173407 1173412) (-758 "NAGC05.spad" 1167793 1167801 1169282 1169287) (-757 "NAGC02.spad" 1167060 1167068 1167783 1167788) (-756 "NAALG.spad" 1166601 1166611 1167028 1167055) (-755 "NAALG.spad" 1166162 1166174 1166591 1166596) (-754 "MULTSQFR.spad" 1163120 1163137 1166152 1166157) (-753 "MULTFACT.spad" 1162503 1162520 1163110 1163115) (-752 "MTSCAT.spad" 1160597 1160618 1162401 1162498) (-751 "MTHING.spad" 1160256 1160266 1160587 1160592) (-750 "MSYSCMD.spad" 1159690 1159698 1160246 1160251) (-749 "MSET.spad" 1157612 1157622 1159360 1159399) (-748 "MSETAGG.spad" 1157457 1157467 1157580 1157607) (-747 "MRING.spad" 1154434 1154446 1157165 1157232) (-746 "MRF2.spad" 1154004 1154018 1154424 1154429) (-745 "MRATFAC.spad" 1153550 1153567 1153994 1153999) (-744 "MPRFF.spad" 1151590 1151609 1153540 1153545) (-743 "MPOLY.spad" 1149061 1149076 1149420 1149547) (-742 "MPCPF.spad" 1148325 1148344 1149051 1149056) (-741 "MPC3.spad" 1148142 1148182 1148315 1148320) (-740 "MPC2.spad" 1147788 1147821 1148132 1148137) (-739 "MONOTOOL.spad" 1146139 1146156 1147778 1147783) (-738 "MONOID.spad" 1145458 1145466 1146129 1146134) (-737 "MONOID.spad" 1144775 1144785 1145448 1145453) (-736 "MONOGEN.spad" 1143523 1143536 1144635 1144770) (-735 "MONOGEN.spad" 1142293 1142308 1143407 1143412) (-734 "MONADWU.spad" 1140323 1140331 1142283 1142288) (-733 "MONADWU.spad" 1138351 1138361 1140313 1140318) (-732 "MONAD.spad" 1137511 1137519 1138341 1138346) (-731 "MONAD.spad" 1136669 1136679 1137501 1137506) (-730 "MOEBIUS.spad" 1135405 1135419 1136649 1136664) (-729 "MODULE.spad" 1135275 1135285 1135373 1135400) (-728 "MODULE.spad" 1135165 1135177 1135265 1135270) (-727 "MODRING.spad" 1134500 1134539 1135145 1135160) (-726 "MODOP.spad" 1133165 1133177 1134322 1134389) (-725 "MODMONOM.spad" 1132896 1132914 1133155 1133160) (-724 "MODMON.spad" 1129598 1129614 1130317 1130470) (-723 "MODFIELD.spad" 1128960 1128999 1129500 1129593) (-722 "MMLFORM.spad" 1127820 1127828 1128950 1128955) (-721 "MMAP.spad" 1127562 1127596 1127810 1127815) (-720 "MLO.spad" 1126021 1126031 1127518 1127557) (-719 "MLIFT.spad" 1124633 1124650 1126011 1126016) (-718 "MKUCFUNC.spad" 1124168 1124186 1124623 1124628) (-717 "MKRECORD.spad" 1123772 1123785 1124158 1124163) (-716 "MKFUNC.spad" 1123179 1123189 1123762 1123767) (-715 "MKFLCFN.spad" 1122147 1122157 1123169 1123174) (-714 "MKBCFUNC.spad" 1121642 1121660 1122137 1122142) (-713 "MINT.spad" 1121081 1121089 1121544 1121637) (-712 "MHROWRED.spad" 1119592 1119602 1121071 1121076) (-711 "MFLOAT.spad" 1118112 1118120 1119482 1119587) (-710 "MFINFACT.spad" 1117512 1117534 1118102 1118107) (-709 "MESH.spad" 1115294 1115302 1117502 1117507) (-708 "MDDFACT.spad" 1113505 1113515 1115284 1115289) (-707 "MDAGG.spad" 1112796 1112806 1113485 1113500) (-706 "MCMPLX.spad" 1108227 1108235 1108841 1109042) (-705 "MCDEN.spad" 1107437 1107449 1108217 1108222) (-704 "MCALCFN.spad" 1104559 1104585 1107427 1107432) (-703 "MAYBE.spad" 1103843 1103854 1104549 1104554) (-702 "MATSTOR.spad" 1101151 1101161 1103833 1103838) (-701 "MATRIX.spad" 1099738 1099748 1100222 1100249) (-700 "MATLIN.spad" 1097082 1097106 1099622 1099627) (-699 "MATCAT.spad" 1088604 1088626 1097050 1097077) (-698 "MATCAT.spad" 1079998 1080022 1088446 1088451) (-697 "MATCAT2.spad" 1079280 1079328 1079988 1079993) (-696 "MAPPKG3.spad" 1078195 1078209 1079270 1079275) (-695 "MAPPKG2.spad" 1077533 1077545 1078185 1078190) (-694 "MAPPKG1.spad" 1076361 1076371 1077523 1077528) (-693 "MAPPAST.spad" 1075676 1075684 1076351 1076356) (-692 "MAPHACK3.spad" 1075488 1075502 1075666 1075671) (-691 "MAPHACK2.spad" 1075257 1075269 1075478 1075483) (-690 "MAPHACK1.spad" 1074901 1074911 1075247 1075252) (-689 "MAGMA.spad" 1072691 1072708 1074891 1074896) (-688 "MACROAST.spad" 1072270 1072278 1072681 1072686) (-687 "M3D.spad" 1069873 1069883 1071531 1071536) (-686 "LZSTAGG.spad" 1067111 1067121 1069863 1069868) (-685 "LZSTAGG.spad" 1064347 1064359 1067101 1067106) (-684 "LWORD.spad" 1061052 1061069 1064337 1064342) (-683 "LSTAST.spad" 1060836 1060844 1061042 1061047) (-682 "LSQM.spad" 1058993 1059007 1059387 1059438) (-681 "LSPP.spad" 1058528 1058545 1058983 1058988) (-680 "LSMP.spad" 1057378 1057406 1058518 1058523) (-679 "LSMP1.spad" 1055196 1055210 1057368 1057373) (-678 "LSAGG.spad" 1054865 1054875 1055164 1055191) (-677 "LSAGG.spad" 1054554 1054566 1054855 1054860) (-676 "LPOLY.spad" 1053508 1053527 1054410 1054479) (-675 "LPEFRAC.spad" 1052779 1052789 1053498 1053503) (-674 "LO.spad" 1052180 1052194 1052713 1052740) (-673 "LOGIC.spad" 1051782 1051790 1052170 1052175) (-672 "LOGIC.spad" 1051382 1051392 1051772 1051777) (-671 "LODOOPS.spad" 1050312 1050324 1051372 1051377) (-670 "LODO.spad" 1049696 1049712 1049992 1050031) (-669 "LODOF.spad" 1048742 1048759 1049653 1049658) (-668 "LODOCAT.spad" 1047408 1047418 1048698 1048737) (-667 "LODOCAT.spad" 1046072 1046084 1047364 1047369) (-666 "LODO2.spad" 1045345 1045357 1045752 1045791) (-665 "LODO1.spad" 1044745 1044755 1045025 1045064) (-664 "LODEEF.spad" 1043547 1043565 1044735 1044740) (-663 "LNAGG.spad" 1039694 1039704 1043537 1043542) (-662 "LNAGG.spad" 1035805 1035817 1039650 1039655) (-661 "LMOPS.spad" 1032573 1032590 1035795 1035800) (-660 "LMODULE.spad" 1032341 1032351 1032563 1032568) (-659 "LMDICT.spad" 1031511 1031521 1031775 1031802) (-658 "LLINSET.spad" 1031218 1031228 1031501 1031506) (-657 "LITERAL.spad" 1031124 1031135 1031208 1031213) (-656 "LIST.spad" 1028706 1028716 1030118 1030145) (-655 "LIST3.spad" 1028017 1028031 1028696 1028701) (-654 "LIST2.spad" 1026719 1026731 1028007 1028012) (-653 "LIST2MAP.spad" 1023622 1023634 1026709 1026714) (-652 "LINSET.spad" 1023401 1023411 1023612 1023617) (-651 "LINEXP.spad" 1022144 1022154 1023391 1023396) (-650 "LINDEP.spad" 1020953 1020965 1022056 1022061) (-649 "LIMITRF.spad" 1018881 1018891 1020943 1020948) (-648 "LIMITPS.spad" 1017784 1017797 1018871 1018876) (-647 "LIE.spad" 1015800 1015812 1017074 1017219) (-646 "LIECAT.spad" 1015276 1015286 1015726 1015795) (-645 "LIECAT.spad" 1014780 1014792 1015232 1015237) (-644 "LIB.spad" 1012531 1012539 1012977 1012992) (-643 "LGROBP.spad" 1009884 1009903 1012521 1012526) (-642 "LF.spad" 1008839 1008855 1009874 1009879) (-641 "LFCAT.spad" 1007898 1007906 1008829 1008834) (-640 "LEXTRIPK.spad" 1003401 1003416 1007888 1007893) (-639 "LEXP.spad" 1001404 1001431 1003381 1003396) (-638 "LETAST.spad" 1001103 1001111 1001394 1001399) (-637 "LEADCDET.spad" 999501 999518 1001093 1001098) (-636 "LAZM3PK.spad" 998205 998227 999491 999496) (-635 "LAUPOL.spad" 996805 996818 997705 997774) (-634 "LAPLACE.spad" 996388 996404 996795 996800) (-633 "LA.spad" 995828 995842 996310 996349) (-632 "LALG.spad" 995604 995614 995808 995823) (-631 "LALG.spad" 995388 995400 995594 995599) (-630 "KVTFROM.spad" 995123 995133 995378 995383) (-629 "KTVLOGIC.spad" 994635 994643 995113 995118) (-628 "KRCFROM.spad" 994373 994383 994625 994630) (-627 "KOVACIC.spad" 993096 993113 994363 994368) (-626 "KONVERT.spad" 992818 992828 993086 993091) (-625 "KOERCE.spad" 992555 992565 992808 992813) (-624 "KERNEL.spad" 991210 991220 992339 992344) (-623 "KERNEL2.spad" 990913 990925 991200 991205) (-622 "KDAGG.spad" 990022 990044 990893 990908) (-621 "KDAGG.spad" 989139 989163 990012 990017) (-620 "KAFILE.spad" 987993 988009 988228 988255) (-619 "JORDAN.spad" 985822 985834 987283 987428) (-618 "JOINAST.spad" 985516 985524 985812 985817) (-617 "JAVACODE.spad" 985382 985390 985506 985511) (-616 "IXAGG.spad" 983515 983539 985372 985377) (-615 "IXAGG.spad" 981503 981529 983362 983367) (-614 "IVECTOR.spad" 980120 980135 980275 980302) (-613 "ITUPLE.spad" 979281 979291 980110 980115) (-612 "ITRIGMNP.spad" 978120 978139 979271 979276) (-611 "ITFUN3.spad" 977626 977640 978110 978115) (-610 "ITFUN2.spad" 977370 977382 977616 977621) (-609 "ITFORM.spad" 976725 976733 977360 977365) (-608 "ITAYLOR.spad" 974719 974734 976589 976686) (-607 "ISUPS.spad" 967156 967171 973693 973790) (-606 "ISUMP.spad" 966657 966673 967146 967151) (-605 "ISTRING.spad" 965584 965597 965665 965692) (-604 "ISAST.spad" 965303 965311 965574 965579) (-603 "IRURPK.spad" 964020 964039 965293 965298) (-602 "IRSN.spad" 961992 962000 964010 964015) (-601 "IRRF2F.spad" 960477 960487 961948 961953) (-600 "IRREDFFX.spad" 960078 960089 960467 960472) (-599 "IROOT.spad" 958417 958427 960068 960073) (-598 "IR.spad" 956218 956232 958272 958299) (-597 "IRFORM.spad" 955542 955550 956208 956213) (-596 "IR2.spad" 954570 954586 955532 955537) (-595 "IR2F.spad" 953776 953792 954560 954565) (-594 "IPRNTPK.spad" 953536 953544 953766 953771) (-593 "IPF.spad" 953101 953113 953341 953434) (-592 "IPADIC.spad" 952862 952888 953027 953096) (-591 "IP4ADDR.spad" 952419 952427 952852 952857) (-590 "IOMODE.spad" 951941 951949 952409 952414) (-589 "IOBFILE.spad" 951302 951310 951931 951936) (-588 "IOBCON.spad" 951167 951175 951292 951297) (-587 "INVLAPLA.spad" 950816 950832 951157 951162) (-586 "INTTR.spad" 944198 944215 950806 950811) (-585 "INTTOOLS.spad" 941953 941969 943772 943777) (-584 "INTSLPE.spad" 941273 941281 941943 941948) (-583 "INTRVL.spad" 940839 940849 941187 941268) (-582 "INTRF.spad" 939263 939277 940829 940834) (-581 "INTRET.spad" 938695 938705 939253 939258) (-580 "INTRAT.spad" 937422 937439 938685 938690) (-579 "INTPM.spad" 935807 935823 937065 937070) (-578 "INTPAF.spad" 933671 933689 935739 935744) (-577 "INTPACK.spad" 924045 924053 933661 933666) (-576 "INT.spad" 923493 923501 923899 924040) (-575 "INTHERTR.spad" 922767 922784 923483 923488) (-574 "INTHERAL.spad" 922437 922461 922757 922762) (-573 "INTHEORY.spad" 918876 918884 922427 922432) (-572 "INTG0.spad" 912609 912627 918808 918813) (-571 "INTFTBL.spad" 906638 906646 912599 912604) (-570 "INTFACT.spad" 905697 905707 906628 906633) (-569 "INTEF.spad" 904082 904098 905687 905692) (-568 "INTDOM.spad" 902705 902713 904008 904077) (-567 "INTDOM.spad" 901390 901400 902695 902700) (-566 "INTCAT.spad" 899649 899659 901304 901385) (-565 "INTBIT.spad" 899156 899164 899639 899644) (-564 "INTALG.spad" 898344 898371 899146 899151) (-563 "INTAF.spad" 897844 897860 898334 898339) (-562 "INTABL.spad" 895920 895951 896083 896110) (-561 "INT8.spad" 895800 895808 895910 895915) (-560 "INT64.spad" 895679 895687 895790 895795) (-559 "INT32.spad" 895558 895566 895669 895674) (-558 "INT16.spad" 895437 895445 895548 895553) (-557 "INS.spad" 892940 892948 895339 895432) (-556 "INS.spad" 890529 890539 892930 892935) (-555 "INPSIGN.spad" 889977 889990 890519 890524) (-554 "INPRODPF.spad" 889073 889092 889967 889972) (-553 "INPRODFF.spad" 888161 888185 889063 889068) (-552 "INNMFACT.spad" 887136 887153 888151 888156) (-551 "INMODGCD.spad" 886624 886654 887126 887131) (-550 "INFSP.spad" 884921 884943 886614 886619) (-549 "INFPROD0.spad" 884001 884020 884911 884916) (-548 "INFORM.spad" 881200 881208 883991 883996) (-547 "INFORM1.spad" 880825 880835 881190 881195) (-546 "INFINITY.spad" 880377 880385 880815 880820) (-545 "INETCLTS.spad" 880354 880362 880367 880372) (-544 "INEP.spad" 878892 878914 880344 880349) (-543 "INDE.spad" 878621 878638 878882 878887) (-542 "INCRMAPS.spad" 878042 878052 878611 878616) (-541 "INBFILE.spad" 877114 877122 878032 878037) (-540 "INBFF.spad" 872908 872919 877104 877109) (-539 "INBCON.spad" 871198 871206 872898 872903) (-538 "INBCON.spad" 869486 869496 871188 871193) (-537 "INAST.spad" 869147 869155 869476 869481) (-536 "IMPTAST.spad" 868855 868863 869137 869142) (-535 "IMATRIX.spad" 867683 867709 868195 868222) (-534 "IMATQF.spad" 866777 866821 867639 867644) (-533 "IMATLIN.spad" 865382 865406 866733 866738) (-532 "ILIST.spad" 863887 863902 864412 864439) (-531 "IIARRAY2.spad" 863158 863196 863377 863404) (-530 "IFF.spad" 862568 862584 862839 862932) (-529 "IFAST.spad" 862182 862190 862558 862563) (-528 "IFARRAY.spad" 859522 859537 861212 861239) (-527 "IFAMON.spad" 859384 859401 859478 859483) (-526 "IEVALAB.spad" 858789 858801 859374 859379) (-525 "IEVALAB.spad" 858192 858206 858779 858784) (-524 "IDPO.spad" 858005 858017 858182 858187) (-523 "IDPOAMS.spad" 857761 857773 857995 858000) (-522 "IDPOAM.spad" 857481 857493 857751 857756) (-521 "IDPC.spad" 856210 856222 857471 857476) (-520 "IDPAM.spad" 855955 855967 856200 856205) (-519 "IDPAG.spad" 855702 855714 855945 855950) (-518 "IDENT.spad" 855352 855360 855692 855697) (-517 "IDECOMP.spad" 852591 852609 855342 855347) (-516 "IDEAL.spad" 847540 847579 852526 852531) (-515 "ICDEN.spad" 846729 846745 847530 847535) (-514 "ICARD.spad" 845920 845928 846719 846724) (-513 "IBPTOOLS.spad" 844527 844544 845910 845915) (-512 "IBITS.spad" 843692 843705 844125 844152) (-511 "IBATOOL.spad" 840669 840688 843682 843687) (-510 "IBACHIN.spad" 839176 839191 840659 840664) (-509 "IARRAY2.spad" 838047 838073 838666 838693) (-508 "IARRAY1.spad" 836939 836954 837077 837104) (-507 "IAN.spad" 835162 835170 836755 836848) (-506 "IALGFACT.spad" 834765 834798 835152 835157) (-505 "HYPCAT.spad" 834189 834197 834755 834760) (-504 "HYPCAT.spad" 833611 833621 834179 834184) (-503 "HOSTNAME.spad" 833419 833427 833601 833606) (-502 "HOMOTOP.spad" 833162 833172 833409 833414) (-501 "HOAGG.spad" 830444 830454 833152 833157) (-500 "HOAGG.spad" 827465 827477 830175 830180) (-499 "HEXADEC.spad" 825470 825478 825835 825928) (-498 "HEUGCD.spad" 824505 824516 825460 825465) (-497 "HELLFDIV.spad" 824095 824119 824495 824500) (-496 "HEAP.spad" 823370 823380 823585 823612) (-495 "HEADAST.spad" 822903 822911 823360 823365) (-494 "HDP.spad" 810713 810729 811090 811189) (-493 "HDMP.spad" 807927 807942 808543 808670) (-492 "HB.spad" 806178 806186 807917 807922) (-491 "HASHTBL.spad" 804206 804237 804417 804444) (-490 "HASAST.spad" 803922 803930 804196 804201) (-489 "HACKPI.spad" 803413 803421 803824 803917) (-488 "GTSET.spad" 802316 802332 803023 803050) (-487 "GSTBL.spad" 800393 800428 800567 800582) (-486 "GSERIES.spad" 797706 797733 798525 798674) (-485 "GROUP.spad" 796979 796987 797686 797701) (-484 "GROUP.spad" 796260 796270 796969 796974) (-483 "GROEBSOL.spad" 794754 794775 796250 796255) (-482 "GRMOD.spad" 793325 793337 794744 794749) (-481 "GRMOD.spad" 791894 791908 793315 793320) (-480 "GRIMAGE.spad" 784783 784791 791884 791889) (-479 "GRDEF.spad" 783162 783170 784773 784778) (-478 "GRAY.spad" 781625 781633 783152 783157) (-477 "GRALG.spad" 780702 780714 781615 781620) (-476 "GRALG.spad" 779777 779791 780692 780697) (-475 "GPOLSET.spad" 779195 779218 779423 779450) (-474 "GOSPER.spad" 778464 778482 779185 779190) (-473 "GMODPOL.spad" 777612 777639 778432 778459) (-472 "GHENSEL.spad" 776695 776709 777602 777607) (-471 "GENUPS.spad" 772988 773001 776685 776690) (-470 "GENUFACT.spad" 772565 772575 772978 772983) (-469 "GENPGCD.spad" 772151 772168 772555 772560) (-468 "GENMFACT.spad" 771603 771622 772141 772146) (-467 "GENEEZ.spad" 769554 769567 771593 771598) (-466 "GDMP.spad" 766610 766627 767384 767511) (-465 "GCNAALG.spad" 760533 760560 766404 766471) (-464 "GCDDOM.spad" 759709 759717 760459 760528) (-463 "GCDDOM.spad" 758947 758957 759699 759704) (-462 "GB.spad" 756473 756511 758903 758908) (-461 "GBINTERN.spad" 752493 752531 756463 756468) (-460 "GBF.spad" 748260 748298 752483 752488) (-459 "GBEUCLID.spad" 746142 746180 748250 748255) (-458 "GAUSSFAC.spad" 745455 745463 746132 746137) (-457 "GALUTIL.spad" 743781 743791 745411 745416) (-456 "GALPOLYU.spad" 742235 742248 743771 743776) (-455 "GALFACTU.spad" 740408 740427 742225 742230) (-454 "GALFACT.spad" 730597 730608 740398 740403) (-453 "FVFUN.spad" 727620 727628 730587 730592) (-452 "FVC.spad" 726672 726680 727610 727615) (-451 "FUNDESC.spad" 726350 726358 726662 726667) (-450 "FUNCTION.spad" 726199 726211 726340 726345) (-449 "FT.spad" 724496 724504 726189 726194) (-448 "FTEM.spad" 723661 723669 724486 724491) (-447 "FSUPFACT.spad" 722561 722580 723597 723602) (-446 "FST.spad" 720647 720655 722551 722556) (-445 "FSRED.spad" 720127 720143 720637 720642) (-444 "FSPRMELT.spad" 719009 719025 720084 720089) (-443 "FSPECF.spad" 717100 717116 718999 719004) (-442 "FS.spad" 711368 711378 716875 717095) (-441 "FS.spad" 705414 705426 710923 710928) (-440 "FSINT.spad" 705074 705090 705404 705409) (-439 "FSERIES.spad" 704265 704277 704894 704993) (-438 "FSCINT.spad" 703582 703598 704255 704260) (-437 "FSAGG.spad" 702699 702709 703538 703577) (-436 "FSAGG.spad" 701778 701790 702619 702624) (-435 "FSAGG2.spad" 700521 700537 701768 701773) (-434 "FS2UPS.spad" 695012 695046 700511 700516) (-433 "FS2.spad" 694659 694675 695002 695007) (-432 "FS2EXPXP.spad" 693784 693807 694649 694654) (-431 "FRUTIL.spad" 692738 692748 693774 693779) (-430 "FR.spad" 686361 686371 691669 691738) (-429 "FRNAALG.spad" 681630 681640 686303 686356) (-428 "FRNAALG.spad" 676911 676923 681586 681591) (-427 "FRNAAF2.spad" 676367 676385 676901 676906) (-426 "FRMOD.spad" 675777 675807 676298 676303) (-425 "FRIDEAL.spad" 675002 675023 675757 675772) (-424 "FRIDEAL2.spad" 674606 674638 674992 674997) (-423 "FRETRCT.spad" 674117 674127 674596 674601) (-422 "FRETRCT.spad" 673494 673506 673975 673980) (-421 "FRAMALG.spad" 671842 671855 673450 673489) (-420 "FRAMALG.spad" 670222 670237 671832 671837) (-419 "FRAC.spad" 667228 667238 667631 667804) (-418 "FRAC2.spad" 666833 666845 667218 667223) (-417 "FR2.spad" 666169 666181 666823 666828) (-416 "FPS.spad" 662984 662992 666059 666164) (-415 "FPS.spad" 659827 659837 662904 662909) (-414 "FPC.spad" 658873 658881 659729 659822) (-413 "FPC.spad" 658005 658015 658863 658868) (-412 "FPATMAB.spad" 657767 657777 657995 658000) (-411 "FPARFRAC.spad" 656617 656634 657757 657762) (-410 "FORTRAN.spad" 655123 655166 656607 656612) (-409 "FORT.spad" 654072 654080 655113 655118) (-408 "FORTFN.spad" 651242 651250 654062 654067) (-407 "FORTCAT.spad" 650926 650934 651232 651237) (-406 "FORMULA.spad" 648400 648408 650916 650921) (-405 "FORMULA1.spad" 647879 647889 648390 648395) (-404 "FORDER.spad" 647570 647594 647869 647874) (-403 "FOP.spad" 646771 646779 647560 647565) (-402 "FNLA.spad" 646195 646217 646739 646766) (-401 "FNCAT.spad" 644790 644798 646185 646190) (-400 "FNAME.spad" 644682 644690 644780 644785) (-399 "FMTC.spad" 644480 644488 644608 644677) (-398 "FMONOID.spad" 644145 644155 644436 644441) (-397 "FMONCAT.spad" 641298 641308 644135 644140) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 15ba0c26..372a3ec5 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,111 +1,113 @@ -(204860 . 3486815909) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) -((((-576)) . T) (($) -3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1058 (-419 (-576))))) ((|#1|) . T)) +(204908 . 3486820635) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) +((((-576)) . T) (($) -2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-576)) . T)) -((($ $) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) +((($ $) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) ((($) . T)) (((|#1|) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((($) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#1| (-927)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((($) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(|has| |#1| (-928)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-548)) . T) (((-1178)) . T) (((-227)) . T) (((-390)) . T) (((-906 (-390))) . T)) -(((|#1|) . T)) -((((-227)) . T) (((-875)) . T)) -(-3794 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -(-3794 (|has| |#1| (-832)) (|has| |#1| (-861))) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-548)) . T) (((-1179)) . T) (((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-876)) . T)) +(-2758 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +(-2758 (|has| |#1| (-832)) (|has| |#1| (-861))) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) +((((-876)) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-860)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-326 |#1|)) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-576)) . T) (((-883 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-576)) . T) (((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) (((|#4|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-875)) . T)) -((((-875)) |has| (-1114 |#1|) (-1120))) -((((-875)) . T) (((-1201)) . T)) +((((-876)) . T)) +((((-876)) |has| (-1115 |#1|) (-1121))) +((((-876)) . T) (((-1202)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1201)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -(-3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(((|#2| (-494 (-1968 |#1|) (-783))) . T)) -((((-1196)) -3794 (|has| (-419 |#2|) (-916 (-1196))) (|has| (-419 |#2|) (-918 (-1196))))) -(((|#1| (-543 (-1196))) . T)) -((((-1178)) . T) (((-976 (-130))) . T) (((-875)) . T)) -((((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -(((#0=(-883 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +((((-1202)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +(-2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(((|#2| (-494 (-3502 |#1|) (-783))) . T)) +((((-1197)) -2758 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +(((|#1| (-543 (-1197))) . T)) +((((-1179)) . T) (((-977 (-130))) . T) (((-876)) . T)) +((((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +(((#0=(-884 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (|has| |#4| (-379)) (|has| |#3| (-379)) (((|#1|) . T)) -((((-1196)) . T)) +((((-1197)) . T)) ((((-518)) . T)) -((((-883 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-884 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-568)) -((((-576)) . T) (((-419 (-576))) -3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576))))) ((|#2|) . T) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-877 |#1|)) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-2 (|:| -2409 |#1|) (|:| -1495 |#2|))) . T)) +((((-576)) . T) (((-419 (-576))) -2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-2 (|:| -3223 |#1|) (|:| -4210 |#2|))) . T)) ((($) . T)) -((((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) ((|#1|) . T) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1196)) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +(((|#1|) . T)) +((((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1197)) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-1196)) . T)) +((((-1197)) . T)) +(((|#1|) . T)) ((((-576)) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T) (((-576)) . T) (($) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(|has| |#1| (-1120)) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +(|has| |#1| (-1121)) (((|#1|) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -113,14 +115,14 @@ ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#2|) . T) (((-576)) . T) ((|#6|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($ $) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) @@ -128,38 +130,38 @@ (((|#1|) . T)) (|has| |#1| (-379)) (((|#1|) . T)) -((((-875)) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((((-876)) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -(((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +(((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-568)) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -(|has| |#1| (-1120)) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -(|has| |#1| (-1120)) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(|has| |#1| (-1121)) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(|has| |#1| (-1121)) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) (|has| |#1| (-860)) (((|#1| |#1|) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-576) (-130)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) (((-419 (-576))) . T)) ((((-130)) . T)) (|has| |#4| (-805)) @@ -167,412 +169,412 @@ (|has| |#3| (-805)) (|has| |#3| (-805)) (((|#1| |#2|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1201)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1202)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1196) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1196) |#2|)))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|)))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-576)) . T) (((-419 (-576))) . T)) -(((|#1| (-1196) (-1108 (-1196)) (-543 (-1108 (-1196)))) . T)) +(((|#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) . T)) ((((-576) |#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-928 |#1|)) . T)) +((((-929 |#1|)) . T)) (((|#1| (-543 |#2|)) . T)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T)) -(|has| |#2| (-1069)) +(|has| |#2| (-1070)) (((|#1| (-783)) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1178) |#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) (-130)) . T)) +((((-1179) |#1|) . T)) +((((-1255 (-576)) $) . T) (((-576) (-130)) . T)) (((|#1|) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#3| (-783)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) ((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -((((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) ((|#1|) . T) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#2|) . T)) -((((-1196) |#2|) |has| |#2| (-526 (-1196) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) +((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +((((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#2|) . T)) +((((-1197) |#2|) |has| |#2| (-526 (-1197) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) ((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1102)) . T) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) +((((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (((|#1|) . T) (($) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) . T) (($) . T)) -(((#0=(-711) (-1192 #0#)) . T)) +(((#0=(-711) (-1193 #0#)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-374)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3794 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +((($) -2758 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-1178) |#1|) . T)) +((((-1179) |#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-576) |#1|) . T)) -((((-875)) . T)) -((((-171 (-227))) |has| |#1| (-1042)) (((-171 (-390))) |has| |#1| (-1042)) (((-548)) |has| |#1| (-626 (-548))) (((-1192 |#1|)) . T) (((-906 (-576))) |has| |#1| (-626 (-906 (-576)))) (((-906 (-390))) |has| |#1| (-626 (-906 (-390))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-876)) . T)) +((((-171 (-227))) |has| |#1| (-1043)) (((-171 (-390))) |has| |#1| (-1043)) (((-548)) |has| |#1| (-626 (-548))) (((-1193 |#1|)) . T) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) . T)) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-374)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) -((($) -3794 (|has| |#2| (-238)) (|has| |#2| (-237)))) -(|has| |#4| (-1069)) -(|has| |#3| (-1069)) -((((-875)) . T) (((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) +(-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) +((($) -2758 (|has| |#2| (-238)) (|has| |#2| (-237)))) +(|has| |#4| (-1070)) +(|has| |#3| (-1070)) +((((-876)) . T) (((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +(((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(((|#2|) . T) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) (|has| |#1| (-568)) -((((-576)) -3794 (-12 (|has| |#4| (-1058 (-576))) (|has| |#4| (-1120))) (|has| |#4| (-1069))) ((|#4|) |has| |#4| (-1120)) (((-419 (-576))) -12 (|has| |#4| (-1058 (-419 (-576)))) (|has| |#4| (-1120)))) -((((-576)) -3794 (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120))) (|has| |#3| (-1069))) ((|#3|) |has| |#3| (-1120)) (((-419 (-576))) -12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-576)) -2758 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070))) ((|#4|) |has| |#4| (-1121)) (((-419 (-576))) -12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121)))) +((((-576)) -2758 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-568)) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) (|has| |#1| (-568)) -((((-877 |#1|)) . T)) +((((-878 |#1|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) (((|#2|) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (((-1102)) . T)) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) ((((-711)) . T)) (((|#1|) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (((-1108 (-1196))) . T)) -(-12 (|has| |#1| (-1022)) (|has| |#1| (-1222))) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1109 (-1197))) . T)) +(-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) +(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#4| |#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1069)))) -(((|#3| |#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069)))) +(((|#4| |#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) +(((|#3| |#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) (((|#2|) . T)) (((|#1|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-906 (-390))) |has| |#2| (-626 (-906 (-390)))) (((-906 (-576))) |has| |#2| (-626 (-906 (-576))))) -((((-875)) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) +((((-876)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2409 |#1|) (|:| -1495 |#2|))) . T) (((-875)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-906 (-390))) |has| |#1| (-626 (-906 (-390)))) (((-906 (-576))) |has| |#1| (-626 (-906 (-576))))) -(((|#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1069)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069)))) -((((-2 (|:| -2409 |#1|) (|:| -1495 |#2|))) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-548)) . T) (((-576)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-2 (|:| -3223 |#1|) (|:| -4210 |#2|))) . T) (((-876)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576))))) +(((|#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +((((-2 (|:| -3223 |#1|) (|:| -4210 |#2|))) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) ((((-656 |#1|)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) +(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) -((((-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) . T)) +((($ (-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) . T)) (((|#1|) . T)) -(|has| |#2| (-927)) -((((-1178) (-52)) . T)) +(|has| |#2| (-928)) +((((-1179) (-52)) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) -((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-906 (-390))) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) +((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((|#1|) |has| |#1| (-174))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-861)) (((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1120)) -((((-928 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(|has| |#1| (-1121)) +((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) . T) (((-1201)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-1201)) . T)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T) (((-1202)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-1202)) . T)) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-238)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| (-543 (-830 (-1196)))) . T)) -(((|#1| (-991)) . T)) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#1| (-543 (-830 (-1197)))) . T)) +(((|#1| (-992)) . T)) ((((-576)) . T) ((|#2|) . T)) (|has| |#1| (-860)) -((((-1196)) . T)) -(((#0=(-883 |#1|) $) |has| #0# (-296 #0# #0#))) +((((-1197)) . T)) +(((#0=(-884 |#1|) $) |has| #0# (-296 #0# #0#))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1172)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) -(|has| (-1273 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1273 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1173)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) +(|has| (-1274 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1274 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1196)) -12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069)))) +((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1120)) -((((-1178) |#1|) . T)) +(|has| |#1| (-1121)) +((((-1179) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1145 |#1| (-1196))) . T) (((-576)) . T) (((-830 (-1196))) . T) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) (((-1196)) . T)) +((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-830 (-1197))) . T) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) (|has| |#2| (-379)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1069))) -((((-875)) . T)) +(((|#2|) |has| |#2| (-1070))) +((((-876)) . T)) (|has| |#1| (-860)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) (((|#1|) . T)) -((((-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((#0=(-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) #0#) |has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))))) -((((-875)) . T)) +((((-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) #0#) |has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))))) +((((-876)) . T)) ((((-576) |#1|) . T)) -((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-906 (-390))) -12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390))))) (((-906 (-576))) -12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) +((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390))))) (((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) ((($) . T)) -((((-875)) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) +((((-876)) . T)) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) -((((-875)) . T)) -(|has| (-1272 |#2| |#3| |#4|) (-148)) -(|has| (-1272 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1120)) (((-576)) -12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (((-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T)) +((((-876)) . T)) +(|has| (-1273 |#2| |#3| |#4|) (-148)) +(|has| (-1273 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T)) -(|has| |#1| (-1120)) -((((-875)) . T)) +(|has| |#1| (-1121)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((|#1|) . T)) ((($) . T)) ((((-576) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-875)) |has| |#1| (-1120))) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(-3794 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)) (|has| |#1| (-1132))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-928 |#1|)) . T)) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-876)) |has| |#1| (-1121))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-2758 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-929 |#1|)) . T)) ((((-419 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) ((((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (|has| |#1| (-374)) -(-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) ((((-576)) . T)) ((((-576)) . T)) -((((-1162 |#2| (-419 (-970 |#1|)))) . T) (((-419 (-970 |#1|))) . T)) +((((-1163 |#2| (-419 (-971 |#1|)))) . T) (((-419 (-971 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) (((|#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((((-875)) . T)) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +((((-876)) . T)) (((|#2|) . T)) -(-3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) +(-2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568)) (((-576)) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) -((((-1279 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1283 |#2|)) . T) (((-1279 |#1| |#2| |#3|)) . T) (((-1251 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1280 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1284 |#2|)) . T) (((-1280 |#1| |#2| |#3|)) . T) (((-1252 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) -((((-1196)) -12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069)))) +((((-1197)) -12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070)))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) +(-2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($ (-1196)) -3794 (|has| (-419 |#2|) (-916 (-1196))) (|has| (-419 |#2|) (-918 (-1196))))) -(((#0=(-711) (-1192 #0#)) . T)) +((($ (-1197)) -2758 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +(((#0=(-711) (-1193 #0#)) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-875)) . T) (((-1287 |#4|)) . T)) -((((-875)) . T) (((-1287 |#3|)) . T)) +((((-876)) . T) (((-1288 |#4|)) . T)) +((((-876)) . T) (((-1288 |#3|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1279 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#3|) |has| |#3| (-1069))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1114 |#1|) (-1120)) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1280 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#3|) |has| |#3| (-1070))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(|has| (-1115 |#1|) (-1121)) (((|#2| (-831 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-374)) ((((-576)) . T) ((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((#0=(-1102) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-875)) . T)) -((((-928 |#1|)) . T)) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-1103) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-876)) . T)) +((((-929 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) ((((-245 |#1| |#2|) |#2|) . T)) -((((-875)) . T)) -(((|#3|) |has| |#3| (-1120)) (((-576)) -12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120))) (((-419 (-576))) -12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-876)) . T)) +(((|#3|) |has| |#3| (-1121)) (((-576)) -12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1|) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) (|has| |#1| (-374)) -((((-1201)) . T)) +((((-1202)) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) ((($) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (|has| |#2| (-832)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-860)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| (-543 |#3|)) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-419 (-576))) . T)) (((|#1|) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-419 (-576))) . T)) -((((-1178) |#1|) . T)) +((((-1179) |#1|) . T)) (|has| |#1| (-379)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -((((-875)) . T)) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +((((-876)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1196)) -12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))))) +((((-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-875)) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) -((((-1196) #0=(-883 |#1|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-876)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) +((((-1197) #0=(-884 |#1|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548)))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(|has| |#2| (-1069)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -(-3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-875)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#2| (-1070)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +(-2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-876)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) ((((-419 (-576))) . T) (((-576)) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) -3794 (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069))) ((|#2|) |has| |#2| (-1120)) (((-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) +((((-576)) -2758 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -582,122 +584,122 @@ ((($) . T) (((-419 (-576))) . T)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) +(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) (((|#1|) |has| |#1| (-568))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-875)) . T)) +((((-876)) . T)) ((((-576) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-877 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1196) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1197) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(((|#2| |#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069)))) +((($) -2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(((|#2| |#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) ((((-145)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -((((-875)) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069)))) +((((-876)) . T)) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) (((|#1|) . T)) -((((-875)) . T)) -(|has| |#1| (-1120)) +((((-876)) . T)) +(|has| |#1| (-1121)) (|has| $ (-148)) -((((-1201)) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-1202)) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +((($) -2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-374)) -(-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) (((|#1|) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -((((-875)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(-3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(((|#2| (-543 (-877 |#1|))) . T)) -((((-875)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((((-876)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(-2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(((|#2| (-543 (-878 |#1|))) . T)) +((((-876)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-593 |#1|)) . T)) ((($) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T) (($) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1194 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1283 |#2|)) . T) (((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1195 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1284 |#2|)) . T) (((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#4|) . T)) (((|#3|) . T)) -((((-883 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -((((-1196)) -12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069)))) -(-3794 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) +(-2758 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) -((((-877 |#1|)) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) ((|#3|) . T)) +((((-878 |#1|)) . T)) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) ((|#3|) . T)) ((($) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-576)) . T) (((-419 (-576))) -3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576))))) ((|#2|) . T) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-877 |#1|)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-576)) . T) (((-419 (-576))) -2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) ((((-576) |#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1194 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) -(((|#2|) |has| |#2| (-1069))) -(|has| |#1| (-1120)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1195 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T)) +(((|#2|) |has| |#2| (-1070))) +(|has| |#1| (-1121)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-875)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($ (-877 |#1|)) . T)) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-876)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($ (-878 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($ |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (($ (-1102)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) ((($) . T)) -(((#0=(-1102) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (($ (-1108 (-1196))) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) +(((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1109 (-1197))) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1120)) (((-576)) -12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (((-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) +(((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) ((((-576) |#1|) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-419 |#2|) |#3|) . T)) (((|#1| (-419 (-576))) . T)) ((((-419 (-576))) . T) (($) . T)) @@ -705,179 +707,179 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-875)) . T) (((-1201)) . T)) +((((-876)) . T) (((-1202)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1201)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1202)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -(((|#2| |#3| (-877 |#1|)) . T)) -((((-1196)) |has| |#2| (-916 (-1196)))) +(((|#2| |#3| (-878 |#1|)) . T)) +((((-1197)) |has| |#2| (-917 (-1197)))) (((|#1|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -(((|#1| (-783) (-1102)) . T)) +(((|#1| (-783) (-1103)) . T)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| (-543 (-1108 (-1196))) (-1108 (-1196))) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) +(((|#1| (-543 (-1109 (-1197))) (-1109 (-1197))) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#2|) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#2|) . T)) -((((-1019 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3794 (|has| (-1019 |#1|) (-1058 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) -(|has| |#2| (-1069)) +((((-1020 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2758 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +(|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-805)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-907 |#1|)) . T) (((-831 |#1|)) . T)) -((((-831 (-1196))) . T)) +((((-908 |#1|)) . T) (((-831 |#1|)) . T)) +((((-831 (-1197))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-656 (-939))) . T) (((-875)) . T)) -((((-419 (-576))) . T) (((-875)) . T)) -((((-548)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-656 (-940))) . T) (((-876)) . T)) +((((-419 (-576))) . T) (((-876)) . T)) +((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) (|has| |#1| (-238)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($ $) . T) (((-576) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-1279 |#1| |#2| |#3|) $) -12 (|has| (-1279 |#1| |#2| |#3|) (-296 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-1280 |#1| |#2| |#3|) $) -12 (|has| (-1280 |#1| |#2| |#3|) (-296 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) ((((-783) |#1|) . T) (($ $) . T)) (((|#1|) . T)) -((($ (-1196)) . T)) -(-3794 (|has| |#1| (-832)) (|has| |#1| (-861))) -((((-1160 |#1| |#2|)) |has| (-1160 |#1| |#2|) (-319 (-1160 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1058 (-576))) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) +((($ (-1197)) . T)) +(-2758 (|has| |#1| (-832)) (|has| |#1| (-861))) +((((-1161 |#1| |#2|)) |has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) +(((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) (|has| |#1| (-860)) (((|#1|) . T)) -((((-1196)) -3794 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1196)))))) +((((-1197)) -2758 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) (((|#1| |#2|) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) (((|#2|) . T)) -((((-875)) -3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-875))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) (((-1287 |#2|)) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) +((((-876)) -2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -(|has| |#1| (-1120)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +(|has| |#1| (-1121)) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-576) (-145)) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-576)) . T)) (((|#1|) . T) ((|#2|) . T) (((-576)) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) (((-576)) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (((|#1|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((($) . T) (((-576)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#2|) |has| |#1| (-374))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-1201)) . T)) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-1202)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| (-543 #0=(-1196)) #0#) . T)) +(((|#1| (-543 #0=(-1197)) #0#) . T)) (((|#1|) . T) (($) . T)) ((((-576)) . T)) -(((#0=(-419 (-970 |#1|)) #0#) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +(((#0=(-419 (-971 |#1|)) #0#) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(-3794 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-419 (-970 |#1|))) . T)) +(-2758 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-419 (-971 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-875)) . T)) -((((-875)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1069)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) +((((-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-876)) . T)) +((((-876)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1070)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((|#1| |#2|) . T)) -(|has| |#3| (-1069)) +(|has| |#3| (-1070)) (|has| |#3| (-805)) (|has| |#3| (-805)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1| (-1177 |#1|)) |has| |#1| (-860))) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +(((|#1| (-1178 |#1|)) |has| |#1| (-860))) ((((-576) |#2|) . T)) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) (((|#1|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1172))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-1173))) ((((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($) . T) (((-419 (-576))) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#2|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-906 (-390))) |has| |#2| (-626 (-906 (-390)))) (((-906 (-576))) |has| |#2| (-626 (-906 (-576))))) -(((|#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((((-875)) . T)) -(((|#1|) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-927))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) +(((|#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)))) +((((-876)) . T)) +(((|#1|) . T)) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-928))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-927))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-927))) -((($ $) . T) ((#0=(-1196) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1196)) |#1|) . T) ((#1# $) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-927))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) +((($ $) . T) ((#0=(-1197) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1197)) |#1|) . T) ((#1# $) . T)) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-928))) ((((-576) |#2|) . T)) -((((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) +((((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) ((((-576) |#1|) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) @@ -885,46 +887,46 @@ (|has| |#1| (-38 (-419 (-576)))) (((|#1|) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-875)) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-876)) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-400) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) +((((-400) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) -(|has| |#2| (-1172)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-875)) . T) (((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1236)) . T) (((-875)) . T) (((-1201)) . T)) +(|has| |#2| (-1173)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-876)) . T) (((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1237)) . T) (((-876)) . T) (((-1202)) . T)) ((((-117 |#1|)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) . T)) -((((-400) (-1178)) . T)) +((((-400) (-1179)) . T)) (|has| |#1| (-568)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) -((((-783) (-1201)) . T)) -((((-875)) . T)) +((((-783) (-1202)) . T)) +((((-876)) . T)) ((((-831 |#1|)) . T)) ((($) . T)) -((((-1196) (-52)) . T)) +((((-1197) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -932,48 +934,48 @@ (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) ((((-656 |#1|)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#2|) |has| |#2| (-319 |#2|))) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1192 |#1|)) . T)) +(((|#1| (-1193 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#2| (-379)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-875)) . T)) -((((-1194 |#1| |#2| |#3|) $) -12 (|has| (-1194 |#1| |#2| |#3|) (-296 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((((-876)) . T)) +((((-1195 |#1| |#2| |#3|) $) -12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) ((((-783) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((#0=(-1279 |#1| |#2| |#3|) #0#) -12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1196) #0#) -12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((#0=(-1280 |#1| |#2| |#3|) #0#) -12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1197) #0#) -12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T) ((|#2|) . T)) ((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (((-576)) . T)) @@ -981,171 +983,171 @@ ((((-145)) . T)) (((|#1|) . T)) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((((-112)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1042))) (((-390)) . #0#)) -((((-875)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1043))) (((-390)) . #0#)) +((((-876)) . T)) (((|#1|) . T)) -((((-1201)) . T)) +((((-1202)) . T)) (|has| |#1| (-832)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-568)) -(((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) -(|has| |#1| (-927)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(((|#1|) . T)) -(|has| |#1| (-1120)) -((((-875)) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +(((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +(|has| |#1| (-928)) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(((|#1|) . T)) +(|has| |#1| (-1121)) +((((-876)) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (|has| |#1| (-861)) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) -((((-576) (-145)) . T) (((-1254 (-576)) $) . T)) +(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) +((((-576) (-145)) . T) (((-1255 (-576)) $) . T)) ((($) . T)) -(|has| |#4| (-1069)) -(|has| |#3| (-1069)) -((((-1201)) . T) (((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1| (-991)) . T)) +(|has| |#4| (-1070)) +(|has| |#3| (-1070)) +((((-1202)) . T) (((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#1| (-992)) . T)) (((|#1| |#1|) . T)) ((($) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) -(|has| |#2| (-1069)) -((($) . T) (((-576)) . T) (((-883 |#1|)) . T) (((-419 (-576))) . T)) +(|has| |#2| (-1070)) +((($) . T) (((-576)) . T) (((-884 |#1|)) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-875)) . T)) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-876)) . T)) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237))) (|has| |#1| (-360)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-840)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) (((|#2|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1120))) -(((|#3|) |has| |#3| (-1120))) +(((|#4|) |has| |#4| (-1121))) +(((|#3|) |has| |#3| (-1121))) (|has| |#3| (-379)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) (((-576)) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -((((-875)) . T)) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-861)) (((|#2|) . T)) (((|#2|) . T)) (|has| |#2| (-374)) ((((-419 (-576))) . T) (((-576)) . T)) -((($) -3794 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((($ (-877 |#1|)) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (($ |#3|) . T)) +((($) -2758 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($ (-878 |#1|)) . T)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ |#3|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#1|) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) |has| |#1| (-174))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((((-145)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-145)) . T)) ((((-145)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T)) (((|#1| |#2| |#3|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1201)) . T)) +((((-1202)) . T)) (((|#1|) |has| |#1| (-174))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1069)) (|has| |#1| (-1132))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) ((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|))) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1196)) . T)) +((((-1197)) . T)) (|has| |#1| (-568)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-875)) . T)) +((((-876)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-576) (-419 (-970 |#1|))) . T)) +((((-576) (-419 (-971 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-245 (-1968 |#1|) (-783)) (-877 |#1|)) . T)) +(((|#2| (-245 (-3502 |#1|) (-783)) (-878 |#1|)) . T)) (((|#1| (-543 |#3|) |#3|) . T)) (|has| |#1| (-146)) (((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T)) +((((-884 |#1|)) . T)) +((((-884 |#1|)) . T)) (|has| |#1| (-148)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-146)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3794 (|has| |#1| (-360)) (|has| |#1| (-379))) -((((-1162 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2758 (|has| |#1| (-360)) (|has| |#1| (-379))) +((((-1163 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) -(((|#2|) . T) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (|has| |#3| (-805)) (|has| |#3| (-805)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) ((((-711)) . T)) -(|has| |#2| (-1069)) +(|has| |#2| (-1070)) (|has| |#1| (-568)) (((|#1|) . T)) (((|#1|) . T)) @@ -1156,65 +1158,65 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1196) (-52)) . T)) -((((-1024 10)) . T) (((-419 (-576))) . T) (((-875)) . T)) -((((-548)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1197) (-52)) . T)) +((((-1025 10)) . T) (((-419 (-576))) . T) (((-876)) . T)) +((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1|) . T)) -((((-1024 16)) . T) (((-419 (-576))) . T) (((-875)) . T)) -((((-548)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1025 16)) . T) (((-419 (-576))) . T) (((-876)) . T)) +((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1| (-576)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196)))) (((-1102)) . T)) +((((-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (((-1103)) . T)) (((|#1|) . T)) (((|#3|) . T) (((-624 $)) . T)) (((|#1| (-419 (-576))) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-576)) -3794 (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069))) ((|#2|) |has| |#2| (-1120)) (((-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-576)) -2758 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((#0=(-1194 |#1| |#2| |#3|) #0#) -12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1196) #0#) -12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -((((-875)) . T)) -((((-875)) . T)) +(((#0=(-1195 |#1| |#2| |#3|) #0#) -12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1197) #0#) -12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) |has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))))) -((((-875)) . T)) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) |has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))))) +((((-876)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1196) (-52)) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) +((((-1197) (-52)) . T)) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (((|#3|) . T)) -((($ $) . T) ((#0=(-877 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-840)) ((($) . T) (((-576)) . T) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1114 |#1|) (-1120)) -(((|#2| |#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069)))) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069)))) +(|has| (-1115 |#1|) (-1121)) +(((|#2| |#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) ((((-576)) . T)) -((((-1201)) . T)) +((((-1202)) . T)) ((((-783)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-568)) ((((-576)) . T)) (((|#2|) . T)) -((((-875)) . T)) -(((|#1| (-419 (-576)) (-1102)) . T)) +((((-876)) . T)) +(((|#1| (-419 (-576)) (-1103)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (|has| |#1| (-568)) @@ -1223,112 +1225,112 @@ (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1201)) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1202)) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-146)) ((((-576)) . T)) (|has| |#1| (-148)) -((($ (-1196)) -3794 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1196)))))) -((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-906 (-576))) . T) (((-906 (-390))) . T) (((-548)) . T) (((-1196)) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((($ (-1197)) -2758 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) +((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-907 (-576))) . T) (((-907 (-390))) . T) (((-548)) . T) (((-1197)) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((($) . T)) (((|#1|) . T)) -((((-875)) . T)) -(-3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) +((((-876)) . T)) +(-2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-883 |#1|)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) -(|has| |#2| (-1172)) -(((#0=(-52)) . T) (((-2 (|:| -2239 (-1196)) (|:| -2904 #0#))) . T)) +((($) -2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((((-884 |#1|)) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) +(|has| |#2| (-1173)) +(((#0=(-52)) . T) (((-2 (|:| -4300 (-1197)) (|:| -4438 #0#))) . T)) (((|#1| |#2|) . T)) -(|has| |#3| (-1069)) -(((|#1| (-576) (-1102)) . T)) -((((-877 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1| (-419 (-576)) (-1102)) . T)) -((((-1196)) . T)) -((($) -3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((($) -3794 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +(|has| |#3| (-1070)) +(((|#1| (-576) (-1103)) . T)) +((((-878 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| (-419 (-576)) (-1103)) . T)) +((((-1197)) . T)) +((($) -2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2758 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((((-576) |#2|) . T)) -((($ (-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) +((($ (-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-379)) (((|#1| |#1|) . T)) -((((-875)) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((((-876)) . T)) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-360)) -((((-576)) -3794 (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120))) (|has| |#3| (-1069))) ((|#3|) |has| |#3| (-1120)) (((-419 (-576))) -12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) +((((-576)) -2758 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#4|) . T)) -(((|#4|) . T) (((-875)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1069))) (($) |has| |#4| (-1069))) -(((|#2|) . T) (((-576)) . T) ((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(((|#4|) . T) (((-876)) . T)) +(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070))) +(((|#2|) . T) (((-576)) . T) ((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) (|has| |#1| (-568)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-875)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-876)) . T)) (((|#1| |#2|) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-927))) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-927))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-928))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-928))) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((($) . T)) -((((-875)) . T)) -(((|#1|) . T)) -((((-883 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-875)) . T)) -(((|#3| |#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069)))) -(|has| |#1| (-1042)) -((((-875)) . T)) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069)))) +((((-876)) . T)) +(((|#1|) . T)) +((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-876)) . T)) +(((|#3| |#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +(|has| |#1| (-1043)) +((((-876)) . T)) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) ((((-576) (-112)) . T)) -((((-1201)) . T)) +((((-1202)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) -((((-1201)) . T)) +((((-1202)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-1196) $) |has| |#1| (-526 (-1196) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|))) -((((-1196)) |has| |#1| (-916 (-1196)))) -(-3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) +((((-1197) $) |has| |#1| (-526 (-1197) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) +((((-1197)) |has| |#1| (-917 (-1197)))) +(-2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) ((((-400) |#1|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#2|) . T) (((-875)) . T)) -((((-875)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#2|) . T) (((-876)) . T)) +((((-876)) . T)) (((|#2|) . T)) -((((-928 |#1|)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) +((((-929 |#1|)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -1336,250 +1338,250 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1| |#1|) . T)) -(((#0=(-883 |#1|)) |has| #0# (-319 #0#))) -((((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1058 (-419 (-576))))) ((|#1|) . T)) +(((#0=(-884 |#1|)) |has| #0# (-319 #0#))) +((((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) (((|#1|) . T)) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(|has| |#2| (-1069)) +(|has| |#2| (-1070)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1222)) +(|has| |#1| (-1223)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) ((((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1069))) -(((|#4|) |has| |#4| (-1069))) -(((|#3|) |has| |#3| (-1069))) -(((|#3|) |has| |#3| (-1069))) +(((|#4|) |has| |#4| (-1070))) +(((|#4|) |has| |#4| (-1070))) +(((|#3|) |has| |#3| (-1070))) +(((|#3|) |has| |#3| (-1070))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (|has| |#1| (-374)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((((-875)) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +((((-876)) . T)) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) ((((-548)) |has| |#3| (-626 (-548)))) (((|#1| |#2|) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) -((((-701 |#3|)) . T) (((-875)) . T)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-701 |#3|)) . T) (((-876)) . T)) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((($) . T)) -(((#0=(-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) #0#) |has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))))) +(((#0=(-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) #0#) |has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))))) ((((-576) |#3|) . T)) (((|#2|) . T)) ((($) . T)) ((($) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (((-1102)) . T)) -(((|#2|) |has| |#2| (-1120))) -((((-875)) -3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-875))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) (((-1287 |#2|)) . T)) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) +(((|#2|) |has| |#2| (-1121))) +((((-876)) -2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1178) (-52)) . T)) +((((-1179) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-875)) . T)) +((($) -2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((((-876)) . T)) (((|#2|) . T)) -((($) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) ((($) . T) (((-576)) . T)) ((((-576) (-145)) . T)) -((((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((|#1| |#2|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-875)) . T)) -((((-928 |#1|)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-876)) . T)) +((((-929 |#1|)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-860)) -((($) -3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (|has| |#1| (-374)) (((|#1|) . T) (($) . T)) (|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1196)) |has| |#1| (-916 (-1196)))) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-1197)) |has| |#1| (-917 (-1197)))) (|has| |#1| (-860)) ((((-518)) . T)) -(((|#1| (-1196)) . T)) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) -((((-875)) . T) (((-1201)) . T)) +(((|#1| (-1197)) . T)) +(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) +((((-876)) . T) (((-1202)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1201)) . T)) -(|has| |#1| (-1120)) -(((|#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) . T)) -((((-419 (-970 |#1|))) . T)) +((((-1202)) . T)) +(|has| |#1| (-1121)) +(((|#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) . T)) +((((-419 (-971 |#1|))) . T)) ((((-548)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) -((((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) (((-1254 (-576)) $) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) (((-1255 (-576)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-906 (-390))) |has| |#1| (-626 (-906 (-390)))) (((-906 (-576))) |has| |#1| (-626 (-906 (-576))))) -((((-875)) . T)) -((((-883 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) . T) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576))))) +((((-876)) . T)) +((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) ((((-518)) . T)) ((((-518)) . T)) -((((-1196)) -3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) -((((-1196)) -3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) +((((-1197)) -2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) +((((-1197)) -2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (|has| |#1| (-568)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237))) -((((-883 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-884 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -(|has| |#2| (-1069)) -((((-1178) |#1|) . T)) -(|has| |#1| (-1172)) -((((-976 |#1|)) . T)) -(((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-576))) (((-576)) |has| |#1| (-1058 (-576))) (((-1196)) |has| |#1| (-1058 (-1196))) ((|#1|) . T)) +(|has| |#2| (-1070)) +((((-1179) |#1|) . T)) +(|has| |#1| (-1173)) +((((-977 |#1|)) . T)) +(((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-576))) (((-576)) |has| |#1| (-1059 (-576))) (((-1197)) |has| |#1| (-1059 (-1197))) ((|#1|) . T)) ((($) . T)) ((($) . T)) ((((-576) |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-576)) |has| |#1| (-900 (-576))) (((-390)) |has| |#1| (-900 (-390)))) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) -((((-656 |#4|)) . T) (((-875)) . T)) +((((-656 |#4|)) . T) (((-876)) . T)) ((((-548)) |has| |#4| (-626 (-548)))) ((((-548)) |has| |#4| (-626 (-548)))) -((((-875)) . T) (((-656 |#4|)) . T)) +((((-876)) . T) (((-656 |#4|)) . T)) ((($) |has| |#1| (-860))) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -((((-576)) -3794 (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069))) ((|#2|) |has| |#2| (-1120)) (((-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +((((-576)) -2758 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) -((((-656 |#4|)) . T) (((-875)) . T)) +((((-656 |#4|)) . T) (((-876)) . T)) ((((-548)) |has| |#4| (-626 (-548)))) (((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-1196)) |has| (-419 |#2|) (-916 (-1196)))) +((((-1197)) |has| (-419 |#2|) (-917 (-1197)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) ((($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($) . T)) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($) . T)) ((($) . T)) -((((-875)) -3794 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-875))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1069)) (|has| |#3| (-1120))) (((-1287 |#3|)) . T)) +((((-876)) -2758 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-876))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) (((-1288 |#3|)) . T)) (((|#2|) . T)) ((((-576) |#2|) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -(((|#2| |#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069)))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(((|#2| |#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) (((|#2|) . T) (((-576)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((|#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1178) (-1196) (-576) (-227) (-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((|#2|) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1179) (-1197) (-576) (-227) (-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-875)) . T)) +((((-876)) . T)) ((((-576) (-112)) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-112)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) ((((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) (|has| $ (-148)) ((((-419 |#2|)) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1058 (-419 (-576)))) (((-576)) |has| #0# (-1058 (-576))) ((#0#) . T)) +((((-419 (-576))) |has| #0=(-419 |#2|) (-1059 (-419 (-576)))) (((-576)) |has| #0# (-1059 (-576))) ((#0#) . T)) (((|#2| |#2|) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#2| (-238)) -((((-875)) . T) (((-1201)) . T)) +((((-876)) . T) (((-1202)) . T)) (((|#2|) . T)) -((((-1201)) . T)) -((((-1196) (-52)) . T)) +((((-1202)) . T)) +((((-1197) (-52)) . T)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -((((-875)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-876)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1| |#1|) . T)) -((((-1196)) |has| |#2| (-916 (-1196)))) +((((-1197)) |has| |#2| (-917 (-1197)))) ((((-130)) . T)) -((((-576) (-112)) . T) (((-1254 (-576)) $) . T)) +((((-576) (-112)) . T) (((-1255 (-576)) $) . T)) (|has| |#1| (-568)) (((|#2|) . T)) (((|#2|) . T)) -((((-907 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) -(((|#1|) . T) (((-576)) . T) (((-831 (-1196))) . T)) +((((-908 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) +(((|#1|) . T) (((-576)) . T) (((-831 (-1197))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) @@ -1588,69 +1590,69 @@ (|has| |#1| (-38 (-419 (-576)))) (((|#3|) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) -(((|#1|) . T)) -((((-1024 2)) . T) (((-419 (-576))) . T) (((-875)) . T)) -((((-548)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1019 |#1|)) . T) ((|#1|) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (((-830 (-1196))) . T)) -((((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) +(((|#1|) . T)) +((((-1025 2)) . T) (((-419 (-576))) . T) (((-876)) . T)) +((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1020 |#1|)) . T) ((|#1|) . T)) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-830 (-1197))) . T)) +((((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) ((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1192 |#1|)) . T)) +(((|#1| (-1193 |#1|)) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#3|) . T) (($) . T)) (|has| |#1| (-861)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#2|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-576) |#2|) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#2|) . T)) ((((-576) |#3|) . T)) (((|#2|) . T)) -((((-875)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) -(-3794 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) +((((-876)) . T)) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) +(-2758 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-374)) -(((|#2|) . T) (((-576)) |has| |#2| (-1058 (-576))) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +(((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#2|) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-1120)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#1| (-1121)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-38 (-419 (-576)))) -((((-1178) (-52)) . T)) +((((-1179) (-52)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ (-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196)))) (($ (-1102)) . T)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ (-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (($ (-1103)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) -((((-576)) -3794 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) ((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069))) +((((-576)) -2758 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) (((|#1|) . T)) ((((-576) |#3|) . T)) ((((-576) (-145)) . T)) ((((-145)) . T)) -((((-875)) . T)) -((((-1201)) . T)) +((((-876)) . T)) +((((-1202)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) @@ -1658,120 +1660,120 @@ ((($) . T)) (|has| |#1| (-568)) ((((-576)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-145)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1196) (-52)) . T) (((-1178) (-52)) . T)) +((((-1197) (-52)) . T) (((-1179) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#2|) . T)) -(-3794 (|has| |#2| (-238)) (|has| |#2| (-237))) -((((-576) (-145)) . T) (((-1254 (-576)) $) . T)) -(((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2758 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-576) (-145)) . T) (((-1255 (-576)) $) . T)) +(((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-861)) -(((|#2| (-783) (-1102)) . T)) +(((|#2| (-783) (-1103)) . T)) (((|#1| |#2|) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-803)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1196)) -3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1197)) -2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3794 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) +(-2758 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) (((|#4|) . T)) -(-3794 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) -((((-1178) |#1|) . T)) +(-2758 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) +((((-1179) |#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (((|#1|) . T)) ((((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-876)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#3|) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120))) (((-976 |#1|)) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121))) (((-977 |#1|)) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-976 |#1|)) . T)) -(((|#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-977 |#1|)) . T)) +(((|#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) (|has| |#2| (-374)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1069)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1069)))) -(((|#2|) |has| |#2| (-1069))) -(((|#2|) |has| |#2| (-1069))) -((((-1178) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) -(((|#2| (-907 |#1|)) . T)) +(((|#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) +(((|#2|) |has| |#2| (-1070))) +(((|#2|) |has| |#2| (-1070))) +((((-1179) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) +(((|#2| (-908 |#1|)) . T)) ((($) . T)) -((($ (-877 |#1|)) . T)) +((($ (-878 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-400) (-1178)) . T)) -((($ (-1196)) . T)) +((((-400) (-1179)) . T)) +((($ (-1197)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) -3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-875))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) (((-1287 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2239 (-1178)) (|:| -2904 #0#))) . T)) +((((-876)) -2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4300 (-1179)) (|:| -4438 #0#))) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +((((-876)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((((-145)) . T)) (|has| |#2| (-146)) ((((-576)) . T)) (|has| |#2| (-148)) (|has| |#1| (-485)) -(-3794 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) +(-2758 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (|has| |#1| (-374)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) -((((-1201)) . T)) +((((-1202)) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) -((((-875)) . T)) +((((-876)) . T)) (((|#2|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1196)) |has| |#1| (-916 (-1196)))) +((((-1197)) |has| |#1| (-917 (-1197)))) (((|#2| |#2|) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#2| (-494 (-1968 |#1|) (-783)) (-877 |#1|)) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-876)) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#2| (-494 (-3502 |#1|) (-783)) (-878 |#1|)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(((|#1| (-543 (-1196)) (-1196)) . T)) +(((|#1| (-543 (-1197)) (-1197)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1785,57 +1787,57 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-1196) (-52)) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-1197) (-52)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) (((|#1| (-576)) . T)) -((((-928 |#1|)) . T)) -(((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1069))) (($) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)))) -((((-1196)) -3794 (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))))) -(((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) +((((-929 |#1|)) . T)) +(((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) +((((-1197)) -2758 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) (|has| |#1| (-861)) (|has| |#1| (-861)) ((((-576) |#2|) . T)) ((($) . T) (((-576)) . T) ((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T)) (|has| |#1| (-861)) -((((-701 |#2|)) . T) (((-875)) . T)) -((((-1279 |#1| |#2| |#3|)) -12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +((((-701 |#2|)) . T) (((-876)) . T)) +((((-1280 |#1| |#2| |#3|)) -12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (|has| |#1| (-238)) (|has| |#1| (-861)) (((|#1| |#2|) . T)) -((((-419 (-970 |#1|))) . T)) -((((-991)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) +((((-419 (-971 |#1|))) . T)) +((((-992)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#1|) |has| |#1| (-174))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-927))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-928))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($ |#2|) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (($ (-1102)) . T)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-576) |#2|) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)))) (|has| |#1| (-360)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) +(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (((|#2|) . T) (((-576)) . T)) ((($) . T) (((-419 (-576))) . T)) ((((-576) (-112)) . T)) (|has| |#1| (-832)) (|has| |#1| (-832)) (((|#1|) . T)) -(-3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-860)) (|has| |#1| (-860)) (|has| |#1| (-860)) @@ -1844,22 +1846,22 @@ ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-1196)) |has| |#1| (-916 (-1196))) (((-1102)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) (((|#1|) . T)) (|has| |#1| (-860)) -(((#0=(-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) #0#) |has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +(((#0=(-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) #0#) |has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1162 |#2| (-419 (-970 |#1|)))) . T) (((-419 (-970 |#1|))) . T) (((-576)) . T)) +((((-1163 |#2| (-419 (-971 |#1|)))) . T) (((-419 (-971 |#1|))) . T) (((-576)) . T)) (((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -1869,20 +1871,20 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -((((-875)) . T)) -((((-145)) . T) (((-875)) . T)) +((((-876)) . T)) +((((-145)) . T) (((-876)) . T)) ((((-576) |#1|) . T)) -(((|#1| (-783) (-1102)) . T)) +(((|#1| (-783) (-1103)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) -3794 (|has| |#1| (-860)) (|has| |#1| (-1058 (-576)))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -2758 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1196)) -3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) +((((-1197)) -2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1890,91 +1892,91 @@ (((|#3|) |has| |#3| (-374))) (((|#1|) . T)) (((|#2|) |has| |#1| (-374))) -((((-875)) . T)) -((((-875)) . T)) -((((-877 |#1|)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-878 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1192 |#1|)) . T)) -((((-1102)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) +(((|#1| (-1193 |#1|)) . T)) +((((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) ((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) ((($) |has| |#1| (-860))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-927)) -((((-1196)) . T)) -((((-875)) . T)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +(|has| |#1| (-928)) +((((-1197)) . T)) +((((-876)) . T)) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-576) |#2|) . T)) -((($ (-1196)) -3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) -((($ (-1196)) -3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($ (-1197)) -2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) +((($ (-1197)) -2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) (((|#1| |#2|) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-927))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((#0=(-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) #0#) |has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-927))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-928))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) #0#) |has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)))) (|has| |#1| (-861)) (|has| |#1| (-568)) ((((-593 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-928 |#1|)) . T)) +(-2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-929 |#1|)) . T)) (((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-783)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) ((((-684 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-875)) . T) (((-1201)) . T)) +((((-876)) . T) (((-1202)) . T)) ((((-548)) . T)) -((((-875)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-875)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-1201)) . T)) +((((-876)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-876)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-1202)) . T)) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#3|) . T) (((-576)) . T) (((-624 $)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#2|) . T)) -(-3794 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1069)) (|has| |#3| (-1120))) -(|has| |#2| (-1069)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) +(-2758 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) +(|has| |#2| (-1070)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T)) @@ -1988,61 +1990,61 @@ (((|#1|) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1178) (-52)) . T)) -(|has| |#1| (-1120)) +((((-1179) (-52)) . T)) +(|has| |#1| (-1121)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-3794 (|has| |#2| (-832)) (|has| |#2| (-861))) +(-2758 (|has| |#2| (-832)) (|has| |#2| (-861))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T)) ((((-783)) . T)) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-875)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(|has| |#2| (-927)) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-876)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(|has| |#2| (-928)) (|has| |#1| (-374)) -(((|#2|) |has| |#2| (-1120))) +(((|#2|) |has| |#2| (-1121))) ((($) . T) (((-576)) . T)) ((($) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-548)) . T) (((-419 (-1192 (-576)))) . T) (((-227)) . T) (((-390)) . T)) -((((-390)) . T) (((-227)) . T) (((-875)) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (($ (-830 (-1196))) . T)) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-548)) . T) (((-419 (-1193 (-576)))) . T) (((-227)) . T) (((-390)) . T)) +((((-390)) . T) (((-227)) . T) (((-876)) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-830 (-1197))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1120))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(|has| |#1| (-927)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-927))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(|has| |#1| (-928)) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-928))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1069)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) -((((-1194 |#1| |#2| |#3|)) -12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-927))) -((((-875)) . T)) -((((-875)) . T)) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((((-1195 |#1| |#2| |#3|)) -12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-876)) . T)) +((((-876)) . T)) ((($ $) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((($) -3794 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((($) -2758 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((((-991)) . T)) -((((-991)) . T) (((-875)) . T)) +((((-992)) . T)) +((((-992)) . T) (((-876)) . T)) ((($ $) . T)) ((((-576) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) (((|#1| (-576)) . T)) ((($) . T)) @@ -2050,150 +2052,150 @@ ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1196)) |has| |#1| (-1069))) +((((-1197)) |has| |#1| (-1070))) ((((-576)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#1|) . T)) (((|#1| (-576)) . T)) -(((|#1| (-1279 |#1| |#2| |#3|)) . T)) +(((|#1| (-1280 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-419 (-576))) . T)) -(((|#1| (-1251 |#1| |#2| |#3|)) . T)) -((((-875)) . T)) -(|has| |#1| (-1120)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(((|#1| (-1252 |#1| |#2| |#3|)) . T)) +((((-876)) . T)) +(|has| |#1| (-1121)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1| (-783)) . T)) -((((-1178) |#1|) . T)) +((((-1179) |#1|) . T)) (((|#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-543 (-830 (-1196))) (-830 (-1196))) . T)) -((((-875)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1069))) -((((-576) (-112)) . T) (((-1254 (-576)) $) . T)) -((((-875)) |has| |#1| (-1120))) +(((|#1| (-543 (-830 (-1197))) (-830 (-1197))) . T)) +((((-876)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1070))) +((((-576) (-112)) . T) (((-1255 (-576)) $) . T)) +((((-876)) |has| |#1| (-1121))) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-360))) -((((-875)) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-360))) +((((-876)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -((((-875)) . T)) -(|has| |#3| (-1069)) -((($) -3794 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((((-1272 |#2| |#3| |#4|)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-875)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) -3794 (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) (((-419 (-970 |#1|))) |has| |#1| (-568)) (((-970 |#1|)) |has| |#1| (-1069)) (((-1196)) . T)) +((((-876)) . T)) +(|has| |#3| (-1070)) +((($) -2758 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((((-1273 |#2| |#3| |#4|)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-876)) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) -2758 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-783)) . T)) (((|#1|) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) |has| |#1| (-319 |#1|))) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-576)) |has| |#1| (-900 (-576))) (((-390)) |has| |#1| (-900 (-390)))) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) (((|#1|) . T)) -((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) +((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-875)) . T)) +((((-876)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-568)) -((($ (-1283 |#2|)) . T) (($ (-1196)) -3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1120))) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-1272 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1121))) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-1273 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-832)) (|has| |#1| (-832)) -(((|#1| (-576) (-1102)) . T)) +(((|#1| (-576) (-1103)) . T)) ((($) |has| |#1| (-319 $)) ((|#1|) |has| |#1| (-319 |#1|))) (|has| |#1| (-860)) (|has| |#1| (-860)) -(((|#1| (-576) (-1102)) . T)) -(-3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -(((|#1| (-419 (-576)) (-1102)) . T)) -(((|#1| (-783) (-1102)) . T)) +(((|#1| (-576) (-1103)) . T)) +(-2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +(((|#1| (-419 (-576)) (-1103)) . T)) +(((|#1| (-783) (-1103)) . T)) (|has| |#1| (-861)) -(((#0=(-928 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1120)) -((((-928 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) +((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(|has| |#1| (-1121)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T)) -((((-576)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)))) +((((-576)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) (((|#1|) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374))) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) -((((-701 (-350 (-4124) (-4124 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +((((-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1069)))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) (((|#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -(((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1069)))) +(((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) (((|#2|) |has| |#2| (-374))) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#1| (-861)) (((|#1|) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1|) . T) (((-576)) . T)) (((|#2|) . T)) ((((-576)) . T) ((|#3|) . T)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) |has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-927))) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) |has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-928))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-875)) . T)) -((((-875)) . T)) -((($ (-1196)) -3794 (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))))) -((((-576)) -3794 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) ((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069))) -((((-548)) . T) (((-576)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((($ (-1197)) -2758 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((((-576)) -2758 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) +((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-876)) . T)) ((($) |has| |#1| (-238))) (|has| |#1| (-38 (-419 (-576)))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -2208,81 +2210,81 @@ (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1194 |#1| |#2| |#3|)) . T)) +(((|#1| (-1195 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -(((|#1| (-1187 |#1| |#2| |#3|)) . T)) +(((|#1| (-1188 |#1| |#2| |#3|)) . T)) (((|#1| (-783)) . T)) (((|#1|) . T)) -((((-419 (-970 |#1|))) . T)) +((((-419 (-971 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-419 (-970 |#1|))) . T)) +((((-419 (-971 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1196)) |has| |#1| (-1058 (-1196)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1197)) |has| |#1| (-1059 (-1197)))) (((|#1| |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) -3794 (|has| |#1| (-860)) (|has| |#1| (-1058 (-576)))) ((|#1|) . T)) -(-3794 (-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1069)))) -(-3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -2758 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) +(-2758 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))) +(-2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) ((((-145)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (((|#1|) . T)) -(|has| |#2| (-1069)) +(|has| |#2| (-1070)) (((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (|has| |#1| (-374)) (|has| |#1| (-374)) ((($ |#2|) . T)) (|has| (-419 |#2|) (-238)) ((((-656 |#1|)) . T)) -((($ (-1283 |#2|)) . T) (($ (-1196)) -3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) -(|has| |#1| (-927)) -(((|#2|) |has| |#2| (-1069))) -(((|#2|) |has| |#2| (-1069))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) +(|has| |#1| (-928)) +(((|#2|) |has| |#2| (-1070))) +(((|#2|) |has| |#2| (-1070))) (|has| |#1| (-374)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) (((|#1|) |has| |#1| (-174))) -((($ (-877 |#1|)) . T)) +((($ (-878 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-883 |#1|)) . T)) -((((-875)) . T)) +((((-884 |#1|)) . T)) +((((-876)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1120))) +(((|#2|) |has| |#2| (-1121))) (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-656 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-576)) . T) (((-227)) . T) (((-875)) . T)) -((((-576)) -3794 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069))) ((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069))) +((((-656 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-576)) . T) (((-227)) . T) (((-876)) . T)) +((((-576)) -2758 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) ((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -((((-875)) . T)) -(((|#1| (-576) (-1102)) . T)) -((((-928 |#1|)) . T)) -((((-875)) . T)) +((((-876)) . T)) +(((|#1| (-576) (-1103)) . T)) +((((-929 |#1|)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-419 (-576)) (-1102)) . T)) -(((|#1| (-783) (-1102)) . T)) +(((|#1| (-419 (-576)) (-1103)) . T)) +(((|#1| (-783) (-1103)) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) -3794 (|has| (-419 (-576)) (-1058 (-576))) (|has| |#1| (-1058 (-576)))) (((-419 (-576))) . T)) +(((|#1|) . T) (((-576)) -2758 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) . T)) (((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2291,60 +2293,60 @@ (|has| |#1| (-861)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#2| (-238)) -(((|#2| (-543 (-877 |#1|)) (-877 |#1|)) . T)) -((((-875)) . T)) +(((|#2| (-543 (-878 |#1|)) (-878 |#1|)) . T)) +((((-876)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) +((((-876)) . T)) (((|#1| |#3|) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-174)) (((-970 |#1|)) . T) (((-576)) . T)) +((((-876)) . T)) +(((|#1|) |has| |#1| (-174)) (((-971 |#1|)) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) ((((-711)) . T)) ((((-711)) . T)) (((|#2|) |has| |#2| (-174))) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) -((((-112)) |has| |#1| (-1120)) (((-875)) -3794 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)) (|has| |#1| (-1132)) (|has| |#1| (-1120)))) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) +((((-112)) |has| |#1| (-1121)) (((-876)) -2758 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) -((((-1196)) -3794 (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))))) +((((-876)) . T)) +((((-1197)) -2758 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) ((((-390)) . T)) ((((-711)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-419 (-970 |#1|))) . T)) +((((-419 (-971 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1069))) -(|has| |#2| (-927)) -(|has| |#1| (-927)) +(((|#3|) |has| |#3| (-1070))) +(|has| |#2| (-928)) +(|has| |#1| (-928)) (|has| |#1| (-374)) -(((|#3|) |has| |#3| (-1069))) +(((|#3|) |has| |#3| (-1070))) ((($) . T)) -((((-1196)) |has| |#2| (-916 (-1196)))) +((((-1197)) |has| |#2| (-917 (-1197)))) (|has| |#1| (-861)) -((((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (|has| |#1| (-803)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-485)) @@ -2352,8 +2354,8 @@ (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-374)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1069)) (|has| |#1| (-1132))) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-360)) @@ -2362,9 +2364,9 @@ ((($) . T) (((-576)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#2|) . T) (((-875)) . T)) -(((|#2|) . T) (((-875)) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) +(((|#2|) . T) (((-876)) . T)) +(((|#2|) . T) (((-876)) . T)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2375,22 +2377,22 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-861)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-379)) -(-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-861)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) +(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2399,57 +2401,57 @@ ((((-576)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -((((-875)) . T)) -((((-875)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-906 (-576))) |has| |#1| (-626 (-906 (-576)))) (((-906 (-390))) |has| |#1| (-626 (-906 (-390)))) (((-390)) . #0=(|has| |#1| (-1042))) (((-227)) . #0#)) +((((-876)) . T)) +((((-876)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-390)) . #0=(|has| |#1| (-1043))) (((-227)) . #0#)) (((|#1|) |has| |#1| (-374))) (((|#1|) |has| |#1| (-374))) -((((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) ((($ $) . T) (((-624 $) $) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -((($) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((($) -3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) ((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-1069))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +((($) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) +((($) -2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-374)) ((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1196)) -3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) -((((-656 (-792 |#1| (-877 |#2|)))) . T) (((-875)) . T)) -((((-548)) |has| (-792 |#1| (-877 |#2|)) (-626 (-548)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-1197)) -2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((((-656 (-792 |#1| (-878 |#2|)))) . T) (((-876)) . T)) +((((-548)) |has| (-792 |#1| (-878 |#2|)) (-626 (-548)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-390)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) +(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (((|#1|) |has| |#1| (-174))) -((((-875)) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-927))) +((((-876)) . T)) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-928))) (((|#1|) . T)) ((($) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((((-783)) . T)) -(|has| |#1| (-1120)) -((((-576)) -3794 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) ((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069))) -((((-875)) . T)) -((((-1196)) . T) (((-875)) . T)) +(|has| |#1| (-1121)) +((((-576)) -2758 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) +((((-876)) . T)) +((((-1197)) . T) (((-876)) . T)) ((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-576)) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -(((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +(((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) ((((-576)) . T)) ((($) . T)) (|has| |#1| (-374)) -(-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-374)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2457,8 +2459,8 @@ (|has| |#1| (-238)) (|has| |#1| (-374)) (((|#3|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T)) (|has| |#1| (-146)) ((((-576) |#1|) |has| |#2| (-429 |#1|))) @@ -2470,73 +2472,73 @@ ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (|has| |#1| (-861)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-1162 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-1163 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576)))))) -((((-1196)) -3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))))) +((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) +((((-1197)) -2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) -((((-875)) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +((((-876)) . T)) ((((-576)) . T)) -(-3794 (-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) +(-2758 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-970 |#1|)) . T) (((-875)) . T)) +((((-971 |#1|)) . T) (((-876)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) -((((-970 |#1|)) . T)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) +((((-971 |#1|)) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) ((($) . T)) ((((-576) |#1|) . T)) -((((-1196)) |has| (-419 |#2|) (-916 (-1196)))) -(((|#1|) . T) (($) -3794 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +((((-1197)) |has| (-419 |#2|) (-917 (-1197)))) +(((|#1|) . T) (($) -2758 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) ((((-548)) |has| |#2| (-626 (-548)))) -((((-701 |#2|)) . T) (((-875)) . T)) +((((-701 |#2|)) . T) (((-876)) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -((((-883 |#1|)) . T)) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +((((-884 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-3794 (|has| |#4| (-805)) (|has| |#4| (-861))) -(-3794 (|has| |#3| (-805)) (|has| |#3| (-861))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-875)) . T)) +(-2758 (|has| |#4| (-805)) (|has| |#4| (-861))) +(-2758 (|has| |#3| (-805)) (|has| |#3| (-861))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-876)) . T)) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -((((-875)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(((|#2|) |has| |#2| (-1069))) -(((|#2|) |has| |#2| (-1069))) +((((-876)) . T)) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#2|) |has| |#2| (-1070))) +(((|#2|) |has| |#2| (-1070))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) (((|#1|) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1069)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) +(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) (((|#1|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-1241))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-1242))) ((($) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1058 (-419 (-576)))) (((-576)) |has| #0# (-1058 (-576))) ((#0#) . T)) +((((-419 (-576))) |has| #0=(-419 |#2|) (-1059 (-419 (-576)))) (((-576)) |has| #0# (-1059 (-576))) ((#0#) . T)) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (((|#1| (-783)) . T)) (|has| |#1| (-861)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576)) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) |has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) |has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-860)) ((((-576) $) . T) (((-656 (-576)) $) . T)) (|has| |#1| (-379)) @@ -2559,90 +2561,90 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -(-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +(-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-15 * (|#1| (-783) |#1|))) -((((-1178)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) -((((-875)) . T)) -(((|#2|) . T) (((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1102)) . T) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) +((((-1179)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-876)) . T)) +(((|#2|) . T) (((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-792 |#1| (-877 |#2|))) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -(|has| |#1| (-1222)) -((((-875)) . T)) +((((-792 |#1| (-878 |#2|))) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +(|has| |#1| (-1223)) +((((-876)) . T)) (((|#1|) . T)) -(-3794 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1069)) (|has| |#3| (-1120))) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|))) +(-2758 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-928 |#1|)) . T)) -((($) -3794 (-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1069))))) -((($) -3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069))))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-929 |#1|)) . T)) +((($) -2758 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) +((($) -2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) ((($) . T)) -((((-419 (-970 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-419 (-971 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-861)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1196)) -3794 (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1197)) -2758 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) (|has| |#1| (-860)) ((((-548)) |has| |#4| (-626 (-548)))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) . T) (((-656 |#4|)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) . T) (((-656 |#4|)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-374)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) |has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))))) -(-3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) |has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))))) +(-2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) ((((-684 |#1|)) . T)) -(((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1069)))) +(((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-860)) (((|#1| |#2|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1120)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(|has| |#1| (-1121)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-576)) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -(-3794 (|has| |#2| (-832)) (|has| |#2| (-861))) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(-2758 (|has| |#2| (-832)) (|has| |#2| (-861))) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-576)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#2|) . T)) -((((-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) +((((-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-374))) ((((-419 |#2|)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +(((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -2652,47 +2654,47 @@ (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) |has| |#2| (-374))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#2|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((#0=(-792 |#1| (-877 |#2|)) #0#) |has| (-792 |#1| (-877 |#2|)) (-319 (-792 |#1| (-877 |#2|))))) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((#0=(-792 |#1| (-878 |#2|)) #0#) |has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|))))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T) (($) . T)) -((((-877 |#1|)) . T)) +((((-878 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1196)) |has| |#1| (-916 (-1196))) (((-1102)) . T)) -((((-1196)) |has| |#1| (-916 (-1196))) (((-1108 (-1196))) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) -((($ (-1196)) -3794 (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))))) +((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) +((((-1197)) |has| |#1| (-917 (-1197))) (((-1109 (-1197))) . T)) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((($ (-1197)) -2758 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#4|) |has| |#4| (-1069)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1069)))) -(((|#3|) |has| |#3| (-1069)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) +(((|#4|) |has| |#4| (-1070)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) +(((|#3|) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)) (|has| |#1| (-1132)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) (|has| |#1| (-568)) (((|#2|) . T)) ((((-576)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((((-593 |#1|)) . T)) ((($) . T)) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-6 (-4465 "*")))) +(((|#2|) |has| |#2| (-6 (-4466 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2702,38 +2704,38 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T) (((-576)) . T)) -((((-1272 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576)))) (((-576)) -3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1058 (-576))) (|has| |#1| (-1069))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -3794 (|has| |#1| (-568)) (|has| |#1| (-1058 (-419 (-576))))) (((-419 (-970 |#1|))) |has| |#1| (-568)) (((-970 |#1|)) |has| |#1| (-1069)) (((-1196)) . T)) -((((-419 (-576))) |has| |#2| (-1058 (-419 (-576)))) (((-576)) |has| |#2| (-1058 (-576))) ((|#2|) . T) (((-877 |#1|)) . T)) +((((-1273 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-576)) -2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2758 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) +((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) ((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -((((-1145 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -((((-1192 |#1|)) . T) (((-1102)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -((((-1145 |#1| (-1196))) . T) (((-1108 (-1196))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-1196)) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +((((-1146 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +((((-1193 |#1|)) . T) (((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +((((-1146 |#1| (-1197))) . T) (((-1109 (-1197))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-1197)) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((($) . T)) -(|has| |#1| (-1120)) -((((-576)) -12 (|has| |#1| (-900 (-576))) (|has| |#2| (-900 (-576)))) (((-390)) -12 (|has| |#1| (-900 (-390))) (|has| |#2| (-900 (-390))))) +(|has| |#1| (-1121)) +((((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))) (((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((|#1| |#2|) . T)) -((((-1196) |#1|) . T)) +((((-1197) |#1|) . T)) (((|#4|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1196) (-52)) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T)) -((((-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -((((-875)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1069)) (|has| |#2| (-1120))) -(((#0=(-1273 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1197) (-52)) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) +((((-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) +((((-876)) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(((#0=(-1274 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) ((($) |has| |#1| (-15 * (|#1| (-576) |#1|)))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (|has| |#1| (-374)) -((($) |has| |#1| (-860)) (((-576)) -3794 (|has| |#1| (-21)) (|has| |#1| (-860)))) -((($) -3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((($) |has| |#1| (-860)) (((-576)) -2758 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2742,51 +2744,51 @@ ((((-419 (-576))) . T) (($) . T)) (((|#3|) |has| |#3| (-374))) ((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) -((((-1196)) . T)) -((($) . T) (((-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((((-1197)) . T)) +((($) . T) (((-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (|has| |#1| (-861)) (((|#2| |#3|) . T)) (((|#1| (-543 |#2|)) . T)) (((|#1| (-783)) . T)) -(-3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(((|#1| (-543 (-1108 (-1196)))) . T)) +(-2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(((|#1| (-543 (-1109 (-1197)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-927)) -(-3794 (|has| |#2| (-805)) (|has| |#2| (-861))) -((((-875)) . T)) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(((|#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1069)))) -((($ (-1196)) -3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) -((($ $) . T) ((#0=(-1272 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) -((((-928 |#1|)) . T)) +(|has| |#2| (-928)) +(-2758 (|has| |#2| (-805)) (|has| |#2| (-861))) +((((-876)) . T)) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) +((($ (-1197)) -2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((($ $) . T) ((#0=(-1273 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) +((((-929 |#1|)) . T)) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) (((-576)) . T)) ((($) . T)) -(-3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -(-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) +((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +(-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|))) . T)) +(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) (((|#2|) . T)) (|has| |#2| (-374)) (|has| |#1| (-861)) @@ -2797,15 +2799,15 @@ (((|#1|) . T)) ((((-576)) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T) (($) . T)) (((|#3|) . T) (((-576)) . T) (($) . T)) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) @@ -2813,186 +2815,186 @@ ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1196)) -3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))))) -((((-875)) . T)) -(((|#1| (-543 (-1196))) . T)) +((($ (-1197)) -2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) +((((-876)) . T)) +(((|#1| (-543 (-1197))) . T)) ((($ $) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#2|) . T)) -(((|#2|) -3794 (|has| |#2| (-6 (-4465 "*"))) (|has| |#2| (-174)))) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#2| (-927)) -(|has| |#1| (-927)) -((($) -3794 (-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1069))))) +(((|#2|) -2758 (|has| |#2| (-6 (-4466 "*"))) (|has| |#2| (-174)))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(|has| |#2| (-928)) +(|has| |#1| (-928)) +((($) -2758 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-875)) . T)) -((((-875)) . T)) -((((-548)) . T) (((-576)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-876)) . T)) +((((-876)) . T)) +((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-875)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-300)) (|has| |#1| (-374))) +(-2758 (|has| |#1| (-300)) (|has| |#1| (-374))) ((((-145)) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-860)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-876)) . T)) +((((-876)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-189)) . T) (((-875)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-189)) . T) (((-876)) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-906 (-576))) |has| |#1| (-626 (-906 (-576)))) (((-906 (-390))) |has| |#1| (-626 (-906 (-390))))) -((((-1196) (-52)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390))))) +((((-1197) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-656 (-145))) . T) (((-1178)) . T)) -((((-875)) . T)) -((((-1178)) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-656 (-145))) . T) (((-1179)) . T)) +((((-876)) . T)) +((((-1179)) . T)) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (|has| |#1| (-861)) -((((-875)) . T)) +((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) -((($) -3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) -((((-875)) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) +((($) -2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((((-876)) . T)) (((|#2|) |has| |#2| (-374))) -((((-875)) . T)) +((((-876)) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) (((|#2|) . T)) ((((-548)) |has| |#4| (-626 (-548)))) -((((-875)) . T) (((-656 |#4|)) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-876)) . T) (((-656 |#4|)) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) -(|has| |#4| (-1069)) -(|has| |#3| (-1069)) -(|has| |#1| (-1120)) -((((-1196) (-52)) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(|has| |#4| (-1070)) +(|has| |#3| (-1070)) +(|has| |#1| (-1121)) +((((-1197) (-52)) . T)) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) -(|has| |#1| (-927)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(|has| |#1| (-927)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(|has| |#1| (-928)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +(|has| |#1| (-928)) (((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T)) -((($ (-1196)) -3794 (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))))) +((($ (-1197)) -2758 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) (((#0=(-419 (-576)) #0#) . T) (($ $) . T)) ((((-576)) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-419 (-576))) . T) (($) . T)) -(((|#1| (-419 (-576)) (-1102)) . T)) -(|has| |#1| (-1120)) +(((|#1| (-419 (-576)) (-1103)) . T)) +(|has| |#1| (-1121)) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (|has| |#1| (-832)) -(((#0=(-928 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((((-419 |#2|)) . T)) (|has| |#1| (-860)) -((((-1223 |#1|)) . T) (((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-1224 |#1|)) . T) (((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T)) -((((-928 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-1069)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-875)) . T)) -((((-1196)) . T)) +((((-876)) . T)) +((((-1197)) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) ((((-576) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2239 (-1196)) (|:| -2904 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4300 (-1197)) (|:| -4438 #0#))) . T)) (|has| |#1| (-360)) ((((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -(((#0=(-1273 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) +(((#0=(-1274 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) (|has| |#1| (-374)) -(-3794 (-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) -(((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1069))) (($) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069))) (((-576)) -3794 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)))) -(((#0=(-1102) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) +(((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((-576)) -2758 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) +(((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) (((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T)) ((((-326 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-875)) . T)) -(|has| |#1| (-1120)) +((((-876)) . T)) +(|has| |#1| (-1121)) (((|#1|) . T)) -(((|#1|) -3794 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) -(((|#1|) -3794 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2758 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2758 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) (((|#2|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) ((((-591)) . T)) (((|#3| |#3|) . T)) -((($ (-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) +((($ (-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (|has| |#1| (-861)) (|has| |#2| (-238)) -((((-877 |#1|)) . T)) -((((-1196)) |has| |#1| (-916 (-1196))) ((|#3|) . T)) +((((-878 |#1|)) . T)) +((((-1197)) |has| |#1| (-917 (-1197))) ((|#3|) . T)) ((((-656 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1042))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-1043))) (|has| |#1| (-861)) ((((-419 (-576))) . T) (($) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-419 (-576))) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-576)) . T) (((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T)) (((|#3|) . T)) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) (((|#2|) . T)) (((|#1|) . T)) -((($) -3794 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) -2758 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T)) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -3002,16 +3004,16 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#2|) . T)) (((|#3|) . T)) (((#0=(-117 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-419 (-576))) |has| |#2| (-1058 (-419 (-576)))) (((-576)) |has| |#2| (-1058 (-576))) ((|#2|) . T) (((-877 |#1|)) . T)) -((((-1145 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((|#2|) . T)) +((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) +((((-1146 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3020,7 +3022,7 @@ ((((-684 |#1|)) . T)) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) -12 (|has| |#1| (-900 (-576))) (|has| |#3| (-900 (-576)))) (((-390)) -12 (|has| |#1| (-900 (-390))) (|has| |#3| (-900 (-390))))) +((((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) (((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390))))) (((|#2|) . T) ((|#6|) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) ((((-145)) . T)) @@ -3029,13 +3031,13 @@ ((((-390)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) -(|has| |#2| (-927)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -(|has| |#2| (-1042)) +(|has| |#2| (-928)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +(|has| |#2| (-1043)) ((($) . T)) -(|has| |#1| (-927)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(|has| |#1| (-928)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#4|) . T)) ((($) . T)) (((|#2|) . T)) @@ -3043,43 +3045,43 @@ (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-374)) -((((-928 |#1|)) . T)) +((((-929 |#1|)) . T)) ((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) |has| |#1| (-860)) (((-576)) -3794 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-860)) (((-576)) -2758 (|has| |#1| (-21)) (|has| |#1| (-860)))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3794 (|has| |#1| (-379)) (|has| |#1| (-861))) +(-2758 (|has| |#1| (-379)) (|has| |#1| (-861))) (((|#1|) . T)) ((((-783)) . T)) -((((-875)) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-876)) . T)) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-419 |#2|) |#3|) . T)) -(-3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))) +(-2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) ((($) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) ((((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T)) ((((-783) |#1|) . T)) -(((|#2| (-245 (-1968 |#1|) (-783))) . T)) +(((|#2| (-245 (-3502 |#1|) (-783))) . T)) (((|#1| (-543 |#3|)) . T)) ((((-419 (-576))) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-1178)) . T) (((-875)) . T)) -(((#0=(-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) #0#) |has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))))) -((((-1178)) . T)) -(|has| |#1| (-927)) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-1179)) . T) (((-876)) . T)) +(((#0=(-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) #0#) |has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))))) +((((-1179)) . T)) +(|has| |#1| (-928)) (|has| |#2| (-374)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) ((((-390)) . T) (((-576)) . T)) (((#0=(-419 (-576)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-568)) ((((-419 (-576))) . T) (($) . T)) ((($) . T)) @@ -3087,13 +3089,13 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (-12 (|has| |#1| (-557)) (|has| |#1| (-840))) -((((-875)) . T)) -((((-1196)) -3794 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-916 (-1196)))))) +((((-876)) . T)) +((((-1197)) -2758 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))))) (|has| |#1| (-374)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-374)) ((((-419 (-576))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) @@ -3102,27 +3104,27 @@ (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-576) |#1|) . T)) -((((-1196)) |has| |#1| (-916 (-1196)))) +((((-1197)) |has| |#1| (-917 (-1197)))) (((|#1|) . T)) -(-3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) +(-2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) -(-3794 (|has| |#4| (-805)) (|has| |#4| (-861))) -(-3794 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2758 (|has| |#4| (-805)) (|has| |#4| (-861))) +(-2758 (|has| |#3| (-805)) (|has| |#3| (-861))) ((((-576)) . T) (($) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-1196)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-576))))) +(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576))))) (((|#2|) . T)) ((($) . T)) -((((-1196) #0=(-1273 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-1197) #0=(-1274 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-624 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1192 (-711))) . T) (((-906 (-390))) . T)) +((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1193 (-711))) . T) (((-907 (-390))) . T)) (((|#3|) . T)) (|has| |#1| (-568)) (|has| (-419 |#2|) (-238)) @@ -3130,52 +3132,52 @@ ((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) (|has| |#1| (-568)) -((((-875)) . T)) +((((-876)) . T)) ((($ $) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-1196)) |has| |#2| (-916 (-1196)))) +((((-1197)) |has| |#2| (-917 (-1197)))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-861)) -((((-875)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-876)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#2|) |has| |#1| (-374))) -((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-900 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-900 (-576))))) +((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576))))) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((|#3|) . T)) -((((-1178)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-1179)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) (((|#1|) . T)) (|has| |#1| (-374)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (((|#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-1069)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(|has| |#2| (-1070)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) ((($) . T)) (|has| |#1| (-148)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) ((($) . T)) ((((-593 |#1|)) . T)) ((($) . T)) -((((-1178) |#1|) . T)) +((((-1179) |#1|) . T)) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -3183,101 +3185,101 @@ ((($) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-1058 (-576))) (((-576)) |has| |#2| (-1058 (-576))) (((-1196)) |has| |#2| (-1058 (-1196))) ((|#2|) . T)) +((((-419 (-576))) |has| |#2| (-1059 (-576))) (((-576)) |has| |#2| (-1059 (-576))) (((-1197)) |has| |#2| (-1059 (-1197))) ((|#2|) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-360))) (|has| |#1| (-148)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T)) -((((-1160 |#1| |#2|)) . T)) +((((-1161 |#1| |#2|)) . T)) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) -((((-576)) |has| |#2| (-900 (-576))) (((-390)) |has| |#2| (-900 (-390)))) +((((-576)) |has| |#2| (-901 (-576))) (((-390)) |has| |#2| (-901 (-390)))) (((|#2|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-1196) (-52)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-1197) (-52)) . T)) ((((-419 |#2|)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) (|has| |#1| (-803)) (|has| |#1| (-803)) -((((-875)) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-227)) . T) (((-390)) . T) (((-906 (-390))) . T)) -((((-875)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) +((((-876)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-875)) . T)) -(-3794 (-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) -((((-875)) . T)) +((((-876)) . T)) +(-2758 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) +((((-876)) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((#0=(-928 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-928 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-374)) -((((-875)) . T)) +((((-876)) . T)) (((|#2|) . T)) ((((-576)) . T)) -((((-1196)) -3794 (|has| (-419 |#2|) (-916 (-1196))) (|has| (-419 |#2|) (-918 (-1196))))) -((((-875)) . T)) +((((-1197)) -2758 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +((((-876)) . T)) ((((-576)) . T)) -(-3794 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2758 (|has| |#2| (-805)) (|has| |#2| (-861))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1178)) . T) (((-548)) . T) (((-576)) . T) (((-906 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1179)) . T) (((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-876)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-576) $) . T) (((-656 (-576)) $) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-916 (-1196))) (|has| |#1| (-1069)) (|has| |#1| (-1132)) (|has| |#1| (-1120))) -(|has| |#1| (-1172)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) +(|has| |#1| (-1173)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T)) -((((-928 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576) |#1|) . T)) (((|#1|) . T)) (((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#))) (((|#1|) |has| |#1| (-174))) ((((-326 |#1|)) . T) (((-576)) . T)) -(-3794 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2758 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-875)) . T)) -((((-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) +((((-876)) . T)) +((((-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (((|#1|) |has| |#1| (-319 |#1|))) -((((-576) |#1|) . T) (((-1254 (-576)) $) . T)) +((((-576) |#1|) . T) (((-1255 (-576)) $) . T)) (((|#1| |#2|) . T)) -((((-1196) |#1|) . T)) -(((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1197) |#1|) . T)) +(((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T)) -((($ (-1196)) . T)) -(((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1069)))) +((($ (-1197)) . T)) +(((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) ((((-576)) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (|has| |#1| (-568)) @@ -3286,54 +3288,54 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) ((($) . T)) -(|has| |#1| (-1120)) -((((-792 |#1| (-877 |#2|))) |has| (-792 |#1| (-877 |#2|)) (-319 (-792 |#1| (-877 |#2|))))) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) +(|has| |#1| (-1121)) +((((-792 |#1| (-878 |#2|))) |has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|))))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-927)) +(|has| |#2| (-928)) (((|#1| (-543 |#2|)) . T)) (((|#1| (-783)) . T)) (|has| |#1| (-238)) -(((|#1| (-543 (-1108 (-1196)))) . T)) -((($) -3794 (-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1069))))) +(((|#1| (-543 (-1109 (-1197)))) . T)) +((($) -2758 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#2| (-374)) -((((-875)) . T)) -((((-875)) . T)) -(-3794 (|has| |#3| (-805)) (|has| |#3| (-861))) -((((-875)) . T)) -((((-1140)) . T) (((-875)) . T)) -((((-548)) . T) (((-875)) . T)) +((((-876)) . T)) +((((-876)) . T)) +(-2758 (|has| |#3| (-805)) (|has| |#3| (-861))) +((((-876)) . T)) +((((-1141)) . T) (((-876)) . T)) +((((-548)) . T) (((-876)) . T)) (((|#1|) . T)) ((($ $) . T) (((-624 $) $) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T)) (((|#3|) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-576)) . T) (((-419 (-576))) -3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576))))) ((|#2|) . T) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-877 |#1|)) . T)) -((((-1145 |#1| |#2|)) . T) ((|#2|) . T) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) (((-576)) . T)) -((((-1192 |#1|)) . T) (((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1102)) . T) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) -(-3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) +((((-876)) . T)) +(-2758 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-576)) . T) (((-419 (-576))) -2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +((((-1146 |#1| |#2|)) . T) ((|#2|) . T) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) +((((-1193 |#1|)) . T) (((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +(-2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1145 |#1| (-1196))) . T) (((-576)) . T) (((-1108 (-1196))) . T) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) (((-1196)) . T)) +((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-1109 (-1197))) . T) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) @@ -3341,12 +3343,12 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-6 (-4465 "*")))) +(((|#2|) |has| |#2| (-6 (-4466 "*")))) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-876)) . T)) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) ((((-304 |#3|)) . T)) (((|#1|) . T)) @@ -3355,82 +3357,82 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#2| (-927)) -(|has| |#1| (-927)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T)) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#2| (-928)) +(|has| |#1| (-928)) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3794 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(-2758 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-1196)) . T) ((|#1|) . T)) -((((-875)) . T)) +((((-1197)) . T) ((|#1|) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (((#0=(-419 (-576)) #0#) . T)) ((((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174))) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (((|#1|) . T)) (((|#1|) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-548)) . T)) -((((-875)) . T)) -((($) -3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069))))) +((((-876)) . T)) +((($) -2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (|has| |#1| (-861)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-928 |#1|)) . T)) -((((-1196)) |has| |#2| (-916 (-1196))) (((-1102)) . T)) -((((-1272 |#2| |#3| |#4|)) . T)) +((((-929 |#1|)) . T)) +((((-1197)) |has| |#2| (-917 (-1197))) (((-1103)) . T)) +((((-1273 |#2| |#3| |#4|)) . T)) ((($) . T) (((-419 (-576))) . T)) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-875)) . T)) -(|has| |#1| (-1241)) +((((-876)) . T)) +(|has| |#1| (-1242)) (((|#2|) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1196)) |has| |#1| (-916 (-1196)))) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-1197)) |has| |#1| (-917 (-1197)))) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1069)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-568)))) (|has| |#1| (-568)) (((|#1|) |has| |#1| (-374))) ((((-576)) . T)) -((((-1196) #0=(-117 |#1|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-1197) #0=(-117 |#1|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) (|has| |#1| (-803)) (|has| |#1| (-803)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1058 (-576))) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) -((((-1102)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1058 (-576))) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +(((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) +((((-1103)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3440,33 +3442,33 @@ (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-875)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +((((-876)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) (|has| |#2| (-832)) (|has| |#2| (-832)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -((($ (-1196)) |has| |#1| (-916 (-1196)))) -(((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -((($) -3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) -(((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-576)) |has| |#1| (-900 (-576))) (((-390)) |has| |#1| (-900 (-390)))) -(((|#1|) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T)) +((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((($ (-1197)) |has| |#1| (-917 (-1197)))) +(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +((($) -2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) +(((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) +(((|#1|) . T)) +((((-884 |#1|)) . T)) +((((-884 |#1|)) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-927))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-928))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-374)) (|has| |#1| (-374)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#2|) -3794 (|has| |#2| (-6 (-4465 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#2|) -2758 (|has| |#2| (-6 (-4466 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) (|has| |#1| (-374)) (((|#2|) . T)) @@ -3474,450 +3476,450 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877 |#1|)) . T)) +((((-878 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| (-783)) . T)) -((((-1196)) . T)) -((((-883 |#1|)) . T)) -(-3794 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069))) -(-3794 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1069))) -((((-875)) . T)) +((((-1197)) . T)) +((((-884 |#1|)) . T)) +(-2758 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) +(-2758 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) +((((-876)) . T)) (((|#1|) . T)) -(-3794 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) -((((-883 |#1|)) . T)) +(-2758 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) +((((-884 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) ((($ $) . T) (((-624 $) $) . T)) ((($) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T)) (((|#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-651 (-576)))) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(|has| |#2| (-927)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-906 (-390))) |has| |#2| (-626 (-906 (-390)))) (((-906 (-576))) |has| |#2| (-626 (-906 (-576))))) -((((-875)) . T)) -((((-875)) . T)) +((((-876)) . T)) +(|has| |#2| (-928)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) +((((-876)) . T)) +((((-876)) . T)) (|has| |#1| (-861)) -(((|#3|) |has| |#3| (-1069)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) -((((-1145 |#1| |#2|)) . T) (((-970 |#1|)) |has| |#2| (-626 (-1196))) (((-875)) . T)) -((((-970 |#1|)) |has| |#2| (-626 (-1196))) (((-1178)) -12 (|has| |#1| (-1058 (-576))) (|has| |#2| (-626 (-1196)))) (((-906 (-576))) -12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576))))) (((-906 (-390))) -12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) -((((-1192 |#1|)) . T) (((-875)) . T)) -((((-875)) . T)) -((((-419 (-576))) |has| |#2| (-1058 (-419 (-576)))) (((-576)) |has| |#2| (-1058 (-576))) ((|#2|) . T) (((-877 |#1|)) . T)) -((((-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (((-1102)) . T)) +(((|#3|) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) +((((-1146 |#1| |#2|)) . T) (((-971 |#1|)) |has| |#2| (-626 (-1197))) (((-876)) . T)) +((((-971 |#1|)) |has| |#2| (-626 (-1197))) (((-1179)) -12 (|has| |#1| (-1059 (-576))) (|has| |#2| (-626 (-1197)))) (((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576))))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) +((((-1193 |#1|)) . T) (((-876)) . T)) +((((-876)) . T)) +((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) +((((-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T) (((-1196)) . T)) -((((-875)) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T) (((-1197)) . T)) +((((-876)) . T)) ((((-576)) . T)) (((|#1|) . T)) ((($) . T)) -((((-390)) |has| |#1| (-900 (-390))) (((-576)) |has| |#1| (-900 (-576)))) +((((-390)) |has| |#1| (-901 (-390))) (((-576)) |has| |#1| (-901 (-576)))) ((((-576)) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) ((((-656 |#1|)) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((((-576)) -3794 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) (($) -3794 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1069))) ((|#1|) -3794 (|has| |#1| (-174)) (|has| |#1| (-1069))) (((-419 (-576))) |has| |#1| (-568))) -((((-1201)) . T)) +((($) . T) (((-576)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) +((((-576)) -2758 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (($) -2758 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -2758 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568))) +((((-1202)) . T)) ((((-576)) . T) (((-419 (-576))) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) -((((-1201)) . T)) -((((-1201)) . T)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((((-1202)) . T)) +((((-1202)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1201)) . T)) +((((-1202)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) ((((-390)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 |#2|) |#3|) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#2| (-494 (-1968 |#1|) (-783))) . T)) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#2| (-494 (-3502 |#1|) (-783))) . T)) ((((-576) |#1|) . T)) -((((-1178)) . T) (((-875)) . T)) +((((-1179)) . T) (((-876)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-543 (-1196))) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) +(((|#1| (-543 (-1197))) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) ((((-576)) . T)) (((|#2|) . T)) -((($) -3794 (-12 (|has| |#2| (-238)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1069))))) +((($) -2758 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) (((|#2|) . T)) -((((-1196)) |has| |#1| (-916 (-1196))) (((-1102)) . T)) +((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#1| (-568)) -(((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) +(((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-875)) . T)) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-876)) . T)) ((((-145)) . T)) (((|#1|) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -(|has| |#1| (-1172)) -((($ (-1196)) -3794 (|has| (-419 |#2|) (-916 (-1196))) (|has| (-419 |#2|) (-918 (-1196))))) +(|has| |#1| (-1173)) +((($ (-1197)) -2758 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) (((|#1|) . T)) -(((|#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|))) . T)) +(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -((((-875)) . T)) -((((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-576)) |has| |#1| (-1058 (-576))) ((|#1|) . T) ((|#2|) . T)) -((((-1102)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576))))) -((((-390)) -12 (|has| |#1| (-900 (-390))) (|has| |#2| (-900 (-390)))) (((-576)) -12 (|has| |#1| (-900 (-576))) (|has| |#2| (-900 (-576))))) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +((((-876)) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T) ((|#2|) . T)) +((((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +((((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390)))) (((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576))))) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) ((((-576) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) ((((-711)) . T)) -((((-792 |#1| (-877 |#2|))) . T)) +((((-792 |#1| (-878 |#2|))) . T)) ((((-576)) . T) (($) . T)) ((($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) ((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1120)) -(|has| |#1| (-1120)) +(|has| |#1| (-1121)) +(|has| |#1| (-1121)) (|has| |#2| (-374)) -(((|#1|) . T) (($) -3794 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +(((|#1|) . T) (($) -2758 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576)))) -((($) -3794 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2758 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((((-576)) . T)) -(|has| |#1| (-1120)) -((($ (-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) -((((-1196)) -12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069)))) -((((-1196)) -12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069)))) +(|has| |#1| (-1121)) +((($ (-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-1197)) -12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070)))) +((((-1197)) -12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070)))) (((|#1|) . T)) (|has| |#1| (-238)) -(((|#2| (-245 (-1968 |#1|) (-783))) . T)) +(((|#2| (-245 (-3502 |#1|) (-783))) . T)) (((|#1| (-543 |#3|)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (((|#1|) . T) (($) . T)) (((|#1| (-543 |#2|)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (((|#1| (-783)) . T)) (|has| |#1| (-568)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1069))) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-875)) . T)) +((((-876)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -(-3794 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1069))) -(|has| |#2| (-1069)) +(-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +(-2758 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) +(|has| |#2| (-1070)) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1069))) -(((|#3|) |has| |#3| (-1069))) +(((|#4|) |has| |#4| (-1070))) +(((|#3|) |has| |#3| (-1070))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-576)) . T) (((-419 (-576))) -3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576))))) ((|#2|) . T) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-877 |#1|)) . T)) -((((-1145 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))) ((|#2|) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-576)) . T) (((-419 (-576))) -2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +((((-1146 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#2|) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-1201)) . T)) +((((-1202)) . T)) ((((-684 |#1|)) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-875)) . T)) -((((-656 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-576)) . T) (((-227)) . T) (((-875)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-876)) . T)) +((((-656 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-576)) . T) (((-227)) . T) (((-876)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1120)) (((-576)) -12 (|has| |#4| (-1058 (-576))) (|has| |#4| (-1120))) (((-419 (-576))) -12 (|has| |#4| (-1058 (-419 (-576)))) (|has| |#4| (-1120)))) -(((|#3|) |has| |#3| (-1120)) (((-576)) -12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120))) (((-419 (-576))) -12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) +(((|#4|) |has| |#4| (-1121)) (((-576)) -12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (((-419 (-576))) -12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121)))) +(((|#3|) |has| |#3| (-1121)) (((-576)) -12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (|has| |#2| (-374)) -(((|#2|) |has| |#2| (-1069)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) -(-3794 (|has| |#1| (-379)) (|has| |#1| (-861))) +(((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +(-2758 (|has| |#1| (-379)) (|has| |#1| (-861))) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1196)) |has| |#1| (-1069))) +((((-1197)) |has| |#1| (-1070))) (|has| |#2| (-374)) (((|#2| |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) -((((-875)) |has| |#1| (-1120))) +((((-876)) |has| |#1| (-1121))) ((($) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-832)) (|has| |#2| (-832)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (((|#1|) |has| |#2| (-429 |#1|))) (((|#1|) |has| |#2| (-429 |#1|))) -((((-1178)) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-656 |#1|)) . T) (((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1179)) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-656 |#1|)) . T) (((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) ((((-656 |#1|)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1236)) . T) (((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) |has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))))) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1237)) . T) (((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) |has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))))) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-576) |#1|) . T)) (((|#1|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-1196)) |has| |#1| (-916 (-1196))) (((-830 (-1196))) . T)) -(-3794 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1069))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-1197)) |has| |#1| (-917 (-1197))) (((-830 (-1197))) . T)) +(-2758 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) ((((-831 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -(|has| |#3| (-1069)) +((((-876)) . T)) +(|has| |#3| (-1070)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-875)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-876)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (|has| |#1| (-374)) -(-3794 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) +(-2758 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +(((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) ((((-326 |#1|)) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-711) (-1192 #0#)) . T)) -((((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +(((#0=(-711) (-1193 #0#)) . T)) +((((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-860)) -(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-1196)))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3794 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($ $) . T) ((#0=(-877 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1145 |#1| (-1196))) . T) (((-830 (-1196))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1058 (-576))) (((-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) (((-1196)) . T)) +(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2758 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1146 |#1| (-1197))) . T) (((-830 (-1197))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-1197)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1102) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1196) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1108 (-1196)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1197) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1109 (-1197)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#2| (-927)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +(|has| |#2| (-928)) +((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) ((((-576) |#1|) . T)) (((|#1|) . T)) -((((-1201)) . T)) -(((#0=(-1273 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) +((((-1202)) . T)) +(((#0=(-1274 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) (|has| |#2| (-238)) (|has| $ (-148)) -((((-875)) . T)) -((($) . T) (((-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-875)) . T)) +((((-876)) . T)) +((($) . T) (((-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((((-876)) . T)) (|has| |#1| (-860)) ((((-130)) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196))))) -((((-875)) . T)) -(-12 (|has| |#1| (-317)) (|has| |#1| (-927))) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((((-876)) . T)) +(-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (((|#2| (-684 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-419 |#2|) |#3|) . T)) -((((-875)) |has| |#1| (-1120))) +((((-876)) |has| |#1| (-1121))) (((|#4|) . T)) (|has| |#1| (-568)) -((($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-1196)) -3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) -(((|#1|) . T) (($) -3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -(-3794 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) -(((|#1|) . T)) -(((|#1| (-543 (-830 (-1196)))) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1196)) |has| |#2| (-1058 (-1196)))) -(((|#1|) . T)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(((|#1|) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) -(-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-883 |#1|)) . T) (((-419 (-576))) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-1197)) -2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +(((|#1|) . T) (($) -2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +(-2758 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#1|) . T)) +(((|#1| (-543 (-830 (-1197)))) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1197)) |has| |#2| (-1059 (-1197)))) +(((|#1|) . T)) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(((|#1|) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +((($) . T) (((-884 |#1|)) . T) (((-419 (-576))) . T)) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-568)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) (((|#2|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-576) |#1|) . T)) ((($) . T)) ((($) . T)) -((((-875)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-906 (-390))) |has| |#2| (-626 (-906 (-390)))) (((-906 (-576))) |has| |#2| (-626 (-906 (-576))))) -((((-875)) . T)) -((((-875)) . T)) -((((-906 (-576))) -12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#3| (-626 (-906 (-576))))) (((-906 (-390))) -12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#3| (-626 (-906 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548))))) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((|#1|) . T) (((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) +((((-876)) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) +((((-876)) . T)) +((((-876)) . T)) +((((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548))))) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#1|) . T) (((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) ((((-130)) . T)) ((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((($) . T) (((-576)) . T)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1124)) . T)) -((((-875)) . T)) -((((-1201)) . T) (((-875)) . T)) -((((-1201)) . T) (((-875)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((($) -3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1125)) . T)) +((((-876)) . T)) +((((-1202)) . T) (((-876)) . T)) +((((-1202)) . T) (((-876)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((($) -2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T) (((-576)) . T)) -((($) -3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#2| (-927)) +((($) -2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#2| (-928)) (((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -((((-875)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((($ $) . T) (((-1196) $) . T)) -((((-1279 |#1| |#2| |#3|)) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-927)) -((((-1279 |#1| |#2| |#3|)) . T) (((-1251 |#1| |#2| |#3|)) . T)) +((($ $) . T) (((-1197) $) . T)) +((((-1280 |#1| |#2| |#3|)) . T)) +((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +(|has| |#1| (-928)) +((((-1280 |#1| |#2| |#3|)) . T) (((-1252 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -((((-1196)) . T) (((-875)) . T)) +((((-1197)) . T) (((-876)) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) ((((-711)) . T)) ((((-711)) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((((-1201)) . T)) -(-3794 (|has| |#2| (-805)) (|has| |#2| (-861))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-1202)) . T)) +(-2758 (|has| |#2| (-805)) (|has| |#2| (-861))) (((|#1|) |has| |#1| (-174))) -((((-1201)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1202)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-1201)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-1202)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) (((|#1| (-576)) . T)) -((($ (-1196)) -3794 (|has| |#1| (-916 (-1196))) (|has| |#1| (-918 (-1196)))) (($ (-1102)) . T)) +((($ (-1197)) -2758 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1202)) . T)) +((((-1202)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -(-3794 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-174)) (|has| |#1| (-568))) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| (-783)) . T)) @@ -3925,44 +3927,44 @@ (((|#1| (-543 |#2|) |#2|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-3794 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(-3794 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +(-2758 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2758 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) ((((-576) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-906 (-390))) . T) (((-906 (-576))) . T) (((-1196)) . T) (((-548)) . T)) -(-3794 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1069))) -(-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-875)) . T)) +((((-907 (-390))) . T) (((-907 (-576))) . T) (((-1197)) . T) (((-548)) . T)) +(-2758 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +((((-876)) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1196)) -12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069)))) -(|has| |#2| (-1069)) -(-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) +(|has| |#2| (-1070)) +(-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (|has| |#1| (-238)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-875)) . T)) -(((|#1| (-783) (-1102)) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((((-876)) . T)) +(((|#1| (-783) (-1103)) . T)) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(((|#2|) |has| |#2| (-1069))) +(((|#2|) |has| |#2| (-1070))) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (((-576)) . T)) (((|#2|) . T)) @@ -3970,44 +3972,44 @@ ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-1178) (-1196) (-576) (-227) (-875)) . T)) +((((-1179) (-1197) (-576) (-227) (-876)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-576)) . T) ((|#2|) |has| |#2| (-174))) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) -(-3794 (|has| |#1| (-360)) (|has| |#1| (-379))) +(-2758 (|has| |#1| (-360)) (|has| |#1| (-379))) (((|#1| |#2|) . T)) ((((-227)) . T)) ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-875)) . T)) +((((-876)) . T)) ((($) . T) ((|#1|) . T)) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) |has| |#2| (-1120)) (((-576)) -12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (((-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) -(-3794 (|has| |#2| (-238)) (|has| |#2| (-237))) +(((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +(-2758 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-861)) (|has| |#1| (-1120)))) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-576) $) . T) (((-656 (-576)) $) . T)) ((($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1042))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1042))) (((-906 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-906 (-390))))) (((-906 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-906 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548))))) -((((-875)) . T)) -((((-875)) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) (((-907 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-390))))) (((-907 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548))))) +((((-876)) . T)) +((((-876)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#1|) . T) (((-576)) . T)) -((((-1201)) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-1202)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) (((|#2|) . T)) -(-3794 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2758 (|has| |#1| (-21)) (|has| |#1| (-860))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) -3794 (-12 (|has| |#1| (-625 (-875))) (|has| |#2| (-625 (-875)))) (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))))) +((((-876)) -2758 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) ((((-419 |#2|) |#3|) . T)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-38 (-419 (-576)))) @@ -4016,138 +4018,139 @@ ((($) . T) (((-576)) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) -(-3794 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2758 (|has| |#3| (-805)) (|has| |#3| (-861))) ((($) . T)) ((((-711)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((#0=(-576) #0#) . T)) ((($) . T) (((-419 (-576))) . T)) -(|has| |#4| (-1069)) -(|has| |#3| (-1069)) -((((-875)) . T) (((-1201)) . T)) +(|has| |#4| (-1070)) +(|has| |#3| (-1070)) +((((-876)) . T) (((-1202)) . T)) (|has| |#4| (-805)) (|has| |#4| (-805)) (|has| |#3| (-805)) (|has| |#3| (-805)) -((((-1201)) . T)) +((((-1202)) . T)) ((((-576)) . T)) (((|#2|) . T)) -((((-1196)) -3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) +((((-1197)) -2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-877 |#1|)) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1160 |#1| |#2|)) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#2|) . T) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) +((((-878 |#1|)) . T)) +(((|#1|) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1161 |#1| |#2|)) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1042)) -(((|#2|) . T) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +(|has| |#1| (-1043)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) ((($) . T)) -((((-875)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-906 (-576))) |has| |#2| (-626 (-906 (-576)))) (((-906 (-390))) |has| |#2| (-626 (-906 (-390)))) (((-390)) . #0=(|has| |#2| (-1042))) (((-227)) . #0#)) +((((-876)) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-390)) . #0=(|has| |#2| (-1043))) (((-227)) . #0#)) ((((-304 |#3|)) . T)) -((((-1196) (-52)) . T)) +((((-1197) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1196)) -3794 (|has| |#2| (-916 (-1196))) (|has| |#2| (-918 (-1196))))) -((((-875)) . T)) +((((-1197)) -2758 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-876)) . T)) (((|#2|) . T)) -((((-875)) . T)) +((((-876)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-1194 |#1| |#2| |#3|)) . T)) -((((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T)) -((((-875)) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-1195 |#1| |#2| |#3|)) . T)) +((((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T)) +((((-876)) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-576) |#1|) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-374)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3794 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1069))) (($) |has| |#4| (-1069)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1069)))) -(((|#2|) . T) ((|#3|) -3794 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2758 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) +(((|#2|) . T) ((|#3|) -2758 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-1058 (-419 (-576)))) (((-576)) |has| |#2| (-1058 (-576))) ((|#2|) . T) (((-877 |#1|)) . T)) -((((-1196)) . T) ((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-189)) . T) (((-875)) . T)) -((((-875)) . T)) +((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) +((((-1197)) . T) ((|#1|) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-189)) . T) (((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) -((((-130)) . T) (((-875)) . T)) -((((-576) |#1|) . T) (((-1254 (-576)) $) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-130)) . T) (((-876)) . T)) +((((-576) |#1|) . T) (((-1255 (-576)) $) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-927))) -((($ (-1196)) |has| |#1| (-1069))) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) +((($ (-1197)) |has| |#1| (-1070))) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| (-543 |#2|)) . T)) -((((-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) . T)) ((((-576) (-130)) . T)) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| (-783)) . T)) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -(-3794 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3794 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +(-2758 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2758 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((($) . T)) -(((|#2| (-543 (-877 |#1|))) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +(((|#2| (-543 (-878 |#1|))) . T)) +((((-1202)) . T)) +((((-1202)) . T)) ((((-576) |#1|) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#2|) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) -3794 (|has| |#1| (-625 (-875))) (|has| |#1| (-1120)))) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) -2758 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1178) |#1|) . T)) +((((-1179) |#1|) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) -((((-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T)) (((|#2| (-783)) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-419 (-576))) . T)) @@ -4157,35 +4160,35 @@ ((((-576)) . T) (($) . T)) (((|#2| $) |has| |#2| (-296 |#2| |#2|))) (((|#1| (-656 |#1|)) |has| |#1| (-860))) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-360))) -(-3794 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1283 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1058 (-419 (-576))))) -(|has| |#1| (-1120)) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-360))) +(-2758 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1284 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) +(|has| |#1| (-1121)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-1283 |#1|)) . T) (((-576)) . T) (($) -3794 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-1102)) . T) ((|#2|) . T) (((-419 (-576))) -3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576)))))) -((((-1019 |#1|)) . T) ((|#1|) . T) (((-576)) -3794 (|has| (-1019 |#1|) (-1058 (-576))) (|has| |#1| (-1058 (-576)))) (((-419 (-576))) -3794 (|has| (-1019 |#1|) (-1058 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) -((((-928 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-1196)) |has| |#1| (-916 (-1196)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) -((((-928 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1284 |#1|)) . T) (((-576)) . T) (($) -2758 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-1103)) . T) ((|#2|) . T) (((-419 (-576))) -2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) +((((-1020 |#1|)) . T) ((|#1|) . T) (((-576)) -2758 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) -2758 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-1197)) |has| |#1| (-917 (-1197)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1160 |#1| |#2|) #0#) |has| (-1160 |#1| |#2|) (-319 (-1160 |#1| |#2|)))) +(((#0=(-1161 |#1| |#2|) #0#) |has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((#0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) #0#) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) -(-3794 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) +(-2758 (|has| |#1| (-238)) (|has| |#1| (-237))) (((#0=(-117 |#1|)) |has| #0# (-319 #0#))) ((($ $) . T)) -(-3794 (|has| |#1| (-861)) (|has| |#1| (-1120))) -((($ $) . T) ((#0=(-877 |#1|) $) . T) ((#0# |#2|) . T)) +(-2758 (|has| |#1| (-861)) (|has| |#1| (-1121))) +((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-490 . -1120) T) ((-273 . -526) 204751) ((-253 . -526) 204694) ((-250 . -1120) 204644) ((-583 . -111) 204629) ((-543 . -23) T) ((-139 . -1120) T) ((-138 . -1120) T) ((-118 . -319) 204586) ((-134 . -1120) T) ((-1019 . -237) 204537) ((-811 . -1237) T) ((-491 . -526) 204329) ((-689 . -628) 204313) ((-706 . -102) T) ((-1161 . -526) 204232) ((-411 . -237) T) ((-402 . -132) T) ((-1300 . -996) 204201) ((-1044 . -1071) 204138) ((-329 . -863) T) ((-31 . -93) T) ((-614 . -501) 204122) ((-1044 . -652) 204059) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 204009) ((-531 . -526) 203942) ((-362 . -234) 203929) ((-365 . -1071) 203874) ((-59 . -526) 203807) ((-528 . -526) 203740) ((-430 . -916) 203699) ((-171 . -1069) T) ((-509 . -526) 203632) ((-508 . -526) 203565) ((-365 . -652) 203510) ((-811 . -1058) 203290) ((-1260 . -628) 203038) ((-711 . -38) 203003) ((-1114 . -1113) 202987) ((-354 . -360) T) ((-480 . -1237) T) ((-1114 . -1120) 202965) ((-868 . -628) 202862) ((-171 . -248) 202813) ((-171 . -238) 202764) ((-1114 . -1115) 202722) ((-885 . -296) 202680) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 202652) ((-1170 . -1213) 202631) ((-419 . -1012) 202615) ((-48 . -1071) 202580) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 202545) ((-1302 . -660) 202519) ((-1260 . -336) 202496) ((-1170 . -107) 202446) ((-326 . -161) 202425) ((-326 . -144) 202404) ((-117 . -21) T) ((-40 . -232) 202381) ((-40 . -272) 202358) ((-135 . -25) T) ((-117 . -25) T) ((-1260 . -238) T) ((-1260 . -1069) T) ((-620 . -298) 202334) ((-868 . -1069) T) ((-618 . -1237) T) ((-811 . -349) 202318) ((-487 . -298) 202297) ((-683 . -1237) T) ((-182 . -1237) T) ((-162 . -1237) T) ((-157 . -1237) T) ((-155 . -1237) T) ((-140 . -187) T) ((-118 . -1172) NIL) ((-91 . -625) 202229) ((-489 . -132) T) ((-1185 . -1237) T) ((-1116 . -502) 202210) ((-1116 . -625) 202176) ((-1110 . -502) 202157) ((-1110 . -625) 202123) ((-605 . -1237) T) ((-1093 . -502) 202104) ((-583 . -1069) T) ((-1093 . -625) 202070) ((-674 . -729) 202054) ((-1086 . -502) 202035) ((-1086 . -625) 202001) ((-976 . -298) 201978) ((-60 . -34) T) ((-1082 . -807) T) ((-1082 . -804) T) ((-1056 . -502) 201959) ((-1039 . -502) 201940) ((-828 . -738) T) ((-743 . -47) 201905) ((-635 . -38) 201892) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 201823) ((-253 . -300) 201754) ((-1056 . -625) 201720) ((-1044 . -102) T) ((-1039 . -625) 201686) ((-638 . -502) 201667) ((-425 . -738) T) ((-118 . -38) 201612) ((-495 . -502) 201593) ((-638 . -625) 201559) ((-425 . -485) T) ((-220 . -502) 201540) ((-495 . -625) 201506) ((-365 . -102) T) ((-220 . -625) 201472) ((-1231 . -1078) T) ((-354 . -658) 201402) ((-723 . -1078) T) ((-1194 . -47) 201379) ((-1193 . -47) 201349) ((-1187 . -47) 201326) ((-129 . -298) 201301) ((-1055 . -152) 201247) ((-928 . -300) T) ((-1146 . -47) 201219) ((-706 . -319) NIL) ((-527 . -625) 201201) ((-522 . -625) 201183) ((-520 . -625) 201165) ((-497 . -1237) T) ((-337 . -1120) 201115) ((-326 . -910) 201079) ((-323 . -910) NIL) ((-724 . -464) 201010) ((-48 . -102) T) ((-1271 . -296) 200968) ((-1250 . -296) 200868) ((-656 . -678) 200852) ((-656 . -663) 200836) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 200820) ((-617 . -502) 200802) ((-614 . -296) 200754) ((-617 . -625) 200721) ((-400 . -102) T) ((-1140 . -144) T) ((-127 . -625) 200653) ((-887 . -1120) T) ((-670 . -423) 200637) ((-743 . -1237) T) ((-726 . -625) 200619) ((-255 . -625) 200586) ((-189 . -625) 200568) ((-163 . -625) 200550) ((-158 . -625) 200532) ((-1302 . -738) T) ((-1122 . -34) T) ((-884 . -807) NIL) ((-884 . -804) NIL) ((-871 . -861) T) ((-743 . -900) NIL) ((-1311 . -132) T) ((-392 . -132) T) ((-906 . -628) 200500) ((-922 . -102) T) ((-743 . -1058) 200376) ((-1194 . -1237) T) ((-1193 . -1237) T) ((-543 . -132) T) ((-1187 . -1237) T) ((-1107 . -423) 200360) ((-1020 . -501) 200344) ((-118 . -412) 200321) ((-1146 . -1237) T) ((-794 . -423) 200305) ((-792 . -423) 200289) ((-961 . -34) T) ((-706 . -1172) NIL) ((-258 . -660) 200109) ((-257 . -660) 199916) ((-829 . -938) 199895) ((-466 . -423) 199879) ((-614 . -19) 199863) ((-1166 . -1230) 199832) ((-1187 . -900) NIL) ((-1187 . -898) 199784) ((-614 . -616) 199761) ((-108 . -863) T) ((-1223 . -625) 199693) ((-1195 . -625) 199675) ((-62 . -407) T) ((-1193 . -1058) 199610) ((-1187 . -1058) 199576) ((-706 . -38) 199526) ((-40 . -658) 199456) ((-486 . -296) 199414) ((-1243 . -625) 199396) ((-743 . -388) 199380) ((-850 . -625) 199362) ((-670 . -1078) T) ((-635 . -918) 199285) ((-1271 . -1022) 199251) ((-448 . -1237) T) ((-1250 . -1022) 199217) ((-256 . -1237) T) ((-1108 . -628) 199201) ((-1083 . -1213) 199176) ((-1096 . -628) 199153) ((-885 . -626) 198960) ((-885 . -625) 198942) ((-118 . -918) NIL) ((-713 . -234) 198929) ((-1209 . -501) 198866) ((-430 . -1042) 198844) ((-48 . -319) 198831) ((-1083 . -107) 198777) ((-491 . -501) 198714) ((-537 . -1237) T) ((-532 . -1237) T) ((-1187 . -349) 198666) ((-1161 . -501) 198637) ((-1187 . -388) 198589) ((-1107 . -1078) T) ((-449 . -102) T) ((-185 . -1120) T) ((-258 . -34) T) ((-257 . -34) T) ((-1178 . -863) T) ((-794 . -1078) T) ((-792 . -1078) T) ((-743 . -916) 198566) ((-466 . -1078) T) ((-59 . -501) 198550) ((-1054 . -1076) 198524) ((-531 . -501) 198508) ((-528 . -501) 198492) ((-509 . -501) 198476) ((-508 . -501) 198460) ((-250 . -526) 198393) ((-1054 . -111) 198360) ((-1194 . -916) 198273) ((-1193 . -916) 198179) ((-682 . -1132) T) ((-1187 . -916) 198012) ((-657 . -93) T) ((-1146 . -916) 197996) ((-365 . -1172) T) ((-332 . -1076) 197978) ((-31 . -502) 197959) ((-258 . -806) 197938) ((-258 . -805) 197917) ((-257 . -806) 197896) ((-257 . -805) 197875) ((-31 . -625) 197841) ((-50 . -1078) T) ((-258 . -738) 197819) ((-257 . -738) 197797) ((-1231 . -1120) T) ((-682 . -23) T) ((-593 . -1078) T) ((-530 . -1078) T) ((-390 . -1076) 197762) ((-332 . -111) 197737) ((-73 . -394) T) ((-73 . -407) T) ((-1044 . -38) 197674) ((-706 . -412) 197656) ((-99 . -102) T) ((-1316 . -1071) 197643) ((-723 . -1120) T) ((-1133 . -863) 197594) ((-1023 . -146) 197566) ((-1023 . -148) 197538) ((-883 . -658) 197510) ((-390 . -111) 197466) ((-329 . -1241) 197445) ((-486 . -1022) 197411) ((-365 . -38) 197376) ((-40 . -381) 197348) ((-886 . -625) 197220) ((-128 . -126) 197204) ((-122 . -126) 197188) ((-848 . -1076) 197158) ((-845 . -21) 197110) ((-839 . -1076) 197094) ((-845 . -25) 197046) ((-329 . -568) 196997) ((-529 . -628) 196978) ((-576 . -840) T) ((-245 . -1237) T) ((-1054 . -628) 196947) ((-848 . -111) 196912) ((-839 . -111) 196891) ((-1271 . -625) 196873) ((-1250 . -625) 196855) ((-1250 . -626) 196526) ((-1192 . -927) 196505) ((-1145 . -927) 196484) ((-48 . -38) 196449) ((-1309 . -1132) T) ((-548 . -296) 196405) ((-614 . -625) 196317) ((-614 . -626) 196278) ((-1307 . -1132) T) ((-372 . -628) 196262) ((-332 . -628) 196246) ((-1162 . -237) 196197) ((-245 . -1058) 196024) ((-1192 . -660) 195913) ((-1145 . -660) 195802) ((-867 . -660) 195776) ((-730 . -625) 195758) ((-558 . -379) T) ((-1309 . -23) T) ((-706 . -918) NIL) ((-1307 . -23) T) ((-503 . -1120) T) ((-390 . -628) 195708) ((-390 . -630) 195690) ((-1054 . -1069) T) ((-878 . -102) T) ((-1209 . -296) 195669) ((-171 . -379) 195620) ((-1024 . -1237) T) ((-991 . -1237) T) ((-932 . -1237) T) ((-848 . -628) 195574) ((-839 . -628) 195529) ((-44 . -23) T) ((-1316 . -102) T) ((-491 . -296) 195508) ((-598 . -1120) T) ((-1166 . -1129) 195477) ((-439 . -1237) T) ((-1124 . -1123) 195429) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1132) T) ((-1231 . -729) 195326) ((-1217 . -1120) T) ((-1024 . -898) 195308) ((-1024 . -900) 195290) ((-635 . -232) 195274) ((-635 . -272) 195258) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1024 . -1058) 195218) ((-723 . -729) 195183) ((-245 . -388) 195152) ((-390 . -1069) T) ((-225 . -1078) T) ((-118 . -272) 195129) ((-118 . -232) 195106) ((-59 . -296) 195058) ((-153 . -23) T) ((-528 . -296) 195010) ((-337 . -526) 194943) ((-508 . -296) 194895) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1069) T) ((-839 . -1069) T) ((-724 . -967) 194864) ((-713 . -861) T) ((-624 . -863) T) ((-486 . -625) 194846) ((-1273 . -1071) 194751) ((-592 . -658) 194723) ((-576 . -658) 194695) ((-507 . -658) 194645) ((-839 . -238) 194624) ((-135 . -861) T) ((-1273 . -652) 194516) ((-670 . -1120) T) ((-1209 . -616) 194495) ((-562 . -1213) 194474) ((-347 . -1120) T) ((-329 . -374) 194453) ((-419 . -148) 194432) ((-419 . -146) 194411) ((-982 . -1132) 194310) ((-827 . -1132) 194288) ((-245 . -916) 194220) ((-666 . -865) 194204) ((-491 . -616) 194183) ((-110 . -863) T) ((-536 . -1237) T) ((-562 . -107) 194133) ((-1024 . -388) 194115) ((-1024 . -349) 194097) ((-1196 . -625) 194079) ((-97 . -1120) T) ((-982 . -23) 193890) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 193742) ((-1196 . -626) 193664) ((-59 . -19) 193648) ((-1192 . -738) T) ((-1145 . -738) T) ((-1107 . -1120) T) ((-528 . -19) 193632) ((-508 . -19) 193616) ((-59 . -616) 193593) ((-1023 . -237) 193530) ((-919 . -102) 193480) ((-867 . -738) T) ((-794 . -1120) T) ((-528 . -616) 193457) ((-508 . -616) 193434) ((-792 . -1120) T) ((-792 . -1085) 193401) ((-473 . -1120) T) ((-466 . -1120) T) ((-598 . -729) 193376) ((-661 . -1120) T) ((-1279 . -47) 193353) ((-1273 . -102) T) ((-1272 . -47) 193323) ((-1251 . -47) 193300) ((-1231 . -174) 193251) ((-1193 . -317) 193230) ((-1187 . -317) 193209) ((-1116 . -628) 193190) ((-1110 . -628) 193171) ((-1100 . -568) 193122) ((-1100 . -1241) 193073) ((-1024 . -916) NIL) ((-1093 . -628) 193054) ((-682 . -132) T) ((-639 . -1132) T) ((-1086 . -628) 193035) ((-1056 . -628) 193016) ((-1039 . -628) 192997) ((-726 . -1076) 192967) ((-711 . -658) 192917) ((-284 . -1120) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -910) 192820) ((-723 . -174) T) ((-50 . -1120) T) ((-607 . -47) 192797) ((-227 . -660) 192762) ((-593 . -1120) T) ((-530 . -1120) T) ((-499 . -832) T) ((-499 . -938) T) ((-370 . -1241) T) ((-364 . -1241) T) ((-356 . -1241) T) ((-329 . -1132) T) ((-326 . -1071) 192672) ((-323 . -1071) 192601) ((-108 . -1241) T) ((-638 . -628) 192582) ((-370 . -568) T) ((-219 . -938) T) ((-219 . -832) T) ((-326 . -652) 192492) ((-323 . -652) 192421) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 192402) ((-108 . -568) T) ((-1187 . -1042) NIL) ((-670 . -729) 192372) ((-494 . -863) 192323) ((-220 . -628) 192304) ((-329 . -23) T) ((-67 . -1237) T) ((-1020 . -625) 192236) ((-1316 . -1172) T) ((-706 . -272) 192218) ((-706 . -232) 192200) ((-1311 . -21) T) ((-726 . -111) 192165) ((-1311 . -25) T) ((-656 . -34) T) ((-250 . -501) 192149) ((-1309 . -132) T) ((-1307 . -132) T) ((-1300 . -102) T) ((-1283 . -625) 192115) ((-1122 . -1118) 192099) ((-173 . -1120) T) ((-1279 . -1237) T) ((-1272 . -1237) T) ((-1272 . -1058) 192034) ((-1251 . -1237) T) ((-1251 . -900) NIL) ((-970 . -927) 192013) ((-1251 . -898) 191965) ((-1251 . -1058) 191931) ((-1231 . -526) 191898) ((-527 . -628) 191882) ((-1209 . -626) NIL) ((-1209 . -625) 191864) ((-1162 . -1143) 191809) ((-493 . -927) 191788) ((-1107 . -729) 191637) ((-1082 . -660) 191609) ((-970 . -660) 191498) ((-830 . -863) T) ((-794 . -729) 191327) ((-609 . -502) 191308) ((-597 . -502) 191289) ((-609 . -625) 191255) ((-597 . -625) 191221) ((-548 . -625) 191203) ((-591 . -1237) T) ((-548 . -626) 191184) ((-792 . -729) 191033) ((-1097 . -102) T) ((-635 . -658) 191005) ((-392 . -25) T) ((-392 . -21) T) ((-493 . -660) 190894) ((-473 . -729) 190865) ((-466 . -729) 190714) ((-1007 . -102) T) ((-1066 . -1230) 190643) ((-919 . -319) 190581) ((-889 . -93) T) ((-749 . -102) T) ((-118 . -658) 190511) ((-617 . -628) 190493) ((-726 . -628) 190447) ((-693 . -93) T) ((-543 . -25) T) ((-688 . -93) T) ((-676 . -625) 190429) ((-657 . -502) 190410) ((-657 . -625) 190363) ((-142 . -102) T) ((-44 . -132) T) ((-608 . -1237) T) ((-607 . -1237) T) ((-354 . -1078) T) ((-299 . -1132) T) ((-490 . -93) T) ((-419 . -237) 190314) ((-366 . -625) 190296) ((-363 . -625) 190278) ((-355 . -625) 190260) ((-273 . -626) 190008) ((-273 . -625) 189990) ((-253 . -625) 189972) ((-253 . -626) 189833) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1161 . -625) 189815) ((-1140 . -652) 189802) ((-1140 . -1071) 189789) ((-831 . -738) T) ((-831 . -870) T) ((-614 . -298) 189766) ((-593 . -729) 189731) ((-491 . -626) NIL) ((-491 . -625) 189713) ((-530 . -729) 189658) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-928 . -625) 189640) ((-928 . -626) 189622) ((-398 . -738) T) ((-885 . -1076) 189574) ((-885 . -111) 189512) ((-726 . -1069) T) ((-724 . -1263) 189496) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 189428) ((-390 . -807) T) ((-169 . -1237) T) ((-225 . -1120) T) ((-390 . -804) T) ((-59 . -626) 189389) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -625) 189301) ((-227 . -738) T) ((-528 . -626) 189262) ((-528 . -625) 189174) ((-509 . -625) 189106) ((-508 . -626) 189067) ((-508 . -625) 188979) ((-1100 . -374) 188930) ((-40 . -423) 188907) ((-77 . -1237) T) ((-884 . -927) NIL) ((-370 . -339) 188891) ((-370 . -374) T) ((-364 . -339) 188875) ((-364 . -374) T) ((-356 . -339) 188859) ((-356 . -374) T) ((-326 . -294) 188838) ((-108 . -374) T) ((-70 . -1237) T) ((-1251 . -349) 188790) ((-884 . -660) 188735) ((-1251 . -388) 188687) ((-982 . -132) 188542) ((-827 . -132) 188413) ((-45 . -863) NIL) ((-976 . -663) 188397) ((-1107 . -174) 188308) ((-976 . -384) 188292) ((-1082 . -806) T) ((-1082 . -803) T) ((-885 . -628) 188190) ((-794 . -174) 188081) ((-792 . -174) 187992) ((-828 . -47) 187954) ((-1082 . -738) T) ((-337 . -501) 187938) ((-970 . -738) T) ((-1300 . -319) 187876) ((-1279 . -916) 187789) ((-466 . -174) 187700) ((-250 . -296) 187652) ((-1272 . -916) 187558) ((-1271 . -1076) 187393) ((-1251 . -916) 187226) ((-493 . -738) T) ((-1250 . -1076) 187034) ((-1231 . -300) 187013) ((-1206 . -1237) T) ((-1203 . -379) T) ((-1202 . -379) T) ((-1166 . -152) 186997) ((-1140 . -102) T) ((-1138 . -1120) T) ((-1100 . -23) T) ((-1100 . -1132) T) ((-1095 . -102) T) ((-1077 . -625) 186964) ((-1023 . -421) 186936) ((-945 . -973) T) ((-749 . -319) 186874) ((-75 . -1237) T) ((-676 . -393) 186846) ((-171 . -927) 186799) ((-30 . -973) T) ((-112 . -856) T) ((-1 . -625) 186781) ((-1019 . -910) 186702) ((-129 . -663) 186684) ((-50 . -632) 186668) ((-706 . -658) 186603) ((-607 . -916) 186516) ((-450 . -102) T) ((-129 . -384) 186498) ((-142 . -319) NIL) ((-885 . -1069) T) ((-845 . -861) 186477) ((-81 . -1237) T) ((-723 . -300) T) ((-40 . -1078) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 186459) ((-171 . -660) 186333) ((-519 . -625) 186315) ((-362 . -148) 186297) ((-362 . -146) T) ((-370 . -1132) T) ((-364 . -1132) T) ((-356 . -1132) T) ((-1024 . -317) T) ((-932 . -317) T) ((-885 . -248) T) ((-108 . -1132) T) ((-885 . -238) 186276) ((-1271 . -111) 186097) ((-1250 . -111) 185886) ((-250 . -1275) 185870) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 185857) ((-323 . -319) 185798) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1024 . -1042) T) ((-31 . -628) 185779) ((-108 . -23) T) ((-666 . -1071) 185763) ((-250 . -616) 185740) ((-343 . -1120) T) ((-666 . -652) 185710) ((-1273 . -38) 185602) ((-1260 . -927) 185581) ((-112 . -1120) T) ((-828 . -1237) T) ((-425 . -1237) T) ((-1055 . -102) T) ((-1260 . -660) 185470) ((-884 . -806) NIL) ((-868 . -660) 185444) ((-884 . -803) NIL) ((-828 . -900) NIL) ((-884 . -738) T) ((-1107 . -526) 185317) ((-794 . -526) 185264) ((-792 . -526) 185216) ((-583 . -660) 185203) ((-828 . -1058) 185031) ((-466 . -526) 184974) ((-400 . -401) T) ((-1271 . -628) 184787) ((-1250 . -628) 184535) ((-60 . -1237) T) ((-633 . -861) 184514) ((-512 . -673) T) ((-1166 . -996) 184483) ((-1044 . -658) 184420) ((-1023 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1076) 184255) ((-512 . -113) T) ((-354 . -1120) T) ((-323 . -1172) NIL) ((-299 . -132) T) ((-406 . -1120) T) ((-883 . -1078) T) ((-706 . -381) 184222) ((-365 . -658) 184152) ((-225 . -632) 184129) ((-337 . -296) 184081) ((-486 . -111) 183902) ((-1271 . -1069) T) ((-1250 . -1069) T) ((-828 . -388) 183886) ((-836 . -1237) T) ((-171 . -738) T) ((-1302 . -1237) T) ((-666 . -102) T) ((-1271 . -248) 183865) ((-1271 . -238) 183817) ((-1250 . -238) 183722) ((-1250 . -248) 183701) ((-1023 . -414) NIL) ((-682 . -651) 183649) ((-326 . -38) 183559) ((-323 . -38) 183488) ((-69 . -625) 183470) ((-329 . -505) 183436) ((-48 . -658) 183386) ((-1209 . -298) 183365) ((-1245 . -861) T) ((-1133 . -1132) 183343) ((-83 . -1237) T) ((-61 . -625) 183325) ((-877 . -863) T) ((-491 . -298) 183304) ((-1302 . -1058) 183281) ((-1184 . -1120) T) ((-1133 . -23) 183133) ((-828 . -916) 183069) ((-1260 . -738) T) ((-1122 . -1237) T) ((-486 . -628) 182895) ((-362 . -237) T) ((-1107 . -300) 182826) ((-984 . -1120) T) ((-907 . -102) T) ((-794 . -300) 182737) ((-337 . -19) 182721) ((-59 . -298) 182698) ((-792 . -300) 182629) ((-868 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 182606) ((-337 . -616) 182583) ((-508 . -298) 182560) ((-466 . -300) 182491) ((-1055 . -319) 182342) ((-889 . -502) 182323) ((-889 . -625) 182289) ((-693 . -502) 182270) ((-583 . -738) T) ((-688 . -502) 182251) ((-693 . -625) 182201) ((-688 . -625) 182167) ((-674 . -625) 182149) ((-490 . -502) 182130) ((-490 . -625) 182096) ((-250 . -626) 182057) ((-250 . -502) 182034) ((-139 . -502) 182015) ((-138 . -502) 181996) ((-134 . -502) 181977) ((-250 . -625) 181869) ((-215 . -102) T) ((-139 . -625) 181835) ((-138 . -625) 181801) ((-134 . -625) 181767) ((-1167 . -34) T) ((-961 . -1237) T) ((-354 . -729) 181712) ((-682 . -25) T) ((-682 . -21) T) ((-1196 . -628) 181693) ((-341 . -1237) T) ((-486 . -1069) T) ((-647 . -429) 181658) ((-619 . -429) 181623) ((-1140 . -1172) T) ((-1272 . -317) 181602) ((-724 . -1071) 181425) ((-593 . -300) T) ((-530 . -300) T) ((-1251 . -317) 181404) ((-486 . -238) 181356) ((-486 . -248) 181335) ((-451 . -1237) T) ((-724 . -652) 181164) ((-1251 . -1042) NIL) ((-1100 . -132) T) ((-885 . -807) 181143) ((-145 . -102) T) ((-40 . -1120) T) ((-885 . -804) 181122) ((-656 . -1030) 181106) ((-592 . -1078) T) ((-576 . -1078) T) ((-507 . -1078) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 181090) ((-323 . -412) 181051) ((-364 . -132) T) ((-356 . -132) T) ((-1201 . -1120) T) ((-1140 . -38) 181038) ((-1114 . -625) 181005) ((-108 . -132) T) ((-972 . -1120) T) ((-939 . -1120) T) ((-783 . -1120) T) ((-684 . -1120) T) ((-713 . -148) T) ((-117 . -148) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-676 . -1076) 180989) ((-543 . -861) T) ((-512 . -861) T) ((-376 . -1237) T) ((-366 . -1076) 180941) ((-363 . -1076) 180893) ((-355 . -1076) 180845) ((-258 . -1237) T) ((-257 . -1237) T) ((-273 . -1076) 180688) ((-253 . -1076) 180531) ((-676 . -111) 180510) ((-829 . -1241) 180489) ((-559 . -856) T) ((-326 . -918) 180455) ((-366 . -111) 180393) ((-363 . -111) 180331) ((-355 . -111) 180269) ((-273 . -111) 180098) ((-253 . -111) 179927) ((-323 . -918) NIL) ((-635 . -423) 179911) ((-44 . -21) T) ((-44 . -25) T) ((-923 . -863) 179862) ((-827 . -651) 179768) ((-829 . -568) 179747) ((-499 . -863) T) ((-258 . -1058) 179574) ((-257 . -1058) 179401) ((-127 . -120) 179385) ((-219 . -863) T) ((-928 . -1076) 179350) ((-724 . -102) T) ((-711 . -1078) T) ((-609 . -628) 179331) ((-597 . -628) 179312) ((-548 . -630) 179215) ((-354 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -625) 179197) ((-928 . -111) 179153) ((-40 . -729) 179098) ((-883 . -1120) T) ((-676 . -628) 179075) ((-657 . -628) 179056) ((-366 . -628) 178993) ((-363 . -628) 178930) ((-355 . -628) 178867) ((-559 . -1120) T) ((-337 . -626) 178828) ((-337 . -625) 178740) ((-273 . -628) 178493) ((-253 . -628) 178278) ((-188 . -1237) T) ((-1250 . -804) 178231) ((-1250 . -807) 178184) ((-258 . -388) 178153) ((-257 . -388) 178122) ((-561 . -863) T) ((-666 . -38) 178092) ((-620 . -34) T) ((-494 . -1132) 178070) ((-487 . -34) T) ((-1133 . -132) 177941) ((-982 . -25) 177752) ((-928 . -628) 177702) ((-887 . -625) 177684) ((-982 . -21) 177639) ((-827 . -25) 177472) ((-827 . -21) 177383) ((-1243 . -379) T) ((-635 . -1078) T) ((-1198 . -568) 177362) ((-1192 . -47) 177339) ((-366 . -1069) T) ((-363 . -1069) T) ((-494 . -23) 177191) ((-355 . -1069) T) ((-273 . -1069) T) ((-253 . -1069) T) ((-1145 . -47) 177163) ((-118 . -1078) T) ((-1054 . -660) 177137) ((-976 . -34) T) ((-366 . -238) 177116) ((-366 . -248) T) ((-363 . -238) 177095) ((-363 . -248) T) ((-355 . -238) 177074) ((-355 . -248) T) ((-273 . -336) 177046) ((-253 . -336) 177003) ((-273 . -238) 176982) ((-1177 . -152) 176966) ((-258 . -916) 176898) ((-257 . -916) 176830) ((-1162 . -910) 176751) ((-1102 . -861) T) ((-1254 . -1237) 176729) ((-426 . -1132) T) ((-1074 . -23) T) ((-1044 . -860) T) ((-928 . -1069) T) ((-332 . -660) 176711) ((-713 . -237) T) ((-682 . -234) 176656) ((-1231 . -1022) 176622) ((-1193 . -938) 176601) ((-1187 . -938) 176580) ((-1187 . -832) NIL) ((-1019 . -1071) 176476) ((-985 . -1237) T) ((-928 . -248) T) ((-829 . -374) 176455) ((-396 . -23) T) ((-128 . -1120) 176433) ((-122 . -1120) 176411) ((-928 . -238) T) ((-129 . -34) T) ((-390 . -660) 176376) ((-1019 . -652) 176324) ((-883 . -729) 176311) ((-1316 . -658) 176283) ((-1066 . -152) 176248) ((-1013 . -1237) T) ((-875 . -1237) T) ((-40 . -174) T) ((-706 . -423) 176230) ((-724 . -319) 176217) ((-848 . -660) 176177) ((-839 . -660) 176151) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 176130) ((-592 . -1120) T) ((-576 . -1120) T) ((-507 . -1120) T) ((-1192 . -1237) T) ((-250 . -298) 176107) ((-1145 . -1237) T) ((-867 . -1237) T) ((-323 . -272) 176068) ((-323 . -232) 176029) ((-1242 . -863) T) ((-1192 . -900) NIL) ((-55 . -1120) T) ((-1145 . -900) 175888) ((-130 . -861) T) ((-1192 . -1058) 175768) ((-1145 . -1058) 175651) ((-185 . -625) 175633) ((-867 . -1058) 175529) ((-794 . -296) 175456) ((-829 . -1132) T) ((-1054 . -738) T) ((-1066 . -996) 175385) ((-614 . -663) 175369) ((-1023 . -910) 175276) ((-1019 . -102) T) ((-829 . -23) T) ((-724 . -1172) 175254) ((-706 . -1078) T) ((-614 . -384) 175238) ((-362 . -464) T) ((-354 . -300) T) ((-1288 . -1120) T) ((-254 . -1120) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1120) T) ((-711 . -1120) T) ((-372 . -485) T) ((-1231 . -625) 175220) ((-1192 . -388) 175204) ((-1145 . -388) 175188) ((-1044 . -423) 175150) ((-142 . -231) 175132) ((-390 . -806) T) ((-390 . -803) T) ((-883 . -174) T) ((-390 . -738) T) ((-723 . -625) 175114) ((-724 . -38) 174943) ((-1287 . -1285) 174927) ((-362 . -414) T) ((-1287 . -1120) 174877) ((-1210 . -1120) T) ((-592 . -729) 174864) ((-576 . -729) 174851) ((-507 . -729) 174816) ((-1273 . -658) 174706) ((-326 . -641) 174685) ((-848 . -738) T) ((-839 . -738) T) ((-1135 . -1237) T) ((-656 . -1237) T) ((-1100 . -651) 174633) ((-1192 . -916) 174576) ((-1145 . -916) 174560) ((-827 . -234) 174451) ((-674 . -1076) 174435) ((-108 . -651) 174417) ((-494 . -132) 174288) ((-1198 . -1132) T) ((-831 . -1237) T) ((-970 . -47) 174257) ((-635 . -1120) T) ((-674 . -111) 174236) ((-503 . -625) 174202) ((-337 . -298) 174179) ((-398 . -1237) T) ((-334 . -1237) T) ((-493 . -47) 174136) ((-1198 . -23) T) ((-118 . -1120) T) ((-103 . -102) 174086) ((-1299 . -1132) T) ((-560 . -861) T) ((-227 . -1237) T) ((-1074 . -132) T) ((-1044 . -1078) T) ((-1299 . -23) T) ((-831 . -1058) 174070) ((-1217 . -625) 174052) ((-1023 . -736) 174024) ((-1140 . -840) T) ((-711 . -729) 173989) ((-598 . -625) 173971) ((-398 . -1058) 173955) ((-365 . -1078) T) ((-396 . -132) T) ((-334 . -1058) 173939) ((-1125 . -1120) T) ((-1100 . -21) T) ((-1100 . -25) T) ((-227 . -900) 173921) ((-1024 . -938) T) ((-91 . -34) T) ((-1024 . -832) T) ((-932 . -938) T) ((-1019 . -319) 173886) ((-889 . -628) 173867) ((-499 . -1241) T) ((-726 . -660) 173827) ((-693 . -628) 173808) ((-688 . -628) 173789) ((-219 . -1241) T) ((-419 . -910) 173710) ((-227 . -1058) 173670) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 173651) ((-370 . -25) T) ((-326 . -658) 173306) ((-323 . -658) 173220) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 173166) ((-250 . -628) 173143) ((-139 . -628) 173124) ((-138 . -628) 173105) ((-134 . -628) 173086) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1078) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1082 . -1237) T) ((-970 . -1237) T) ((-725 . -1237) T) ((-670 . -625) 173068) ((-493 . -1237) T) ((-749 . -748) 173052) ((-347 . -625) 173034) ((-68 . -394) T) ((-68 . -407) T) ((-1122 . -107) 173018) ((-1082 . -900) 173000) ((-970 . -900) 172925) ((-665 . -1132) T) ((-635 . -729) 172912) ((-493 . -900) NIL) ((-1166 . -102) T) ((-1114 . -630) 172896) ((-1082 . -1058) 172878) ((-97 . -625) 172860) ((-489 . -148) T) ((-970 . -1058) 172740) ((-118 . -729) 172685) ((-724 . -918) 172592) ((-665 . -23) T) ((-493 . -1058) 172468) ((-1107 . -626) NIL) ((-1107 . -625) 172450) ((-794 . -626) NIL) ((-794 . -625) 172411) ((-792 . -626) 172045) ((-792 . -625) 171959) ((-1133 . -651) 171865) ((-811 . -863) 171844) ((-473 . -625) 171826) ((-466 . -625) 171808) ((-466 . -626) 171669) ((-1055 . -231) 171615) ((-885 . -927) 171594) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 171576) ((-590 . -102) T) ((-366 . -1306) 171560) ((-363 . -1306) 171544) ((-355 . -1306) 171528) ((-122 . -526) 171461) ((-128 . -526) 171394) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 171332) ((-224 . -102) 171282) ((-711 . -174) T) ((-706 . -1120) T) ((-885 . -660) 171198) ((-65 . -395) T) ((-284 . -625) 171180) ((-65 . -407) T) ((-970 . -388) 171164) ((-883 . -300) T) ((-50 . -625) 171146) ((-1019 . -38) 171094) ((-1140 . -658) 171066) ((-593 . -625) 171048) ((-493 . -388) 171032) ((-593 . -626) 171014) ((-530 . -625) 170996) ((-928 . -1306) 170983) ((-884 . -1237) T) ((-713 . -464) T) ((-507 . -526) 170949) ((-1298 . -1237) T) ((-1297 . -1237) T) ((-499 . -374) T) ((-366 . -379) 170928) ((-363 . -379) 170907) ((-355 . -379) 170886) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1310 . -1301) 170870) ((-884 . -898) 170847) ((-884 . -900) NIL) ((-982 . -861) 170746) ((-827 . -861) 170697) ((-1244 . -102) T) ((-666 . -668) 170681) ((-1223 . -34) T) ((-173 . -625) 170663) ((-1133 . -25) 170496) ((-1133 . -21) 170407) ((-884 . -1058) 170384) ((-970 . -916) 170365) ((-1260 . -47) 170342) ((-928 . -379) T) ((-605 . -863) T) ((-59 . -663) 170326) ((-528 . -663) 170310) ((-493 . -916) 170287) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 170271) ((-59 . -384) 170255) ((-635 . -174) T) ((-528 . -384) 170239) ((-508 . -384) 170223) ((-558 . -1237) T) ((-839 . -720) 170207) ((-1192 . -317) 170186) ((-1198 . -132) T) ((-1162 . -1071) 170170) ((-118 . -174) T) ((-1162 . -652) 170102) ((-1166 . -319) 170040) ((-171 . -1237) T) ((-1299 . -132) T) ((-1272 . -938) 170019) ((-1251 . -938) 169998) ((-1251 . -832) NIL) ((-879 . -1071) 169968) ((-647 . -756) 169952) ((-619 . -756) 169936) ((-1250 . -927) 169889) ((-1044 . -1120) T) ((-923 . -1132) T) ((-879 . -652) 169859) ((-706 . -729) 169809) ((-914 . -1237) T) ((-884 . -388) 169786) ((-884 . -349) 169763) ((-853 . -1237) T) ((-820 . -1237) T) ((-171 . -898) 169747) ((-171 . -900) 169672) ((-781 . -1237) T) ((-689 . -1237) T) ((-1287 . -526) 169605) ((-1271 . -660) 169502) ((-1100 . -234) 169375) ((-499 . -1132) T) ((-365 . -1120) T) ((-219 . -1132) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1058) 169271) ((-304 . -910) 169228) ((-329 . -861) T) ((-1250 . -660) 169036) ((-885 . -806) 169015) ((-885 . -803) 168994) ((-885 . -738) T) ((-499 . -23) T) ((-370 . -234) 168967) ((-364 . -234) 168940) ((-356 . -234) 168913) ((-176 . -464) T) ((-86 . -453) T) ((-224 . -319) 168851) ((-86 . -407) T) ((-225 . -625) 168833) ((-108 . -234) 168820) ((-219 . -23) T) ((-1311 . -1304) 168799) ((-689 . -1058) 168783) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-1260 . -1237) T) ((-137 . -482) 168738) ((-868 . -1237) T) ((-666 . -658) 168697) ((-48 . -1120) T) ((-724 . -272) 168681) ((-724 . -232) 168665) ((-884 . -916) NIL) ((-583 . -1237) T) ((-1260 . -900) NIL) ((-903 . -102) T) ((-899 . -102) T) ((-400 . -1120) T) ((-171 . -388) 168649) ((-171 . -349) 168633) ((-1260 . -1058) 168513) ((-868 . -1058) 168409) ((-1162 . -102) T) ((-1019 . -918) 168332) ((-674 . -804) 168311) ((-665 . -132) T) ((-674 . -807) 168290) ((-118 . -526) 168198) ((-583 . -1058) 168180) ((-304 . -1294) 168150) ((-1187 . -863) NIL) ((-879 . -102) T) ((-981 . -568) 168129) ((-1231 . -1076) 168012) ((-1023 . -1071) 167957) ((-494 . -651) 167863) ((-922 . -1120) T) ((-1044 . -729) 167800) ((-723 . -1076) 167765) ((-1023 . -652) 167710) ((-629 . -102) T) ((-614 . -34) T) ((-1167 . -1237) T) ((-1231 . -111) 167579) ((-486 . -660) 167476) ((-365 . -729) 167421) ((-171 . -916) 167380) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 167336) ((-1316 . -1078) T) ((-1260 . -388) 167320) ((-430 . -1241) 167298) ((-1138 . -625) 167280) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1250 . -803) 167233) ((-1250 . -806) 167186) ((-1271 . -738) T) ((-1250 . -738) T) ((-48 . -729) 167151) ((-227 . -1042) T) ((-1273 . -423) 167117) ((-1260 . -916) 167060) ((-362 . -1294) 167037) ((-1231 . -628) 166919) ((-730 . -738) T) ((-343 . -625) 166901) ((-532 . -863) 166880) ((-1133 . -234) 166771) ((-112 . -625) 166753) ((-112 . -626) 166735) ((-730 . -485) T) ((-723 . -628) 166685) ((-1310 . -1071) 166669) ((-494 . -25) 166502) ((-128 . -501) 166486) ((-122 . -501) 166470) ((-494 . -21) 166381) ((-1310 . -652) 166351) ((-635 . -300) T) ((-598 . -1076) 166326) ((-449 . -1120) T) ((-1082 . -317) T) ((-118 . -300) T) ((-1124 . -102) T) ((-1023 . -102) T) ((-598 . -111) 166294) ((-1231 . -1069) T) ((-1162 . -319) 166232) ((-1082 . -1042) T) ((-1074 . -25) T) ((-66 . -1237) T) ((-906 . -1237) T) ((-1074 . -21) T) ((-723 . -1069) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1044 . -174) T) ((-723 . -248) T) ((-1082 . -557) T) ((-724 . -658) 166142) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 166124) ((-419 . -1071) 166076) ((-406 . -625) 166058) ((-1140 . -860) T) ((-486 . -738) T) ((-906 . -1058) 166026) ((-419 . -652) 165978) ((-108 . -861) T) ((-670 . -1076) 165962) ((-499 . -132) T) ((-1273 . -1078) T) ((-219 . -132) T) ((-1177 . -102) 165912) ((-99 . -1120) T) ((-245 . -863) 165863) ((-250 . -678) 165847) ((-250 . -663) 165831) ((-670 . -111) 165810) ((-598 . -628) 165794) ((-326 . -423) 165778) ((-250 . -384) 165762) ((-1179 . -240) 165709) ((-1019 . -272) 165693) ((-1019 . -232) 165677) ((-74 . -1237) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1310 . -102) T) ((-1218 . -1237) T) ((-1217 . -628) 165659) ((-1108 . -1237) T) ((-1107 . -1076) 165502) ((-1096 . -1237) T) ((-273 . -927) 165481) ((-253 . -927) 165460) ((-794 . -1076) 165283) ((-792 . -1076) 165126) ((-620 . -1237) T) ((-1184 . -625) 165108) ((-1107 . -111) 164937) ((-1066 . -102) T) ((-487 . -1237) T) ((-473 . -1076) 164908) ((-466 . -1076) 164751) ((-676 . -660) 164735) ((-884 . -317) T) ((-794 . -111) 164544) ((-792 . -111) 164373) ((-366 . -660) 164325) ((-363 . -660) 164277) ((-355 . -660) 164229) ((-273 . -660) 164118) ((-253 . -660) 164007) ((-1178 . -861) T) ((-1108 . -1058) 163991) ((-1096 . -1058) 163968) ((-1024 . -863) T) ((-473 . -111) 163929) ((-466 . -111) 163758) ((-1020 . -34) T) ((-991 . -863) T) ((-984 . -625) 163740) ((-976 . -1237) T) ((-127 . -1030) 163724) ((-981 . -1132) T) ((-884 . -1042) NIL) ((-747 . -1132) T) ((-727 . -1132) T) ((-670 . -628) 163642) ((-1287 . -501) 163626) ((-1204 . -1237) T) ((-1203 . -1237) T) ((-1162 . -38) 163586) ((-981 . -23) T) ((-928 . -660) 163551) ((-878 . -1120) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1071) 163535) ((-619 . -1071) 163519) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 163503) ((-110 . -673) T) ((-619 . -652) 163487) ((-593 . -1076) 163452) ((-530 . -1076) 163397) ((-229 . -57) 163355) ((-465 . -23) T) ((-419 . -102) T) ((-1202 . -1237) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-879 . -38) 163325) ((-1107 . -628) 163061) ((-593 . -111) 163017) ((-530 . -111) 162946) ((-430 . -1132) T) ((-326 . -1078) 162836) ((-323 . -1078) T) ((-129 . -1237) T) ((-131 . -1237) T) ((-794 . -628) 162584) ((-792 . -628) 162350) ((-670 . -1069) T) ((-1316 . -1120) T) ((-466 . -628) 162135) ((-171 . -317) 162066) ((-430 . -23) T) ((-40 . -625) 162048) ((-40 . -626) 162032) ((-108 . -1012) 162014) ((-117 . -882) 161998) ((-661 . -628) 161982) ((-48 . -526) 161948) ((-1223 . -1030) 161932) ((-1201 . -625) 161899) ((-1209 . -34) T) ((-972 . -625) 161865) ((-939 . -625) 161847) ((-1133 . -861) 161798) ((-783 . -625) 161780) ((-684 . -625) 161762) ((-529 . -1237) T) ((-1260 . -317) 161741) ((-1177 . -319) 161679) ((-1161 . -34) T) ((-491 . -34) T) ((-1112 . -1237) T) ((-489 . -464) T) ((-1054 . -1237) T) ((-1107 . -1069) T) ((-50 . -628) 161648) ((-794 . -1069) T) ((-792 . -1069) T) ((-659 . -240) 161632) ((-644 . -240) 161578) ((-1198 . -21) T) ((-593 . -628) 161528) ((-530 . -628) 161458) ((-494 . -234) 161349) ((-1198 . -25) T) ((-1107 . -336) 161310) ((-466 . -1069) T) ((-1107 . -238) 161289) ((-794 . -336) 161266) ((-794 . -238) T) ((-792 . -336) 161238) ((-743 . -1241) 161217) ((-531 . -34) T) ((-337 . -663) 161201) ((-528 . -34) T) ((-59 . -34) T) ((-509 . -34) T) ((-508 . -34) T) ((-466 . -336) 161180) ((-337 . -384) 161164) ((-372 . -1237) T) ((-332 . -1237) T) ((-1023 . -1172) NIL) ((-743 . -568) 161095) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1237) T) ((-1299 . -21) T) ((-1066 . -319) 161003) ((-1299 . -25) T) ((-919 . -1120) 160981) ((-830 . -234) 160968) ((-50 . -1069) T) ((-1194 . -568) 160947) ((-1193 . -1241) 160926) ((-1193 . -568) 160877) ((-1187 . -1241) 160856) ((-1187 . -568) 160807) ((-1044 . -300) T) ((-593 . -1069) T) ((-530 . -1069) T) ((-1023 . -38) 160752) ((-372 . -1058) 160736) ((-332 . -1058) 160720) ((-1019 . -658) 160643) ((-390 . -900) 160625) ((-848 . -1237) T) ((-839 . -1237) T) ((-837 . -1237) T) ((-811 . -1132) T) ((-928 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1146 . -568) 160604) ((-365 . -300) T) ((-659 . -707) 160588) ((-390 . -1058) 160548) ((-304 . -1071) 160469) ((-350 . -910) 160448) ((-1140 . -1078) T) ((-103 . -126) 160432) ((-304 . -652) 160374) ((-811 . -23) T) ((-1309 . -1304) 160350) ((-1307 . -1304) 160329) ((-1287 . -296) 160281) ((-419 . -319) 160246) ((-1273 . -1120) T) ((-1162 . -918) 160169) ((-883 . -625) 160151) ((-848 . -1058) 160120) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 160102) ((-507 . -1022) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -861) T) ((-666 . -423) 160086) ((-682 . -237) 160037) ((-225 . -628) 159999) ((-110 . -861) T) ((-665 . -21) T) ((-665 . -25) T) ((-1310 . -38) 159969) ((-118 . -296) 159920) ((-1287 . -19) 159904) ((-1251 . -863) NIL) ((-1287 . -616) 159881) ((-1300 . -1120) T) ((-362 . -1071) 159826) ((-1097 . -1120) T) ((-1007 . -1120) T) ((-981 . -132) T) ((-829 . -234) 159813) ((-749 . -1120) T) ((-362 . -652) 159758) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1172) 159736) ((-225 . -1069) T) ((-304 . -102) 159518) ((-142 . -1120) T) ((-711 . -1022) T) ((-1125 . -296) 159474) ((-91 . -1237) T) ((-128 . -625) 159406) ((-122 . -625) 159338) ((-1316 . -174) T) ((-1193 . -374) 159317) ((-1187 . -374) 159296) ((-326 . -1120) T) ((-430 . -132) T) ((-323 . -1120) T) ((-419 . -38) 159248) ((-1153 . -102) T) ((-1273 . -729) 159140) ((-1155 . -1282) T) ((-1116 . -1237) T) ((-1110 . -1237) T) ((-666 . -1078) T) ((-1093 . -1237) T) ((-1086 . -1237) T) ((-1056 . -1237) T) ((-1039 . -1237) T) ((-329 . -146) 159119) ((-329 . -148) 159098) ((-140 . -1120) T) ((-137 . -1120) T) ((-115 . -1120) T) ((-871 . -102) T) ((-638 . -1237) T) ((-495 . -1237) T) ((-592 . -625) 159080) ((-576 . -626) 158979) ((-576 . -625) 158961) ((-507 . -625) 158943) ((-507 . -626) 158888) ((-497 . -23) T) ((-220 . -1237) T) ((-494 . -861) 158839) ((-499 . -651) 158821) ((-983 . -625) 158803) ((-1023 . -918) 158712) ((-219 . -651) 158694) ((-227 . -416) T) ((-674 . -660) 158678) ((-55 . -625) 158660) ((-1192 . -938) 158639) ((-743 . -1132) T) ((-527 . -1237) T) ((-522 . -1237) T) ((-520 . -1237) T) ((-362 . -102) T) ((-1236 . -1103) T) ((-1140 . -856) T) ((-830 . -861) T) ((-743 . -23) T) ((-354 . -1076) 158584) ((-1167 . -107) 158568) ((-1288 . -625) 158550) ((-1194 . -23) T) ((-1194 . -1132) T) ((-1193 . -1132) T) ((-1193 . -23) T) ((-527 . -1058) 158534) ((-1187 . -1132) T) ((-1146 . -1132) T) ((-354 . -111) 158463) ((-1024 . -1241) T) ((-127 . -1237) T) ((-932 . -1241) T) ((-1187 . -23) T) ((-1162 . -272) 158447) ((-706 . -296) NIL) ((-726 . -1237) T) ((-1162 . -232) 158431) ((-1146 . -23) T) ((-1095 . -1120) T) ((-1024 . -568) T) ((-932 . -568) T) ((-255 . -1237) T) ((-189 . -1237) T) ((-163 . -1237) T) ((-158 . -1237) T) ((-254 . -625) 158413) ((-827 . -237) 158310) ((-811 . -132) T) ((-722 . -625) 158292) ((-326 . -729) 158202) ((-323 . -729) 158131) ((-711 . -625) 158113) ((-711 . -626) 158058) ((-419 . -412) 158042) ((-450 . -1120) T) ((-499 . -25) T) ((-499 . -21) T) ((-1140 . -1120) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 158026) ((-726 . -1058) 157995) ((-1287 . -625) 157907) ((-1287 . -626) 157868) ((-1273 . -174) T) ((-1210 . -625) 157850) ((-250 . -34) T) ((-354 . -628) 157780) ((-406 . -628) 157762) ((-944 . -994) T) ((-1223 . -1237) T) ((-674 . -803) 157741) ((-674 . -806) 157720) ((-410 . -407) T) ((-535 . -102) 157670) ((-1243 . -1237) T) ((-1055 . -1120) T) ((-419 . -918) 157593) ((-224 . -1015) 157577) ((-850 . -1237) T) ((-516 . -102) T) ((-635 . -625) 157559) ((-45 . -861) NIL) ((-635 . -626) 157536) ((-1055 . -622) 157511) ((-919 . -526) 157444) ((-329 . -237) 157396) ((-354 . -1069) T) ((-118 . -626) NIL) ((-118 . -625) 157378) ((-885 . -1237) T) ((-682 . -429) 157362) ((-682 . -1143) 157307) ((-512 . -152) 157289) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1076) 157234) ((-885 . -898) 157218) ((-885 . -900) 157143) ((-724 . -1078) T) ((-706 . -1022) NIL) ((-1271 . -47) 157113) ((-1250 . -47) 157090) ((-1161 . -1030) 157061) ((-1140 . -729) 157048) ((-3 . |UnionCategory|) T) ((-1125 . -625) 157030) ((-1100 . -148) 157009) ((-1100 . -146) 156960) ((-1024 . -374) T) ((-984 . -628) 156944) ((-227 . -938) T) ((-40 . -111) 156873) ((-885 . -1058) 156737) ((-1023 . -232) 156714) ((-1023 . -272) 156691) ((-713 . -1071) 156678) ((-932 . -374) T) ((-713 . -652) 156665) ((-329 . -1225) 156631) ((-390 . -317) T) ((-329 . -1222) 156597) ((-326 . -174) 156576) ((-323 . -174) T) ((-620 . -1213) 156552) ((-593 . -1306) 156539) ((-530 . -1306) 156516) ((-117 . -1071) 156503) ((-370 . -148) 156482) ((-370 . -146) 156433) ((-364 . -148) 156412) ((-364 . -146) 156363) ((-356 . -148) 156342) ((-117 . -652) 156329) ((-356 . -146) 156280) ((-329 . -35) 156246) ((-487 . -1213) 156225) ((0 . |EnumerationCategory|) T) ((-329 . -95) 156191) ((-390 . -1042) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 156141) ((-666 . -1120) T) ((-620 . -107) 156088) ((-497 . -132) T) ((-487 . -107) 156038) ((-245 . -1132) 156016) ((-31 . -1237) T) ((-885 . -388) 156000) ((-885 . -349) 155984) ((-245 . -23) 155836) ((-40 . -628) 155766) ((-1300 . -526) 155699) ((-1082 . -938) T) ((-1082 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1279 . -568) 155678) ((-1272 . -1241) 155657) ((-1272 . -568) 155608) ((-1271 . -1237) T) ((-1251 . -1241) 155587) ((-362 . -1172) T) ((-337 . -34) T) ((-44 . -429) 155571) ((-1201 . -628) 155507) ((-886 . -1237) T) ((-402 . -756) 155491) ((-1251 . -568) 155442) ((-1250 . -1237) T) ((-1162 . -658) 155401) ((-743 . -132) T) ((-684 . -628) 155385) ((-1250 . -900) 155258) ((-1250 . -898) 155228) ((-1194 . -132) T) ((-1193 . -132) T) ((-1187 . -132) T) ((-1146 . -132) T) ((-321 . -1103) T) ((-1044 . -1022) T) ((-749 . -526) 155161) ((-1024 . -23) T) ((-1024 . -1132) T) ((-907 . -1120) T) ((-145 . -856) T) ((-1023 . -360) NIL) ((-703 . -625) 155143) ((-961 . -863) 155122) ((-535 . -319) 155060) ((-991 . -23) T) ((-142 . -526) NIL) ((-879 . -658) 155005) ((-932 . -1132) T) ((-932 . -23) T) ((-885 . -916) 154964) ((-362 . -38) 154929) ((-883 . -1076) 154916) ((-341 . -863) T) ((-82 . -625) 154898) ((-40 . -1069) T) ((-883 . -111) 154883) ((-730 . -1237) T) ((-713 . -102) T) ((-706 . -625) 154865) ((-614 . -1237) T) ((-608 . -568) 154844) ((-439 . -1132) T) ((-350 . -1071) 154828) ((-215 . -1120) T) ((-176 . -1071) 154760) ((-486 . -47) 154730) ((-40 . -238) 154702) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 154681) ((-350 . -652) 154665) ((-706 . -626) 154573) ((-326 . -526) 154539) ((-176 . -652) 154471) ((-323 . -526) 154363) ((-499 . -234) 154350) ((-1271 . -1058) 154334) ((-1250 . -1058) 154120) ((-1019 . -423) 154104) ((-219 . -234) 154091) ((-439 . -23) T) ((-1140 . -174) T) ((-1273 . -300) T) ((-666 . -729) 154061) ((-145 . -1120) T) ((-48 . -1022) T) ((-419 . -272) 154045) ((-419 . -232) 154029) ((-305 . -240) 153979) ((-884 . -938) T) ((-884 . -832) NIL) ((-883 . -628) 153951) ((-258 . -863) 153902) ((-257 . -863) 153853) ((-877 . -861) T) ((-1250 . -349) 153823) ((-1250 . -388) 153793) ((-1100 . -237) 153672) ((-224 . -1141) 153656) ((-304 . -918) 153615) ((-1287 . -298) 153592) ((-370 . -237) 153571) ((-364 . -237) 153550) ((-486 . -1237) T) ((-356 . -237) 153529) ((-108 . -237) T) ((-1231 . -660) 153454) ((-1023 . -658) 153384) ((-981 . -21) T) ((-981 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 153349) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1019 . -1078) T) ((-883 . -1069) T) ((-786 . -102) T) ((-1272 . -374) 153328) ((-1271 . -916) 153234) ((-1251 . -374) 153213) ((-1250 . -916) 153064) ((-1196 . -1237) T) ((-1044 . -625) 153046) ((-419 . -840) 152999) ((-1194 . -505) 152965) ((-171 . -938) 152896) ((-1193 . -505) 152862) ((-1187 . -505) 152828) ((-724 . -1120) T) ((-1146 . -505) 152794) ((-592 . -1076) 152781) ((-576 . -1076) 152768) ((-507 . -1076) 152733) ((-326 . -300) 152712) ((-323 . -300) T) ((-365 . -625) 152694) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 152673) ((-592 . -111) 152658) ((-576 . -111) 152643) ((-507 . -111) 152599) ((-1196 . -900) 152566) ((-919 . -501) 152550) ((-48 . -625) 152532) ((-48 . -626) 152477) ((-245 . -132) 152348) ((-1310 . -658) 152307) ((-1260 . -938) 152286) ((-828 . -1241) 152265) ((-400 . -502) 152246) ((-1055 . -526) 152090) ((-400 . -625) 152056) ((-828 . -568) 151987) ((-598 . -660) 151962) ((-273 . -47) 151934) ((-253 . -47) 151891) ((-543 . -521) 151868) ((-592 . -628) 151840) ((-576 . -628) 151812) ((-507 . -628) 151745) ((-1094 . -1237) T) ((-1020 . -1237) T) ((-1279 . -23) T) ((-1279 . -1132) T) ((-1272 . -1132) T) ((-1272 . -23) T) ((-1251 . -1132) T) ((-711 . -1076) 151710) ((-1251 . -23) T) ((-1231 . -738) T) ((-1140 . -300) T) ((-1133 . -237) 151607) ((-1024 . -132) T) ((-1023 . -381) 151579) ((-112 . -379) T) ((-486 . -916) 151485) ((-991 . -132) T) ((-922 . -625) 151467) ((-55 . -628) 151449) ((-91 . -107) 151433) ((-932 . -132) T) ((-923 . -861) 151384) ((-713 . -1172) T) ((-711 . -111) 151340) ((-855 . -658) 151257) ((-608 . -1132) T) ((-607 . -1132) T) ((-724 . -729) 151086) ((-723 . -738) T) ((-811 . -25) T) ((-811 . -21) T) ((-499 . -861) T) ((-609 . -1237) T) ((-597 . -1237) T) ((-592 . -1069) T) ((-219 . -861) T) ((-419 . -658) 151023) ((-576 . -1069) T) ((-548 . -1237) T) ((-507 . -1069) T) ((-608 . -23) T) ((-354 . -1306) 151000) ((-329 . -464) 150979) ((-350 . -319) 150966) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 150940) ((-250 . -1030) 150924) ((-885 . -317) T) ((-1311 . -1301) 150908) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 150895) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1300 . -501) 150879) ((-1283 . -1237) T) ((-1170 . -240) 150829) ((-1107 . -927) 150808) ((-117 . -38) 150795) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-885 . -1042) 150773) ((-676 . -1237) T) ((-657 . -1237) T) ((-794 . -927) 150752) ((-792 . -927) 150731) ((-1209 . -1237) T) ((-366 . -1237) T) ((-363 . -1237) T) ((-355 . -1237) T) ((-273 . -1237) T) ((-253 . -1237) T) ((-466 . -927) 150710) ((-749 . -501) 150694) ((-1107 . -660) 150583) ((-711 . -628) 150518) ((-794 . -660) 150407) ((-635 . -1076) 150394) ((-491 . -1237) T) ((-354 . -379) T) ((-142 . -501) 150376) ((-792 . -660) 150265) ((-1161 . -1237) T) ((-561 . -861) T) ((-473 . -660) 150236) ((-273 . -900) 150095) ((-253 . -900) NIL) ((-118 . -1076) 150040) ((-466 . -660) 149929) ((-676 . -1058) 149906) ((-635 . -111) 149891) ((-402 . -1071) 149875) ((-366 . -1058) 149859) ((-363 . -1058) 149843) ((-355 . -1058) 149827) ((-273 . -1058) 149671) ((-253 . -1058) 149547) ((-928 . -1237) T) ((-118 . -111) 149476) ((-59 . -1237) T) ((-402 . -652) 149460) ((-633 . -1071) 149444) ((-531 . -1237) T) ((-528 . -1237) T) ((-509 . -1237) T) ((-508 . -1237) T) ((-449 . -625) 149426) ((-446 . -625) 149408) ((-633 . -652) 149392) ((-3 . -102) T) ((-1047 . -1230) 149361) ((-845 . -102) T) ((-701 . -57) 149319) ((-711 . -1069) T) ((-647 . -658) 149288) ((-619 . -658) 149257) ((-50 . -660) 149231) ((-299 . -464) T) ((-488 . -1230) 149200) ((0 . -102) T) ((-593 . -660) 149165) ((-530 . -660) 149110) ((-49 . -102) T) ((-928 . -1058) 149097) ((-711 . -248) T) ((-1100 . -421) 149076) ((-743 . -651) 149024) ((-1019 . -1120) T) ((-724 . -174) 148915) ((-635 . -628) 148810) ((-499 . -1012) 148792) ((-430 . -234) 148737) ((-273 . -388) 148721) ((-253 . -388) 148705) ((-411 . -1120) T) ((-1046 . -102) 148683) ((-350 . -38) 148667) ((-219 . -1012) 148649) ((-118 . -628) 148579) ((-176 . -38) 148511) ((-1271 . -317) 148490) ((-1250 . -317) 148469) ((-670 . -738) T) ((-99 . -625) 148451) ((-489 . -1071) 148416) ((-1187 . -651) 148368) ((-489 . -652) 148333) ((-656 . -863) 148312) ((-497 . -25) T) ((-497 . -21) T) ((-1250 . -1042) 148264) ((-1077 . -1237) T) ((-1 . -1237) T) ((-635 . -1069) T) ((-390 . -416) T) ((-402 . -102) T) ((-1125 . -630) 148179) ((-273 . -916) 148125) ((-253 . -916) 148102) ((-118 . -1069) T) ((-1107 . -738) T) ((-828 . -1132) T) ((-831 . -863) T) ((-635 . -238) 148081) ((-633 . -102) T) ((-523 . -1237) T) ((-519 . -1237) T) ((-794 . -738) T) ((-792 . -738) T) ((-1242 . -861) T) ((-425 . -1132) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-398 . -863) 148060) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -910) 147981) ((-1097 . -296) 147960) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 147942) ((-227 . -863) T) ((-706 . -1076) 147892) ((-1312 . -102) T) ((-1279 . -132) T) ((-1272 . -132) T) ((-1251 . -132) T) ((-1194 . -25) T) ((-1162 . -423) 147876) ((-647 . -378) 147808) ((-619 . -378) 147740) ((-1177 . -1169) 147724) ((-103 . -1120) 147702) ((-1194 . -21) T) ((-1193 . -21) T) ((-878 . -625) 147684) ((-1019 . -729) 147632) ((-225 . -660) 147599) ((-706 . -111) 147533) ((-50 . -738) T) ((-1193 . -25) T) ((-362 . -360) T) ((-1187 . -21) T) ((-1100 . -464) 147484) ((-1187 . -25) T) ((-724 . -526) 147431) ((-593 . -738) T) ((-530 . -738) T) ((-1146 . -21) T) ((-1146 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 147166) ((-494 . -237) 147063) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 147042) ((-1245 . -102) T) ((-323 . -296) 146977) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 146961) ((-1316 . -625) 146943) ((-1316 . -626) 146925) ((-1100 . -414) 146904) ((-1055 . -501) 146835) ((-137 . -296) 146812) ((-576 . -807) T) ((-576 . -804) T) ((-1083 . -240) 146758) ((-1082 . -863) T) ((-725 . -863) T) ((-370 . -414) 146709) ((-364 . -414) 146660) ((-356 . -414) 146611) ((-1302 . -1132) T) ((-1311 . -1071) 146595) ((-392 . -1071) 146579) ((-1311 . -652) 146549) ((-830 . -237) T) ((-392 . -652) 146519) ((-706 . -628) 146454) ((-1302 . -23) T) ((-1289 . -102) T) ((-350 . -918) 146435) ((-177 . -625) 146417) ((-1162 . -1078) T) ((-559 . -379) T) ((-682 . -756) 146401) ((-1198 . -146) 146380) ((-1198 . -148) 146359) ((-1166 . -1120) T) ((-1166 . -1091) 146328) ((-69 . -1237) T) ((-1044 . -1076) 146265) ((-362 . -658) 146195) ((-879 . -1078) T) ((-245 . -651) 146101) ((-706 . -1069) T) ((-365 . -1076) 146046) ((-61 . -1237) T) ((-1044 . -111) 145962) ((-919 . -625) 145873) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 145852) ((-711 . -807) T) ((-711 . -804) T) ((-1023 . -423) 145829) ((-365 . -111) 145758) ((-390 . -938) T) ((-419 . -860) 145737) ((-724 . -300) 145648) ((-225 . -738) T) ((-1279 . -505) 145614) ((-1272 . -505) 145580) ((-1251 . -505) 145546) ((-590 . -1120) T) ((-326 . -1022) 145525) ((-224 . -1120) 145503) ((-1244 . -856) T) ((-329 . -993) 145465) ((-105 . -102) T) ((-48 . -1076) 145430) ((-884 . -863) NIL) ((-1311 . -102) T) ((-392 . -102) T) ((-1273 . -625) 145412) ((-1153 . -1154) 145396) ((-1024 . -651) 145378) ((-889 . -1237) T) ((-48 . -111) 145334) ((-693 . -1237) T) ((-688 . -1237) T) ((-674 . -1237) T) ((-827 . -910) 145201) ((-490 . -1237) T) ((-250 . -1237) T) ((-543 . -102) T) ((-512 . -102) T) ((-153 . -1294) 145185) ((-139 . -1237) T) ((-138 . -1237) T) ((-134 . -1237) T) ((-1236 . -102) T) ((-1044 . -628) 145122) ((-829 . -237) T) ((-1192 . -1241) 145101) ((-365 . -628) 145031) ((-1145 . -1241) 145010) ((-245 . -25) 144843) ((-245 . -21) 144754) ((-128 . -120) 144738) ((-122 . -120) 144722) ((-44 . -756) 144706) ((-1192 . -568) 144617) ((-1145 . -568) 144548) ((-1244 . -1120) T) ((-558 . -863) T) ((-1055 . -296) 144523) ((-1186 . -1103) T) ((-1014 . -1103) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-1114 . -1237) 144501) ((-258 . -1132) 144479) ((-257 . -1132) 144457) ((-1044 . -1069) T) ((-1023 . -1078) T) ((-48 . -628) 144390) ((-354 . -660) 144335) ((-1300 . -625) 144297) ((-1300 . -626) 144258) ((-633 . -38) 144242) ((-1194 . -234) 144195) ((-1193 . -234) 144141) ((-1097 . -625) 144123) ((-1044 . -248) T) ((-365 . -1069) T) ((-827 . -1294) 144093) ((-258 . -23) T) ((-257 . -23) T) ((-1007 . -625) 144075) ((-1187 . -234) 143892) ((-1179 . -152) 143839) ((-749 . -626) 143800) ((-749 . -625) 143782) ((-1024 . -25) T) ((-811 . -861) 143761) ((-1019 . -526) 143673) ((-689 . -863) T) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 143654) ((-928 . -317) T) ((-142 . -625) 143636) ((-142 . -626) 143595) ((-329 . -910) 143499) ((-1024 . -21) T) ((-991 . -25) T) ((-932 . -21) T) ((-932 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 143483) ((-48 . -1069) T) ((-1309 . -1301) 143467) ((-1307 . -1301) 143451) ((-1055 . -616) 143426) ((-326 . -626) 143287) ((-326 . -625) 143269) ((-323 . -626) NIL) ((-323 . -625) 143251) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 143212) ((-562 . -240) 143162) ((-583 . -863) T) ((-140 . -625) 143129) ((-137 . -625) 143111) ((-115 . -625) 143093) ((-489 . -38) 143058) ((-1311 . -1308) 143037) ((-1302 . -132) T) ((-1310 . -1078) T) ((-1102 . -102) T) ((-88 . -1237) T) ((-512 . -319) NIL) ((-1020 . -107) 143021) ((-903 . -1120) T) ((-899 . -1120) T) ((-1287 . -663) 143005) ((-1287 . -384) 142989) ((-337 . -1237) T) ((-605 . -861) T) ((-1162 . -1120) T) ((-1162 . -1073) 142929) ((-103 . -526) 142862) ((-945 . -625) 142844) ((-354 . -738) T) ((-30 . -625) 142826) ((-879 . -1120) T) ((-855 . -1078) 142805) ((-40 . -660) 142712) ((-227 . -1241) T) ((-419 . -1078) T) ((-1178 . -152) 142694) ((-1019 . -300) 142645) ((-887 . -1237) T) ((-629 . -1120) T) ((-227 . -568) T) ((-329 . -1268) 142629) ((-329 . -1265) 142599) ((-713 . -658) 142571) ((-1209 . -1213) 142550) ((-1095 . -625) 142532) ((-1209 . -107) 142482) ((-659 . -152) 142466) ((-644 . -152) 142412) ((-117 . -658) 142384) ((-491 . -1213) 142363) ((-499 . -148) T) ((-499 . -146) NIL) ((-1140 . -626) 142278) ((-450 . -625) 142260) ((-219 . -148) T) ((-219 . -146) NIL) ((-1140 . -625) 142242) ((-130 . -102) T) ((-52 . -102) T) ((-1251 . -651) 142194) ((-491 . -107) 142144) ((-1013 . -23) T) ((-1311 . -38) 142114) ((-1192 . -1132) T) ((-1145 . -1132) T) ((-1082 . -1241) T) ((-245 . -234) 142005) ((-321 . -102) T) ((-867 . -1132) T) ((-970 . -1241) 141984) ((-493 . -1241) 141963) ((-1082 . -568) T) ((-970 . -568) 141894) ((-1192 . -23) T) ((-1171 . -1103) T) ((-1145 . -23) T) ((-867 . -23) T) ((-493 . -568) 141825) ((-1162 . -729) 141757) ((-682 . -1071) 141741) ((-1166 . -526) 141674) ((-682 . -652) 141658) ((-1055 . -626) NIL) ((-1055 . -625) 141640) ((-96 . -1103) T) ((-1316 . -1076) 141627) ((-879 . -729) 141597) ((-1316 . -111) 141582) ((-1231 . -47) 141551) ((-1187 . -861) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1124 . -1120) T) ((-1023 . -1120) T) ((-62 . -625) 141533) ((-1100 . -910) 141402) ((-1044 . -804) T) ((-1044 . -807) T) ((-1279 . -25) T) ((-1279 . -21) T) ((-1272 . -21) T) ((-1272 . -25) T) ((-883 . -660) 141389) ((-1251 . -21) T) ((-1251 . -25) T) ((-1047 . -152) 141373) ((-1024 . -234) 141360) ((-885 . -832) 141339) ((-885 . -938) T) ((-724 . -296) 141266) ((-608 . -21) T) ((-350 . -658) 141225) ((-108 . -910) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 141142) ((-40 . -738) T) ((-224 . -526) 141075) ((-607 . -25) T) ((-488 . -152) 141059) ((-475 . -152) 141043) ((-185 . -1237) T) ((-939 . -806) T) ((-939 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1120) T) ((-514 . -1120) T) ((-783 . -738) T) ((-227 . -374) T) ((-1309 . -1071) 141027) ((-1307 . -1071) 141011) ((-1309 . -652) 140981) ((-1177 . -1120) 140959) ((-884 . -1241) T) ((-1307 . -652) 140929) ((-1108 . -863) T) ((-666 . -625) 140911) ((-884 . -568) T) ((-706 . -379) NIL) ((-44 . -1071) 140895) ((-1316 . -628) 140877) ((-1310 . -1120) T) ((-682 . -102) T) ((-370 . -1294) 140861) ((-364 . -1294) 140845) ((-44 . -652) 140829) ((-356 . -1294) 140813) ((-560 . -102) T) ((-1231 . -1237) T) ((-532 . -861) 140792) ((-723 . -1237) T) ((-976 . -863) 140771) ((-499 . -237) T) ((-219 . -237) T) ((-1066 . -1120) T) ((-829 . -464) 140750) ((-153 . -1071) 140734) ((-1066 . -1091) 140663) ((-1047 . -996) 140632) ((-831 . -1132) T) ((-1023 . -729) 140577) ((-153 . -652) 140561) ((-398 . -1132) T) ((-488 . -996) 140530) ((-475 . -996) 140499) ((-1203 . -863) T) ((-110 . -152) 140481) ((-73 . -625) 140463) ((-907 . -625) 140445) ((-1202 . -863) T) ((-1100 . -736) 140424) ((-1316 . -1069) T) ((-828 . -651) 140372) ((-304 . -1078) 140314) ((-171 . -1241) 140219) ((-227 . -1132) T) ((-334 . -23) T) ((-1187 . -1012) 140171) ((-1273 . -1076) 140076) ((-855 . -1120) T) ((-129 . -863) T) ((-1146 . -752) 140055) ((-1271 . -938) 140034) ((-1250 . -938) 140013) ((-883 . -738) T) ((-171 . -568) 139924) ((-592 . -660) 139911) ((-576 . -660) 139883) ((-419 . -1120) T) ((-270 . -1120) T) ((-215 . -625) 139865) ((-507 . -660) 139815) ((-227 . -23) T) ((-1250 . -832) 139768) ((-1309 . -102) T) ((-503 . -1237) T) ((-365 . -1306) 139745) ((-1307 . -102) T) ((-1273 . -111) 139637) ((-1133 . -910) 139504) ((-827 . -1071) 139405) ((-827 . -652) 139327) ((-145 . -625) 139309) ((-1013 . -132) T) ((-44 . -102) T) ((-245 . -861) 139260) ((-598 . -1237) T) ((-1260 . -1241) 139239) ((-103 . -501) 139223) ((-1310 . -729) 139193) ((-1107 . -47) 139154) ((-1082 . -1132) T) ((-970 . -1132) T) ((-128 . -34) T) ((-122 . -34) T) ((-1260 . -568) 139065) ((-794 . -47) 139042) ((-792 . -47) 139014) ((-1217 . -1237) T) ((-1192 . -132) T) ((-365 . -379) T) ((-493 . -1132) T) ((-1145 . -132) T) ((-884 . -374) T) ((-466 . -47) 138993) ((-867 . -132) T) ((-332 . -863) 138972) ((-153 . -102) T) ((-1082 . -23) T) ((-970 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1162 . -526) 138905) ((-604 . -1103) T) ((-598 . -1058) 138889) ((-1273 . -628) 138763) ((-493 . -23) T) ((-362 . -1078) T) ((-390 . -863) T) ((-1231 . -916) 138744) ((-682 . -319) 138682) ((-1279 . -234) 138635) ((-1133 . -1294) 138605) ((-711 . -660) 138570) ((-1024 . -861) T) ((-1023 . -174) T) ((-981 . -146) 138549) ((-647 . -1120) T) ((-619 . -1120) T) ((-981 . -148) 138528) ((-747 . -148) 138507) ((-747 . -146) 138486) ((-670 . -1237) T) ((-991 . -861) T) ((-1272 . -234) 138432) ((-1251 . -234) 138249) ((-845 . -658) 138166) ((-486 . -938) 138145) ((-347 . -1237) T) ((-329 . -1071) 137980) ((-326 . -1076) 137890) ((-323 . -1076) 137819) ((-1019 . -296) 137777) ((-419 . -729) 137729) ((-329 . -652) 137570) ((-607 . -234) 137523) ((-713 . -860) T) ((-1273 . -1069) T) ((-326 . -111) 137419) ((-323 . -111) 137332) ((-97 . -1237) T) ((-982 . -102) T) ((-827 . -102) 137064) ((-724 . -626) NIL) ((-724 . -625) 137046) ((-1273 . -336) 136990) ((-670 . -1058) 136886) ((-1107 . -1237) T) ((-1055 . -298) 136861) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 136812) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1237) T) ((-792 . -1237) T) ((-1166 . -501) 136796) ((-473 . -1237) T) ((-466 . -1237) T) ((-1309 . -1308) 136772) ((-1107 . -900) NIL) ((-884 . -1132) T) ((-118 . -927) NIL) ((-1307 . -1308) 136751) ((-661 . -1237) T) ((-794 . -900) NIL) ((-792 . -900) 136610) ((-1302 . -25) T) ((-1302 . -21) T) ((-1234 . -102) 136588) ((-1126 . -407) T) ((-635 . -660) 136575) ((-466 . -900) NIL) ((-687 . -102) 136525) ((-1107 . -1058) 136352) ((-884 . -23) T) ((-794 . -1058) 136211) ((-792 . -1058) 136068) ((-118 . -660) 136013) ((-466 . -1058) 135889) ((-284 . -1237) T) ((-326 . -628) 135453) ((-323 . -628) 135336) ((-50 . -1237) T) ((-402 . -658) 135305) ((-661 . -1058) 135289) ((-639 . -102) T) ((-593 . -1237) T) ((-530 . -1237) T) ((-224 . -501) 135273) ((-1287 . -34) T) ((-633 . -658) 135232) ((-299 . -1071) 135219) ((-137 . -628) 135203) ((-299 . -652) 135190) ((-647 . -729) 135174) ((-619 . -729) 135158) ((-682 . -38) 135118) ((-329 . -102) T) ((-1140 . -1076) 135105) ((-85 . -625) 135087) ((-50 . -1058) 135071) ((-1107 . -388) 135055) ((-794 . -388) 135039) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-60 . -57) 135001) ((-593 . -1058) 134988) ((-530 . -1058) 134965) ((-173 . -1237) T) ((-334 . -132) T) ((-326 . -1069) 134855) ((-323 . -1069) T) ((-171 . -1132) T) ((-792 . -388) 134839) ((-45 . -152) 134789) ((-1024 . -1012) 134771) ((-466 . -388) 134755) ((-419 . -174) T) ((-326 . -248) 134734) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1120) 134516) ((-227 . -132) T) ((-1140 . -111) 134501) ((-171 . -23) T) ((-811 . -148) 134480) ((-811 . -146) 134459) ((-258 . -651) 134365) ((-257 . -651) 134271) ((-329 . -294) 134237) ((-1177 . -526) 134170) ((-489 . -658) 134120) ((-494 . -910) 133987) ((-1153 . -1120) T) ((-227 . -1080) T) ((-827 . -319) 133925) ((-1107 . -916) 133860) ((-794 . -916) 133803) ((-792 . -916) 133787) ((-1309 . -38) 133757) ((-1307 . -38) 133727) ((-1260 . -1132) T) ((-868 . -1132) T) ((-466 . -916) 133704) ((-871 . -1120) T) ((-1260 . -23) T) ((-1140 . -628) 133676) ((-1082 . -132) T) ((-868 . -23) T) ((-583 . -1132) T) ((-635 . -738) T) ((-522 . -863) T) ((-366 . -938) T) ((-363 . -938) T) ((-299 . -102) T) ((-355 . -938) T) ((-990 . -1103) T) ((-970 . -132) T) ((-828 . -234) 133621) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1066 . -526) 133522) ((-706 . -927) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 133473) ((-687 . -319) 133411) ((-225 . -1237) T) ((-647 . -773) T) ((-619 . -773) T) ((-1251 . -861) NIL) ((-1100 . -1071) 133321) ((-1023 . -300) T) ((-706 . -660) 133271) ((-258 . -25) T) ((-362 . -1120) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 133255) ((-2 . -102) T) ((-928 . -938) T) ((-1100 . -652) 133123) ((-494 . -1294) 133093) ((-1140 . -1069) T) ((-723 . -317) T) ((-370 . -1071) 133045) ((-364 . -1071) 132997) ((-356 . -1071) 132949) ((-370 . -652) 132901) ((-225 . -1058) 132878) ((-364 . -652) 132830) ((-108 . -1071) 132780) ((-356 . -652) 132732) ((-304 . -729) 132674) ((-713 . -1078) T) ((-499 . -464) T) ((-419 . -526) 132586) ((-108 . -652) 132536) ((-219 . -464) T) ((-1140 . -238) T) ((-305 . -152) 132486) ((-1019 . -626) 132447) ((-1019 . -625) 132429) ((-1009 . -625) 132411) ((-117 . -1078) T) ((-666 . -1076) 132395) ((-227 . -505) T) ((-411 . -625) 132377) ((-411 . -626) 132354) ((-1074 . -1294) 132324) ((-666 . -111) 132303) ((-682 . -918) 132226) ((-1162 . -501) 132210) ((-1311 . -658) 132169) ((-392 . -658) 132138) ((-63 . -453) T) ((-63 . -407) T) ((-1179 . -102) T) ((-884 . -132) T) ((-496 . -102) 132088) ((-1138 . -1237) T) ((-1243 . -863) T) ((-1316 . -379) T) ((-1100 . -102) T) ((-1081 . -102) T) ((-362 . -729) 132033) ((-885 . -863) 131984) ((-743 . -148) 131963) ((-743 . -146) 131942) ((-666 . -628) 131860) ((-1044 . -660) 131797) ((-535 . -1120) 131775) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1120) T) ((-365 . -660) 131720) ((-1192 . -651) 131668) ((-1145 . -651) 131616) ((-396 . -521) 131595) ((-845 . -860) 131574) ((-706 . -738) T) ((-390 . -1241) T) ((-343 . -1237) T) ((-1251 . -1012) 131526) ((-350 . -1078) T) ((-112 . -1237) T) ((-176 . -1078) T) ((-103 . -625) 131458) ((-1194 . -146) 131437) ((-1194 . -148) 131416) ((-390 . -568) T) ((-1193 . -148) 131395) ((-1193 . -146) 131374) ((-1187 . -146) 131281) ((-419 . -300) T) ((-1187 . -148) 131188) ((-1146 . -148) 131167) ((-1146 . -146) 131146) ((-329 . -38) 130987) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1069) T) ((-48 . -660) 130937) ((-1133 . -1071) 130838) ((-907 . -628) 130815) ((-1133 . -652) 130737) ((-1186 . -102) T) ((-1014 . -102) T) ((-1013 . -21) T) ((-128 . -1030) 130721) ((-122 . -1030) 130705) ((-1013 . -25) T) ((-919 . -120) 130689) ((-1178 . -102) T) ((-1260 . -132) T) ((-1250 . -863) 130588) ((-1192 . -25) T) ((-1192 . -21) T) ((-1179 . -319) 130383) ((-354 . -1237) T) ((-1145 . -25) T) ((-868 . -132) T) ((-406 . -1237) T) ((-1145 . -21) T) ((-867 . -25) T) ((-867 . -21) T) ((-794 . -317) 130362) ((-1177 . -501) 130346) ((-1170 . -152) 130296) ((-1166 . -625) 130258) ((-659 . -102) 130208) ((-644 . -102) T) ((-1166 . -626) 130169) ((-583 . -132) T) ((-633 . -860) 130148) ((-1044 . -803) T) ((-1044 . -806) T) ((-1044 . -738) T) ((-827 . -918) 130017) ((-724 . -1076) 129840) ((-614 . -863) 129819) ((-496 . -319) 129757) ((-465 . -429) 129727) ((-362 . -174) T) ((-299 . -38) 129714) ((-258 . -234) 129605) ((-257 . -234) 129496) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1058) 129473) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 129282) ((-365 . -738) T) ((-682 . -272) 129266) ((-682 . -232) 129250) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 129199) ((-1184 . -1237) T) ((-108 . -319) NIL) ((-72 . -407) T) ((-1133 . -102) 128931) ((-845 . -423) 128915) ((-1140 . -807) T) ((-1140 . -804) T) ((-713 . -1120) T) ((-590 . -625) 128897) ((-390 . -374) T) ((-171 . -505) 128875) ((-224 . -625) 128807) ((-135 . -1120) T) ((-117 . -1120) T) ((-984 . -1237) T) ((-48 . -738) T) ((-1066 . -501) 128772) ((-142 . -437) 128754) ((-142 . -379) T) ((-1047 . -102) T) ((-524 . -521) 128733) ((-724 . -628) 128489) ((-1244 . -625) 128471) ((-1201 . -1237) T) ((-1201 . -1058) 128407) ((-1194 . -237) 128366) ((-488 . -102) T) ((-475 . -102) T) ((-1193 . -237) 128318) ((-1187 . -237) 128141) ((-1054 . -1132) T) ((-329 . -918) 128047) ((-1196 . -863) T) ((-1194 . -35) 128013) ((-1194 . -95) 127979) ((-1194 . -1225) 127945) ((-1194 . -1222) 127911) ((-1193 . -1222) 127877) ((-1193 . -1225) 127843) ((-1193 . -95) 127809) ((-1193 . -35) 127775) ((-1187 . -1222) 127741) ((-1187 . -1225) 127707) ((-1178 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1100 . -1172) 127686) ((-40 . -1237) T) ((-1187 . -95) 127652) ((-1054 . -23) T) ((-1187 . -35) 127618) ((-583 . -505) T) ((-1146 . -35) 127584) ((-1146 . -95) 127550) ((-1146 . -1225) 127516) ((-1146 . -1222) 127482) ((-372 . -1132) T) ((-370 . -1172) 127461) ((-364 . -1172) 127440) ((-356 . -1172) 127419) ((-1124 . -296) 127375) ((-972 . -1237) T) ((-939 . -1237) T) ((-108 . -1172) T) ((-845 . -1078) 127354) ((-783 . -1237) T) ((-659 . -319) 127292) ((-644 . -319) 127143) ((-684 . -1237) T) ((-724 . -1069) T) ((-1082 . -651) 127125) ((-1100 . -38) 126993) ((-970 . -651) 126941) ((-1024 . -148) T) ((-1024 . -146) NIL) ((-390 . -1132) T) ((-334 . -25) T) ((-332 . -23) T) ((-961 . -861) 126920) ((-724 . -336) 126897) ((-493 . -651) 126845) ((-40 . -1058) 126733) ((-724 . -238) T) ((-713 . -729) 126720) ((-350 . -1120) T) ((-176 . -1120) T) ((-341 . -861) T) ((-430 . -464) 126670) ((-390 . -23) T) ((-370 . -38) 126635) ((-364 . -38) 126600) ((-356 . -38) 126565) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1132) T) ((-108 . -38) 126515) ((-839 . -1132) T) ((-786 . -1120) T) ((-117 . -729) 126502) ((-684 . -1058) 126486) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1177 . -296) 126438) ((-1133 . -319) 126376) ((-494 . -1071) 126277) ((-1122 . -240) 126261) ((-64 . -408) T) ((-64 . -407) T) ((-1171 . -102) T) ((-110 . -102) T) ((-494 . -652) 126183) ((-40 . -388) 126160) ((-96 . -102) T) ((-665 . -865) 126144) ((-1192 . -234) 126131) ((-1155 . -1103) T) ((-1082 . -21) T) ((-1082 . -25) T) ((-1074 . -1071) 126115) ((-827 . -272) 126084) ((-827 . -232) 126053) ((-970 . -25) T) ((-970 . -21) T) ((-1140 . -379) T) ((-1074 . -652) 125995) ((-633 . -1078) T) ((-1047 . -319) 125933) ((-903 . -625) 125915) ((-682 . -658) 125874) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1071) 125858) ((-899 . -625) 125840) ((-883 . -1237) T) ((-535 . -526) 125773) ((-258 . -861) 125724) ((-257 . -861) 125675) ((-396 . -652) 125645) ((-884 . -651) 125622) ((-488 . -319) 125560) ((-559 . -1237) T) ((-475 . -319) 125498) ((-362 . -300) T) ((-1177 . -1275) 125482) ((-1162 . -625) 125444) ((-1162 . -626) 125405) ((-1160 . -102) T) ((-1019 . -1076) 125301) ((-40 . -916) 125253) ((-1177 . -616) 125230) ((-1316 . -660) 125217) ((-1083 . -152) 125163) ((-499 . -910) NIL) ((-879 . -502) 125140) ((-1019 . -111) 125022) ((-885 . -1241) T) ((-219 . -910) NIL) ((-350 . -729) 125006) ((-879 . -625) 124968) ((-176 . -729) 124900) ((-885 . -568) T) ((-419 . -296) 124858) ((-245 . -237) 124755) ((-108 . -412) 124737) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 124719) ((-99 . -738) T) ((-494 . -102) 124451) ((-99 . -485) T) ((-117 . -174) T) ((-1309 . -658) 124410) ((-1307 . -658) 124369) ((-171 . -651) 124317) ((-1100 . -918) 124188) ((-1074 . -102) T) ((-1019 . -628) 124078) ((-884 . -25) T) ((-827 . -243) 124057) ((-884 . -21) T) ((-830 . -102) T) ((-44 . -658) 124000) ((-1024 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 123950) ((-128 . -1237) T) ((-122 . -1237) T) ((-108 . -918) NIL) ((-829 . -1071) 123901) ((-59 . -863) 123880) ((-829 . -652) 123822) ((-528 . -863) 123801) ((-508 . -863) 123780) ((-1054 . -132) T) ((-682 . -378) 123764) ((-153 . -658) 123723) ((-1316 . -738) T) ((-647 . -296) 123681) ((-619 . -296) 123639) ((-1279 . -146) 123618) ((-1260 . -651) 123566) ((-1019 . -1069) T) ((-1124 . -625) 123548) ((-1023 . -625) 123530) ((-592 . -1237) T) ((-576 . -1237) T) ((-507 . -1237) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1120) T) ((-1023 . -626) 123514) ((-1019 . -248) 123493) ((-1019 . -238) 123472) ((-1279 . -148) 123451) ((-1272 . -148) 123430) ((-845 . -1120) T) ((-1272 . -146) 123409) ((-1271 . -1241) 123388) ((-1251 . -146) 123295) ((-1251 . -148) 123202) ((-1250 . -1241) 123181) ((-390 . -132) T) ((-227 . -234) 123168) ((-176 . -174) T) ((-576 . -900) 123150) ((0 . -1120) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1237) T) ((-49 . -1120) T) ((-1273 . -660) 123055) ((-1271 . -568) 123006) ((-726 . -1132) T) ((-1250 . -568) 122957) ((-576 . -1058) 122939) ((-607 . -148) 122918) ((-607 . -146) 122897) ((-507 . -1058) 122840) ((-1155 . -1157) T) ((-87 . -395) T) ((-87 . -407) T) ((-885 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-982 . -658) 122784) ((-726 . -23) T) ((-518 . -625) 122750) ((-514 . -625) 122732) ((-827 . -658) 122511) ((-1311 . -1078) T) ((-390 . -1080) T) ((-1046 . -1120) 122489) ((-55 . -1058) 122471) ((-919 . -34) T) ((-494 . -319) 122409) ((-604 . -102) T) ((-1177 . -626) 122370) ((-1177 . -625) 122302) ((-1198 . -1071) 122185) ((-45 . -102) T) ((-829 . -102) T) ((-1198 . -652) 122082) ((-1288 . -1237) T) ((-1260 . -25) T) ((-1260 . -21) T) ((-1082 . -234) 122069) ((-868 . -25) T) ((-523 . -863) T) ((-254 . -1237) T) ((-44 . -378) 122053) ((-868 . -21) T) ((-743 . -464) 122004) ((-1310 . -625) 121986) ((-722 . -1237) T) ((-711 . -1237) T) ((-1299 . -1071) 121956) ((-1074 . -319) 121894) ((-683 . -1103) T) ((-618 . -1103) T) ((-402 . -1120) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1103) T) ((-162 . -1103) T) ((-157 . -1103) T) ((-155 . -1103) T) ((-1299 . -652) 121864) ((-633 . -1120) T) ((-711 . -900) 121846) ((-1287 . -1237) T) ((-229 . -319) 121784) ((-145 . -379) T) ((-1210 . -1237) T) ((-1066 . -626) 121726) ((-1066 . -625) 121669) ((-323 . -927) NIL) ((-1245 . -856) T) ((-1133 . -918) 121538) ((-711 . -1058) 121483) ((-723 . -938) T) ((-486 . -1241) 121462) ((-1193 . -464) 121441) ((-1187 . -464) 121420) ((-340 . -102) T) ((-885 . -1132) T) ((-329 . -658) 121302) ((-326 . -660) 121031) ((-323 . -660) 120960) ((-486 . -568) 120911) ((-350 . -526) 120877) ((-562 . -152) 120827) ((-40 . -317) T) ((-855 . -625) 120809) ((-713 . -300) T) ((-885 . -23) T) ((-390 . -505) T) ((-1100 . -272) 120779) ((-1100 . -232) 120749) ((-524 . -102) T) ((-419 . -626) 120556) ((-419 . -625) 120538) ((-270 . -625) 120520) ((-117 . -300) T) ((-1273 . -738) T) ((-635 . -1237) T) ((-1312 . -1120) T) ((-1271 . -374) 120499) ((-1250 . -374) 120478) ((-1300 . -34) T) ((-1245 . -1120) T) ((-118 . -1237) T) ((-108 . -272) 120460) ((-108 . -232) 120442) ((-1198 . -102) T) ((-489 . -1120) T) ((-535 . -501) 120426) ((-749 . -34) T) ((-665 . -1071) 120410) ((-665 . -652) 120380) ((-884 . -234) NIL) ((-142 . -34) T) ((-118 . -898) 120357) ((-118 . -900) NIL) ((-635 . -1058) 120240) ((-1299 . -102) T) ((-1279 . -237) 120199) ((-656 . -861) 120178) ((-1272 . -237) 120130) ((-1251 . -237) 119953) ((-305 . -102) T) ((-724 . -379) 119932) ((-118 . -1058) 119909) ((-402 . -729) 119893) ((-607 . -237) 119852) ((-633 . -729) 119836) ((-1125 . -1237) T) ((-45 . -319) 119640) ((-828 . -146) 119619) ((-828 . -148) 119598) ((-299 . -658) 119570) ((-1310 . -393) 119549) ((-831 . -861) T) ((-1289 . -1120) T) ((-1179 . -231) 119496) ((-398 . -861) 119475) ((-1279 . -35) 119441) ((-1279 . -1225) 119407) ((-1279 . -1222) 119373) ((-1272 . -1222) 119339) ((-527 . -132) T) ((-1272 . -1225) 119305) ((-1251 . -1222) 119271) ((-1251 . -1225) 119237) ((-1279 . -95) 119203) ((-1272 . -95) 119169) ((-430 . -910) 119090) ((-647 . -625) 119059) ((-619 . -625) 119028) ((-227 . -861) T) ((-1272 . -35) 118994) ((-1271 . -1132) T) ((-1251 . -95) 118960) ((-1140 . -660) 118932) ((-1251 . -35) 118898) ((-1250 . -1132) T) ((-605 . -152) 118880) ((-1100 . -360) 118859) ((-176 . -300) T) ((-118 . -388) 118836) ((-118 . -349) 118813) ((-171 . -234) 118738) ((-883 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 118587) ((-323 . -738) T) ((-486 . -374) 118566) ((-370 . -360) 118545) ((-364 . -360) 118524) ((-356 . -360) 118503) ((-326 . -485) 118482) ((-1271 . -23) T) ((-1250 . -23) T) ((-730 . -1132) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 118447) ((-674 . -863) 118426) ((-45 . -292) 118376) ((-105 . -1120) T) ((-68 . -625) 118358) ((-250 . -863) 118337) ((-990 . -102) T) ((-877 . -102) T) ((-635 . -916) 118296) ((-1311 . -1120) T) ((-392 . -1120) T) ((-1260 . -234) 118283) ((-1236 . -1120) T) ((-82 . -1237) T) ((-1133 . -272) 118252) ((-1082 . -861) T) ((-118 . -916) NIL) ((-794 . -938) 118231) ((-725 . -861) T) ((-543 . -1120) T) ((-512 . -1120) T) ((-366 . -1241) T) ((-363 . -1241) T) ((-355 . -1241) T) ((-273 . -1241) 118210) ((-253 . -1241) 118189) ((-545 . -873) T) ((-1133 . -232) 118158) ((-1178 . -840) T) ((-1162 . -1076) 118142) ((-402 . -773) T) ((-706 . -1237) T) ((-703 . -1058) 118126) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 118057) ((-253 . -568) 117988) ((-537 . -1103) T) ((-1162 . -111) 117967) ((-465 . -756) 117937) ((-879 . -1076) 117907) ((-829 . -38) 117849) ((-706 . -898) 117831) ((-706 . -900) 117813) ((-305 . -319) 117617) ((-1177 . -298) 117594) ((-928 . -1241) T) ((-1100 . -658) 117489) ((-1024 . -464) T) ((-682 . -423) 117473) ((-879 . -111) 117438) ((-932 . -464) T) ((-706 . -1058) 117383) ((-928 . -568) T) ((-545 . -625) 117365) ((-593 . -938) T) ((-499 . -1071) 117315) ((-486 . -1132) T) ((-530 . -938) T) ((-494 . -918) 117184) ((-65 . -625) 117166) ((-219 . -1071) 117116) ((-499 . -652) 117066) ((-370 . -658) 117003) ((-364 . -658) 116940) ((-356 . -658) 116877) ((-644 . -231) 116823) ((-219 . -652) 116773) ((-108 . -658) 116723) ((-486 . -23) T) ((-1140 . -806) T) ((-885 . -132) T) ((-1140 . -803) T) ((-1302 . -1304) 116702) ((-1140 . -738) T) ((-666 . -660) 116676) ((-304 . -625) 116417) ((-1162 . -628) 116335) ((-1055 . -34) T) ((-828 . -237) 116286) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1311 . -729) 116256) ((-706 . -388) 116238) ((-706 . -349) 116220) ((-489 . -174) T) ((-392 . -729) 116190) ((-879 . -628) 116125) ((-884 . -861) NIL) ((-576 . -1042) T) ((-507 . -1042) T) ((-1153 . -625) 116107) ((-1133 . -243) 116086) ((-216 . -102) T) ((-1170 . -102) T) ((-71 . -625) 116068) ((-1044 . -1237) T) ((-1162 . -1069) T) ((-1198 . -38) 115965) ((-871 . -625) 115947) ((-576 . -557) T) ((-682 . -1078) T) ((-743 . -967) 115900) ((-1162 . -238) 115879) ((-365 . -1237) T) ((-1102 . -1120) T) ((-1054 . -25) T) ((-1054 . -21) T) ((-1023 . -1076) 115824) ((-337 . -863) 115803) ((-923 . -102) T) ((-879 . -1069) T) ((-706 . -916) NIL) ((-366 . -339) 115787) ((-366 . -374) T) ((-363 . -339) 115771) ((-363 . -374) T) ((-355 . -339) 115755) ((-355 . -374) T) ((-499 . -102) T) ((-1299 . -38) 115725) ((-558 . -861) T) ((-535 . -699) 115675) ((-219 . -102) T) ((-1044 . -1058) 115555) ((-1023 . -111) 115484) ((-1194 . -993) 115453) ((-1193 . -993) 115415) ((-532 . -152) 115399) ((-1100 . -381) 115378) ((-362 . -625) 115360) ((-332 . -21) T) ((-365 . -1058) 115337) ((-332 . -25) T) ((-1187 . -993) 115306) ((-48 . -1237) T) ((-76 . -625) 115288) ((-1146 . -993) 115255) ((-711 . -317) T) ((-130 . -856) T) ((-928 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-928 . -339) 115242) ((-86 . -625) 115224) ((-711 . -1042) T) ((-689 . -861) T) ((-400 . -1237) T) ((-1271 . -132) T) ((-1250 . -132) T) ((-919 . -1030) 115208) ((-848 . -21) T) ((-48 . -1058) 115151) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1133 . -658) 114930) ((-1309 . -1078) T) ((-561 . -102) T) ((-1307 . -1078) T) ((-666 . -738) T) ((-1124 . -630) 114833) ((-1023 . -628) 114763) ((-1310 . -1076) 114747) ((-922 . -1237) T) ((-827 . -423) 114716) ((-103 . -120) 114700) ((-130 . -1120) T) ((-52 . -1120) T) ((-944 . -625) 114682) ((-884 . -1012) 114659) ((-835 . -102) T) ((-1310 . -111) 114638) ((-743 . -910) 114613) ((-665 . -38) 114583) ((-583 . -861) T) ((-366 . -1132) T) ((-363 . -1132) T) ((-355 . -1132) T) ((-273 . -1132) T) ((-253 . -1132) T) ((-1170 . -319) 114387) ((-1108 . -234) 114374) ((-635 . -317) 114353) ((-676 . -23) T) ((-536 . -1103) T) ((-321 . -1120) T) ((-494 . -272) 114322) ((-494 . -232) 114291) ((-153 . -1078) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1023 . -1069) T) ((-724 . -927) 114270) ((-1194 . -910) 114158) ((-1193 . -910) 114039) ((-1187 . -910) 113775) ((-1177 . -628) 113752) ((-1023 . -238) 113724) ((-1023 . -248) T) ((-1146 . -910) 113706) ((-118 . -1042) NIL) ((-928 . -1132) T) ((-1272 . -464) 113685) ((-1251 . -464) 113664) ((-535 . -625) 113596) ((-724 . -660) 113485) ((-419 . -1076) 113437) ((-516 . -625) 113419) ((-928 . -23) T) ((-499 . -319) NIL) ((-1310 . -628) 113375) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 113313) ((-827 . -1078) 113291) ((-749 . -1118) 113275) ((-1271 . -505) 113241) ((-1250 . -505) 113207) ((-449 . -1237) T) ((-560 . -856) T) ((-142 . -1118) 113189) ((-489 . -300) T) ((-1310 . -1069) T) ((-258 . -237) 113086) ((-257 . -237) 112983) ((-1242 . -102) T) ((-1083 . -102) T) ((-855 . -628) 112851) ((-512 . -526) NIL) ((-494 . -243) 112830) ((-419 . -628) 112728) ((-981 . -1071) 112611) ((-747 . -1071) 112581) ((-981 . -652) 112478) ((-1192 . -146) 112457) ((-747 . -652) 112427) ((-465 . -1071) 112397) ((-1192 . -148) 112376) ((-1145 . -148) 112355) ((-1145 . -146) 112334) ((-647 . -1076) 112318) ((-619 . -1076) 112302) ((-465 . -652) 112272) ((-1194 . -1278) 112256) ((-1194 . -1265) 112233) ((-1193 . -1270) 112194) ((-682 . -1120) T) ((-682 . -1073) 112134) ((-1193 . -1265) 112104) ((-560 . -1120) T) ((-499 . -1172) T) ((-1193 . -1268) 112088) ((-1187 . -1249) 112049) ((-830 . -275) 112033) ((-219 . -1172) T) ((-354 . -938) T) ((-99 . -1237) T) ((-647 . -111) 112012) ((-619 . -111) 111991) ((-1187 . -1265) 111968) ((-855 . -1069) 111947) ((-1187 . -1247) 111931) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1071) 111905) ((-419 . -1069) T) ((-329 . -1078) T) ((-706 . -317) T) ((-430 . -652) 111879) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111858) ((-390 . -234) 111845) ((-499 . -38) 111795) ((-219 . -38) 111745) ((-486 . -505) 111711) ((-1244 . -379) T) ((-1178 . -1164) T) ((-1121 . -102) T) ((-839 . -234) 111684) ((-713 . -625) 111666) ((-713 . -626) 111581) ((-726 . -21) T) ((-726 . -25) T) ((-1155 . -102) T) ((-494 . -658) 111360) ((-245 . -910) 111227) ((-135 . -625) 111209) ((-117 . -625) 111191) ((-158 . -25) T) ((-1309 . -1120) T) ((-885 . -651) 111139) ((-1307 . -1120) T) ((-878 . -1237) T) ((-981 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 111090) ((-44 . -1120) T) ((-1108 . -861) T) ((-1083 . -319) 110941) ((-676 . -132) T) ((-1074 . -658) 110910) ((-682 . -729) 110894) ((-299 . -1078) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110863) ((-1316 . -1237) T) ((-430 . -102) T) ((-153 . -1120) T) ((-45 . -231) 110813) ((-1024 . -910) NIL) ((-811 . -1071) 110797) ((-976 . -861) 110776) ((-1019 . -660) 110678) ((-811 . -652) 110662) ((-245 . -1294) 110632) ((-1044 . -317) T) ((-304 . -1076) 110553) ((-928 . -132) T) ((-40 . -938) T) ((-499 . -412) 110535) ((-365 . -317) T) ((-219 . -412) 110517) ((-1100 . -423) 110501) ((-304 . -111) 110417) ((-1203 . -861) T) ((-1202 . -861) T) ((-885 . -25) T) ((-885 . -21) T) ((-1273 . -47) 110361) ((-350 . -625) 110343) ((-1192 . -237) T) ((-227 . -148) T) ((-176 . -625) 110325) ((-786 . -625) 110307) ((-129 . -861) T) ((-620 . -240) 110254) ((-487 . -240) 110204) ((-1309 . -729) 110174) ((-48 . -317) T) ((-1307 . -729) 110144) ((-65 . -628) 110073) ((-982 . -1120) T) ((-827 . -1120) 109825) ((-322 . -102) T) ((-919 . -1237) T) ((-48 . -1042) T) ((-1250 . -651) 109733) ((-701 . -102) 109683) ((-44 . -729) 109667) ((-562 . -102) T) ((-304 . -628) 109598) ((-67 . -394) T) ((-499 . -918) NIL) ((-67 . -407) T) ((-284 . -863) T) ((-219 . -918) NIL) ((-674 . -23) T) ((-829 . -658) 109534) ((-682 . -773) T) ((-1234 . -1120) 109512) ((-362 . -1076) 109457) ((-687 . -1120) 109435) ((-1082 . -148) T) ((-970 . -148) 109414) ((-970 . -146) 109393) ((-811 . -102) T) ((-153 . -729) 109377) ((-493 . -148) 109356) ((-493 . -146) 109335) ((-362 . -111) 109264) ((-1100 . -1078) T) ((-332 . -861) 109243) ((-1279 . -993) 109212) ((-1273 . -1237) T) ((-639 . -1120) T) ((-1272 . -993) 109174) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 109124) ((-370 . -1078) T) ((-364 . -1078) T) ((-356 . -1078) T) ((-304 . -1069) 109066) ((-1251 . -993) 109035) ((-390 . -861) T) ((-108 . -1078) T) ((-1019 . -738) T) ((-883 . -938) T) ((-855 . -807) 109014) ((-855 . -804) 108993) ((-430 . -319) 108932) ((-480 . -102) T) ((-607 . -993) 108901) ((-329 . -1120) T) ((-419 . -807) 108880) ((-419 . -804) 108859) ((-512 . -501) 108841) ((-1273 . -1058) 108807) ((-1271 . -21) T) ((-1271 . -25) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-827 . -729) 108749) ((-362 . -628) 108679) ((-711 . -416) T) ((-1300 . -1237) T) ((-1133 . -423) 108648) ((-1097 . -1237) T) ((-618 . -102) T) ((-1023 . -379) NIL) ((-1007 . -1237) T) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1198 . -658) 108558) ((-749 . -1237) T) ((-743 . -1071) 108401) ((-44 . -773) T) ((-743 . -652) 108250) ((-605 . -102) T) ((-665 . -668) 108234) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1237) T) ((-884 . -148) T) ((-884 . -146) NIL) ((-1299 . -658) 108179) ((-1279 . -910) 108067) ((-1272 . -910) 107948) ((-1236 . -93) T) ((-362 . -1069) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1185 . -102) T) ((-682 . -526) 107881) ((-1251 . -910) 107617) ((-1231 . -568) 107596) ((-701 . -319) 107534) ((-981 . -38) 107431) ((-1200 . -625) 107413) ((-747 . -38) 107383) ((-562 . -319) 107187) ((-1194 . -1071) 107070) ((-326 . -1237) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1237) T) ((-299 . -1120) T) ((-1193 . -1071) 106905) ((-1187 . -1071) 106695) ((-1146 . -1071) 106578) ((-1194 . -652) 106475) ((-1193 . -652) 106316) ((-723 . -1241) T) ((-1187 . -652) 106112) ((-1177 . -663) 106096) ((-1146 . -652) 105993) ((-831 . -397) 105977) ((-723 . -568) T) ((-607 . -910) 105888) ((-326 . -898) 105872) ((-326 . -900) 105797) ((-323 . -898) 105758) ((-140 . -1237) T) ((-137 . -1237) T) ((-115 . -1237) T) ((-323 . -900) NIL) ((-811 . -319) 105723) ((-329 . -729) 105564) ((-398 . -397) 105548) ((-334 . -333) 105525) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 105499) ((-326 . -1058) 105162) ((-227 . -1222) T) ((-227 . -1225) T) ((-3 . -625) 105144) ((-323 . -1058) 105074) ((-885 . -234) 105019) ((-2 . -1120) T) ((-2 . |RecordCategory|) T) ((-1133 . -1078) 104997) ((-845 . -625) 104979) ((-1082 . -237) T) ((-592 . -938) T) ((-576 . -832) T) ((-576 . -938) T) ((-507 . -938) T) ((-137 . -1058) 104963) ((-227 . -95) T) ((-171 . -148) 104942) ((-75 . -453) T) ((0 . -625) 104924) ((-75 . -407) T) ((-171 . -146) 104875) ((-227 . -35) T) ((-49 . -625) 104857) ((-489 . -1078) T) ((-499 . -272) 104839) ((-499 . -232) 104821) ((-496 . -988) 104805) ((-219 . -272) 104787) ((-219 . -232) 104769) ((-81 . -453) T) ((-81 . -407) T) ((-1166 . -34) T) ((-743 . -102) T) ((-665 . -658) 104728) ((-1046 . -625) 104695) ((-512 . -296) 104645) ((-326 . -388) 104614) ((-323 . -388) 104575) ((-323 . -349) 104536) ((-1105 . -625) 104518) ((-828 . -967) 104465) ((-674 . -132) T) ((-1260 . -146) 104444) ((-1260 . -148) 104423) ((-1194 . -102) T) ((-1193 . -102) T) ((-1187 . -102) T) ((-1179 . -1120) T) ((-1146 . -102) T) ((-1095 . -1237) T) ((-224 . -34) T) ((-299 . -729) 104410) ((-1279 . -1278) 104394) ((-1179 . -622) 104370) ((-605 . -319) NIL) ((-1279 . -1265) 104347) ((-1170 . -231) 104297) ((-496 . -1120) 104275) ((-450 . -1237) T) ((-402 . -625) 104257) ((-522 . -861) T) ((-1140 . -1237) T) ((-1272 . -1270) 104218) ((-1272 . -1265) 104188) ((-1272 . -1268) 104172) ((-1251 . -1249) 104133) ((-1251 . -1265) 104110) ((-1251 . -1247) 104094) ((-1194 . -294) 104060) ((-633 . -625) 104042) ((-1193 . -294) 104008) ((-711 . -938) T) ((-1187 . -294) 103974) ((-1146 . -294) 103940) ((-1140 . -900) 103922) ((-1100 . -1120) T) ((-1081 . -1120) T) ((-48 . -312) T) ((-326 . -916) 103888) ((-323 . -916) NIL) ((-1081 . -1088) 103867) ((-811 . -38) 103851) ((-273 . -651) 103799) ((-112 . -863) T) ((-253 . -651) 103747) ((-713 . -1076) 103734) ((-607 . -1265) 103711) ((-1140 . -1058) 103693) ((-329 . -174) 103624) ((-370 . -1120) T) ((-364 . -1120) T) ((-356 . -1120) T) ((-512 . -19) 103606) ((-1122 . -152) 103590) ((-884 . -237) NIL) ((-108 . -1120) T) ((-117 . -1076) 103577) ((-723 . -374) T) ((-512 . -616) 103552) ((-713 . -111) 103537) ((-1312 . -625) 103504) ((-1312 . -502) 103486) ((-1271 . -234) 103432) ((-1250 . -234) 103285) ((-448 . -102) T) ((-889 . -1282) T) ((-256 . -102) T) ((-45 . -1169) 103235) ((-117 . -111) 103220) ((-1289 . -625) 103202) ((-1260 . -237) T) ((-1245 . -625) 103184) ((-1243 . -861) T) ((-647 . -732) T) ((-619 . -732) T) ((-1231 . -1132) T) ((-1231 . -23) T) ((-1192 . -464) 103115) ((-1187 . -319) 103000) ((-1186 . -1120) T) ((-827 . -526) 102933) ((-1055 . -1237) T) ((-245 . -1071) 102834) ((-1178 . -1120) T) ((-1162 . -660) 102772) ((-961 . -152) 102756) ((-1146 . -319) 102743) ((-1145 . -464) 102694) ((-245 . -652) 102616) ((-1107 . -568) 102547) ((-1107 . -1241) 102526) ((-1100 . -729) 102394) ((-537 . -102) T) ((-532 . -102) 102324) ((-1024 . -1071) 102274) ((-1014 . -1120) T) ((-828 . -910) 102170) ((-794 . -1241) 102149) ((-792 . -1241) 102128) ((-62 . -1237) T) ((-489 . -625) 102080) ((-489 . -626) 102002) ((-794 . -568) 101913) ((-792 . -568) 101844) ((-743 . -319) 101831) ((-713 . -628) 101803) ((-494 . -423) 101772) ((-635 . -938) 101751) ((-466 . -1241) 101730) ((-687 . -526) 101663) ((-676 . -25) T) ((-410 . -625) 101645) ((-676 . -21) T) ((-466 . -568) 101576) ((-430 . -918) 101499) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -938) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 101430) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 101412) ((-117 . -628) 101384) ((-1024 . -652) 101334) ((-961 . -1000) 101318) ((-932 . -652) 101270) ((-932 . -1071) 101222) ((-928 . -21) T) ((-928 . -25) T) ((-885 . -861) 101173) ((-879 . -660) 101133) ((-723 . -1132) T) ((-723 . -23) T) ((-713 . -1069) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1237) T) ((-321 . -93) T) ((-659 . -1120) 101111) ((-644 . -622) 101086) ((-644 . -1120) T) ((-593 . -1241) T) ((-593 . -568) T) ((-530 . -1241) T) ((-530 . -568) T) ((-499 . -658) 101036) ((-486 . -234) 100982) ((-439 . -1071) 100966) ((-439 . -652) 100950) ((-370 . -729) 100902) ((-364 . -729) 100854) ((-350 . -1076) 100838) ((-356 . -729) 100790) ((-350 . -111) 100769) ((-176 . -1076) 100701) ((-176 . -111) 100612) ((-108 . -729) 100562) ((-219 . -658) 100512) ((-283 . -1120) T) ((-282 . -1120) T) ((-281 . -1120) T) ((-280 . -1120) T) ((-279 . -1120) T) ((-278 . -1120) T) ((-277 . -1120) T) ((-214 . -1120) T) ((-213 . -1120) T) ((-171 . -1225) 100490) ((-171 . -1222) 100468) ((-211 . -1120) T) ((-210 . -1120) T) ((-117 . -1069) T) ((-209 . -1120) T) ((-208 . -1120) T) ((-205 . -1120) T) ((-204 . -1120) T) ((-203 . -1120) T) ((-202 . -1120) T) ((-201 . -1120) T) ((-200 . -1120) T) ((-199 . -1120) T) ((-198 . -1120) T) ((-197 . -1120) T) ((-196 . -1120) T) ((-195 . -1120) T) ((-245 . -102) 100200) ((-171 . -35) 100178) ((-171 . -95) 100156) ((-666 . -1058) 100052) ((-494 . -1078) 100030) ((-1133 . -1120) 99782) ((-1162 . -34) T) ((-682 . -501) 99766) ((-73 . -1237) T) ((-105 . -625) 99748) ((-907 . -1237) T) ((-1311 . -625) 99730) ((-392 . -625) 99712) ((-350 . -628) 99664) ((-176 . -628) 99581) ((-1236 . -502) 99562) ((-743 . -38) 99411) ((-583 . -1225) T) ((-583 . -1222) T) ((-543 . -625) 99393) ((-532 . -319) 99331) ((-512 . -625) 99313) ((-512 . -626) 99295) ((-1236 . -625) 99261) ((-1187 . -1172) NIL) ((-215 . -1237) T) ((-1047 . -1091) 99230) ((-1047 . -1120) T) ((-1024 . -102) T) ((-991 . -102) T) ((-932 . -102) T) ((-907 . -1058) 99207) ((-1162 . -738) T) ((-1023 . -660) 99114) ((-488 . -1120) T) ((-475 . -1120) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1083 . -231) 99060) ((-1194 . -38) 98957) ((-1193 . -38) 98798) ((-939 . -863) T) ((-879 . -738) T) ((-783 . -863) T) ((-706 . -938) T) ((-684 . -863) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1187 . -38) 98594) ((-350 . -1069) T) ((-145 . -1237) T) ((-1100 . -174) T) ((-176 . -1069) T) ((-1146 . -38) 98491) ((-724 . -47) 98468) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 98442) ((-509 . -57) 98392) ((-362 . -1306) 98369) ((-227 . -464) T) ((-329 . -300) 98320) ((-356 . -174) T) ((-176 . -248) T) ((-1250 . -861) 98219) ((-108 . -174) T) ((-885 . -1012) 98203) ((-670 . -1132) T) ((-593 . -374) T) ((-593 . -339) 98190) ((-530 . -339) 98167) ((-530 . -374) T) ((-326 . -317) 98146) ((-323 . -317) T) ((-614 . -861) 98125) ((-1133 . -729) 98067) ((-532 . -292) 98051) ((-670 . -23) T) ((-430 . -232) 98035) ((-430 . -272) 98019) ((-323 . -1042) NIL) ((-347 . -23) T) ((-103 . -1030) 98003) ((-45 . -36) 97982) ((-624 . -1120) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 97920) ((-1107 . -1132) T) ((-1310 . -660) 97894) ((-794 . -1132) T) ((-792 . -1132) T) ((-1198 . -423) 97878) ((-466 . -1132) T) ((-1082 . -464) T) ((-1171 . -1120) T) ((-970 . -464) 97829) ((-1135 . -1103) T) ((-110 . -1120) T) ((-1107 . -23) T) ((-1179 . -526) 97612) ((-829 . -1078) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 97563) ((-473 . -23) T) ((-392 . -393) 97542) ((-366 . -234) 97515) ((-363 . -234) 97488) ((-355 . -234) 97461) ((-466 . -23) T) ((-273 . -234) 97406) ((-258 . -910) 97273) ((-257 . -910) 97140) ((-96 . -1120) T) ((-724 . -1237) T) ((-682 . -296) 97117) ((-496 . -526) 97050) ((-1279 . -1071) 96933) ((-1279 . -652) 96830) ((-1272 . -652) 96671) ((-1272 . -1071) 96506) ((-1251 . -652) 96302) ((-1251 . -1071) 96092) ((-299 . -300) T) ((-1102 . -625) 96074) ((-559 . -863) T) ((-1102 . -626) 96055) ((-419 . -927) 96034) ((-1231 . -132) T) ((-50 . -1132) T) ((-1187 . -412) 95986) ((-1044 . -938) T) ((-1023 . -738) T) ((-855 . -660) 95959) ((-724 . -900) NIL) ((-608 . -1071) 95919) ((-593 . -1132) T) ((-530 . -1132) T) ((-607 . -1071) 95802) ((-1177 . -34) T) ((-1024 . -319) NIL) ((-827 . -501) 95786) ((-608 . -652) 95759) ((-365 . -938) T) ((-607 . -652) 95656) ((-928 . -234) 95643) ((-419 . -660) 95559) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1058) 95439) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 95410) ((-1160 . -1120) T) ((-1302 . -1301) 95394) ((-743 . -918) 95371) ((-713 . -807) T) ((-713 . -804) T) ((-1140 . -317) T) ((-390 . -148) T) ((-290 . -625) 95353) ((-289 . -625) 95335) ((-1250 . -1012) 95305) ((-48 . -938) T) ((-687 . -501) 95289) ((-258 . -1294) 95259) ((-257 . -1294) 95229) ((-1108 . -237) T) ((-1196 . -861) T) ((-1140 . -1042) T) ((-1066 . -34) T) ((-848 . -148) 95208) ((-848 . -146) 95187) ((-749 . -107) 95171) ((-624 . -133) T) ((-1198 . -1078) T) ((-494 . -1120) 94923) ((-1194 . -918) 94836) ((-1193 . -918) 94742) ((-1187 . -918) 94503) ((-884 . -464) T) ((-85 . -1237) T) ((-142 . -107) 94485) ((-1146 . -918) 94469) ((-724 . -388) 94453) ((-845 . -628) 94321) ((-1310 . -738) T) ((-1299 . -1078) T) ((-1279 . -102) T) ((-1140 . -557) T) ((-591 . -102) T) ((-130 . -502) 94303) ((-1272 . -102) T) ((-402 . -1076) 94287) ((-1192 . -967) 94256) ((-44 . -296) 94233) ((-130 . -625) 94200) ((-52 . -625) 94182) ((-1145 . -967) 94149) ((-665 . -423) 94133) ((-1251 . -102) T) ((-1178 . -526) NIL) ((-674 . -25) T) ((-633 . -1076) 94117) ((-674 . -21) T) ((-981 . -658) 94027) ((-747 . -658) 93972) ((-727 . -658) 93944) ((-402 . -111) 93923) ((-224 . -261) 93907) ((-1074 . -1073) 93847) ((-1074 . -1120) T) ((-1024 . -1172) T) ((-830 . -1120) T) ((-465 . -658) 93762) ((-647 . -660) 93746) ((-633 . -111) 93725) ((-619 . -660) 93709) ((-354 . -1241) T) ((-608 . -102) T) ((-321 . -502) 93690) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1120) T) ((-396 . -1120) T) ((-321 . -625) 93656) ((-229 . -1120) 93634) ((-659 . -526) 93567) ((-644 . -526) 93411) ((-845 . -1069) 93390) ((-656 . -152) 93374) ((-354 . -568) T) ((-724 . -916) 93317) ((-562 . -231) 93267) ((-1279 . -294) 93233) ((-1272 . -294) 93199) ((-1100 . -300) 93150) ((-576 . -863) T) ((-499 . -860) T) ((-225 . -1132) T) ((-1251 . -294) 93116) ((-1231 . -505) 93082) ((-1024 . -38) 93032) ((-219 . -860) T) ((-430 . -658) 92991) ((-932 . -38) 92943) ((-855 . -806) 92922) ((-855 . -803) 92901) ((-855 . -738) 92880) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92811) ((-439 . -38) 92795) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92774) ((-419 . -803) 92753) ((-419 . -738) T) ((-512 . -298) 92728) ((-489 . -1076) 92693) ((-670 . -132) T) ((-633 . -628) 92662) ((-1133 . -526) 92595) ((-347 . -132) T) ((-171 . -414) 92574) ((-494 . -729) 92516) ((-827 . -296) 92493) ((-489 . -111) 92449) ((-665 . -1078) T) ((-1192 . -910) 92352) ((-1145 . -910) 92334) ((-828 . -1071) 92177) ((-1298 . -1103) T) ((-1260 . -464) 92108) ((-828 . -652) 91957) ((-1297 . -1103) T) ((-1107 . -132) T) ((-1074 . -729) 91899) ((-1047 . -526) 91832) ((-794 . -132) T) ((-792 . -132) T) ((-711 . -863) T) ((-583 . -464) T) ((-633 . -1069) T) ((-604 . -1120) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1019 . -1237) T) ((-45 . -1120) T) ((-396 . -729) 91802) ((-829 . -1120) T) ((-488 . -526) 91735) ((-475 . -526) 91668) ((-1312 . -628) 91650) ((-465 . -378) 91620) ((-45 . -622) 91599) ((-411 . -1237) T) ((-326 . -312) T) ((-1287 . -863) 91578) ((-839 . -237) 91557) ((-489 . -628) 91507) ((-1251 . -319) 91392) ((-682 . -625) 91354) ((-59 . -861) 91333) ((-1024 . -412) 91315) ((-560 . -625) 91297) ((-811 . -658) 91256) ((-827 . -616) 91233) ((-528 . -861) 91212) ((-508 . -861) 91191) ((-1019 . -1058) 91087) ((-40 . -1241) T) ((-245 . -918) 90956) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90816) ((-354 . -339) 90793) ((-354 . -374) T) ((-332 . -333) 90770) ((-329 . -296) 90728) ((-40 . -568) T) ((-390 . -1222) T) ((-390 . -1225) T) ((-1055 . -1213) 90703) ((-1209 . -240) 90653) ((-1187 . -232) 90605) ((-1187 . -272) 90557) ((-340 . -1120) T) ((-390 . -95) T) ((-390 . -35) T) ((-1055 . -107) 90503) ((-489 . -1069) T) ((-1311 . -1076) 90487) ((-491 . -240) 90437) ((-1179 . -501) 90371) ((-1302 . -1071) 90355) ((-392 . -1076) 90339) ((-1302 . -652) 90309) ((-828 . -102) T) ((-489 . -248) T) ((-726 . -148) 90288) ((-726 . -146) 90267) ((-118 . -863) NIL) ((-496 . -501) 90251) ((-497 . -346) 90220) ((-524 . -1120) T) ((-1311 . -111) 90199) ((-1019 . -388) 90183) ((-425 . -102) T) ((-392 . -111) 90162) ((-1019 . -349) 90146) ((-288 . -1003) 90130) ((-287 . -1003) 90114) ((-1024 . -918) NIL) ((-1309 . -625) 90096) ((-1307 . -625) 90078) ((-110 . -526) NIL) ((-1192 . -1263) 90062) ((-867 . -865) 90046) ((-1198 . -1120) T) ((-103 . -1237) T) ((-970 . -967) 90007) ((-829 . -729) 89949) ((-1251 . -1172) NIL) ((-493 . -967) 89894) ((-1082 . -144) T) ((-60 . -102) 89844) ((-44 . -625) 89826) ((-78 . -625) 89808) ((-362 . -660) 89753) ((-1299 . -1120) T) ((-523 . -861) T) ((-299 . -296) 89732) ((-354 . -1132) T) ((-305 . -1120) T) ((-1019 . -916) 89691) ((-305 . -622) 89670) ((-1311 . -628) 89619) ((-1279 . -38) 89516) ((-1272 . -38) 89357) ((-1251 . -38) 89153) ((-499 . -1078) T) ((-392 . -628) 89137) ((-219 . -1078) T) ((-354 . -23) T) ((-153 . -625) 89119) ((-845 . -807) 89098) ((-845 . -804) 89077) ((-1236 . -628) 89058) ((-608 . -38) 89031) ((-607 . -38) 88928) ((-883 . -568) T) ((-225 . -132) T) ((-329 . -1022) 88894) ((-79 . -625) 88876) ((-724 . -317) 88855) ((-304 . -738) 88757) ((-836 . -102) T) ((-877 . -856) T) ((-304 . -485) 88736) ((-1302 . -102) T) ((-40 . -374) T) ((-885 . -148) 88715) ((-497 . -658) 88697) ((-885 . -146) 88676) ((-1178 . -501) 88658) ((-1311 . -1069) T) ((-494 . -526) 88591) ((-1166 . -1237) T) ((-982 . -625) 88573) ((-659 . -501) 88557) ((-644 . -501) 88488) ((-827 . -625) 88181) ((-48 . -27) T) ((-1198 . -729) 88078) ((-970 . -910) 88057) ((-665 . -1120) T) ((-874 . -873) T) ((-448 . -375) 88031) ((-743 . -658) 87941) ((-493 . -910) 87916) ((-1122 . -102) T) ((-990 . -1120) T) ((-877 . -1120) T) ((-828 . -319) 87903) ((-545 . -539) T) ((-545 . -588) T) ((-1307 . -393) 87875) ((-706 . -863) T) ((-1074 . -526) 87808) ((-1179 . -296) 87784) ((-245 . -272) 87753) ((-245 . -232) 87722) ((-258 . -1071) 87623) ((-257 . -1071) 87524) ((-1299 . -729) 87494) ((-1186 . -93) T) ((-1014 . -93) T) ((-829 . -174) 87473) ((-258 . -652) 87395) ((-257 . -652) 87317) ((-1234 . -502) 87294) ((-590 . -1237) T) ((-229 . -526) 87227) ((-633 . -807) 87206) ((-633 . -804) 87185) ((-1234 . -625) 87097) ((-224 . -1237) T) ((-687 . -625) 87029) ((-1194 . -658) 86939) ((-1177 . -1030) 86923) ((-961 . -102) 86853) ((-362 . -738) T) ((-874 . -625) 86835) ((-1193 . -658) 86717) ((-1187 . -658) 86554) ((-1146 . -658) 86464) ((-1251 . -412) 86416) ((-1133 . -501) 86400) ((-60 . -319) 86338) ((-341 . -102) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-40 . -1132) T) ((-723 . -21) T) ((-639 . -625) 86320) ((-527 . -333) 86299) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-939 . -1132) T) ((-40 . -23) T) ((-783 . -1132) T) ((-576 . -1241) T) ((-507 . -1241) T) ((-1024 . -272) 86281) ((-329 . -625) 86263) ((-1024 . -232) 86245) ((-171 . -167) 86229) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1271 . -148) 86208) ((-1271 . -146) 86187) ((-1179 . -616) 86163) ((-1250 . -146) 86088) ((-1047 . -501) 86072) ((-1244 . -1237) T) ((-1250 . -148) 85997) ((-1302 . -1308) 85976) ((-884 . -910) NIL) ((-488 . -501) 85960) ((-475 . -501) 85944) ((-535 . -34) T) ((-665 . -729) 85914) ((-1279 . -918) 85827) ((-1272 . -918) 85733) ((-1251 . -918) 85494) ((-112 . -987) T) ((-1198 . -174) 85445) ((-674 . -861) 85424) ((-376 . -102) T) ((-607 . -918) 85337) ((-245 . -243) 85316) ((-258 . -102) T) ((-257 . -102) T) ((-1260 . -967) 85285) ((-250 . -861) 85264) ((-1044 . -863) T) ((-828 . -38) 85113) ((-45 . -526) 84905) ((-1178 . -296) 84855) ((-216 . -1120) T) ((-1170 . -1120) T) ((-885 . -237) 84806) ((-1170 . -622) 84785) ((-598 . -25) T) ((-598 . -21) T) ((-1122 . -319) 84723) ((-981 . -423) 84707) ((-711 . -1241) T) ((-644 . -296) 84660) ((-1107 . -651) 84608) ((-923 . -1120) T) ((-794 . -651) 84556) ((-792 . -651) 84504) ((-354 . -132) T) ((-299 . -625) 84486) ((-883 . -1132) T) ((-711 . -568) T) ((-130 . -628) 84468) ((-466 . -651) 84416) ((-171 . -910) 84337) ((-923 . -921) 84321) ((-390 . -464) T) ((-499 . -1120) T) ((-961 . -319) 84259) ((-713 . -660) 84231) ((-561 . -856) T) ((-219 . -1120) T) ((-326 . -938) 84210) ((-323 . -938) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-883 . -23) T) ((-117 . -660) 84197) ((-486 . -146) 84176) ((-430 . -423) 84160) ((-486 . -148) 84139) ((-110 . -501) 84121) ((-321 . -628) 84102) ((-2 . -625) 84084) ((-188 . -102) T) ((-1178 . -19) 84066) ((-1178 . -616) 84041) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1164) T) ((-1133 . -296) 84018) ((-347 . -25) T) ((-347 . -21) T) ((-903 . -1237) T) ((-899 . -1237) T) ((-1309 . -1076) 84002) ((-245 . -658) 83781) ((-507 . -374) T) ((-1307 . -1076) 83765) ((-1302 . -38) 83735) ((-1271 . -1222) 83701) ((-1271 . -1225) 83667) ((-1260 . -910) 83570) ((-1192 . -1071) 83393) ((-1162 . -1237) T) ((-1145 . -1071) 83236) ((-867 . -1071) 83220) ((-644 . -616) 83195) ((-1271 . -95) 83161) ((-1271 . -237) 83113) ((-1254 . -102) 83091) ((-1192 . -652) 82920) ((-1145 . -652) 82769) ((-867 . -652) 82739) ((-1251 . -232) 82691) ((-1107 . -25) T) ((-561 . -1120) T) ((-1107 . -21) T) ((-981 . -1078) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1241) T) ((-879 . -1237) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1078) T) ((-727 . -1078) T) ((-682 . -1076) 82675) ((-529 . -1103) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1251 . -272) 82627) ((-1171 . -93) T) ((-1162 . -1058) 82523) ((-829 . -300) 82502) ((-1250 . -1222) 82468) ((-835 . -1120) T) ((-984 . -987) T) ((-682 . -111) 82447) ((-629 . -1237) T) ((-305 . -526) 82239) ((-1250 . -1225) 82205) ((-1250 . -237) 82064) ((-1245 . -379) T) ((-258 . -319) 82002) ((-257 . -319) 81940) ((-1242 . -856) T) ((-1179 . -626) NIL) ((-1179 . -625) 81922) ((-1162 . -388) 81906) ((-1140 . -832) T) ((-1140 . -938) T) ((-96 . -93) T) ((-1133 . -616) 81883) ((-1100 . -626) 81867) ((-1100 . -625) 81849) ((-1024 . -658) 81799) ((-932 . -658) 81736) ((-827 . -298) 81713) ((-496 . -625) 81645) ((-620 . -152) 81592) ((-499 . -729) 81542) ((-430 . -1078) T) ((-494 . -501) 81526) ((-439 . -658) 81485) ((-337 . -861) 81464) ((-350 . -660) 81438) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 81388) ((-171 . -736) 81359) ((-176 . -660) 81291) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 81241) ((-1081 . -625) 81223) ((-1013 . -102) T) ((-875 . -102) T) ((-828 . -918) 81123) ((-811 . -423) 81086) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -911) T) ((-592 . -1132) T) ((-576 . -1132) T) ((-507 . -1132) T) ((-370 . -625) 81068) ((-364 . -625) 81050) ((-356 . -625) 81032) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 80962) ((-108 . -625) 80904) ((-213 . -911) T) ((-976 . -152) 80888) ((-783 . -132) T) ((-682 . -628) 80806) ((-135 . -738) T) ((-117 . -738) T) ((-1271 . -35) 80772) ((-1074 . -501) 80756) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1250 . -95) 80722) ((-1250 . -35) 80688) ((-1192 . -102) T) ((-1145 . -102) T) ((-867 . -102) T) ((-229 . -501) 80672) ((-1309 . -111) 80651) ((-1307 . -111) 80630) ((-44 . -1076) 80614) ((-1310 . -1237) T) ((-1309 . -628) 80560) ((-1309 . -1069) T) ((-1307 . -628) 80489) ((-1307 . -1069) T) ((-1260 . -1263) 80473) ((-868 . -865) 80457) ((-1198 . -300) 80436) ((-1124 . -1237) T) ((-110 . -296) 80386) ((-1023 . -1237) T) ((-129 . -152) 80368) ((-1162 . -916) 80327) ((-44 . -111) 80306) ((-1242 . -1120) T) ((-1201 . -1282) T) ((-1187 . -860) NIL) ((-1186 . -502) 80287) ((-682 . -1069) T) ((-1186 . -625) 80253) ((-1178 . -625) 80235) ((-486 . -237) 80187) ((-1083 . -622) 80162) ((-1014 . -502) 80143) ((-74 . -453) T) ((-74 . -407) T) ((-1083 . -1120) T) ((-153 . -1076) 80127) ((-1014 . -625) 80093) ((-682 . -238) 80072) ((-583 . -566) 80056) ((-366 . -148) 80035) ((-366 . -146) 79986) ((-363 . -148) 79965) ((-363 . -146) 79916) ((-355 . -148) 79895) ((-355 . -146) 79846) ((-273 . -146) 79825) ((-273 . -148) 79804) ((-253 . -148) 79783) ((-118 . -374) T) ((-253 . -146) 79762) ((-1178 . -626) NIL) ((-153 . -111) 79741) ((-1023 . -1058) 79629) ((-1177 . -1237) T) ((-706 . -1241) T) ((-811 . -1078) T) ((-711 . -1132) T) ((-1023 . -388) 79606) ((-518 . -1237) T) ((-514 . -1237) T) ((-928 . -146) T) ((-928 . -148) 79588) ((-883 . -132) T) ((-827 . -1076) 79509) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1071) 79474) ((-659 . -625) 79406) ((-659 . -626) 79367) ((-644 . -626) NIL) ((-644 . -625) 79349) ((-499 . -174) T) ((-227 . -652) 79314) ((-219 . -174) T) ((-225 . -21) T) ((-225 . -25) T) ((-486 . -1225) 79280) ((-486 . -1222) 79246) ((-283 . -625) 79228) ((-282 . -625) 79210) ((-281 . -625) 79192) ((-280 . -625) 79174) ((-279 . -625) 79156) ((-512 . -663) 79138) ((-278 . -625) 79120) ((-350 . -738) T) ((-277 . -625) 79102) ((-110 . -19) 79084) ((-176 . -738) T) ((-512 . -384) 79066) ((-214 . -625) 79048) ((-532 . -1169) 79032) ((-512 . -124) T) ((-110 . -616) 79007) ((-213 . -625) 78989) ((-486 . -35) 78955) ((-486 . -95) 78921) ((-211 . -625) 78903) ((-210 . -625) 78885) ((-209 . -625) 78867) ((-208 . -625) 78849) ((-205 . -625) 78831) ((-204 . -625) 78813) ((-203 . -625) 78795) ((-202 . -625) 78777) ((-201 . -625) 78759) ((-200 . -625) 78741) ((-199 . -625) 78723) ((-548 . -1123) 78675) ((-198 . -625) 78657) ((-197 . -625) 78639) ((-45 . -501) 78576) ((-196 . -625) 78558) ((-195 . -625) 78540) ((-153 . -628) 78509) ((-1135 . -102) T) ((-827 . -111) 78425) ((-656 . -102) 78355) ((-494 . -296) 78332) ((-1310 . -1058) 78316) ((-1133 . -625) 78009) ((-1121 . -1120) T) ((-1066 . -1237) T) ((-1192 . -319) 77996) ((-1082 . -1071) 77983) ((-1155 . -1120) T) ((-970 . -1071) 77826) ((-1145 . -319) 77813) ((-1116 . -1103) T) ((-635 . -1132) T) ((-1082 . -652) 77800) ((-1110 . -1103) T) ((-970 . -652) 77649) ((-1107 . -234) 77594) ((-493 . -1071) 77437) ((-1093 . -1103) T) ((-1086 . -1103) T) ((-1056 . -1103) T) ((-1039 . -1103) T) ((-118 . -1132) T) ((-493 . -652) 77286) ((-794 . -234) 77273) ((-831 . -102) T) ((-638 . -1103) T) ((-635 . -23) T) ((-1170 . -526) 77065) ((-495 . -1103) T) ((-981 . -1120) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1103) T) ((-855 . -1237) T) ((-153 . -1069) T) ((-743 . -423) 77049) ((-118 . -23) T) ((-1023 . -916) 77001) ((-747 . -1120) T) ((-727 . -1120) T) ((-1279 . -658) 76911) ((-1272 . -658) 76793) ((-465 . -1120) T) ((-419 . -1237) T) ((-326 . -442) 76777) ((-604 . -93) T) ((-1047 . -626) 76738) ((-270 . -1237) T) ((-1044 . -1241) T) ((-227 . -102) T) ((-1047 . -625) 76700) ((-828 . -272) 76684) ((-828 . -232) 76668) ((-827 . -628) 76466) ((-1251 . -658) 76303) ((-1044 . -568) T) ((-845 . -660) 76276) ((-365 . -1241) T) ((-488 . -625) 76238) ((-488 . -626) 76199) ((-475 . -626) 76160) ((-475 . -625) 76122) ((-608 . -658) 76081) ((-419 . -898) 76065) ((-329 . -1076) 75900) ((-419 . -900) 75825) ((-607 . -658) 75735) ((-855 . -1058) 75631) ((-499 . -526) NIL) ((-494 . -616) 75608) ((-593 . -234) 75595) ((-365 . -568) T) ((-530 . -234) 75582) ((-219 . -526) NIL) ((-885 . -464) T) ((-430 . -1120) T) ((-419 . -1058) 75446) ((-329 . -111) 75267) ((-706 . -374) T) ((-227 . -294) T) ((-1234 . -628) 75244) ((-48 . -1241) T) ((-1192 . -1172) 75222) ((-1179 . -298) 75198) ((-1082 . -102) T) ((-970 . -102) T) ((-827 . -1069) 75176) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 75155) ((-363 . -237) 75134) ((-355 . -237) 75113) ((-48 . -568) T) ((-884 . -1071) 75058) ((-273 . -237) 75009) ((-827 . -238) 74961) ((-326 . -27) 74940) ((-258 . -918) 74809) ((-257 . -918) 74678) ((-255 . -847) 74660) ((-189 . -847) 74642) ((-725 . -102) T) ((-305 . -501) 74579) ((-884 . -652) 74524) ((-493 . -102) T) ((-743 . -1078) T) ((-624 . -625) 74506) ((-624 . -626) 74367) ((-419 . -388) 74351) ((-419 . -349) 74335) ((-1192 . -38) 74164) ((-1145 . -38) 74013) ((-329 . -628) 73839) ((-928 . -237) T) ((-647 . -1237) T) ((-619 . -1237) T) ((-867 . -38) 73809) ((-402 . -660) 73793) ((-656 . -319) 73731) ((-1171 . -502) 73712) ((-1171 . -625) 73678) ((-981 . -729) 73575) ((-747 . -729) 73545) ((-633 . -660) 73519) ((-224 . -107) 73503) ((-45 . -296) 73403) ((-322 . -1120) T) ((-299 . -1076) 73390) ((-110 . -625) 73372) ((-110 . -626) 73354) ((-465 . -729) 73324) ((-828 . -260) 73263) ((-701 . -1120) 73241) ((-562 . -1120) T) ((-1194 . -1078) T) ((-1193 . -1078) T) ((-96 . -502) 73222) ((-1187 . -1078) T) ((-299 . -111) 73207) ((-1146 . -1078) T) ((-562 . -622) 73186) ((-96 . -625) 73152) ((-1024 . -860) T) ((-229 . -699) 73110) ((-706 . -1132) T) ((-1231 . -752) 73086) ((-1044 . -374) T) ((-850 . -847) 73068) ((-845 . -806) 73047) ((-419 . -916) 73006) ((-329 . -1069) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1071) 72916) ((-68 . -1237) T) ((-845 . -803) 72895) ((-430 . -729) 72869) ((-811 . -1120) T) ((-724 . -938) 72848) ((-711 . -132) T) ((-171 . -652) 72676) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72655) ((-329 . -238) 72607) ((-329 . -248) 72586) ((-219 . -300) T) ((-130 . -379) T) ((-1271 . -464) 72565) ((-1250 . -464) 72544) ((-365 . -339) 72521) ((-365 . -374) T) ((-1160 . -625) 72503) ((-45 . -1275) 72453) ((-884 . -102) T) ((-656 . -292) 72437) ((-711 . -1080) T) ((-1298 . -102) T) ((-1297 . -102) T) ((-489 . -660) 72402) ((-480 . -1120) T) ((-45 . -616) 72327) ((-1178 . -298) 72302) ((-299 . -628) 72274) ((-40 . -651) 72213) ((-1260 . -1071) 72036) ((-868 . -1071) 72020) ((-48 . -374) T) ((-1126 . -625) 72002) ((-1260 . -652) 71831) ((-868 . -652) 71801) ((-644 . -298) 71776) ((-828 . -658) 71686) ((-583 . -1071) 71673) ((-494 . -625) 71366) ((-245 . -423) 71335) ((-1192 . -918) 71242) ((-1185 . -1120) T) ((-970 . -319) 71229) ((-583 . -652) 71216) ((-65 . -1237) T) ((-1153 . -1237) T) ((-1145 . -918) 71200) ((-1133 . -298) 71177) ((-1083 . -526) 71021) ((-683 . -1120) T) ((-635 . -132) T) ((-618 . -1120) T) ((-493 . -319) 71008) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1069) T) ((-182 . -1120) T) ((-162 . -1120) T) ((-157 . -1120) T) ((-155 . -1120) T) ((-465 . -773) T) ((-31 . -1103) T) ((-981 . -174) 70959) ((-1122 . -231) 70943) ((-990 . -93) T) ((-1100 . -1076) 70853) ((-1074 . -625) 70815) ((-633 . -738) T) ((-633 . -806) 70794) ((-605 . -1120) T) ((-633 . -803) 70773) ((-305 . -296) 70752) ((-304 . -1237) T) ((-1074 . -626) 70713) ((-1044 . -1132) T) ((-323 . -863) NIL) ((-171 . -102) T) ((-284 . -861) T) ((-1100 . -111) 70609) ((-830 . -625) 70591) ((-1044 . -23) T) ((-1023 . -317) T) ((-914 . -102) T) ((-811 . -729) 70575) ((-370 . -1076) 70527) ((-365 . -1132) T) ((-364 . -1076) 70479) ((-426 . -625) 70461) ((-396 . -625) 70443) ((-356 . -1076) 70395) ((-229 . -625) 70327) ((-853 . -102) T) ((-820 . -102) T) ((-108 . -1076) 70277) ((-781 . -102) T) ((-689 . -102) T) ((-115 . -863) T) ((-486 . -464) 70256) ((-430 . -174) T) ((-370 . -111) 70194) ((-364 . -111) 70132) ((-356 . -111) 70070) ((-258 . -272) 70039) ((-258 . -232) 70008) ((-257 . -272) 69977) ((-257 . -232) 69946) ((-365 . -23) T) ((-71 . -1237) T) ((-227 . -38) 69911) ((-108 . -111) 69845) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69823) ((-48 . -1132) T) ((-871 . -1237) T) ((-939 . -25) T) ((-783 . -25) T) ((-1311 . -660) 69797) ((-1170 . -501) 69734) ((-497 . -1120) T) ((-1302 . -658) 69693) ((-1260 . -102) T) ((-1082 . -1172) T) ((-868 . -102) T) ((-245 . -1078) 69671) ((-982 . -804) 69624) ((-982 . -807) 69577) ((-392 . -660) 69561) ((-48 . -23) T) ((-827 . -807) 69540) ((-827 . -804) 69519) ((-560 . -379) T) ((-305 . -616) 69498) ((-489 . -738) T) ((-583 . -102) T) ((-1100 . -628) 69316) ((-255 . -187) T) ((-189 . -187) T) ((-884 . -319) 69273) ((-665 . -296) 69252) ((-112 . -673) T) ((-362 . -1237) T) ((-370 . -628) 69189) ((-364 . -628) 69126) ((-356 . -628) 69063) ((-76 . -1237) T) ((-108 . -628) 69013) ((-112 . -113) T) ((-1082 . -38) 69000) ((-676 . -385) 68979) ((-970 . -38) 68828) ((-743 . -1120) T) ((-493 . -38) 68677) ((-86 . -1237) T) ((-604 . -502) 68658) ((-1251 . -860) NIL) ((-1194 . -1120) T) ((-583 . -294) T) ((-1193 . -1120) T) ((-604 . -625) 68624) ((-1187 . -1120) T) ((-1140 . -863) T) ((-1100 . -1069) T) ((-362 . -1058) 68601) ((-829 . -502) 68585) ((-1024 . -1078) T) ((-45 . -625) 68567) ((-45 . -626) NIL) ((-932 . -1078) T) ((-829 . -625) 68536) ((-1167 . -102) 68486) ((-1100 . -248) 68437) ((-439 . -1078) T) ((-370 . -1069) T) ((-364 . -1069) T) ((-376 . -375) 68414) ((-356 . -1069) T) ((-354 . -234) 68401) ((-258 . -243) 68380) ((-257 . -243) 68359) ((-1100 . -238) 68284) ((-1146 . -1120) T) ((-304 . -916) 68243) ((-108 . -1069) T) ((-706 . -132) T) ((-430 . -526) 68085) ((-370 . -238) 68064) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 68043) ((-364 . -248) T) ((-356 . -238) 68022) ((-356 . -248) T) ((-1186 . -628) 68003) ((-171 . -319) 67968) ((-108 . -248) T) ((-108 . -238) T) ((-1014 . -628) 67949) ((-329 . -804) T) ((-883 . -21) T) ((-883 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67924) ((-1133 . -1076) 67845) ((-884 . -1172) NIL) ((-340 . -625) 67827) ((-419 . -1042) 67805) ((-1133 . -111) 67721) ((-703 . -1282) T) ((-448 . -1120) T) ((-256 . -1120) T) ((-1311 . -738) T) ((-63 . -625) 67703) ((-884 . -38) 67648) ((-614 . -152) 67632) ((-535 . -1237) T) ((-524 . -625) 67614) ((-1260 . -319) 67601) ((-743 . -729) 67450) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 67432) ((-507 . -651) 67392) ((-516 . -1237) T) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 67343) ((-537 . -1120) T) ((-532 . -1120) 67293) ((-253 . -464) 67244) ((-1170 . -296) 67223) ((-1198 . -625) 67205) ((-701 . -526) 67138) ((-981 . -300) 67117) ((-562 . -526) 66909) ((-258 . -658) 66757) ((-257 . -658) 66592) ((-1299 . -625) 66561) ((-1299 . -502) 66545) ((-1194 . -729) 66442) ((-1192 . -272) 66426) ((-1192 . -232) 66410) ((-1133 . -628) 66208) ((-171 . -1172) 66187) ((-1193 . -729) 66028) ((-1187 . -729) 65824) ((-984 . -113) T) ((-906 . -102) T) ((-1177 . -686) 65808) ((-1146 . -729) 65705) ((-1044 . -132) T) ((-366 . -414) 65656) ((-363 . -414) 65607) ((-355 . -414) 65558) ((-982 . -379) 65511) ((-811 . -526) 65423) ((-305 . -626) NIL) ((-305 . -625) 65405) ((-928 . -464) T) ((-923 . -296) 65384) ((-827 . -379) 65363) ((-522 . -521) 65342) ((-520 . -521) 65321) ((-885 . -910) 65242) ((-499 . -296) NIL) ((-494 . -298) 65219) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1132) T) ((-40 . -234) 65150) ((-171 . -38) 64978) ((-970 . -918) 64959) ((-1271 . -993) 64921) ((-1167 . -319) 64859) ((-493 . -918) 64836) ((-1250 . -993) 64805) ((-928 . -414) T) ((-1133 . -1069) 64783) ((-1273 . -568) T) ((-1170 . -616) 64762) ((-112 . -861) T) ((-1083 . -501) 64693) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1260 . -1172) 64671) ((-1133 . -238) 64623) ((-48 . -132) T) ((-1218 . -102) T) ((-245 . -1120) 64375) ((-884 . -412) 64352) ((-1108 . -102) T) ((-1096 . -102) T) ((-907 . -863) T) ((-620 . -102) T) ((-487 . -102) T) ((-1260 . -38) 64181) ((-868 . -38) 64151) ((-1054 . -1071) 64125) ((-743 . -174) 64036) ((-665 . -625) 64018) ((-657 . -1103) T) ((-1054 . -652) 64002) ((-583 . -38) 63989) ((-990 . -502) 63970) ((-990 . -625) 63936) ((-976 . -102) 63866) ((-877 . -625) 63848) ((-877 . -626) 63770) ((-605 . -526) NIL) ((-1316 . -1132) T) ((-1279 . -1078) T) ((-1272 . -1078) T) ((-1271 . -910) 63674) ((-1251 . -1078) T) ((-1250 . -910) 63469) ((-1231 . -148) 63448) ((-332 . -1071) 63430) ((-1231 . -146) 63409) ((-1204 . -102) T) ((-1203 . -102) T) ((-1202 . -102) T) ((-1194 . -174) 63360) ((-332 . -652) 63342) ((-713 . -1237) T) ((-1193 . -174) 63273) ((-1187 . -174) 63204) ((-1171 . -628) 63185) ((-1146 . -174) 63136) ((-608 . -1078) T) ((-607 . -1078) T) ((-1024 . -1120) T) ((-991 . -1120) T) ((-390 . -1071) 63101) ((-135 . -1237) T) ((-117 . -1237) T) ((-932 . -1120) T) ((-884 . -918) NIL) ((-390 . -652) 63066) ((-145 . -863) T) ((-811 . -809) 63050) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 63027) ((-713 . -900) 63009) ((-439 . -1120) T) ((-326 . -1241) 62988) ((-323 . -1241) T) ((-171 . -412) 62972) ((-848 . -1071) 62942) ((-486 . -993) 62904) ((-129 . -102) T) ((-72 . -625) 62886) ((-131 . -102) T) ((-839 . -1071) 62870) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1058) 62852) ((-326 . -568) 62831) ((-323 . -568) T) ((-848 . -652) 62801) ((-839 . -652) 62771) ((-1316 . -23) T) ((-135 . -1058) 62753) ((-96 . -628) 62734) ((-1013 . -658) 62716) ((-494 . -1076) 62637) ((-45 . -298) 62562) ((-245 . -729) 62504) ((-529 . -102) T) ((-494 . -111) 62420) ((-1112 . -102) 62390) ((-1054 . -102) T) ((-1192 . -658) 62300) ((-1145 . -658) 62210) ((-867 . -658) 62169) ((-656 . -840) 62148) ((-743 . -526) 62091) ((-1074 . -1076) 62075) ((-171 . -918) 61998) ((-1155 . -93) T) ((-1083 . -296) 61973) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1120) T) ((-682 . -660) 61911) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1076) 61895) ((-1074 . -111) 61874) ((-828 . -423) 61858) ((-118 . -25) T) ((-89 . -625) 61840) ((-118 . -21) T) ((-620 . -319) 61635) ((-1170 . -626) NIL) ((-487 . -319) 61439) ((-350 . -1237) T) ((-176 . -1237) T) ((-396 . -111) 61418) ((-390 . -102) T) ((-216 . -625) 61400) ((-1170 . -625) 61382) ((-786 . -1237) T) ((-1187 . -526) 61151) ((-1024 . -729) 61101) ((-1146 . -526) 61071) ((-932 . -729) 61023) ((-494 . -628) 60821) ((-362 . -317) T) ((-1209 . -152) 60771) ((-486 . -910) 60652) ((-976 . -319) 60590) ((-848 . -102) T) ((-439 . -729) 60574) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1309 . -660) 60548) ((-1271 . -1270) 60527) ((-491 . -152) 60477) ((-1271 . -1265) 60447) ((-1140 . -1241) T) ((-350 . -1058) 60414) ((-1271 . -1268) 60398) ((-1260 . -918) 60305) ((-1250 . -1249) 60284) ((-80 . -625) 60266) ((-923 . -625) 60248) ((-1250 . -1265) 60225) ((-1140 . -568) T) ((-939 . -861) T) ((-783 . -861) T) ((-684 . -861) T) ((-499 . -626) 60155) ((-499 . -625) 60096) ((-390 . -294) T) ((-1250 . -1247) 60080) ((-1273 . -1132) T) ((-219 . -626) 60010) ((-219 . -625) 59951) ((-1083 . -616) 59926) ((-830 . -628) 59910) ((-576 . -234) 59897) ((-528 . -152) 59881) ((-59 . -152) 59865) ((-508 . -152) 59849) ((-507 . -234) 59836) ((-370 . -1306) 59820) ((-364 . -1306) 59804) ((-356 . -1306) 59788) ((-326 . -374) 59767) ((-323 . -374) T) ((-494 . -1069) 59745) ((-706 . -651) 59727) ((-1307 . -660) 59701) ((-129 . -319) NIL) ((-1273 . -23) T) ((-701 . -501) 59685) ((-64 . -625) 59667) ((-1133 . -807) 59646) ((-1133 . -804) 59625) ((-562 . -501) 59562) ((-682 . -34) T) ((-494 . -238) 59514) ((-305 . -298) 59493) ((-828 . -1078) T) ((-44 . -660) 59451) ((-1100 . -379) 59402) ((-743 . -300) 59333) ((-532 . -526) 59266) ((-829 . -1076) 59217) ((-1107 . -146) 59196) ((-561 . -625) 59178) ((-370 . -379) 59157) ((-364 . -379) 59136) ((-356 . -379) 59115) ((-1107 . -148) 59094) ((-986 . -1237) T) ((-884 . -272) 59071) ((-884 . -232) 59048) ((-829 . -111) 58990) ((-794 . -146) 58969) ((-273 . -967) 58936) ((-253 . -967) 58881) ((-794 . -148) 58860) ((-792 . -146) 58839) ((-792 . -148) 58818) ((-153 . -660) 58792) ((-591 . -1120) T) ((-465 . -296) 58755) ((-466 . -148) 58734) ((-466 . -146) 58713) ((-682 . -738) T) ((-835 . -625) 58695) ((-1279 . -1120) T) ((-1272 . -1120) T) ((-1251 . -1120) T) ((-1231 . -1225) 58661) ((-1231 . -1222) 58627) ((-1194 . -300) 58606) ((-1193 . -300) 58557) ((-1187 . -300) 58508) ((-1146 . -300) 58487) ((-350 . -916) 58468) ((-1024 . -174) T) ((-932 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 58418) ((-608 . -1120) T) ((-607 . -1120) T) ((-486 . -1268) 58402) ((-486 . -1265) 58372) ((-430 . -296) 58300) ((-559 . -861) T) ((-326 . -1132) 58149) ((-323 . -1132) T) ((-1231 . -35) 58115) ((-1231 . -95) 58081) ((-84 . -625) 58063) ((-91 . -102) 58013) ((-1316 . -132) T) ((-726 . -1071) 57983) ((-604 . -628) 57964) ((-593 . -146) T) ((-593 . -148) 57946) ((-530 . -148) 57928) ((-530 . -146) T) ((-726 . -652) 57898) ((-326 . -23) 57750) ((-40 . -353) 57724) ((-323 . -23) T) ((-829 . -628) 57638) ((-1178 . -663) 57620) ((-1302 . -1078) T) ((-1178 . -384) 57602) ((-1116 . -102) T) ((-827 . -660) 57435) ((-1110 . -102) T) ((-1093 . -102) T) ((-171 . -272) 57419) ((-171 . -232) 57403) ((-1086 . -102) T) ((-1056 . -102) T) ((-1039 . -102) T) ((-605 . -501) 57385) ((-638 . -102) T) ((-245 . -526) 57318) ((-495 . -102) T) ((-1309 . -738) T) ((-1307 . -738) T) ((-220 . -102) T) ((-1198 . -1076) 57201) ((-1299 . -111) 57166) ((-1299 . -1076) 57136) ((-1082 . -658) 57108) ((-1279 . -729) 57005) ((-970 . -658) 56915) ((-1272 . -729) 56756) ((-1198 . -111) 56625) ((-1054 . -38) 56609) ((-889 . -1103) T) ((-874 . -175) T) ((-493 . -658) 56519) ((-273 . -910) 56425) ((-253 . -910) 56400) ((-829 . -1069) T) ((-693 . -1103) T) ((-688 . -1103) T) ((-635 . -234) 56345) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56305) ((-520 . -102) T) ((-490 . -1103) T) ((-118 . -234) NIL) ((-3 . -1237) T) ((-139 . -1103) T) ((-138 . -1103) T) ((-134 . -1103) T) ((-845 . -1237) T) ((-829 . -238) T) ((-829 . -248) 56284) ((-1260 . -272) 56268) ((-1260 . -232) 56252) ((-1019 . -863) 56231) ((-1242 . -625) 56213) ((-562 . -296) 56192) ((-1083 . -626) NIL) ((-1083 . -625) 56174) ((-618 . -93) T) ((-683 . -93) T) ((0 . -1237) T) ((-49 . -1237) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1251 . -729) 55970) ((-1023 . -938) T) ((-153 . -738) T) ((-1198 . -628) 55823) ((-1133 . -379) 55802) ((-1044 . -25) T) ((-1024 . -526) NIL) ((-258 . -423) 55771) ((-257 . -423) 55740) ((-1044 . -21) T) ((-885 . -1071) 55692) ((-608 . -729) 55665) ((-607 . -729) 55562) ((-811 . -296) 55520) ((-127 . -102) 55470) ((-845 . -1058) 55366) ((-171 . -840) 55345) ((-329 . -660) 55242) ((-827 . -34) T) ((-726 . -102) T) ((-1140 . -1132) T) ((-1046 . -1237) T) ((-885 . -652) 55194) ((-390 . -38) 55159) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1294) 55143) ((-363 . -1294) 55127) ((-355 . -1294) 55111) ((-171 . -360) 55090) ((-576 . -861) T) ((-1107 . -237) 55041) ((-1140 . -23) T) ((-87 . -625) 55023) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 54993) ((-839 . -38) 54963) ((-1299 . -628) 54905) ((-1273 . -132) T) ((-1170 . -298) 54884) ((-982 . -738) 54783) ((-982 . -805) 54736) ((-982 . -806) 54689) ((-117 . -317) T) ((-91 . -319) 54627) ((-687 . -34) T) ((-562 . -616) 54606) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54585) ((-827 . -805) 54564) ((-713 . -1042) T) ((-665 . -1076) 54548) ((-884 . -658) 54478) ((-827 . -738) 54456) ((-402 . -1237) T) ((-982 . -485) 54409) ((-494 . -807) 54388) ((-494 . -804) 54367) ((-928 . -1294) 54354) ((-1198 . -1069) T) ((-633 . -1237) T) ((-665 . -111) 54333) ((-1198 . -336) 54310) ((-1223 . -102) 54260) ((-1121 . -625) 54242) ((-713 . -557) T) ((-828 . -1120) T) ((-593 . -237) T) ((-530 . -237) T) ((-1299 . -1069) T) ((-1155 . -502) 54223) ((-1243 . -102) T) ((-425 . -1120) T) ((-1155 . -625) 54189) ((-258 . -1078) 54167) ((-257 . -1078) 54145) ((-850 . -102) T) ((-299 . -660) 54132) ((-605 . -296) 54082) ((-701 . -699) 54040) ((-1312 . -1237) T) ((-1287 . -861) 54019) ((-981 . -625) 54001) ((-885 . -102) T) ((-747 . -625) 53983) ((-727 . -625) 53965) ((-1279 . -174) 53916) ((-1272 . -174) 53847) ((-1251 . -174) 53778) ((-711 . -861) T) ((-1024 . -300) T) ((-465 . -625) 53760) ((-639 . -738) T) ((-60 . -1120) 53738) ((-250 . -152) 53722) ((-1271 . -652) 53563) ((-932 . -300) T) ((-1044 . -1032) T) ((-639 . -485) T) ((-724 . -1241) 53542) ((-706 . -234) NIL) ((-665 . -628) 53460) ((-171 . -658) 53355) ((-1271 . -1071) 53190) ((-608 . -174) 53169) ((-607 . -174) 53120) ((-1250 . -652) 52934) ((-1250 . -1071) 52742) ((-1245 . -1237) T) ((-724 . -568) 52653) ((-419 . -832) 52632) ((-419 . -938) T) ((-329 . -806) T) ((-489 . -1237) T) ((-990 . -628) 52613) ((-329 . -738) T) ((-656 . -1169) 52597) ((-430 . -625) 52579) ((-430 . -626) 52486) ((-110 . -663) 52468) ((-326 . -132) 52339) ((-176 . -317) T) ((-127 . -319) 52277) ((-410 . -1237) T) ((-110 . -384) 52259) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 52243) ((-666 . -1132) T) ((-605 . -19) 52225) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1120) T) ((-605 . -616) 52200) ((-489 . -1058) 52160) ((-665 . -1069) T) ((-666 . -23) T) ((-1302 . -1120) T) ((-31 . -102) T) ((-1260 . -658) 52070) ((-868 . -658) 52029) ((-828 . -729) 51878) ((-1289 . -1237) T) ((-589 . -873) T) ((-583 . -658) 51850) ((-118 . -861) NIL) ((-1192 . -423) 51834) ((-1145 . -423) 51818) ((-867 . -423) 51802) ((-886 . -102) 51753) ((-1271 . -102) T) ((-1251 . -526) 51522) ((-1250 . -102) T) ((-1223 . -319) 51460) ((-1194 . -296) 51425) ((-1193 . -296) 51383) ((-537 . -93) T) ((-1187 . -296) 51211) ((-322 . -625) 51193) ((-1122 . -1120) T) ((-1100 . -660) 51067) ((-723 . -464) T) ((-701 . -625) 50999) ((-299 . -738) T) ((-108 . -927) NIL) ((-701 . -626) 50960) ((-613 . -625) 50942) ((-589 . -625) 50924) ((-562 . -626) NIL) ((-562 . -625) 50906) ((-541 . -625) 50888) ((-523 . -521) 50867) ((-499 . -1076) 50817) ((-486 . -1071) 50652) ((-519 . -521) 50631) ((-486 . -652) 50472) ((-219 . -1076) 50422) ((-370 . -660) 50374) ((-364 . -660) 50326) ((-227 . -860) T) ((-356 . -660) 50278) ((-614 . -102) 50208) ((-499 . -111) 50142) ((-494 . -379) 50121) ((-108 . -660) 50071) ((-365 . -234) 50058) ((-245 . -501) 50042) ((-354 . -148) 50024) ((-354 . -146) T) ((-171 . -381) 49995) ((-961 . -1285) 49979) ((-105 . -1237) T) ((-219 . -111) 49913) ((-885 . -319) 49878) ((-961 . -1120) 49828) ((-811 . -626) 49789) ((-811 . -625) 49771) ((-730 . -102) T) ((-1311 . -1237) T) ((-392 . -1237) T) ((-341 . -1120) T) ((-216 . -628) 49748) ((-1140 . -132) T) ((-1302 . -729) 49718) ((-726 . -38) 49688) ((-326 . -505) 49667) ((-543 . -1237) T) ((-512 . -1237) T) ((-1271 . -294) 49633) ((-1250 . -294) 49599) ((-337 . -152) 49583) ((-451 . -1120) T) ((-1236 . -1237) T) ((-1083 . -298) 49558) ((-1244 . -863) T) ((-48 . -234) 49545) ((-1179 . -34) T) ((-1311 . -1058) 49522) ((-496 . -34) T) ((-480 . -625) 49504) ((-256 . -296) 49478) ((-392 . -1058) 49462) ((-1192 . -1078) T) ((-1145 . -1078) T) ((-867 . -1078) T) ((-1082 . -860) T) ((-499 . -628) 49412) ((-219 . -628) 49362) ((-828 . -174) 49273) ((-532 . -296) 49225) ((-1279 . -300) 49204) ((-1218 . -375) 49178) ((-1108 . -275) 49162) ((-683 . -502) 49143) ((-683 . -625) 49109) ((-618 . -502) 49090) ((-118 . -1012) 49067) ((-618 . -625) 49017) ((-486 . -102) T) ((-182 . -502) 48998) ((-182 . -625) 48964) ((-162 . -502) 48945) ((-162 . -625) 48911) ((-157 . -502) 48892) ((-155 . -502) 48873) ((-157 . -625) 48839) ((-376 . -1120) T) ((-258 . -1120) T) ((-257 . -1120) T) ((-155 . -625) 48805) ((-1272 . -300) 48756) ((-1251 . -300) 48707) ((-885 . -1172) 48685) ((-1194 . -1022) 48651) ((-620 . -375) 48591) ((-1193 . -1022) 48557) ((-620 . -231) 48504) ((-706 . -861) T) ((-605 . -625) 48486) ((-605 . -626) NIL) ((-487 . -231) 48436) ((-499 . -1069) T) ((-1187 . -1022) 48402) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1069) T) ((-1146 . -1022) 48368) ((-1100 . -738) T) ((-724 . -1132) T) ((-608 . -300) 48347) ((-607 . -300) 48326) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1185 . -625) 48308) ((-885 . -38) 48260) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1275) 48244) ((-1316 . -25) T) ((-486 . -294) 48210) ((-1316 . -21) T) ((-1250 . -319) 48149) ((-1196 . -102) T) ((-40 . -146) 48121) ((-40 . -148) 48093) ((-532 . -616) 48070) ((-1133 . -660) 47903) ((-614 . -319) 47841) ((-45 . -663) 47791) ((-45 . -678) 47741) ((-45 . -384) 47691) ((-1178 . -34) T) ((-884 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47673) ((-245 . -296) 47650) ((-1102 . -1237) T) ((-188 . -1120) T) ((-1107 . -464) 47601) ((-828 . -526) 47475) ((-794 . -464) 47406) ((-676 . -1071) 47390) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 47374) ((-366 . -1071) 47326) ((-354 . -237) T) ((-363 . -1071) 47278) ((-355 . -1071) 47230) ((-273 . -1071) 47073) ((-253 . -1071) 46916) ((-792 . -464) 46867) ((-366 . -652) 46819) ((-363 . -652) 46771) ((-355 . -652) 46723) ((-273 . -652) 46572) ((-253 . -652) 46421) ((-466 . -464) 46372) ((-970 . -423) 46356) ((-743 . -625) 46338) ((-258 . -729) 46280) ((-257 . -729) 46222) ((-743 . -626) 46083) ((-493 . -423) 46067) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -938) T) ((-1020 . -102) 46017) ((-928 . -1071) 45982) ((-1044 . -861) T) ((-60 . -526) 45915) ((-928 . -652) 45880) ((-1250 . -1172) 45832) ((-1024 . -296) NIL) ((-227 . -1078) T) ((-390 . -840) T) ((-1133 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1254 . -1113) 45816) ((-1254 . -1120) 45794) ((-245 . -616) 45771) ((-1254 . -1115) 45728) ((-1194 . -625) 45710) ((-1193 . -625) 45692) ((-1187 . -625) 45674) ((-1187 . -626) NIL) ((-1146 . -625) 45656) ((-885 . -412) 45640) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1271 . -38) 45481) ((-1250 . -38) 45295) ((-130 . -1237) T) ((-52 . -1237) T) ((-883 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1283 . -102) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-1209 . -102) T) ((-1133 . -806) 45274) ((-1133 . -805) 45253) ((-1013 . -1120) T) ((-1047 . -34) T) ((-875 . -1120) T) ((-1133 . -738) 45231) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 45210) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-321 . -1237) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1082 . -1078) T) ((-970 . -1078) T) ((-326 . -651) 45116) ((-323 . -651) 45077) ((-1192 . -1120) T) ((-493 . -1078) T) ((-491 . -102) T) ((-448 . -625) 45059) ((-1145 . -1120) T) ((-256 . -625) 45041) ((-867 . -1120) T) ((-1161 . -102) T) ((-828 . -300) 44972) ((-981 . -1076) 44855) ((-489 . -1042) T) ((-885 . -918) 44778) ((-747 . -1076) 44748) ((-1054 . -658) 44707) ((-1167 . -1141) 44691) ((-465 . -1076) 44661) ((-1122 . -526) 44594) ((-981 . -111) 44463) ((-928 . -102) T) ((-40 . -237) 44400) ((-747 . -111) 44365) ((-537 . -502) 44346) ((-537 . -625) 44312) ((-59 . -102) 44242) ((-532 . -626) 44203) ((-532 . -625) 44115) ((-531 . -102) 44065) ((-528 . -102) 43995) ((-509 . -102) 43945) ((-508 . -102) 43875) ((-465 . -111) 43838) ((-332 . -658) 43820) ((-514 . -863) T) ((-430 . -1076) 43794) ((-1231 . -993) 43756) ((-1019 . -1132) T) ((-390 . -658) 43706) ((-1155 . -628) 43687) ((-961 . -526) 43620) ((-499 . -807) T) ((-486 . -38) 43461) ((-430 . -111) 43428) ((-499 . -804) T) ((-1020 . -319) 43366) ((-219 . -807) T) ((-219 . -804) T) ((-1019 . -23) T) ((-724 . -132) T) ((-1250 . -412) 43336) ((-848 . -658) 43281) ((-839 . -658) 43240) ((-326 . -25) 43092) ((-171 . -423) 43076) ((-326 . -21) 42947) ((-323 . -25) T) ((-323 . -21) T) ((-877 . -379) T) ((-981 . -628) 42800) ((-110 . -34) T) ((-747 . -628) 42756) ((-727 . -628) 42738) ((-494 . -660) 42571) ((-884 . -1078) T) ((-605 . -298) 42546) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1192 . -729) 42375) ((-1077 . -102) 42353) ((-1145 . -729) 42202) ((-1140 . -651) 42184) ((-867 . -729) 42154) ((-682 . -1237) T) ((-1 . -102) T) ((-560 . -1237) T) ((-430 . -628) 42062) ((-245 . -625) 41755) ((-1135 . -1120) T) ((-1260 . -423) 41739) ((-1209 . -319) 41543) ((-981 . -1069) T) ((-747 . -1069) T) ((-727 . -1069) T) ((-656 . -1120) 41493) ((-1074 . -660) 41477) ((-868 . -423) 41461) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41448) ((-253 . -319) 41435) ((-1271 . -918) 41341) ((-981 . -336) 41320) ((-1250 . -918) 41117) ((-396 . -660) 41101) ((-855 . -863) 41080) ((-682 . -1058) 40976) ((-491 . -319) 40780) ((-258 . -526) 40713) ((-257 . -526) 40646) ((-1161 . -319) 40572) ((-419 . -863) 40523) ((-1231 . -910) 40502) ((-831 . -1120) T) ((-811 . -1076) 40486) ((-1279 . -296) 40451) ((-1272 . -296) 40409) ((-1251 . -296) 40237) ((-398 . -1120) T) ((-334 . -1120) T) ((-430 . -1069) T) ((-171 . -1078) T) ((-59 . -319) 40175) ((-811 . -111) 40154) ((-607 . -296) 40119) ((-531 . -319) 40057) ((-528 . -319) 39995) ((-509 . -319) 39933) ((-508 . -319) 39871) ((-430 . -238) 39850) ((-494 . -34) T) ((-227 . -1120) T) ((-1024 . -626) 39780) ((-1024 . -625) 39740) ((-991 . -625) 39700) ((-932 . -625) 39682) ((-711 . -148) T) ((-1309 . -1237) T) ((-1307 . -1237) T) ((-713 . -938) T) ((-713 . -832) T) ((-439 . -625) 39664) ((-1140 . -21) T) ((-1140 . -25) T) ((-682 . -388) 39648) ((-117 . -938) T) ((-885 . -272) 39632) ((-885 . -232) 39616) ((-44 . -1237) T) ((-78 . -1237) T) ((-127 . -126) 39600) ((-1074 . -34) T) ((-1309 . -1058) 39574) ((-1307 . -1058) 39531) ((-1260 . -1078) T) ((-868 . -1078) T) ((-366 . -1172) 39510) ((-363 . -1172) 39489) ((-355 . -1172) 39468) ((-494 . -806) 39447) ((-494 . -805) 39426) ((-229 . -34) T) ((-494 . -738) 39404) ((-811 . -628) 39250) ((-674 . -1071) 39234) ((-60 . -501) 39218) ((-583 . -1078) T) ((-1192 . -174) 39109) ((-674 . -652) 39093) ((-486 . -918) 38999) ((-153 . -1237) T) ((-1145 . -174) 38910) ((-1082 . -1120) T) ((-1107 . -967) 38855) ((-970 . -1120) T) ((-829 . -660) 38806) ((-794 . -967) 38775) ((-725 . -1120) T) ((-792 . -967) 38742) ((-528 . -292) 38726) ((-682 . -916) 38685) ((-493 . -1120) T) ((-466 . -967) 38652) ((-79 . -1237) T) ((-366 . -38) 38617) ((-363 . -38) 38582) ((-355 . -38) 38547) ((-273 . -38) 38396) ((-253 . -38) 38245) ((-928 . -1172) T) ((-536 . -502) 38226) ((-635 . -148) 38205) ((-635 . -146) 38184) ((-536 . -625) 38150) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1069) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1279 . -1022) 38116) ((-1272 . -1022) 38082) ((-1251 . -1022) 38048) ((-928 . -38) 38013) ((-227 . -729) 37978) ((-1019 . -132) T) ((-329 . -47) 37948) ((-40 . -421) 37920) ((-141 . -625) 37902) ((-982 . -1237) T) ((-827 . -1237) T) ((-176 . -938) T) ((-561 . -379) T) ((-726 . -658) 37847) ((-618 . -628) 37828) ((-354 . -414) T) ((-683 . -628) 37809) ((-323 . -234) NIL) ((-182 . -628) 37790) ((-162 . -628) 37771) ((-157 . -628) 37752) ((-155 . -628) 37733) ((-532 . -298) 37710) ((-1250 . -232) 37680) ((-1250 . -272) 37650) ((-1234 . -1237) 37628) ((-1198 . -660) 37553) ((-889 . -102) T) ((-827 . -1058) 37380) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1122 . -501) 37364) ((-687 . -1237) T) ((-490 . -102) T) ((-250 . -102) 37294) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1107 . -910) 37189) ((-884 . -1120) T) ((-1192 . -526) 37136) ((-1082 . -729) 37123) ((-794 . -910) 37026) ((-743 . -1076) 36869) ((-792 . -910) 36851) ((-970 . -729) 36700) ((-1145 . -526) 36652) ((-1298 . -1120) T) ((-1297 . -1120) T) ((-466 . -910) 36627) ((-493 . -729) 36476) ((-67 . -625) 36458) ((-639 . -1237) T) ((-743 . -111) 36287) ((-961 . -501) 36271) ((-1299 . -660) 36231) ((-1194 . -1076) 36114) ((-829 . -738) T) ((-1193 . -1076) 35949) ((-1187 . -1076) 35739) ((-329 . -1237) T) ((-1146 . -1076) 35622) ((-1023 . -1241) T) ((-1114 . -102) 35600) ((-827 . -388) 35569) ((-591 . -625) 35551) ((-558 . -1120) T) ((-1023 . -568) T) ((-1194 . -111) 35420) ((-1193 . -111) 35241) ((-1187 . -111) 35010) ((-1146 . -111) 34879) ((-1125 . -1123) 34843) ((-390 . -860) T) ((-1279 . -625) 34825) ((-1272 . -625) 34807) ((-885 . -658) 34744) ((-1251 . -625) 34726) ((-1251 . -626) NIL) ((-245 . -298) 34703) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1120) T) ((-743 . -628) 34488) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34470) ((-607 . -625) 34452) ((-1140 . -234) 34439) ((-914 . -1120) T) ((-853 . -1120) T) ((-820 . -1120) T) ((-273 . -918) 34349) ((-253 . -918) 34326) ((-781 . -1120) T) ((-689 . -1120) T) ((-670 . -865) 34310) ((-635 . -237) 34261) ((-827 . -916) 34193) ((-871 . -863) T) ((-1242 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1194 . -628) 34075) ((-1140 . -673) T) ((-884 . -729) 34020) ((-258 . -501) 34004) ((-257 . -501) 33988) ((-1193 . -628) 33731) ((-1187 . -628) 33526) ((-724 . -651) 33474) ((-665 . -660) 33448) ((-1146 . -628) 33330) ((-305 . -34) T) ((-1140 . -113) T) ((-743 . -1069) T) ((-593 . -1294) 33317) ((-530 . -1294) 33294) ((-1260 . -1120) T) ((-1192 . -300) 33205) ((-1145 . -300) 33136) ((-1082 . -174) T) ((-299 . -1237) T) ((-868 . -1120) T) ((-970 . -174) 33047) ((-794 . -1263) 33031) ((-656 . -526) 32964) ((-77 . -625) 32946) ((-743 . -336) 32911) ((-1198 . -738) T) ((-583 . -1120) T) ((-493 . -174) 32822) ((-250 . -319) 32760) ((-1162 . -1132) T) ((-70 . -625) 32742) ((-1299 . -738) T) ((-1194 . -1069) T) ((-1193 . -1069) T) ((-1187 . -1069) T) ((-337 . -102) 32672) ((-1162 . -23) T) ((-2 . -1237) T) ((-1146 . -1069) T) ((-91 . -1141) 32656) ((-879 . -1132) T) ((-1194 . -238) 32615) ((-1193 . -248) 32594) ((-1193 . -238) 32546) ((-1187 . -238) 32433) ((-1187 . -248) 32412) ((-329 . -916) 32318) ((-879 . -23) T) ((-171 . -729) 32146) ((-419 . -1241) T) ((-1121 . -379) T) ((-1023 . -374) T) ((-883 . -464) T) ((-1044 . -148) T) ((-961 . -296) 32098) ((-323 . -861) NIL) ((-1271 . -658) 31980) ((-887 . -102) T) ((-1250 . -658) 31835) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31816) ((-365 . -148) 31798) ((-365 . -146) T) ((-1167 . -1120) 31776) ((-465 . -732) T) ((-75 . -625) 31758) ((-115 . -861) T) ((-250 . -292) 31742) ((-245 . -1076) 31663) ((-81 . -625) 31645) ((-747 . -379) 31598) ((-1196 . -840) T) ((-749 . -240) 31582) ((-1179 . -1237) T) ((-142 . -240) 31564) ((-245 . -111) 31480) ((-1260 . -729) 31309) ((-48 . -148) T) ((-884 . -174) T) ((-868 . -729) 31279) ((-496 . -1237) T) ((-970 . -526) 31226) ((-665 . -738) T) ((-583 . -729) 31213) ((-1054 . -1078) T) ((-706 . -237) NIL) ((-493 . -526) 31156) ((-961 . -19) 31140) ((-961 . -616) 31117) ((-1100 . -1237) T) ((-1081 . -1237) T) ((-828 . -626) NIL) ((-828 . -625) 31099) ((-1231 . -652) 30996) ((-1231 . -1071) 30879) ((-1024 . -1076) 30829) ((-425 . -625) 30811) ((-258 . -296) 30788) ((-370 . -1237) T) ((-364 . -1237) T) ((-356 . -1237) T) ((-257 . -296) 30765) ((-499 . -927) NIL) ((-326 . -29) 30735) ((-108 . -1237) T) ((-1023 . -1132) T) ((-219 . -927) NIL) ((-1100 . -1058) 30631) ((-932 . -1076) 30583) ((-1024 . -111) 30517) ((-1023 . -23) T) ((-723 . -1071) 30482) ((-932 . -111) 30420) ((-749 . -707) 30404) ((-723 . -652) 30369) ((-273 . -272) 30353) ((-273 . -232) 30337) ((-439 . -1076) 30321) ((-390 . -1078) T) ((-245 . -628) 30119) ((-706 . -1225) NIL) ((-499 . -660) 30069) ((-486 . -658) 29951) ((-108 . -898) 29933) ((-108 . -900) 29915) ((-706 . -1222) NIL) ((-219 . -660) 29865) ((-370 . -1058) 29849) ((-364 . -1058) 29833) ((-337 . -319) 29771) ((-356 . -1058) 29755) ((-227 . -300) T) ((-439 . -111) 29734) ((-60 . -625) 29666) ((-171 . -174) T) ((-1140 . -861) T) ((-108 . -1058) 29626) ((-906 . -1120) T) ((-848 . -1078) T) ((-839 . -1078) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1012) 29587) ((-185 . -102) T) ((-1310 . -1132) T) ((-1310 . -23) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-1302 . -625) 29569) ((-1260 . -174) 29460) ((-1231 . -102) T) ((-419 . -374) T) ((-1218 . -1120) T) ((-1209 . -231) 29410) ((-1203 . -856) T) ((-1202 . -856) T) ((-1186 . -1237) T) ((-245 . -1069) 29388) ((-1014 . -1237) T) ((-1170 . -34) T) ((-1187 . -804) NIL) ((-1187 . -807) NIL) ((-1178 . -1237) T) ((-489 . -938) T) ((-1019 . -651) 29336) ((-258 . -616) 29313) ((-257 . -616) 29290) ((-1162 . -132) T) ((-1122 . -626) 29251) ((-1100 . -388) 29235) ((-884 . -526) 29143) ((-245 . -238) 29095) ((-1122 . -625) 29077) ((-1108 . -1120) T) ((-1024 . -628) 29027) ((-1100 . -916) 28960) ((-932 . -628) 28897) ((-836 . -625) 28879) ((-1096 . -1120) T) ((-1082 . -300) T) ((-1024 . -248) T) ((-1024 . -238) T) ((-1024 . -1069) T) ((-976 . -1120) 28829) ((-970 . -300) 28760) ((-439 . -628) 28729) ((-108 . -388) 28711) ((-108 . -349) 28693) ((-932 . -1069) T) ((-932 . -248) T) ((-811 . -379) 28672) ((-723 . -102) T) ((-713 . -863) T) ((-659 . -1237) T) ((-644 . -1237) T) ((-620 . -1120) T) ((-620 . -622) 28648) ((-598 . -1071) 28623) ((-493 . -300) 28554) ((-583 . -174) T) ((-337 . -292) 28538) ((-365 . -237) T) ((-598 . -652) 28513) ((-366 . -360) 28492) ((-363 . -360) 28471) ((-355 . -360) 28450) ((-214 . -1237) T) ((-83 . -625) 28432) ((-213 . -1237) T) ((-211 . -1237) T) ((-210 . -1237) T) ((-209 . -1237) T) ((-208 . -1237) T) ((-205 . -1237) T) ((-204 . -1237) T) ((-203 . -1237) T) ((-202 . -1237) T) ((-487 . -1120) T) ((-201 . -1237) T) ((-273 . -260) 28394) ((-200 . -1237) T) ((-199 . -1237) T) ((-198 . -1237) T) ((-197 . -1237) T) ((-196 . -1237) T) ((-487 . -622) 28373) ((-195 . -1237) T) ((-283 . -1237) T) ((-282 . -1237) T) ((-281 . -1237) T) ((-280 . -1237) T) ((-491 . -231) 28323) ((-279 . -1237) T) ((-278 . -1237) T) ((-277 . -1237) T) ((-439 . -1069) T) ((-879 . -132) T) ((-855 . -1132) 28302) ((-48 . -237) T) ((-711 . -464) T) ((-108 . -916) NIL) ((-135 . -863) T) ((-1231 . -294) 28268) ((-1133 . -1237) T) ((-885 . -860) 28247) ((-1019 . -25) T) ((-923 . -738) T) ((-171 . -526) 28159) ((-1019 . -21) T) ((-923 . -485) T) ((-419 . -1132) T) ((-499 . -806) T) ((-499 . -803) T) ((-928 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 28146) ((-219 . -738) T) ((-855 . -23) 28098) ((-1204 . -1120) T) ((-670 . -1071) 28082) ((-1203 . -1120) T) ((-536 . -628) 28063) ((-1202 . -1120) T) ((-329 . -317) 28042) ((-1055 . -240) 27988) ((-670 . -652) 27958) ((-419 . -23) T) ((-961 . -626) 27919) ((-961 . -625) 27831) ((-656 . -501) 27815) ((-45 . -1030) 27765) ((-1133 . -1058) 27592) ((-629 . -987) T) ((-503 . -102) T) ((-341 . -625) 27574) ((-1013 . -296) 27541) ((-605 . -663) 27523) ((-129 . -1120) T) ((-131 . -1120) T) ((-605 . -384) 27505) ((-354 . -1294) 27482) ((-451 . -625) 27464) ((-1260 . -526) 27411) ((-1107 . -1071) 27254) ((-1047 . -1237) T) ((-884 . -300) T) ((-1192 . -296) 27181) ((-1107 . -652) 27030) ((-1020 . -1015) 27014) ((-794 . -1071) 26837) ((-792 . -1071) 26680) ((-794 . -652) 26509) ((-792 . -652) 26358) ((-488 . -1237) T) ((-475 . -1237) T) ((-598 . -102) T) ((-473 . -1071) 26329) ((-466 . -1071) 26172) ((-676 . -658) 26141) ((-635 . -464) 26120) ((-473 . -652) 26091) ((-466 . -652) 25940) ((-366 . -658) 25877) ((-363 . -658) 25814) ((-355 . -658) 25751) ((-273 . -658) 25661) ((-253 . -658) 25571) ((-1302 . -393) 25543) ((-529 . -1120) T) ((-118 . -464) T) ((-1217 . -102) T) ((-1112 . -1120) 25513) ((-1054 . -1120) T) ((-1135 . -93) T) ((-907 . -861) T) ((-1279 . -111) 25382) ((-362 . -1241) T) ((-1279 . -1076) 25265) ((-1133 . -388) 25234) ((-1272 . -1076) 25069) ((-1251 . -1076) 24859) ((-1272 . -111) 24680) ((-1251 . -111) 24449) ((-1231 . -319) 24436) ((-1023 . -132) T) ((-928 . -658) 24386) ((-376 . -625) 24368) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1076) 24328) ((-607 . -1076) 24211) ((-593 . -1071) 24176) ((-530 . -1071) 24121) ((-372 . -1120) T) ((-332 . -1120) T) ((-258 . -625) 24082) ((-257 . -625) 24043) ((-593 . -652) 24008) ((-530 . -652) 23953) ((-706 . -421) 23920) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -910) 23827) ((-670 . -102) T) ((-608 . -111) 23780) ((-607 . -111) 23649) ((-390 . -1120) T) ((-347 . -102) T) ((-171 . -300) 23560) ((-1250 . -860) 23513) ((-726 . -1078) T) ((-624 . -1237) T) ((-1167 . -526) 23446) ((-1210 . -847) 23430) ((-1133 . -916) 23362) ((-848 . -1120) T) ((-839 . -1120) T) ((-837 . -1120) T) ((-97 . -102) T) ((-145 . -861) T) ((-624 . -898) 23346) ((-1171 . -1237) T) ((-110 . -1237) T) ((-1107 . -102) T) ((-1083 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1279 . -628) 23228) ((-1272 . -628) 22971) ((-473 . -102) T) ((-466 . -102) T) ((-1251 . -628) 22766) ((-96 . -1237) T) ((-245 . -807) 22745) ((-245 . -804) 22724) ((-661 . -102) T) ((-608 . -628) 22682) ((-607 . -628) 22564) ((-1260 . -300) 22475) ((-676 . -646) 22459) ((-188 . -625) 22441) ((-656 . -296) 22393) ((-1054 . -729) 22377) ((-583 . -300) T) ((-981 . -660) 22302) ((-1310 . -132) T) ((-747 . -660) 22262) ((-727 . -660) 22249) ((-284 . -102) T) ((-465 . -660) 22179) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1279 . -1069) T) ((-1272 . -1069) T) ((-1251 . -1069) T) ((-1160 . -1237) T) ((-519 . -658) 22161) ((-332 . -729) 22143) ((-1279 . -238) 22102) ((-1272 . -248) 22081) ((-1272 . -238) 22033) ((-1251 . -238) 21920) ((-1251 . -248) 21899) ((-1231 . -38) 21796) ((-608 . -1069) T) ((-607 . -1069) T) ((-1024 . -807) T) ((-1024 . -804) T) ((-991 . -807) T) ((-991 . -804) T) ((-885 . -1078) T) ((-109 . -625) 21778) ((-706 . -464) T) ((-390 . -729) 21743) ((-430 . -660) 21717) ((-883 . -882) 21701) ((-723 . -38) 21666) ((-607 . -238) 21625) ((-40 . -736) 21597) ((-362 . -339) 21574) ((-362 . -374) T) ((-1100 . -317) 21525) ((-304 . -1132) 21406) ((-1126 . -1237) T) ((-1019 . -234) 21351) ((-173 . -102) T) ((-1254 . -625) 21318) ((-855 . -132) 21270) ((-848 . -729) 21240) ((-656 . -1275) 21224) ((-839 . -729) 21194) ((-656 . -616) 21171) ((-494 . -1237) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 21158) ((-419 . -132) T) ((-532 . -678) 21142) ((-108 . -317) T) ((-304 . -23) 21025) ((-532 . -663) 21009) ((-706 . -414) NIL) ((-532 . -384) 20993) ((-301 . -625) 20975) ((-91 . -1120) 20953) ((-108 . -1042) T) ((-576 . -144) T) ((-1287 . -152) 20937) ((-494 . -1058) 20764) ((-1273 . -146) 20725) ((-1273 . -148) 20686) ((-1074 . -1237) T) ((-1298 . -93) T) ((-1013 . -625) 20668) ((-830 . -1237) T) ((-875 . -625) 20650) ((-828 . -1076) 20493) ((-1297 . -93) T) ((-1192 . -626) NIL) ((-1116 . -1120) T) ((-1110 . -1120) T) ((-1107 . -319) 20480) ((-426 . -1237) T) ((-396 . -1237) T) ((-1093 . -1120) T) ((-229 . -1237) T) ((-1086 . -1120) T) ((-1056 . -1120) T) ((-1039 . -1120) T) ((-794 . -319) 20467) ((-792 . -319) 20454) ((-1192 . -625) 20436) ((-828 . -111) 20265) ((-1145 . -625) 20247) ((-638 . -1120) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 20234) ((-495 . -1120) T) ((-1145 . -626) 19982) ((-1054 . -174) T) ((-961 . -298) 19959) ((-220 . -1120) T) ((-867 . -625) 19941) ((-620 . -526) 19724) ((-81 . -628) 19665) ((-830 . -1058) 19649) ((-487 . -526) 19441) ((-845 . -863) 19420) ((-981 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1132) T) ((-1199 . -625) 19402) ((-225 . -102) T) ((-494 . -388) 19371) ((-527 . -1120) T) ((-522 . -1120) T) ((-520 . -1120) T) ((-811 . -660) 19345) ((-1044 . -464) T) ((-976 . -526) 19278) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19257) ((-390 . -174) T) ((-1271 . -1078) T) ((-1250 . -1078) T) ((-227 . -1022) T) ((-828 . -628) 18994) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1241) T) ((-1162 . -651) 18942) ((-592 . -882) 18926) ((-1302 . -1076) 18910) ((-1179 . -1213) 18886) ((-713 . -568) T) ((-127 . -1120) 18864) ((-726 . -1120) T) ((-670 . -38) 18834) ((-494 . -916) 18766) ((-255 . -1120) T) ((-189 . -1120) T) ((-365 . -414) T) ((-326 . -148) 18745) ((-326 . -146) 18724) ((-117 . -568) T) ((-129 . -526) NIL) ((-323 . -148) 18680) ((-323 . -146) 18636) ((-48 . -464) T) ((-163 . -1120) T) ((-158 . -1120) T) ((-1179 . -107) 18583) ((-794 . -1172) 18561) ((-1302 . -111) 18540) ((-701 . -34) T) ((-604 . -1237) T) ((-562 . -34) T) ((-496 . -107) 18524) ((-258 . -298) 18501) ((-257 . -298) 18478) ((-1243 . -856) T) ((-884 . -296) 18429) ((-45 . -1237) T) ((-1231 . -918) 18410) ((-829 . -1237) T) ((-828 . -1069) T) ((-633 . -863) 18389) ((-674 . -658) 18358) ((-1198 . -47) 18335) ((-828 . -336) 18297) ((-1107 . -38) 18146) ((-828 . -238) 18125) ((-794 . -38) 17954) ((-792 . -38) 17803) ((-1135 . -502) 17784) ((-466 . -38) 17633) ((-1135 . -625) 17599) ((-1138 . -102) T) ((-656 . -626) 17560) ((-656 . -625) 17472) ((-593 . -1172) T) ((-530 . -1172) T) ((-1167 . -501) 17456) ((-354 . -1071) 17401) ((-1223 . -1120) 17379) ((-1162 . -25) T) ((-1162 . -21) T) ((-354 . -652) 17324) ((-1302 . -628) 17273) ((-340 . -1237) T) ((-486 . -1078) T) ((-1243 . -1120) T) ((-1251 . -804) NIL) ((-1251 . -807) NIL) ((-1019 . -861) 17252) ((-850 . -1120) T) ((-831 . -625) 17234) ((-879 . -21) T) ((-879 . -25) T) ((-811 . -738) T) ((-176 . -1241) T) ((-593 . -38) 17199) ((-530 . -38) 17164) ((-398 . -625) 17146) ((-343 . -102) T) ((-334 . -625) 17128) ((-171 . -296) 17086) ((-1245 . -863) T) ((-63 . -1237) T) ((-112 . -102) T) ((-885 . -1120) T) ((-524 . -1237) T) ((-176 . -568) T) ((-726 . -729) 17056) ((-304 . -132) 16939) ((-227 . -625) 16921) ((-227 . -626) 16851) ((-1023 . -651) 16790) ((-1302 . -1069) T) ((-1198 . -1237) T) ((-1140 . -148) T) ((-644 . -1213) 16765) ((-743 . -927) 16744) ((-605 . -34) T) ((-659 . -107) 16728) ((-644 . -107) 16674) ((-1299 . -1237) T) ((-635 . -910) 16595) ((-1260 . -296) 16522) ((-743 . -660) 16411) ((-305 . -1237) T) ((-1198 . -1058) 16307) ((-961 . -630) 16284) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -910) NIL) ((-1187 . -927) NIL) ((-1082 . -626) 16199) ((-1082 . -625) 16181) ((-970 . -625) 16163) ((-725 . -502) 16113) ((-354 . -102) T) ((-258 . -1076) 16034) ((-257 . -1076) 15955) ((-406 . -102) T) ((-31 . -1120) T) ((-970 . -626) 15816) ((-725 . -625) 15751) ((-1300 . -1230) 15720) ((-493 . -625) 15702) ((-493 . -626) 15563) ((-273 . -423) 15547) ((-253 . -423) 15531) ((-323 . -237) NIL) ((-258 . -111) 15447) ((-257 . -111) 15363) ((-1194 . -660) 15288) ((-1193 . -660) 15185) ((-1187 . -660) 15037) ((-1146 . -660) 14962) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1023 . -25) T) ((-1023 . -21) T) ((-886 . -1120) 14913) ((-40 . -1071) 14858) ((-885 . -729) 14810) ((-40 . -652) 14755) ((-390 . -300) T) ((-171 . -1022) 14706) ((-1107 . -918) 14605) ((-706 . -399) T) ((-1019 . -1017) 14589) ((-713 . -1132) T) ((-706 . -167) 14571) ((-794 . -918) 14478) ((-792 . -918) 14462) ((-1271 . -1120) T) ((-1250 . -1120) T) ((-1184 . -102) T) ((-326 . -1222) 14441) ((-326 . -1225) 14420) ((-466 . -918) 14397) ((-326 . -977) 14376) ((-135 . -1132) T) ((-117 . -1132) T) ((-990 . -1237) T) ((-877 . -1237) T) ((-713 . -23) T) ((-665 . -1237) T) ((-614 . -1285) 14360) ((-614 . -1120) 14310) ((-543 . -863) T) ((-512 . -863) T) ((-326 . -95) 14289) ((-91 . -526) 14222) ((-176 . -374) T) ((-258 . -628) 14020) ((-257 . -628) 13818) ((-326 . -35) 13797) ((-620 . -501) 13731) ((-135 . -23) T) ((-117 . -23) T) ((-984 . -102) T) ((-730 . -1120) T) ((-487 . -501) 13668) ((-419 . -651) 13616) ((-665 . -1058) 13512) ((-976 . -501) 13496) ((-366 . -1078) T) ((-363 . -1078) T) ((-355 . -1078) T) ((-273 . -1078) T) ((-253 . -1078) T) ((-884 . -626) NIL) ((-884 . -625) 13478) ((-1298 . -502) 13459) ((-1297 . -502) 13440) ((-1310 . -21) T) ((-1298 . -625) 13406) ((-1297 . -625) 13372) ((-583 . -1022) T) ((-743 . -738) T) ((-1310 . -25) T) ((-258 . -1069) 13350) ((-257 . -1069) 13328) ((-72 . -1237) T) ((-1162 . -234) 13273) ((-258 . -238) 13225) ((-257 . -238) 13177) ((-1140 . -237) T) ((-40 . -102) T) ((-928 . -1078) T) ((-706 . -910) NIL) ((-1201 . -102) T) ((-129 . -501) 13159) ((-1194 . -738) T) ((-1193 . -738) T) ((-1187 . -738) T) ((-1187 . -803) NIL) ((-1187 . -806) NIL) ((-972 . -102) T) ((-939 . -102) T) ((-883 . -1071) 13146) ((-1146 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-883 . -652) 13133) ((-558 . -625) 13115) ((-486 . -1120) T) ((-350 . -1132) T) ((-176 . -1132) T) ((-329 . -938) 13094) ((-1271 . -729) 12935) ((-885 . -174) T) ((-1250 . -729) 12749) ((-855 . -21) 12701) ((-855 . -25) 12653) ((-250 . -1169) 12637) ((-127 . -526) 12570) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12336) ((-171 . -625) 12318) ((-176 . -23) T) ((-656 . -298) 12295) ((-532 . -34) T) ((-914 . -625) 12277) ((-89 . -1237) T) ((-853 . -625) 12259) ((-820 . -625) 12241) ((-781 . -625) 12223) ((-689 . -625) 12205) ((-245 . -660) 12038) ((-629 . -113) T) ((-1196 . -1120) T) ((-1192 . -1076) 11861) ((-216 . -1237) T) ((-1170 . -1237) T) ((-1145 . -1076) 11704) ((-867 . -1076) 11688) ((-1102 . -863) T) ((-1254 . -630) 11672) ((-1192 . -111) 11481) ((-1145 . -111) 11310) ((-867 . -111) 11289) ((-1244 . -861) T) ((-1260 . -626) NIL) ((-1260 . -625) 11271) ((-354 . -1172) T) ((-868 . -625) 11253) ((-1096 . -296) 11232) ((-1231 . -658) 11142) ((-80 . -1237) T) ((-923 . -1237) T) ((-1223 . -526) 11075) ((-1024 . -927) NIL) ((-1107 . -272) 11059) ((-620 . -296) 11035) ((-1107 . -232) 11019) ((-499 . -1237) T) ((-583 . -625) 11001) ((-487 . -296) 10980) ((-1024 . -660) 10930) ((-529 . -93) T) ((-1023 . -234) 10861) ((-219 . -1237) T) ((-976 . -296) 10813) ((-883 . -102) T) ((-299 . -938) T) ((-829 . -317) 10792) ((-794 . -272) 10776) ((-794 . -232) 10760) ((-932 . -660) 10712) ((-723 . -658) 10662) ((-706 . -736) 10629) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10594) ((-499 . -898) 10576) ((-499 . -900) 10558) ((-486 . -729) 10399) ((-64 . -1237) T) ((-219 . -898) 10381) ((-219 . -900) 10363) ((-619 . -25) T) ((-439 . -660) 10337) ((-1192 . -628) 10106) ((-499 . -1058) 10066) ((-885 . -526) 9978) ((-1145 . -628) 9770) ((-867 . -628) 9688) ((-219 . -1058) 9648) ((-245 . -34) T) ((-1020 . -1120) 9626) ((-592 . -1071) 9613) ((-576 . -1071) 9600) ((-507 . -1071) 9565) ((-1271 . -174) 9496) ((-1250 . -174) 9427) ((-592 . -652) 9414) ((-576 . -652) 9401) ((-507 . -652) 9366) ((-724 . -146) 9345) ((-724 . -148) 9324) ((-130 . -863) T) ((-713 . -132) T) ((-561 . -1237) T) ((-137 . -477) 9301) ((-1167 . -625) 9233) ((-670 . -668) 9217) ((-129 . -296) 9167) ((-117 . -132) T) ((-489 . -1241) T) ((-620 . -616) 9143) ((-487 . -616) 9122) ((-609 . -1120) T) ((-347 . -346) 9091) ((-597 . -1120) T) ((-548 . -1120) T) ((-489 . -568) T) ((-1192 . -1069) T) ((-1145 . -1069) T) ((-867 . -1069) T) ((-835 . -1237) T) ((-245 . -806) 9070) ((-245 . -805) 9049) ((-1192 . -336) 9026) ((-245 . -738) 9004) ((-976 . -19) 8988) ((-499 . -388) 8970) ((-499 . -349) 8952) ((-1145 . -336) 8924) ((-365 . -1294) 8901) ((-219 . -388) 8883) ((-219 . -349) 8865) ((-976 . -616) 8842) ((-1192 . -238) T) ((-1283 . -1120) T) ((-676 . -1120) T) ((-657 . -1120) T) ((-1209 . -1120) T) ((-1107 . -260) 8779) ((-598 . -658) 8739) ((-366 . -1120) T) ((-363 . -1120) T) ((-355 . -1120) T) ((-273 . -1120) T) ((-253 . -1120) T) ((-84 . -1237) T) ((-128 . -102) 8689) ((-122 . -102) 8639) ((-1250 . -526) 8499) ((-1209 . -622) 8478) ((-1161 . -1120) T) ((-1135 . -628) 8459) ((-1100 . -938) 8410) ((-491 . -1120) T) ((-1024 . -806) T) ((-1024 . -803) T) ((-491 . -622) 8389) ((-258 . -807) 8368) ((-258 . -804) 8347) ((-257 . -807) 8326) ((-40 . -1172) NIL) ((-257 . -804) 8305) ((-1024 . -738) T) ((-129 . -19) 8287) ((-991 . -806) T) ((-711 . -1071) 8252) ((-932 . -738) T) ((-928 . -1120) T) ((-906 . -625) 8234) ((-129 . -616) 8209) ((-711 . -652) 8174) ((-91 . -501) 8158) ((-499 . -916) NIL) ((-885 . -300) T) ((-227 . -1076) 8123) ((-848 . -296) 8102) ((-219 . -916) NIL) ((-845 . -1132) 8081) ((-59 . -1120) 8031) ((-531 . -1120) 8009) ((-528 . -1120) 7959) ((-509 . -1120) 7937) ((-508 . -1120) 7887) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7818) ((-370 . -938) T) ((-364 . -938) T) ((-356 . -938) T) ((-227 . -111) 7774) ((-845 . -23) 7726) ((-439 . -738) T) ((-108 . -938) T) ((-40 . -38) 7671) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7630) ((-326 . -464) 7609) ((-323 . -464) T) ((-614 . -526) 7542) ((-419 . -234) 7487) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7351) ((-304 . -21) 7234) ((-45 . -1213) 7213) ((-66 . -625) 7195) ((-55 . -102) T) ((-347 . -658) 7177) ((-1288 . -102) T) ((-1287 . -102) 7107) ((-1279 . -660) 7032) ((-1272 . -660) 6929) ((-45 . -107) 6879) ((-831 . -628) 6863) ((-1251 . -660) 6715) ((-1251 . -927) NIL) ((-1242 . -1237) T) ((-1218 . -625) 6697) ((-1210 . -102) T) ((-1122 . -437) 6681) ((-1122 . -379) 6660) ((-398 . -628) 6644) ((-334 . -628) 6628) ((-1116 . -93) T) ((-1107 . -658) 6538) ((-1083 . -1237) T) ((-1082 . -1076) 6525) ((-1082 . -111) 6510) ((-970 . -111) 6339) ((-970 . -1076) 6182) ((-794 . -658) 6092) ((-792 . -658) 6002) ((-676 . -729) 5986) ((-635 . -1071) 5973) ((-635 . -652) 5960) ((-560 . -863) T) ((-493 . -1076) 5803) ((-489 . -374) T) ((-473 . -658) 5759) ((-466 . -658) 5669) ((-227 . -628) 5619) ((-366 . -729) 5571) ((-363 . -729) 5523) ((-118 . -1071) 5468) ((-355 . -729) 5420) ((-273 . -729) 5269) ((-253 . -729) 5118) ((-1110 . -93) T) ((-1093 . -93) T) ((-118 . -652) 5063) ((-1086 . -93) T) ((-961 . -663) 5047) ((-1077 . -1120) 5025) ((-493 . -111) 4854) ((-1056 . -93) T) ((-1039 . -93) T) ((-961 . -384) 4838) ((-254 . -102) T) ((-981 . -47) 4817) ((-74 . -625) 4799) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1120) T) ((-633 . -1132) T) ((-1108 . -625) 4781) ((-638 . -93) T) ((-1096 . -625) 4763) ((-928 . -729) 4728) ((-127 . -501) 4712) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1237) T) ((-220 . -93) T) ((-620 . -625) 4694) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4676) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4635) ((-523 . -1120) T) ((-519 . -1120) T) ((-122 . -319) 4573) ((-128 . -319) 4511) ((-608 . -660) 4485) ((-607 . -660) 4410) ((-593 . -658) 4360) ((-227 . -1069) T) ((-530 . -658) 4290) ((-390 . -1022) T) ((-227 . -248) T) ((-227 . -238) T) ((-1082 . -628) 4262) ((-1082 . -630) 4243) ((-976 . -626) 4204) ((-976 . -625) 4116) ((-970 . -628) 3905) ((-883 . -38) 3892) ((-725 . -628) 3842) ((-1271 . -300) 3793) ((-1250 . -300) 3744) ((-493 . -628) 3529) ((-1140 . -464) T) ((-514 . -861) T) ((-326 . -1159) 3508) ((-1121 . -1237) T) ((-1019 . -148) 3487) ((-1019 . -146) 3466) ((-507 . -319) 3453) ((-1204 . -625) 3435) ((-305 . -1213) 3414) ((-1203 . -625) 3396) ((-1155 . -1237) T) ((-1202 . -625) 3378) ((-884 . -1076) 3323) ((-489 . -1132) T) ((-140 . -847) 3305) ((-115 . -847) 3286) ((-1223 . -501) 3270) ((-1082 . -1069) T) ((-635 . -102) T) ((-981 . -1237) T) ((-970 . -1069) T) ((-258 . -379) 3249) ((-257 . -379) 3228) ((-884 . -111) 3157) ((-305 . -107) 3107) ((-131 . -625) 3089) ((-129 . -626) NIL) ((-129 . -625) 3033) ((-118 . -102) T) ((-747 . -1237) T) ((-727 . -1237) T) ((-489 . -23) T) ((-465 . -1237) T) ((-493 . -1069) T) ((-1082 . -238) T) ((-970 . -336) 3002) ((-40 . -918) 2911) ((-493 . -336) 2868) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2779) ((-253 . -174) 2690) ((-981 . -1058) 2586) ((-529 . -502) 2567) ((-747 . -1058) 2538) ((-529 . -625) 2504) ((-430 . -1237) T) ((-1125 . -102) T) ((-1112 . -625) 2463) ((-1054 . -625) 2445) ((-706 . -1071) 2395) ((-1300 . -152) 2379) ((-1298 . -628) 2360) ((-1297 . -628) 2341) ((-1292 . -625) 2323) ((-1279 . -738) T) ((-706 . -652) 2273) ((-1272 . -738) T) ((-1251 . -803) NIL) ((-1251 . -806) NIL) ((-171 . -1076) 2183) ((-928 . -174) T) ((-884 . -628) 2113) ((-1251 . -738) T) ((-1023 . -353) 2087) ((-225 . -658) 2039) ((-1020 . -526) 1972) ((-855 . -861) 1951) ((-576 . -1172) T) ((-486 . -300) 1902) ((-608 . -738) T) ((-372 . -625) 1884) ((-332 . -625) 1866) ((-430 . -1058) 1762) ((-607 . -738) T) ((-419 . -861) 1713) ((-171 . -111) 1609) ((-845 . -132) 1561) ((-1287 . -319) 1499) ((-749 . -152) 1483) ((-982 . -863) 1382) ((-827 . -863) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1030) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1042) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1042) T) ((-884 . -1069) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -927) 1023) ((-1311 . -1132) T) ((-322 . -1237) T) ((-1260 . -1076) 846) ((-868 . -1076) 830) ((-884 . -248) T) ((-884 . -238) NIL) ((-701 . -1237) T) ((-1311 . -23) T) ((-828 . -660) 719) ((-562 . -1237) T) ((-430 . -349) 703) ((-583 . -1076) 690) ((-1260 . -111) 499) ((-713 . -651) 481) ((-868 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1209 . -526) 30) ((-889 . -1120) T) ((-693 . -1120) T) ((-688 . -1120) T) ((-674 . -1120) T)) \ No newline at end of file +(((-490 . -1121) T) ((-273 . -526) 204799) ((-253 . -526) 204742) ((-250 . -1121) 204692) ((-583 . -111) 204677) ((-543 . -23) T) ((-139 . -1121) T) ((-138 . -1121) T) ((-118 . -319) 204634) ((-134 . -1121) T) ((-1020 . -237) 204585) ((-811 . -1238) T) ((-491 . -526) 204377) ((-689 . -628) 204361) ((-706 . -102) T) ((-1162 . -526) 204280) ((-411 . -237) T) ((-402 . -132) T) ((-1301 . -997) 204249) ((-1045 . -1072) 204186) ((-329 . -864) T) ((-31 . -93) T) ((-614 . -501) 204170) ((-1045 . -652) 204107) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 204057) ((-531 . -526) 203990) ((-362 . -234) 203977) ((-365 . -1072) 203922) ((-59 . -526) 203855) ((-528 . -526) 203788) ((-430 . -917) 203747) ((-171 . -1070) T) ((-509 . -526) 203680) ((-508 . -526) 203613) ((-365 . -652) 203558) ((-811 . -1059) 203338) ((-1261 . -628) 203086) ((-711 . -38) 203051) ((-1115 . -1114) 203035) ((-354 . -360) T) ((-480 . -1238) T) ((-1115 . -1121) 203013) ((-869 . -628) 202910) ((-171 . -248) 202861) ((-171 . -238) 202812) ((-1115 . -1116) 202770) ((-886 . -296) 202728) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 202700) ((-1171 . -1214) 202679) ((-419 . -1013) 202663) ((-48 . -1072) 202628) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 202593) ((-1303 . -660) 202567) ((-1261 . -336) 202544) ((-1171 . -107) 202494) ((-326 . -161) 202473) ((-326 . -144) 202452) ((-117 . -21) T) ((-40 . -232) 202429) ((-40 . -272) 202406) ((-135 . -25) T) ((-117 . -25) T) ((-1261 . -238) T) ((-1261 . -1070) T) ((-620 . -298) 202382) ((-869 . -1070) T) ((-618 . -1238) T) ((-811 . -349) 202366) ((-487 . -298) 202345) ((-683 . -1238) T) ((-182 . -1238) T) ((-162 . -1238) T) ((-157 . -1238) T) ((-155 . -1238) T) ((-140 . -187) T) ((-118 . -1173) NIL) ((-91 . -625) 202277) ((-489 . -132) T) ((-1186 . -1238) T) ((-1117 . -502) 202258) ((-1117 . -625) 202224) ((-1111 . -502) 202205) ((-1111 . -625) 202171) ((-605 . -1238) T) ((-1094 . -502) 202152) ((-583 . -1070) T) ((-1094 . -625) 202118) ((-674 . -729) 202102) ((-1087 . -502) 202083) ((-1087 . -625) 202049) ((-977 . -298) 202026) ((-60 . -34) T) ((-1083 . -807) T) ((-1083 . -804) T) ((-1057 . -502) 202007) ((-1040 . -502) 201988) ((-828 . -738) T) ((-743 . -47) 201953) ((-635 . -38) 201940) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 201871) ((-253 . -300) 201802) ((-1057 . -625) 201768) ((-1045 . -102) T) ((-1040 . -625) 201734) ((-638 . -502) 201715) ((-425 . -738) T) ((-118 . -38) 201660) ((-495 . -502) 201641) ((-638 . -625) 201607) ((-425 . -485) T) ((-220 . -502) 201588) ((-495 . -625) 201554) ((-365 . -102) T) ((-220 . -625) 201520) ((-1232 . -1079) T) ((-354 . -658) 201450) ((-723 . -1079) T) ((-1195 . -47) 201427) ((-1194 . -47) 201397) ((-1188 . -47) 201374) ((-129 . -298) 201349) ((-1056 . -152) 201295) ((-929 . -300) T) ((-1147 . -47) 201267) ((-706 . -319) NIL) ((-527 . -625) 201249) ((-522 . -625) 201231) ((-520 . -625) 201213) ((-497 . -1238) T) ((-337 . -1121) 201163) ((-326 . -911) 201127) ((-323 . -911) NIL) ((-724 . -464) 201058) ((-48 . -102) T) ((-1272 . -296) 201016) ((-1251 . -296) 200916) ((-656 . -678) 200900) ((-656 . -663) 200884) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 200868) ((-617 . -502) 200850) ((-614 . -296) 200802) ((-617 . -625) 200769) ((-400 . -102) T) ((-1141 . -144) T) ((-127 . -625) 200701) ((-888 . -1121) T) ((-670 . -423) 200685) ((-743 . -1238) T) ((-726 . -625) 200667) ((-255 . -625) 200634) ((-189 . -625) 200616) ((-163 . -625) 200598) ((-158 . -625) 200580) ((-1303 . -738) T) ((-1123 . -34) T) ((-885 . -807) NIL) ((-885 . -804) NIL) ((-872 . -861) T) ((-743 . -901) NIL) ((-1312 . -132) T) ((-392 . -132) T) ((-907 . -628) 200548) ((-923 . -102) T) ((-743 . -1059) 200424) ((-1195 . -1238) T) ((-1194 . -1238) T) ((-543 . -132) T) ((-1188 . -1238) T) ((-1108 . -423) 200408) ((-1021 . -501) 200392) ((-118 . -412) 200369) ((-1147 . -1238) T) ((-794 . -423) 200353) ((-792 . -423) 200337) ((-962 . -34) T) ((-706 . -1173) NIL) ((-258 . -660) 200157) ((-257 . -660) 199964) ((-829 . -939) 199943) ((-466 . -423) 199927) ((-614 . -19) 199911) ((-1167 . -1231) 199880) ((-1188 . -901) NIL) ((-1188 . -899) 199832) ((-614 . -616) 199809) ((-108 . -864) T) ((-1224 . -625) 199741) ((-1196 . -625) 199723) ((-62 . -407) T) ((-1194 . -1059) 199658) ((-1188 . -1059) 199624) ((-706 . -38) 199574) ((-40 . -658) 199504) ((-486 . -296) 199462) ((-1244 . -625) 199444) ((-743 . -388) 199428) ((-850 . -625) 199410) ((-670 . -1079) T) ((-635 . -919) 199333) ((-1272 . -1023) 199299) ((-448 . -1238) T) ((-1251 . -1023) 199265) ((-256 . -1238) T) ((-1109 . -628) 199249) ((-1084 . -1214) 199224) ((-1097 . -628) 199201) ((-886 . -626) 199008) ((-886 . -625) 198990) ((-118 . -919) NIL) ((-713 . -234) 198977) ((-1210 . -501) 198914) ((-430 . -1043) 198892) ((-48 . -319) 198879) ((-1084 . -107) 198825) ((-491 . -501) 198762) ((-537 . -1238) T) ((-532 . -1238) T) ((-1188 . -349) 198714) ((-1162 . -501) 198685) ((-1188 . -388) 198637) ((-1108 . -1079) T) ((-449 . -102) T) ((-185 . -1121) T) ((-258 . -34) T) ((-257 . -34) T) ((-1179 . -864) T) ((-862 . -628) 198621) ((-794 . -1079) T) ((-792 . -1079) T) ((-743 . -917) 198598) ((-466 . -1079) T) ((-59 . -501) 198582) ((-1055 . -1077) 198556) ((-531 . -501) 198540) ((-528 . -501) 198524) ((-509 . -501) 198508) ((-508 . -501) 198492) ((-250 . -526) 198425) ((-1055 . -111) 198392) ((-1195 . -917) 198305) ((-1194 . -917) 198211) ((-682 . -1133) T) ((-1188 . -917) 198044) ((-657 . -93) T) ((-1147 . -917) 198028) ((-365 . -1173) T) ((-332 . -1077) 198010) ((-31 . -502) 197991) ((-258 . -806) 197970) ((-258 . -805) 197949) ((-257 . -806) 197928) ((-257 . -805) 197907) ((-31 . -625) 197873) ((-50 . -1079) T) ((-258 . -738) 197851) ((-257 . -738) 197829) ((-1232 . -1121) T) ((-682 . -23) T) ((-593 . -1079) T) ((-530 . -1079) T) ((-390 . -1077) 197794) ((-332 . -111) 197769) ((-73 . -394) T) ((-73 . -407) T) ((-1045 . -38) 197706) ((-706 . -412) 197688) ((-99 . -102) T) ((-1317 . -1072) 197675) ((-723 . -1121) T) ((-1134 . -864) 197626) ((-1024 . -146) 197598) ((-1024 . -148) 197570) ((-884 . -658) 197542) ((-390 . -111) 197498) ((-329 . -1242) 197477) ((-486 . -1023) 197443) ((-365 . -38) 197408) ((-40 . -381) 197380) ((-887 . -625) 197252) ((-128 . -126) 197236) ((-122 . -126) 197220) ((-848 . -1077) 197190) ((-845 . -21) 197142) ((-839 . -1077) 197126) ((-845 . -25) 197078) ((-329 . -568) 197029) ((-529 . -628) 197010) ((-576 . -840) T) ((-245 . -1238) T) ((-1055 . -628) 196979) ((-848 . -111) 196944) ((-839 . -111) 196923) ((-1272 . -625) 196905) ((-1251 . -625) 196887) ((-1251 . -626) 196558) ((-1193 . -928) 196537) ((-1146 . -928) 196516) ((-48 . -38) 196481) ((-1310 . -1133) T) ((-548 . -296) 196437) ((-614 . -625) 196349) ((-614 . -626) 196310) ((-1308 . -1133) T) ((-372 . -628) 196294) ((-332 . -628) 196278) ((-1163 . -237) 196229) ((-245 . -1059) 196056) ((-1193 . -660) 195945) ((-1146 . -660) 195834) ((-868 . -660) 195808) ((-730 . -625) 195790) ((-558 . -379) T) ((-1310 . -23) T) ((-706 . -919) NIL) ((-1308 . -23) T) ((-503 . -1121) T) ((-390 . -628) 195740) ((-390 . -630) 195722) ((-1055 . -1070) T) ((-879 . -102) T) ((-1210 . -296) 195701) ((-171 . -379) 195652) ((-1025 . -1238) T) ((-992 . -1238) T) ((-933 . -1238) T) ((-848 . -628) 195606) ((-839 . -628) 195561) ((-44 . -23) T) ((-1317 . -102) T) ((-491 . -296) 195540) ((-598 . -1121) T) ((-1167 . -1130) 195509) ((-439 . -1238) T) ((-1125 . -1124) 195461) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1133) T) ((-1232 . -729) 195358) ((-1218 . -1121) T) ((-1025 . -899) 195340) ((-1025 . -901) 195322) ((-635 . -232) 195306) ((-635 . -272) 195290) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1025 . -1059) 195250) ((-723 . -729) 195215) ((-245 . -388) 195184) ((-390 . -1070) T) ((-225 . -1079) T) ((-118 . -272) 195161) ((-118 . -232) 195138) ((-59 . -296) 195090) ((-153 . -23) T) ((-528 . -296) 195042) ((-337 . -526) 194975) ((-508 . -296) 194927) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1070) T) ((-839 . -1070) T) ((-724 . -968) 194896) ((-713 . -861) T) ((-624 . -864) T) ((-486 . -625) 194878) ((-1274 . -1072) 194783) ((-592 . -658) 194755) ((-576 . -658) 194727) ((-507 . -658) 194677) ((-839 . -238) 194656) ((-135 . -861) T) ((-1274 . -652) 194548) ((-670 . -1121) T) ((-1210 . -616) 194527) ((-562 . -1214) 194506) ((-347 . -1121) T) ((-329 . -374) 194485) ((-419 . -148) 194464) ((-419 . -146) 194443) ((-983 . -1133) 194342) ((-827 . -1133) 194320) ((-245 . -917) 194252) ((-666 . -866) 194236) ((-491 . -616) 194215) ((-110 . -864) T) ((-536 . -1238) T) ((-562 . -107) 194165) ((-1025 . -388) 194147) ((-1025 . -349) 194129) ((-1197 . -625) 194111) ((-97 . -1121) T) ((-983 . -23) 193922) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 193774) ((-1197 . -626) 193696) ((-59 . -19) 193680) ((-1193 . -738) T) ((-1146 . -738) T) ((-1108 . -1121) T) ((-528 . -19) 193664) ((-508 . -19) 193648) ((-59 . -616) 193625) ((-1024 . -237) 193562) ((-920 . -102) 193512) ((-868 . -738) T) ((-794 . -1121) T) ((-528 . -616) 193489) ((-508 . -616) 193466) ((-792 . -1121) T) ((-792 . -1086) 193433) ((-473 . -1121) T) ((-466 . -1121) T) ((-598 . -729) 193408) ((-661 . -1121) T) ((-1280 . -47) 193385) ((-1274 . -102) T) ((-1273 . -47) 193355) ((-1252 . -47) 193332) ((-1232 . -174) 193283) ((-1194 . -317) 193262) ((-1188 . -317) 193241) ((-1117 . -628) 193222) ((-1111 . -628) 193203) ((-1101 . -568) 193154) ((-1101 . -1242) 193105) ((-1025 . -917) NIL) ((-1094 . -628) 193086) ((-682 . -132) T) ((-639 . -1133) T) ((-1087 . -628) 193067) ((-1057 . -628) 193048) ((-1040 . -628) 193029) ((-726 . -1077) 192999) ((-711 . -658) 192949) ((-284 . -1121) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -911) 192852) ((-723 . -174) T) ((-50 . -1121) T) ((-607 . -47) 192829) ((-227 . -660) 192794) ((-593 . -1121) T) ((-530 . -1121) T) ((-499 . -832) T) ((-499 . -939) T) ((-370 . -1242) T) ((-364 . -1242) T) ((-356 . -1242) T) ((-329 . -1133) T) ((-326 . -1072) 192704) ((-323 . -1072) 192633) ((-108 . -1242) T) ((-638 . -628) 192614) ((-370 . -568) T) ((-219 . -939) T) ((-219 . -832) T) ((-326 . -652) 192524) ((-323 . -652) 192453) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 192434) ((-108 . -568) T) ((-1188 . -1043) NIL) ((-670 . -729) 192404) ((-494 . -864) 192355) ((-220 . -628) 192336) ((-329 . -23) T) ((-67 . -1238) T) ((-1021 . -625) 192268) ((-1317 . -1173) T) ((-706 . -272) 192250) ((-706 . -232) 192232) ((-1312 . -21) T) ((-726 . -111) 192197) ((-1312 . -25) T) ((-656 . -34) T) ((-250 . -501) 192181) ((-1310 . -132) T) ((-1308 . -132) T) ((-1301 . -102) T) ((-1284 . -625) 192147) ((-1123 . -1119) 192131) ((-173 . -1121) T) ((-1280 . -1238) T) ((-1273 . -1238) T) ((-1273 . -1059) 192066) ((-1252 . -1238) T) ((-1252 . -901) NIL) ((-971 . -928) 192045) ((-1252 . -899) 191997) ((-1252 . -1059) 191963) ((-1232 . -526) 191930) ((-527 . -628) 191914) ((-1210 . -626) NIL) ((-1210 . -625) 191896) ((-1163 . -1144) 191841) ((-493 . -928) 191820) ((-1108 . -729) 191669) ((-1083 . -660) 191641) ((-971 . -660) 191530) ((-830 . -864) T) ((-794 . -729) 191359) ((-609 . -502) 191340) ((-597 . -502) 191321) ((-609 . -625) 191287) ((-597 . -625) 191253) ((-548 . -625) 191235) ((-591 . -1238) T) ((-548 . -626) 191216) ((-792 . -729) 191065) ((-1098 . -102) T) ((-635 . -658) 191037) ((-392 . -25) T) ((-392 . -21) T) ((-493 . -660) 190926) ((-473 . -729) 190897) ((-466 . -729) 190746) ((-1008 . -102) T) ((-1067 . -1231) 190675) ((-920 . -319) 190613) ((-890 . -93) T) ((-749 . -102) T) ((-118 . -658) 190543) ((-617 . -628) 190525) ((-726 . -628) 190479) ((-693 . -93) T) ((-543 . -25) T) ((-688 . -93) T) ((-676 . -625) 190461) ((-657 . -502) 190442) ((-657 . -625) 190395) ((-142 . -102) T) ((-44 . -132) T) ((-608 . -1238) T) ((-607 . -1238) T) ((-354 . -1079) T) ((-299 . -1133) T) ((-490 . -93) T) ((-419 . -237) 190346) ((-366 . -625) 190328) ((-363 . -625) 190310) ((-355 . -625) 190292) ((-273 . -626) 190040) ((-273 . -625) 190022) ((-253 . -625) 190004) ((-253 . -626) 189865) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1162 . -625) 189847) ((-1141 . -652) 189834) ((-1141 . -1072) 189821) ((-831 . -738) T) ((-831 . -871) T) ((-614 . -298) 189798) ((-593 . -729) 189763) ((-491 . -626) NIL) ((-491 . -625) 189745) ((-530 . -729) 189690) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-929 . -625) 189672) ((-929 . -626) 189654) ((-398 . -738) T) ((-886 . -1077) 189606) ((-886 . -111) 189544) ((-726 . -1070) T) ((-724 . -1264) 189528) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 189460) ((-390 . -807) T) ((-169 . -1238) T) ((-225 . -1121) T) ((-390 . -804) T) ((-59 . -626) 189421) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -625) 189333) ((-227 . -738) T) ((-528 . -626) 189294) ((-528 . -625) 189206) ((-509 . -625) 189138) ((-508 . -626) 189099) ((-508 . -625) 189011) ((-1101 . -374) 188962) ((-40 . -423) 188939) ((-77 . -1238) T) ((-885 . -928) NIL) ((-370 . -339) 188923) ((-370 . -374) T) ((-364 . -339) 188907) ((-364 . -374) T) ((-356 . -339) 188891) ((-356 . -374) T) ((-326 . -294) 188870) ((-108 . -374) T) ((-70 . -1238) T) ((-1252 . -349) 188822) ((-885 . -660) 188767) ((-1252 . -388) 188719) ((-983 . -132) 188574) ((-827 . -132) 188445) ((-45 . -864) NIL) ((-977 . -663) 188429) ((-1108 . -174) 188340) ((-977 . -384) 188324) ((-1083 . -806) T) ((-1083 . -803) T) ((-886 . -628) 188222) ((-794 . -174) 188113) ((-792 . -174) 188024) ((-828 . -47) 187986) ((-1083 . -738) T) ((-337 . -501) 187970) ((-971 . -738) T) ((-1301 . -319) 187908) ((-1280 . -917) 187821) ((-466 . -174) 187732) ((-250 . -296) 187684) ((-1273 . -917) 187590) ((-1272 . -1077) 187425) ((-1252 . -917) 187258) ((-493 . -738) T) ((-1251 . -1077) 187066) ((-1232 . -300) 187045) ((-1207 . -1238) T) ((-1204 . -379) T) ((-1203 . -379) T) ((-1167 . -152) 187029) ((-1141 . -102) T) ((-1139 . -1121) T) ((-1101 . -23) T) ((-1101 . -1133) T) ((-1096 . -102) T) ((-1078 . -625) 186996) ((-1024 . -421) 186968) ((-946 . -974) T) ((-749 . -319) 186906) ((-75 . -1238) T) ((-676 . -393) 186878) ((-171 . -928) 186831) ((-30 . -974) T) ((-112 . -856) T) ((-1 . -625) 186813) ((-1020 . -911) 186734) ((-129 . -663) 186716) ((-50 . -632) 186700) ((-706 . -658) 186635) ((-607 . -917) 186548) ((-450 . -102) T) ((-129 . -384) 186530) ((-142 . -319) NIL) ((-886 . -1070) T) ((-845 . -861) 186509) ((-81 . -1238) T) ((-723 . -300) T) ((-40 . -1079) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 186491) ((-171 . -660) 186365) ((-519 . -625) 186347) ((-362 . -148) 186329) ((-362 . -146) T) ((-370 . -1133) T) ((-364 . -1133) T) ((-356 . -1133) T) ((-1025 . -317) T) ((-933 . -317) T) ((-886 . -248) T) ((-108 . -1133) T) ((-886 . -238) 186308) ((-1272 . -111) 186129) ((-1251 . -111) 185918) ((-250 . -1276) 185902) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 185889) ((-323 . -319) 185830) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1025 . -1043) T) ((-31 . -628) 185811) ((-108 . -23) T) ((-666 . -1072) 185795) ((-250 . -616) 185772) ((-343 . -1121) T) ((-666 . -652) 185742) ((-1274 . -38) 185634) ((-1261 . -928) 185613) ((-112 . -1121) T) ((-828 . -1238) T) ((-425 . -1238) T) ((-1056 . -102) T) ((-1261 . -660) 185502) ((-885 . -806) NIL) ((-869 . -660) 185476) ((-885 . -803) NIL) ((-828 . -901) NIL) ((-885 . -738) T) ((-1108 . -526) 185349) ((-794 . -526) 185296) ((-792 . -526) 185248) ((-583 . -660) 185235) ((-828 . -1059) 185063) ((-466 . -526) 185006) ((-400 . -401) T) ((-1272 . -628) 184819) ((-1251 . -628) 184567) ((-60 . -1238) T) ((-633 . -861) 184546) ((-512 . -673) T) ((-1167 . -997) 184515) ((-1045 . -658) 184452) ((-1024 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1077) 184287) ((-512 . -113) T) ((-354 . -1121) T) ((-323 . -1173) NIL) ((-299 . -132) T) ((-406 . -1121) T) ((-884 . -1079) T) ((-706 . -381) 184254) ((-365 . -658) 184184) ((-225 . -632) 184161) ((-337 . -296) 184113) ((-486 . -111) 183934) ((-1272 . -1070) T) ((-1251 . -1070) T) ((-828 . -388) 183918) ((-836 . -1238) T) ((-171 . -738) T) ((-1303 . -1238) T) ((-666 . -102) T) ((-1272 . -248) 183897) ((-1272 . -238) 183849) ((-1251 . -238) 183754) ((-1251 . -248) 183733) ((-1024 . -414) NIL) ((-682 . -651) 183681) ((-326 . -38) 183591) ((-323 . -38) 183520) ((-69 . -625) 183502) ((-329 . -505) 183468) ((-48 . -658) 183418) ((-1210 . -298) 183397) ((-1246 . -861) T) ((-1134 . -1133) 183375) ((-83 . -1238) T) ((-61 . -625) 183357) ((-878 . -864) T) ((-491 . -298) 183336) ((-1303 . -1059) 183313) ((-1185 . -1121) T) ((-1134 . -23) 183165) ((-828 . -917) 183101) ((-1261 . -738) T) ((-1123 . -1238) T) ((-486 . -628) 182927) ((-362 . -237) T) ((-1108 . -300) 182858) ((-985 . -1121) T) ((-908 . -102) T) ((-794 . -300) 182769) ((-337 . -19) 182753) ((-59 . -298) 182730) ((-792 . -300) 182661) ((-869 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 182638) ((-337 . -616) 182615) ((-508 . -298) 182592) ((-466 . -300) 182523) ((-1056 . -319) 182374) ((-890 . -502) 182355) ((-890 . -625) 182321) ((-693 . -502) 182302) ((-583 . -738) T) ((-688 . -502) 182283) ((-693 . -625) 182233) ((-688 . -625) 182199) ((-674 . -625) 182181) ((-490 . -502) 182162) ((-490 . -625) 182128) ((-250 . -626) 182089) ((-250 . -502) 182066) ((-139 . -502) 182047) ((-138 . -502) 182028) ((-134 . -502) 182009) ((-250 . -625) 181901) ((-215 . -102) T) ((-139 . -625) 181867) ((-138 . -625) 181833) ((-134 . -625) 181799) ((-1168 . -34) T) ((-962 . -1238) T) ((-354 . -729) 181744) ((-682 . -25) T) ((-682 . -21) T) ((-1197 . -628) 181725) ((-341 . -1238) T) ((-486 . -1070) T) ((-647 . -429) 181690) ((-619 . -429) 181655) ((-1141 . -1173) T) ((-1273 . -317) 181634) ((-724 . -1072) 181457) ((-593 . -300) T) ((-530 . -300) T) ((-1252 . -317) 181436) ((-486 . -238) 181388) ((-486 . -248) 181367) ((-451 . -1238) T) ((-724 . -652) 181196) ((-1252 . -1043) NIL) ((-1101 . -132) T) ((-886 . -807) 181175) ((-145 . -102) T) ((-40 . -1121) T) ((-886 . -804) 181154) ((-656 . -1031) 181138) ((-592 . -1079) T) ((-576 . -1079) T) ((-507 . -1079) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 181122) ((-323 . -412) 181083) ((-364 . -132) T) ((-356 . -132) T) ((-1202 . -1121) T) ((-1141 . -38) 181070) ((-1115 . -625) 181037) ((-108 . -132) T) ((-973 . -1121) T) ((-940 . -1121) T) ((-783 . -1121) T) ((-684 . -1121) T) ((-713 . -148) T) ((-117 . -148) T) ((-1310 . -21) T) ((-1310 . -25) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-676 . -1077) 181021) ((-543 . -861) T) ((-512 . -861) T) ((-376 . -1238) T) ((-366 . -1077) 180973) ((-363 . -1077) 180925) ((-355 . -1077) 180877) ((-258 . -1238) T) ((-257 . -1238) T) ((-273 . -1077) 180720) ((-253 . -1077) 180563) ((-676 . -111) 180542) ((-829 . -1242) 180521) ((-559 . -856) T) ((-326 . -919) 180487) ((-366 . -111) 180425) ((-363 . -111) 180363) ((-355 . -111) 180301) ((-273 . -111) 180130) ((-253 . -111) 179959) ((-323 . -919) NIL) ((-635 . -423) 179943) ((-44 . -21) T) ((-44 . -25) T) ((-924 . -864) 179894) ((-827 . -651) 179800) ((-829 . -568) 179779) ((-499 . -864) T) ((-258 . -1059) 179606) ((-257 . -1059) 179433) ((-127 . -120) 179417) ((-219 . -864) T) ((-929 . -1077) 179382) ((-724 . -102) T) ((-711 . -1079) T) ((-609 . -628) 179363) ((-597 . -628) 179344) ((-548 . -630) 179247) ((-354 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -625) 179229) ((-929 . -111) 179185) ((-40 . -729) 179130) ((-884 . -1121) T) ((-676 . -628) 179107) ((-657 . -628) 179088) ((-366 . -628) 179025) ((-363 . -628) 178962) ((-355 . -628) 178899) ((-559 . -1121) T) ((-337 . -626) 178860) ((-337 . -625) 178772) ((-273 . -628) 178525) ((-253 . -628) 178310) ((-188 . -1238) T) ((-1251 . -804) 178263) ((-1251 . -807) 178216) ((-258 . -388) 178185) ((-257 . -388) 178154) ((-561 . -864) T) ((-666 . -38) 178124) ((-620 . -34) T) ((-494 . -1133) 178102) ((-487 . -34) T) ((-1134 . -132) 177973) ((-983 . -25) 177784) ((-929 . -628) 177734) ((-888 . -625) 177716) ((-983 . -21) 177671) ((-827 . -25) 177504) ((-827 . -21) 177415) ((-1244 . -379) T) ((-635 . -1079) T) ((-1199 . -568) 177394) ((-1193 . -47) 177371) ((-366 . -1070) T) ((-363 . -1070) T) ((-494 . -23) 177223) ((-355 . -1070) T) ((-273 . -1070) T) ((-253 . -1070) T) ((-1146 . -47) 177195) ((-118 . -1079) T) ((-1055 . -660) 177169) ((-977 . -34) T) ((-366 . -238) 177148) ((-366 . -248) T) ((-363 . -238) 177127) ((-363 . -248) T) ((-355 . -238) 177106) ((-355 . -248) T) ((-273 . -336) 177078) ((-253 . -336) 177035) ((-273 . -238) 177014) ((-1178 . -152) 176998) ((-258 . -917) 176930) ((-257 . -917) 176862) ((-1163 . -911) 176783) ((-1103 . -861) T) ((-1255 . -1238) 176761) ((-426 . -1133) T) ((-1075 . -23) T) ((-1045 . -860) T) ((-929 . -1070) T) ((-332 . -660) 176743) ((-713 . -237) T) ((-682 . -234) 176688) ((-1232 . -1023) 176654) ((-1194 . -939) 176633) ((-1188 . -939) 176612) ((-1188 . -832) NIL) ((-1020 . -1072) 176508) ((-986 . -1238) T) ((-929 . -248) T) ((-829 . -374) 176487) ((-396 . -23) T) ((-128 . -1121) 176465) ((-122 . -1121) 176443) ((-929 . -238) T) ((-129 . -34) T) ((-390 . -660) 176408) ((-1020 . -652) 176356) ((-884 . -729) 176343) ((-1317 . -658) 176315) ((-1067 . -152) 176280) ((-1014 . -1238) T) ((-876 . -1238) T) ((-40 . -174) T) ((-706 . -423) 176262) ((-724 . -319) 176249) ((-848 . -660) 176209) ((-839 . -660) 176183) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 176162) ((-592 . -1121) T) ((-576 . -1121) T) ((-507 . -1121) T) ((-1193 . -1238) T) ((-250 . -298) 176139) ((-1146 . -1238) T) ((-868 . -1238) T) ((-323 . -272) 176100) ((-323 . -232) 176061) ((-1243 . -864) T) ((-1193 . -901) NIL) ((-55 . -1121) T) ((-1146 . -901) 175920) ((-130 . -861) T) ((-1193 . -1059) 175800) ((-1146 . -1059) 175683) ((-185 . -625) 175665) ((-868 . -1059) 175561) ((-794 . -296) 175488) ((-829 . -1133) T) ((-1055 . -738) T) ((-1067 . -997) 175417) ((-614 . -663) 175401) ((-1024 . -911) 175308) ((-1020 . -102) T) ((-829 . -23) T) ((-724 . -1173) 175286) ((-706 . -1079) T) ((-614 . -384) 175270) ((-362 . -464) T) ((-354 . -300) T) ((-1289 . -1121) T) ((-254 . -1121) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1121) T) ((-711 . -1121) T) ((-372 . -485) T) ((-1232 . -625) 175252) ((-1193 . -388) 175236) ((-1146 . -388) 175220) ((-1045 . -423) 175182) ((-142 . -231) 175164) ((-390 . -806) T) ((-390 . -803) T) ((-884 . -174) T) ((-390 . -738) T) ((-723 . -625) 175146) ((-724 . -38) 174975) ((-1288 . -1286) 174959) ((-362 . -414) T) ((-1288 . -1121) 174909) ((-1211 . -1121) T) ((-592 . -729) 174896) ((-576 . -729) 174883) ((-507 . -729) 174848) ((-1274 . -658) 174738) ((-326 . -641) 174717) ((-848 . -738) T) ((-839 . -738) T) ((-1136 . -1238) T) ((-656 . -1238) T) ((-1101 . -651) 174665) ((-1193 . -917) 174608) ((-1146 . -917) 174592) ((-827 . -234) 174483) ((-674 . -1077) 174467) ((-108 . -651) 174449) ((-494 . -132) 174320) ((-1199 . -1133) T) ((-831 . -1238) T) ((-971 . -47) 174289) ((-635 . -1121) T) ((-674 . -111) 174268) ((-503 . -625) 174234) ((-337 . -298) 174211) ((-398 . -1238) T) ((-334 . -1238) T) ((-493 . -47) 174168) ((-1199 . -23) T) ((-118 . -1121) T) ((-103 . -102) 174118) ((-1300 . -1133) T) ((-560 . -861) T) ((-227 . -1238) T) ((-1075 . -132) T) ((-1045 . -1079) T) ((-1300 . -23) T) ((-831 . -1059) 174102) ((-1218 . -625) 174084) ((-1024 . -736) 174056) ((-1141 . -840) T) ((-711 . -729) 174021) ((-598 . -625) 174003) ((-398 . -1059) 173987) ((-365 . -1079) T) ((-396 . -132) T) ((-334 . -1059) 173971) ((-1126 . -1121) T) ((-1101 . -21) T) ((-1101 . -25) T) ((-227 . -901) 173953) ((-1025 . -939) T) ((-91 . -34) T) ((-1025 . -832) T) ((-933 . -939) T) ((-1020 . -319) 173918) ((-890 . -628) 173899) ((-499 . -1242) T) ((-726 . -660) 173859) ((-693 . -628) 173840) ((-688 . -628) 173821) ((-219 . -1242) T) ((-419 . -911) 173742) ((-227 . -1059) 173702) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 173683) ((-370 . -25) T) ((-326 . -658) 173338) ((-323 . -658) 173252) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 173198) ((-250 . -628) 173175) ((-139 . -628) 173156) ((-138 . -628) 173137) ((-134 . -628) 173118) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1079) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1083 . -1238) T) ((-971 . -1238) T) ((-725 . -1238) T) ((-670 . -625) 173100) ((-493 . -1238) T) ((-749 . -748) 173084) ((-347 . -625) 173066) ((-68 . -394) T) ((-68 . -407) T) ((-1123 . -107) 173050) ((-1083 . -901) 173032) ((-971 . -901) 172957) ((-665 . -1133) T) ((-635 . -729) 172944) ((-493 . -901) NIL) ((-1167 . -102) T) ((-1115 . -630) 172928) ((-1083 . -1059) 172910) ((-97 . -625) 172892) ((-489 . -148) T) ((-971 . -1059) 172772) ((-118 . -729) 172717) ((-724 . -919) 172624) ((-665 . -23) T) ((-493 . -1059) 172500) ((-1108 . -626) NIL) ((-1108 . -625) 172482) ((-794 . -626) NIL) ((-794 . -625) 172443) ((-792 . -626) 172077) ((-792 . -625) 171991) ((-1134 . -651) 171897) ((-811 . -864) 171876) ((-473 . -625) 171858) ((-466 . -625) 171840) ((-466 . -626) 171701) ((-1056 . -231) 171647) ((-886 . -928) 171626) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 171608) ((-590 . -102) T) ((-366 . -1307) 171592) ((-363 . -1307) 171576) ((-355 . -1307) 171560) ((-122 . -526) 171493) ((-128 . -526) 171426) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 171364) ((-224 . -102) 171314) ((-711 . -174) T) ((-706 . -1121) T) ((-886 . -660) 171230) ((-65 . -395) T) ((-284 . -625) 171212) ((-65 . -407) T) ((-971 . -388) 171196) ((-884 . -300) T) ((-50 . -625) 171178) ((-1020 . -38) 171126) ((-1141 . -658) 171098) ((-593 . -625) 171080) ((-493 . -388) 171064) ((-593 . -626) 171046) ((-530 . -625) 171028) ((-929 . -1307) 171015) ((-885 . -1238) T) ((-713 . -464) T) ((-507 . -526) 170981) ((-1299 . -1238) T) ((-1298 . -1238) T) ((-499 . -374) T) ((-366 . -379) 170960) ((-363 . -379) 170939) ((-355 . -379) 170918) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1311 . -1302) 170902) ((-885 . -899) 170879) ((-885 . -901) NIL) ((-983 . -861) 170778) ((-827 . -861) 170729) ((-1245 . -102) T) ((-666 . -668) 170713) ((-1224 . -34) T) ((-173 . -625) 170695) ((-1134 . -25) 170528) ((-1134 . -21) 170439) ((-885 . -1059) 170416) ((-971 . -917) 170397) ((-1261 . -47) 170374) ((-929 . -379) T) ((-605 . -864) T) ((-59 . -663) 170358) ((-528 . -663) 170342) ((-493 . -917) 170319) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 170303) ((-59 . -384) 170287) ((-635 . -174) T) ((-528 . -384) 170271) ((-508 . -384) 170255) ((-558 . -1238) T) ((-839 . -720) 170239) ((-1193 . -317) 170218) ((-1199 . -132) T) ((-1163 . -1072) 170202) ((-118 . -174) T) ((-1163 . -652) 170134) ((-1167 . -319) 170072) ((-171 . -1238) T) ((-1300 . -132) T) ((-1273 . -939) 170051) ((-1252 . -939) 170030) ((-1252 . -832) NIL) ((-880 . -1072) 170000) ((-647 . -756) 169984) ((-619 . -756) 169968) ((-1251 . -928) 169921) ((-1045 . -1121) T) ((-924 . -1133) T) ((-880 . -652) 169891) ((-706 . -729) 169841) ((-915 . -1238) T) ((-885 . -388) 169818) ((-885 . -349) 169795) ((-853 . -1238) T) ((-820 . -1238) T) ((-171 . -899) 169779) ((-171 . -901) 169704) ((-781 . -1238) T) ((-689 . -1238) T) ((-1288 . -526) 169637) ((-1272 . -660) 169534) ((-1101 . -234) 169407) ((-499 . -1133) T) ((-365 . -1121) T) ((-219 . -1133) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1059) 169303) ((-304 . -911) 169260) ((-329 . -861) T) ((-1251 . -660) 169068) ((-886 . -806) 169047) ((-886 . -803) 169026) ((-886 . -738) T) ((-499 . -23) T) ((-370 . -234) 168999) ((-364 . -234) 168972) ((-356 . -234) 168945) ((-176 . -464) T) ((-86 . -453) T) ((-224 . -319) 168883) ((-86 . -407) T) ((-225 . -625) 168865) ((-108 . -234) 168852) ((-219 . -23) T) ((-1312 . -1305) 168831) ((-689 . -1059) 168815) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-1261 . -1238) T) ((-137 . -482) 168770) ((-869 . -1238) T) ((-666 . -658) 168729) ((-48 . -1121) T) ((-724 . -272) 168713) ((-724 . -232) 168697) ((-885 . -917) NIL) ((-583 . -1238) T) ((-1261 . -901) NIL) ((-904 . -102) T) ((-900 . -102) T) ((-400 . -1121) T) ((-171 . -388) 168681) ((-171 . -349) 168665) ((-1261 . -1059) 168545) ((-869 . -1059) 168441) ((-1163 . -102) T) ((-1020 . -919) 168364) ((-674 . -804) 168343) ((-665 . -132) T) ((-674 . -807) 168322) ((-118 . -526) 168230) ((-583 . -1059) 168212) ((-304 . -1295) 168182) ((-1188 . -864) NIL) ((-880 . -102) T) ((-982 . -568) 168161) ((-1232 . -1077) 168044) ((-1024 . -1072) 167989) ((-494 . -651) 167895) ((-923 . -1121) T) ((-1045 . -729) 167832) ((-723 . -1077) 167797) ((-1024 . -652) 167742) ((-629 . -102) T) ((-614 . -34) T) ((-1168 . -1238) T) ((-1232 . -111) 167611) ((-486 . -660) 167508) ((-365 . -729) 167453) ((-171 . -917) 167412) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 167368) ((-1317 . -1079) T) ((-1261 . -388) 167352) ((-430 . -1242) 167330) ((-1139 . -625) 167312) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1251 . -803) 167265) ((-1251 . -806) 167218) ((-1272 . -738) T) ((-1251 . -738) T) ((-48 . -729) 167183) ((-227 . -1043) T) ((-1274 . -423) 167149) ((-1261 . -917) 167092) ((-362 . -1295) 167069) ((-1232 . -628) 166951) ((-730 . -738) T) ((-343 . -625) 166933) ((-532 . -864) 166912) ((-1134 . -234) 166803) ((-112 . -625) 166785) ((-112 . -626) 166767) ((-730 . -485) T) ((-723 . -628) 166717) ((-1311 . -1072) 166701) ((-494 . -25) 166534) ((-128 . -501) 166518) ((-122 . -501) 166502) ((-494 . -21) 166413) ((-1311 . -652) 166383) ((-635 . -300) T) ((-598 . -1077) 166358) ((-449 . -1121) T) ((-1083 . -317) T) ((-118 . -300) T) ((-1125 . -102) T) ((-1024 . -102) T) ((-598 . -111) 166326) ((-1232 . -1070) T) ((-1163 . -319) 166264) ((-1083 . -1043) T) ((-1075 . -25) T) ((-66 . -1238) T) ((-907 . -1238) T) ((-1075 . -21) T) ((-723 . -1070) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1045 . -174) T) ((-723 . -248) T) ((-1083 . -557) T) ((-724 . -658) 166174) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 166156) ((-419 . -1072) 166108) ((-406 . -625) 166090) ((-1141 . -860) T) ((-486 . -738) T) ((-907 . -1059) 166058) ((-419 . -652) 166010) ((-108 . -861) T) ((-670 . -1077) 165994) ((-499 . -132) T) ((-1274 . -1079) T) ((-219 . -132) T) ((-1178 . -102) 165944) ((-99 . -1121) T) ((-245 . -864) 165895) ((-250 . -678) 165879) ((-250 . -663) 165863) ((-670 . -111) 165842) ((-598 . -628) 165826) ((-326 . -423) 165810) ((-250 . -384) 165794) ((-1180 . -240) 165741) ((-1020 . -272) 165725) ((-1020 . -232) 165709) ((-74 . -1238) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1311 . -102) T) ((-1219 . -1238) T) ((-1218 . -628) 165691) ((-1109 . -1238) T) ((-1108 . -1077) 165534) ((-1097 . -1238) T) ((-273 . -928) 165513) ((-253 . -928) 165492) ((-794 . -1077) 165315) ((-792 . -1077) 165158) ((-620 . -1238) T) ((-1185 . -625) 165140) ((-1108 . -111) 164969) ((-1067 . -102) T) ((-487 . -1238) T) ((-473 . -1077) 164940) ((-466 . -1077) 164783) ((-676 . -660) 164767) ((-885 . -317) T) ((-794 . -111) 164576) ((-792 . -111) 164405) ((-366 . -660) 164357) ((-363 . -660) 164309) ((-355 . -660) 164261) ((-273 . -660) 164150) ((-253 . -660) 164039) ((-1179 . -861) T) ((-1109 . -1059) 164023) ((-1097 . -1059) 164000) ((-1025 . -864) T) ((-1021 . -34) T) ((-473 . -111) 163961) ((-466 . -111) 163790) ((-992 . -864) T) ((-985 . -625) 163772) ((-982 . -1133) T) ((-977 . -1238) T) ((-127 . -1031) 163756) ((-862 . -1238) T) ((-885 . -1043) NIL) ((-747 . -1133) T) ((-727 . -1133) T) ((-670 . -628) 163674) ((-1288 . -501) 163658) ((-1205 . -1238) T) ((-1204 . -1238) T) ((-1163 . -38) 163618) ((-982 . -23) T) ((-929 . -660) 163583) ((-879 . -1121) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1072) 163567) ((-619 . -1072) 163551) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 163535) ((-110 . -673) T) ((-619 . -652) 163519) ((-593 . -1077) 163484) ((-530 . -1077) 163429) ((-229 . -57) 163387) ((-465 . -23) T) ((-419 . -102) T) ((-1203 . -1238) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-880 . -38) 163357) ((-1108 . -628) 163093) ((-593 . -111) 163049) ((-530 . -111) 162978) ((-430 . -1133) T) ((-326 . -1079) 162868) ((-323 . -1079) T) ((-129 . -1238) T) ((-131 . -1238) T) ((-794 . -628) 162616) ((-792 . -628) 162382) ((-670 . -1070) T) ((-1317 . -1121) T) ((-466 . -628) 162167) ((-171 . -317) 162098) ((-430 . -23) T) ((-40 . -625) 162080) ((-40 . -626) 162064) ((-108 . -1013) 162046) ((-117 . -883) 162030) ((-661 . -628) 162014) ((-48 . -526) 161980) ((-1224 . -1031) 161964) ((-1202 . -625) 161931) ((-1210 . -34) T) ((-973 . -625) 161897) ((-940 . -625) 161879) ((-1134 . -861) 161830) ((-783 . -625) 161812) ((-684 . -625) 161794) ((-529 . -1238) T) ((-1261 . -317) 161773) ((-1178 . -319) 161711) ((-1162 . -34) T) ((-491 . -34) T) ((-1113 . -1238) T) ((-489 . -464) T) ((-1055 . -1238) T) ((-1108 . -1070) T) ((-50 . -628) 161680) ((-794 . -1070) T) ((-792 . -1070) T) ((-659 . -240) 161664) ((-644 . -240) 161610) ((-1199 . -21) T) ((-593 . -628) 161560) ((-530 . -628) 161490) ((-494 . -234) 161381) ((-1199 . -25) T) ((-1108 . -336) 161342) ((-466 . -1070) T) ((-1108 . -238) 161321) ((-794 . -336) 161298) ((-794 . -238) T) ((-792 . -336) 161270) ((-743 . -1242) 161249) ((-531 . -34) T) ((-337 . -663) 161233) ((-528 . -34) T) ((-59 . -34) T) ((-509 . -34) T) ((-508 . -34) T) ((-466 . -336) 161212) ((-337 . -384) 161196) ((-372 . -1238) T) ((-332 . -1238) T) ((-1024 . -1173) NIL) ((-743 . -568) 161127) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1238) T) ((-1300 . -21) T) ((-1067 . -319) 161035) ((-1300 . -25) T) ((-920 . -1121) 161013) ((-830 . -234) 161000) ((-50 . -1070) T) ((-1195 . -568) 160979) ((-1194 . -1242) 160958) ((-1194 . -568) 160909) ((-1188 . -1242) 160888) ((-1188 . -568) 160839) ((-1045 . -300) T) ((-593 . -1070) T) ((-530 . -1070) T) ((-1024 . -38) 160784) ((-372 . -1059) 160768) ((-332 . -1059) 160752) ((-1020 . -658) 160675) ((-390 . -901) 160657) ((-848 . -1238) T) ((-839 . -1238) T) ((-837 . -1238) T) ((-811 . -1133) T) ((-929 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1147 . -568) 160636) ((-365 . -300) T) ((-659 . -707) 160620) ((-390 . -1059) 160580) ((-304 . -1072) 160501) ((-350 . -911) 160480) ((-1141 . -1079) T) ((-103 . -126) 160464) ((-304 . -652) 160406) ((-811 . -23) T) ((-1310 . -1305) 160382) ((-1308 . -1305) 160361) ((-1288 . -296) 160313) ((-419 . -319) 160278) ((-1274 . -1121) T) ((-1163 . -919) 160201) ((-884 . -625) 160183) ((-848 . -1059) 160152) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 160134) ((-507 . -1023) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -861) T) ((-666 . -423) 160118) ((-682 . -237) 160069) ((-225 . -628) 160031) ((-110 . -861) T) ((-665 . -21) T) ((-665 . -25) T) ((-1311 . -38) 160001) ((-118 . -296) 159952) ((-1288 . -19) 159936) ((-1252 . -864) NIL) ((-1288 . -616) 159913) ((-1301 . -1121) T) ((-362 . -1072) 159858) ((-1098 . -1121) T) ((-1008 . -1121) T) ((-982 . -132) T) ((-829 . -234) 159845) ((-749 . -1121) T) ((-362 . -652) 159790) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1173) 159768) ((-225 . -1070) T) ((-304 . -102) 159550) ((-142 . -1121) T) ((-711 . -1023) T) ((-1126 . -296) 159506) ((-91 . -1238) T) ((-128 . -625) 159438) ((-122 . -625) 159370) ((-1317 . -174) T) ((-1194 . -374) 159349) ((-1188 . -374) 159328) ((-326 . -1121) T) ((-430 . -132) T) ((-323 . -1121) T) ((-419 . -38) 159280) ((-1154 . -102) T) ((-1274 . -729) 159172) ((-1156 . -1283) T) ((-1117 . -1238) T) ((-1111 . -1238) T) ((-666 . -1079) T) ((-1094 . -1238) T) ((-1087 . -1238) T) ((-1057 . -1238) T) ((-1040 . -1238) T) ((-329 . -146) 159151) ((-329 . -148) 159130) ((-140 . -1121) T) ((-137 . -1121) T) ((-115 . -1121) T) ((-872 . -102) T) ((-638 . -1238) T) ((-495 . -1238) T) ((-592 . -625) 159112) ((-576 . -626) 159011) ((-576 . -625) 158993) ((-507 . -625) 158975) ((-507 . -626) 158920) ((-497 . -23) T) ((-220 . -1238) T) ((-494 . -861) 158871) ((-499 . -651) 158853) ((-984 . -625) 158835) ((-1024 . -919) 158744) ((-219 . -651) 158726) ((-227 . -416) T) ((-674 . -660) 158710) ((-55 . -625) 158692) ((-1193 . -939) 158671) ((-743 . -1133) T) ((-527 . -1238) T) ((-522 . -1238) T) ((-520 . -1238) T) ((-362 . -102) T) ((-1237 . -1104) T) ((-1141 . -856) T) ((-830 . -861) T) ((-743 . -23) T) ((-354 . -1077) 158616) ((-1168 . -107) 158600) ((-1289 . -625) 158582) ((-1195 . -23) T) ((-1195 . -1133) T) ((-1194 . -1133) T) ((-1194 . -23) T) ((-527 . -1059) 158566) ((-1188 . -1133) T) ((-1147 . -1133) T) ((-354 . -111) 158495) ((-1025 . -1242) T) ((-127 . -1238) T) ((-933 . -1242) T) ((-1188 . -23) T) ((-1163 . -272) 158479) ((-706 . -296) NIL) ((-726 . -1238) T) ((-1163 . -232) 158463) ((-1147 . -23) T) ((-1096 . -1121) T) ((-1025 . -568) T) ((-933 . -568) T) ((-255 . -1238) T) ((-189 . -1238) T) ((-163 . -1238) T) ((-158 . -1238) T) ((-254 . -625) 158445) ((-827 . -237) 158342) ((-811 . -132) T) ((-722 . -625) 158324) ((-326 . -729) 158234) ((-323 . -729) 158163) ((-711 . -625) 158145) ((-711 . -626) 158090) ((-419 . -412) 158074) ((-450 . -1121) T) ((-499 . -25) T) ((-499 . -21) T) ((-1141 . -1121) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 158058) ((-726 . -1059) 158027) ((-1288 . -625) 157939) ((-1288 . -626) 157900) ((-1274 . -174) T) ((-1211 . -625) 157882) ((-250 . -34) T) ((-354 . -628) 157812) ((-406 . -628) 157794) ((-945 . -995) T) ((-1224 . -1238) T) ((-674 . -803) 157773) ((-674 . -806) 157752) ((-410 . -407) T) ((-535 . -102) 157702) ((-1244 . -1238) T) ((-1056 . -1121) T) ((-419 . -919) 157625) ((-224 . -1016) 157609) ((-850 . -1238) T) ((-516 . -102) T) ((-635 . -625) 157591) ((-45 . -861) NIL) ((-635 . -626) 157568) ((-1056 . -622) 157543) ((-920 . -526) 157476) ((-329 . -237) 157428) ((-354 . -1070) T) ((-118 . -626) NIL) ((-118 . -625) 157410) ((-886 . -1238) T) ((-682 . -429) 157394) ((-682 . -1144) 157339) ((-512 . -152) 157321) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1077) 157266) ((-886 . -899) 157250) ((-886 . -901) 157175) ((-724 . -1079) T) ((-706 . -1023) NIL) ((-1272 . -47) 157145) ((-1251 . -47) 157122) ((-1162 . -1031) 157093) ((-1141 . -729) 157080) ((-3 . |UnionCategory|) T) ((-1126 . -625) 157062) ((-1101 . -148) 157041) ((-1101 . -146) 156992) ((-1025 . -374) T) ((-985 . -628) 156976) ((-227 . -939) T) ((-40 . -111) 156905) ((-886 . -1059) 156769) ((-1024 . -232) 156746) ((-1024 . -272) 156723) ((-713 . -1072) 156710) ((-933 . -374) T) ((-713 . -652) 156697) ((-329 . -1226) 156663) ((-390 . -317) T) ((-329 . -1223) 156629) ((-326 . -174) 156608) ((-323 . -174) T) ((-620 . -1214) 156584) ((-593 . -1307) 156571) ((-530 . -1307) 156548) ((-117 . -1072) 156535) ((-370 . -148) 156514) ((-370 . -146) 156465) ((-364 . -148) 156444) ((-364 . -146) 156395) ((-356 . -148) 156374) ((-117 . -652) 156361) ((-356 . -146) 156312) ((-329 . -35) 156278) ((-487 . -1214) 156257) ((0 . |EnumerationCategory|) T) ((-329 . -95) 156223) ((-390 . -1043) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 156173) ((-666 . -1121) T) ((-620 . -107) 156120) ((-497 . -132) T) ((-487 . -107) 156070) ((-245 . -1133) 156048) ((-31 . -1238) T) ((-886 . -388) 156032) ((-886 . -349) 156016) ((-245 . -23) 155868) ((-40 . -628) 155798) ((-1301 . -526) 155731) ((-1083 . -939) T) ((-1083 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1280 . -568) 155710) ((-1273 . -1242) 155689) ((-1273 . -568) 155640) ((-1272 . -1238) T) ((-1252 . -1242) 155619) ((-362 . -1173) T) ((-337 . -34) T) ((-44 . -429) 155603) ((-1202 . -628) 155539) ((-887 . -1238) T) ((-402 . -756) 155523) ((-1252 . -568) 155474) ((-1251 . -1238) T) ((-1163 . -658) 155433) ((-743 . -132) T) ((-684 . -628) 155417) ((-1251 . -901) 155290) ((-1251 . -899) 155260) ((-1195 . -132) T) ((-1194 . -132) T) ((-1188 . -132) T) ((-1147 . -132) T) ((-321 . -1104) T) ((-1045 . -1023) T) ((-749 . -526) 155193) ((-1025 . -23) T) ((-1025 . -1133) T) ((-908 . -1121) T) ((-145 . -856) T) ((-1024 . -360) NIL) ((-703 . -625) 155175) ((-962 . -864) 155154) ((-535 . -319) 155092) ((-992 . -23) T) ((-142 . -526) NIL) ((-880 . -658) 155037) ((-933 . -1133) T) ((-933 . -23) T) ((-886 . -917) 154996) ((-362 . -38) 154961) ((-884 . -1077) 154948) ((-341 . -864) T) ((-82 . -625) 154930) ((-40 . -1070) T) ((-884 . -111) 154915) ((-730 . -1238) T) ((-713 . -102) T) ((-706 . -625) 154897) ((-614 . -1238) T) ((-608 . -568) 154876) ((-439 . -1133) T) ((-350 . -1072) 154860) ((-215 . -1121) T) ((-176 . -1072) 154792) ((-486 . -47) 154762) ((-40 . -238) 154734) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 154713) ((-350 . -652) 154697) ((-706 . -626) 154605) ((-326 . -526) 154571) ((-176 . -652) 154503) ((-323 . -526) 154395) ((-499 . -234) 154382) ((-1272 . -1059) 154366) ((-1251 . -1059) 154152) ((-1020 . -423) 154136) ((-219 . -234) 154123) ((-439 . -23) T) ((-1141 . -174) T) ((-1274 . -300) T) ((-666 . -729) 154093) ((-145 . -1121) T) ((-48 . -1023) T) ((-419 . -272) 154077) ((-419 . -232) 154061) ((-305 . -240) 154011) ((-885 . -939) T) ((-885 . -832) NIL) ((-884 . -628) 153983) ((-258 . -864) 153934) ((-257 . -864) 153885) ((-878 . -861) T) ((-1251 . -349) 153855) ((-1251 . -388) 153825) ((-1101 . -237) 153704) ((-224 . -1142) 153688) ((-304 . -919) 153647) ((-1288 . -298) 153624) ((-370 . -237) 153603) ((-364 . -237) 153582) ((-486 . -1238) T) ((-356 . -237) 153561) ((-108 . -237) T) ((-1232 . -660) 153486) ((-1024 . -658) 153416) ((-982 . -21) T) ((-982 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 153381) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1020 . -1079) T) ((-884 . -1070) T) ((-786 . -102) T) ((-1273 . -374) 153360) ((-1272 . -917) 153266) ((-1252 . -374) 153245) ((-1251 . -917) 153096) ((-1197 . -1238) T) ((-1045 . -625) 153078) ((-419 . -840) 153031) ((-1195 . -505) 152997) ((-171 . -939) 152928) ((-1194 . -505) 152894) ((-1188 . -505) 152860) ((-724 . -1121) T) ((-1147 . -505) 152826) ((-592 . -1077) 152813) ((-576 . -1077) 152800) ((-507 . -1077) 152765) ((-326 . -300) 152744) ((-323 . -300) T) ((-365 . -625) 152726) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 152705) ((-592 . -111) 152690) ((-576 . -111) 152675) ((-507 . -111) 152631) ((-1197 . -901) 152598) ((-920 . -501) 152582) ((-48 . -625) 152564) ((-48 . -626) 152509) ((-245 . -132) 152380) ((-1311 . -658) 152339) ((-1261 . -939) 152318) ((-828 . -1242) 152297) ((-400 . -502) 152278) ((-1056 . -526) 152122) ((-400 . -625) 152088) ((-828 . -568) 152019) ((-598 . -660) 151994) ((-273 . -47) 151966) ((-253 . -47) 151923) ((-543 . -521) 151900) ((-592 . -628) 151872) ((-576 . -628) 151844) ((-507 . -628) 151777) ((-1095 . -1238) T) ((-1021 . -1238) T) ((-1280 . -23) T) ((-1280 . -1133) T) ((-1273 . -1133) T) ((-1273 . -23) T) ((-1252 . -1133) T) ((-711 . -1077) 151742) ((-1252 . -23) T) ((-1232 . -738) T) ((-1141 . -300) T) ((-1134 . -237) 151639) ((-1025 . -132) T) ((-1024 . -381) 151611) ((-112 . -379) T) ((-486 . -917) 151517) ((-992 . -132) T) ((-923 . -625) 151499) ((-55 . -628) 151481) ((-91 . -107) 151465) ((-933 . -132) T) ((-924 . -861) 151416) ((-713 . -1173) T) ((-711 . -111) 151372) ((-855 . -658) 151289) ((-608 . -1133) T) ((-607 . -1133) T) ((-724 . -729) 151118) ((-723 . -738) T) ((-811 . -25) T) ((-811 . -21) T) ((-499 . -861) T) ((-609 . -1238) T) ((-597 . -1238) T) ((-592 . -1070) T) ((-219 . -861) T) ((-419 . -658) 151055) ((-576 . -1070) T) ((-548 . -1238) T) ((-507 . -1070) T) ((-608 . -23) T) ((-354 . -1307) 151032) ((-329 . -464) 151011) ((-350 . -319) 150998) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 150972) ((-250 . -1031) 150956) ((-886 . -317) T) ((-1312 . -1302) 150940) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 150927) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1301 . -501) 150911) ((-1284 . -1238) T) ((-1171 . -240) 150861) ((-1108 . -928) 150840) ((-117 . -38) 150827) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-886 . -1043) 150805) ((-676 . -1238) T) ((-657 . -1238) T) ((-794 . -928) 150784) ((-792 . -928) 150763) ((-1210 . -1238) T) ((-366 . -1238) T) ((-363 . -1238) T) ((-355 . -1238) T) ((-273 . -1238) T) ((-253 . -1238) T) ((-466 . -928) 150742) ((-749 . -501) 150726) ((-1108 . -660) 150615) ((-711 . -628) 150550) ((-794 . -660) 150439) ((-635 . -1077) 150426) ((-491 . -1238) T) ((-354 . -379) T) ((-142 . -501) 150408) ((-792 . -660) 150297) ((-1162 . -1238) T) ((-561 . -861) T) ((-473 . -660) 150268) ((-273 . -901) 150127) ((-253 . -901) NIL) ((-118 . -1077) 150072) ((-466 . -660) 149961) ((-676 . -1059) 149938) ((-635 . -111) 149923) ((-402 . -1072) 149907) ((-366 . -1059) 149891) ((-363 . -1059) 149875) ((-355 . -1059) 149859) ((-273 . -1059) 149703) ((-253 . -1059) 149579) ((-929 . -1238) T) ((-118 . -111) 149508) ((-59 . -1238) T) ((-402 . -652) 149492) ((-633 . -1072) 149476) ((-531 . -1238) T) ((-528 . -1238) T) ((-509 . -1238) T) ((-508 . -1238) T) ((-449 . -625) 149458) ((-446 . -625) 149440) ((-633 . -652) 149424) ((-3 . -102) T) ((-1048 . -1231) 149393) ((-845 . -102) T) ((-701 . -57) 149351) ((-711 . -1070) T) ((-647 . -658) 149320) ((-619 . -658) 149289) ((-50 . -660) 149263) ((-299 . -464) T) ((-488 . -1231) 149232) ((0 . -102) T) ((-593 . -660) 149197) ((-530 . -660) 149142) ((-49 . -102) T) ((-929 . -1059) 149129) ((-711 . -248) T) ((-1101 . -421) 149108) ((-743 . -651) 149056) ((-1020 . -1121) T) ((-724 . -174) 148947) ((-635 . -628) 148842) ((-499 . -1013) 148824) ((-430 . -234) 148769) ((-273 . -388) 148753) ((-253 . -388) 148737) ((-411 . -1121) T) ((-1047 . -102) 148715) ((-350 . -38) 148699) ((-219 . -1013) 148681) ((-118 . -628) 148611) ((-176 . -38) 148543) ((-1272 . -317) 148522) ((-1251 . -317) 148501) ((-670 . -738) T) ((-99 . -625) 148483) ((-489 . -1072) 148448) ((-1188 . -651) 148400) ((-489 . -652) 148365) ((-656 . -864) 148344) ((-497 . -25) T) ((-497 . -21) T) ((-1251 . -1043) 148296) ((-1078 . -1238) T) ((-1 . -1238) T) ((-635 . -1070) T) ((-390 . -416) T) ((-402 . -102) T) ((-1126 . -630) 148211) ((-273 . -917) 148157) ((-253 . -917) 148134) ((-118 . -1070) T) ((-1108 . -738) T) ((-828 . -1133) T) ((-831 . -864) T) ((-635 . -238) 148113) ((-633 . -102) T) ((-523 . -1238) T) ((-519 . -1238) T) ((-794 . -738) T) ((-792 . -738) T) ((-1243 . -861) T) ((-425 . -1133) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-398 . -864) 148092) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -911) 148013) ((-1098 . -296) 147992) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 147974) ((-227 . -864) T) ((-706 . -1077) 147924) ((-1313 . -102) T) ((-1280 . -132) T) ((-1273 . -132) T) ((-1252 . -132) T) ((-1195 . -25) T) ((-1163 . -423) 147908) ((-647 . -378) 147840) ((-619 . -378) 147772) ((-1178 . -1170) 147756) ((-103 . -1121) 147734) ((-1195 . -21) T) ((-1194 . -21) T) ((-879 . -625) 147716) ((-1020 . -729) 147664) ((-225 . -660) 147631) ((-706 . -111) 147565) ((-50 . -738) T) ((-1194 . -25) T) ((-362 . -360) T) ((-1188 . -21) T) ((-1101 . -464) 147516) ((-1188 . -25) T) ((-724 . -526) 147463) ((-593 . -738) T) ((-530 . -738) T) ((-1147 . -21) T) ((-1147 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 147198) ((-494 . -237) 147095) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 147074) ((-1246 . -102) T) ((-323 . -296) 147009) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 146993) ((-1317 . -625) 146975) ((-1317 . -626) 146957) ((-1101 . -414) 146936) ((-1056 . -501) 146867) ((-137 . -296) 146844) ((-576 . -807) T) ((-576 . -804) T) ((-1084 . -240) 146790) ((-1083 . -864) T) ((-725 . -864) T) ((-370 . -414) 146741) ((-364 . -414) 146692) ((-356 . -414) 146643) ((-1303 . -1133) T) ((-1312 . -1072) 146627) ((-392 . -1072) 146611) ((-1312 . -652) 146581) ((-830 . -237) T) ((-392 . -652) 146551) ((-706 . -628) 146486) ((-1303 . -23) T) ((-1290 . -102) T) ((-350 . -919) 146467) ((-177 . -625) 146449) ((-1163 . -1079) T) ((-559 . -379) T) ((-682 . -756) 146433) ((-1199 . -146) 146412) ((-1199 . -148) 146391) ((-1167 . -1121) T) ((-1167 . -1092) 146360) ((-69 . -1238) T) ((-1045 . -1077) 146297) ((-362 . -658) 146227) ((-880 . -1079) T) ((-245 . -651) 146133) ((-706 . -1070) T) ((-365 . -1077) 146078) ((-61 . -1238) T) ((-1045 . -111) 145994) ((-920 . -625) 145905) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 145884) ((-711 . -807) T) ((-711 . -804) T) ((-1024 . -423) 145861) ((-365 . -111) 145790) ((-390 . -939) T) ((-419 . -860) 145769) ((-724 . -300) 145680) ((-225 . -738) T) ((-1280 . -505) 145646) ((-1273 . -505) 145612) ((-1252 . -505) 145578) ((-590 . -1121) T) ((-326 . -1023) 145557) ((-224 . -1121) 145535) ((-1245 . -856) T) ((-329 . -994) 145497) ((-105 . -102) T) ((-48 . -1077) 145462) ((-885 . -864) NIL) ((-1312 . -102) T) ((-392 . -102) T) ((-1274 . -625) 145444) ((-1154 . -1155) 145428) ((-1025 . -651) 145410) ((-890 . -1238) T) ((-48 . -111) 145366) ((-693 . -1238) T) ((-688 . -1238) T) ((-674 . -1238) T) ((-827 . -911) 145233) ((-490 . -1238) T) ((-250 . -1238) T) ((-543 . -102) T) ((-512 . -102) T) ((-153 . -1295) 145217) ((-139 . -1238) T) ((-138 . -1238) T) ((-134 . -1238) T) ((-1237 . -102) T) ((-1045 . -628) 145154) ((-829 . -237) T) ((-1193 . -1242) 145133) ((-365 . -628) 145063) ((-1146 . -1242) 145042) ((-245 . -25) 144875) ((-245 . -21) 144786) ((-128 . -120) 144770) ((-122 . -120) 144754) ((-44 . -756) 144738) ((-1193 . -568) 144649) ((-1146 . -568) 144580) ((-1245 . -1121) T) ((-558 . -864) T) ((-1056 . -296) 144555) ((-1187 . -1104) T) ((-1015 . -1104) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-1115 . -1238) 144533) ((-258 . -1133) 144511) ((-257 . -1133) 144489) ((-1045 . -1070) T) ((-1024 . -1079) T) ((-48 . -628) 144422) ((-354 . -660) 144367) ((-1301 . -625) 144329) ((-1301 . -626) 144290) ((-633 . -38) 144274) ((-1195 . -234) 144227) ((-1194 . -234) 144173) ((-1098 . -625) 144155) ((-1045 . -248) T) ((-365 . -1070) T) ((-827 . -1295) 144125) ((-258 . -23) T) ((-257 . -23) T) ((-1008 . -625) 144107) ((-1188 . -234) 143924) ((-1180 . -152) 143871) ((-749 . -626) 143832) ((-749 . -625) 143814) ((-1025 . -25) T) ((-811 . -861) 143793) ((-1020 . -526) 143705) ((-689 . -864) T) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 143686) ((-929 . -317) T) ((-142 . -625) 143668) ((-142 . -626) 143627) ((-329 . -911) 143531) ((-1025 . -21) T) ((-992 . -25) T) ((-933 . -21) T) ((-933 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 143515) ((-48 . -1070) T) ((-1310 . -1302) 143499) ((-1308 . -1302) 143483) ((-1056 . -616) 143458) ((-326 . -626) 143319) ((-326 . -625) 143301) ((-323 . -626) NIL) ((-323 . -625) 143283) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 143244) ((-562 . -240) 143194) ((-583 . -864) T) ((-140 . -625) 143161) ((-137 . -625) 143143) ((-115 . -625) 143125) ((-489 . -38) 143090) ((-1312 . -1309) 143069) ((-1303 . -132) T) ((-1311 . -1079) T) ((-1103 . -102) T) ((-88 . -1238) T) ((-512 . -319) NIL) ((-1021 . -107) 143053) ((-904 . -1121) T) ((-900 . -1121) T) ((-1288 . -663) 143037) ((-1288 . -384) 143021) ((-337 . -1238) T) ((-605 . -861) T) ((-1163 . -1121) T) ((-1163 . -1074) 142961) ((-103 . -526) 142894) ((-946 . -625) 142876) ((-354 . -738) T) ((-30 . -625) 142858) ((-880 . -1121) T) ((-855 . -1079) 142837) ((-40 . -660) 142744) ((-227 . -1242) T) ((-419 . -1079) T) ((-1179 . -152) 142726) ((-1020 . -300) 142677) ((-888 . -1238) T) ((-629 . -1121) T) ((-227 . -568) T) ((-329 . -1269) 142661) ((-329 . -1266) 142631) ((-713 . -658) 142603) ((-1210 . -1214) 142582) ((-1096 . -625) 142564) ((-1210 . -107) 142514) ((-659 . -152) 142498) ((-644 . -152) 142444) ((-117 . -658) 142416) ((-491 . -1214) 142395) ((-499 . -148) T) ((-499 . -146) NIL) ((-1141 . -626) 142310) ((-450 . -625) 142292) ((-219 . -148) T) ((-219 . -146) NIL) ((-1141 . -625) 142274) ((-130 . -102) T) ((-52 . -102) T) ((-1252 . -651) 142226) ((-491 . -107) 142176) ((-1014 . -23) T) ((-1312 . -38) 142146) ((-1193 . -1133) T) ((-1146 . -1133) T) ((-1083 . -1242) T) ((-245 . -234) 142037) ((-321 . -102) T) ((-868 . -1133) T) ((-971 . -1242) 142016) ((-493 . -1242) 141995) ((-1083 . -568) T) ((-971 . -568) 141926) ((-1193 . -23) T) ((-1172 . -1104) T) ((-1146 . -23) T) ((-868 . -23) T) ((-493 . -568) 141857) ((-1163 . -729) 141789) ((-682 . -1072) 141773) ((-1167 . -526) 141706) ((-682 . -652) 141690) ((-1056 . -626) NIL) ((-1056 . -625) 141672) ((-96 . -1104) T) ((-1317 . -1077) 141659) ((-880 . -729) 141629) ((-1317 . -111) 141614) ((-1232 . -47) 141583) ((-1188 . -861) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1125 . -1121) T) ((-1024 . -1121) T) ((-62 . -625) 141565) ((-1101 . -911) 141434) ((-1045 . -804) T) ((-1045 . -807) T) ((-1280 . -25) T) ((-1280 . -21) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-884 . -660) 141421) ((-1252 . -21) T) ((-1252 . -25) T) ((-1048 . -152) 141405) ((-1025 . -234) 141392) ((-886 . -832) 141371) ((-886 . -939) T) ((-724 . -296) 141298) ((-608 . -21) T) ((-350 . -658) 141257) ((-108 . -911) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 141174) ((-40 . -738) T) ((-224 . -526) 141107) ((-607 . -25) T) ((-488 . -152) 141091) ((-475 . -152) 141075) ((-185 . -1238) T) ((-940 . -806) T) ((-940 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1121) T) ((-514 . -1121) T) ((-783 . -738) T) ((-227 . -374) T) ((-1310 . -1072) 141059) ((-1308 . -1072) 141043) ((-1310 . -652) 141013) ((-1178 . -1121) 140991) ((-885 . -1242) T) ((-1308 . -652) 140961) ((-1109 . -864) T) ((-666 . -625) 140943) ((-885 . -568) T) ((-706 . -379) NIL) ((-44 . -1072) 140927) ((-1317 . -628) 140909) ((-1311 . -1121) T) ((-682 . -102) T) ((-370 . -1295) 140893) ((-364 . -1295) 140877) ((-44 . -652) 140861) ((-356 . -1295) 140845) ((-560 . -102) T) ((-1232 . -1238) T) ((-532 . -861) 140824) ((-723 . -1238) T) ((-977 . -864) 140803) ((-862 . -864) T) ((-499 . -237) T) ((-219 . -237) T) ((-1067 . -1121) T) ((-829 . -464) 140782) ((-153 . -1072) 140766) ((-1067 . -1092) 140695) ((-1048 . -997) 140664) ((-831 . -1133) T) ((-1024 . -729) 140609) ((-153 . -652) 140593) ((-398 . -1133) T) ((-488 . -997) 140562) ((-475 . -997) 140531) ((-1204 . -864) T) ((-110 . -152) 140513) ((-73 . -625) 140495) ((-908 . -625) 140477) ((-1203 . -864) T) ((-1101 . -736) 140456) ((-1317 . -1070) T) ((-828 . -651) 140404) ((-304 . -1079) 140346) ((-171 . -1242) 140251) ((-227 . -1133) T) ((-334 . -23) T) ((-1188 . -1013) 140203) ((-1274 . -1077) 140108) ((-855 . -1121) T) ((-129 . -864) T) ((-1147 . -752) 140087) ((-1272 . -939) 140066) ((-1251 . -939) 140045) ((-884 . -738) T) ((-171 . -568) 139956) ((-592 . -660) 139943) ((-576 . -660) 139915) ((-419 . -1121) T) ((-270 . -1121) T) ((-215 . -625) 139897) ((-507 . -660) 139847) ((-227 . -23) T) ((-1251 . -832) 139800) ((-1310 . -102) T) ((-503 . -1238) T) ((-365 . -1307) 139777) ((-1308 . -102) T) ((-1274 . -111) 139669) ((-1134 . -911) 139536) ((-827 . -1072) 139437) ((-827 . -652) 139359) ((-145 . -625) 139341) ((-1014 . -132) T) ((-44 . -102) T) ((-245 . -861) 139292) ((-598 . -1238) T) ((-1261 . -1242) 139271) ((-103 . -501) 139255) ((-1311 . -729) 139225) ((-1108 . -47) 139186) ((-1083 . -1133) T) ((-971 . -1133) T) ((-128 . -34) T) ((-122 . -34) T) ((-1261 . -568) 139097) ((-794 . -47) 139074) ((-792 . -47) 139046) ((-1218 . -1238) T) ((-1193 . -132) T) ((-365 . -379) T) ((-493 . -1133) T) ((-1146 . -132) T) ((-885 . -374) T) ((-466 . -47) 139025) ((-868 . -132) T) ((-332 . -864) 139004) ((-153 . -102) T) ((-1083 . -23) T) ((-971 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1163 . -526) 138937) ((-604 . -1104) T) ((-598 . -1059) 138921) ((-1274 . -628) 138795) ((-493 . -23) T) ((-362 . -1079) T) ((-390 . -864) T) ((-1232 . -917) 138776) ((-682 . -319) 138714) ((-1280 . -234) 138667) ((-1134 . -1295) 138637) ((-711 . -660) 138602) ((-1025 . -861) T) ((-1024 . -174) T) ((-982 . -146) 138581) ((-647 . -1121) T) ((-619 . -1121) T) ((-982 . -148) 138560) ((-747 . -148) 138539) ((-747 . -146) 138518) ((-670 . -1238) T) ((-992 . -861) T) ((-1273 . -234) 138464) ((-1252 . -234) 138281) ((-845 . -658) 138198) ((-486 . -939) 138177) ((-347 . -1238) T) ((-329 . -1072) 138012) ((-326 . -1077) 137922) ((-323 . -1077) 137851) ((-1020 . -296) 137809) ((-419 . -729) 137761) ((-329 . -652) 137602) ((-607 . -234) 137555) ((-713 . -860) T) ((-1274 . -1070) T) ((-326 . -111) 137451) ((-323 . -111) 137364) ((-97 . -1238) T) ((-983 . -102) T) ((-827 . -102) 137096) ((-724 . -626) NIL) ((-724 . -625) 137078) ((-1274 . -336) 137022) ((-670 . -1059) 136918) ((-1108 . -1238) T) ((-1056 . -298) 136893) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 136844) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1238) T) ((-792 . -1238) T) ((-1167 . -501) 136828) ((-473 . -1238) T) ((-466 . -1238) T) ((-1310 . -1309) 136804) ((-1108 . -901) NIL) ((-885 . -1133) T) ((-118 . -928) NIL) ((-1308 . -1309) 136783) ((-661 . -1238) T) ((-794 . -901) NIL) ((-792 . -901) 136642) ((-1303 . -25) T) ((-1303 . -21) T) ((-1235 . -102) 136620) ((-1127 . -407) T) ((-635 . -660) 136607) ((-466 . -901) NIL) ((-687 . -102) 136557) ((-1108 . -1059) 136384) ((-885 . -23) T) ((-794 . -1059) 136243) ((-792 . -1059) 136100) ((-118 . -660) 136045) ((-466 . -1059) 135921) ((-284 . -1238) T) ((-326 . -628) 135485) ((-323 . -628) 135368) ((-50 . -1238) T) ((-402 . -658) 135337) ((-661 . -1059) 135321) ((-639 . -102) T) ((-593 . -1238) T) ((-530 . -1238) T) ((-224 . -501) 135305) ((-1288 . -34) T) ((-633 . -658) 135264) ((-299 . -1072) 135251) ((-137 . -628) 135235) ((-299 . -652) 135222) ((-647 . -729) 135206) ((-619 . -729) 135190) ((-682 . -38) 135150) ((-329 . -102) T) ((-1141 . -1077) 135137) ((-85 . -625) 135119) ((-50 . -1059) 135103) ((-1108 . -388) 135087) ((-794 . -388) 135071) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-60 . -57) 135033) ((-593 . -1059) 135020) ((-530 . -1059) 134997) ((-173 . -1238) T) ((-334 . -132) T) ((-326 . -1070) 134887) ((-323 . -1070) T) ((-171 . -1133) T) ((-792 . -388) 134871) ((-45 . -152) 134821) ((-1025 . -1013) 134803) ((-466 . -388) 134787) ((-419 . -174) T) ((-326 . -248) 134766) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1121) 134548) ((-227 . -132) T) ((-1141 . -111) 134533) ((-171 . -23) T) ((-811 . -148) 134512) ((-811 . -146) 134491) ((-258 . -651) 134397) ((-257 . -651) 134303) ((-329 . -294) 134269) ((-1178 . -526) 134202) ((-489 . -658) 134152) ((-494 . -911) 134019) ((-1154 . -1121) T) ((-227 . -1081) T) ((-827 . -319) 133957) ((-1108 . -917) 133892) ((-794 . -917) 133835) ((-792 . -917) 133819) ((-1310 . -38) 133789) ((-1308 . -38) 133759) ((-1261 . -1133) T) ((-869 . -1133) T) ((-466 . -917) 133736) ((-872 . -1121) T) ((-1261 . -23) T) ((-1141 . -628) 133708) ((-1083 . -132) T) ((-869 . -23) T) ((-583 . -1133) T) ((-635 . -738) T) ((-522 . -864) T) ((-366 . -939) T) ((-363 . -939) T) ((-299 . -102) T) ((-355 . -939) T) ((-991 . -1104) T) ((-971 . -132) T) ((-828 . -234) 133653) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1067 . -526) 133554) ((-706 . -928) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 133505) ((-687 . -319) 133443) ((-225 . -1238) T) ((-647 . -773) T) ((-619 . -773) T) ((-1252 . -861) NIL) ((-1101 . -1072) 133353) ((-1024 . -300) T) ((-706 . -660) 133303) ((-258 . -25) T) ((-362 . -1121) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 133287) ((-2 . -102) T) ((-929 . -939) T) ((-1101 . -652) 133155) ((-494 . -1295) 133125) ((-1141 . -1070) T) ((-723 . -317) T) ((-370 . -1072) 133077) ((-364 . -1072) 133029) ((-356 . -1072) 132981) ((-370 . -652) 132933) ((-225 . -1059) 132910) ((-364 . -652) 132862) ((-108 . -1072) 132812) ((-356 . -652) 132764) ((-304 . -729) 132706) ((-713 . -1079) T) ((-499 . -464) T) ((-419 . -526) 132618) ((-108 . -652) 132568) ((-219 . -464) T) ((-1141 . -238) T) ((-305 . -152) 132518) ((-1020 . -626) 132479) ((-1020 . -625) 132461) ((-1010 . -625) 132443) ((-117 . -1079) T) ((-666 . -1077) 132427) ((-227 . -505) T) ((-411 . -625) 132409) ((-411 . -626) 132386) ((-1075 . -1295) 132356) ((-666 . -111) 132335) ((-682 . -919) 132258) ((-1163 . -501) 132242) ((-1312 . -658) 132201) ((-392 . -658) 132170) ((-63 . -453) T) ((-63 . -407) T) ((-1180 . -102) T) ((-885 . -132) T) ((-496 . -102) 132120) ((-1139 . -1238) T) ((-1244 . -864) T) ((-1317 . -379) T) ((-1101 . -102) T) ((-1082 . -102) T) ((-362 . -729) 132065) ((-886 . -864) 132016) ((-743 . -148) 131995) ((-743 . -146) 131974) ((-666 . -628) 131892) ((-1045 . -660) 131829) ((-535 . -1121) 131807) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1121) T) ((-365 . -660) 131752) ((-1193 . -651) 131700) ((-1146 . -651) 131648) ((-396 . -521) 131627) ((-845 . -860) 131606) ((-706 . -738) T) ((-390 . -1242) T) ((-343 . -1238) T) ((-1252 . -1013) 131558) ((-350 . -1079) T) ((-112 . -1238) T) ((-176 . -1079) T) ((-103 . -625) 131490) ((-1195 . -146) 131469) ((-1195 . -148) 131448) ((-390 . -568) T) ((-1194 . -148) 131427) ((-1194 . -146) 131406) ((-1188 . -146) 131313) ((-419 . -300) T) ((-1188 . -148) 131220) ((-1147 . -148) 131199) ((-1147 . -146) 131178) ((-329 . -38) 131019) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1070) T) ((-48 . -660) 130969) ((-1134 . -1072) 130870) ((-908 . -628) 130847) ((-1134 . -652) 130769) ((-1187 . -102) T) ((-1015 . -102) T) ((-1014 . -21) T) ((-128 . -1031) 130753) ((-122 . -1031) 130737) ((-1014 . -25) T) ((-920 . -120) 130721) ((-1179 . -102) T) ((-1261 . -132) T) ((-1251 . -864) 130620) ((-1193 . -25) T) ((-1193 . -21) T) ((-1180 . -319) 130415) ((-354 . -1238) T) ((-1146 . -25) T) ((-869 . -132) T) ((-406 . -1238) T) ((-1146 . -21) T) ((-868 . -25) T) ((-868 . -21) T) ((-794 . -317) 130394) ((-1178 . -501) 130378) ((-1171 . -152) 130328) ((-1167 . -625) 130290) ((-659 . -102) 130240) ((-644 . -102) T) ((-1167 . -626) 130201) ((-583 . -132) T) ((-633 . -860) 130180) ((-1045 . -803) T) ((-1045 . -806) T) ((-1045 . -738) T) ((-827 . -919) 130049) ((-724 . -1077) 129872) ((-614 . -864) 129851) ((-496 . -319) 129789) ((-465 . -429) 129759) ((-362 . -174) T) ((-299 . -38) 129746) ((-258 . -234) 129637) ((-257 . -234) 129528) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1059) 129505) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 129314) ((-365 . -738) T) ((-682 . -272) 129298) ((-682 . -232) 129282) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 129231) ((-1185 . -1238) T) ((-108 . -319) NIL) ((-72 . -407) T) ((-1134 . -102) 128963) ((-845 . -423) 128947) ((-1141 . -807) T) ((-1141 . -804) T) ((-713 . -1121) T) ((-590 . -625) 128929) ((-390 . -374) T) ((-171 . -505) 128907) ((-224 . -625) 128839) ((-135 . -1121) T) ((-117 . -1121) T) ((-985 . -1238) T) ((-48 . -738) T) ((-1067 . -501) 128804) ((-142 . -437) 128786) ((-142 . -379) T) ((-1048 . -102) T) ((-524 . -521) 128765) ((-724 . -628) 128521) ((-1245 . -625) 128503) ((-1202 . -1238) T) ((-1202 . -1059) 128439) ((-1195 . -237) 128398) ((-488 . -102) T) ((-475 . -102) T) ((-1194 . -237) 128350) ((-1188 . -237) 128173) ((-1055 . -1133) T) ((-329 . -919) 128079) ((-1197 . -864) T) ((-1195 . -35) 128045) ((-1195 . -95) 128011) ((-1195 . -1226) 127977) ((-1195 . -1223) 127943) ((-1194 . -1223) 127909) ((-1194 . -1226) 127875) ((-1194 . -95) 127841) ((-1194 . -35) 127807) ((-1188 . -1223) 127773) ((-1188 . -1226) 127739) ((-1179 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1101 . -1173) 127718) ((-40 . -1238) T) ((-1188 . -95) 127684) ((-1055 . -23) T) ((-1188 . -35) 127650) ((-583 . -505) T) ((-1147 . -35) 127616) ((-1147 . -95) 127582) ((-1147 . -1226) 127548) ((-1147 . -1223) 127514) ((-372 . -1133) T) ((-370 . -1173) 127493) ((-364 . -1173) 127472) ((-356 . -1173) 127451) ((-1125 . -296) 127407) ((-973 . -1238) T) ((-940 . -1238) T) ((-108 . -1173) T) ((-845 . -1079) 127386) ((-783 . -1238) T) ((-659 . -319) 127324) ((-644 . -319) 127175) ((-684 . -1238) T) ((-724 . -1070) T) ((-1083 . -651) 127157) ((-1101 . -38) 127025) ((-971 . -651) 126973) ((-1025 . -148) T) ((-1025 . -146) NIL) ((-390 . -1133) T) ((-334 . -25) T) ((-332 . -23) T) ((-962 . -861) 126952) ((-724 . -336) 126929) ((-493 . -651) 126877) ((-40 . -1059) 126765) ((-724 . -238) T) ((-713 . -729) 126752) ((-350 . -1121) T) ((-176 . -1121) T) ((-341 . -861) T) ((-430 . -464) 126702) ((-390 . -23) T) ((-370 . -38) 126667) ((-364 . -38) 126632) ((-356 . -38) 126597) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1133) T) ((-108 . -38) 126547) ((-839 . -1133) T) ((-786 . -1121) T) ((-117 . -729) 126534) ((-684 . -1059) 126518) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1178 . -296) 126470) ((-1134 . -319) 126408) ((-494 . -1072) 126309) ((-1123 . -240) 126293) ((-64 . -408) T) ((-64 . -407) T) ((-1172 . -102) T) ((-110 . -102) T) ((-494 . -652) 126215) ((-40 . -388) 126192) ((-96 . -102) T) ((-665 . -866) 126176) ((-1193 . -234) 126163) ((-1156 . -1104) T) ((-1083 . -21) T) ((-1083 . -25) T) ((-1075 . -1072) 126147) ((-827 . -272) 126116) ((-827 . -232) 126085) ((-971 . -25) T) ((-971 . -21) T) ((-1141 . -379) T) ((-1075 . -652) 126027) ((-633 . -1079) T) ((-1048 . -319) 125965) ((-904 . -625) 125947) ((-682 . -658) 125906) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1072) 125890) ((-900 . -625) 125872) ((-884 . -1238) T) ((-535 . -526) 125805) ((-258 . -861) 125756) ((-257 . -861) 125707) ((-396 . -652) 125677) ((-885 . -651) 125654) ((-488 . -319) 125592) ((-559 . -1238) T) ((-475 . -319) 125530) ((-362 . -300) T) ((-1178 . -1276) 125514) ((-1163 . -625) 125476) ((-1163 . -626) 125437) ((-1161 . -102) T) ((-1020 . -1077) 125333) ((-40 . -917) 125285) ((-1178 . -616) 125262) ((-1317 . -660) 125249) ((-1084 . -152) 125195) ((-499 . -911) NIL) ((-880 . -502) 125172) ((-1020 . -111) 125054) ((-886 . -1242) T) ((-219 . -911) NIL) ((-350 . -729) 125038) ((-880 . -625) 125000) ((-176 . -729) 124932) ((-886 . -568) T) ((-419 . -296) 124890) ((-245 . -237) 124787) ((-108 . -412) 124769) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 124751) ((-99 . -738) T) ((-494 . -102) 124483) ((-99 . -485) T) ((-117 . -174) T) ((-1310 . -658) 124442) ((-1308 . -658) 124401) ((-171 . -651) 124349) ((-1101 . -919) 124220) ((-1075 . -102) T) ((-1020 . -628) 124110) ((-885 . -25) T) ((-827 . -243) 124089) ((-885 . -21) T) ((-830 . -102) T) ((-44 . -658) 124032) ((-1025 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 123982) ((-128 . -1238) T) ((-122 . -1238) T) ((-108 . -919) NIL) ((-829 . -1072) 123933) ((-59 . -864) 123912) ((-829 . -652) 123854) ((-528 . -864) 123833) ((-508 . -864) 123812) ((-1055 . -132) T) ((-682 . -378) 123796) ((-153 . -658) 123755) ((-1317 . -738) T) ((-647 . -296) 123713) ((-619 . -296) 123671) ((-1280 . -146) 123650) ((-1261 . -651) 123598) ((-1020 . -1070) T) ((-1125 . -625) 123580) ((-1024 . -625) 123562) ((-592 . -1238) T) ((-576 . -1238) T) ((-507 . -1238) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1121) T) ((-1024 . -626) 123546) ((-1020 . -248) 123525) ((-1020 . -238) 123504) ((-1280 . -148) 123483) ((-1273 . -148) 123462) ((-845 . -1121) T) ((-1273 . -146) 123441) ((-1272 . -1242) 123420) ((-1252 . -146) 123327) ((-1252 . -148) 123234) ((-1251 . -1242) 123213) ((-390 . -132) T) ((-227 . -234) 123200) ((-176 . -174) T) ((-576 . -901) 123182) ((0 . -1121) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1238) T) ((-49 . -1121) T) ((-1274 . -660) 123087) ((-1272 . -568) 123038) ((-726 . -1133) T) ((-1251 . -568) 122989) ((-576 . -1059) 122971) ((-607 . -148) 122950) ((-607 . -146) 122929) ((-507 . -1059) 122872) ((-1156 . -1158) T) ((-87 . -395) T) ((-87 . -407) T) ((-886 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-983 . -658) 122816) ((-726 . -23) T) ((-518 . -625) 122782) ((-514 . -625) 122764) ((-827 . -658) 122543) ((-1312 . -1079) T) ((-390 . -1081) T) ((-1047 . -1121) 122521) ((-55 . -1059) 122503) ((-920 . -34) T) ((-494 . -319) 122441) ((-604 . -102) T) ((-1178 . -626) 122402) ((-1178 . -625) 122334) ((-1199 . -1072) 122217) ((-45 . -102) T) ((-829 . -102) T) ((-1199 . -652) 122114) ((-1289 . -1238) T) ((-1261 . -25) T) ((-1261 . -21) T) ((-1083 . -234) 122101) ((-869 . -25) T) ((-523 . -864) T) ((-254 . -1238) T) ((-44 . -378) 122085) ((-869 . -21) T) ((-743 . -464) 122036) ((-1311 . -625) 122018) ((-722 . -1238) T) ((-711 . -1238) T) ((-1300 . -1072) 121988) ((-1075 . -319) 121926) ((-683 . -1104) T) ((-618 . -1104) T) ((-402 . -1121) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1104) T) ((-162 . -1104) T) ((-157 . -1104) T) ((-155 . -1104) T) ((-1300 . -652) 121896) ((-633 . -1121) T) ((-711 . -901) 121878) ((-1288 . -1238) T) ((-229 . -319) 121816) ((-145 . -379) T) ((-1211 . -1238) T) ((-1067 . -626) 121758) ((-1067 . -625) 121701) ((-323 . -928) NIL) ((-1246 . -856) T) ((-1134 . -919) 121570) ((-711 . -1059) 121515) ((-723 . -939) T) ((-486 . -1242) 121494) ((-1194 . -464) 121473) ((-1188 . -464) 121452) ((-340 . -102) T) ((-886 . -1133) T) ((-329 . -658) 121334) ((-326 . -660) 121063) ((-323 . -660) 120992) ((-486 . -568) 120943) ((-350 . -526) 120909) ((-562 . -152) 120859) ((-40 . -317) T) ((-855 . -625) 120841) ((-713 . -300) T) ((-886 . -23) T) ((-390 . -505) T) ((-1101 . -272) 120811) ((-1101 . -232) 120781) ((-524 . -102) T) ((-419 . -626) 120588) ((-419 . -625) 120570) ((-270 . -625) 120552) ((-117 . -300) T) ((-1274 . -738) T) ((-635 . -1238) T) ((-1313 . -1121) T) ((-1272 . -374) 120531) ((-1251 . -374) 120510) ((-1301 . -34) T) ((-1246 . -1121) T) ((-118 . -1238) T) ((-108 . -272) 120492) ((-108 . -232) 120474) ((-1199 . -102) T) ((-489 . -1121) T) ((-535 . -501) 120458) ((-749 . -34) T) ((-665 . -1072) 120442) ((-665 . -652) 120412) ((-885 . -234) NIL) ((-142 . -34) T) ((-118 . -899) 120389) ((-118 . -901) NIL) ((-635 . -1059) 120272) ((-1300 . -102) T) ((-1280 . -237) 120231) ((-656 . -861) 120210) ((-1273 . -237) 120162) ((-1252 . -237) 119985) ((-305 . -102) T) ((-724 . -379) 119964) ((-118 . -1059) 119941) ((-402 . -729) 119925) ((-607 . -237) 119884) ((-633 . -729) 119868) ((-1126 . -1238) T) ((-45 . -319) 119672) ((-828 . -146) 119651) ((-828 . -148) 119630) ((-299 . -658) 119602) ((-1311 . -393) 119581) ((-831 . -861) T) ((-1290 . -1121) T) ((-1180 . -231) 119528) ((-398 . -861) 119507) ((-1280 . -35) 119473) ((-1280 . -1226) 119439) ((-1280 . -1223) 119405) ((-1273 . -1223) 119371) ((-527 . -132) T) ((-1273 . -1226) 119337) ((-1252 . -1223) 119303) ((-1252 . -1226) 119269) ((-1280 . -95) 119235) ((-1273 . -95) 119201) ((-430 . -911) 119122) ((-647 . -625) 119091) ((-619 . -625) 119060) ((-227 . -861) T) ((-1273 . -35) 119026) ((-1272 . -1133) T) ((-1252 . -95) 118992) ((-1141 . -660) 118964) ((-1252 . -35) 118930) ((-1251 . -1133) T) ((-605 . -152) 118912) ((-1101 . -360) 118891) ((-176 . -300) T) ((-118 . -388) 118868) ((-118 . -349) 118845) ((-171 . -234) 118770) ((-884 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 118619) ((-323 . -738) T) ((-486 . -374) 118598) ((-370 . -360) 118577) ((-364 . -360) 118556) ((-356 . -360) 118535) ((-326 . -485) 118514) ((-1272 . -23) T) ((-1251 . -23) T) ((-730 . -1133) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 118479) ((-674 . -864) 118458) ((-45 . -292) 118408) ((-105 . -1121) T) ((-68 . -625) 118390) ((-250 . -864) 118369) ((-991 . -102) T) ((-878 . -102) T) ((-635 . -917) 118328) ((-1312 . -1121) T) ((-392 . -1121) T) ((-1261 . -234) 118315) ((-1237 . -1121) T) ((-82 . -1238) T) ((-1134 . -272) 118284) ((-1083 . -861) T) ((-118 . -917) NIL) ((-794 . -939) 118263) ((-725 . -861) T) ((-543 . -1121) T) ((-512 . -1121) T) ((-366 . -1242) T) ((-363 . -1242) T) ((-355 . -1242) T) ((-273 . -1242) 118242) ((-253 . -1242) 118221) ((-545 . -874) T) ((-1134 . -232) 118190) ((-1179 . -840) T) ((-1163 . -1077) 118174) ((-402 . -773) T) ((-706 . -1238) T) ((-703 . -1059) 118158) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 118089) ((-253 . -568) 118020) ((-537 . -1104) T) ((-1163 . -111) 117999) ((-465 . -756) 117969) ((-880 . -1077) 117939) ((-829 . -38) 117881) ((-706 . -899) 117863) ((-706 . -901) 117845) ((-305 . -319) 117649) ((-1178 . -298) 117626) ((-929 . -1242) T) ((-1101 . -658) 117521) ((-1025 . -464) T) ((-682 . -423) 117505) ((-880 . -111) 117470) ((-933 . -464) T) ((-706 . -1059) 117415) ((-929 . -568) T) ((-545 . -625) 117397) ((-593 . -939) T) ((-499 . -1072) 117347) ((-486 . -1133) T) ((-530 . -939) T) ((-494 . -919) 117216) ((-65 . -625) 117198) ((-219 . -1072) 117148) ((-499 . -652) 117098) ((-370 . -658) 117035) ((-364 . -658) 116972) ((-356 . -658) 116909) ((-644 . -231) 116855) ((-219 . -652) 116805) ((-108 . -658) 116755) ((-486 . -23) T) ((-1141 . -806) T) ((-886 . -132) T) ((-1141 . -803) T) ((-1303 . -1305) 116734) ((-1141 . -738) T) ((-666 . -660) 116708) ((-304 . -625) 116449) ((-1163 . -628) 116367) ((-1056 . -34) T) ((-828 . -237) 116318) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1312 . -729) 116288) ((-706 . -388) 116270) ((-706 . -349) 116252) ((-489 . -174) T) ((-392 . -729) 116222) ((-880 . -628) 116157) ((-885 . -861) NIL) ((-576 . -1043) T) ((-507 . -1043) T) ((-1154 . -625) 116139) ((-1134 . -243) 116118) ((-216 . -102) T) ((-1171 . -102) T) ((-71 . -625) 116100) ((-1045 . -1238) T) ((-1163 . -1070) T) ((-1199 . -38) 115997) ((-872 . -625) 115979) ((-576 . -557) T) ((-682 . -1079) T) ((-743 . -968) 115932) ((-1163 . -238) 115911) ((-365 . -1238) T) ((-1103 . -1121) T) ((-1055 . -25) T) ((-1055 . -21) T) ((-1024 . -1077) 115856) ((-337 . -864) 115835) ((-924 . -102) T) ((-880 . -1070) T) ((-706 . -917) NIL) ((-366 . -339) 115819) ((-366 . -374) T) ((-363 . -339) 115803) ((-363 . -374) T) ((-355 . -339) 115787) ((-355 . -374) T) ((-499 . -102) T) ((-1300 . -38) 115757) ((-558 . -861) T) ((-535 . -699) 115707) ((-219 . -102) T) ((-1045 . -1059) 115587) ((-1024 . -111) 115516) ((-1195 . -994) 115485) ((-1194 . -994) 115447) ((-532 . -152) 115431) ((-1101 . -381) 115410) ((-362 . -625) 115392) ((-332 . -21) T) ((-365 . -1059) 115369) ((-332 . -25) T) ((-1188 . -994) 115338) ((-48 . -1238) T) ((-76 . -625) 115320) ((-1147 . -994) 115287) ((-711 . -317) T) ((-130 . -856) T) ((-929 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-929 . -339) 115274) ((-86 . -625) 115256) ((-711 . -1043) T) ((-689 . -861) T) ((-400 . -1238) T) ((-1272 . -132) T) ((-1251 . -132) T) ((-920 . -1031) 115240) ((-848 . -21) T) ((-48 . -1059) 115183) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1134 . -658) 114962) ((-1310 . -1079) T) ((-561 . -102) T) ((-1308 . -1079) T) ((-666 . -738) T) ((-1125 . -630) 114865) ((-1024 . -628) 114795) ((-1311 . -1077) 114779) ((-923 . -1238) T) ((-827 . -423) 114748) ((-103 . -120) 114732) ((-130 . -1121) T) ((-52 . -1121) T) ((-945 . -625) 114714) ((-885 . -1013) 114691) ((-835 . -102) T) ((-1311 . -111) 114670) ((-743 . -911) 114645) ((-665 . -38) 114615) ((-583 . -861) T) ((-366 . -1133) T) ((-363 . -1133) T) ((-355 . -1133) T) ((-273 . -1133) T) ((-253 . -1133) T) ((-1171 . -319) 114419) ((-1109 . -234) 114406) ((-635 . -317) 114385) ((-676 . -23) T) ((-536 . -1104) T) ((-321 . -1121) T) ((-494 . -272) 114354) ((-494 . -232) 114323) ((-153 . -1079) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1024 . -1070) T) ((-724 . -928) 114302) ((-1195 . -911) 114190) ((-1194 . -911) 114071) ((-1188 . -911) 113807) ((-1178 . -628) 113784) ((-1024 . -238) 113756) ((-1024 . -248) T) ((-1147 . -911) 113738) ((-118 . -1043) NIL) ((-929 . -1133) T) ((-1273 . -464) 113717) ((-1252 . -464) 113696) ((-535 . -625) 113628) ((-724 . -660) 113517) ((-419 . -1077) 113469) ((-516 . -625) 113451) ((-929 . -23) T) ((-499 . -319) NIL) ((-1311 . -628) 113407) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 113345) ((-827 . -1079) 113323) ((-749 . -1119) 113307) ((-1272 . -505) 113273) ((-1251 . -505) 113239) ((-449 . -1238) T) ((-560 . -856) T) ((-142 . -1119) 113221) ((-489 . -300) T) ((-1311 . -1070) T) ((-258 . -237) 113118) ((-257 . -237) 113015) ((-1243 . -102) T) ((-1084 . -102) T) ((-855 . -628) 112883) ((-512 . -526) NIL) ((-494 . -243) 112862) ((-419 . -628) 112760) ((-982 . -1072) 112643) ((-747 . -1072) 112613) ((-982 . -652) 112510) ((-1193 . -146) 112489) ((-747 . -652) 112459) ((-465 . -1072) 112429) ((-1193 . -148) 112408) ((-1146 . -148) 112387) ((-1146 . -146) 112366) ((-647 . -1077) 112350) ((-619 . -1077) 112334) ((-465 . -652) 112304) ((-1195 . -1279) 112288) ((-1195 . -1266) 112265) ((-1194 . -1271) 112226) ((-682 . -1121) T) ((-682 . -1074) 112166) ((-1194 . -1266) 112136) ((-560 . -1121) T) ((-499 . -1173) T) ((-1194 . -1269) 112120) ((-1188 . -1250) 112081) ((-830 . -275) 112065) ((-219 . -1173) T) ((-354 . -939) T) ((-99 . -1238) T) ((-647 . -111) 112044) ((-619 . -111) 112023) ((-1188 . -1266) 112000) ((-855 . -1070) 111979) ((-1188 . -1248) 111963) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1072) 111937) ((-419 . -1070) T) ((-329 . -1079) T) ((-706 . -317) T) ((-430 . -652) 111911) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111890) ((-390 . -234) 111877) ((-499 . -38) 111827) ((-219 . -38) 111777) ((-486 . -505) 111743) ((-1245 . -379) T) ((-1179 . -1165) T) ((-1122 . -102) T) ((-839 . -234) 111716) ((-713 . -625) 111698) ((-713 . -626) 111613) ((-726 . -21) T) ((-726 . -25) T) ((-1156 . -102) T) ((-494 . -658) 111392) ((-245 . -911) 111259) ((-135 . -625) 111241) ((-117 . -625) 111223) ((-158 . -25) T) ((-1310 . -1121) T) ((-886 . -651) 111171) ((-1308 . -1121) T) ((-879 . -1238) T) ((-982 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 111122) ((-44 . -1121) T) ((-1109 . -861) T) ((-1084 . -319) 110973) ((-676 . -132) T) ((-1075 . -658) 110942) ((-682 . -729) 110926) ((-299 . -1079) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110895) ((-1317 . -1238) T) ((-430 . -102) T) ((-153 . -1121) T) ((-45 . -231) 110845) ((-1025 . -911) NIL) ((-811 . -1072) 110829) ((-977 . -861) 110808) ((-1020 . -660) 110710) ((-811 . -652) 110694) ((-245 . -1295) 110664) ((-1045 . -317) T) ((-304 . -1077) 110585) ((-929 . -132) T) ((-40 . -939) T) ((-499 . -412) 110567) ((-365 . -317) T) ((-219 . -412) 110549) ((-1101 . -423) 110533) ((-304 . -111) 110449) ((-1204 . -861) T) ((-1203 . -861) T) ((-886 . -25) T) ((-886 . -21) T) ((-1274 . -47) 110393) ((-350 . -625) 110375) ((-1193 . -237) T) ((-227 . -148) T) ((-176 . -625) 110357) ((-786 . -625) 110339) ((-129 . -861) T) ((-620 . -240) 110286) ((-487 . -240) 110236) ((-1310 . -729) 110206) ((-48 . -317) T) ((-1308 . -729) 110176) ((-65 . -628) 110105) ((-983 . -1121) T) ((-827 . -1121) 109857) ((-322 . -102) T) ((-920 . -1238) T) ((-48 . -1043) T) ((-1251 . -651) 109765) ((-701 . -102) 109715) ((-44 . -729) 109699) ((-562 . -102) T) ((-304 . -628) 109630) ((-67 . -394) T) ((-499 . -919) NIL) ((-67 . -407) T) ((-284 . -864) T) ((-219 . -919) NIL) ((-674 . -23) T) ((-829 . -658) 109566) ((-682 . -773) T) ((-1235 . -1121) 109544) ((-362 . -1077) 109489) ((-687 . -1121) 109467) ((-1083 . -148) T) ((-971 . -148) 109446) ((-971 . -146) 109425) ((-811 . -102) T) ((-153 . -729) 109409) ((-493 . -148) 109388) ((-493 . -146) 109367) ((-362 . -111) 109296) ((-1101 . -1079) T) ((-332 . -861) 109275) ((-1280 . -994) 109244) ((-1274 . -1238) T) ((-639 . -1121) T) ((-1273 . -994) 109206) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 109156) ((-370 . -1079) T) ((-364 . -1079) T) ((-356 . -1079) T) ((-304 . -1070) 109098) ((-1252 . -994) 109067) ((-390 . -861) T) ((-108 . -1079) T) ((-1020 . -738) T) ((-884 . -939) T) ((-855 . -807) 109046) ((-855 . -804) 109025) ((-430 . -319) 108964) ((-480 . -102) T) ((-607 . -994) 108933) ((-329 . -1121) T) ((-419 . -807) 108912) ((-419 . -804) 108891) ((-512 . -501) 108873) ((-1274 . -1059) 108839) ((-1272 . -21) T) ((-1272 . -25) T) ((-1251 . -21) T) ((-1251 . -25) T) ((-827 . -729) 108781) ((-362 . -628) 108711) ((-711 . -416) T) ((-1301 . -1238) T) ((-1134 . -423) 108680) ((-1098 . -1238) T) ((-618 . -102) T) ((-1024 . -379) NIL) ((-1008 . -1238) T) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1199 . -658) 108590) ((-749 . -1238) T) ((-743 . -1072) 108433) ((-44 . -773) T) ((-743 . -652) 108282) ((-605 . -102) T) ((-665 . -668) 108266) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1238) T) ((-885 . -148) T) ((-885 . -146) NIL) ((-1300 . -658) 108211) ((-1280 . -911) 108099) ((-1273 . -911) 107980) ((-1237 . -93) T) ((-362 . -1070) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1186 . -102) T) ((-682 . -526) 107913) ((-1252 . -911) 107649) ((-1232 . -568) 107628) ((-701 . -319) 107566) ((-982 . -38) 107463) ((-1201 . -625) 107445) ((-747 . -38) 107415) ((-562 . -319) 107219) ((-1195 . -1072) 107102) ((-326 . -1238) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1238) T) ((-299 . -1121) T) ((-1194 . -1072) 106937) ((-1188 . -1072) 106727) ((-1147 . -1072) 106610) ((-1195 . -652) 106507) ((-1194 . -652) 106348) ((-723 . -1242) T) ((-1188 . -652) 106144) ((-1178 . -663) 106128) ((-1147 . -652) 106025) ((-831 . -397) 106009) ((-723 . -568) T) ((-607 . -911) 105920) ((-326 . -899) 105904) ((-326 . -901) 105829) ((-323 . -899) 105790) ((-140 . -1238) T) ((-137 . -1238) T) ((-115 . -1238) T) ((-323 . -901) NIL) ((-811 . -319) 105755) ((-329 . -729) 105596) ((-398 . -397) 105580) ((-334 . -333) 105557) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 105531) ((-326 . -1059) 105194) ((-227 . -1223) T) ((-227 . -1226) T) ((-3 . -625) 105176) ((-323 . -1059) 105106) ((-886 . -234) 105051) ((-2 . -1121) T) ((-2 . |RecordCategory|) T) ((-1134 . -1079) 105029) ((-845 . -625) 105011) ((-1083 . -237) T) ((-592 . -939) T) ((-576 . -832) T) ((-576 . -939) T) ((-507 . -939) T) ((-137 . -1059) 104995) ((-227 . -95) T) ((-171 . -148) 104974) ((-75 . -453) T) ((0 . -625) 104956) ((-75 . -407) T) ((-171 . -146) 104907) ((-227 . -35) T) ((-49 . -625) 104889) ((-489 . -1079) T) ((-499 . -272) 104871) ((-499 . -232) 104853) ((-496 . -989) 104837) ((-219 . -272) 104819) ((-219 . -232) 104801) ((-81 . -453) T) ((-81 . -407) T) ((-1167 . -34) T) ((-743 . -102) T) ((-665 . -658) 104760) ((-1047 . -625) 104727) ((-512 . -296) 104677) ((-326 . -388) 104646) ((-323 . -388) 104607) ((-323 . -349) 104568) ((-1106 . -625) 104550) ((-828 . -968) 104497) ((-674 . -132) T) ((-1261 . -146) 104476) ((-1261 . -148) 104455) ((-1195 . -102) T) ((-1194 . -102) T) ((-1188 . -102) T) ((-1180 . -1121) T) ((-1147 . -102) T) ((-1096 . -1238) T) ((-224 . -34) T) ((-299 . -729) 104442) ((-1280 . -1279) 104426) ((-1180 . -622) 104402) ((-605 . -319) NIL) ((-1280 . -1266) 104379) ((-1171 . -231) 104329) ((-496 . -1121) 104307) ((-450 . -1238) T) ((-402 . -625) 104289) ((-522 . -861) T) ((-1141 . -1238) T) ((-1273 . -1271) 104250) ((-1273 . -1266) 104220) ((-1273 . -1269) 104204) ((-1252 . -1250) 104165) ((-1252 . -1266) 104142) ((-1252 . -1248) 104126) ((-1195 . -294) 104092) ((-633 . -625) 104074) ((-1194 . -294) 104040) ((-711 . -939) T) ((-1188 . -294) 104006) ((-1147 . -294) 103972) ((-1141 . -901) 103954) ((-1101 . -1121) T) ((-1082 . -1121) T) ((-48 . -312) T) ((-326 . -917) 103920) ((-323 . -917) NIL) ((-1082 . -1089) 103899) ((-811 . -38) 103883) ((-273 . -651) 103831) ((-112 . -864) T) ((-253 . -651) 103779) ((-713 . -1077) 103766) ((-607 . -1266) 103743) ((-1141 . -1059) 103725) ((-329 . -174) 103656) ((-370 . -1121) T) ((-364 . -1121) T) ((-356 . -1121) T) ((-512 . -19) 103638) ((-1123 . -152) 103622) ((-885 . -237) NIL) ((-108 . -1121) T) ((-117 . -1077) 103609) ((-723 . -374) T) ((-512 . -616) 103584) ((-713 . -111) 103569) ((-1313 . -625) 103536) ((-1313 . -502) 103518) ((-1272 . -234) 103464) ((-1251 . -234) 103317) ((-448 . -102) T) ((-890 . -1283) T) ((-256 . -102) T) ((-45 . -1170) 103267) ((-117 . -111) 103252) ((-1290 . -625) 103234) ((-1261 . -237) T) ((-1246 . -625) 103216) ((-1244 . -861) T) ((-647 . -732) T) ((-619 . -732) T) ((-1232 . -1133) T) ((-1232 . -23) T) ((-1193 . -464) 103147) ((-1188 . -319) 103032) ((-1187 . -1121) T) ((-827 . -526) 102965) ((-1056 . -1238) T) ((-245 . -1072) 102866) ((-1179 . -1121) T) ((-1163 . -660) 102804) ((-962 . -152) 102788) ((-1147 . -319) 102775) ((-1146 . -464) 102726) ((-245 . -652) 102648) ((-1108 . -568) 102579) ((-1108 . -1242) 102558) ((-1101 . -729) 102426) ((-537 . -102) T) ((-532 . -102) 102356) ((-1025 . -1072) 102306) ((-1015 . -1121) T) ((-828 . -911) 102202) ((-794 . -1242) 102181) ((-792 . -1242) 102160) ((-62 . -1238) T) ((-489 . -625) 102112) ((-489 . -626) 102034) ((-794 . -568) 101945) ((-792 . -568) 101876) ((-743 . -319) 101863) ((-713 . -628) 101835) ((-494 . -423) 101804) ((-635 . -939) 101783) ((-466 . -1242) 101762) ((-687 . -526) 101695) ((-676 . -25) T) ((-410 . -625) 101677) ((-676 . -21) T) ((-466 . -568) 101608) ((-430 . -919) 101531) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -939) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 101462) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 101444) ((-117 . -628) 101416) ((-1025 . -652) 101366) ((-962 . -1001) 101350) ((-933 . -652) 101302) ((-933 . -1072) 101254) ((-929 . -21) T) ((-929 . -25) T) ((-886 . -861) 101205) ((-880 . -660) 101165) ((-723 . -1133) T) ((-723 . -23) T) ((-713 . -1070) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1238) T) ((-321 . -93) T) ((-659 . -1121) 101143) ((-644 . -622) 101118) ((-644 . -1121) T) ((-593 . -1242) T) ((-593 . -568) T) ((-530 . -1242) T) ((-530 . -568) T) ((-499 . -658) 101068) ((-486 . -234) 101014) ((-439 . -1072) 100998) ((-439 . -652) 100982) ((-370 . -729) 100934) ((-364 . -729) 100886) ((-350 . -1077) 100870) ((-356 . -729) 100822) ((-350 . -111) 100801) ((-176 . -1077) 100733) ((-176 . -111) 100644) ((-108 . -729) 100594) ((-219 . -658) 100544) ((-283 . -1121) T) ((-282 . -1121) T) ((-281 . -1121) T) ((-280 . -1121) T) ((-279 . -1121) T) ((-278 . -1121) T) ((-277 . -1121) T) ((-214 . -1121) T) ((-213 . -1121) T) ((-171 . -1226) 100522) ((-171 . -1223) 100500) ((-211 . -1121) T) ((-210 . -1121) T) ((-117 . -1070) T) ((-209 . -1121) T) ((-208 . -1121) T) ((-205 . -1121) T) ((-204 . -1121) T) ((-203 . -1121) T) ((-202 . -1121) T) ((-201 . -1121) T) ((-200 . -1121) T) ((-199 . -1121) T) ((-198 . -1121) T) ((-197 . -1121) T) ((-196 . -1121) T) ((-195 . -1121) T) ((-245 . -102) 100232) ((-171 . -35) 100210) ((-171 . -95) 100188) ((-666 . -1059) 100084) ((-494 . -1079) 100062) ((-1134 . -1121) 99814) ((-1163 . -34) T) ((-682 . -501) 99798) ((-73 . -1238) T) ((-105 . -625) 99780) ((-908 . -1238) T) ((-1312 . -625) 99762) ((-392 . -625) 99744) ((-350 . -628) 99696) ((-176 . -628) 99613) ((-1237 . -502) 99594) ((-743 . -38) 99443) ((-583 . -1226) T) ((-583 . -1223) T) ((-543 . -625) 99425) ((-532 . -319) 99363) ((-512 . -625) 99345) ((-512 . -626) 99327) ((-1237 . -625) 99293) ((-1188 . -1173) NIL) ((-215 . -1238) T) ((-1048 . -1092) 99262) ((-1048 . -1121) T) ((-1025 . -102) T) ((-992 . -102) T) ((-933 . -102) T) ((-908 . -1059) 99239) ((-1163 . -738) T) ((-1024 . -660) 99146) ((-488 . -1121) T) ((-475 . -1121) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1084 . -231) 99092) ((-1195 . -38) 98989) ((-1194 . -38) 98830) ((-940 . -864) T) ((-880 . -738) T) ((-783 . -864) T) ((-706 . -939) T) ((-684 . -864) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1188 . -38) 98626) ((-350 . -1070) T) ((-145 . -1238) T) ((-1101 . -174) T) ((-176 . -1070) T) ((-1147 . -38) 98523) ((-724 . -47) 98500) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 98474) ((-509 . -57) 98424) ((-362 . -1307) 98401) ((-227 . -464) T) ((-329 . -300) 98352) ((-356 . -174) T) ((-176 . -248) T) ((-1251 . -861) 98251) ((-108 . -174) T) ((-886 . -1013) 98235) ((-670 . -1133) T) ((-593 . -374) T) ((-593 . -339) 98222) ((-530 . -339) 98199) ((-530 . -374) T) ((-326 . -317) 98178) ((-323 . -317) T) ((-614 . -861) 98157) ((-1134 . -729) 98099) ((-532 . -292) 98083) ((-670 . -23) T) ((-430 . -232) 98067) ((-430 . -272) 98051) ((-323 . -1043) NIL) ((-347 . -23) T) ((-103 . -1031) 98035) ((-45 . -36) 98014) ((-624 . -1121) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 97952) ((-1108 . -1133) T) ((-1311 . -660) 97926) ((-794 . -1133) T) ((-792 . -1133) T) ((-1199 . -423) 97910) ((-466 . -1133) T) ((-1083 . -464) T) ((-1172 . -1121) T) ((-971 . -464) 97861) ((-1136 . -1104) T) ((-110 . -1121) T) ((-1108 . -23) T) ((-1180 . -526) 97644) ((-829 . -1079) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 97595) ((-473 . -23) T) ((-392 . -393) 97574) ((-366 . -234) 97547) ((-363 . -234) 97520) ((-355 . -234) 97493) ((-466 . -23) T) ((-273 . -234) 97438) ((-258 . -911) 97305) ((-257 . -911) 97172) ((-96 . -1121) T) ((-724 . -1238) T) ((-682 . -296) 97149) ((-496 . -526) 97082) ((-1280 . -1072) 96965) ((-1280 . -652) 96862) ((-1273 . -652) 96703) ((-1273 . -1072) 96538) ((-1252 . -652) 96334) ((-1252 . -1072) 96124) ((-299 . -300) T) ((-1103 . -625) 96106) ((-559 . -864) T) ((-1103 . -626) 96087) ((-419 . -928) 96066) ((-1232 . -132) T) ((-50 . -1133) T) ((-1188 . -412) 96018) ((-1045 . -939) T) ((-1024 . -738) T) ((-855 . -660) 95991) ((-724 . -901) NIL) ((-608 . -1072) 95951) ((-593 . -1133) T) ((-530 . -1133) T) ((-607 . -1072) 95834) ((-1178 . -34) T) ((-1025 . -319) NIL) ((-827 . -501) 95818) ((-608 . -652) 95791) ((-365 . -939) T) ((-607 . -652) 95688) ((-929 . -234) 95675) ((-419 . -660) 95591) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1059) 95471) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 95442) ((-1161 . -1121) T) ((-1303 . -1302) 95426) ((-743 . -919) 95403) ((-713 . -807) T) ((-713 . -804) T) ((-1141 . -317) T) ((-390 . -148) T) ((-290 . -625) 95385) ((-289 . -625) 95367) ((-1251 . -1013) 95337) ((-48 . -939) T) ((-687 . -501) 95321) ((-258 . -1295) 95291) ((-257 . -1295) 95261) ((-1109 . -237) T) ((-1197 . -861) T) ((-1141 . -1043) T) ((-1067 . -34) T) ((-848 . -148) 95240) ((-848 . -146) 95219) ((-749 . -107) 95203) ((-624 . -133) T) ((-1199 . -1079) T) ((-494 . -1121) 94955) ((-1195 . -919) 94868) ((-1194 . -919) 94774) ((-1188 . -919) 94535) ((-885 . -464) T) ((-85 . -1238) T) ((-142 . -107) 94517) ((-1147 . -919) 94501) ((-724 . -388) 94485) ((-845 . -628) 94353) ((-1311 . -738) T) ((-1300 . -1079) T) ((-1280 . -102) T) ((-1141 . -557) T) ((-591 . -102) T) ((-130 . -502) 94335) ((-1273 . -102) T) ((-402 . -1077) 94319) ((-1193 . -968) 94288) ((-44 . -296) 94265) ((-130 . -625) 94232) ((-52 . -625) 94214) ((-1146 . -968) 94181) ((-665 . -423) 94165) ((-1252 . -102) T) ((-1179 . -526) NIL) ((-674 . -25) T) ((-633 . -1077) 94149) ((-674 . -21) T) ((-982 . -658) 94059) ((-747 . -658) 94004) ((-727 . -658) 93976) ((-402 . -111) 93955) ((-224 . -261) 93939) ((-1075 . -1074) 93879) ((-1075 . -1121) T) ((-1025 . -1173) T) ((-830 . -1121) T) ((-465 . -658) 93794) ((-647 . -660) 93778) ((-633 . -111) 93757) ((-619 . -660) 93741) ((-354 . -1242) T) ((-608 . -102) T) ((-321 . -502) 93722) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1121) T) ((-396 . -1121) T) ((-321 . -625) 93688) ((-229 . -1121) 93666) ((-659 . -526) 93599) ((-644 . -526) 93443) ((-845 . -1070) 93422) ((-656 . -152) 93406) ((-354 . -568) T) ((-724 . -917) 93349) ((-562 . -231) 93299) ((-1280 . -294) 93265) ((-1273 . -294) 93231) ((-1101 . -300) 93182) ((-576 . -864) T) ((-499 . -860) T) ((-225 . -1133) T) ((-1252 . -294) 93148) ((-1232 . -505) 93114) ((-1025 . -38) 93064) ((-219 . -860) T) ((-430 . -658) 93023) ((-933 . -38) 92975) ((-855 . -806) 92954) ((-855 . -803) 92933) ((-855 . -738) 92912) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92843) ((-439 . -38) 92827) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92806) ((-419 . -803) 92785) ((-419 . -738) T) ((-512 . -298) 92760) ((-489 . -1077) 92725) ((-670 . -132) T) ((-633 . -628) 92694) ((-1134 . -526) 92627) ((-347 . -132) T) ((-171 . -414) 92606) ((-494 . -729) 92548) ((-827 . -296) 92525) ((-489 . -111) 92481) ((-665 . -1079) T) ((-1193 . -911) 92384) ((-1146 . -911) 92366) ((-828 . -1072) 92209) ((-1299 . -1104) T) ((-1261 . -464) 92140) ((-828 . -652) 91989) ((-1298 . -1104) T) ((-1108 . -132) T) ((-1075 . -729) 91931) ((-1048 . -526) 91864) ((-794 . -132) T) ((-792 . -132) T) ((-711 . -864) T) ((-583 . -464) T) ((-633 . -1070) T) ((-604 . -1121) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1020 . -1238) T) ((-45 . -1121) T) ((-396 . -729) 91834) ((-829 . -1121) T) ((-488 . -526) 91767) ((-475 . -526) 91700) ((-1313 . -628) 91682) ((-465 . -378) 91652) ((-45 . -622) 91631) ((-411 . -1238) T) ((-326 . -312) T) ((-1288 . -864) 91610) ((-839 . -237) 91589) ((-489 . -628) 91539) ((-1252 . -319) 91424) ((-682 . -625) 91386) ((-59 . -861) 91365) ((-1025 . -412) 91347) ((-560 . -625) 91329) ((-811 . -658) 91288) ((-827 . -616) 91265) ((-528 . -861) 91244) ((-508 . -861) 91223) ((-1020 . -1059) 91119) ((-40 . -1242) T) ((-245 . -919) 90988) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90848) ((-354 . -339) 90825) ((-354 . -374) T) ((-332 . -333) 90802) ((-329 . -296) 90760) ((-40 . -568) T) ((-390 . -1223) T) ((-390 . -1226) T) ((-1056 . -1214) 90735) ((-1210 . -240) 90685) ((-1188 . -232) 90637) ((-1188 . -272) 90589) ((-340 . -1121) T) ((-390 . -95) T) ((-390 . -35) T) ((-1056 . -107) 90535) ((-489 . -1070) T) ((-1312 . -1077) 90519) ((-491 . -240) 90469) ((-1180 . -501) 90403) ((-1303 . -1072) 90387) ((-392 . -1077) 90371) ((-1303 . -652) 90341) ((-828 . -102) T) ((-489 . -248) T) ((-726 . -148) 90320) ((-726 . -146) 90299) ((-118 . -864) NIL) ((-496 . -501) 90283) ((-497 . -346) 90252) ((-524 . -1121) T) ((-1312 . -111) 90231) ((-1020 . -388) 90215) ((-425 . -102) T) ((-392 . -111) 90194) ((-1020 . -349) 90178) ((-288 . -1004) 90162) ((-287 . -1004) 90146) ((-1025 . -919) NIL) ((-1310 . -625) 90128) ((-1308 . -625) 90110) ((-110 . -526) NIL) ((-1193 . -1264) 90094) ((-868 . -866) 90078) ((-1199 . -1121) T) ((-103 . -1238) T) ((-971 . -968) 90039) ((-829 . -729) 89981) ((-1252 . -1173) NIL) ((-493 . -968) 89926) ((-1083 . -144) T) ((-60 . -102) 89876) ((-44 . -625) 89858) ((-78 . -625) 89840) ((-362 . -660) 89785) ((-1300 . -1121) T) ((-523 . -861) T) ((-299 . -296) 89764) ((-354 . -1133) T) ((-305 . -1121) T) ((-1020 . -917) 89723) ((-305 . -622) 89702) ((-1312 . -628) 89651) ((-1280 . -38) 89548) ((-1273 . -38) 89389) ((-1252 . -38) 89185) ((-499 . -1079) T) ((-392 . -628) 89169) ((-219 . -1079) T) ((-354 . -23) T) ((-153 . -625) 89151) ((-845 . -807) 89130) ((-845 . -804) 89109) ((-1237 . -628) 89090) ((-608 . -38) 89063) ((-607 . -38) 88960) ((-884 . -568) T) ((-225 . -132) T) ((-329 . -1023) 88926) ((-79 . -625) 88908) ((-724 . -317) 88887) ((-304 . -738) 88789) ((-836 . -102) T) ((-878 . -856) T) ((-304 . -485) 88768) ((-1303 . -102) T) ((-40 . -374) T) ((-886 . -148) 88747) ((-497 . -658) 88729) ((-886 . -146) 88708) ((-1179 . -501) 88690) ((-1312 . -1070) T) ((-494 . -526) 88623) ((-1167 . -1238) T) ((-983 . -625) 88605) ((-659 . -501) 88589) ((-644 . -501) 88520) ((-827 . -625) 88213) ((-48 . -27) T) ((-1199 . -729) 88110) ((-971 . -911) 88089) ((-665 . -1121) T) ((-875 . -874) T) ((-448 . -375) 88063) ((-743 . -658) 87973) ((-493 . -911) 87948) ((-1123 . -102) T) ((-991 . -1121) T) ((-878 . -1121) T) ((-828 . -319) 87935) ((-545 . -539) T) ((-545 . -588) T) ((-1308 . -393) 87907) ((-706 . -864) T) ((-1075 . -526) 87840) ((-1180 . -296) 87816) ((-245 . -272) 87785) ((-245 . -232) 87754) ((-258 . -1072) 87655) ((-257 . -1072) 87556) ((-1300 . -729) 87526) ((-1187 . -93) T) ((-1015 . -93) T) ((-829 . -174) 87505) ((-258 . -652) 87427) ((-257 . -652) 87349) ((-1235 . -502) 87326) ((-590 . -1238) T) ((-229 . -526) 87259) ((-633 . -807) 87238) ((-633 . -804) 87217) ((-1235 . -625) 87129) ((-224 . -1238) T) ((-687 . -625) 87061) ((-1195 . -658) 86971) ((-1178 . -1031) 86955) ((-962 . -102) 86885) ((-362 . -738) T) ((-875 . -625) 86867) ((-1194 . -658) 86749) ((-1188 . -658) 86586) ((-1147 . -658) 86496) ((-1252 . -412) 86448) ((-1134 . -501) 86432) ((-60 . -319) 86370) ((-341 . -102) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-40 . -1133) T) ((-723 . -21) T) ((-639 . -625) 86352) ((-527 . -333) 86331) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-940 . -1133) T) ((-40 . -23) T) ((-783 . -1133) T) ((-576 . -1242) T) ((-507 . -1242) T) ((-1025 . -272) 86313) ((-329 . -625) 86295) ((-1025 . -232) 86277) ((-171 . -167) 86261) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1272 . -148) 86240) ((-1272 . -146) 86219) ((-1180 . -616) 86195) ((-1251 . -146) 86120) ((-1048 . -501) 86104) ((-1245 . -1238) T) ((-1251 . -148) 86029) ((-1303 . -1309) 86008) ((-885 . -911) NIL) ((-488 . -501) 85992) ((-475 . -501) 85976) ((-535 . -34) T) ((-665 . -729) 85946) ((-1280 . -919) 85859) ((-1273 . -919) 85765) ((-1252 . -919) 85526) ((-112 . -988) T) ((-1199 . -174) 85477) ((-674 . -861) 85456) ((-376 . -102) T) ((-607 . -919) 85369) ((-245 . -243) 85348) ((-258 . -102) T) ((-257 . -102) T) ((-1261 . -968) 85317) ((-250 . -861) 85296) ((-1045 . -864) T) ((-828 . -38) 85145) ((-45 . -526) 84937) ((-1179 . -296) 84887) ((-216 . -1121) T) ((-1171 . -1121) T) ((-886 . -237) 84838) ((-1171 . -622) 84817) ((-598 . -25) T) ((-598 . -21) T) ((-1123 . -319) 84755) ((-982 . -423) 84739) ((-711 . -1242) T) ((-644 . -296) 84692) ((-1108 . -651) 84640) ((-924 . -1121) T) ((-794 . -651) 84588) ((-792 . -651) 84536) ((-354 . -132) T) ((-299 . -625) 84518) ((-884 . -1133) T) ((-711 . -568) T) ((-130 . -628) 84500) ((-466 . -651) 84448) ((-171 . -911) 84369) ((-924 . -922) 84353) ((-390 . -464) T) ((-499 . -1121) T) ((-962 . -319) 84291) ((-713 . -660) 84263) ((-561 . -856) T) ((-219 . -1121) T) ((-326 . -939) 84242) ((-323 . -939) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-884 . -23) T) ((-117 . -660) 84229) ((-486 . -146) 84208) ((-430 . -423) 84192) ((-486 . -148) 84171) ((-110 . -501) 84153) ((-321 . -628) 84134) ((-2 . -625) 84116) ((-188 . -102) T) ((-1179 . -19) 84098) ((-1179 . -616) 84073) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1165) T) ((-1134 . -296) 84050) ((-347 . -25) T) ((-347 . -21) T) ((-904 . -1238) T) ((-900 . -1238) T) ((-1310 . -1077) 84034) ((-245 . -658) 83813) ((-507 . -374) T) ((-1308 . -1077) 83797) ((-1303 . -38) 83767) ((-1272 . -1223) 83733) ((-1272 . -1226) 83699) ((-1261 . -911) 83602) ((-1193 . -1072) 83425) ((-1163 . -1238) T) ((-1146 . -1072) 83268) ((-868 . -1072) 83252) ((-644 . -616) 83227) ((-1272 . -95) 83193) ((-1272 . -237) 83145) ((-1255 . -102) 83123) ((-1193 . -652) 82952) ((-1146 . -652) 82801) ((-868 . -652) 82771) ((-1252 . -232) 82723) ((-1108 . -25) T) ((-561 . -1121) T) ((-1108 . -21) T) ((-982 . -1079) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1242) T) ((-880 . -1238) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1079) T) ((-727 . -1079) T) ((-682 . -1077) 82707) ((-529 . -1104) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1252 . -272) 82659) ((-1172 . -93) T) ((-1163 . -1059) 82555) ((-829 . -300) 82534) ((-1251 . -1223) 82500) ((-835 . -1121) T) ((-985 . -988) T) ((-682 . -111) 82479) ((-629 . -1238) T) ((-305 . -526) 82271) ((-1251 . -1226) 82237) ((-1251 . -237) 82096) ((-1246 . -379) T) ((-258 . -319) 82034) ((-257 . -319) 81972) ((-1243 . -856) T) ((-1180 . -626) NIL) ((-1180 . -625) 81954) ((-1163 . -388) 81938) ((-1141 . -832) T) ((-1141 . -939) T) ((-96 . -93) T) ((-1134 . -616) 81915) ((-1101 . -626) 81899) ((-1101 . -625) 81881) ((-1025 . -658) 81831) ((-933 . -658) 81768) ((-827 . -298) 81745) ((-496 . -625) 81677) ((-620 . -152) 81624) ((-499 . -729) 81574) ((-430 . -1079) T) ((-494 . -501) 81558) ((-439 . -658) 81517) ((-337 . -861) 81496) ((-350 . -660) 81470) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 81420) ((-171 . -736) 81391) ((-176 . -660) 81323) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 81273) ((-1082 . -625) 81255) ((-1014 . -102) T) ((-876 . -102) T) ((-828 . -919) 81155) ((-811 . -423) 81118) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -912) T) ((-592 . -1133) T) ((-576 . -1133) T) ((-507 . -1133) T) ((-370 . -625) 81100) ((-364 . -625) 81082) ((-356 . -625) 81064) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 80994) ((-108 . -625) 80936) ((-213 . -912) T) ((-977 . -152) 80920) ((-783 . -132) T) ((-682 . -628) 80838) ((-135 . -738) T) ((-117 . -738) T) ((-1272 . -35) 80804) ((-1075 . -501) 80788) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1251 . -95) 80754) ((-1251 . -35) 80720) ((-1193 . -102) T) ((-1146 . -102) T) ((-868 . -102) T) ((-229 . -501) 80704) ((-1310 . -111) 80683) ((-1308 . -111) 80662) ((-44 . -1077) 80646) ((-1311 . -1238) T) ((-1310 . -628) 80592) ((-1310 . -1070) T) ((-1308 . -628) 80521) ((-1308 . -1070) T) ((-1261 . -1264) 80505) ((-869 . -866) 80489) ((-1199 . -300) 80468) ((-1125 . -1238) T) ((-110 . -296) 80418) ((-1024 . -1238) T) ((-129 . -152) 80400) ((-1163 . -917) 80359) ((-44 . -111) 80338) ((-1243 . -1121) T) ((-1202 . -1283) T) ((-1188 . -860) NIL) ((-1187 . -502) 80319) ((-682 . -1070) T) ((-1187 . -625) 80285) ((-1179 . -625) 80267) ((-486 . -237) 80219) ((-1084 . -622) 80194) ((-1015 . -502) 80175) ((-74 . -453) T) ((-74 . -407) T) ((-1084 . -1121) T) ((-153 . -1077) 80159) ((-1015 . -625) 80125) ((-682 . -238) 80104) ((-583 . -566) 80088) ((-366 . -148) 80067) ((-366 . -146) 80018) ((-363 . -148) 79997) ((-363 . -146) 79948) ((-355 . -148) 79927) ((-355 . -146) 79878) ((-273 . -146) 79857) ((-273 . -148) 79836) ((-253 . -148) 79815) ((-118 . -374) T) ((-253 . -146) 79794) ((-1179 . -626) NIL) ((-153 . -111) 79773) ((-1024 . -1059) 79661) ((-1178 . -1238) T) ((-706 . -1242) T) ((-811 . -1079) T) ((-711 . -1133) T) ((-1024 . -388) 79638) ((-518 . -1238) T) ((-514 . -1238) T) ((-929 . -146) T) ((-929 . -148) 79620) ((-884 . -132) T) ((-827 . -1077) 79541) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1072) 79506) ((-659 . -625) 79438) ((-659 . -626) 79399) ((-644 . -626) NIL) ((-644 . -625) 79381) ((-499 . -174) T) ((-227 . -652) 79346) ((-219 . -174) T) ((-225 . -21) T) ((-225 . -25) T) ((-486 . -1226) 79312) ((-486 . -1223) 79278) ((-283 . -625) 79260) ((-282 . -625) 79242) ((-281 . -625) 79224) ((-280 . -625) 79206) ((-279 . -625) 79188) ((-512 . -663) 79170) ((-278 . -625) 79152) ((-350 . -738) T) ((-277 . -625) 79134) ((-110 . -19) 79116) ((-176 . -738) T) ((-512 . -384) 79098) ((-214 . -625) 79080) ((-532 . -1170) 79064) ((-512 . -124) T) ((-110 . -616) 79039) ((-213 . -625) 79021) ((-486 . -35) 78987) ((-486 . -95) 78953) ((-211 . -625) 78935) ((-210 . -625) 78917) ((-209 . -625) 78899) ((-208 . -625) 78881) ((-205 . -625) 78863) ((-204 . -625) 78845) ((-203 . -625) 78827) ((-202 . -625) 78809) ((-201 . -625) 78791) ((-200 . -625) 78773) ((-199 . -625) 78755) ((-548 . -1124) 78707) ((-198 . -625) 78689) ((-197 . -625) 78671) ((-45 . -501) 78608) ((-196 . -625) 78590) ((-195 . -625) 78572) ((-153 . -628) 78541) ((-1136 . -102) T) ((-827 . -111) 78457) ((-656 . -102) 78387) ((-494 . -296) 78364) ((-1311 . -1059) 78348) ((-1134 . -625) 78041) ((-1122 . -1121) T) ((-1067 . -1238) T) ((-1193 . -319) 78028) ((-1083 . -1072) 78015) ((-1156 . -1121) T) ((-971 . -1072) 77858) ((-1146 . -319) 77845) ((-1117 . -1104) T) ((-635 . -1133) T) ((-1083 . -652) 77832) ((-1111 . -1104) T) ((-971 . -652) 77681) ((-1108 . -234) 77626) ((-493 . -1072) 77469) ((-1094 . -1104) T) ((-1087 . -1104) T) ((-1057 . -1104) T) ((-1040 . -1104) T) ((-118 . -1133) T) ((-493 . -652) 77318) ((-794 . -234) 77305) ((-831 . -102) T) ((-638 . -1104) T) ((-635 . -23) T) ((-1171 . -526) 77097) ((-495 . -1104) T) ((-982 . -1121) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1104) T) ((-855 . -1238) T) ((-153 . -1070) T) ((-743 . -423) 77081) ((-118 . -23) T) ((-1024 . -917) 77033) ((-747 . -1121) T) ((-727 . -1121) T) ((-1280 . -658) 76943) ((-1273 . -658) 76825) ((-465 . -1121) T) ((-419 . -1238) T) ((-326 . -442) 76809) ((-604 . -93) T) ((-1048 . -626) 76770) ((-270 . -1238) T) ((-1045 . -1242) T) ((-227 . -102) T) ((-1048 . -625) 76732) ((-828 . -272) 76716) ((-828 . -232) 76700) ((-827 . -628) 76498) ((-1252 . -658) 76335) ((-1045 . -568) T) ((-845 . -660) 76308) ((-365 . -1242) T) ((-488 . -625) 76270) ((-488 . -626) 76231) ((-475 . -626) 76192) ((-475 . -625) 76154) ((-608 . -658) 76113) ((-419 . -899) 76097) ((-329 . -1077) 75932) ((-419 . -901) 75857) ((-607 . -658) 75767) ((-855 . -1059) 75663) ((-499 . -526) NIL) ((-494 . -616) 75640) ((-593 . -234) 75627) ((-365 . -568) T) ((-530 . -234) 75614) ((-219 . -526) NIL) ((-886 . -464) T) ((-430 . -1121) T) ((-419 . -1059) 75478) ((-329 . -111) 75299) ((-706 . -374) T) ((-227 . -294) T) ((-1235 . -628) 75276) ((-48 . -1242) T) ((-1193 . -1173) 75254) ((-1180 . -298) 75230) ((-1083 . -102) T) ((-971 . -102) T) ((-827 . -1070) 75208) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 75187) ((-363 . -237) 75166) ((-355 . -237) 75145) ((-48 . -568) T) ((-885 . -1072) 75090) ((-273 . -237) 75041) ((-827 . -238) 74993) ((-326 . -27) 74972) ((-258 . -919) 74841) ((-257 . -919) 74710) ((-255 . -847) 74692) ((-189 . -847) 74674) ((-725 . -102) T) ((-305 . -501) 74611) ((-885 . -652) 74556) ((-493 . -102) T) ((-743 . -1079) T) ((-624 . -625) 74538) ((-624 . -626) 74399) ((-419 . -388) 74383) ((-419 . -349) 74367) ((-1193 . -38) 74196) ((-1146 . -38) 74045) ((-329 . -628) 73871) ((-929 . -237) T) ((-647 . -1238) T) ((-619 . -1238) T) ((-868 . -38) 73841) ((-402 . -660) 73825) ((-656 . -319) 73763) ((-1172 . -502) 73744) ((-1172 . -625) 73710) ((-982 . -729) 73607) ((-747 . -729) 73577) ((-633 . -660) 73551) ((-224 . -107) 73535) ((-45 . -296) 73435) ((-322 . -1121) T) ((-299 . -1077) 73422) ((-110 . -625) 73404) ((-110 . -626) 73386) ((-465 . -729) 73356) ((-828 . -260) 73295) ((-701 . -1121) 73273) ((-562 . -1121) T) ((-1195 . -1079) T) ((-1194 . -1079) T) ((-96 . -502) 73254) ((-1188 . -1079) T) ((-299 . -111) 73239) ((-1147 . -1079) T) ((-562 . -622) 73218) ((-96 . -625) 73184) ((-1025 . -860) T) ((-229 . -699) 73142) ((-706 . -1133) T) ((-1232 . -752) 73118) ((-1045 . -374) T) ((-850 . -847) 73100) ((-845 . -806) 73079) ((-419 . -917) 73038) ((-329 . -1070) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1072) 72948) ((-68 . -1238) T) ((-845 . -803) 72927) ((-430 . -729) 72901) ((-811 . -1121) T) ((-724 . -939) 72880) ((-711 . -132) T) ((-171 . -652) 72708) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72687) ((-329 . -238) 72639) ((-329 . -248) 72618) ((-219 . -300) T) ((-130 . -379) T) ((-1272 . -464) 72597) ((-1251 . -464) 72576) ((-365 . -339) 72553) ((-365 . -374) T) ((-1161 . -625) 72535) ((-45 . -1276) 72485) ((-885 . -102) T) ((-656 . -292) 72469) ((-711 . -1081) T) ((-1299 . -102) T) ((-1298 . -102) T) ((-489 . -660) 72434) ((-480 . -1121) T) ((-45 . -616) 72359) ((-1179 . -298) 72334) ((-299 . -628) 72306) ((-40 . -651) 72245) ((-1261 . -1072) 72068) ((-869 . -1072) 72052) ((-48 . -374) T) ((-1127 . -625) 72034) ((-1261 . -652) 71863) ((-869 . -652) 71833) ((-644 . -298) 71808) ((-828 . -658) 71718) ((-583 . -1072) 71705) ((-494 . -625) 71398) ((-245 . -423) 71367) ((-1193 . -919) 71274) ((-1186 . -1121) T) ((-971 . -319) 71261) ((-583 . -652) 71248) ((-65 . -1238) T) ((-1154 . -1238) T) ((-1146 . -919) 71232) ((-1134 . -298) 71209) ((-1084 . -526) 71053) ((-683 . -1121) T) ((-635 . -132) T) ((-618 . -1121) T) ((-493 . -319) 71040) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1070) T) ((-182 . -1121) T) ((-162 . -1121) T) ((-157 . -1121) T) ((-155 . -1121) T) ((-465 . -773) T) ((-31 . -1104) T) ((-982 . -174) 70991) ((-1123 . -231) 70975) ((-991 . -93) T) ((-1101 . -1077) 70885) ((-1075 . -625) 70847) ((-633 . -738) T) ((-633 . -806) 70826) ((-605 . -1121) T) ((-633 . -803) 70805) ((-305 . -296) 70784) ((-304 . -1238) T) ((-1075 . -626) 70745) ((-1045 . -1133) T) ((-323 . -864) NIL) ((-171 . -102) T) ((-284 . -861) T) ((-1101 . -111) 70641) ((-830 . -625) 70623) ((-1045 . -23) T) ((-1024 . -317) T) ((-915 . -102) T) ((-811 . -729) 70607) ((-370 . -1077) 70559) ((-365 . -1133) T) ((-364 . -1077) 70511) ((-426 . -625) 70493) ((-396 . -625) 70475) ((-356 . -1077) 70427) ((-229 . -625) 70359) ((-853 . -102) T) ((-820 . -102) T) ((-108 . -1077) 70309) ((-781 . -102) T) ((-689 . -102) T) ((-115 . -864) T) ((-486 . -464) 70288) ((-430 . -174) T) ((-370 . -111) 70226) ((-364 . -111) 70164) ((-356 . -111) 70102) ((-258 . -272) 70071) ((-258 . -232) 70040) ((-257 . -272) 70009) ((-257 . -232) 69978) ((-365 . -23) T) ((-71 . -1238) T) ((-227 . -38) 69943) ((-108 . -111) 69877) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69855) ((-48 . -1133) T) ((-872 . -1238) T) ((-940 . -25) T) ((-783 . -25) T) ((-1312 . -660) 69829) ((-1171 . -501) 69766) ((-497 . -1121) T) ((-1303 . -658) 69725) ((-1261 . -102) T) ((-1083 . -1173) T) ((-869 . -102) T) ((-245 . -1079) 69703) ((-983 . -804) 69656) ((-983 . -807) 69609) ((-392 . -660) 69593) ((-48 . -23) T) ((-827 . -807) 69572) ((-827 . -804) 69551) ((-560 . -379) T) ((-305 . -616) 69530) ((-489 . -738) T) ((-583 . -102) T) ((-1101 . -628) 69348) ((-255 . -187) T) ((-189 . -187) T) ((-885 . -319) 69305) ((-665 . -296) 69284) ((-112 . -673) T) ((-362 . -1238) T) ((-370 . -628) 69221) ((-364 . -628) 69158) ((-356 . -628) 69095) ((-76 . -1238) T) ((-108 . -628) 69045) ((-112 . -113) T) ((-1083 . -38) 69032) ((-676 . -385) 69011) ((-971 . -38) 68860) ((-743 . -1121) T) ((-493 . -38) 68709) ((-86 . -1238) T) ((-604 . -502) 68690) ((-1252 . -860) NIL) ((-1195 . -1121) T) ((-583 . -294) T) ((-1194 . -1121) T) ((-604 . -625) 68656) ((-1188 . -1121) T) ((-1141 . -864) T) ((-1101 . -1070) T) ((-362 . -1059) 68633) ((-829 . -502) 68617) ((-1025 . -1079) T) ((-45 . -625) 68599) ((-45 . -626) NIL) ((-933 . -1079) T) ((-829 . -625) 68568) ((-1168 . -102) 68518) ((-1101 . -248) 68469) ((-439 . -1079) T) ((-370 . -1070) T) ((-364 . -1070) T) ((-376 . -375) 68446) ((-356 . -1070) T) ((-354 . -234) 68433) ((-258 . -243) 68412) ((-257 . -243) 68391) ((-1101 . -238) 68316) ((-1147 . -1121) T) ((-304 . -917) 68275) ((-108 . -1070) T) ((-706 . -132) T) ((-430 . -526) 68117) ((-370 . -238) 68096) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 68075) ((-364 . -248) T) ((-356 . -238) 68054) ((-356 . -248) T) ((-1187 . -628) 68035) ((-171 . -319) 68000) ((-108 . -248) T) ((-108 . -238) T) ((-1015 . -628) 67981) ((-329 . -804) T) ((-884 . -21) T) ((-884 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67956) ((-1134 . -1077) 67877) ((-885 . -1173) NIL) ((-340 . -625) 67859) ((-419 . -1043) 67837) ((-1134 . -111) 67753) ((-703 . -1283) T) ((-448 . -1121) T) ((-256 . -1121) T) ((-1312 . -738) T) ((-63 . -625) 67735) ((-885 . -38) 67680) ((-614 . -152) 67664) ((-535 . -1238) T) ((-524 . -625) 67646) ((-1261 . -319) 67633) ((-743 . -729) 67482) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 67464) ((-507 . -651) 67424) ((-516 . -1238) T) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 67375) ((-537 . -1121) T) ((-532 . -1121) 67325) ((-253 . -464) 67276) ((-1171 . -296) 67255) ((-1199 . -625) 67237) ((-701 . -526) 67170) ((-982 . -300) 67149) ((-562 . -526) 66941) ((-258 . -658) 66789) ((-257 . -658) 66624) ((-1300 . -625) 66593) ((-1300 . -502) 66577) ((-1195 . -729) 66474) ((-1193 . -272) 66458) ((-1193 . -232) 66442) ((-1134 . -628) 66240) ((-171 . -1173) 66219) ((-1194 . -729) 66060) ((-1188 . -729) 65856) ((-985 . -113) T) ((-907 . -102) T) ((-1178 . -686) 65840) ((-1147 . -729) 65737) ((-1045 . -132) T) ((-366 . -414) 65688) ((-363 . -414) 65639) ((-355 . -414) 65590) ((-983 . -379) 65543) ((-811 . -526) 65455) ((-305 . -626) NIL) ((-305 . -625) 65437) ((-929 . -464) T) ((-924 . -296) 65416) ((-827 . -379) 65395) ((-522 . -521) 65374) ((-520 . -521) 65353) ((-886 . -911) 65274) ((-499 . -296) NIL) ((-494 . -298) 65251) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1133) T) ((-40 . -234) 65182) ((-171 . -38) 65010) ((-971 . -919) 64991) ((-1272 . -994) 64953) ((-1168 . -319) 64891) ((-493 . -919) 64868) ((-1251 . -994) 64837) ((-929 . -414) T) ((-1134 . -1070) 64815) ((-1274 . -568) T) ((-1171 . -616) 64794) ((-112 . -861) T) ((-1084 . -501) 64725) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1261 . -1173) 64703) ((-1134 . -238) 64655) ((-48 . -132) T) ((-1219 . -102) T) ((-245 . -1121) 64407) ((-885 . -412) 64384) ((-1109 . -102) T) ((-1097 . -102) T) ((-908 . -864) T) ((-620 . -102) T) ((-487 . -102) T) ((-1261 . -38) 64213) ((-869 . -38) 64183) ((-1055 . -1072) 64157) ((-743 . -174) 64068) ((-665 . -625) 64050) ((-657 . -1104) T) ((-1055 . -652) 64034) ((-583 . -38) 64021) ((-991 . -502) 64002) ((-991 . -625) 63968) ((-977 . -102) 63898) ((-878 . -625) 63880) ((-878 . -626) 63802) ((-605 . -526) NIL) ((-862 . -102) T) ((-1317 . -1133) T) ((-1280 . -1079) T) ((-1273 . -1079) T) ((-1272 . -911) 63706) ((-1252 . -1079) T) ((-1251 . -911) 63501) ((-1232 . -148) 63480) ((-332 . -1072) 63462) ((-1232 . -146) 63441) ((-1205 . -102) T) ((-1204 . -102) T) ((-1203 . -102) T) ((-1195 . -174) 63392) ((-332 . -652) 63374) ((-713 . -1238) T) ((-1194 . -174) 63305) ((-1188 . -174) 63236) ((-1172 . -628) 63217) ((-1147 . -174) 63168) ((-608 . -1079) T) ((-607 . -1079) T) ((-1025 . -1121) T) ((-992 . -1121) T) ((-390 . -1072) 63133) ((-135 . -1238) T) ((-117 . -1238) T) ((-933 . -1121) T) ((-885 . -919) NIL) ((-390 . -652) 63098) ((-145 . -864) T) ((-811 . -809) 63082) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 63059) ((-713 . -901) 63041) ((-439 . -1121) T) ((-326 . -1242) 63020) ((-323 . -1242) T) ((-171 . -412) 63004) ((-848 . -1072) 62974) ((-486 . -994) 62936) ((-129 . -102) T) ((-72 . -625) 62918) ((-131 . -102) T) ((-839 . -1072) 62902) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1059) 62884) ((-326 . -568) 62863) ((-323 . -568) T) ((-848 . -652) 62833) ((-839 . -652) 62803) ((-1317 . -23) T) ((-135 . -1059) 62785) ((-96 . -628) 62766) ((-1014 . -658) 62748) ((-494 . -1077) 62669) ((-45 . -298) 62594) ((-245 . -729) 62536) ((-529 . -102) T) ((-494 . -111) 62452) ((-1113 . -102) 62422) ((-1055 . -102) T) ((-1193 . -658) 62332) ((-1146 . -658) 62242) ((-868 . -658) 62201) ((-656 . -840) 62180) ((-743 . -526) 62123) ((-1075 . -1077) 62107) ((-171 . -919) 62030) ((-1156 . -93) T) ((-1084 . -296) 62005) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1121) T) ((-682 . -660) 61943) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1077) 61927) ((-1075 . -111) 61906) ((-828 . -423) 61890) ((-118 . -25) T) ((-89 . -625) 61872) ((-118 . -21) T) ((-620 . -319) 61667) ((-1171 . -626) NIL) ((-487 . -319) 61471) ((-350 . -1238) T) ((-176 . -1238) T) ((-396 . -111) 61450) ((-390 . -102) T) ((-216 . -625) 61432) ((-1171 . -625) 61414) ((-786 . -1238) T) ((-1188 . -526) 61183) ((-1025 . -729) 61133) ((-1147 . -526) 61103) ((-933 . -729) 61055) ((-494 . -628) 60853) ((-362 . -317) T) ((-1210 . -152) 60803) ((-486 . -911) 60684) ((-977 . -319) 60622) ((-848 . -102) T) ((-439 . -729) 60606) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1310 . -660) 60580) ((-1272 . -1271) 60559) ((-491 . -152) 60509) ((-1272 . -1266) 60479) ((-1141 . -1242) T) ((-350 . -1059) 60446) ((-1272 . -1269) 60430) ((-1261 . -919) 60337) ((-1251 . -1250) 60316) ((-80 . -625) 60298) ((-924 . -625) 60280) ((-1251 . -1266) 60257) ((-1141 . -568) T) ((-940 . -861) T) ((-783 . -861) T) ((-684 . -861) T) ((-499 . -626) 60187) ((-499 . -625) 60128) ((-390 . -294) T) ((-1251 . -1248) 60112) ((-1274 . -1133) T) ((-219 . -626) 60042) ((-219 . -625) 59983) ((-1084 . -616) 59958) ((-830 . -628) 59942) ((-576 . -234) 59929) ((-528 . -152) 59913) ((-59 . -152) 59897) ((-508 . -152) 59881) ((-507 . -234) 59868) ((-370 . -1307) 59852) ((-364 . -1307) 59836) ((-356 . -1307) 59820) ((-326 . -374) 59799) ((-323 . -374) T) ((-494 . -1070) 59777) ((-706 . -651) 59759) ((-1308 . -660) 59733) ((-129 . -319) NIL) ((-1274 . -23) T) ((-701 . -501) 59717) ((-64 . -625) 59699) ((-1134 . -807) 59678) ((-1134 . -804) 59657) ((-562 . -501) 59594) ((-682 . -34) T) ((-494 . -238) 59546) ((-305 . -298) 59525) ((-828 . -1079) T) ((-44 . -660) 59483) ((-1101 . -379) 59434) ((-743 . -300) 59365) ((-532 . -526) 59298) ((-829 . -1077) 59249) ((-1108 . -146) 59228) ((-561 . -625) 59210) ((-370 . -379) 59189) ((-364 . -379) 59168) ((-356 . -379) 59147) ((-1108 . -148) 59126) ((-987 . -1238) T) ((-885 . -272) 59103) ((-885 . -232) 59080) ((-829 . -111) 59022) ((-794 . -146) 59001) ((-273 . -968) 58968) ((-253 . -968) 58913) ((-794 . -148) 58892) ((-792 . -146) 58871) ((-792 . -148) 58850) ((-153 . -660) 58824) ((-591 . -1121) T) ((-465 . -296) 58787) ((-466 . -148) 58766) ((-466 . -146) 58745) ((-682 . -738) T) ((-835 . -625) 58727) ((-1280 . -1121) T) ((-1273 . -1121) T) ((-1252 . -1121) T) ((-1232 . -1226) 58693) ((-1232 . -1223) 58659) ((-1195 . -300) 58638) ((-1194 . -300) 58589) ((-1188 . -300) 58540) ((-1147 . -300) 58519) ((-350 . -917) 58500) ((-1025 . -174) T) ((-933 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 58450) ((-608 . -1121) T) ((-607 . -1121) T) ((-486 . -1269) 58434) ((-486 . -1266) 58404) ((-430 . -296) 58332) ((-559 . -861) T) ((-326 . -1133) 58181) ((-323 . -1133) T) ((-1232 . -35) 58147) ((-1232 . -95) 58113) ((-84 . -625) 58095) ((-91 . -102) 58045) ((-1317 . -132) T) ((-726 . -1072) 58015) ((-604 . -628) 57996) ((-593 . -146) T) ((-593 . -148) 57978) ((-530 . -148) 57960) ((-530 . -146) T) ((-726 . -652) 57930) ((-326 . -23) 57782) ((-40 . -353) 57756) ((-323 . -23) T) ((-829 . -628) 57670) ((-1179 . -663) 57652) ((-1303 . -1079) T) ((-1179 . -384) 57634) ((-1117 . -102) T) ((-827 . -660) 57467) ((-1111 . -102) T) ((-1094 . -102) T) ((-171 . -272) 57451) ((-171 . -232) 57435) ((-1087 . -102) T) ((-1057 . -102) T) ((-1040 . -102) T) ((-605 . -501) 57417) ((-638 . -102) T) ((-245 . -526) 57350) ((-495 . -102) T) ((-1310 . -738) T) ((-1308 . -738) T) ((-220 . -102) T) ((-1199 . -1077) 57233) ((-1300 . -111) 57198) ((-1300 . -1077) 57168) ((-1083 . -658) 57140) ((-1280 . -729) 57037) ((-971 . -658) 56947) ((-1273 . -729) 56788) ((-1199 . -111) 56657) ((-1055 . -38) 56641) ((-890 . -1104) T) ((-875 . -175) T) ((-493 . -658) 56551) ((-273 . -911) 56457) ((-253 . -911) 56432) ((-829 . -1070) T) ((-693 . -1104) T) ((-688 . -1104) T) ((-635 . -234) 56377) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56337) ((-520 . -102) T) ((-490 . -1104) T) ((-118 . -234) NIL) ((-3 . -1238) T) ((-139 . -1104) T) ((-138 . -1104) T) ((-134 . -1104) T) ((-845 . -1238) T) ((-829 . -238) T) ((-829 . -248) 56316) ((-1261 . -272) 56300) ((-1261 . -232) 56284) ((-1020 . -864) 56263) ((-1243 . -625) 56245) ((-562 . -296) 56224) ((-1084 . -626) NIL) ((-1084 . -625) 56206) ((-618 . -93) T) ((-683 . -93) T) ((0 . -1238) T) ((-49 . -1238) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1252 . -729) 56002) ((-1024 . -939) T) ((-153 . -738) T) ((-1199 . -628) 55855) ((-1134 . -379) 55834) ((-1045 . -25) T) ((-1025 . -526) NIL) ((-258 . -423) 55803) ((-257 . -423) 55772) ((-1045 . -21) T) ((-886 . -1072) 55724) ((-608 . -729) 55697) ((-607 . -729) 55594) ((-811 . -296) 55552) ((-127 . -102) 55502) ((-845 . -1059) 55398) ((-171 . -840) 55377) ((-329 . -660) 55274) ((-827 . -34) T) ((-726 . -102) T) ((-1141 . -1133) T) ((-1047 . -1238) T) ((-886 . -652) 55226) ((-390 . -38) 55191) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1295) 55175) ((-363 . -1295) 55159) ((-355 . -1295) 55143) ((-171 . -360) 55122) ((-576 . -861) T) ((-1108 . -237) 55073) ((-1141 . -23) T) ((-87 . -625) 55055) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 55025) ((-839 . -38) 54995) ((-1300 . -628) 54937) ((-1274 . -132) T) ((-1171 . -298) 54916) ((-983 . -738) 54815) ((-983 . -805) 54768) ((-983 . -806) 54721) ((-117 . -317) T) ((-91 . -319) 54659) ((-687 . -34) T) ((-562 . -616) 54638) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54617) ((-827 . -805) 54596) ((-713 . -1043) T) ((-665 . -1077) 54580) ((-885 . -658) 54510) ((-827 . -738) 54488) ((-402 . -1238) T) ((-983 . -485) 54441) ((-494 . -807) 54420) ((-494 . -804) 54399) ((-929 . -1295) 54386) ((-1199 . -1070) T) ((-633 . -1238) T) ((-665 . -111) 54365) ((-1199 . -336) 54342) ((-1224 . -102) 54292) ((-1122 . -625) 54274) ((-713 . -557) T) ((-828 . -1121) T) ((-593 . -237) T) ((-530 . -237) T) ((-1300 . -1070) T) ((-1156 . -502) 54255) ((-1244 . -102) T) ((-425 . -1121) T) ((-1156 . -625) 54221) ((-258 . -1079) 54199) ((-257 . -1079) 54177) ((-850 . -102) T) ((-299 . -660) 54164) ((-605 . -296) 54114) ((-701 . -699) 54072) ((-1313 . -1238) T) ((-1288 . -861) 54051) ((-982 . -625) 54033) ((-886 . -102) T) ((-747 . -625) 54015) ((-727 . -625) 53997) ((-1280 . -174) 53948) ((-1273 . -174) 53879) ((-1252 . -174) 53810) ((-711 . -861) T) ((-1025 . -300) T) ((-465 . -625) 53792) ((-639 . -738) T) ((-60 . -1121) 53770) ((-250 . -152) 53754) ((-1272 . -652) 53595) ((-933 . -300) T) ((-1045 . -1033) T) ((-639 . -485) T) ((-724 . -1242) 53574) ((-706 . -234) NIL) ((-665 . -628) 53492) ((-171 . -658) 53387) ((-1272 . -1072) 53222) ((-608 . -174) 53201) ((-607 . -174) 53152) ((-1251 . -652) 52966) ((-1251 . -1072) 52774) ((-1246 . -1238) T) ((-724 . -568) 52685) ((-419 . -832) 52664) ((-419 . -939) T) ((-329 . -806) T) ((-489 . -1238) T) ((-991 . -628) 52645) ((-329 . -738) T) ((-656 . -1170) 52629) ((-430 . -625) 52611) ((-430 . -626) 52518) ((-110 . -663) 52500) ((-326 . -132) 52371) ((-176 . -317) T) ((-127 . -319) 52309) ((-410 . -1238) T) ((-110 . -384) 52291) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 52275) ((-666 . -1133) T) ((-605 . -19) 52257) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1121) T) ((-605 . -616) 52232) ((-489 . -1059) 52192) ((-665 . -1070) T) ((-666 . -23) T) ((-1303 . -1121) T) ((-31 . -102) T) ((-1261 . -658) 52102) ((-869 . -658) 52061) ((-828 . -729) 51910) ((-1290 . -1238) T) ((-589 . -874) T) ((-583 . -658) 51882) ((-118 . -861) NIL) ((-1193 . -423) 51866) ((-1146 . -423) 51850) ((-868 . -423) 51834) ((-887 . -102) 51785) ((-1272 . -102) T) ((-1252 . -526) 51554) ((-1251 . -102) T) ((-1224 . -319) 51492) ((-1195 . -296) 51457) ((-1194 . -296) 51415) ((-537 . -93) T) ((-1188 . -296) 51243) ((-322 . -625) 51225) ((-1123 . -1121) T) ((-1101 . -660) 51099) ((-723 . -464) T) ((-701 . -625) 51031) ((-299 . -738) T) ((-108 . -928) NIL) ((-701 . -626) 50992) ((-613 . -625) 50974) ((-589 . -625) 50956) ((-562 . -626) NIL) ((-562 . -625) 50938) ((-541 . -625) 50920) ((-523 . -521) 50899) ((-499 . -1077) 50849) ((-486 . -1072) 50684) ((-519 . -521) 50663) ((-486 . -652) 50504) ((-219 . -1077) 50454) ((-370 . -660) 50406) ((-364 . -660) 50358) ((-227 . -860) T) ((-356 . -660) 50310) ((-614 . -102) 50240) ((-499 . -111) 50174) ((-494 . -379) 50153) ((-108 . -660) 50103) ((-365 . -234) 50090) ((-245 . -501) 50074) ((-354 . -148) 50056) ((-354 . -146) T) ((-171 . -381) 50027) ((-962 . -1286) 50011) ((-105 . -1238) T) ((-219 . -111) 49945) ((-886 . -319) 49910) ((-962 . -1121) 49860) ((-811 . -626) 49821) ((-811 . -625) 49803) ((-730 . -102) T) ((-1312 . -1238) T) ((-392 . -1238) T) ((-341 . -1121) T) ((-216 . -628) 49780) ((-1141 . -132) T) ((-1303 . -729) 49750) ((-726 . -38) 49720) ((-326 . -505) 49699) ((-543 . -1238) T) ((-512 . -1238) T) ((-1272 . -294) 49665) ((-1251 . -294) 49631) ((-337 . -152) 49615) ((-451 . -1121) T) ((-1237 . -1238) T) ((-1084 . -298) 49590) ((-1245 . -864) T) ((-48 . -234) 49577) ((-1180 . -34) T) ((-1312 . -1059) 49554) ((-496 . -34) T) ((-480 . -625) 49536) ((-256 . -296) 49510) ((-392 . -1059) 49494) ((-1193 . -1079) T) ((-1146 . -1079) T) ((-868 . -1079) T) ((-1083 . -860) T) ((-499 . -628) 49444) ((-219 . -628) 49394) ((-828 . -174) 49305) ((-532 . -296) 49257) ((-1280 . -300) 49236) ((-1219 . -375) 49210) ((-1109 . -275) 49194) ((-683 . -502) 49175) ((-683 . -625) 49141) ((-618 . -502) 49122) ((-118 . -1013) 49099) ((-618 . -625) 49049) ((-486 . -102) T) ((-182 . -502) 49030) ((-182 . -625) 48996) ((-162 . -502) 48977) ((-162 . -625) 48943) ((-157 . -502) 48924) ((-155 . -502) 48905) ((-157 . -625) 48871) ((-376 . -1121) T) ((-258 . -1121) T) ((-257 . -1121) T) ((-155 . -625) 48837) ((-1273 . -300) 48788) ((-1252 . -300) 48739) ((-886 . -1173) 48717) ((-1195 . -1023) 48683) ((-620 . -375) 48623) ((-1194 . -1023) 48589) ((-620 . -231) 48536) ((-706 . -861) T) ((-605 . -625) 48518) ((-605 . -626) NIL) ((-487 . -231) 48468) ((-499 . -1070) T) ((-1188 . -1023) 48434) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1070) T) ((-1147 . -1023) 48400) ((-1101 . -738) T) ((-724 . -1133) T) ((-608 . -300) 48379) ((-607 . -300) 48358) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1186 . -625) 48340) ((-886 . -38) 48292) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1276) 48276) ((-1317 . -25) T) ((-486 . -294) 48242) ((-1317 . -21) T) ((-1251 . -319) 48181) ((-1197 . -102) T) ((-40 . -146) 48153) ((-40 . -148) 48125) ((-532 . -616) 48102) ((-1134 . -660) 47935) ((-614 . -319) 47873) ((-45 . -663) 47823) ((-45 . -678) 47773) ((-45 . -384) 47723) ((-1179 . -34) T) ((-885 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47705) ((-245 . -296) 47682) ((-1103 . -1238) T) ((-188 . -1121) T) ((-1108 . -464) 47633) ((-828 . -526) 47507) ((-794 . -464) 47438) ((-676 . -1072) 47422) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 47406) ((-366 . -1072) 47358) ((-354 . -237) T) ((-363 . -1072) 47310) ((-355 . -1072) 47262) ((-273 . -1072) 47105) ((-253 . -1072) 46948) ((-792 . -464) 46899) ((-366 . -652) 46851) ((-363 . -652) 46803) ((-355 . -652) 46755) ((-273 . -652) 46604) ((-253 . -652) 46453) ((-466 . -464) 46404) ((-971 . -423) 46388) ((-743 . -625) 46370) ((-258 . -729) 46312) ((-257 . -729) 46254) ((-743 . -626) 46115) ((-493 . -423) 46099) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -939) T) ((-1021 . -102) 46049) ((-929 . -1072) 46014) ((-1045 . -861) T) ((-60 . -526) 45947) ((-929 . -652) 45912) ((-1251 . -1173) 45864) ((-1025 . -296) NIL) ((-227 . -1079) T) ((-390 . -840) T) ((-1134 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1255 . -1114) 45848) ((-1255 . -1121) 45826) ((-245 . -616) 45803) ((-1255 . -1116) 45760) ((-1195 . -625) 45742) ((-1194 . -625) 45724) ((-1188 . -625) 45706) ((-1188 . -626) NIL) ((-1147 . -625) 45688) ((-886 . -412) 45672) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1272 . -38) 45513) ((-1251 . -38) 45327) ((-130 . -1238) T) ((-52 . -1238) T) ((-884 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1284 . -102) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-1210 . -102) T) ((-1134 . -806) 45306) ((-1134 . -805) 45285) ((-1014 . -1121) T) ((-1048 . -34) T) ((-876 . -1121) T) ((-1134 . -738) 45263) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 45242) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-321 . -1238) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1083 . -1079) T) ((-971 . -1079) T) ((-326 . -651) 45148) ((-323 . -651) 45109) ((-1193 . -1121) T) ((-493 . -1079) T) ((-491 . -102) T) ((-448 . -625) 45091) ((-1146 . -1121) T) ((-256 . -625) 45073) ((-868 . -1121) T) ((-1162 . -102) T) ((-828 . -300) 45004) ((-982 . -1077) 44887) ((-489 . -1043) T) ((-886 . -919) 44810) ((-747 . -1077) 44780) ((-1055 . -658) 44739) ((-1168 . -1142) 44723) ((-465 . -1077) 44693) ((-1123 . -526) 44626) ((-982 . -111) 44495) ((-929 . -102) T) ((-40 . -237) 44432) ((-747 . -111) 44397) ((-537 . -502) 44378) ((-537 . -625) 44344) ((-59 . -102) 44274) ((-532 . -626) 44235) ((-532 . -625) 44147) ((-531 . -102) 44097) ((-528 . -102) 44027) ((-509 . -102) 43977) ((-508 . -102) 43907) ((-465 . -111) 43870) ((-332 . -658) 43852) ((-514 . -864) T) ((-430 . -1077) 43826) ((-1232 . -994) 43788) ((-1020 . -1133) T) ((-390 . -658) 43738) ((-1156 . -628) 43719) ((-962 . -526) 43652) ((-499 . -807) T) ((-486 . -38) 43493) ((-430 . -111) 43460) ((-499 . -804) T) ((-1021 . -319) 43398) ((-219 . -807) T) ((-219 . -804) T) ((-1020 . -23) T) ((-724 . -132) T) ((-1251 . -412) 43368) ((-848 . -658) 43313) ((-839 . -658) 43272) ((-326 . -25) 43124) ((-171 . -423) 43108) ((-326 . -21) 42979) ((-323 . -25) T) ((-323 . -21) T) ((-878 . -379) T) ((-982 . -628) 42832) ((-110 . -34) T) ((-747 . -628) 42788) ((-727 . -628) 42770) ((-494 . -660) 42603) ((-885 . -1079) T) ((-605 . -298) 42578) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1193 . -729) 42407) ((-1078 . -102) 42385) ((-1146 . -729) 42234) ((-1141 . -651) 42216) ((-868 . -729) 42186) ((-682 . -1238) T) ((-1 . -102) T) ((-560 . -1238) T) ((-430 . -628) 42094) ((-245 . -625) 41787) ((-1136 . -1121) T) ((-1261 . -423) 41771) ((-1210 . -319) 41575) ((-982 . -1070) T) ((-747 . -1070) T) ((-727 . -1070) T) ((-656 . -1121) 41525) ((-1075 . -660) 41509) ((-869 . -423) 41493) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41480) ((-253 . -319) 41467) ((-1272 . -919) 41373) ((-982 . -336) 41352) ((-1251 . -919) 41149) ((-396 . -660) 41133) ((-855 . -864) 41112) ((-682 . -1059) 41008) ((-491 . -319) 40812) ((-258 . -526) 40745) ((-257 . -526) 40678) ((-1162 . -319) 40604) ((-419 . -864) 40555) ((-1232 . -911) 40534) ((-831 . -1121) T) ((-811 . -1077) 40518) ((-1280 . -296) 40483) ((-1273 . -296) 40441) ((-1252 . -296) 40269) ((-398 . -1121) T) ((-334 . -1121) T) ((-430 . -1070) T) ((-171 . -1079) T) ((-59 . -319) 40207) ((-811 . -111) 40186) ((-607 . -296) 40151) ((-531 . -319) 40089) ((-528 . -319) 40027) ((-509 . -319) 39965) ((-508 . -319) 39903) ((-430 . -238) 39882) ((-494 . -34) T) ((-227 . -1121) T) ((-1025 . -626) 39812) ((-1025 . -625) 39772) ((-992 . -625) 39732) ((-933 . -625) 39714) ((-711 . -148) T) ((-1310 . -1238) T) ((-1308 . -1238) T) ((-713 . -939) T) ((-713 . -832) T) ((-439 . -625) 39696) ((-1141 . -21) T) ((-1141 . -25) T) ((-682 . -388) 39680) ((-117 . -939) T) ((-886 . -272) 39664) ((-886 . -232) 39648) ((-44 . -1238) T) ((-78 . -1238) T) ((-127 . -126) 39632) ((-1075 . -34) T) ((-1310 . -1059) 39606) ((-1308 . -1059) 39563) ((-1261 . -1079) T) ((-869 . -1079) T) ((-366 . -1173) 39542) ((-363 . -1173) 39521) ((-355 . -1173) 39500) ((-494 . -806) 39479) ((-494 . -805) 39458) ((-229 . -34) T) ((-494 . -738) 39436) ((-811 . -628) 39282) ((-674 . -1072) 39266) ((-60 . -501) 39250) ((-583 . -1079) T) ((-1193 . -174) 39141) ((-674 . -652) 39125) ((-486 . -919) 39031) ((-153 . -1238) T) ((-1146 . -174) 38942) ((-1083 . -1121) T) ((-1108 . -968) 38887) ((-971 . -1121) T) ((-829 . -660) 38838) ((-794 . -968) 38807) ((-725 . -1121) T) ((-792 . -968) 38774) ((-528 . -292) 38758) ((-682 . -917) 38717) ((-493 . -1121) T) ((-466 . -968) 38684) ((-79 . -1238) T) ((-366 . -38) 38649) ((-363 . -38) 38614) ((-355 . -38) 38579) ((-273 . -38) 38428) ((-253 . -38) 38277) ((-929 . -1173) T) ((-536 . -502) 38258) ((-635 . -148) 38237) ((-635 . -146) 38216) ((-536 . -625) 38182) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1070) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1280 . -1023) 38148) ((-1273 . -1023) 38114) ((-1252 . -1023) 38080) ((-929 . -38) 38045) ((-227 . -729) 38010) ((-1020 . -132) T) ((-329 . -47) 37980) ((-40 . -421) 37952) ((-141 . -625) 37934) ((-983 . -1238) T) ((-827 . -1238) T) ((-176 . -939) T) ((-561 . -379) T) ((-726 . -658) 37879) ((-618 . -628) 37860) ((-354 . -414) T) ((-683 . -628) 37841) ((-323 . -234) NIL) ((-182 . -628) 37822) ((-162 . -628) 37803) ((-157 . -628) 37784) ((-155 . -628) 37765) ((-532 . -298) 37742) ((-1251 . -232) 37712) ((-1251 . -272) 37682) ((-1235 . -1238) 37660) ((-1199 . -660) 37585) ((-890 . -102) T) ((-827 . -1059) 37412) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1123 . -501) 37396) ((-687 . -1238) T) ((-490 . -102) T) ((-250 . -102) 37326) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1108 . -911) 37221) ((-885 . -1121) T) ((-1193 . -526) 37168) ((-1083 . -729) 37155) ((-794 . -911) 37058) ((-743 . -1077) 36901) ((-792 . -911) 36883) ((-971 . -729) 36732) ((-1146 . -526) 36684) ((-1299 . -1121) T) ((-1298 . -1121) T) ((-466 . -911) 36659) ((-493 . -729) 36508) ((-67 . -625) 36490) ((-639 . -1238) T) ((-743 . -111) 36319) ((-962 . -501) 36303) ((-1300 . -660) 36263) ((-1195 . -1077) 36146) ((-829 . -738) T) ((-1194 . -1077) 35981) ((-1188 . -1077) 35771) ((-329 . -1238) T) ((-1147 . -1077) 35654) ((-1024 . -1242) T) ((-1115 . -102) 35632) ((-827 . -388) 35601) ((-591 . -625) 35583) ((-558 . -1121) T) ((-1024 . -568) T) ((-1195 . -111) 35452) ((-1194 . -111) 35273) ((-1188 . -111) 35042) ((-1147 . -111) 34911) ((-1126 . -1124) 34875) ((-390 . -860) T) ((-1280 . -625) 34857) ((-1273 . -625) 34839) ((-886 . -658) 34776) ((-1252 . -625) 34758) ((-1252 . -626) NIL) ((-245 . -298) 34735) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1121) T) ((-743 . -628) 34520) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34502) ((-607 . -625) 34484) ((-1141 . -234) 34471) ((-915 . -1121) T) ((-853 . -1121) T) ((-820 . -1121) T) ((-273 . -919) 34381) ((-253 . -919) 34358) ((-781 . -1121) T) ((-689 . -1121) T) ((-670 . -866) 34342) ((-635 . -237) 34293) ((-827 . -917) 34225) ((-872 . -864) T) ((-1243 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1195 . -628) 34107) ((-1141 . -673) T) ((-885 . -729) 34052) ((-258 . -501) 34036) ((-257 . -501) 34020) ((-1194 . -628) 33763) ((-1188 . -628) 33558) ((-724 . -651) 33506) ((-665 . -660) 33480) ((-1147 . -628) 33362) ((-305 . -34) T) ((-1141 . -113) T) ((-743 . -1070) T) ((-593 . -1295) 33349) ((-530 . -1295) 33326) ((-1261 . -1121) T) ((-1193 . -300) 33237) ((-1146 . -300) 33168) ((-1083 . -174) T) ((-299 . -1238) T) ((-869 . -1121) T) ((-971 . -174) 33079) ((-794 . -1264) 33063) ((-656 . -526) 32996) ((-77 . -625) 32978) ((-743 . -336) 32943) ((-1199 . -738) T) ((-583 . -1121) T) ((-493 . -174) 32854) ((-250 . -319) 32792) ((-1163 . -1133) T) ((-70 . -625) 32774) ((-1300 . -738) T) ((-1195 . -1070) T) ((-1194 . -1070) T) ((-1188 . -1070) T) ((-337 . -102) 32704) ((-1163 . -23) T) ((-2 . -1238) T) ((-1147 . -1070) T) ((-91 . -1142) 32688) ((-880 . -1133) T) ((-1195 . -238) 32647) ((-1194 . -248) 32626) ((-1194 . -238) 32578) ((-1188 . -238) 32465) ((-1188 . -248) 32444) ((-329 . -917) 32350) ((-880 . -23) T) ((-171 . -729) 32178) ((-419 . -1242) T) ((-1122 . -379) T) ((-1024 . -374) T) ((-884 . -464) T) ((-1045 . -148) T) ((-962 . -296) 32130) ((-323 . -861) NIL) ((-1272 . -658) 32012) ((-888 . -102) T) ((-1251 . -658) 31867) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31848) ((-365 . -148) 31830) ((-365 . -146) T) ((-1168 . -1121) 31808) ((-465 . -732) T) ((-75 . -625) 31790) ((-115 . -861) T) ((-250 . -292) 31774) ((-245 . -1077) 31695) ((-81 . -625) 31677) ((-747 . -379) 31630) ((-1197 . -840) T) ((-749 . -240) 31614) ((-1180 . -1238) T) ((-142 . -240) 31596) ((-245 . -111) 31512) ((-1261 . -729) 31341) ((-48 . -148) T) ((-885 . -174) T) ((-869 . -729) 31311) ((-496 . -1238) T) ((-971 . -526) 31258) ((-665 . -738) T) ((-583 . -729) 31245) ((-1055 . -1079) T) ((-706 . -237) NIL) ((-493 . -526) 31188) ((-962 . -19) 31172) ((-962 . -616) 31149) ((-1101 . -1238) T) ((-1082 . -1238) T) ((-828 . -626) NIL) ((-828 . -625) 31131) ((-1232 . -652) 31028) ((-1232 . -1072) 30911) ((-1025 . -1077) 30861) ((-425 . -625) 30843) ((-258 . -296) 30820) ((-370 . -1238) T) ((-364 . -1238) T) ((-356 . -1238) T) ((-257 . -296) 30797) ((-499 . -928) NIL) ((-326 . -29) 30767) ((-108 . -1238) T) ((-1024 . -1133) T) ((-219 . -928) NIL) ((-1101 . -1059) 30663) ((-933 . -1077) 30615) ((-1025 . -111) 30549) ((-1024 . -23) T) ((-723 . -1072) 30514) ((-933 . -111) 30452) ((-749 . -707) 30436) ((-723 . -652) 30401) ((-273 . -272) 30385) ((-273 . -232) 30369) ((-439 . -1077) 30353) ((-390 . -1079) T) ((-245 . -628) 30151) ((-706 . -1226) NIL) ((-499 . -660) 30101) ((-486 . -658) 29983) ((-108 . -899) 29965) ((-108 . -901) 29947) ((-706 . -1223) NIL) ((-219 . -660) 29897) ((-370 . -1059) 29881) ((-364 . -1059) 29865) ((-337 . -319) 29803) ((-356 . -1059) 29787) ((-227 . -300) T) ((-439 . -111) 29766) ((-60 . -625) 29698) ((-171 . -174) T) ((-1141 . -861) T) ((-108 . -1059) 29658) ((-907 . -1121) T) ((-848 . -1079) T) ((-839 . -1079) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1013) 29619) ((-185 . -102) T) ((-1311 . -1133) T) ((-1311 . -23) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-1303 . -625) 29601) ((-1261 . -174) 29492) ((-1232 . -102) T) ((-419 . -374) T) ((-1219 . -1121) T) ((-1210 . -231) 29442) ((-1204 . -856) T) ((-1203 . -856) T) ((-1187 . -1238) T) ((-245 . -1070) 29420) ((-1015 . -1238) T) ((-1171 . -34) T) ((-1188 . -804) NIL) ((-1188 . -807) NIL) ((-1179 . -1238) T) ((-489 . -939) T) ((-1020 . -651) 29368) ((-258 . -616) 29345) ((-257 . -616) 29322) ((-1163 . -132) T) ((-1123 . -626) 29283) ((-1101 . -388) 29267) ((-885 . -526) 29175) ((-245 . -238) 29127) ((-1123 . -625) 29109) ((-1109 . -1121) T) ((-1025 . -628) 29059) ((-1101 . -917) 28992) ((-933 . -628) 28929) ((-836 . -625) 28911) ((-1097 . -1121) T) ((-1083 . -300) T) ((-1025 . -248) T) ((-1025 . -238) T) ((-1025 . -1070) T) ((-977 . -1121) 28861) ((-971 . -300) 28792) ((-439 . -628) 28761) ((-108 . -388) 28743) ((-108 . -349) 28725) ((-933 . -1070) T) ((-933 . -248) T) ((-811 . -379) 28704) ((-723 . -102) T) ((-713 . -864) T) ((-659 . -1238) T) ((-644 . -1238) T) ((-620 . -1121) T) ((-620 . -622) 28680) ((-598 . -1072) 28655) ((-493 . -300) 28586) ((-583 . -174) T) ((-337 . -292) 28570) ((-365 . -237) T) ((-598 . -652) 28545) ((-366 . -360) 28524) ((-363 . -360) 28503) ((-355 . -360) 28482) ((-214 . -1238) T) ((-83 . -625) 28464) ((-213 . -1238) T) ((-211 . -1238) T) ((-210 . -1238) T) ((-209 . -1238) T) ((-208 . -1238) T) ((-205 . -1238) T) ((-204 . -1238) T) ((-203 . -1238) T) ((-202 . -1238) T) ((-487 . -1121) T) ((-201 . -1238) T) ((-273 . -260) 28426) ((-200 . -1238) T) ((-199 . -1238) T) ((-198 . -1238) T) ((-197 . -1238) T) ((-196 . -1238) T) ((-487 . -622) 28405) ((-195 . -1238) T) ((-283 . -1238) T) ((-282 . -1238) T) ((-281 . -1238) T) ((-280 . -1238) T) ((-491 . -231) 28355) ((-279 . -1238) T) ((-278 . -1238) T) ((-277 . -1238) T) ((-439 . -1070) T) ((-880 . -132) T) ((-855 . -1133) 28334) ((-48 . -237) T) ((-711 . -464) T) ((-108 . -917) NIL) ((-135 . -864) T) ((-1232 . -294) 28300) ((-1134 . -1238) T) ((-886 . -860) 28279) ((-1020 . -25) T) ((-924 . -738) T) ((-171 . -526) 28191) ((-1020 . -21) T) ((-924 . -485) T) ((-419 . -1133) T) ((-499 . -806) T) ((-499 . -803) T) ((-929 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 28178) ((-219 . -738) T) ((-855 . -23) 28130) ((-1205 . -1121) T) ((-670 . -1072) 28114) ((-1204 . -1121) T) ((-536 . -628) 28095) ((-1203 . -1121) T) ((-329 . -317) 28074) ((-1056 . -240) 28020) ((-670 . -652) 27990) ((-419 . -23) T) ((-962 . -626) 27951) ((-962 . -625) 27863) ((-656 . -501) 27847) ((-45 . -1031) 27797) ((-1134 . -1059) 27624) ((-629 . -988) T) ((-503 . -102) T) ((-341 . -625) 27606) ((-1014 . -296) 27573) ((-605 . -663) 27555) ((-129 . -1121) T) ((-131 . -1121) T) ((-605 . -384) 27537) ((-354 . -1295) 27514) ((-451 . -625) 27496) ((-1261 . -526) 27443) ((-1108 . -1072) 27286) ((-1048 . -1238) T) ((-885 . -300) T) ((-1193 . -296) 27213) ((-1108 . -652) 27062) ((-1021 . -1016) 27046) ((-794 . -1072) 26869) ((-792 . -1072) 26712) ((-794 . -652) 26541) ((-792 . -652) 26390) ((-488 . -1238) T) ((-475 . -1238) T) ((-598 . -102) T) ((-473 . -1072) 26361) ((-466 . -1072) 26204) ((-676 . -658) 26173) ((-635 . -464) 26152) ((-473 . -652) 26123) ((-466 . -652) 25972) ((-366 . -658) 25909) ((-363 . -658) 25846) ((-355 . -658) 25783) ((-273 . -658) 25693) ((-253 . -658) 25603) ((-1303 . -393) 25575) ((-529 . -1121) T) ((-118 . -464) T) ((-1218 . -102) T) ((-1113 . -1121) 25545) ((-1055 . -1121) T) ((-1136 . -93) T) ((-908 . -861) T) ((-1280 . -111) 25414) ((-362 . -1242) T) ((-1280 . -1077) 25297) ((-1134 . -388) 25266) ((-1273 . -1077) 25101) ((-1252 . -1077) 24891) ((-1273 . -111) 24712) ((-1252 . -111) 24481) ((-1232 . -319) 24468) ((-1024 . -132) T) ((-929 . -658) 24418) ((-376 . -625) 24400) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1077) 24360) ((-607 . -1077) 24243) ((-593 . -1072) 24208) ((-530 . -1072) 24153) ((-372 . -1121) T) ((-332 . -1121) T) ((-258 . -625) 24114) ((-257 . -625) 24075) ((-593 . -652) 24040) ((-530 . -652) 23985) ((-706 . -421) 23952) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -911) 23859) ((-670 . -102) T) ((-608 . -111) 23812) ((-607 . -111) 23681) ((-390 . -1121) T) ((-347 . -102) T) ((-171 . -300) 23592) ((-1251 . -860) 23545) ((-726 . -1079) T) ((-624 . -1238) T) ((-1168 . -526) 23478) ((-1211 . -847) 23462) ((-1134 . -917) 23394) ((-848 . -1121) T) ((-839 . -1121) T) ((-837 . -1121) T) ((-97 . -102) T) ((-145 . -861) T) ((-624 . -899) 23378) ((-1172 . -1238) T) ((-110 . -1238) T) ((-1108 . -102) T) ((-1084 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1280 . -628) 23260) ((-1273 . -628) 23003) ((-473 . -102) T) ((-466 . -102) T) ((-1252 . -628) 22798) ((-96 . -1238) T) ((-245 . -807) 22777) ((-245 . -804) 22756) ((-661 . -102) T) ((-608 . -628) 22714) ((-607 . -628) 22596) ((-1261 . -300) 22507) ((-676 . -646) 22491) ((-188 . -625) 22473) ((-656 . -296) 22425) ((-1055 . -729) 22409) ((-583 . -300) T) ((-982 . -660) 22334) ((-1311 . -132) T) ((-747 . -660) 22294) ((-727 . -660) 22281) ((-284 . -102) T) ((-465 . -660) 22211) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1280 . -1070) T) ((-1273 . -1070) T) ((-1252 . -1070) T) ((-1161 . -1238) T) ((-519 . -658) 22193) ((-332 . -729) 22175) ((-1280 . -238) 22134) ((-1273 . -248) 22113) ((-1273 . -238) 22065) ((-1252 . -238) 21952) ((-1252 . -248) 21931) ((-1232 . -38) 21828) ((-608 . -1070) T) ((-607 . -1070) T) ((-1025 . -807) T) ((-1025 . -804) T) ((-992 . -807) T) ((-992 . -804) T) ((-886 . -1079) T) ((-109 . -625) 21810) ((-706 . -464) T) ((-390 . -729) 21775) ((-430 . -660) 21749) ((-884 . -883) 21733) ((-723 . -38) 21698) ((-607 . -238) 21657) ((-40 . -736) 21629) ((-362 . -339) 21606) ((-362 . -374) T) ((-1101 . -317) 21557) ((-304 . -1133) 21438) ((-1127 . -1238) T) ((-1020 . -234) 21383) ((-173 . -102) T) ((-1255 . -625) 21350) ((-855 . -132) 21302) ((-848 . -729) 21272) ((-656 . -1276) 21256) ((-839 . -729) 21226) ((-656 . -616) 21203) ((-494 . -1238) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 21190) ((-419 . -132) T) ((-532 . -678) 21174) ((-108 . -317) T) ((-304 . -23) 21057) ((-532 . -663) 21041) ((-706 . -414) NIL) ((-532 . -384) 21025) ((-301 . -625) 21007) ((-91 . -1121) 20985) ((-108 . -1043) T) ((-576 . -144) T) ((-1288 . -152) 20969) ((-494 . -1059) 20796) ((-1274 . -146) 20757) ((-1274 . -148) 20718) ((-1075 . -1238) T) ((-1299 . -93) T) ((-1014 . -625) 20700) ((-830 . -1238) T) ((-876 . -625) 20682) ((-828 . -1077) 20525) ((-1298 . -93) T) ((-1193 . -626) NIL) ((-1117 . -1121) T) ((-1111 . -1121) T) ((-1108 . -319) 20512) ((-426 . -1238) T) ((-396 . -1238) T) ((-1094 . -1121) T) ((-229 . -1238) T) ((-1087 . -1121) T) ((-1057 . -1121) T) ((-1040 . -1121) T) ((-794 . -319) 20499) ((-792 . -319) 20486) ((-1193 . -625) 20468) ((-828 . -111) 20297) ((-1146 . -625) 20279) ((-638 . -1121) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 20266) ((-495 . -1121) T) ((-1146 . -626) 20014) ((-1055 . -174) T) ((-962 . -298) 19991) ((-220 . -1121) T) ((-868 . -625) 19973) ((-620 . -526) 19756) ((-81 . -628) 19697) ((-830 . -1059) 19681) ((-487 . -526) 19473) ((-845 . -864) 19452) ((-982 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1133) T) ((-1200 . -625) 19434) ((-225 . -102) T) ((-494 . -388) 19403) ((-527 . -1121) T) ((-522 . -1121) T) ((-520 . -1121) T) ((-811 . -660) 19377) ((-1045 . -464) T) ((-977 . -526) 19310) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19289) ((-390 . -174) T) ((-1272 . -1079) T) ((-1251 . -1079) T) ((-227 . -1023) T) ((-828 . -628) 19026) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1242) T) ((-1163 . -651) 18974) ((-592 . -883) 18958) ((-1303 . -1077) 18942) ((-1180 . -1214) 18918) ((-713 . -568) T) ((-127 . -1121) 18896) ((-726 . -1121) T) ((-670 . -38) 18866) ((-494 . -917) 18798) ((-255 . -1121) T) ((-189 . -1121) T) ((-365 . -414) T) ((-326 . -148) 18777) ((-326 . -146) 18756) ((-117 . -568) T) ((-129 . -526) NIL) ((-323 . -148) 18712) ((-323 . -146) 18668) ((-48 . -464) T) ((-163 . -1121) T) ((-158 . -1121) T) ((-1180 . -107) 18615) ((-794 . -1173) 18593) ((-1303 . -111) 18572) ((-701 . -34) T) ((-604 . -1238) T) ((-562 . -34) T) ((-496 . -107) 18556) ((-258 . -298) 18533) ((-257 . -298) 18510) ((-1244 . -856) T) ((-885 . -296) 18461) ((-45 . -1238) T) ((-1232 . -919) 18442) ((-829 . -1238) T) ((-828 . -1070) T) ((-633 . -864) 18421) ((-674 . -658) 18390) ((-1199 . -47) 18367) ((-828 . -336) 18329) ((-1108 . -38) 18178) ((-828 . -238) 18157) ((-794 . -38) 17986) ((-792 . -38) 17835) ((-1136 . -502) 17816) ((-466 . -38) 17665) ((-1136 . -625) 17631) ((-1139 . -102) T) ((-656 . -626) 17592) ((-656 . -625) 17504) ((-593 . -1173) T) ((-530 . -1173) T) ((-1168 . -501) 17488) ((-354 . -1072) 17433) ((-1224 . -1121) 17411) ((-1163 . -25) T) ((-1163 . -21) T) ((-354 . -652) 17356) ((-1303 . -628) 17305) ((-340 . -1238) T) ((-486 . -1079) T) ((-1244 . -1121) T) ((-1252 . -804) NIL) ((-1252 . -807) NIL) ((-1020 . -861) 17284) ((-850 . -1121) T) ((-831 . -625) 17266) ((-880 . -21) T) ((-880 . -25) T) ((-811 . -738) T) ((-176 . -1242) T) ((-593 . -38) 17231) ((-530 . -38) 17196) ((-398 . -625) 17178) ((-343 . -102) T) ((-334 . -625) 17160) ((-171 . -296) 17118) ((-1246 . -864) T) ((-63 . -1238) T) ((-112 . -102) T) ((-886 . -1121) T) ((-524 . -1238) T) ((-176 . -568) T) ((-726 . -729) 17088) ((-304 . -132) 16971) ((-227 . -625) 16953) ((-227 . -626) 16883) ((-1024 . -651) 16822) ((-1303 . -1070) T) ((-1199 . -1238) T) ((-1141 . -148) T) ((-644 . -1214) 16797) ((-743 . -928) 16776) ((-605 . -34) T) ((-659 . -107) 16760) ((-644 . -107) 16706) ((-1300 . -1238) T) ((-635 . -911) 16627) ((-1261 . -296) 16554) ((-743 . -660) 16443) ((-305 . -1238) T) ((-1199 . -1059) 16339) ((-962 . -630) 16316) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -911) NIL) ((-1188 . -928) NIL) ((-1083 . -626) 16231) ((-1083 . -625) 16213) ((-971 . -625) 16195) ((-725 . -502) 16145) ((-354 . -102) T) ((-258 . -1077) 16066) ((-257 . -1077) 15987) ((-406 . -102) T) ((-31 . -1121) T) ((-971 . -626) 15848) ((-725 . -625) 15783) ((-1301 . -1231) 15752) ((-493 . -625) 15734) ((-493 . -626) 15595) ((-273 . -423) 15579) ((-253 . -423) 15563) ((-323 . -237) NIL) ((-258 . -111) 15479) ((-257 . -111) 15395) ((-1195 . -660) 15320) ((-1194 . -660) 15217) ((-1188 . -660) 15069) ((-1147 . -660) 14994) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1024 . -25) T) ((-1024 . -21) T) ((-887 . -1121) 14945) ((-40 . -1072) 14890) ((-886 . -729) 14842) ((-40 . -652) 14787) ((-390 . -300) T) ((-171 . -1023) 14738) ((-1108 . -919) 14637) ((-706 . -399) T) ((-1020 . -1018) 14621) ((-713 . -1133) T) ((-706 . -167) 14603) ((-794 . -919) 14510) ((-792 . -919) 14494) ((-1272 . -1121) T) ((-1251 . -1121) T) ((-1185 . -102) T) ((-326 . -1223) 14473) ((-326 . -1226) 14452) ((-466 . -919) 14429) ((-326 . -978) 14408) ((-135 . -1133) T) ((-117 . -1133) T) ((-991 . -1238) T) ((-878 . -1238) T) ((-713 . -23) T) ((-665 . -1238) T) ((-614 . -1286) 14392) ((-614 . -1121) 14342) ((-543 . -864) T) ((-512 . -864) T) ((-326 . -95) 14321) ((-91 . -526) 14254) ((-176 . -374) T) ((-258 . -628) 14052) ((-257 . -628) 13850) ((-326 . -35) 13829) ((-620 . -501) 13763) ((-135 . -23) T) ((-117 . -23) T) ((-985 . -102) T) ((-730 . -1121) T) ((-487 . -501) 13700) ((-419 . -651) 13648) ((-665 . -1059) 13544) ((-977 . -501) 13528) ((-366 . -1079) T) ((-363 . -1079) T) ((-355 . -1079) T) ((-273 . -1079) T) ((-253 . -1079) T) ((-885 . -626) NIL) ((-885 . -625) 13510) ((-1299 . -502) 13491) ((-1298 . -502) 13472) ((-1311 . -21) T) ((-1299 . -625) 13438) ((-1298 . -625) 13404) ((-583 . -1023) T) ((-743 . -738) T) ((-1311 . -25) T) ((-258 . -1070) 13382) ((-257 . -1070) 13360) ((-72 . -1238) T) ((-1163 . -234) 13305) ((-258 . -238) 13257) ((-257 . -238) 13209) ((-1141 . -237) T) ((-40 . -102) T) ((-929 . -1079) T) ((-706 . -911) NIL) ((-1202 . -102) T) ((-129 . -501) 13191) ((-1195 . -738) T) ((-1194 . -738) T) ((-1188 . -738) T) ((-1188 . -803) NIL) ((-1188 . -806) NIL) ((-973 . -102) T) ((-940 . -102) T) ((-884 . -1072) 13178) ((-1147 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-884 . -652) 13165) ((-558 . -625) 13147) ((-486 . -1121) T) ((-350 . -1133) T) ((-176 . -1133) T) ((-329 . -939) 13126) ((-1272 . -729) 12967) ((-886 . -174) T) ((-1251 . -729) 12781) ((-855 . -21) 12733) ((-855 . -25) 12685) ((-250 . -1170) 12669) ((-127 . -526) 12602) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12368) ((-171 . -625) 12350) ((-176 . -23) T) ((-656 . -298) 12327) ((-532 . -34) T) ((-915 . -625) 12309) ((-89 . -1238) T) ((-853 . -625) 12291) ((-820 . -625) 12273) ((-781 . -625) 12255) ((-689 . -625) 12237) ((-245 . -660) 12070) ((-629 . -113) T) ((-1197 . -1121) T) ((-1193 . -1077) 11893) ((-216 . -1238) T) ((-1171 . -1238) T) ((-1146 . -1077) 11736) ((-868 . -1077) 11720) ((-1103 . -864) T) ((-1255 . -630) 11704) ((-1193 . -111) 11513) ((-1146 . -111) 11342) ((-868 . -111) 11321) ((-1245 . -861) T) ((-1261 . -626) NIL) ((-1261 . -625) 11303) ((-354 . -1173) T) ((-869 . -625) 11285) ((-1097 . -296) 11264) ((-1232 . -658) 11174) ((-80 . -1238) T) ((-924 . -1238) T) ((-1224 . -526) 11107) ((-1025 . -928) NIL) ((-1108 . -272) 11091) ((-620 . -296) 11067) ((-1108 . -232) 11051) ((-499 . -1238) T) ((-583 . -625) 11033) ((-487 . -296) 11012) ((-1025 . -660) 10962) ((-529 . -93) T) ((-1024 . -234) 10893) ((-219 . -1238) T) ((-977 . -296) 10845) ((-884 . -102) T) ((-299 . -939) T) ((-829 . -317) 10824) ((-794 . -272) 10808) ((-794 . -232) 10792) ((-933 . -660) 10744) ((-723 . -658) 10694) ((-706 . -736) 10661) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10626) ((-499 . -899) 10608) ((-499 . -901) 10590) ((-486 . -729) 10431) ((-64 . -1238) T) ((-219 . -899) 10413) ((-219 . -901) 10395) ((-619 . -25) T) ((-439 . -660) 10369) ((-1193 . -628) 10138) ((-499 . -1059) 10098) ((-886 . -526) 10010) ((-1146 . -628) 9802) ((-868 . -628) 9720) ((-219 . -1059) 9680) ((-245 . -34) T) ((-1021 . -1121) 9658) ((-592 . -1072) 9645) ((-576 . -1072) 9632) ((-507 . -1072) 9597) ((-1272 . -174) 9528) ((-1251 . -174) 9459) ((-592 . -652) 9446) ((-576 . -652) 9433) ((-507 . -652) 9398) ((-724 . -146) 9377) ((-724 . -148) 9356) ((-130 . -864) T) ((-713 . -132) T) ((-561 . -1238) T) ((-137 . -477) 9333) ((-1168 . -625) 9265) ((-670 . -668) 9249) ((-129 . -296) 9199) ((-117 . -132) T) ((-489 . -1242) T) ((-620 . -616) 9175) ((-487 . -616) 9154) ((-609 . -1121) T) ((-347 . -346) 9123) ((-597 . -1121) T) ((-548 . -1121) T) ((-489 . -568) T) ((-1193 . -1070) T) ((-1146 . -1070) T) ((-868 . -1070) T) ((-835 . -1238) T) ((-245 . -806) 9102) ((-245 . -805) 9081) ((-1193 . -336) 9058) ((-245 . -738) 9036) ((-977 . -19) 9020) ((-499 . -388) 9002) ((-499 . -349) 8984) ((-1146 . -336) 8956) ((-365 . -1295) 8933) ((-219 . -388) 8915) ((-219 . -349) 8897) ((-977 . -616) 8874) ((-1193 . -238) T) ((-1284 . -1121) T) ((-676 . -1121) T) ((-657 . -1121) T) ((-1210 . -1121) T) ((-1108 . -260) 8811) ((-598 . -658) 8771) ((-366 . -1121) T) ((-363 . -1121) T) ((-355 . -1121) T) ((-273 . -1121) T) ((-253 . -1121) T) ((-84 . -1238) T) ((-128 . -102) 8721) ((-122 . -102) 8671) ((-1251 . -526) 8531) ((-1210 . -622) 8510) ((-1162 . -1121) T) ((-1136 . -628) 8491) ((-1101 . -939) 8442) ((-491 . -1121) T) ((-1025 . -806) T) ((-1025 . -803) T) ((-491 . -622) 8421) ((-258 . -807) 8400) ((-258 . -804) 8379) ((-257 . -807) 8358) ((-40 . -1173) NIL) ((-257 . -804) 8337) ((-1025 . -738) T) ((-129 . -19) 8319) ((-992 . -806) T) ((-711 . -1072) 8284) ((-933 . -738) T) ((-929 . -1121) T) ((-907 . -625) 8266) ((-129 . -616) 8241) ((-711 . -652) 8206) ((-91 . -501) 8190) ((-499 . -917) NIL) ((-886 . -300) T) ((-227 . -1077) 8155) ((-848 . -296) 8134) ((-219 . -917) NIL) ((-845 . -1133) 8113) ((-59 . -1121) 8063) ((-531 . -1121) 8041) ((-528 . -1121) 7991) ((-509 . -1121) 7969) ((-508 . -1121) 7919) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7850) ((-370 . -939) T) ((-364 . -939) T) ((-356 . -939) T) ((-227 . -111) 7806) ((-845 . -23) 7758) ((-439 . -738) T) ((-108 . -939) T) ((-40 . -38) 7703) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7662) ((-326 . -464) 7641) ((-323 . -464) T) ((-614 . -526) 7574) ((-419 . -234) 7519) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7383) ((-304 . -21) 7266) ((-45 . -1214) 7245) ((-66 . -625) 7227) ((-55 . -102) T) ((-347 . -658) 7209) ((-1289 . -102) T) ((-1288 . -102) 7139) ((-1280 . -660) 7064) ((-1273 . -660) 6961) ((-45 . -107) 6911) ((-831 . -628) 6895) ((-1252 . -660) 6747) ((-1252 . -928) NIL) ((-1243 . -1238) T) ((-1219 . -625) 6729) ((-1211 . -102) T) ((-1123 . -437) 6713) ((-1123 . -379) 6692) ((-398 . -628) 6676) ((-334 . -628) 6660) ((-1117 . -93) T) ((-1108 . -658) 6570) ((-1084 . -1238) T) ((-1083 . -1077) 6557) ((-1083 . -111) 6542) ((-971 . -111) 6371) ((-971 . -1077) 6214) ((-794 . -658) 6124) ((-792 . -658) 6034) ((-676 . -729) 6018) ((-635 . -1072) 6005) ((-635 . -652) 5992) ((-560 . -864) T) ((-493 . -1077) 5835) ((-489 . -374) T) ((-473 . -658) 5791) ((-466 . -658) 5701) ((-227 . -628) 5651) ((-366 . -729) 5603) ((-363 . -729) 5555) ((-118 . -1072) 5500) ((-355 . -729) 5452) ((-273 . -729) 5301) ((-253 . -729) 5150) ((-1111 . -93) T) ((-1094 . -93) T) ((-118 . -652) 5095) ((-1087 . -93) T) ((-962 . -663) 5079) ((-1078 . -1121) 5057) ((-493 . -111) 4886) ((-1057 . -93) T) ((-1040 . -93) T) ((-962 . -384) 4870) ((-254 . -102) T) ((-982 . -47) 4849) ((-74 . -625) 4831) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1121) T) ((-633 . -1133) T) ((-1109 . -625) 4813) ((-638 . -93) T) ((-1097 . -625) 4795) ((-929 . -729) 4760) ((-127 . -501) 4744) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1238) T) ((-220 . -93) T) ((-620 . -625) 4726) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4708) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4667) ((-523 . -1121) T) ((-519 . -1121) T) ((-122 . -319) 4605) ((-128 . -319) 4543) ((-608 . -660) 4517) ((-607 . -660) 4442) ((-593 . -658) 4392) ((-227 . -1070) T) ((-530 . -658) 4322) ((-1083 . -628) 4294) ((-390 . -1023) T) ((-227 . -248) T) ((-227 . -238) T) ((-862 . -502) 4278) ((-1083 . -630) 4259) ((-977 . -626) 4220) ((-977 . -625) 4132) ((-971 . -628) 3921) ((-862 . -625) 3905) ((-884 . -38) 3892) ((-725 . -628) 3842) ((-1272 . -300) 3793) ((-1251 . -300) 3744) ((-493 . -628) 3529) ((-1141 . -464) T) ((-514 . -861) T) ((-326 . -1160) 3508) ((-1122 . -1238) T) ((-1020 . -148) 3487) ((-1020 . -146) 3466) ((-507 . -319) 3453) ((-1205 . -625) 3435) ((-305 . -1214) 3414) ((-1204 . -625) 3396) ((-1156 . -1238) T) ((-1203 . -625) 3378) ((-885 . -1077) 3323) ((-489 . -1133) T) ((-140 . -847) 3305) ((-115 . -847) 3286) ((-1224 . -501) 3270) ((-1083 . -1070) T) ((-635 . -102) T) ((-982 . -1238) T) ((-971 . -1070) T) ((-258 . -379) 3249) ((-257 . -379) 3228) ((-885 . -111) 3157) ((-305 . -107) 3107) ((-131 . -625) 3089) ((-129 . -626) NIL) ((-129 . -625) 3033) ((-118 . -102) T) ((-747 . -1238) T) ((-727 . -1238) T) ((-489 . -23) T) ((-465 . -1238) T) ((-493 . -1070) T) ((-1083 . -238) T) ((-971 . -336) 3002) ((-40 . -919) 2911) ((-493 . -336) 2868) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2779) ((-253 . -174) 2690) ((-982 . -1059) 2586) ((-529 . -502) 2567) ((-747 . -1059) 2538) ((-529 . -625) 2504) ((-430 . -1238) T) ((-1126 . -102) T) ((-1113 . -625) 2463) ((-1055 . -625) 2445) ((-706 . -1072) 2395) ((-1301 . -152) 2379) ((-1299 . -628) 2360) ((-1298 . -628) 2341) ((-1293 . -625) 2323) ((-1280 . -738) T) ((-706 . -652) 2273) ((-1273 . -738) T) ((-1252 . -803) NIL) ((-1252 . -806) NIL) ((-171 . -1077) 2183) ((-929 . -174) T) ((-885 . -628) 2113) ((-1252 . -738) T) ((-1024 . -353) 2087) ((-225 . -658) 2039) ((-1021 . -526) 1972) ((-855 . -861) 1951) ((-576 . -1173) T) ((-486 . -300) 1902) ((-608 . -738) T) ((-372 . -625) 1884) ((-332 . -625) 1866) ((-430 . -1059) 1762) ((-607 . -738) T) ((-419 . -861) 1713) ((-171 . -111) 1609) ((-845 . -132) 1561) ((-1288 . -319) 1499) ((-749 . -152) 1483) ((-983 . -864) 1382) ((-827 . -864) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1031) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1043) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1043) T) ((-885 . -1070) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -928) 1023) ((-1312 . -1133) T) ((-322 . -1238) T) ((-1261 . -1077) 846) ((-869 . -1077) 830) ((-885 . -248) T) ((-885 . -238) NIL) ((-701 . -1238) T) ((-1312 . -23) T) ((-828 . -660) 719) ((-562 . -1238) T) ((-430 . -349) 703) ((-583 . -1077) 690) ((-1261 . -111) 499) ((-713 . -651) 481) ((-869 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1210 . -526) 30) ((-890 . -1121) T) ((-693 . -1121) T) ((-688 . -1121) T) ((-674 . -1121) T)) \ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index ed1af87e..8aff76dc 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3486815900) -(4466 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3486820625) +(4467 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -313,7 +313,7 @@ |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| - |OrderedSet| |OrderedType&| |OrderedType| + |OrderedSet| |OrderedStructure| |OrderedType&| |OrderedType| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| @@ -488,668 +488,660 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |stop| |exponential| |sin?| |leftTrim| |newLine| - |optional?| |linearDependence| |Is| |divergence| |infiniteProduct| - |fortranReal| |divisors| |moebius| |reciprocalPolynomial| - |getExplanations| |sincos| |fortranLiteral| - |purelyAlgebraicLeadingMonomial?| |isOp| |reverseLex| - |integralRepresents| |nodeOf?| |normalizedAssociate| |iisin| |prime| - |d03eef| |magnitude| |newTypeLists| |hessian| |genericRightNorm| - |isAnd| |neglist| |c05pbf| |OMputAtp| |f04maf| |createThreeSpace| - |float?| |mapCoef| |inf| |mantissa| |splitDenominator| |stirling2| - |stopTableInvSet!| |tableau| |hermiteH| |isImplies| |list?| |iomode| - |readBytes!| |cSec| |complexNumeric| |getProperties| |paraboloidal| - |numericIfCan| |outputSpacing| |complement| |sequence| |lintgcd| - |perfectSquare?| |badValues| |fullPartialFraction| |power!| - |replaceKthElement| |internalSubPolSet?| |countRealRoots| |getCurve| - |inrootof| |airyAi| |kernels| |paren| |acothIfCan| |normalDeriv| - |euclideanGroebner| |gcdcofactprim| |incrementKthElement| |split!| - |pdf2ef| |primitivePart!| |KrullNumber| |operator| |heapSort| - |mapExpon| |conjug| |rightRank| |printTypes| |countRealRootsMultiple| - |f04mbf| |groebner?| |OMgetString| |coefficients| |addmod| |e04naf| - |c06gcf| |f01brf| |mainContent| |e02ajf| |varList| |unexpand| - |tValues| |univariate| |arg1| |iFTable| |computePowers| |dmpToP| - |redmat| |mpsode| |LiePolyIfCan| |reduceBasisAtInfinity| |critMTonD1| - |hasoln| |arg2| |interpretString| |nary?| |generalTwoFactor| - |alphabetic| |numericalIntegration| |dictionary| Y |findBinding| - |kmax| |elem?| |shiftRight| |internalIntegrate0| |closeComponent| - |patternMatch| |graphState| |callForm?| |measure2Result| |lexGroebner| - |factor| |discriminant| |normalise| |conditions| |applyRules| - |exprHasAlgebraicWeight| |goto| |rootDirectory| |critT| - |genericLeftTrace| |bit?| |dequeue!| |sqrt| |blue| |match| - |basisOfNucleus| |mapUnivariate| |unrankImproperPartitions0| - |makeViewport2D| |s17agf| |balancedFactorisation| |symmetricSquare| - |mathieu12| |real| |index?| |generic?| |halfExtendedSubResultantGcd2| - |tubePointsDefault| |tree| |getGraph| |rootOf| |interactiveEnv| - |rewriteIdealWithQuasiMonicGenerators| |imag| |outlineRender| - |invertIfCan| |graphs| |viewDeltaYDefault| |s18adf| |usingTable?| - |signatureAst| |directProduct| |removeRoughlyRedundantFactorsInPols| - |monomialIntPoly| |rationalPower| |exponent| |currentCategoryFrame| - |linearDependenceOverZ| |symbolIfCan| |OMgetFloat| |pointColorPalette| - |doubleResultant| |options| |SFunction| |stoseInvertible?reg| - |polyred| |explogs2trigs| |PDESolve| |clearFortranOutputStack| - |fortranComplex| |fortranLogical| |BasicMethod| |getGoodPrime| - |factorset| |brace| |c02agf| |insertMatch| |cot2trig| |tablePow| - |leftGcd| |eigenvalues| |showTheRoutinesTable| |airyBi| |destruct| - |stoseInvertibleSet| |upperCase| |extract!| |integralBasis| - |antiCommutative?| |d01gaf| |jordanAdmissible?| |roughBasicSet| - |string| |copy!| |OMputEndObject| |firstDenom| |hdmpToDmp| |repeating| - |solveid| |s20adf| |symmetric?| |bandedJacobian| - |degreeSubResultantEuclidean| |explicitEntries?| |backOldPos| - |OMputObject| |freeOf?| |cTan| |macroExpand| |insertBottom!| |plus| - |eq?| |OMputEndApp| |part?| |convert| |frobenius| |less?| - |polarCoordinates| |OMencodingBinary| |postfix| |terms| - |partialFraction| |monomial| |realEigenvectors| |exprToUPS| - |removeRoughlyRedundantFactorsInContents| |palginfieldint| |rk4qc| - |identityMatrix| |ptree| |collect| |multivariate| |extractIfCan| - |simplifyExp| |flatten| |identification| |mightHaveRoots| |linGenPos| - |showIntensityFunctions| |linearAssociatedExp| |eulerE| |times| - |variables| |var2StepsDefault| |iiacos| |opeval| |startTable!| - |noLinearFactor?| |setOrder| |odd?| |primextendedint| |froot| - |transpose| |exprHasWeightCosWXorSinWX| |trapezoidalo| |close| - |localReal?| |selectPolynomials| |linSolve| |iidsum| - |drawComplexVectorField| |dAndcExp| |innerint| |safeCeiling| - |leftPower| |yCoord| |gradient| |hasTopPredicate?| |simplify| - |setPredicates| |rightZero| |shuffle| |display| |squareTop| |orbits| - |expr| |ldf2lst| |monom| |palgextint| |initiallyReduce| |untab| - |constantIfCan| |totalLex| |univariatePolynomial| |eyeDistance| - |integralBasisAtInfinity| |plotPolar| |taylor| |viewDefaults| - |numberOfIrreduciblePoly| |singularitiesOf| - |factorSquareFreeByRecursion| |expintegrate| |FormatArabic| |iiacsch| - |problemPoints| |randomR| |laurent| |symmetricGroup| |quotedOperators| - |subNodeOf?| |e01daf| |numberOfImproperPartitions| |common| |module| - |leftExtendedGcd| |puiseux| |leftTraceMatrix| |deepestInitial| - |tubeRadiusDefault| |basisOfRightNucleus| |stopTable!| |variable| - |selectODEIVPRoutines| |max| |clearTheSymbolTable| |dimension| - |showSummary| |jordanAlgebra?| |input| |numberOfFractionalTerms| - |compose| |outerProduct| |Hausdorff| |iterators| |getMeasure| |iiperm| - |inv| |extractProperty| |branchPoint?| |powerAssociative?| |library| - |remove!| |in?| |selectFiniteRoutines| |enterInCache| |fracPart| - |ground?| |setAdaptive| |determinant| |littleEndian| |is?| |any?| |id| - |clipWithRanges| |ground| |irDef| |initializeGroupForWordProblem| - |value| |OMputBind| |optimize| |resetVariableOrder| |doubleRank| - |exportedOperators| |element?| |lo| |sumSquares| |algDsolve| - |leadingMonomial| |internalAugment| |lflimitedint| |sub| |UP2ifCan| - |showAttributes| |hspace| |wholePart| |setProperties| - |stiffnessAndStabilityOfODEIF| |laguerreL| |leadingCoefficient| - |exponents| |f02bbf| |asimpson| |zeroDimPrime?| |lifting1| |sort!| - |assert| |submod| |rangePascalTriangle| |s14aaf| |cyclicParents| - |algintegrate| |cycle| |extractTop!| |positiveRemainder| |pr2dmp| - |rdregime| |validExponential| |meatAxe| |errorInfo| |mathieu24| - |laurentRep| |logical?| |ODESolve| |makeSeries| |exprToXXP| - |lowerCase| |reduceLODE| |UpTriBddDenomInv| |slex| GF2FG - |restorePrecision| |sqfree| |close!| |constant?| |presuper| |escape| - |atanIfCan| |rightCharacteristicPolynomial| |factors| |makeFR| - |iprint| |selectMultiDimensionalRoutines| |first| |enqueue!| |nullary| - |squareFreeFactors| |numberOfMonomials| |linearPart| |makingStats?| - |vectorise| |infRittWu?| |rest| |ode1| |createZechTable| |rk4a| - |inverseLaplace| |hex| |minPoints| |nthFlag| |shiftRoots| |f07fdf| - |OMsetEncoding| |radicalSimplify| |lhs| |moebiusMu| |cross| |exptMod| - |f07fef| |copies| |antisymmetric?| |lepol| |rhs| |outputAsScript| - |constructor| |seriesToOutputForm| |mathieu22| |tubePlot| - |cycleSplit!| |bezoutResultant| |errorKind| |subst| - |absolutelyIrreducible?| |leftRecip| |supRittWu?| - |constantToUnaryFunction| |square?| |computeBasis| |s13aaf| - |currentEnv| |pointData| |f04atf| |polyRDE| |putGraph| |overlabel| - |hasSolution?| |fixPredicate| |LyndonBasis| |supersub| |youngGroup| - |dimensionsOf| |halfExtendedSubResultantGcd1| |padecf| |vconcat| - |createLowComplexityTable| |redPo| |generateIrredPoly| - |resultantEuclideannaif| |monic?| |varselect| |indicialEquations| - |pastel| |associatedSystem| |logGamma| |rationalApproximation| |li| - |OMgetApp| |hclf| |e02dcf| |midpoints| |ref| |increase| - |makeYoungTableau| |hyperelliptic| |rdHack1| |generic| - |toseSquareFreePart| |cyclic| |e04jaf| |leftScalarTimes!| |OMopenFile| - |f01ref| |fortranTypeOf| |ldf2vmf| |setDifference| |leftNorm| - |consnewpol| |aromberg| |rootRadius| |lifting| |bivariateSLPEBR| - |countable?| |approximants| |redPol| |pointColorDefault| |objects| - |evenInfiniteProduct| |unparse| |prem| |nextItem| |cSin| |over| - |OMputString| |primeFactor| |collectQuasiMonic| |base| |debug3D| - |scalarMatrix| |aQuadratic| |s21bdf| |rotate| |randnum| |solveRetract| - |factorGroebnerBasis| |secIfCan| |euclideanNormalForm| |root?| - |degree| |bat1| |tryFunctionalDecomposition?| |trapezoidal| - |leftTrace| |setEpilogue!| |removeSquaresIfCan| |real?| - |skewSFunction| |clipPointsDefault| |unitNormal| |prefixRagits| |type| - |c06gbf| |factorSFBRlcUnit| |contractSolve| |rem| |monomials| |plus!| - |map!| |parabolicCylindrical| |conical| |c06fqf| |setVariableOrder| - |readLine!| |multiset| |quo| |mesh?| |addPoint| - |stripCommentsAndBlanks| |difference| |qsetelt!| |computeCycleEntry| - |makeMulti| |dim| |addiag| |leadingSupport| |fractionPart| - |setMinPoints3D| |extractSplittingLeaf| |Ci| |intChoose| - |branchPointAtInfinity?| |inc| |test| |width| |withPredicates| - |readInt32!| |scan| |checkForZero| |ideal| |binaryFunction| - |normDeriv2| |nthr| |div| |lllp| |conjugates| |csch2sinh| |bringDown| - |palglimint| |empty?| |roughSubIdeal?| |tryFunctionalDecomposition| - |testDim| |hermite| |imagj| |exquo| RF2UTS |cyclePartition| - |squareFreePolynomial| |biRank| |legendre| |finite?| |infinite?| - |createIrreduciblePoly| ~= |eigenMatrix| |lllip| |SturmHabicht| - |setCondition!| |deleteRoutine!| |pattern| |makeGraphImage| |iibinom| - |optpair| |associative?| |firstUncouplingMatrix| |alphanumeric?| - |nextNormalPoly| |OMgetEndError| |f01rcf| |#| |findConstructor| - |acsch| |morphism| |charthRoot| |leadingBasisTerm| |divisor| - |atrapezoidal| |table| |character?| |leftLcm| |algebraicCoefficients?| - ~ |nextPrime| |rational| |localUnquote| |createPrimitiveElement| - |reopen!| |singRicDE| |rules| |factorPolynomial| |new| |sparsityIF| - |delta| |prefix| |clearTable!| |before?| |returnType!| |obj| - |sylvesterMatrix| |previous| |quasiComponent| |isTimes| - |completeEchelonBasis| |s15aef| |cyclic?| |lyndonIfCan| |diff| - |mapMatrixIfCan| |limitedint| |swapRows!| |cache| |message| - |OMgetAttr| |optional| |cycles| |numberOfComponents| |dihedral| - |tRange| |complexLimit| |selectAndPolynomials| |atanhIfCan| |/\\| - |ddFact| |find| |interReduce| |rischNormalize| |irVar| |euclideanSize| - |antiCommutator| |space| |leftDivide| |lazyVariations| |\\/| - |characteristicSet| |selectSumOfSquaresRoutines| |pop!| |readByte!| - |SturmHabichtMultiple| |bipolar| |invmod| |rightScalarTimes!| - |BumInSepFFE| |generalizedContinuumHypothesisAssumed?| |writeBytes!| - |latex| |corrPoly| |clipParametric| |s20acf| |iiacot| |cschIfCan| - |search| |bag| |blankSeparate| |clip| |tableForDiscreteLogarithm| - |infLex?| |cosSinInfo| |s18dcf| |augment| |f01qdf| |f01qef| |e01bgf| - |wordInGenerators| |pointSizeDefault| |constDsolve| |rightFactorIfCan| - |ratDenom| |minIndex| |binaryTournament| |bat| |exprToGenUPS| |deref| - |lambda| |isNot| |lazyGintegrate| |safeFloor| |complexEigenvectors| - |curveColorPalette| |f07adf| |unitNormalize| |invmultisect| - |zeroDimPrimary?| |binaryTree| |fractRadix| |triangular?| - |showScalarValues| |lyndon| |functionIsFracPolynomial?| |transform| - |upDateBranches| |zeroOf| |e04dgf| |mkAnswer| |OMgetSymbol| FG2F - |drawStyle| |complexEigenvalues| |numberOfHues| |arbitrary| - |matrixConcat3D| |capacity| |left| |iiasinh| |pack!| |c02aff| - |changeBase| |level| |create| |doubleDisc| |structuralConstants| - |evenlambert| |right| |recoverAfterFail| |c05nbf| |getOperator| - |f02adf| |printHeader| |algint| F |elaborateFile| |finiteBound| - |lookupFunction| |rotatez| |bright| |position!| |extractIndex| - |basisOfRightNucloid| |addPointLast| |acoshIfCan| |trueEqual| - |setClipValue| |lazyPquo| |increment| |upperCase!| |push!| - |internalDecompose| |more?| |sh| |separate| |nextLatticePermutation| - |createPrimitivePoly| |readable?| |createGenericMatrix| |setValue!| - |eval| |merge| |resetNew| |select!| |ranges| |sayLength| - |nextIrreduciblePoly| |outputFloating| |eulerPhi| |cAsec| - |lazyPseudoRemainder| |zero| |exp| |reducedContinuedFraction| - |sumOfSquares| |outputArgs| |OMlistCDs| - |semiIndiceSubResultantEuclidean| |uniform01| |style| |e04mbf| - |maxPoints3D| |roman| |quadraticNorm| |extendedResultant| |prod| - |ParCondList| |leftZero| |normalized?| |number?| |complexExpand| |And| - |nullSpace| |error| |solveLinearPolynomialEquationByRecursion| - |sturmVariationsOf| |setMaxPoints3D| |middle| |axes| |modulus| - |inRadical?| |laurentIfCan| |mapUp!| |Or| |moduleSum| - |radicalEigenvectors| |cCot| |prepareSubResAlgo| |imagi| |isPower| - |binary| |e02zaf| |nextPrimitiveNormalPoly| |Not| |curveColor| - |leftReducedSystem| |size| |push| |exponentialOrder| |argumentListOf| - |relativeApprox| |outputForm| |setLegalFortranSourceExtensions| - |rightTraceMatrix| |c06fpf| |nullary?| |createNormalElement| |notelem| - |cAcos| |nthFractionalTerm| |anticoord| |randomLC| |critB| |row| - |dflist| |symbol| |critBonD| |f04mcf| |cycleElt| |Nul| |positiveSolve| - |maxint| |rightExtendedGcd| |pdf2df| |alternatingGroup| |f02fjf| - |expression| |attributeData| |flexible?| |mvar| |OMputEndAttr| - |substring?| |elseBranch| |cartesian| |leftFactorIfCan| - |systemCommand| |key| |OMReadError?| |lighting| |innerSolve1| - |integer| |double| |clearTheFTable| |htrigs| |getCode| - |processTemplate| |elRow1!| |dn| |basisOfRightAnnihilator| - |palglimint0| |certainlySubVariety?| |compBound| |euler| - |subResultantGcd| |suffix?| |expandLog| |hconcat| |OMgetEndApp| - |upperBound| |filename| |resetBadValues| |nlde| |userOrdered?| - |duplicates?| |readLineIfCan!| |OMgetBVar| |Frobenius| |charpol| - |completeHensel| |isOpen?| |setFormula!| |powern| |RittWuCompare| - |functionIsContinuousAtEndPoints| |trace2PowMod| |innerEigenvectors| - |isPlus| |prefix?| |defineProperty| |localIntegralBasis| - |leadingIdeal| |s17aef| |null| |parse| |one?| |OMencodingUnknown| - |alternative?| |radicalEigenvector| |e04gcf| |loopPoints| |unary?| - |functionIsOscillatory| |initial| |intPatternMatch| - |exteriorDifferential| |not| |lex| |sPol| |iteratedInitials| - |initTable!| |node| |lieAdmissible?| |s15adf| |bitLength| |ratPoly| - |fillPascalTriangle| |logpart| |and| |surface| |OMgetEndAttr| - |leftOne| |removeCoshSq| |writeInt8!| |rischDE| |retract| |iiatanh| - |comparison| |null?| |distdfact| |or| |generalInfiniteProduct| - |continuedFraction| |declare!| |nextSubsetGray| |addMatch| |qfactor| - |chiSquare| |getIdentifier| |normalDenom| |commaSeparate| - |exponential1| |delete| |cRationalPower| |startStats!| |size?| - |c06ekf| |iicsch| |reseed| |associatorDependence| |reorder| - |purelyAlgebraic?| |box| |integer?| |generalizedEigenvectors| - |poisson| |putColorInfo| |infix?| |basicSet| |keys| |setStatus| - |recolor| |minimalPolynomial| |rename| |integers| - |partialDenominators| ** |e04ucf| |shallowCopy| |mask| |commutator| - |ratDsolve| |viewWriteDefault| |sizeMultiplication| |cAcsch| - |LazardQuotient| |crest| |writable?| |predicate| |sdf2lst| - |irreducibleFactors| |optAttributes| |cExp| |squareFreePrim| - |identitySquareMatrix| |d01aqf| |unit?| |sort| |ipow| - |linearlyDependent?| |d02cjf| |leftFactor| |writeLine!| - |internalIntegrate| |ScanRoman| |tubeRadius| |abs| |d01ajf| |sup| - |transcendent?| |eof?| |groebner| |reducedForm| |ode| |lieAlgebra?| - |trivialIdeal?| |gensym| |simplifyLog| |iisqrt3| |segment| |iisqrt2| - |initials| |minimize| |deepCopy| |weakBiRank| |schwerpunkt| |headAst| - |index| |OMencodingXML| |OMencodingSGML| |tanh2trigh| |mainKernel| - |s21baf| |reindex| |nthRootIfCan| |hypergeometric0F1| - |generalizedInverse| |updateStatus!| |measure| |mainVariable?| |map| - |convergents| |primintfldpoly| |createMultiplicationMatrix| - |rightUnit| |outputMeasure| |oddintegers| |polCase| |stoseInvertible?| - |belong?| |pow| |startTableGcd!| |void| |environment| |gcdprim| - |printCode| |permanent| |closedCurve?| |equation| |setClosed| - |zeroVector| |prime?| |parseString| |jacobi| |SturmHabichtSequence| - |pair| |aspFilename| |degreeSubResultant| |dihedralGroup| - |showClipRegion| |printStatement| F2FG |support| |dominantTerm| - |LyndonCoordinates| |rightDivide| |OMunhandledSymbol| |maxrank| - |limit| |numerator| |mdeg| |connectTo| |bsolve| - |eisensteinIrreducible?| |genericPosition| |groebnerIdeal| |iifact| - |asecIfCan| |reducedDiscriminant| |expandPower| |complexSolve| - |parameters| |OMgetType| |pair?| |simpleBounds?| |multiEuclidean| - |repSq| |linearlyDependentOverZ?| |prinshINFO| |tab1| - |intermediateResultsIF| |divideIfCan| |log10| - |removeRedundantFactorsInContents| |sec2cos| |OMbindTCP| - |numberOfVariables| |createPrimitiveNormalPoly| |alphabetic?| |say| - |mainCoefficients| |stoseInvertible?sqfreg| - |dimensionOfIrreducibleRepresentation| |d02bhf| SEGMENT |decompose| - |initiallyReduced?| |e01sbf| |stoseInternalLastSubResultant| - |whatInfinity| |jacobiIdentity?| |e02baf| |parametric?| |expIfCan| - |monicRightFactorIfCan| |datalist| |recur| |viewpoint| - |genericLeftMinimalPolynomial| |OMserve| |c06ecf| |reset| - |characteristicSerie| |reify| |d03edf| |associatedEquations| |zerosOf| - |cotIfCan| |node?| |denominator| |setOfMinN| |csubst| - |monicCompleteDecompose| |genericLeftNorm| |partitions| |df2mf| - |makeSUP| |generalizedEigenvector| |stopMusserTrials| - |conditionsForIdempotents| |failed| |setright!| |schema| - |doubleFloatFormat| |setColumn!| |write| |choosemon| |extractClosed| - |lfintegrate| |linearPolynomials| |mathieu11| |primintegrate| - |addBadValue| |argumentList!| |expandTrigProducts| |generator| - |isEquiv| |rotatey| |save| |insertTop!| |subSet| |ReduceOrder| - |extractPoint| |pascalTriangle| |fill!| |leftMinimalPolynomial| - |normalElement| |subtractIfCan| |shufflein| |component| - |physicalLength!| |brillhartIrreducible?| |contours| |basisOfCentroid| - |setUnion| |setStatus!| |genericLeftTraceForm| |zeroDimensional?| - |subResultantGcdEuclidean| |rotatex| |diagonalProduct| |exprex| - |linear?| |patternVariable| |coHeight| |lyndon?| |OMputSymbol| - |boundOfCauchy| |harmonic| |bivariate?| |noncommutativeJordanAlgebra?| - |nilFactor| |e02akf| |integralLastSubResultant| |linearAssociatedLog| - |acscIfCan| |normal?| |pade| |rightNorm| |FormatRoman| |leastPower| - |ord| |d03faf| |currentScope| |superscript| |distFact| |triangulate| - |generalizedContinuumHypothesisAssumed| |cap| |nil| |bumprow| - |changeWeightLevel| |addPoint2| |intensity| |controlPanel| |log| - |perfectNthRoot| |subResultantsChain| |readInt8!| |clipSurface| - |getMultiplicationMatrix| |diagonal?| |primitive?| - |leadingCoefficientRicDE| |ParCond| |companionBlocks| |d01bbf| - |resultantnaif| |polar| |topFortranOutputStack| |definingInequation| - |birth| |getMultiplicationTable| |c06frf| |setIntersection| - |showAllElements| |selectsecond| |viewThetaDefault| |critMonD1| - |commutative?| |float| |conjugate| |parametersOf| |f02agf| - |particularSolution| |makeSin| |fortranDoubleComplex| - |minimumExponent| |changeVar| |approximate| |f04qaf| |normal01| - |green| |weierstrass| |iidprod| |norm| |complex| |apply| - |subQuasiComponent?| |tanNa| |imagI| |mainVariable| |startPolynomial| - |incr| |bezoutMatrix| |palgextint0| |inverse| |fortranInteger| - |conjunction| |constantOperator| |setLength!| |pushup| |scale| - |constant| |overlap| |hi| |nonLinearPart| |mainPrimitivePart| |arity| - |ceiling| |times!| |s19aaf| |fprindINFO| |resultantEuclidean| - |cyclicEntries| |makeViewport3D| |distribute| |rootProduct| - |kroneckerDelta| |partialNumerators| |ksec| |prinpolINFO| - |internalInfRittWu?| |bothWays| |numer| |gramschmidt| - |encodingDirectory| |cSech| |positive?| |logIfCan| |entries| - |rightFactorCandidate| |iicot| |normalizeAtInfinity| |c06gsf| |denom| - |traverse| |digit?| |leftRemainder| |compound?| |clearTheIFTable| - |s01eaf| |evaluateInverse| |contract| |sinhIfCan| |formula| |lift| - |updatD| |intersect| |rightPower| |sech2cosh| |integralMatrix| - |iiacsc| |s14baf| |po| |B1solve| |showTheIFTable| |subresultantVector| - |exQuo| |reduce| |pi| |simpsono| |disjunction| |trunc| |slash| - |lastSubResultantElseSplit| |setTopPredicate| GE |mergeFactors| - |nthExpon| |shade| |standardBasisOfCyclicSubmodule| |infinity| - |rightLcm| |truncate| |multiEuclideanTree| |totalDifferential| - |oddlambert| |mapUnivariateIfCan| GT |subMatrix| |d01alf| - |integralMatrixAtInfinity| |OMsupportsCD?| |buildSyntax| - |multiplyExponents| |realRoots| |setPrologue!| |f02aaf| |mapdiv| LE - |iiacoth| |rowEchLocal| |insertRoot!| |rationalPoints| |precision| - |nrows| |invertible?| |viewPhiDefault| |pushdterm| |diagonalMatrix| - |isList| |alternating| LT |concat| |rightQuotient| |generators| |pol| - |nthRoot| |leftRank| |ncols| |bottom!| |kernel| |wreath| |e01baf| - |child?| |highCommonTerms| |duplicates| |tanSum| |updatF| |insert!| - |integerBound| |fglmIfCan| |list| |d01amf| |diophantineSystem| - |clikeUniv| |realEigenvalues| |entry?| |taylorIfCan| |presub| - |unitVector| |draw| |outputFixed| |imagE| |groebSolve| - |expextendedint| |useSingleFactorBound?| |perfectSqrt| - |shanksDiscLogAlgorithm| |f04jgf| |extractBottom!| |floor| |pureLex| - |monomRDE| |OMgetBind| |permutationRepresentation| - |indicialEquationAtInfinity| |setprevious!| |vark| |normInvertible?| - |fortran| |cyclicCopy| |elements| |factorSquareFree| |polynomial| - |imports| |point| |cycleEntry| |solid| |zeroSetSplit| |rarrow| - |remove| |hasHi| |var1Steps| |realElementary| |toScale| |equiv| - |listexp| |polygon| |accuracyIF| |getMatch| |complementaryBasis| - |OMputInteger| |lazyPrem| |lSpaceBasis| |stoseInvertibleSetsqfreg| - |SturmHabichtCoefficients| |points| |lfextlimint| |karatsubaDivide| - |makeObject| |iiabs| |cAsin| |singular?| |s19acf| |iiasin| |last| - |ricDsolve| |lp| |singleFactorBound| |viewPosDefault| |prinb| - |inverseColeman| |byte| |HenselLift| |fortranLinkerArgs| |cycleRagits| - |series| |coef| |nthExponent| |fTable| |assoc| |fixedPoint| |sin2csc| - |modifyPoint| |epilogue| |weight| |nextPrimitivePoly| - |resetAttributeButtons| |mapDown!| |discriminantEuclidean| - |packageCall| |curry| |reduced?| |univariate?| |quote| - |removeRedundantFactors| |selectfirst| |multisect| - |leftRegularRepresentation| |ListOfTerms| |pile| |laguerre| - |createLowComplexityNormalBasis| |leaf?| |crushedSet| |tensorProduct| - |elaborate| |irreducibleFactor| |prolateSpheroidal| |light| - |polyRicDE| |cos2sec| |rightAlternative?| |c06fuf| |sturmSequence| - |isQuotient| |numberOfChildren| |changeName| |maxColIndex| |cup| - |entry| |min| |lastSubResultantEuclidean| |parabolic| |OMmakeConn| - |besselK| |makeUnit| |firstSubsetGray| |bernoulliB| |digits| |psolve| - |any| |OMputAttr| |extendIfCan| |primextintfrac| |perspective| - |rightMult| |rootPoly| |strongGenerators| |OMcloseConn| - |quasiAlgebraicSet| |range| |showAll?| |f02abf| - |resultantReduitEuclidean| |possiblyNewVariety?| |OMputEndBVar| - |exprHasLogarithmicWeights| |leftMult| |df2fi| |prologue| - |pmComplexintegrate| |rationalIfCan| |semiLastSubResultantEuclidean| - |rowEchelon| |virtualDegree| |rationalFunction| |critpOrder| - |rightRecip| |representationType| |integrate| |fixedPoints| - |cyclicGroup| |oneDimensionalArray| |roughBase?| |rootSplit| - |lowerCase?| |function| |height| |script| |printingInfo?| |vspace| - |sechIfCan| |computeCycleLength| |s21bbf| |infinityNorm| |remainder| - |option?| |directory| |setnext!| |cAcosh| |lowerBound| - |rightExactQuotient| |atoms| |inputOutputBinaryFile| |findCycle| - |numerators| |removeZeroes| |e04ycf| |subresultantSequence| |child| - |returnTypeOf| |inspect| |cot2tan| |factorial| |solveLinear| - |retractIfCan| |OMUnknownSymbol?| |ignore?| |LazardQuotient2| - |universe| |removeRedundantFactorsInPols| |extension| |iipow| - |fortranCompilerName| |tex| |meshPar1Var| |makeop| |baseRDE| - |OMgetEndObject| |semiResultantReduitEuclidean| |call| |makeEq| - |viewDeltaXDefault| |infix| |gderiv| |cyclotomicDecomposition| - |numeric| |qualifier| |linearAssociatedOrder| |subNode?| |thetaCoord| - |startTableInvSet!| |seed| |e04fdf| |readUInt8!| |definingEquations| - |radical| |dmpToHdmp| |routines| |chvar| |top| |adjoint| |expint| - |univariatePolynomialsGcds| |OMUnknownCD?| |iisec| |label| |edf2df| - |elliptic| |d02gaf| |halfExtendedResultant1| |continue| - |repeatUntilLoop| |cAsech| |monicDecomposeIfCan| UP2UTS - |stoseIntegralLastSubResultant| |radicalRoots| |dimensions| |f2df| - |preprocess| |shiftLeft| |lambert| |OMgetObject| |lprop| |localAbs| - |extendedIntegrate| EQ |d02raf| |unknownEndian| |f02ajf| |credPol| - |symmetricTensors| |unknown| |mainValue| |realZeros| |direction| - |lquo| |sn| |trailingCoefficient| |mainVariables| |computeInt| - |matrixDimensions| |bitTruth| |ip4Address| |invertibleSet| |status| - |edf2fi| |sorted?| |UnVectorise| |listOfLists| |minPoly| |printInfo!| - |GospersMethod| |characteristicPolynomial| |functorData| |external?| - |increasePrecision| |lazyEvaluate| |c06eaf| |lcm| |LyndonWordsList| - |extendedint| |setvalue!| |rspace| |conditionP| |elliptic?| |s13adf| - |goodPoint| |medialSet| |printInfo| |principalIdeal| |deriv| - |normalForm| |setref| |palgLODE| |maximumExponent| |denominators| - |groebnerFactorize| |tail| |octon| |dualSignature| |att2Result| - |append| |viewSizeDefault| |cyclotomicFactorization| |twist| - |lazyIntegrate| |s21bcf| |weighted| |unmakeSUP| - |selectIntegrationRoutines| |length| |digit| |option| - |quasiMonicPolynomials| |associates?| |cyclicSubmodule| |symFunc| - |gcd| |hash| |subscript| |declare| |delay| |category| |separant| - |besselY| |listYoungTableaus| |triangSolve| |scripts| |count| - |makeTerm| |d02gbf| |getVariableOrder| |false| |fibonacci| |mapSolve| - |domain| |root| |setrest!| |weights| |rischDEsys| |chineseRemainder| - |rightMinimalPolynomial| |pointLists| |f02wef| |debug| - |roughEqualIdeals?| |currentSubProgram| |package| |iitanh| |monomial?| - |OMgetEndAtp| |stFunc1| |largest| |iilog| |normalizedDivide| - |OMreceive| |qqq| |changeMeasure| D |complexNormalize| |coerceImages| - |patternMatchTimes| |rootNormalize| |karatsubaOnce| |iisech| |modTree| - |squareFree| |denomRicDE| |aCubic| |bfKeys| |zero?| |brillhartTrials| - |pdct| |musserTrials| |listConjugateBases| |toseInvertibleSet| - |domainTemplate| |connect| |definingPolynomial| |endSubProgram| - |solve| |mindegTerm| |socf2socdf| |critM| |nextsubResultant2| - |removeZero| |distance| |makeCos| |semiDiscriminantEuclidean| - |prevPrime| |center| |d01asf| |subCase?| |decimal| - |solveLinearPolynomialEquationByFractions| |uncouplingMatrices| - |s18acf| |solve1| |s18aff| |leastMonomial| |negative?| |mkIntegral| - |radix| |genericRightTrace| |f02bjf| |closed| |simpson| - |LyndonWordsList1| |phiCoord| |decreasePrecision| |permutation| - |flexibleArray| |operators| |graphImage| |curryLeft| |bracket| |cCos| - |Vectorise| |splitSquarefree| |f04faf| |quadraticForm| - |viewWriteAvailable| |palgint| |hue| |bindings| |reducedSystem| - |rewriteIdealWithRemainder| |factorsOfCyclicGroupSize| |setsubMatrix!| - |multinomial| |iitan| |identity| |categoryFrame| |interval| - |internalSubQuasiComponent?| |binding| |normalize| |pushNewContour| - |multiplyCoefficients| |limitedIntegrate| |c06gqf| |makeCrit| - |genericRightTraceForm| |associator| |order| |var2Steps| |cAcsc| - |numericalOptimization| |removeSinhSq| |semiSubResultantGcdEuclidean1| - |df2ef| |integralCoordinates| |print| |ode2| |axesColorDefault| - |youngDiagram| |tubePoints| |generalLambert| |factorByRecursion| - |maxdeg| |imagK| |forLoop| |flagFactor| |expPot| |cCsc| |resolve| - |minRowIndex| |basisOfMiddleNucleus| |setfirst!| |dfRange| |directSum| - |headReduced?| |chebyshevU| |condition| |categoryMode| |s17ajf| - |removeSinSq| |inGroundField?| |bfEntry| |minPol| |s17dgf| |power| - |predicates| |chebyshevT| |separateFactors| |gcdcofact| - |lexTriangular| |algebraicDecompose| |setRealSteps| |removeCosSq| - |HermiteIntegrate| |fi2df| |cAcoth| |readUInt16!| |algebraicSort| - |squareFreeLexTriangular| |f02akf| |move| |linkToFortran| - |primitiveMonomials| |summation| |replace| |externalList| |diagonals| - |radicalOfLeftTraceForm| |homogeneous?| |evaluate| |badNum| - |complexElementary| |red| |comment| |removeDuplicates!| |reductum| - |pseudoQuotient| |fixedPointExquo| |setLabelValue| |traceMatrix| - |equality| |partialQuotients| |complex?| |raisePolynomial| |linear| - |ptFunc| |LiePoly| |factorFraction| |trigs2explogs| |abelianGroup| - |step| |reduceByQuasiMonic| |meshFun2Var| |dmp2rfi| |btwFact| |s17dcf| - |compactFraction| |algebraic?| |sumOfDivisors| |polygamma| - |discreteLog| |mergeDifference| |charClass| |toseLastSubResultant| - |whileLoop| |adaptive3D?| |palgintegrate| |fortranCarriageReturn| - |contains?| |createRandomElement| |setAttributeButtonStep| - |splitNodeOf!| |OMreadStr| |makeResult| |systemSizeIF| |appendPoint| - |sum| |pseudoRemainder| |padicallyExpand| |rubiksGroup| |revert| - |lexico| |OMParseError?| |zeroDim?| |redpps| - |genericRightDiscriminant| |setFieldInfo| |selectOptimizationRoutines| - |erf| |tanIfCan| |compdegd| |pole?| |iisinh| |host| |sncndn| |region| - |removeConstantTerm| |acotIfCan| |getConstant| |oblateSpheroidal| - |ramifiedAtInfinity?| |exists?| |cAtanh| |s19abf| |eq| |cosh2sech| - |tan2cot| |numberOfCycles| |subPolSet?| |e02ddf| |shift| |drawComplex| - |insert| |addMatchRestricted| |setAdaptive3D| |basisOfLeftAnnihilator| - |decrease| |iter| |reflect| |figureUnits| |createNormalPoly| |nodes| - |bipolarCylindrical| |ravel| |dilog| |infieldint| |c05adf| |output| - |stronglyReduced?| |leftAlternative?| |parent| |edf2ef| |key?| - |point?| |algebraicOf| |matrix| |setPoly| |sin| - |createNormalPrimitivePoly| |reshape| |variable?| |e02dff| |edf2efi| - |generalPosition| |algSplitSimple| |getZechTable| |knownInfBasis| - |expt| |s17adf| |cos| |concat!| |newReduc| |zCoord| |rightUnits| - |primaryDecomp| |rightGcd| |content| |changeNameToObjf| |reverse!| - |permutations| |tan| |coordinates| |e01bff| |sts2stst| |jokerMode| - |closedCurve| |nextNormalPrimitivePoly| |coordinate| |second| - |prindINFO| |denomLODE| |numberOfFactors| |cn| |cot| |compile| - |listOfMonoms| |quadratic?| |typeLists| |getProperty| |adaptive?| - |complete| |minColIndex| |third| |infieldIntegrate| |squareMatrix| - |pointPlot| |sec| |midpoint| |e02bbf| |ScanFloatIgnoreSpaces| - |primlimitedint| |gcdPolynomial| |approxNthRoot| |symbolTableOf| - |rootsOf| |bandedHessian| |pushdown| - |removeSuperfluousQuasiComponents| |finiteBasis| |csc| |pToHdmp| - |update| |leadingExponent| |saturate| |getOperands| |units| |jacobian| - |rk4f| |d01akf| |var1StepsDefault| |antiAssociative?| |noKaratsuba| - |asin| |f07aef| |factorsOfDegree| |decomposeFunc| |scopes| - |leftCharacteristicPolynomial| |halfExtendedResultant2| |csc2sin| - |divideIfCan!| |cAtan| |mappingAst| |acos| |explicitlyFinite?| - |basisOfCenter| |rightTrace| |maxIndex| |showArrayValues| |iiatan| - |limitPlus| |numberOfComputedEntries| |mix| |smith| |color| |atan| - |leftUnit| |screenResolution3D| |signature| |complexForm| |solid?| - |beauzamyBound| |spherical| |f02awf| |irreducible?| |nullity| - |byteBuffer| |primPartElseUnitCanonical!| |acot| |block| |shrinkable| - |f01rdf| |overbar| |mapBivariate| |generate| |super| - |coerceListOfPairs| |lowerCase!| |tanQ| |putProperties| - |completeSmith| |code| |asec| |trim| |position| |leastAffineMultiple| - |hMonic| |readUInt32!| |quotientByP| |f2st| |leadingTerm| - |complexNumericIfCan| |closed?| |operation| |solveLinearlyOverQ| - |acsc| |incrementBy| |laplacian| |PollardSmallFactor| |chiSquare1| - |torsion?| |wrregime| |makeprod| |primitivePart| |isobaric?| - |permutationGroup| |torsionIfCan| |sinh| |nor| |OMputEndBind| |expand| - |indicialEquation| |bumptab1| |LowTriBddDenomInv| |d01apf| |e02adf| - |sortConstraints| |delete!| |clipBoolean| |cosh| - |stiffnessAndStabilityFactor| |squareFreePart| |cSinh| - |mainExpression| |basis| |filterWhile| |wholeRadix| |hostByteOrder| - |dioSolve| |lazyPseudoQuotient| |superHeight| |tanh| |factorOfDegree| - |every?| |possiblyInfinite?| |const| |filterUntil| |specialTrigs| - |transcendentalDecompose| |nonSingularModel| |e01sef| |e02bdf| - |failed?| |supDimElseRittWu?| |coth| |constantOpIfCan| |elementary| - |testModulus| |ScanFloatIgnoreSpacesIfCan| |select| - |numberOfPrimitivePoly| |indiceSubResultantEuclidean| - |genericLeftDiscriminant| |create3Space| |mat| |headReduce| - |indiceSubResultant| |sech| |iiGamma| |unvectorise| |multiple?| - |unprotectedRemoveRedundantFactors| |constantLeft| |lineColorDefault| - |rootPower| |OMgetEndBVar| |viewport3D| |complexZeros| |csch| - |modularGcdPrimitive| |primes| |useEisensteinCriterion| |trigs| - |read!| |atom?| |d01anf| |differentialVariables| |asinh| - |bombieriNorm| |retractable?| |ef2edf| |LagrangeInterpolation| - |e02bcf| |overset?| |tan2trig| |divideExponents| |elRow2!| |acosh| - |whitePoint| |oddInfiniteProduct| |minGbasis| |s17dlf| |getStream| - |ffactor| |fortranCharacter| |mkPrim| |init| |wronskianMatrix| |atanh| - |setErrorBound| |cond| |collectUpper| |isMult| |rroot| |iiacosh| - |completeEval| |hitherPlane| |minimumDegree| |degreePartition| |acoth| - |makeRecord| |f02aef| |semiSubResultantGcdEuclidean2| |scalarTypeOf| - |modularFactor| |toseInvertible?| |newSubProgram| |signAround| |asech| - |basisOfLeftNucleus| |radicalEigenvalues| |basisOfCommutingElements| - |cylindrical| |separateDegrees| |OMwrite| |extend| |digamma| - |integral| |factorAndSplit| |writeByte!| |isAtom| |exactQuotient| - |quoByVar| |mapGen| |coerceS| |leftRankPolynomial| |getPickedPoints| - |multiple| |relerror| |iterationVar| |d02bbf| |d02kef| |OMgetInteger| - |dom| |reducedQPowers| |curve| |applyQuote| |lfextendedint| |subset?| - |set| |simplifyPower| |factorSquareFreePolynomial| LODO2FUN - |pmintegrate| |mainForm| |f01mcf| |divisorCascade| |iiasec| |llprop| - |hdmpToP| |Lazard2| BY |wordInStrongGenerators| |selectPDERoutines| - |internalZeroSetSplit| |qelt| |generalSqFr| |parts| - |makeFloatFunction| |lfinfieldint| |besselI| |nothing| |geometric| - |internal?| |palgRDE| |s17dhf| |ridHack1| |qsetelt| |kovacic| - |solveInField| |ruleset| |reduction| |padicFraction| |imagJ| - |makeVariable| |check| |d01fcf| |xRange| |mainMonomial| |baseRDEsys| - UTS2UP |splitLinear| |implies| |polyPart| |quasiRegular?| - |rectangularMatrix| |title| |alphanumeric| |laplace| |yRange| - |coerceP| |dec| |typeForm| |copyInto!| |coord| |xCoord| |branchIfCan| - |iflist2Result| |removeRoughlyRedundantFactorsInPol| - |compiledFunction| |zRange| |inR?| |suchThat| |sizePascalTriangle| - |monicDivide| |mainMonomials| |sinhcosh| |iicos| |iroot| |sign| - |cAsinh| |fractionFreeGauss!| |c06ebf| |getDatabase| |low| |e| - |topPredicate| |subResultantChain| |radicalSolve| |f04axf| NOT - |numFunEvals| |nsqfree| |quatern| |fortranDouble| - |useEisensteinCriterion?| |subHeight| |someBasis| |rotate!| |exp1| OR - |yellow| |iiexp| |shape| |linears| |cyclotomic| - |univariatePolynomials| |OMputEndError| |purelyTranscendental?| - |voidMode| |basisOfLeftNucloid| AND |properties| |irCtor| |vedf2vef| - |show| |balancedBinaryTree| |ellipticCylindrical| |Si| |pointColor| - |OMsupportsSymbol?| |monicModulo| |bumptab| |translate| |rightOne| - |Ei| |mapExponents| |pushucoef| |open| |typeList| |rst| |dark| - |inverseIntegralMatrixAtInfinity| |firstNumer| |yCoordinates| - |complexIntegrate| |cAcot| |allRootsOf| |trace| - |getSyntaxFormsFromFile| |lazyPremWithDefault| |derivationCoordinates| - |semiResultantEuclidean2| |collectUnder| |s18aef| |polygon?| - |argument| |intcompBasis| |s19adf| |rCoord| |graphStates| - |univariateSolve| |round| |tab| |mirror| |createMultiplicationTable| - |noValueMode| |OMlistSymbols| |monicRightDivide| |numberOfNormalPoly| - |front| |getButtonValue| |safetyMargin| |minus!| |viewport2D| |bitand| - |char| |lazyResidueClass| |leftExactQuotient| |symmetricDifference| - |deepestTail| |sinh2csch| |operations| |hcrf| |imaginary| - |constantCoefficientRicDE| |dual| |expressIdealMember| |bitior| - |integralDerivationMatrix| |qPot| |setScreenResolution| |upperCase?| - |autoReduced?| |primeFrobenius| |rowEchelonLocal| - |integralAtInfinity?| |merge!| |head| |string?| |result| |s17def| - |ran| |OMsend| |mainCharacterization| |aLinear| |s13acf| - |nativeModuleExtension| |genus| |build| |insertionSort!| - |setButtonValue| |maxPoints| |pomopo!| |rational?| |wholeRagits| - |recip| |linearMatrix| |toroidal| |matrixGcd| - |wordsForStrongGenerators| * |gethi| |rationalPoint?| |nthFactor| - |asechIfCan| |tanh2coth| |monicLeftDivide| |stoseInvertibleSetreg| - |leftUnits| |numberOfDivisors| |pToDmp| |unitsColorDefault| - |unaryFunction| |cdr| |setProperty| |complexRoots| |OMconnectTCP| - |setleaves!| |removeSuperfluousCases| |coerceL| |symbolTable| |orbit| - |setScreenResolution3D| |cscIfCan| |iiasech| |double?| |iicoth| - |palgLODE0| |primitiveElement| |swapColumns!| |empty| - |genericRightMinimalPolynomial| |cosIfCan| = |interpret| |mindeg| - |e02aef| |f02axf| |rightRemainder| |listBranches| - |lazyIrreducibleFactors| |readInt16!| |inconsistent?| - |pushFortranOutputStack| |kind| |setMaxPoints| |OMgetEndBind| |queue| - |aQuartic| |resultant| |stopTableGcd!| |multMonom| |iExquo| |members| - |shellSort| |popFortranOutputStack| |op| < |indices| |subTriSet?| - |leviCivitaSymbol| |removeDuplicates| |loadNativeModule| |graeffe| - |property| |sinIfCan| |OMgetAtp| |outputAsFortran| |romberg| > - |numberOfOperations| |totalGroebner| |OMputFloat| |mainSquareFreePart| - |useNagFunctions| |curryRight| |writeUInt8!| |argscript| <= |quartic| - |expintfldpoly| |goodnessOfFit| |sqfrFactor| |sylvesterSequence| - |iicsc| |invertibleElseSplit?| |mesh| |column| >= |chainSubResultants| - |high| |minordet| |f01maf| |scanOneDimSubspaces| |semicolonSeparate| - |monomialIntegrate| |quasiRegular| |removeIrreducibleRedundantFactors| - |setImagSteps| |clearCache| |represents| |rombergo| |df2st| - |perfectNthPower?| |isConnected?| |gcdPrimitive| |components| - |primPartElseUnitCanonical| |roughUnitIdeal?| |refine| |diagonal| - |splitConstant| |plot| |mr| |ScanArabic| |f02aff| |minrank| - |repeating?| |derivative| |categories| |union| + |lazy?| |nextColeman| - |powerSum| |semiResultantEuclidean1| |e02def| - |rightRegularRepresentation| |just| |frst| |checkRur| - - |leftDiscriminant| |coth2trigh| |OMputError| |leftQuotient| - |acschIfCan| |e02daf| |f04adf| |isExpt| |enumerate| / |bytes| |s17acf| - |shallowExpand| |semiDegreeSubResultantEuclidean| |parents| - |rangeIsFinite| |stirling1| |Lazard| |idealSimplify| |setTex!| - |sizeLess?| |cons| |drawToScale| |asinIfCan| |principal?| - |monomRDEsys| |isAbsolutelyIrreducible?| |f04asf| |normFactors| - |d01gbf| |viewZoomDefault| |univcase| |idealiserMatrix| - |unitCanonical| |getlo| |zag| |myDegree| |mainDefiningPolynomial| - |stFunc2| |coercePreimagesImages| |qinterval| |rightDiscriminant| - |variationOfParameters| |putProperty| |binomThmExpt| |rk4| - |zeroMatrix| |uniform| |inHallBasis?| |tanAn| |substitute| |rur| - |adaptive| |cLog| |enterPointData| |e01sff| |cycleLength| |diag| - |vector| |symmetricPower| |bits| |physicalLength| - |sumOfKthPowerDivisors| |swap!| |arrayStack| |areEquivalent?| - |unravel| |comp| |fixedDivisor| |differentiate| |coefChoose| - |pleskenSplit| |lastSubResultant| |setRow!| |curve?| |coerce| - |cyclicEqual?| |nand| |characteristic| |outputAsTex| |hexDigit| - |source| |hexDigit?| |mulmod| |relationsIdeal| |OMputApp| |vertConcat| - |construct| |scaleRoots| |realSolve| |endOfFile?| |swap| |nonQsign| - |factor1| |stack| |xn| |elColumn2!| |rank| |maxrow| |deepExpand| - |rightRankPolynomial| |fortranLiteralLine| |dot| - |inverseIntegralMatrix| |karatsuba| |modularGcd| |imagk| |e02agf| - |constantKernel| |s17akf| |symmetricProduct| |name| |split| |top!| - |meshPar2Var| |idealiser| |ratpart| |droot| |powers| - |changeThreshhold| |setMinPoints| |body| |log2| |cPower| |car| - |selectNonFiniteRoutines| |printStats!| |rootBound| |heap| |Gamma| - |e02bef| |outputList| |target| |interpolate| |setelt!| |showRegion| - |expenseOfEvaluationIF| |horizConcat| |next| |nextsousResultant2| - |f01qcf| |stoseSquareFreePart| |e02gaf| |tube| |headRemainder| - |fintegrate| |bitCoef| |triangularSystems| |leaves| - |transcendenceDegree| |integral?| |OMreadFile| |gbasis| |e01bhf| - |product| |combineFeatureCompatibility| |f01bsf| |leader| |isOr| - |quickSort| |rename!| |inputBinaryFile| |write!| |thenBranch| |janko2| - |extendedSubResultantGcd| |reverse| |lists| |listLoops| |factorials| - |rewriteSetByReducingWithParticularGenerators| |npcoef| - |numberOfComposites| |Beta| |subscriptedVariables| |commonDenominator| - |seriesSolve| |iicosh| |tracePowMod| |OMclose| |member?| - |checkPrecision| |cardinality| |regime| |colorFunction| |plenaryPower| - |elaboration| |OMread| |minset| |rquo| |port| |regularRepresentation| - |fullDisplay| |totalDegree| |acosIfCan| |besselJ| |has?| - |modifyPointData| |integerIfCan| |s17aff| |prepareDecompose| - |OMputEndAtp| |stosePrepareSubResAlgo| |RemainderList| - |extendedEuclidean| |e01bef| |OMconnInDevice| |t| |setPosition| - |numFunEvals3D| |OMgetError| |back| |showTheFTable| |normal| - |solveLinearPolynomialEquation| |getOrder| |An| |getRef| |f02xef| - |quoted?| |primlimintfrac| |symmetricRemainder| |coshIfCan| - |nextSublist| |assign| |coleman| |Aleph| |getBadValues| |pseudoDivide| - |open?| |setelt| |fractRagits| |coefficient| |powmod| |d02ejf| - |f04arf| |ramified?| |setEmpty!| |e02ahf| |cTanh| |totolex| |rule| - |stronglyReduce| |groebgen| |partition| |lowerPolynomial| - |probablyZeroDim?| |arguments| |maxRowIndex| |copy| |colorDef| |unit| - |outputBinaryFile| |showFortranOutputStack| |internalLastSubResultant| - |xor| |divide| |rewriteSetWithReduction| |graphCurves| |even?| - |deleteProperty!| |showTheSymbolTable| |quotient| |tanintegrate| - |dequeue| |qroot| |asinhIfCan| |case| |depth| |cubic| - |rootOfIrreduciblePoly| |setlast!| |binarySearchTree| - |irreducibleRepresentation| |radPoly| |OMopenString| - |zeroSquareMatrix| |Zero| |omError| |useSingleFactorBound| |mapmult| - |OMputVariable| |OMputBVar| |One| |nextPartition| - |rewriteIdealWithHeadRemainder| |leadingIndex| |twoFactor| |true| - |match?| |s18def| |hasPredicate?| |cCosh| |normalizeIfCan| |sample| - |autoCoerce| |pquo| |mkcomm| |children| |moreAlgebraic?| |resize| - |nil?| |commutativeEquality| |constantRight| |listRepresentation| - |doubleComplex?| |moduloP| |semiResultantEuclideannaif| |eigenvector| - |OMgetVariable| |hostPlatform| |zoom| |returns| |minPoints3D| - |explicitlyEmpty?| |sequences| |innerSolve| |bounds| |plusInfinity| - |se2rfi| |palgRDE0| |calcRanges| |componentUpperBound| - |taylorQuoByVar| |selectOrPolynomials| |iCompose| |messagePrint| - |minusInfinity| |algebraicVariables| |composites| - |zeroSetSplitIntoTriangularSystems| |elt| |random| |setchildren!| - |doublyTransitive?| |cCsch| |totalfract| |coth2tanh| |lookup| - |bigEndian| |scripted?| |stoseLastSubResultant| |central?| |subspace| - |irForm| |expenseOfEvaluation| |bubbleSort!| |symbol?| |cycleTail| - |nthCoef| |mappingMode| |antisymmetricTensors| |e01saf| |cfirst| - |screenResolution| |explimitedint| |approxSqrt| |pushuconst| |rowEch| - |s14abf| |henselFact| |bezoutDiscriminant| |quadratic| - |exactQuotient!| |singularAtInfinity?| |setleft!| |ocf2ocdf| - |orthonormalBasis| |int| |mathieu23| |unrankImproperPartitions1| - |s17ahf| |completeHermite| |binomial| |outputGeneral| - |OMconnOutDevice| |resultantReduit| |tanhIfCan| |clearDenominator| - |extensionDegree| |rootKerSimp| |composite| |lagrange| |readIfCan!| - |legendreP| |stFuncN| |anfactor| |rootSimp| |cCoth| |lfunc| |satisfy?| - |eigenvectors| |quasiMonic?| |palgint0| |cothIfCan| |polynomialZeros| - |lazyPseudoDivide| |rightTrim| |factorList| |taylorRep| - |principalAncestors| |fmecg| |bernoulli| |bivariatePolynomials| - |makeSketch| |tower| |drawCurves| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|) \ No newline at end of file + |Record| |Union| |integerBound| |sumOfSquares| |autoReduced?| + |magnitude| |arg2| |complexSolve| |f01ref| |string| |chiSquare1| + |combineFeatureCompatibility| |primeFrobenius| |normalize| + |outputArgs| |fglmIfCan| |newTypeLists| |fortranTypeOf| |OMgetType| + |torsion?| |say| |f01bsf| |hessian| |OMlistCDs| |pushNewContour| + |rowEchelonLocal| |d01amf| |conditions| |ldf2vmf| |wrregime| |pair?| + |isOr| |integralAtInfinity?| |semiIndiceSubResultantEuclidean| + |multiplyCoefficients| |genericRightNorm| |diophantineSystem| |title| + |match| |simpleBounds?| |setDifference| |makeprod| |reset| |quickSort| + |limitedIntegrate| |isAnd| |uniform01| |merge!| |clikeUniv| |sum| + |multiEuclidean| |primitivePart| |rename!| |inc| |style| |neglist| + |c06gqf| |realEigenvalues| |head| |pr2dmp| |isobaric?| |repSq| |write| + |inputBinaryFile| |makeCrit| |entry?| |e04mbf| |c05pbf| |string?| |e| + |rdregime| |save| |permutationGroup| |linearlyDependentOverZ?| + |write!| |lp| |genericRightTraceForm| |s17def| |maxPoints3D| + |OMputAtp| |taylorIfCan| |validExponential| |prinshINFO| |nothing| + |torsionIfCan| |thenBranch| |ran| |f04maf| |presub| |meatAxe| |nor| + |tab1| |janko2| |latex| |delay| |OMsend| |createThreeSpace| + |unitVector| |errorInfo| |top| |intermediateResultsIF| |OMputEndBind| + |extendedSubResultantGcd| |separant| |corrPoly| |outputFixed| + |mainCharacterization| |float?| |mathieu24| |continue| + |indicialEquation| |divideIfCan| |listLoops| |clipParametric| + |besselY| |mapCoef| |imagE| |aLinear| |laurentRep| |factorials| + |s20acf| |listYoungTableaus| |groebSolve| |inf| |s13acf| |logical?| + |ratDsolve| |rightGcd| |rewriteSetByReducingWithParticularGenerators| + ** |hash| |iiacot| |triangSolve| |expextendedint| + |nativeModuleExtension| |splitDenominator| |ODESolve| |content| + |viewWriteDefault| |npcoef| |count| |makeTerm| |cschIfCan| |stirling2| + |genus| |useSingleFactorBound?| |makeSeries| |changeNameToObjf| + |sizeMultiplication| |numberOfComposites| |bag| |d02gbf| |exprToXXP| + |cAcsch| |reverse!| |Beta| |blankSeparate| |getVariableOrder| + |sizePascalTriangle| |arity| |constant| |lowerCase| |permutations| + |LazardQuotient| |subscriptedVariables| |clip| |fibonacci| |ceiling| + |monicDivide| |reduceLODE| |coordinates| |crest| |mantissa| + |commonDenominator| |tableForDiscreteLogarithm| |mapSolve| |times!| + |mainMonomials| |UpTriBddDenomInv| |writable?| |e01bff| |power!| + |root| |infLex?| |s19aaf| |sinhcosh| |slex| |sdf2lst| |sts2stst| + |uniform| |replaceKthElement| |cosSinInfo| |setrest!| |iicos| + |fprindINFO| GF2FG |jokerMode| |irreducibleFactors| |inHallBasis?| + |weights| |s18dcf| |iroot| |resultantEuclidean| |restorePrecision| + |optAttributes| |closedCurve| |tanAn| |rischDEsys| |augment| |sign| + |cyclicEntries| |sqfree| |nextNormalPrimitivePoly| |cExp| |substitute| + |chineseRemainder| |f01qdf| |cAsinh| |makeViewport3D| + |singularAtInfinity?| |close!| |squareFreePrim| |coordinate| |rur| + |rightMinimalPolynomial| |f01qef| |distribute| |fractionFreeGauss!| + |setleft!| |constant?| |identitySquareMatrix| |prindINFO| |adaptive| + |internalSubPolSet?| |pointLists| |e01bgf| |rootProduct| |c06ebf| + |ocf2ocdf| |presuper| |d01aqf| |denomLODE| |cLog| |countRealRoots| + |categories| |f02wef| |wordInGenerators| |kroneckerDelta| + |getDatabase| |orthonormalBasis| |numer| |escape| |retractIfCan| + |numberOfFactors| |unit?| |enterPointData| |roughEqualIdeals?| + |pointSizeDefault| |partialNumerators| |low| |mathieu23| |denom| + |atanIfCan| |ipow| |listOfMonoms| |e01sff| |constDsolve| + |currentSubProgram| |ksec| |topPredicate| |unrankImproperPartitions1| + |rightCharacteristicPolynomial| |quadratic?| |linearlyDependent?| + |cycleLength| |iitanh| |rightFactorIfCan| |prinpolINFO| + |subResultantChain| |s17ahf| |pi| |factors| |d02cjf| |typeLists| + |diag| |ratDenom| |monomial?| |internalInfRittWu?| |radicalSolve| + |completeHermite| |infinity| |makeFR| |getProperty| |leftFactor| + |symmetricPower| |concat| |step| |minIndex| |OMgetEndAtp| |bothWays| + |f04axf| |binomial| |iprint| |adaptive?| |writeLine!| |bits| + |binaryTournament| |stFunc1| |numFunEvals| |gramschmidt| + |outputGeneral| |selectMultiDimensionalRoutines| |internalIntegrate| + |complete| |physicalLength| |bat| |largest| |encodingDirectory| + |nsqfree| |kernel| |OMconnOutDevice| |enqueue!| |ScanRoman| + |minColIndex| |sumOfKthPowerDivisors| |formula| |iilog| |exprToGenUPS| + |cSech| |list| |quatern| |ptree| |resultantReduit| |nullary| + |tubeRadius| |infieldIntegrate| |swap!| |lhs| |normalizedDivide| + |deref| |fortranDouble| |positive?| |draw| |tanhIfCan| + |squareFreeFactors| |abs| |squareMatrix| |clearCache| |arrayStack| + |rhs| |OMreceive| |isNot| |useEisensteinCriterion?| |logIfCan| + |clearDenominator| |numberOfMonomials| |d01ajf| |pointPlot| + |areEquivalent?| |lazyGintegrate| |qqq| |entries| |subHeight| + |extensionDegree| |linearPart| |sup| |midpoint| |unravel| |currentEnv| + |nrows| |safeFloor| |changeMeasure| |someBasis| |rightFactorCandidate| + |rootKerSimp| |makingStats?| |e02bbf| |transcendent?| |fixedDivisor| + |ncols| |complexEigenvectors| |complexNormalize| |iicot| |rotate!| + |makeObject| |composite| |vectorise| |eof?| |ScanFloatIgnoreSpaces| + |coefChoose| |curveColorPalette| |coerceImages| |normalizeAtInfinity| + |exp1| |coef| |lagrange| |infRittWu?| |primlimitedint| |groebner| + |pleskenSplit| |f07adf| |patternMatchTimes| |yellow| |c06gsf| + |readIfCan!| |ode1| |reducedForm| |gcdPolynomial| |lastSubResultant| + |rootNormalize| |unitNormalize| |iiexp| |traverse| |legendreP| + |createZechTable| |approxNthRoot| |ode| |setRow!| |karatsubaOnce| + |invmultisect| |digit?| |shape| |stFuncN| |rk4a| |lieAlgebra?| + |symbolTableOf| |curve?| |kind| |iisech| |zeroDimPrimary?| |linears| + |leftRemainder| |anfactor| |inverseLaplace| |rootsOf| |trivialIdeal?| + |cyclicEqual?| |op| |binaryTree| |modTree| |cyclotomic| |compound?| + |rootSimp| |kernels| |hex| |gensym| |bandedHessian| |nand| |getCurve| + |fractRadix| |squareFree| |clearTheIFTable| |univariatePolynomials| + |cCoth| |minPoints| |operator| |pushdown| |simplifyLog| + |characteristic| |inrootof| |denomRicDE| |triangular?| |s01eaf| + |OMputEndError| |lfunc| SEGMENT |nthFlag| |iisqrt3| + |removeSuperfluousQuasiComponents| |outputAsTex| |showScalarValues| + |aCubic| |evaluateInverse| |purelyTranscendental?| |satisfy?| |sort| + |iisqrt2| |shiftRoots| |finiteBasis| |univariate| |hexDigit| |bfKeys| + |lyndon| |contract| |voidMode| |eigenvectors| |dec| |f07fdf| |pToHdmp| + |initials| |hexDigit?| |functionIsFracPolynomial?| |zero?| + |basisOfLeftNucloid| |sinhIfCan| |quasiMonic?| |OMsetEncoding| + |minimize| |leadingExponent| |mulmod| |union| |brillhartTrials| + |transform| |updatD| |irCtor| |palgint0| |saturate| |radicalSimplify| + |factor| |deepCopy| |relationsIdeal| |pdct| |upDateBranches| + |vedf2vef| |intersect| |cothIfCan| |random| |weakBiRank| |moebiusMu| + |sqrt| |getOperands| |OMputApp| |zeroOf| |musserTrials| + |balancedBinaryTree| |rightPower| |polynomialZeros| |comp| + |schwerpunkt| |cross| |jacobian| |real| |vertConcat| + |listConjugateBases| |e04dgf| |ellipticCylindrical| |sech2cosh| + |lazyPseudoDivide| |headAst| |exptMod| |rk4f| |imag| |scaleRoots| + |super| |properties| |mkAnswer| |toseInvertibleSet| |integralMatrix| + |Si| |factorList| |copy| |directProduct| |f07fef| |d01akf| + |OMencodingXML| |realSolve| |domainTemplate| |OMgetSymbol| |translate| + |pointColor| |iiacsc| |taylorRep| |copies| |OMencodingSGML| + |var1StepsDefault| |endOfFile?| FG2F |depth| |connect| |s14baf| + |OMsupportsSymbol?| |principalAncestors| |antiAssociative?| + |antisymmetric?| |brace| |tanh2trigh| |swap| |definingPolynomial| + |drawStyle| |po| |monicModulo| |fmecg| |mainKernel| |lepol| |destruct| + |noKaratsuba| |nonQsign| |complexEigenvalues| |endSubProgram| + |B1solve| |bumptab| |bernoulli| |outputAsScript| |f07aef| |s21baf| + |factor1| |match?| |numberOfHues| |solve| |rightOne| |showTheIFTable| + |bivariatePolynomials| |autoCoerce| |seriesToOutputForm| |reindex| + |factorsOfDegree| |xn| |arbitrary| |arguments| |mindegTerm| |Ei| + |subresultantVector| |makeSketch| |nthRootIfCan| |decomposeFunc| + |elColumn2!| |socf2socdf| |matrixConcat3D| |mapExponents| |exQuo| + |drawCurves| |selectODEIVPRoutines| |expand| |hypergeometric0F1| + |scopes| |monomial| |maxrow| |capacity| |critM| |pushucoef| |simpsono| + |max| |filterWhile| |leftCharacteristicPolynomial| + |generalizedInverse| |multivariate| |deepExpand| |close| |iiasinh| F + |nextsubResultant2| |disjunction| |typeList| |filterUntil| + |clearTheSymbolTable| |halfExtendedResultant2| |variables| + |updateStatus!| |rightRankPolynomial| |rst| |trunc| |select| + |dimension| |measure| |csc2sin| |fortranLiteralLine| |display| + |divisor| |lquo| |slash| |dark| |jordanAlgebra?| |divideIfCan!| + |mainVariable?| |dot| |trailingCoefficient| |atrapezoidal| + |inverseIntegralMatrixAtInfinity| |lastSubResultantElseSplit| + |numberOfFractionalTerms| |convergents| |cAtan| + |inverseIntegralMatrix| |character?| |mainVariables| |setTopPredicate| + |firstNumer| |compose| |karatsuba| |predicate| |computeInt| |leftLcm| + |yCoordinates| |mergeFactors| |Hausdorff| |functionIsOscillatory| + |selectOptimizationRoutines| |debug| |taylor| |modularGcd| + |matrixDimensions| |algebraicCoefficients?| |complexIntegrate| + |nthExpon| |cn| |getMeasure| |intPatternMatch| |tanIfCan| D |laurent| + |input| |imagk| |bitTruth| |nextPrime| |cAcot| |shade| |iiperm| + |exteriorDifferential| |compdegd| |puiseux| |library| |e02agf| + |f04mbf| |ip4Address| |rational| EQ |extractProperty| |pole?| |lex| + |constantKernel| |groebner?| |localUnquote| |invertibleSet| |d02kef| + |controlPanel| |branchPoint?| |iisinh| |sPol| |inv| |s17akf| + |OMgetString| |createPrimitiveElement| |status| |perfectNthRoot| + |OMgetInteger| |powerAssociative?| |host| |iteratedInitials| |ground?| + |symmetricProduct| |coefficients| |edf2fi| |reopen!| |reducedQPowers| + |subResultantsChain| |remove!| |sncndn| |initTable!| |ground| |set| + |addmod| |sorted?| |singRicDE| |readInt8!| |curve| |in?| + |lieAdmissible?| |region| |minrank| |leadingMonomial| |e04naf| + |UnVectorise| |factorPolynomial| |lfextendedint| |clipSurface| + |selectFiniteRoutines| |removeConstantTerm| |s15adf| |repeating?| + |leadingCoefficient| |parameters| |c06gcf| |sparsityIF| |listOfLists| + |getMultiplicationMatrix| |subset?| |size| |enterInCache| |bitLength| + |acotIfCan| |derivative| |primitiveMonomials| |f01brf| |minPoly| + |clearTable!| |simplifyPower| |diagonal?| |ratPoly| |fracPart| + |getConstant| |lazy?| |print| |reductum| |before?| |mainContent| + |substring?| |printInfo!| |primitive?| |factorSquareFreePolynomial| + |listRepresentation| |setAdaptive| |oblateSpheroidal| + |fillPascalTriangle| |resolve| |nextColeman| |e02ajf| |GospersMethod| + |returnType!| |leadingCoefficientRicDE| LODO2FUN |doubleComplex?| + |determinant| |ramifiedAtInfinity?| |logpart| |powerSum| |readBytes!| + |sylvesterMatrix| |characteristicPolynomial| |unexpand| |suffix?| + |true| |pmintegrate| |ParCond| |category| |moduloP| |littleEndian| + |exists?| |surface| |cSec| |semiResultantEuclidean1| |domain| + |tValues| |functorData| |quasiComponent| |companionBlocks| |mainForm| + |optional| |semiResultantEuclideannaif| |is?| |cAtanh| |OMgetEndAttr| + |e02def| |external?| |iFTable| |isTimes| |prefix?| |d01bbf| |f01mcf| + |package| |eigenvector| |any?| |leftOne| |s19abf| + |rightRegularRepresentation| |insert| |computePowers| + |increasePrecision| |completeEchelonBasis| |divisorCascade| + |resultantnaif| |OMgetVariable| |clipWithRanges| |cosh2sech| + |removeCoshSq| |just| |show| |dmpToP| |lazyEvaluate| |s15aef| |polar| + |iiasec| |hostPlatform| |irDef| |writeInt8!| |tan2cot| |search| |frst| + |redmat| |c06eaf| |cyclic?| |topFortranOutputStack| |llprop| |zoom| + |node| |initializeGroupForWordProblem| |numberOfCycles| |rischDE| + |checkRur| |trace| |mpsode| |LyndonWordsList| |lyndonIfCan| |hdmpToP| + |definingInequation| |returns| |OMputBind| |iiatanh| |subPolSet?| + |leftDiscriminant| |LiePolyIfCan| |extendedint| |diff| |Lazard2| + |birth| |minPoints3D| |resetVariableOrder| |comparison| |e02ddf| + |coth2trigh| |reduceBasisAtInfinity| |mapMatrixIfCan| |infix?| + |setvalue!| |getMultiplicationTable| |wordInStrongGenerators| + |explicitlyEmpty?| |doubleRank| |drawComplex| |null?| |OMputError| + |critMTonD1| |mask| |limitedint| |rspace| |c06frf| |selectPDERoutines| + |sequences| |exportedOperators| |distdfact| |addMatchRestricted| + |leftQuotient| |flatten| |hasoln| |swapRows!| |conditionP| + |setIntersection| |internalZeroSetSplit| |innerSolve| |element?| + |setAdaptive3D| |generalInfiniteProduct| |acschIfCan| + |interpretString| |elliptic?| |OMgetAttr| |showAllElements| + |generalSqFr| |bounds| |sumSquares| |basisOfLeftAnnihilator| + |continuedFraction| |e02daf| |isQuotient| |nary?| |s13adf| |cycles| + |makeFloatFunction| |selectsecond| |se2rfi| |algDsolve| |decrease| + |nextSubsetGray| |f04adf| |generalTwoFactor| |goodPoint| + |numberOfComponents| |lfinfieldint| |viewThetaDefault| |palgRDE0| + |internalAugment| |reflect| |addMatch| |isExpt| |alphabetic| + |dihedral| |medialSet| |critMonD1| |besselI| |calcRanges| + |lflimitedint| |qfactor| |figureUnits| |enumerate| + |numericalIntegration| |principalIdeal| |tRange| |commutative?| + |geometric| |directory| |componentUpperBound| |sub| |createNormalPoly| + |chiSquare| |bytes| |dictionary| |complexLimit| |deriv| |badValues| + |conjugate| |internal?| |taylorQuoByVar| |getIdentifier| |UP2ifCan| + |s17acf| |nodes| |height| |units| |log10| |fullPartialFraction| + |findBinding| |selectAndPolynomials| |normalForm| |palgRDE| + |parametersOf| |selectOrPolynomials| |equation| |hspace| + |bipolarCylindrical| |normalDenom| |shallowExpand| |kmax| |bitand| + |atanhIfCan| |setref| |f02agf| |s17dhf| |iCompose| |wholePart| + |infieldint| |commaSeparate| |semiDegreeSubResultantEuclidean| + |leaves| |palgLODE| |outerProduct| |elem?| |bitior| |ddFact| + |ridHack1| |particularSolution| |linear| |messagePrint| + |setProperties| |c05adf| |exponential1| |rangeIsFinite| |shiftRight| + |find| |maximumExponent| |makeSin| |kovacic| |algebraicVariables| + |stiffnessAndStabilityOfODEIF| |cRationalPower| |stronglyReduced?| + |stirling1| |macroExpand| |denominators| |internalIntegrate0| + |fortranDoubleComplex| |interReduce| |solveInField| |polynomial| + |composites| |laguerreL| |leftAlternative?| |startStats!| |Lazard| + |comment| |closeComponent| |rischNormalize| |groebnerFactorize| + |reduction| |minimumExponent| |zeroSetSplitIntoTriangularSystems| + |center| |exponents| |size?| |parent| |idealSimplify| |patternMatch| + |irVar| |octon| |changeVar| |padicFraction| |setchildren!| |f02bbf| + |edf2ef| |c06ekf| |setTex!| |dualSignature| |graphState| + |euclideanSize| |f04qaf| |imagJ| |rule| |doublyTransitive?| |declare| + |asimpson| |iicsch| |key?| |sizeLess?| |makeVariable| |callForm?| + |att2Result| |antiCommutator| |common| |normal01| |cCsch| + |zeroDimPrime?| |reseed| |point?| |drawToScale| |space| + |measure2Result| |length| |viewSizeDefault| |green| |check| + |totalfract| |lifting1| |associatorDependence| |algebraicOf| + |asinIfCan| |cyclotomicFactorization| |lexGroebner| |scripts| + |leftDivide| |d01fcf| |weierstrass| |coth2tanh| |sort!| + |stopTableInvSet!| |reorder| |setPoly| |principal?| |discriminant| + |twist| |lazyVariations| |iidprod| |mainMonomial| |lookup| + |createNormalPrimitivePoly| |submod| |tableau| |purelyAlgebraic?| + |matrix| |monomRDEsys| |normalise| |lazyIntegrate| |characteristicSet| + |baseRDEsys| |norm| |bigEndian| |rangePascalTriangle| |variable?| + |integer?| |isAbsolutelyIrreducible?| |applyRules| |s21bcf| + |selectSumOfSquaresRoutines| |subQuasiComponent?| UTS2UP |scripted?| + |s14aaf| |generalizedEigenvectors| |e02dff| |f04asf| + |exprHasAlgebraicWeight| |weighted| |pop!| |splitLinear| |tanNa| + |stoseLastSubResultant| Y |cyclicParents| |edf2efi| |poisson| + |normFactors| |goto| |readByte!| |unmakeSUP| |label| |implies| |imagI| + |central?| |algintegrate| |putColorInfo| |generalPosition| |d01gbf| + |selectIntegrationRoutines| |SturmHabichtMultiple| |polyPart| + |mainVariable| |subspace| |cycle| |algSplitSimple| |basicSet| + |viewZoomDefault| |digit| |bipolar| |startPolynomial| |quasiRegular?| + |irForm| |extractTop!| |getZechTable| |setStatus| |univcase| |invmod| + |quasiMonicPolynomials| |result| |bezoutMatrix| |rectangularMatrix| + |expenseOfEvaluation| |positiveRemainder| |knownInfBasis| |recolor| + |idealiserMatrix| |associates?| |rightScalarTimes!| |alphanumeric| + |palgextint0| |bubbleSort!| |minimalPolynomial| |expt| |unitCanonical| + |laplace| |cyclicSubmodule| |BumInSepFFE| |numeric| |inverse| + |symbol?| |setOrder| |s17adf| |rename| |getlo| + |generalizedContinuumHypothesisAssumed?| |coerceP| |symFunc| + |fortranInteger| |radical| |cycleTail| |odd?| |integers| |concat!| + |constructor| |zag| |writeBytes!| |subscript| |copyInto!| + |conjunction| |nthCoef| |primextendedint| |partialDenominators| + |newReduc| |myDegree| |constantOperator| |bindings| |option| |coord| + |mappingMode| |froot| |symbolTable| |showSummary| |e04ucf| |zCoord| + |mainDefiningPolynomial| |fortranCompilerName| |difference| + |setLength!| |xCoord| |antisymmetricTensors| |transpose| |rightUnits| + |shallowCopy| |stFunc2| |computeCycleEntry| |meshPar1Var| |pushup| + |branchIfCan| |e01saf| |exprHasWeightCosWXorSinWX| + |pushFortranOutputStack| |primaryDecomp| |showAttributes| |commutator| + |coercePreimagesImages| |makeMulti| |makeop| |iflist2Result| + |makeRecord| |scale| |cfirst| |popFortranOutputStack| |trapezoidalo| + |qinterval| |baseRDE| |addiag| |overlap| + |removeRoughlyRedundantFactorsInPol| |screenResolution| |localReal?| + |outputAsFortran| |alternatingGroup| |diagonals| |rightDiscriminant| + |leadingSupport| |OMgetEndObject| |name| |parents| |nonLinearPart| + |compiledFunction| |explimitedint| |selectPolynomials| + |radicalOfLeftTraceForm| |f02fjf| |variationOfParameters| |rightTrim| + |semiResultantReduitEuclidean| |fractionPart| |body| |inR?| + |mainPrimitivePart| |approxSqrt| |linSolve| |homogeneous?| + |attributeData| |putProperty| |leftTrim| |call| |setMinPoints3D| + |null| |pushuconst| |iidsum| |flexible?| |evaluate| |binomThmExpt| + |stack| |makeEq| |extractSplittingLeaf| |differentialVariables| + |isEquiv| |rowEch| |not| |drawComplexVectorField| |badNum| |mvar| + |rk4| BY |Ci| |viewDeltaXDefault| |rotatey| |bombieriNorm| |s14abf| + |and| |dAndcExp| |OMputEndAttr| |complexElementary| |zeroMatrix| + |outputList| |intChoose| |infix| |insertTop!| |retractable?| |or| + |henselFact| |innerint| |elseBranch| |red| |branchPointAtInfinity?| + |gderiv| |ef2edf| |subSet| |bezoutDiscriminant| |xor| |safeCeiling| + |cartesian| |removeDuplicates!| |stopTableGcd!| |modifyPoint| + |cyclotomicDecomposition| |LagrangeInterpolation| |withPredicates| + |ReduceOrder| |signature| |dim| |case| |quadratic| |leftPower| + |leftFactorIfCan| |pseudoQuotient| |assert| |multMonom| |epilogue| + |readInt32!| |port| |qualifier| |e02bcf| |extractPoint| |pattern| + |Zero| |exactQuotient!| |yCoord| |OMReadError?| |fixedPointExquo| + |weight| |iExquo| |linearAssociatedOrder| |scan| |pascalTriangle| + |overset?| |One| |gradient| |setLabelValue| |lighting| + |nextPrimitivePoly| |members| |checkForZero| |complement| |t| + |subNode?| |fill!| |tan2trig| |shift| |setEmpty!| NOT + |resetAttributeButtons| |hasTopPredicate?| |traceMatrix| |innerSolve1| + |shellSort| |output| |sequence| |ideal| |thetaCoord| + |leftMinimalPolynomial| |divideExponents| |e02ahf| |mapDown!| OR + |simplify| |vector| |equality| |clearTheFTable| |leader| |indices| + |binaryFunction| |startTableInvSet!| |normalElement| |elRow2!| |cTanh| + |message| AND |setPredicates| |differentiate| |partialQuotients| + |htrigs| |discriminantEuclidean| |subTriSet?| |normDeriv2| |seed| + |subtractIfCan| |whitePoint| |totolex| |leviCivitaSymbol| |rightZero| + |getCode| |complex?| |packageCall| |fortran| |atanh| |e04fdf| |nthr| + |shufflein| |oddInfiniteProduct| |exponential| |stronglyReduce| |elt| + |shuffle| |raisePolynomial| |processTemplate| |removeDuplicates| + |curry| |acoth| |readUInt8!| |lllp| |minGbasis| |component| |sin?| + |groebgen| |squareTop| |elRow1!| |ptFunc| |graeffe| |reduced?| |asech| + |level| |conjugates| |definingEquations| |physicalLength!| |s17dlf| + |newLine| |partition| |orbits| |dn| |LiePoly| |property| |univariate?| + |dmpToHdmp| |csch2sinh| |brillhartIrreducible?| |getStream| + |lowerPolynomial| |optional?| |ldf2lst| |basisOfRightAnnihilator| + |factorFraction| |quote| |sinIfCan| |multiple| |cons| |bringDown| + |routines| |ffactor| |contours| |linearDependence| |probablyZeroDim?| + |palgextint| |palglimint0| |trigs2explogs| |OMgetAtp| + |removeRedundantFactors| |applyQuote| |basisOfCentroid| |chvar| + |palglimint| |cond| |fortranCharacter| |Is| |maxRowIndex| |retract| + |initiallyReduce| |abelianGroup| |certainlySubVariety?| |romberg| + |selectfirst| |adjoint| |empty?| |mkPrim| |setUnion| |divergence| + |colorDef| |untab| |compBound| |reduceByQuasiMonic| + |numberOfOperations| |multisect| |unit| |wronskianMatrix| |expint| + |roughSubIdeal?| |setStatus!| |acothIfCan| |second| |infiniteProduct| + * |constantIfCan| |meshFun2Var| |euler| |leftRegularRepresentation| + |totalGroebner| |ruleset| |setErrorBound| |normalDeriv| + |tryFunctionalDecomposition| |univariatePolynomialsGcds| |fortranReal| + |genericLeftTraceForm| |third| |outputBinaryFile| |totalLex| |dmp2rfi| + |subResultantGcd| |OMputFloat| |ListOfTerms| |testDim| |OMUnknownCD?| + |zeroDimensional?| |collectUpper| |showFortranOutputStack| |divisors| + |univariatePolynomial| |btwFact| |expandLog| |pile| + |mainSquareFreePart| |source| |void| |iisec| |hermite| |isMult| + |subResultantGcdEuclidean| |moebius| |internalLastSubResultant| = + |eyeDistance| |s17dcf| |hconcat| |useNagFunctions| |laguerre| + |suchThat| |edf2df| |imagj| |rotatex| |rroot| |reciprocalPolynomial| + |divide| |integralBasisAtInfinity| |createLowComplexityNormalBasis| + |OMgetEndApp| |compactFraction| |curryRight| |script| |elliptic| + RF2UTS |iiacosh| |diagonalProduct| |getExplanations| + |rewriteSetWithReduction| < |plotPolar| |upperBound| |algebraic?| + |writeUInt8!| |leaf?| |plusInfinity| |d02gaf| |cyclePartition| + |completeEval| |exprex| |sincos| |graphCurves| |char| > |viewDefaults| + |sumOfDivisors| |resetBadValues| |crushedSet| |argscript| + |systemCommand| |minusInfinity| |halfExtendedResultant1| + |squareFreePolynomial| |linear?| |hitherPlane| |fortranLiteral| + |even?| |numberOfIrreduciblePoly| |polygamma| <= |nlde| + |tensorProduct| |quartic| |tex| |target| |biRank| |repeatUntilLoop| + |patternVariable| |minimumDegree| |deleteProperty!| + |purelyAlgebraicLeadingMonomial?| |singularitiesOf| >= |discreteLog| + |userOrdered?| |elaborate| |expintfldpoly| |degreePartition| |cAsech| + |legendre| |euclideanGroebner| |coHeight| |isOp| |showTheSymbolTable| + |expr| |factorSquareFreeByRecursion| |duplicates?| |mergeDifference| + |irreducibleFactor| |goodnessOfFit| |gcdcofactprim| |lyndon?| + |finite?| |monicDecomposeIfCan| |f02aef| |normal| |quotient| + |reverseLex| |expintegrate| |charClass| |readLineIfCan!| + |prolateSpheroidal| |sqfrFactor| |infinite?| UP2UTS |OMputSymbol| + |semiSubResultantGcdEuclidean2| |integralRepresents| |tanintegrate| + |FormatArabic| + |OMgetBVar| |toseLastSubResultant| |light| + |sylvesterSequence| |type| |createIrreduciblePoly| + |stoseIntegralLastSubResultant| |scalarTypeOf| |boundOfCauchy| + |dequeue| |nodeOf?| |iiacsch| |point| - |float| |whileLoop| + |Frobenius| |iicsc| |polyRicDE| |eigenMatrix| |radicalRoots| + |modularFactor| |harmonic| |qroot| |variable| |problemPoints| / + |charpol| |adaptive3D?| |invertibleElseSplit?| |cos2sec| |lllip| + |dimensions| |bivariate?| |toseInvertible?| |asinhIfCan| |iterators| + |randomR| |completeHensel| |palgintegrate| |rightAlternative?| |mesh| + |f2df| |noncommutativeJordanAlgebra?| |SturmHabicht| |mapExpon| + |newSubProgram| |cubic| |symmetricGroup| |series| + |fortranCarriageReturn| |isOpen?| |c06fuf| |column| |setCondition!| + |preprocess| |nilFactor| |signAround| |rootOfIrreduciblePoly| + |quotedOperators| |setFormula!| |contains?| |sturmSequence| + |chainSubResultants| |deleteRoutine!| |shiftLeft| |basisOfLeftNucleus| + |e02akf| |id| |setlast!| |subNodeOf?| |high| |createRandomElement| + |powern| |value| |numberOfChildren| |makeGraphImage| |symbol| + |lambert| |radicalEigenvalues| |integralLastSubResultant| + |binarySearchTree| |lo| |e01daf| |setAttributeButtonStep| + |RittWuCompare| |changeName| |minordet| |basisOfCommutingElements| + |iibinom| |OMgetObject| |linearAssociatedLog| |expression| + |irreducibleRepresentation| |min| |numberOfImproperPartitions| + |functionIsContinuousAtEndPoints| |splitNodeOf!| |f01maf| + |maxColIndex| |cylindrical| |optpair| |lprop| |integer| |acscIfCan| + |radPoly| |normalizedAssociate| |module| GE |trace2PowMod| |OMreadStr| + |cup| |scanOneDimSubspaces| |associative?| |localAbs| + |separateDegrees| |normal?| |iisin| |OMopenString| |leftExtendedGcd| + GT |innerEigenvectors| |makeResult| |semicolonSeparate| + |lastSubResultantEuclidean| |extendedIntegrate| + |firstUncouplingMatrix| |OMwrite| |pade| |zeroSquareMatrix| + |leftTraceMatrix| LE |systemSizeIF| |isPlus| |parabolic| + |monomialIntegrate| |alphanumeric?| |d02raf| |rightNorm| |extend| + |omError| |deepestInitial| LT |appendPoint| |defineProperty| + |OMmakeConn| |quasiRegular| |unknownEndian| |nextNormalPoly| + |FormatRoman| |digamma| |useSingleFactorBound| |tubeRadiusDefault| + |removeIrreducibleRedundantFactors| |pseudoRemainder| + |localIntegralBasis| |besselK| |list?| |f02ajf| |OMgetEndError| + |leastPower| |integral| |mapmult| |basisOfRightNucleus| |setImagSteps| + |leadingIdeal| |padicallyExpand| |iomode| |makeUnit| |ord| |credPol| + |f01rcf| |factorAndSplit| |keys| |OMputVariable| |stopTable!| |s17aef| + |rubiksGroup| |represents| |firstSubsetGray| |findConstructor| + |symmetricTensors| |d03faf| |writeByte!| |OMputBVar| |one?| |revert| + |bernoulliB| |rombergo| |morphism| |mainValue| |isAtom| |currentScope| + |index| |nextPartition| |showTheRoutinesTable| |lexico| + |OMencodingUnknown| |df2st| |digits| |charthRoot| |realZeros| + |exactQuotient| |superscript| |rewriteIdealWithHeadRemainder| |airyBi| + |alternative?| |OMParseError?| |perfectNthPower?| |psolve| + |leadingBasisTerm| |direction| |distFact| |quoByVar| |leadingIndex| + |stoseInvertibleSet| |zeroDim?| |radicalEigenvector| |isConnected?| + |OMputAttr| |mapGen| |triangulate| |pair| |twoFactor| |upperCase| + |tree| |open| |e04gcf| |redpps| |gcdPrimitive| |extendIfCan| + |leftNorm| |f02abf| |bright| |generalizedContinuumHypothesisAssumed| + |coerceS| |s18def| |extract!| |genericRightDiscriminant| |loopPoints| + |primextintfrac| |components| |consnewpol| |resultantReduitEuclidean| + |cap| |leftRankPolynomial| |hasPredicate?| |integralBasis| |unary?| + |setFieldInfo| |primPartElseUnitCanonical| |perspective| |aromberg| + |eval| |possiblyNewVariety?| |bumprow| |getPickedPoints| |cCosh| + |antiCommutative?| |rightMult| |roughUnitIdeal?| |rootRadius| + |OMputEndBVar| |relerror| |changeWeightLevel| |normalizeIfCan| + |operations| |d01gaf| |associator| |roman| |rootPoly| |refine| + |exprHasLogarithmicWeights| |lifting| |iterationVar| |addPoint2| + |sample| |jordanAdmissible?| |quadraticNorm| |order| |interpret| + |strongGenerators| |diagonal| |error| |leftMult| |bivariateSLPEBR| + |d02bbf| |intensity| |pquo| |roughBasicSet| |var2Steps| + |extendedResultant| |splitConstant| |OMcloseConn| |countable?| |df2fi| + |mkcomm| |copy!| |cAcsc| |prod| |plot| |quasiAlgebraicSet| |optimize| + |approximants| |prologue| |removeRedundantFactorsInContents| + |bumptab1| |precision| |children| |function| |OMputEndObject| + |numericalOptimization| |ParCondList| |range| |ScanArabic| |redPol| + |pmComplexintegrate| |LowTriBddDenomInv| |sec2cos| |moreAlgebraic?| + |firstDenom| |leftZero| |removeSinhSq| |f02aff| |showAll?| + |rationalIfCan| |pointColorDefault| |d01apf| |OMbindTCP| |width| + |resize| |hdmpToDmp| |semiSubResultantGcdEuclidean1| |normalized?| + |e02adf| |semiLastSubResultantEuclidean| |evenInfiniteProduct| |rules| + |numberOfVariables| |double| |nil?| |repeating| |df2ef| |number?| + |build| |perfectSqrt| |unparse| |rowEchelon| |sortConstraints| + |createPrimitiveNormalPoly| |commutativeEquality| |solveid| + |integralCoordinates| |complexExpand| |shanksDiscLogAlgorithm| + |insertionSort!| |virtualDegree| |prem| |alphabetic?| |delete!| + |constantRight| |s20adf| |nullSpace| |ode2| |setButtonValue| |f04jgf| + |nextItem| |rationalFunction| |clipBoolean| |mainCoefficients| + |symmetric?| |solveLinearPolynomialEquationByRecursion| + |axesColorDefault| |extractBottom!| |maxPoints| |checkPrecision| |mr| + |critpOrder| |cSin| |stiffnessAndStabilityFactor| + |stoseInvertible?sqfreg| |seriesSolve| |bandedJacobian| + |sturmVariationsOf| |youngDiagram| |pomopo!| |floor| |rightRecip| + |over| |dimensionOfIrreducibleRepresentation| |squareFreePart| + |iicosh| |degreeSubResultantEuclidean| |tubePoints| |setMaxPoints3D| + |pureLex| |rational?| |subst| |rem| |representationType| |OMputString| + |cSinh| |d02bhf| |tracePowMod| |explicitEntries?| |middle| + |generalLambert| |wholeRagits| |monomRDE| |primeFactor| |quo| + |integrate| |OMclose| |decompose| |mainExpression| |declare!| + |varList| |backOldPos| |factorByRecursion| |axes| |OMgetBind| |recip| + |fixedPoints| |collectQuasiMonic| |basis| |initiallyReduced?| + |member?| |lcm| |OMputObject| |modulus| |maxdeg| |linearMatrix| + |permutationRepresentation| |delete| |div| |cyclicGroup| |debug3D| + |e01sbf| |wholeRadix| |cardinality| |freeOf?| |inRadical?| |imagK| + |toroidal| |indicialEquationAtInfinity| |exquo| |oneDimensionalArray| + |scalarMatrix| |stoseInternalLastSubResultant| |hostByteOrder| + |regime| |any| |forLoop| |cTan| |append| |laurentIfCan| |setprevious!| + |matrixGcd| ~= |roughBase?| |aQuadratic| |dioSolve| |whatInfinity| + |colorFunction| |primitivePart!| |mapUp!| |insertBottom!| |flagFactor| + |gcd| |vark| |wordsForStrongGenerators| |objects| |#| |rootSplit| + |s21bdf| |jacobiIdentity?| |lazyPseudoQuotient| |plenaryPower| + |KrullNumber| |eq?| |moduleSum| |expPot| |false| |gethi| + |normInvertible?| |base| ~ |lowerCase?| |rotate| |e02baf| + |superHeight| |elaboration| |OMputEndApp| |cCsc| |radicalEigenvectors| + |rationalPoint?| |cyclicCopy| |ravel| |randnum| |printingInfo?| + |factorOfDegree| |parametric?| |OMread| |segment| |part?| |cCot| + |minRowIndex| |nthFactor| |elements| |init| |vspace| |solveRetract| + |every?| |expIfCan| |reshape| |minset| |frobenius| + |basisOfMiddleNucleus| |prepareSubResAlgo| |asechIfCan| + |factorSquareFree| |/\\| |factorGroebnerBasis| |sechIfCan| + |possiblyInfinite?| |monicRightFactorIfCan| |rquo| |less?| |imagi| + |setfirst!| |imports| |tanh2coth| |\\/| |computeCycleLength| + |secIfCan| |recur| |const| |regularRepresentation| |apply| |coerce| + |polarCoordinates| |dfRange| |isPower| |monicLeftDivide| |cycleEntry| + |euclideanNormalForm| |s21bbf| |specialTrigs| |viewpoint| + |fullDisplay| |first| |construct| |OMencodingBinary| |binary| + |directSum| |solid| |stoseInvertibleSetreg| |infinityNorm| |root?| + |genericLeftMinimalPolynomial| |transcendentalDecompose| |totalDegree| + |rest| |postfix| |e02zaf| |headReduced?| |leftUnits| |zeroSetSplit| + |nonSingularModel| |remainder| |degree| |plus| |OMserve| |acosIfCan| + |update| |terms| |nextPrimitiveNormalPoly| |chebyshevU| + |numberOfDivisors| |rarrow| |option?| |bat1| |c06ecf| |e01sef| + |besselJ| |partialFraction| |curveColor| |categoryMode| |pToDmp| + |hasHi| |setnext!| |tryFunctionalDecomposition?| |e02bdf| + |characteristicSerie| |has?| |realEigenvectors| |leftReducedSystem| + |s17ajf| |var1Steps| |unitsColorDefault| |cAcosh| |trapezoidal| + |reify| |failed?| |modifyPointData| |times| |exprToUPS| |push| + |removeSinSq| |realElementary| |unaryFunction| |previous| |delta| + |leftTrace| |lowerBound| |d03edf| |supDimElseRittWu?| |integerIfCan| + |typeForm| |removeRoughlyRedundantFactorsInContents| + |exponentialOrder| |inGroundField?| |toScale| |cdr| + |rightExactQuotient| |setEpilogue!| |associatedEquations| + |constantOpIfCan| |s17aff| |position| |palginfieldint| |bfEntry| + |argumentListOf| |setProperty| |equiv| |atoms| |removeSquaresIfCan| + |elementary| |zerosOf| |prepareDecompose| |datalist| |lift| |rk4qc| + |conjug| |minPol| |relativeApprox| |complexRoots| |listexp| + |inputOutputBinaryFile| |real?| |box| |testModulus| |cotIfCan| + |OMputEndAtp| |monom| |reduce| |rightRank| |identityMatrix| |s17dgf| + |outputForm| |OMconnectTCP| |polygon| |skewSFunction| |findCycle| + |ScanFloatIgnoreSpacesIfCan| |node?| |stosePrepareSubResAlgo| + |loadNativeModule| |collect| |printTypes| + |setLegalFortranSourceExtensions| |power| |setleaves!| |accuracyIF| + |airyAi| |numerators| |clipPointsDefault| |numberOfPrimitivePoly| + |denominator| |RemainderList| |countRealRootsMultiple| |extractIfCan| + |rightTraceMatrix| |predicates| |getMatch| |removeSuperfluousCases| + |paren| |unitNormal| |removeZeroes| |indiceSubResultantEuclidean| + |setOfMinN| |extendedEuclidean| |simplifyExp| |c06fpf| |chebyshevT| + |complementaryBasis| |coerceL| |lambda| |e04ycf| |prefixRagits| + |genericLeftDiscriminant| |csubst| |e01bef| |rank| |identification| + |nullary?| |separateFactors| |OMputInteger| |orbit| |c06gbf| + |subresultantSequence| |create3Space| |monicCompleteDecompose| + |OMconnInDevice| |log| |mightHaveRoots| |createNormalElement| + |gcdcofact| |setScreenResolution3D| |lazyPrem| |factorSFBRlcUnit| + |child| |mat| |genericLeftNorm| |setPosition| |setelt| |linGenPos| + |notelem| |lexTriangular| |lSpaceBasis| |cscIfCan| |contractSolve| + |returnTypeOf| |partitions| |headReduce| |numFunEvals3D| |isImplies| + |showIntensityFunctions| |cAcos| |algebraicDecompose| |iiasech| + |stoseInvertibleSetsqfreg| |inspect| |monomials| |df2mf| + |indiceSubResultant| |OMgetError| |linearAssociatedExp| |setRealSteps| + |nthFractionalTerm| |double?| |SturmHabichtCoefficients| |plus!| + |cot2tan| |iiGamma| |makeSUP| |back| |eulerE| |anticoord| + |removeCosSq| |iicoth| |points| |factorial| |parabolicCylindrical| + |generalizedEigenvector| |unvectorise| |showTheFTable| |getProperties| + |var2StepsDefault| |randomLC| |HermiteIntegrate| |lfextlimint| + |palgLODE0| |conical| |solveLinear| |stopMusserTrials| |multiple?| + |solveLinearPolynomialEquation| |byte| |lists| |paraboloidal| |iiacos| + |fi2df| |critB| |primitiveElement| |karatsubaDivide| |c06fqf| + |OMUnknownSymbol?| |conditionsForIdempotents| + |unprotectedRemoveRedundantFactors| |getOrder| |opeval| |cAcoth| |row| + |iiabs| |swapColumns!| |erf| |setright!| |ignore?| |setVariableOrder| + |constantLeft| |zero| |lintgcd| |An| |reverse| |startTable!| |dflist| + |readUInt16!| |cAsin| |empty| |LazardQuotient2| |readLine!| |schema| + |lineColorDefault| |perfectSquare?| |getRef| |noLinearFactor?| + |singular?| |critBonD| |algebraicSort| |genericRightMinimalPolynomial| + |li| |rootPower| |universe| |multiset| |doubleFloatFormat| |And| + |f02xef| |unknown| |squareFreeLexTriangular| |f04mcf| |s19acf| + |cosIfCan| |dilog| |setColumn!| |removeRedundantFactorsInPols| |mesh?| + |OMgetEndBVar| |Or| |quoted?| |hermiteH| |rootDirectory| |cycleElt| + |f02akf| |iiasin| |mindeg| |sin| |extension| |choosemon| |addPoint| + |viewport3D| |Not| |primlimintfrac| |critT| |Nul| |move| |e02aef| + |ricDsolve| |cos| |iipow| |stripCommentsAndBlanks| |complexZeros| + |extractClosed| |symmetricRemainder| |genericLeftTrace| |int| + |linkToFortran| |positiveSolve| |singleFactorBound| |f02axf| |tan| + |modularGcdPrimitive| |lfintegrate| |coshIfCan| |bit?| |summation| + |maxint| |rightRemainder| |viewPosDefault| |cot| |mathieu22| |primes| + |linearPolynomials| |nextSublist| |dequeue!| |rightExtendedGcd| + |replace| |prinb| |listBranches| |sec| |tubePlot| + |useEisensteinCriterion| |mathieu11| |assign| |blue| |pdf2df| + |externalList| |lazyIrreducibleFactors| |inverseColeman| |csc| + |cycleSplit!| |primintegrate| |trigs| |coleman| |basisOfNucleus| + |HenselLift| |readInt16!| |asin| |bezoutResultant| |test| |read!| + |addBadValue| |Aleph| |operation| |mapUnivariate| |remove| |pack!| + |removeZero| |fortranLinkerArgs| |inconsistent?| |acos| |errorKind| + |atom?| |argumentList!| |getBadValues| |unrankImproperPartitions0| + |c02aff| |distance| |setMaxPoints| |cycleRagits| |atan| + |absolutelyIrreducible?| |sn| |d01anf| |expandTrigProducts| |parts| + |pseudoDivide| |last| |makeViewport2D| |makeCos| |changeBase| + |nthExponent| |OMgetEndBind| |acot| |leftRecip| |open?| |assoc| + |s17agf| |semiDiscriminantEuclidean| |create| |fTable| |queue| |asec| + |primintfldpoly| |supRittWu?| |mappingAst| |condition| |tower| + |fractRagits| |balancedFactorisation| |doubleDisc| |prevPrime| + |fixedPoint| |aQuartic| |acsc| |constantToUnaryFunction| + |createMultiplicationMatrix| |explicitlyFinite?| |coefficient| + |symmetricSquare| |d01asf| |structuralConstants| |prefix| |sin2csc| + |resultant| |sinh| |square?| |basisOfCenter| |rightUnit| |powmod| + |mathieu12| |subCase?| |evenlambert| |cosh| |computeBasis| + |outputMeasure| |rightTrace| |d02ejf| |index?| |decimal| + |recoverAfterFail| |standardBasisOfCyclicSubmodule| |allRootsOf| |obj| + |tanh| |s13aaf| |eq| |maxIndex| |oddintegers| |f04arf| |generic?| + |solveLinearPolynomialEquationByFractions| |c05nbf| |rightLcm| + |getSyntaxFormsFromFile| |cache| |coth| |iter| |pointData| |polCase| + |showArrayValues| |ramified?| |complexNumeric| |uncouplingMatrices| + |halfExtendedSubResultantGcd2| |getOperator| |prime| + |lazyPremWithDefault| |truncate| |sech| |f04atf| |iiatan| + |stoseInvertible?| |incrementKthElement| |multiEuclideanTree| + |tubePointsDefault| |f02adf| |s18acf| |derivationCoordinates| |d03eef| + |csch| |polyRDE| |belong?| |limitPlus| |split| |getGraph| |solve1| + |printHeader| |totalDifferential| |semiResultantEuclidean2| |asinh| + |putGraph| |numberOfComputedEntries| |pow| |top!| |split!| |heapSort| + |rootOf| |algint| |s18aff| |collectUnder| |oddlambert| |acosh| + |overlabel| |mix| |startTableGcd!| |pdf2ef| |meshPar2Var| + |interactiveEnv| |elaborateFile| |leastMonomial| |mapUnivariateIfCan| + |s18aef| |hasSolution?| |environment| |smith| |idealiser| + |rewriteIdealWithQuasiMonicGenerators| |finiteBound| |negative?| + |subMatrix| |polygon?| |fixPredicate| |exp| |gcdprim| |color| + |ratpart| |outlineRender| |mkIntegral| |lookupFunction| |argument| + |d01alf| |LyndonBasis| |printCode| |leftUnit| |droot| |map| + |invertIfCan| |rotatez| |radix| |integralMatrixAtInfinity| + |intcompBasis| |numericIfCan| |supersub| |permanent| + |screenResolution3D| |powers| |table| |generator| |graphs| + |genericRightTrace| |position!| |s19adf| |OMsupportsCD?| |nil| + |outputSpacing| |youngGroup| |closedCurve?| |complexForm| + |changeThreshhold| |new| |viewDeltaYDefault| |f02bjf| |extractIndex| + |rCoord| |buildSyntax| |solid?| |dimensionsOf| |compile| |setClosed| + |setMinPoints| |s18adf| |basisOfRightNucloid| |closed| + |multiplyExponents| |graphStates| |halfExtendedSubResultantGcd1| + |zeroVector| |beauzamyBound| |log2| |usingTable?| |simpson| + |addPointLast| |realRoots| |univariateSolve| |approximate| |spherical| + |padecf| |stop| |prime?| |cPower| |convert| |signatureAst| + |LyndonWordsList1| |acoshIfCan| |round| |setPrologue!| |complex| + |vconcat| |parseString| |f02awf| |car| + |removeRoughlyRedundantFactorsInPols| |trueEqual| |phiCoord| |f02aaf| + |tab| |createLowComplexityTable| |irreducible?| |jacobi| + |selectNonFiniteRoutines| |monomialIntPoly| |setClipValue| + |decreasePrecision| |mapdiv| |mirror| |failed| |redPo| |nullity| + |SturmHabichtSequence| |printStats!| |rationalPower| |permutation| + |lazyPquo| |iiacoth| |createMultiplicationTable| |generateIrredPoly| + |byteBuffer| |aspFilename| |rootBound| |exponent| |flexibleArray| + |increment| |noValueMode| |rowEchLocal| |resultantEuclideannaif| + |degreeSubResultant| |primPartElseUnitCanonical!| |heap| |incr| + |currentCategoryFrame| |operators| |upperCase!| |insertRoot!| + |OMlistSymbols| |monic?| |block| |dihedralGroup| |Gamma| |hi| + |linearDependenceOverZ| |graphImage| |push!| |rationalPoints| + |monicRightDivide| |varselect| |shrinkable| |showClipRegion| |e02bef| + |left| |symbolIfCan| |curryLeft| |internalDecompose| + |numberOfNormalPoly| |invertible?| |indicialEquations| + |printStatement| |f01rdf| |interpolate| |right| |OMgetFloat| |bracket| + |more?| |front| |viewPhiDefault| |pastel| F2FG |overbar| |setelt!| + |pointColorPalette| |cCos| |sh| |getButtonValue| |pushdterm| + |associatedSystem| |mapBivariate| |support| |showRegion| + |doubleResultant| |safetyMargin| |Vectorise| |separate| |qelt| + |diagonalMatrix| |logGamma| |coerceListOfPairs| |dominantTerm| + |expenseOfEvaluationIF| |SFunction| |qsetelt| |splitSquarefree| + |nextLatticePermutation| |minus!| |isList| |initial| + |rationalApproximation| |LyndonCoordinates| |lowerCase!| |horizConcat| + |alternating| |stoseInvertible?reg| |createPrimitivePoly| |f04faf| + |xRange| |viewport2D| |next| |OMgetApp| |tanQ| |rightDivide| + |nextsousResultant2| |key| |readable?| |polyred| |quadraticForm| + |rightQuotient| |yRange| |lazyResidueClass| |hclf| |putProperties| + |OMunhandledSymbol| |f01qcf| |explogs2trigs| |createGenericMatrix| + |viewWriteAvailable| |leftExactQuotient| |generators| |zRange| + |e02dcf| |maxrank| |completeSmith| |stoseSquareFreePart| |filename| + |map!| |PDESolve| |palgint| |setValue!| |pol| |symmetricDifference| + |midpoints| |limit| |trim| |e02gaf| |qsetelt!| + |clearFortranOutputStack| |hue| |merge| |nthRoot| |deepestTail| |ref| + |leastAffineMultiple| |numerator| |tube| |parse| |fortranComplex| + |reducedSystem| |resetNew| |leftRank| |sinh2csch| |increase| |code| + |hMonic| |mdeg| |headRemainder| |generate| |fortranLogical| |select!| + |rewriteIdealWithRemainder| |bottom!| |hcrf| |makeYoungTableau| + |readUInt32!| |connectTo| |fintegrate| |BasicMethod| + |factorsOfCyclicGroupSize| |ranges| |imaginary| |wreath| + |hyperelliptic| |quotientByP| |bsolve| |bitCoef| |incrementBy| + |getGoodPrime| |sayLength| |setsubMatrix!| |e01baf| + |constantCoefficientRicDE| |rdHack1| |f2st| |eisensteinIrreducible?| + |triangularSystems| |multinomial| |factorset| |nextIrreduciblePoly| + |dual| |child?| |acsch| |generic| |leadingTerm| |genericPosition| + |transcendenceDegree| |iitan| |c02agf| |outputFloating| |printInfo| + |highCommonTerms| |expressIdealMember| |toseSquareFreePart| + |groebnerIdeal| |complexNumericIfCan| |integral?| |insertMatch| + |identity| |eulerPhi| |integralDerivationMatrix| |duplicates| |cyclic| + |iifact| |closed?| |OMreadFile| |cot2trig| |categoryFrame| |cAsec| + |qPot| |tanSum| |e04jaf| |asecIfCan| |solveLinearlyOverQ| |options| + |gbasis| |updatF| |tablePow| |interval| |lazyPseudoRemainder| |tail| + |setScreenResolution| |dom| |leftScalarTimes!| |laplacian| + |reducedDiscriminant| |e01bhf| |leftGcd| |reducedContinuedFraction| + |internalSubQuasiComponent?| |upperCase?| |insert!| |arg1| |entry| + |OMopenFile| |PollardSmallFactor| |expandPower| |product| |binding| + |eigenvalues| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 905afa53..d6ed9e50 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5440 +1,5444 @@ -(3261979 . 3486815923) -((-3063 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-1715 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4267 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1254 (-576)) |#2|) 44)) (-3432 (($ $) 80)) (-2721 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3538 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3721 (((-656 |#2|) $) 13)) (-2144 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-1896 (($ (-1 |#2| |#2|) $) 37)) (-2422 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-3386 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-2022 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3587 (((-112) (-1 (-112) |#2|) $) 23)) (-4368 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1254 (-576))) 66)) (-2334 (($ $ (-576)) 76) (($ $ (-1254 (-576))) 75)) (-3125 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-3757 (($ $ $ (-576)) 69)) (-4286 (($ $) 68)) (-4124 (($ (-656 |#2|)) 73)) (-2766 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-4112 (((-875) $) 92)) (-1682 (((-112) (-1 (-112) |#2|) $) 22)) (-3938 (((-112) $ $) 95)) (-3962 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3962 ((-112) |#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -1715 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3432 (|#1| |#1|)) (-15 -3757 (|#1| |#1| |#1| (-576))) (-15 -3063 ((-112) |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3538 ((-576) |#2| |#1| (-576))) (-15 -3538 ((-576) |#2| |#1|)) (-15 -3538 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3063 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2144 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4267 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2334 (|#1| |#1| (-1254 (-576)))) (-15 -2334 (|#1| |#1| (-576))) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2766 (|#1| (-656 |#1|))) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -4124 (|#1| (-656 |#2|))) (-15 -2022 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4368 (|#2| |#1| (-576))) (-15 -4368 (|#2| |#1| (-576) |#2|)) (-15 -4267 (|#2| |#1| (-576) |#2|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3721 ((-656 |#2|) |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4286 (|#1| |#1|))) (-19 |#2|) (-1237)) (T -18)) +(3262368 . 3486820651) +((-2071 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2450 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3755 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 44)) (-1474 (($ $) 80)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3659 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3965 (((-656 |#2|) $) 13)) (-4335 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-4322 (($ (-1 |#2| |#2|) $) 37)) (-4116 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2174 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-2366 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3542 (((-112) (-1 (-112) |#2|) $) 23)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1255 (-576))) 66)) (-3463 (($ $ (-576)) 76) (($ $ (-1255 (-576))) 75)) (-1460 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-2568 (($ $ $ (-576)) 69)) (-1870 (($ $) 68)) (-3581 (($ (-656 |#2|)) 73)) (-1615 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-3569 (((-876) $) 92)) (-2170 (((-112) (-1 (-112) |#2|) $) 22)) (-2923 (((-112) $ $) 95)) (-2948 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2450 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -2568 (|#1| |#1| |#1| (-576))) (-15 -2071 ((-112) |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4335 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -3463 (|#1| |#1| (-1255 (-576)))) (-15 -3463 (|#1| |#1| (-576))) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3581 (|#1| (-656 |#2|))) (-15 -2366 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-19 |#2|) (-1238)) (T -18)) NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3962 ((-112) |#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -1715 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3432 (|#1| |#1|)) (-15 -3757 (|#1| |#1| |#1| (-576))) (-15 -3063 ((-112) |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3538 ((-576) |#2| |#1| (-576))) (-15 -3538 ((-576) |#2| |#1|)) (-15 -3538 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3063 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2144 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4267 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2334 (|#1| |#1| (-1254 (-576)))) (-15 -2334 (|#1| |#1| (-576))) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2766 (|#1| (-656 |#1|))) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -4124 (|#1| (-656 |#2|))) (-15 -2022 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4368 (|#2| |#1| (-576))) (-15 -4368 (|#2| |#1| (-576) |#2|)) (-15 -4267 (|#2| |#1| (-576) |#2|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3721 ((-656 |#2|) |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4286 (|#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4464))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4464))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3432 (($ $) 93 (|has| $ (-6 -4464)))) (-4203 (($ $) 103)) (-3966 (($ $) 80 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 79 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 52)) (-3538 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-2905 (($ $ $) 85 (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1654 (($ $ $) 86 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 43 (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2556 (($ $ |#1|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3757 (($ $ $ (-576)) 94 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 72)) (-2766 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3983 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 90 (|has| |#1| (-861)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-19 |#1|) (-141) (-1237)) (T -19)) +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2450 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -2568 (|#1| |#1| |#1| (-576))) (-15 -2071 ((-112) |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4335 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -3463 (|#1| |#1| (-1255 (-576)))) (-15 -3463 (|#1| |#1| (-576))) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3581 (|#1| (-656 |#2|))) (-15 -2366 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-1474 (($ $) 93 (|has| $ (-6 -4465)))) (-3834 (($ $) 103)) (-2800 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-1951 (($ $ $) 86 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2568 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-19 |#1|) (-141) (-1238)) (T -19)) NIL -(-13 (-384 |t#1|) (-10 -7 (-6 -4464))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1120) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861))) ((-1237) . T)) -((-2559 (((-3 $ "failed") $ $) 12)) (-4036 (($ $) NIL) (($ $ $) 9)) (* (($ (-939) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2559 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) (-21)) (T -20)) +(-13 (-384 |t#1|) (-10 -7 (-6 -4465))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) +((-2780 (((-3 $ "failed") $ $) 12)) (-3043 (($ $) NIL) (($ $ $) 9)) (* (($ (-940) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2559 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) (((-21) (-141)) (T -21)) -((-4036 (*1 *1 *1) (-4 *1 (-21))) (-4036 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-658 (-576)) (-10 -8 (-15 -4036 ($ $)) (-15 -4036 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-1120) . T) ((-1237) . T)) -((-3167 (((-112) $) 10)) (-4331 (($) 15)) (* (($ (-939) $) 14) (($ (-783) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3167 ((-112) |#1|)) (-15 -4331 (|#1|)) (-15 * (|#1| (-939) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3167 ((-112) |#1|)) (-15 -4331 (|#1|)) (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16))) +((-3043 (*1 *1 *1) (-4 *1 (-21))) (-3043 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-658 (-576)) (-10 -8 (-15 -3043 ($ $)) (-15 -3043 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1121) . T) ((-1238) . T)) +((-1812 (((-112) $) 10)) (-3306 (($) 15)) (* (($ (-940) $) 14) (($ (-783) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1812 ((-112) |#1|)) (-15 -3306 (|#1|)) (-15 * (|#1| (-940) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1812 ((-112) |#1|)) (-15 -3306 (|#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-23) (-141)) (T -23)) -((-4314 (*1 *1) (-4 *1 (-23))) (-4331 (*1 *1) (-4 *1 (-23))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) -(-13 (-25) (-10 -8 (-15 (-4314) ($) -2665) (-15 -4331 ($) -2665) (-15 -3167 ((-112) $)) (-15 * ($ (-783) $)))) -(((-25) . T) ((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((* (($ (-939) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-939) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14))) +((-2719 (*1 *1) (-4 *1 (-23))) (-3306 (*1 *1) (-4 *1 (-23))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) +(-13 (-25) (-10 -8 (-15 (-2719) ($) -1480) (-15 -3306 ($) -1480) (-15 -1812 ((-112) $)) (-15 * ($ (-783) $)))) +(((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((* (($ (-940) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-940) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14))) (((-25) (-141)) (T -25)) -((-4026 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-939))))) -(-13 (-1120) (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ (-939) $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-2518 (((-656 $) (-970 $)) 32) (((-656 $) (-1192 $)) 16) (((-656 $) (-1192 $) (-1196)) 20)) (-2089 (($ (-970 $)) 30) (($ (-1192 $)) 11) (($ (-1192 $) (-1196)) 60)) (-3468 (((-656 $) (-970 $)) 33) (((-656 $) (-1192 $)) 18) (((-656 $) (-1192 $) (-1196)) 19)) (-1480 (($ (-970 $)) 31) (($ (-1192 $)) 13) (($ (-1192 $) (-1196)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2518 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2518 ((-656 |#1|) (-1192 |#1|))) (-15 -2518 ((-656 |#1|) (-970 |#1|))) (-15 -2089 (|#1| (-1192 |#1|) (-1196))) (-15 -2089 (|#1| (-1192 |#1|))) (-15 -2089 (|#1| (-970 |#1|))) (-15 -3468 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -3468 ((-656 |#1|) (-1192 |#1|))) (-15 -3468 ((-656 |#1|) (-970 |#1|))) (-15 -1480 (|#1| (-1192 |#1|) (-1196))) (-15 -1480 (|#1| (-1192 |#1|))) (-15 -1480 (|#1| (-970 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2518 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2518 ((-656 |#1|) (-1192 |#1|))) (-15 -2518 ((-656 |#1|) (-970 |#1|))) (-15 -2089 (|#1| (-1192 |#1|) (-1196))) (-15 -2089 (|#1| (-1192 |#1|))) (-15 -2089 (|#1| (-970 |#1|))) (-15 -3468 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -3468 ((-656 |#1|) (-1192 |#1|))) (-15 -3468 ((-656 |#1|) (-970 |#1|))) (-15 -1480 (|#1| (-1192 |#1|) (-1196))) (-15 -1480 (|#1| (-1192 |#1|))) (-15 -1480 (|#1| (-970 |#1|)))) -((-1952 (((-112) $ $) 7)) (-2518 (((-656 $) (-970 $)) 88) (((-656 $) (-1192 $)) 87) (((-656 $) (-1192 $) (-1196)) 86)) (-2089 (($ (-970 $)) 91) (($ (-1192 $)) 90) (($ (-1192 $) (-1196)) 89)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-1462 (($ $) 100)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-3468 (((-656 $) (-970 $)) 94) (((-656 $) (-1192 $)) 93) (((-656 $) (-1192 $) (-1196)) 92)) (-1480 (($ (-970 $)) 97) (($ (-1192 $)) 96) (($ (-1192 $) (-1196)) 95)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2443 (((-112) $) 79)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 99)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3029 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940))))) +(-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ (-940) $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3668 (((-656 $) (-971 $)) 32) (((-656 $) (-1193 $)) 16) (((-656 $) (-1193 $) (-1197)) 20)) (-1842 (($ (-971 $)) 30) (($ (-1193 $)) 11) (($ (-1193 $) (-1197)) 60)) (-1754 (((-656 $) (-971 $)) 33) (((-656 $) (-1193 $)) 18) (((-656 $) (-1193 $) (-1197)) 19)) (-4077 (($ (-971 $)) 31) (($ (-1193 $)) 13) (($ (-1193 $) (-1197)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3668 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3668 ((-656 |#1|) (-1193 |#1|))) (-15 -3668 ((-656 |#1|) (-971 |#1|))) (-15 -1842 (|#1| (-1193 |#1|) (-1197))) (-15 -1842 (|#1| (-1193 |#1|))) (-15 -1842 (|#1| (-971 |#1|))) (-15 -1754 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1754 ((-656 |#1|) (-1193 |#1|))) (-15 -1754 ((-656 |#1|) (-971 |#1|))) (-15 -4077 (|#1| (-1193 |#1|) (-1197))) (-15 -4077 (|#1| (-1193 |#1|))) (-15 -4077 (|#1| (-971 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3668 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3668 ((-656 |#1|) (-1193 |#1|))) (-15 -3668 ((-656 |#1|) (-971 |#1|))) (-15 -1842 (|#1| (-1193 |#1|) (-1197))) (-15 -1842 (|#1| (-1193 |#1|))) (-15 -1842 (|#1| (-971 |#1|))) (-15 -1754 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1754 ((-656 |#1|) (-1193 |#1|))) (-15 -1754 ((-656 |#1|) (-971 |#1|))) (-15 -4077 (|#1| (-1193 |#1|) (-1197))) (-15 -4077 (|#1| (-1193 |#1|))) (-15 -4077 (|#1| (-971 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3668 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86)) (-1842 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-1839 (($ $) 100)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-1754 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92)) (-4077 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-4169 (((-112) $) 79)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 99)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-27) (-141)) (T -27)) -((-1480 (*1 *1 *2) (-12 (-5 *2 (-970 *1)) (-4 *1 (-27)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-1480 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-970 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-970 *1)) (-4 *1 (-27)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-2089 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-970 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) -(-13 (-374) (-1022) (-10 -8 (-15 -1480 ($ (-970 $))) (-15 -1480 ($ (-1192 $))) (-15 -1480 ($ (-1192 $) (-1196))) (-15 -3468 ((-656 $) (-970 $))) (-15 -3468 ((-656 $) (-1192 $))) (-15 -3468 ((-656 $) (-1192 $) (-1196))) (-15 -2089 ($ (-970 $))) (-15 -2089 ($ (-1192 $))) (-15 -2089 ($ (-1192 $) (-1196))) (-15 -2518 ((-656 $) (-970 $))) (-15 -2518 ((-656 $) (-1192 $))) (-15 -2518 ((-656 $) (-1192 $) (-1196))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1022) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-2518 (((-656 $) (-970 $)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 $) (-1196)) 55) (((-656 $) $) 22) (((-656 $) $ (-1196)) 46)) (-2089 (($ (-970 $)) NIL) (($ (-1192 $)) NIL) (($ (-1192 $) (-1196)) 57) (($ $) 20) (($ $ (-1196)) 40)) (-3468 (((-656 $) (-970 $)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 $) (-1196)) 53) (((-656 $) $) 18) (((-656 $) $ (-1196)) 48)) (-1480 (($ (-970 $)) NIL) (($ (-1192 $)) NIL) (($ (-1192 $) (-1196)) NIL) (($ $) 15) (($ $ (-1196)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2518 ((-656 |#1|) |#1| (-1196))) (-15 -2089 (|#1| |#1| (-1196))) (-15 -2518 ((-656 |#1|) |#1|)) (-15 -2089 (|#1| |#1|)) (-15 -3468 ((-656 |#1|) |#1| (-1196))) (-15 -1480 (|#1| |#1| (-1196))) (-15 -3468 ((-656 |#1|) |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -2518 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2518 ((-656 |#1|) (-1192 |#1|))) (-15 -2518 ((-656 |#1|) (-970 |#1|))) (-15 -2089 (|#1| (-1192 |#1|) (-1196))) (-15 -2089 (|#1| (-1192 |#1|))) (-15 -2089 (|#1| (-970 |#1|))) (-15 -3468 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -3468 ((-656 |#1|) (-1192 |#1|))) (-15 -3468 ((-656 |#1|) (-970 |#1|))) (-15 -1480 (|#1| (-1192 |#1|) (-1196))) (-15 -1480 (|#1| (-1192 |#1|))) (-15 -1480 (|#1| (-970 |#1|)))) (-29 |#2|) (-568)) (T -28)) -NIL -(-10 -8 (-15 -2518 ((-656 |#1|) |#1| (-1196))) (-15 -2089 (|#1| |#1| (-1196))) (-15 -2518 ((-656 |#1|) |#1|)) (-15 -2089 (|#1| |#1|)) (-15 -3468 ((-656 |#1|) |#1| (-1196))) (-15 -1480 (|#1| |#1| (-1196))) (-15 -3468 ((-656 |#1|) |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -2518 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2518 ((-656 |#1|) (-1192 |#1|))) (-15 -2518 ((-656 |#1|) (-970 |#1|))) (-15 -2089 (|#1| (-1192 |#1|) (-1196))) (-15 -2089 (|#1| (-1192 |#1|))) (-15 -2089 (|#1| (-970 |#1|))) (-15 -3468 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -3468 ((-656 |#1|) (-1192 |#1|))) (-15 -3468 ((-656 |#1|) (-970 |#1|))) (-15 -1480 (|#1| (-1192 |#1|) (-1196))) (-15 -1480 (|#1| (-1192 |#1|))) (-15 -1480 (|#1| (-970 |#1|)))) -((-1952 (((-112) $ $) 7)) (-2518 (((-656 $) (-970 $)) 88) (((-656 $) (-1192 $)) 87) (((-656 $) (-1192 $) (-1196)) 86) (((-656 $) $) 138) (((-656 $) $ (-1196)) 136)) (-2089 (($ (-970 $)) 91) (($ (-1192 $)) 90) (($ (-1192 $) (-1196)) 89) (($ $) 139) (($ $ (-1196)) 137)) (-3167 (((-112) $) 17)) (-1582 (((-656 (-1196)) $) 207)) (-1420 (((-419 (-1192 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-4442 (((-656 (-624 $)) $) 170)) (-2559 (((-3 $ "failed") $ $) 20)) (-1791 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-1462 (($ $) 100)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-3468 (((-656 $) (-970 $)) 94) (((-656 $) (-1192 $)) 93) (((-656 $) (-1192 $) (-1196)) 92) (((-656 $) $) 142) (((-656 $) $ (-1196)) 140)) (-1480 (($ (-970 $)) 97) (($ (-1192 $)) 96) (($ (-1192 $) (-1196)) 95) (($ $) 143) (($ $ (-1196)) 141)) (-2980 (((-3 (-970 |#1|) "failed") $) 258 (|has| |#1| (-1069))) (((-3 (-419 (-970 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1058 (-576)))) (((-3 (-1196) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-3794 (-12 (|has| |#1| (-1058 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1058 (-419 (-576))))))) (-2317 (((-970 |#1|) $) 257 (|has| |#1| (-1069))) (((-419 (-970 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1058 (-576)))) (((-1196) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-3794 (-12 (|has| |#1| (-1058 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1058 (-419 (-576))))))) (-1893 (($ $ $) 61)) (-3222 (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1069))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 245 (|has| |#1| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 132 (-3794 (-2310 (|has| |#1| (-1069)) (|has| |#1| (-651 (-576)))) (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (((-701 (-576)) (-701 $)) 131 (-3794 (-2310 (|has| |#1| (-1069)) (|has| |#1| (-651 (-576)))) (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))))) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2443 (((-112) $) 79)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 199 (|has| |#1| (-900 (-390)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 198 (|has| |#1| (-900 (-576))))) (-1390 (($ (-656 $)) 164) (($ $) 163)) (-3209 (((-656 (-115)) $) 171)) (-1400 (((-115) (-115)) 172)) (-2287 (((-112) $) 35)) (-1589 (((-112) $) 192 (|has| $ (-1058 (-576))))) (-2461 (($ $) 224 (|has| |#1| (-1069)))) (-2686 (((-1145 |#1| (-624 $)) $) 223 (|has| |#1| (-1069)))) (-2770 (($ $ (-576)) 99)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3066 (((-1192 $) (-624 $)) 189 (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) 178)) (-2413 (((-3 (-624 $) "failed") $) 168)) (-2198 (((-701 |#1|) (-1287 $)) 248 (|has| |#1| (-1069))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 247 (|has| |#1| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 130 (-3794 (-2310 (|has| |#1| (-1069)) (|has| |#1| (-651 (-576)))) (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (((-701 (-576)) (-1287 $)) 129 (-3794 (-2310 (|has| |#1| (-1069)) (|has| |#1| (-651 (-576)))) (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))))) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1389 (((-656 (-624 $)) $) 169)) (-2774 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-2000 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1132)))) (-2192 (((-3 (-2 (|:| |val| $) (|:| -1495 (-576))) "failed") $) 227 (|has| |#1| (-1069)))) (-2279 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-3656 (((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-4044 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-1196)) 226 (|has| |#1| (-1069))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1069))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $) 219 (|has| |#1| (-1132)))) (-1681 (((-112) $ (-1196)) 175) (((-112) $ (-115)) 174)) (-1667 (($ $) 78)) (-2952 (((-783) $) 167)) (-3115 (((-1140) $) 11)) (-1677 (((-112) $) 205)) (-1685 ((|#1| $) 206)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1546 (((-112) $ (-1196)) 180) (((-112) $ $) 179)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4296 (((-112) $) 191 (|has| $ (-1058 (-576))))) (-2143 (($ $ (-1196) (-783) (-1 $ $)) 231 (|has| |#1| (-1069))) (($ $ (-1196) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1069))) (($ $ (-656 (-115)) (-656 $) (-1196)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1196)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1196) (-1 $ $)) 184) (($ $ (-1196) (-1 $ (-656 $))) 183) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-2026 (((-783) $) 64)) (-4368 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-2678 (($ $ $) 166) (($ $) 165)) (-4106 (($ $ (-656 (-1196)) (-656 (-783))) 253 (|has| |#1| (-1069))) (($ $ (-1196) (-783)) 252 (|has| |#1| (-1069))) (($ $ (-656 (-1196))) 251 (|has| |#1| (-1069))) (($ $ (-1196)) 249 (|has| |#1| (-1069)))) (-2521 (($ $) 234 (|has| |#1| (-568)))) (-2697 (((-1145 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-3175 (($ $) 190 (|has| $ (-1069)))) (-1554 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-906 (-390)) $) 197 (|has| |#1| (-626 (-906 (-390))))) (((-906 (-576)) $) 196 (|has| |#1| (-626 (-906 (-576)))))) (-2633 (($ $ $) 261 (|has| |#1| (-485)))) (-2362 (($ $ $) 260 (|has| |#1| (-485)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-970 |#1|)) 259 (|has| |#1| (-1069))) (($ (-419 (-970 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-970 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-970 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1145 |#1| (-624 $))) 222 (|has| |#1| (-1069))) (($ |#1|) 204) (($ (-1196)) 195) (($ (-624 $)) 146)) (-1972 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-2344 (($ (-656 $)) 162) (($ $) 161)) (-2431 (((-112) (-115)) 173)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-3700 (($ (-1196) (-656 $)) 212) (($ (-1196) $ $ $ $) 211) (($ (-1196) $ $ $) 210) (($ (-1196) $ $) 209) (($ (-1196) $) 208)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-656 (-1196)) (-656 (-783))) 256 (|has| |#1| (-1069))) (($ $ (-1196) (-783)) 255 (|has| |#1| (-1069))) (($ $ (-656 (-1196))) 254 (|has| |#1| (-1069))) (($ $ (-1196)) 250 (|has| |#1| (-1069)))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73) (($ (-1145 |#1| (-624 $)) (-1145 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1069))))) +((-4077 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) +(-13 (-374) (-1023) (-10 -8 (-15 -4077 ($ (-971 $))) (-15 -4077 ($ (-1193 $))) (-15 -4077 ($ (-1193 $) (-1197))) (-15 -1754 ((-656 $) (-971 $))) (-15 -1754 ((-656 $) (-1193 $))) (-15 -1754 ((-656 $) (-1193 $) (-1197))) (-15 -1842 ($ (-971 $))) (-15 -1842 ($ (-1193 $))) (-15 -1842 ($ (-1193 $) (-1197))) (-15 -3668 ((-656 $) (-971 $))) (-15 -3668 ((-656 $) (-1193 $))) (-15 -3668 ((-656 $) (-1193 $) (-1197))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1023) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-3668 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 55) (((-656 $) $) 22) (((-656 $) $ (-1197)) 46)) (-1842 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) 57) (($ $) 20) (($ $ (-1197)) 40)) (-1754 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 53) (((-656 $) $) 18) (((-656 $) $ (-1197)) 48)) (-4077 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) NIL) (($ $) 15) (($ $ (-1197)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3668 ((-656 |#1|) |#1| (-1197))) (-15 -1842 (|#1| |#1| (-1197))) (-15 -3668 ((-656 |#1|) |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1754 ((-656 |#1|) |#1| (-1197))) (-15 -4077 (|#1| |#1| (-1197))) (-15 -1754 ((-656 |#1|) |#1|)) (-15 -4077 (|#1| |#1|)) (-15 -3668 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3668 ((-656 |#1|) (-1193 |#1|))) (-15 -3668 ((-656 |#1|) (-971 |#1|))) (-15 -1842 (|#1| (-1193 |#1|) (-1197))) (-15 -1842 (|#1| (-1193 |#1|))) (-15 -1842 (|#1| (-971 |#1|))) (-15 -1754 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1754 ((-656 |#1|) (-1193 |#1|))) (-15 -1754 ((-656 |#1|) (-971 |#1|))) (-15 -4077 (|#1| (-1193 |#1|) (-1197))) (-15 -4077 (|#1| (-1193 |#1|))) (-15 -4077 (|#1| (-971 |#1|)))) (-29 |#2|) (-568)) (T -28)) +NIL +(-10 -8 (-15 -3668 ((-656 |#1|) |#1| (-1197))) (-15 -1842 (|#1| |#1| (-1197))) (-15 -3668 ((-656 |#1|) |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1754 ((-656 |#1|) |#1| (-1197))) (-15 -4077 (|#1| |#1| (-1197))) (-15 -1754 ((-656 |#1|) |#1|)) (-15 -4077 (|#1| |#1|)) (-15 -3668 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3668 ((-656 |#1|) (-1193 |#1|))) (-15 -3668 ((-656 |#1|) (-971 |#1|))) (-15 -1842 (|#1| (-1193 |#1|) (-1197))) (-15 -1842 (|#1| (-1193 |#1|))) (-15 -1842 (|#1| (-971 |#1|))) (-15 -1754 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1754 ((-656 |#1|) (-1193 |#1|))) (-15 -1754 ((-656 |#1|) (-971 |#1|))) (-15 -4077 (|#1| (-1193 |#1|) (-1197))) (-15 -4077 (|#1| (-1193 |#1|))) (-15 -4077 (|#1| (-971 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3668 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86) (((-656 $) $) 138) (((-656 $) $ (-1197)) 136)) (-1842 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89) (($ $) 139) (($ $ (-1197)) 137)) (-1812 (((-112) $) 17)) (-1966 (((-656 (-1197)) $) 207)) (-1799 (((-419 (-1193 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-3987 (((-656 (-624 $)) $) 170)) (-2780 (((-3 $ "failed") $ $) 20)) (-3427 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-1839 (($ $) 100)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-1754 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92) (((-656 $) $) 142) (((-656 $) $ (-1197)) 140)) (-4077 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95) (($ $) 143) (($ $ (-1197)) 141)) (-1572 (((-3 (-971 |#1|) "failed") $) 258 (|has| |#1| (-1070))) (((-3 (-419 (-971 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-2758 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 (((-971 |#1|) $) 257 (|has| |#1| (-1070))) (((-419 (-971 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1059 (-576)))) (((-1197) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-2758 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-3428 (($ $ $) 61)) (-4344 (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1070))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 245 (|has| |#1| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 132 (-2758 (-2673 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-701 $)) 131 (-2758 (-2673 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-4169 (((-112) $) 79)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 199 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 198 (|has| |#1| (-901 (-576))))) (-3716 (($ (-656 $)) 164) (($ $) 163)) (-4221 (((-656 (-115)) $) 171)) (-1775 (((-115) (-115)) 172)) (-3215 (((-112) $) 35)) (-2561 (((-112) $) 192 (|has| $ (-1059 (-576))))) (-4340 (($ $) 224 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 223 (|has| |#1| (-1070)))) (-4336 (($ $ (-576)) 99)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2103 (((-1193 $) (-624 $)) 189 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 178)) (-1902 (((-3 (-624 $) "failed") $) 168)) (-3626 (((-701 |#1|) (-1288 $)) 248 (|has| |#1| (-1070))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 247 (|has| |#1| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 130 (-2758 (-2673 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-1288 $)) 129 (-2758 (-2673 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 169)) (-1639 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-2164 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1133)))) (-3572 (((-3 (-2 (|:| |val| $) (|:| -4210 (-576))) "failed") $) 227 (|has| |#1| (-1070)))) (-3163 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-2919 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-2292 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-1197)) 226 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $) 219 (|has| |#1| (-1133)))) (-2158 (((-112) $ (-1197)) 175) (((-112) $ (-115)) 174)) (-2048 (($ $) 78)) (-2325 (((-783) $) 167)) (-1450 (((-1141) $) 11)) (-2058 (((-112) $) 205)) (-2068 ((|#1| $) 206)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3470 (((-112) $ (-1197)) 180) (((-112) $ $) 179)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2975 (((-112) $) 191 (|has| $ (-1059 (-576))))) (-3283 (($ $ (-1197) (-783) (-1 $ $)) 231 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1070))) (($ $ (-656 (-115)) (-656 $) (-1197)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1197)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1197) (-1 $ $)) 184) (($ $ (-1197) (-1 $ (-656 $))) 183) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-2411 (((-783) $) 64)) (-2796 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-1546 (($ $ $) 166) (($ $) 165)) (-2773 (($ $ (-656 (-1197)) (-656 (-783))) 253 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 252 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 251 (|has| |#1| (-1070))) (($ $ (-1197)) 249 (|has| |#1| (-1070)))) (-3708 (($ $) 234 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-1897 (($ $) 190 (|has| $ (-1070)))) (-4171 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-907 (-390)) $) 197 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 196 (|has| |#1| (-626 (-907 (-576)))))) (-2318 (($ $ $) 261 (|has| |#1| (-485)))) (-2604 (($ $ $) 260 (|has| |#1| (-485)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-971 |#1|)) 259 (|has| |#1| (-1070))) (($ (-419 (-971 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1146 |#1| (-624 $))) 222 (|has| |#1| (-1070))) (($ |#1|) 204) (($ (-1197)) 195) (($ (-624 $)) 146)) (-3230 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-3680 (($ (-656 $)) 162) (($ $) 161)) (-4062 (((-112) (-115)) 173)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2851 (($ (-1197) (-656 $)) 212) (($ (-1197) $ $ $ $) 211) (($ (-1197) $ $ $) 210) (($ (-1197) $ $) 209) (($ (-1197) $) 208)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-656 (-1197)) (-656 (-783))) 256 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 255 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 254 (|has| |#1| (-1070))) (($ $ (-1197)) 250 (|has| |#1| (-1070)))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73) (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))))) (((-29 |#1|) (-141) (-568)) (T -29)) -((-1480 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3468 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-2089 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2089 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -1480 ($ $)) (-15 -3468 ((-656 $) $)) (-15 -1480 ($ $ (-1196))) (-15 -3468 ((-656 $) $ (-1196))) (-15 -2089 ($ $)) (-15 -2518 ((-656 $) $)) (-15 -2089 ($ $ (-1196))) (-15 -2518 ((-656 $) $ (-1196))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-970 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-970 |#1|)) |has| |#1| (-1069)) ((-628 #4=(-1196)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-906 (-390))) |has| |#1| (-626 (-906 (-390)))) ((-626 (-906 (-576))) |has| |#1| (-626 (-906 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1069)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -3794 (|has| |#1| (-1069)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))) ((-660 |#1|) -3794 (|has| |#1| (-1069)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))) ((-651 |#1|) |has| |#1| (-1069)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-910 $ #6=(-1196)) |has| |#1| (-1069)) ((-916 #6#) |has| |#1| (-1069)) ((-918 #6#) |has| |#1| (-1069)) ((-900 (-390)) |has| |#1| (-900 (-390))) ((-900 (-576)) |has| |#1| (-900 (-576))) ((-898 |#1|) . T) ((-938) . T) ((-1022) . T) ((-1058 (-419 (-576))) -3794 (|has| |#1| (-1058 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576))))) ((-1058 #1#) |has| |#1| (-568)) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 #2#) . T) ((-1058 #3#) |has| |#1| (-1069)) ((-1058 #4#) . T) ((-1058 |#1|) . T) ((-1071 #0#) . T) ((-1071 |#1|) |has| |#1| (-174)) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 |#1|) |has| |#1| (-174)) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-3753 (((-1114 (-227)) $) NIL)) (-3741 (((-1114 (-227)) $) NIL)) (-4014 (($ $ (-227)) 164)) (-4441 (($ (-970 (-576)) (-1196) (-1196) (-1114 (-419 (-576))) (-1114 (-419 (-576)))) 104)) (-3944 (((-656 (-656 (-961 (-227)))) $) 180)) (-4112 (((-875) $) 194))) -(((-30) (-13 (-973) (-10 -8 (-15 -4441 ($ (-970 (-576)) (-1196) (-1196) (-1114 (-419 (-576))) (-1114 (-419 (-576))))) (-15 -4014 ($ $ (-227)))))) (T -30)) -((-4441 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-970 (-576))) (-5 *3 (-1196)) (-5 *4 (-1114 (-419 (-576)))) (-5 *1 (-30)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-973) (-10 -8 (-15 -4441 ($ (-970 (-576)) (-1196) (-1196) (-1114 (-419 (-576))) (-1114 (-419 (-576))))) (-15 -4014 ($ $ (-227))))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-1155) $) 11)) (-1994 (((-112) $ $) NIL)) (-1865 (((-1155) $) 9)) (-3938 (((-112) $ $) NIL))) -(((-31) (-13 (-1103) (-10 -8 (-15 -1865 ((-1155) $)) (-15 -4158 ((-1155) $))))) (T -31)) -((-1865 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31))))) -(-13 (-1103) (-10 -8 (-15 -1865 ((-1155) $)) (-15 -4158 ((-1155) $)))) -((-1480 ((|#2| (-1192 |#2|) (-1196)) 41)) (-1400 (((-115) (-115)) 55)) (-3066 (((-1192 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1058 (-576))))) (-3772 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1058 (-576))))) (-1387 ((|#2| (-1192 |#2|) |#2|) 29)) (-4154 (((-875) (-656 |#2|)) 86)) (-3175 ((|#2| |#2|) 144 (|has| |#1| (-1058 (-576))))) (-2431 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1058 (-576)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -1480 (|#2| (-1192 |#2|) (-1196))) (-15 -1400 ((-115) (-115))) (-15 -2431 ((-112) (-115))) (-15 -1387 (|#2| (-1192 |#2|) |#2|)) (-15 -4154 ((-875) (-656 |#2|))) (IF (|has| |#1| (-1058 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3066 ((-1192 |#2|) (-624 |#2|))) (-15 -3175 (|#2| |#2|)) (-15 -3772 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) -((-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1058 *4)) (-4 *3 (-568)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-1058 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1058 (-576))) (-4 *4 (-568)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1058 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-875)) (-5 *1 (-32 *4 *5)))) (-1387 (*1 *2 *3 *2) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1196)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -(-10 -7 (-15 -1480 (|#2| (-1192 |#2|) (-1196))) (-15 -1400 ((-115) (-115))) (-15 -2431 ((-112) (-115))) (-15 -1387 (|#2| (-1192 |#2|) |#2|)) (-15 -4154 ((-875) (-656 |#2|))) (IF (|has| |#1| (-1058 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3066 ((-1192 |#2|) (-624 |#2|))) (-15 -3175 (|#2| |#2|)) (-15 -3772 (|#2| |#1| (-576)))) |%noBranch|)) -((-2337 (((-112) $ (-783)) 20)) (-4331 (($) 10)) (-2135 (((-112) $ (-783)) 19)) (-1556 (((-112) $ (-783)) 17)) (-1551 (((-112) $ $) 8)) (-1937 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -4331 (|#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783))) (-15 -1937 ((-112) |#1|)) (-15 -1551 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -4331 (|#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783))) (-15 -1937 ((-112) |#1|)) (-15 -1551 ((-112) |#1| |#1|))) -((-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-2135 (((-112) $ (-783)) 9)) (-1556 (((-112) $ (-783)) 10)) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4286 (($ $) 13)) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) +((-4077 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1754 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-4077 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3668 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3668 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -4077 ($ $)) (-15 -1754 ((-656 $) $)) (-15 -4077 ($ $ (-1197))) (-15 -1754 ((-656 $) $ (-1197))) (-15 -1842 ($ $)) (-15 -3668 ((-656 $) $)) (-15 -1842 ($ $ (-1197))) (-15 -3668 ((-656 $) $ (-1197))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -2758 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -2758 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) -2758 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-4305 (((-1115 (-227)) $) NIL)) (-4293 (((-1115 (-227)) $) NIL)) (-3301 (($ $ (-227)) 164)) (-1932 (($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576)))) 104)) (-3918 (((-656 (-656 (-962 (-227)))) $) 180)) (-3569 (((-876) $) 194))) +(((-30) (-13 (-974) (-10 -8 (-15 -1932 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -3301 ($ $ (-227)))))) (T -30)) +((-1932 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-974) (-10 -8 (-15 -1932 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -3301 ($ $ (-227))))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-1156) $) 11)) (-2113 (((-112) $ $) NIL)) (-3515 (((-1156) $) 9)) (-2923 (((-112) $ $) NIL))) +(((-31) (-13 (-1104) (-10 -8 (-15 -3515 ((-1156) $)) (-15 -2639 ((-1156) $))))) (T -31)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31))))) +(-13 (-1104) (-10 -8 (-15 -3515 ((-1156) $)) (-15 -2639 ((-1156) $)))) +((-4077 ((|#2| (-1193 |#2|) (-1197)) 41)) (-1775 (((-115) (-115)) 55)) (-2103 (((-1193 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1059 (-576))))) (-1521 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1059 (-576))))) (-1779 ((|#2| (-1193 |#2|) |#2|) 29)) (-4115 (((-876) (-656 |#2|)) 86)) (-1897 ((|#2| |#2|) 144 (|has| |#1| (-1059 (-576))))) (-4062 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1059 (-576)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -4077 (|#2| (-1193 |#2|) (-1197))) (-15 -1775 ((-115) (-115))) (-15 -4062 ((-112) (-115))) (-15 -1779 (|#2| (-1193 |#2|) |#2|)) (-15 -4115 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2103 ((-1193 |#2|) (-624 |#2|))) (-15 -1897 (|#2| |#2|)) (-15 -1521 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) +((-1521 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1059 *4)) (-4 *3 (-568)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-876)) (-5 *1 (-32 *4 *5)))) (-1779 (*1 *2 *3 *2) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-4077 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) +(-10 -7 (-15 -4077 (|#2| (-1193 |#2|) (-1197))) (-15 -1775 ((-115) (-115))) (-15 -4062 ((-112) (-115))) (-15 -1779 (|#2| (-1193 |#2|) |#2|)) (-15 -4115 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2103 ((-1193 |#2|) (-624 |#2|))) (-15 -1897 (|#2| |#2|)) (-15 -1521 (|#2| |#1| (-576)))) |%noBranch|)) +((-2396 (((-112) $ (-783)) 20)) (-3306 (($) 10)) (-4252 (((-112) $ (-783)) 19)) (-3557 (((-112) $ (-783)) 17)) (-3509 (((-112) $ $) 8)) (-2866 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3306 (|#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783))) (-15 -2866 ((-112) |#1|)) (-15 -3509 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3306 (|#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783))) (-15 -2866 ((-112) |#1|)) (-15 -3509 ((-112) |#1| |#1|))) +((-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-4252 (((-112) $ (-783)) 9)) (-3557 (((-112) $ (-783)) 10)) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-1870 (($ $) 13)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-34) (-141)) (T -34)) -((-1551 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4286 (*1 *1 *1) (-4 *1 (-34))) (-3935 (*1 *1) (-4 *1 (-34))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1556 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2135 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2337 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-4331 (*1 *1) (-4 *1 (-34))) (-1968 (*1 *2 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-34)) (-5 *2 (-783))))) -(-13 (-1237) (-10 -8 (-15 -1551 ((-112) $ $)) (-15 -4286 ($ $)) (-15 -3935 ($)) (-15 -1937 ((-112) $)) (-15 -1556 ((-112) $ (-783))) (-15 -2135 ((-112) $ (-783))) (-15 -2337 ((-112) $ (-783))) (-15 -4331 ($) -2665) (IF (|has| $ (-6 -4463)) (-15 -1968 ((-783) $)) |%noBranch|))) -(((-1237) . T)) -((-3652 (($ $) 11)) (-3631 (($ $) 10)) (-3672 (($ $) 9)) (-1970 (($ $) 8)) (-3663 (($ $) 7)) (-3641 (($ $) 6))) +((-3509 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1870 (*1 *1 *1) (-4 *1 (-34))) (-3839 (*1 *1) (-4 *1 (-34))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-4252 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3306 (*1 *1) (-4 *1 (-34))) (-3502 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-34)) (-5 *2 (-783))))) +(-13 (-1238) (-10 -8 (-15 -3509 ((-112) $ $)) (-15 -1870 ($ $)) (-15 -3839 ($)) (-15 -2866 ((-112) $)) (-15 -3557 ((-112) $ (-783))) (-15 -4252 ((-112) $ (-783))) (-15 -2396 ((-112) $ (-783))) (-15 -3306 ($) -1480) (IF (|has| $ (-6 -4464)) (-15 -3502 ((-783) $)) |%noBranch|))) +(((-1238) . T)) +((-2789 (($ $) 11)) (-4070 (($ $) 10)) (-2814 (($ $) 9)) (-4387 (($ $) 8)) (-2802 (($ $) 7)) (-4082 (($ $) 6))) (((-35) (-141)) (T -35)) -((-3652 (*1 *1 *1) (-4 *1 (-35))) (-3631 (*1 *1 *1) (-4 *1 (-35))) (-3672 (*1 *1 *1) (-4 *1 (-35))) (-1970 (*1 *1 *1) (-4 *1 (-35))) (-3663 (*1 *1 *1) (-4 *1 (-35))) (-3641 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3641 ($ $)) (-15 -3663 ($ $)) (-15 -1970 ($ $)) (-15 -3672 ($ $)) (-15 -3631 ($ $)) (-15 -3652 ($ $)))) -((-1952 (((-112) $ $) 20 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))))) (-1688 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 127)) (-3456 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 150)) (-3094 (($ $) 148)) (-1976 (($) 73) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 72)) (-4100 (((-1292) $ |#1| |#1|) 100 (|has| $ (-6 -4464))) (((-1292) $ (-576) (-576)) 180 (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) 161 (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-1715 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 202 (|has| $ (-6 -4464))) (($ $) 201 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)) (|has| $ (-6 -4464))))) (-2379 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-2337 (((-112) $ (-783)) 8)) (-3078 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 136 (|has| $ (-6 -4464)))) (-3134 (($ $ $) 157 (|has| $ (-6 -4464)))) (-4308 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 159 (|has| $ (-6 -4464)))) (-3265 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 155 (|has| $ (-6 -4464)))) (-4267 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 191 (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-1254 (-576)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 162 (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "last" (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 160 (|has| $ (-6 -4464))) (($ $ "rest" $) 158 (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "first" (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 156 (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "value" (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 135 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 134 (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 46 (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 218)) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 56 (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 177 (|has| $ (-6 -4463)))) (-3442 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 149)) (-2049 (((-3 |#2| "failed") |#1| $) 62)) (-4331 (($) 7 T CONST)) (-3432 (($ $) 203 (|has| $ (-6 -4464)))) (-4203 (($ $) 213)) (-1762 (($ $ (-783)) 144) (($ $) 142)) (-3308 (($ $) 216 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-3966 (($ $) 59 (-3794 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463))) (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 47 (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 222) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 217 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 55 (|has| $ (-6 -4463))) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 179 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 176 (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 57 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 54 (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 53 (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 178 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 175 (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 174 (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 192 (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) 89) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) 190)) (-3588 (((-112) $) 194)) (-3538 (((-576) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 210) (((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 209 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) (((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 31 (|has| $ (-6 -4463))) (((-656 |#2|) $) 80 (|has| $ (-6 -4463))) (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 116 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 125)) (-2520 (((-112) $ $) 133 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-1989 (($ (-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 170)) (-2135 (((-112) $ (-783)) 9)) (-2066 ((|#1| $) 97 (|has| |#1| (-861))) (((-576) $) 182 (|has| (-576) (-861)))) (-2905 (($ $ $) 195 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3881 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-2144 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 30 (|has| $ (-6 -4463))) (((-656 |#2|) $) 81 (|has| $ (-6 -4463))) (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 117 (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463)))) (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 119 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463))))) (-3501 ((|#1| $) 96 (|has| |#1| (-861))) (((-576) $) 183 (|has| (-576) (-861)))) (-1654 (($ $ $) 196 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 35 (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4464))) (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 112 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 111)) (-2785 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 227)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 130)) (-2887 (((-112) $) 126)) (-2043 (((-1178) $) 23 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-2849 (($ $ (-783)) 147) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 145)) (-2351 (((-656 |#1|) $) 64)) (-3406 (((-112) |#1| $) 65)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 40)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 41) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-3386 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-3963 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-1474 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-3115 (((-1140) $) 22 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1753 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-783)) 141) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 139)) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 52) (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 173)) (-2556 (($ $ |#2|) 99 (|has| $ (-6 -4464))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 181 (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 42)) (-3498 (((-112) $) 193)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 33 (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 114 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) 27 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 26 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 25 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 24 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 123 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 122 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 121 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) 120 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 184 (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-2692 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 187)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 189) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) 188) (($ $ (-1254 (-576))) 171) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "first") 140) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "value") 128)) (-3183 (((-576) $ $) 131)) (-1437 (($) 50) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 49)) (-3571 (($ $ (-576)) 224) (($ $ (-1254 (-576))) 223)) (-2334 (($ $ (-576)) 166) (($ $ (-1254 (-576))) 165)) (-2003 (((-112) $) 129)) (-4385 (($ $) 153)) (-1788 (($ $) 154 (|has| $ (-6 -4464)))) (-4093 (((-783) $) 152)) (-2820 (($ $) 151)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 32 (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 115 (|has| $ (-6 -4463)))) (-3757 (($ $ $ (-576)) 204 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548)))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 51) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 172)) (-3424 (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 226) (($ $ $) 225)) (-2766 (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 138) (($ $ $) 137)) (-4112 (((-875) $) 18 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875)))))) (-4335 (((-656 $) $) 124)) (-2777 (((-112) $ $) 132 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-1994 (((-112) $ $) 21 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 43)) (-2864 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") |#1| $) 110)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 34 (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 113 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 197 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3974 (((-112) $ $) 199 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3938 (((-112) $ $) 19 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))))) (-3983 (((-112) $ $) 198 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3962 (((-112) $ $) 200 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-36 |#1| |#2|) (-141) (-1120) (-1120)) (T -36)) -((-2864 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| -2239 *3) (|:| -2904 *4)))))) -(-13 (-1213 |t#1| |t#2|) (-678 (-2 (|:| -2239 |t#1|) (|:| -2904 |t#2|))) (-10 -8 (-15 -2864 ((-3 (-2 (|:| -2239 |t#1|) (|:| -2904 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((-102) -3794 (|has| |#2| (-1120)) (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))) ((-625 (-875)) -3794 (|has| |#2| (-1120)) (|has| |#2| (-625 (-875))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875)))) ((-152 #1=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1254 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-861) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)) ((-863) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)) ((-1030 #1#) . T) ((-1120) -3794 (|has| |#2| (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861))) ((-1169 #1#) . T) ((-1213 |#1| |#2|) . T) ((-1237) . T) ((-1275 #1#) . T)) -((-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-2789 (*1 *1 *1) (-4 *1 (-35))) (-4070 (*1 *1 *1) (-4 *1 (-35))) (-2814 (*1 *1 *1) (-4 *1 (-35))) (-4387 (*1 *1 *1) (-4 *1 (-35))) (-2802 (*1 *1 *1) (-4 *1 (-35))) (-4082 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -4082 ($ $)) (-15 -2802 ($ $)) (-15 -4387 ($ $)) (-15 -2814 ($ $)) (-15 -4070 ($ $)) (-15 -2789 ($ $)))) +((-3488 (((-112) $ $) 20 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))))) (-3104 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 127)) (-2897 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 150)) (-4425 (($ $) 148)) (-4127 (($) 73) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 72)) (-1656 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4465))) (((-1293) $ (-576) (-576)) 180 (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) 161 (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2450 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 202 (|has| $ (-6 -4465))) (($ $) 201 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2396 (((-112) $ (-783)) 8)) (-2232 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 136 (|has| $ (-6 -4465)))) (-1512 (($ $ $) 157 (|has| $ (-6 -4465)))) (-3099 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 159 (|has| $ (-6 -4465)))) (-3559 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 155 (|has| $ (-6 -4465)))) (-3755 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 191 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-1255 (-576)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 162 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "last" (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 160 (|has| $ (-6 -4465))) (($ $ "rest" $) 158 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "first" (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 156 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "value" (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 135 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 134 (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 46 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 218)) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 56 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 177 (|has| $ (-6 -4464)))) (-2882 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 149)) (-2195 (((-3 |#2| "failed") |#1| $) 62)) (-3306 (($) 7 T CONST)) (-1474 (($ $) 203 (|has| $ (-6 -4465)))) (-3834 (($ $) 213)) (-3592 (($ $ (-783)) 144) (($ $) 142)) (-2696 (($ $) 216 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-2800 (($ $) 59 (-2758 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464))) (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 222) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 217 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 55 (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 176 (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 57 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 53 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 178 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 175 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 174 (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 192 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 89) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) 190)) (-3554 (((-112) $) 194)) (-3659 (((-576) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 210) (((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 209 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) (((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 31 (|has| $ (-6 -4464))) (((-656 |#2|) $) 80 (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 116 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 125)) (-3695 (((-112) $ $) 133 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-4140 (($ (-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 170)) (-4252 (((-112) $ (-783)) 9)) (-1617 ((|#1| $) 97 (|has| |#1| (-861))) (((-576) $) 182 (|has| (-576) (-861)))) (-3124 (($ $ $) 195 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-1367 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-4335 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 30 (|has| $ (-6 -4464))) (((-656 |#2|) $) 81 (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 117 (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-4027 ((|#1| $) 96 (|has| |#1| (-861))) (((-576) $) 183 (|has| (-576) (-861)))) (-1951 (($ $ $) 196 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 35 (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 112 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 111)) (-1649 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 227)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 130)) (-2953 (((-112) $) 126)) (-1413 (((-1179) $) 23 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3967 (($ $ (-783)) 147) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 145)) (-3203 (((-656 |#1|) $) 64)) (-2419 (((-112) |#1| $) 65)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 40)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 41) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2174 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-2764 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-4018 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-1450 (((-1141) $) 22 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3580 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-783)) 141) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 139)) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 52) (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 173)) (-2740 (($ $ |#2|) 99 (|has| $ (-6 -4465))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 181 (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 42)) (-3997 (((-112) $) 193)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 33 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 114 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) 27 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 26 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 25 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 24 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 123 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 122 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 121 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) 120 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 184 (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-1681 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 187)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 189) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) 188) (($ $ (-1255 (-576))) 171) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "first") 140) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "value") 128)) (-3957 (((-576) $ $) 131)) (-2314 (($) 50) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 49)) (-3389 (($ $ (-576)) 224) (($ $ (-1255 (-576))) 223)) (-3463 (($ $ (-576)) 166) (($ $ (-1255 (-576))) 165)) (-2199 (((-112) $) 129)) (-2560 (($ $) 153)) (-3930 (($ $) 154 (|has| $ (-6 -4465)))) (-1594 (((-783) $) 152)) (-3574 (($ $) 151)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 115 (|has| $ (-6 -4464)))) (-2568 (($ $ $ (-576)) 204 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548)))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 51) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 172)) (-2563 (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 226) (($ $ $) 225)) (-1615 (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 138) (($ $ $) 137)) (-3569 (((-876) $) 18 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876)))))) (-3338 (((-656 $) $) 124)) (-4386 (((-112) $ $) 132 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-2113 (((-112) $ $) 21 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 43)) (-3976 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") |#1| $) 110)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 34 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 113 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 197 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2962 (((-112) $ $) 199 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2923 (((-112) $ $) 19 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))))) (-2978 (((-112) $ $) 198 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2948 (((-112) $ $) 200 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-36 |#1| |#2|) (-141) (-1121) (-1121)) (T -36)) +((-3976 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| -4300 *3) (|:| -4438 *4)))))) +(-13 (-1214 |t#1| |t#2|) (-678 (-2 (|:| -4300 |t#1|) (|:| -4438 |t#2|))) (-10 -8 (-15 -3976 ((-3 (-2 (|:| -4300 |t#1|) (|:| -4438 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((-102) -2758 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))) ((-625 (-876)) -2758 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876)))) ((-152 #1=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1255 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-861) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)) ((-864) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)) ((-1031 #1#) . T) ((-1121) -2758 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861))) ((-1170 #1#) . T) ((-1214 |#1| |#2|) . T) ((-1238) . T) ((-1276 #1#) . T)) +((-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1069) (-729 |t#1|) (-628 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-4149 (((-430 |#1|) |#1|) 41)) (-1450 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-4371 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -1450 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -4149 ((-430 |#1|) |#1|)) (-15 -4371 ((-112) |#1|))) (-1263 (-48))) (T -39)) -((-4371 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-4149 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))) -(-10 -7 (-15 -1450 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -4149 ((-430 |#1|) |#1|)) (-15 -4371 ((-112) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-3828 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4070 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2378 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3313 (((-701 (-419 |#2|)) (-1287 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-3832 (((-419 |#2|) $) NIL)) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3163 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4057 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2199 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-4401 (((-112)) NIL)) (-2846 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1058 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| (-419 |#2|) (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1058 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-4005 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL) (($ (-1287 (-419 |#2|))) 61) (($ (-1287 |#2|) |#2|) 131)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-1893 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4228 (((-701 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-1428 (((-1287 $) (-1287 $)) NIL)) (-2721 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3900 (((-3 $ "failed") $) NIL)) (-2756 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-3907 (((-112) |#1| |#1|) NIL)) (-4134 (((-939)) NIL)) (-4369 (($) NIL (|has| (-419 |#2|) (-379)))) (-3374 (((-112)) NIL)) (-4273 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1903 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-3557 (($ $) NIL)) (-3933 (($) NIL (|has| (-419 |#2|) (-360)))) (-2614 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3878 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2443 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3241 (((-939) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-939)) $) NIL (|has| (-419 |#2|) (-360)))) (-2287 (((-112) $) NIL)) (-2014 (((-783)) NIL)) (-2695 (((-1287 $) (-1287 $)) 106)) (-2647 (((-419 |#2|) $) NIL)) (-3593 (((-656 (-970 |#1|)) (-1196)) NIL (|has| |#1| (-374)))) (-1859 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2354 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-4375 (((-939) $) NIL (|has| (-419 |#2|) (-379)))) (-2708 ((|#3| $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) NIL) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-3075 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2043 (((-1178) $) NIL)) (-3420 (((-1292) (-783)) 84)) (-3826 (((-701 (-419 |#2|))) 56)) (-4140 (((-701 (-419 |#2|))) 49)) (-1667 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1341 (($ (-1287 |#2|) |#2|) 132)) (-2744 (((-701 (-419 |#2|))) 50)) (-2713 (((-701 (-419 |#2|))) 48)) (-3873 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3248 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 68)) (-1625 (((-1287 $)) 47)) (-1527 (((-1287 $)) 46)) (-3880 (((-112) $) NIL)) (-4187 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3650 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2409 (($ (-939)) NIL (|has| (-419 |#2|) (-379)))) (-1833 (((-3 |#2| "failed")) NIL)) (-3115 (((-1140) $) NIL)) (-3892 (((-783)) NIL)) (-2547 (($) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-374)))) (-3114 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1450 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1943 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2026 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-4368 ((|#1| $ |#1| |#1|) NIL)) (-3023 (((-3 |#2| "failed")) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1451 (((-419 |#2|) (-1287 $)) NIL) (((-419 |#2|)) 44)) (-3334 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-4106 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3835 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3175 ((|#3|) 55)) (-1984 (($) NIL (|has| (-419 |#2|) (-360)))) (-3435 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1287 $)) 107)) (-1554 (((-1287 (-419 |#2|)) $) NIL) (($ (-1287 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2834 (((-1287 $) (-1287 $)) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3794 (|has| (-419 |#2|) (-1058 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1972 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-3069 ((|#3| $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1919 (((-112)) 42)) (-1669 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL)) (-3111 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3418 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1792 (((-112)) NIL)) (-4314 (($) 17 T CONST)) (-4320 (($) 27 T CONST)) (-3155 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3420 ((-1292) (-783))))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) |#3|) (T -40)) -((-3420 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *2 (-1292)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6)))) -(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3420 ((-1292) (-783))))) -((-2949 ((|#2| |#2|) 47)) (-4424 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-576))))))) (-2679 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-576))))))) (-3618 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-576))))))) (-4417 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-576))))))) (-2307 (((-1192 |#2|) |#2|) 44)) (-2065 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2949 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2065 (|#2| |#2| |#2|)) (-15 -2065 (|#2| |#2| (-656 |#2|))) (-15 -2065 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -2307 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1058 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3618 (|#2| |#2|)) (-15 -2679 (|#2| |#2|)) (-15 -4424 (|#2| |#2|)) (-15 -4417 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 |#1| (-624 $)) $)) (-15 -2697 ((-1145 |#1| (-624 $)) $)) (-15 -4112 ($ (-1145 |#1| (-624 $))))))) (T -41)) -((-4417 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1058 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *5 (-624 $)) $)) (-15 -2697 ((-1145 *5 (-624 $)) $)) (-15 -4112 ($ (-1145 *5 (-624 $))))))))) (-4424 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) (-15 -2697 ((-1145 *3 (-624 $)) $)) (-15 -4112 ($ (-1145 *3 (-624 $))))))))) (-2679 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) (-15 -2697 ((-1145 *3 (-624 $)) $)) (-15 -4112 ($ (-1145 *3 (-624 $))))))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) (-15 -2697 ((-1145 *3 (-624 $)) $)) (-15 -4112 ($ (-1145 *3 (-624 $))))))))) (-2307 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *4 (-624 $)) $)) (-15 -2697 ((-1145 *4 (-624 $)) $)) (-15 -4112 ($ (-1145 *4 (-624 $))))))))) (-2065 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *4 (-624 $)) $)) (-15 -2697 ((-1145 *4 (-624 $)) $)) (-15 -4112 ($ (-1145 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-2065 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *4 (-624 $)) $)) (-15 -2697 ((-1145 *4 (-624 $)) $)) (-15 -4112 ($ (-1145 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-2065 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) (-15 -2697 ((-1145 *3 (-624 $)) $)) (-15 -4112 ($ (-1145 *3 (-624 $))))))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) (-15 -2697 ((-1145 *3 (-624 $)) $)) (-15 -4112 ($ (-1145 *3 (-624 $))))))))) (-2949 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) (-15 -2697 ((-1145 *3 (-624 $)) $)) (-15 -4112 ($ (-1145 *3 (-624 $)))))))))) -(-10 -7 (-15 -2949 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2065 (|#2| |#2| |#2|)) (-15 -2065 (|#2| |#2| (-656 |#2|))) (-15 -2065 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -2307 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1058 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3618 (|#2| |#2|)) (-15 -2679 (|#2| |#2|)) (-15 -4424 (|#2| |#2|)) (-15 -4417 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) -((-1450 (((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1450 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1450 ((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))))) (-861) (-805) (-967 (-48) |#2| |#1|)) (T -42)) -((-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *7 (-967 (-48) *6 *5)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-967 (-48) *6 *5))))) -(-10 -7 (-15 -1450 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1450 ((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))))) -((-2406 (((-783) |#2|) 70)) (-1404 (((-783) |#2|) 74)) (-3301 (((-656 |#2|)) 37)) (-2771 (((-783) |#2|) 73)) (-1692 (((-783) |#2|) 69)) (-1947 (((-783) |#2|) 72)) (-2125 (((-656 (-701 |#1|))) 65)) (-1650 (((-656 |#2|)) 60)) (-2251 (((-656 |#2|) |#2|) 48)) (-1465 (((-656 |#2|)) 62)) (-3264 (((-656 |#2|)) 61)) (-3804 (((-656 (-701 |#1|))) 53)) (-3673 (((-656 |#2|)) 59)) (-3389 (((-656 |#2|) |#2|) 47)) (-3675 (((-656 |#2|)) 55)) (-2565 (((-656 (-701 |#1|))) 66)) (-3499 (((-656 |#2|)) 64)) (-3578 (((-1287 |#2|) (-1287 |#2|)) 99 (|has| |#1| (-317))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2771 ((-783) |#2|)) (-15 -1404 ((-783) |#2|)) (-15 -1692 ((-783) |#2|)) (-15 -2406 ((-783) |#2|)) (-15 -1947 ((-783) |#2|)) (-15 -3675 ((-656 |#2|))) (-15 -3389 ((-656 |#2|) |#2|)) (-15 -2251 ((-656 |#2|) |#2|)) (-15 -3673 ((-656 |#2|))) (-15 -1650 ((-656 |#2|))) (-15 -3264 ((-656 |#2|))) (-15 -1465 ((-656 |#2|))) (-15 -3499 ((-656 |#2|))) (-15 -3804 ((-656 (-701 |#1|)))) (-15 -2125 ((-656 (-701 |#1|)))) (-15 -2565 ((-656 (-701 |#1|)))) (-15 -3301 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -3578 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) -((-3578 (*1 *2 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-3301 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2565 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2125 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3804 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3499 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1465 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3264 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1650 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3673 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2251 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3389 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3675 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2406 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1404 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2771 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -2771 ((-783) |#2|)) (-15 -1404 ((-783) |#2|)) (-15 -1692 ((-783) |#2|)) (-15 -2406 ((-783) |#2|)) (-15 -1947 ((-783) |#2|)) (-15 -3675 ((-656 |#2|))) (-15 -3389 ((-656 |#2|) |#2|)) (-15 -2251 ((-656 |#2|) |#2|)) (-15 -3673 ((-656 |#2|))) (-15 -1650 ((-656 |#2|))) (-15 -3264 ((-656 |#2|))) (-15 -1465 ((-656 |#2|))) (-15 -3499 ((-656 |#2|))) (-15 -3804 ((-656 (-701 |#1|)))) (-15 -2125 ((-656 (-701 |#1|)))) (-15 -2565 ((-656 (-701 |#1|)))) (-15 -3301 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -3578 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-4288 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2108 (((-1287 (-701 |#1|)) (-1287 $)) NIL) (((-1287 (-701 |#1|))) 24)) (-3791 (((-1287 $)) 52)) (-4331 (($) NIL T CONST)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-2426 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2206 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-3500 ((|#1| $) NIL)) (-4032 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-2942 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-4137 (((-1192 (-970 |#1|))) NIL (|has| |#1| (-374)))) (-2711 (($ $ (-939)) NIL)) (-2590 ((|#1| $) NIL)) (-3138 (((-1192 |#1|) $) NIL (|has| |#1| (-568)))) (-4078 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-1748 (((-1192 |#1|) $) NIL)) (-2896 (((-112)) 99)) (-4005 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) NIL)) (-3900 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-4134 (((-939)) 53)) (-1670 (((-112)) NIL)) (-4222 (($ $ (-939)) NIL)) (-2582 (((-112)) NIL)) (-2396 (((-112)) NIL)) (-2304 (((-112)) 101)) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3510 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1647 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-1881 ((|#1| $) NIL)) (-2882 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-1793 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3689 (((-1192 (-970 |#1|))) NIL (|has| |#1| (-374)))) (-1604 (($ $ (-939)) NIL)) (-1845 ((|#1| $) NIL)) (-2557 (((-1192 |#1|) $) NIL (|has| |#1| (-568)))) (-4037 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-3491 (((-1192 |#1|) $) NIL)) (-3403 (((-112)) 98)) (-2043 (((-1178) $) NIL)) (-1658 (((-112)) 106)) (-1530 (((-112)) 105)) (-2502 (((-112)) 107)) (-3115 (((-1140) $) NIL)) (-2231 (((-112)) 100)) (-4368 ((|#1| $ (-576)) 55)) (-3435 (((-1287 |#1|) $ (-1287 $)) 48) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) 28) (((-701 |#1|) (-1287 $)) NIL)) (-1554 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL)) (-2531 (((-656 (-970 |#1|)) (-1287 $)) NIL) (((-656 (-970 |#1|))) NIL)) (-2362 (($ $ $) NIL)) (-2631 (((-112)) 95)) (-4112 (((-875) $) 71) (($ (-1287 |#1|)) 22)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) 51)) (-2341 (((-656 (-1287 |#1|))) NIL (|has| |#1| (-568)))) (-3240 (($ $ $ $) NIL)) (-1962 (((-112)) 91)) (-2649 (($ (-701 |#1|) $) 18)) (-2027 (($ $ $) NIL)) (-1528 (((-112)) 97)) (-3484 (((-112)) 92)) (-2289 (((-112)) 90)) (-4314 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1162 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1162 |#2| |#1|)) (-10 -8 (-15 -4112 ($ (-1287 |#1|))))) (-374) (-939) (-656 (-1196)) (-1287 (-701 |#1|))) (T -44)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-14 *6 (-1287 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-939)) (-14 *5 (-656 (-1196)))))) -(-13 (-429 |#1|) (-660 (-1162 |#2| |#1|)) (-10 -8 (-15 -4112 ($ (-1287 |#1|))))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1688 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3456 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3094 (($ $) NIL)) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464))) (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-1715 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861))))) (-2379 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-3078 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464)))) (-3134 (($ $ $) 33 (|has| $ (-6 -4464)))) (-4308 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464)))) (-3265 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 35 (|has| $ (-6 -4464)))) (-4267 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-1254 (-576)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "last" (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464))) (($ $ "rest" $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "first" (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "value" (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3442 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2049 (((-3 |#2| "failed") |#1| $) 43)) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-1762 (($ $ (-783)) NIL) (($ $) 29)) (-3308 (($ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) NIL)) (-3588 (((-112) $) NIL)) (-3538 (((-576) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) (((-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 20 (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463))) (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 20 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-1989 (($ (-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 38 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3881 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-2144 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463))) (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 40 (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2785 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-4185 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2887 (((-112) $) NIL)) (-2043 (((-1178) $) 49 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2849 (($ $ (-783)) NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2351 (((-656 |#1|) $) 22)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3386 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-1474 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-783)) NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 27)) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3498 (((-112) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-2692 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 19)) (-1937 (((-112) $) 18)) (-3935 (($) 14)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "first") NIL) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $ "value") NIL)) (-3183 (((-576) $ $) NIL)) (-1437 (($) 13) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3571 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2003 (((-112) $) NIL)) (-4385 (($ $) NIL)) (-1788 (($ $) NIL (|has| $ (-6 -4464)))) (-4093 (((-783) $) NIL)) (-2820 (($ $) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3424 (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL) (($ $ $) NIL)) (-2766 (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 31) (($ $ $) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-2864 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") |#1| $) 51)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-3983 (((-112) $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-861)))) (-1968 (((-783) $) 25 (|has| $ (-6 -4463))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1120) (-1120)) (T -45)) +(-13 (-1070) (-729 |t#1|) (-628 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4064 (((-430 |#1|) |#1|) 41)) (-1828 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-2415 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4064 ((-430 |#1|) |#1|)) (-15 -2415 ((-112) |#1|))) (-1264 (-48))) (T -39)) +((-2415 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-4064 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4064 ((-430 |#1|) |#1|)) (-15 -2415 ((-112) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2002 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2544 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1574 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2747 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2208 (((-419 |#2|) $) NIL)) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1770 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2420 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2096 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-1539 (((-112)) NIL)) (-3847 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-3208 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 61) (($ (-1288 |#2|) |#2|) 131)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3428 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3567 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2229 (((-1288 $) (-1288 $)) NIL)) (-3685 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3451 (((-3 $ "failed") $) NIL)) (-4233 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-3525 (((-112) |#1| |#1|) NIL)) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| (-419 |#2|) (-379)))) (-2132 (((-112)) NIL)) (-4041 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3440 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1371 (($ $) NIL)) (-3814 (($) NIL (|has| (-419 |#2|) (-360)))) (-2117 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-1332 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4169 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3309 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-3215 (((-112) $) NIL)) (-2285 (((-783)) NIL)) (-1712 (((-1288 $) (-1288 $)) 106)) (-2471 (((-419 |#2|) $) NIL)) (-3598 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2542 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-2460 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-3671 ((|#3| $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1413 (((-1179) $) NIL)) (-2534 (((-1293) (-783)) 84)) (-1987 (((-701 (-419 |#2|))) 56)) (-1992 (((-701 (-419 |#2|))) 49)) (-2048 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3026 (($ (-1288 |#2|) |#2|) 132)) (-4120 (((-701 (-419 |#2|))) 50)) (-1867 (((-701 (-419 |#2|))) 48)) (-4405 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3382 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 68)) (-2936 (((-1288 $)) 47)) (-3277 (((-1288 $)) 46)) (-1352 (((-112) $) NIL)) (-4401 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3539 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-4368 (((-3 |#2| "failed")) NIL)) (-1450 (((-1141) $) NIL)) (-1464 (((-783)) NIL)) (-4128 (($) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3498 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2411 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2796 ((|#1| $ |#1| |#1|) NIL)) (-2942 (((-3 |#2| "failed")) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2455 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 44)) (-2992 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2773 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4058 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1897 ((|#3|) 55)) (-2051 (($) NIL (|has| (-419 |#2|) (-360)))) (-1490 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1288 $)) 107)) (-4171 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-3725 (((-1288 $) (-1288 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2758 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3230 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2137 ((|#3| $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2688 (((-112)) 42)) (-2045 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL)) (-2537 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2515 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3961 (((-112)) NIL)) (-2719 (($) 17 T CONST)) (-2730 (($) 27 T CONST)) (-2018 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2534 ((-1293) (-783))))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) |#3|) (T -40)) +((-2534 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) +(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2534 ((-1293) (-783))))) +((-3503 ((|#2| |#2|) 47)) (-1762 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-1556 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-3852 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-1694 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-2107 (((-1193 |#2|) |#2|) 44)) (-1605 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3503 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1605 (|#2| |#2| |#2|)) (-15 -1605 (|#2| |#2| (-656 |#2|))) (-15 -1605 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -2107 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3852 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -1694 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 |#1| (-624 $)) $)) (-15 -1581 ((-1146 |#1| (-624 $)) $)) (-15 -3569 ($ (-1146 |#1| (-624 $))))))) (T -41)) +((-1694 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *5 (-624 $)) $)) (-15 -1581 ((-1146 *5 (-624 $)) $)) (-15 -3569 ($ (-1146 *5 (-624 $))))))))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3569 ($ (-1146 *4 (-624 $))))))))) (-1605 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3569 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1605 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3569 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1605 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(-10 -7 (-15 -3503 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1605 (|#2| |#2| |#2|)) (-15 -1605 (|#2| |#2| (-656 |#2|))) (-15 -1605 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -2107 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3852 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -1694 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) +((-1828 (((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1828 ((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))))) (-861) (-805) (-968 (-48) |#2| |#1|)) (T -42)) +((-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5))))) +(-10 -7 (-15 -1828 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1828 ((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))))) +((-1837 (((-783) |#2|) 70)) (-3686 (((-783) |#2|) 74)) (-2633 (((-656 |#2|)) 37)) (-4346 (((-783) |#2|) 73)) (-2236 (((-783) |#2|) 69)) (-2984 (((-783) |#2|) 72)) (-4152 (((-656 (-701 |#1|))) 65)) (-3193 (((-656 |#2|)) 60)) (-2834 (((-656 |#2|) |#2|) 48)) (-3934 (((-656 |#2|)) 62)) (-3547 (((-656 |#2|)) 61)) (-1813 (((-656 (-701 |#1|))) 53)) (-3096 (((-656 |#2|)) 59)) (-2269 (((-656 |#2|) |#2|) 47)) (-3118 (((-656 |#2|)) 55)) (-2852 (((-656 (-701 |#1|))) 66)) (-4007 (((-656 |#2|)) 64)) (-3454 (((-1288 |#2|) (-1288 |#2|)) 99 (|has| |#1| (-317))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -4346 ((-783) |#2|)) (-15 -3686 ((-783) |#2|)) (-15 -2236 ((-783) |#2|)) (-15 -1837 ((-783) |#2|)) (-15 -2984 ((-783) |#2|)) (-15 -3118 ((-656 |#2|))) (-15 -2269 ((-656 |#2|) |#2|)) (-15 -2834 ((-656 |#2|) |#2|)) (-15 -3096 ((-656 |#2|))) (-15 -3193 ((-656 |#2|))) (-15 -3547 ((-656 |#2|))) (-15 -3934 ((-656 |#2|))) (-15 -4007 ((-656 |#2|))) (-15 -1813 ((-656 (-701 |#1|)))) (-15 -4152 ((-656 (-701 |#1|)))) (-15 -2852 ((-656 (-701 |#1|)))) (-15 -2633 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -3454 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) +((-3454 (*1 *2 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-2633 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2852 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4152 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1813 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4007 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3934 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3547 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3193 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3096 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2834 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2269 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3118 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2984 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2236 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4346 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) +(-10 -7 (-15 -4346 ((-783) |#2|)) (-15 -3686 ((-783) |#2|)) (-15 -2236 ((-783) |#2|)) (-15 -1837 ((-783) |#2|)) (-15 -2984 ((-783) |#2|)) (-15 -3118 ((-656 |#2|))) (-15 -2269 ((-656 |#2|) |#2|)) (-15 -2834 ((-656 |#2|) |#2|)) (-15 -3096 ((-656 |#2|))) (-15 -3193 ((-656 |#2|))) (-15 -3547 ((-656 |#2|))) (-15 -3934 ((-656 |#2|))) (-15 -4007 ((-656 |#2|))) (-15 -1813 ((-656 (-701 |#1|)))) (-15 -4152 ((-656 (-701 |#1|)))) (-15 -2852 ((-656 (-701 |#1|)))) (-15 -2633 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -3454 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2876 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-4001 (((-1288 (-701 |#1|)) (-1288 $)) NIL) (((-1288 (-701 |#1|))) 24)) (-1692 (((-1288 $)) 52)) (-3306 (($) NIL T CONST)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-4008 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3712 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-4016 ((|#1| $) NIL)) (-2173 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-3417 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-1968 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-1845 (($ $ (-940)) NIL)) (-3168 ((|#1| $) NIL)) (-1544 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-2624 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-1591 (((-1193 |#1|) $) NIL)) (-3070 (((-112)) 99)) (-3208 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-3451 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-3733 (((-940)) 53)) (-2055 (((-112)) NIL)) (-3507 (($ $ (-940)) NIL)) (-3073 (((-112)) NIL)) (-1744 (((-112)) NIL)) (-2076 (((-112)) 101)) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-4114 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3160 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-3643 ((|#1| $) NIL)) (-2888 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3275 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-2707 (($ $ (-940)) NIL)) (-3261 ((|#1| $) NIL)) (-2754 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-2218 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-1953 (((-1193 |#1|) $) NIL)) (-2384 (((-112)) 98)) (-1413 (((-1179) $) NIL)) (-1981 (((-112)) 106)) (-3307 (((-112)) 105)) (-3505 (((-112)) 107)) (-1450 (((-1141) $) NIL)) (-2653 (((-112)) 100)) (-2796 ((|#1| $ (-576)) 55)) (-1490 (((-1288 |#1|) $ (-1288 $)) 48) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 28) (((-701 |#1|) (-1288 $)) NIL)) (-4171 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL)) (-3818 (((-656 (-971 |#1|)) (-1288 $)) NIL) (((-656 (-971 |#1|))) NIL)) (-2604 (($ $ $) NIL)) (-2306 (((-112)) 95)) (-3569 (((-876) $) 71) (($ (-1288 |#1|)) 22)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) 51)) (-2440 (((-656 (-1288 |#1|))) NIL (|has| |#1| (-568)))) (-3298 (($ $ $ $) NIL)) (-3143 (((-112)) 91)) (-3568 (($ (-701 |#1|) $) 18)) (-2424 (($ $ $) NIL)) (-3288 (((-112)) 97)) (-1892 (((-112)) 92)) (-3236 (((-112)) 90)) (-2719 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1163 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -3569 ($ (-1288 |#1|))))) (-374) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -44)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197)))))) +(-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -3569 ($ (-1288 |#1|))))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3104 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2897 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4425 (($ $) NIL)) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465))) (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2450 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861))))) (-1795 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-2232 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465)))) (-1512 (($ $ $) 33 (|has| $ (-6 -4465)))) (-3099 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465)))) (-3559 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 35 (|has| $ (-6 -4465)))) (-3755 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-1255 (-576)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "last" (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "first" (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "value" (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2882 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2195 (((-3 |#2| "failed") |#1| $) 43)) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-3592 (($ $ (-783)) NIL) (($ $) 29)) (-2696 (($ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) NIL)) (-3554 (((-112) $) NIL)) (-3659 (((-576) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) (((-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 20 (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 20 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-4140 (($ (-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 38 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-1367 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-4335 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 40 (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-1649 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2351 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2953 (((-112) $) NIL)) (-1413 (((-1179) $) 49 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3967 (($ $ (-783)) NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3203 (((-656 |#1|) $) 22)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2174 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-4018 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-783)) NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 27)) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3997 (((-112) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-1681 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 19)) (-2866 (((-112) $) 18)) (-3839 (($) 14)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "first") NIL) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $ "value") NIL)) (-3957 (((-576) $ $) NIL)) (-2314 (($) 13) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3389 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2199 (((-112) $) NIL)) (-2560 (($ $) NIL)) (-3930 (($ $) NIL (|has| $ (-6 -4465)))) (-1594 (((-783) $) NIL)) (-3574 (($ $) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2563 (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL) (($ $ $) NIL)) (-1615 (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 31) (($ $ $) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3976 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") |#1| $) 51)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-2978 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-861)))) (-3502 (((-783) $) 25 (|has| $ (-6 -4464))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1121) (-1121)) (T -45)) NIL (-36 |#1| |#2|) -((-3146 (((-112) $) 12)) (-2422 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3146 ((-112) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) (-47 |#2| |#3|) (-1069) (-804)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3146 ((-112) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-3146 (((-112) $) 74)) (-1562 (($ |#1| |#2|) 73)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1877 ((|#2| $) 76)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4269 ((|#1| $ |#2|) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-47 |#1| |#2|) (-141) (-1069) (-804)) (T -47)) -((-1709 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1562 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) (-4269 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) (-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)) (-4 *2 (-374))))) -(-13 (-1069) (-111 |t#1| |t#1|) (-10 -8 (-15 -1709 (|t#1| $)) (-15 -1698 ($ $)) (-15 -1877 (|t#2| $)) (-15 -2422 ($ (-1 |t#1| |t#1|) $)) (-15 -3146 ((-112) $)) (-15 -1562 ($ |t#1| |t#2|)) (-15 -3309 ($ $)) (-15 -4269 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -4046 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2518 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-970 $)) NIL)) (-2089 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-970 $)) NIL)) (-3167 (((-112) $) 9)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-4442 (((-656 (-624 $)) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-1462 (($ $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3468 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-970 $)) NIL)) (-1480 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-970 $)) NIL)) (-2980 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-1893 (($ $ $) NIL)) (-3222 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-701 $) (-1287 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-2721 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-1390 (($ $) NIL) (($ (-656 $)) NIL)) (-3209 (((-656 (-115)) $) NIL)) (-1400 (((-115) (-115)) NIL)) (-2287 (((-112) $) 11)) (-1589 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2686 (((-1145 (-576) (-624 $)) $) NIL)) (-2770 (($ $ (-576)) NIL)) (-2647 (((-1192 $) (-1192 $) (-624 $)) NIL) (((-1192 $) (-1192 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3066 (((-1192 $) (-624 $)) NIL (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) NIL)) (-2413 (((-3 (-624 $) "failed") $) NIL)) (-2198 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-1287 $) $) NIL) (((-701 (-419 (-576))) (-1287 $)) NIL)) (-3075 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1389 (((-656 (-624 $)) $) NIL)) (-2774 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-1681 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-1667 (($ $) NIL)) (-2952 (((-783) $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1546 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4296 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2143 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2026 (((-783) $) NIL)) (-4368 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2678 (($ $) NIL) (($ $ $) NIL)) (-4106 (($ $) NIL) (($ $ (-783)) NIL)) (-2697 (((-1145 (-576) (-624 $)) $) NIL)) (-3175 (($ $) NIL (|has| $ (-1069)))) (-1554 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-4112 (((-875) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1145 (-576) (-624 $))) NIL)) (-4115 (((-783)) NIL T CONST)) (-2344 (($ $) NIL) (($ (-656 $)) NIL)) (-2431 (((-112) (-115)) NIL)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 6 T CONST)) (-4320 (($) 10 T CONST)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3938 (((-112) $ $) 13)) (-4046 (($ $ $) NIL)) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-939)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-939) $) NIL))) -(((-48) (-13 (-312) (-27) (-1058 (-576)) (-1058 (-419 (-576))) (-651 (-576)) (-1042) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4112 ($ (-1145 (-576) (-624 $)))) (-15 -2686 ((-1145 (-576) (-624 $)) $)) (-15 -2697 ((-1145 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -2647 ((-1192 $) (-1192 $) (-624 $))) (-15 -2647 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -2647 ($ $ (-624 $))) (-15 -2647 ($ $ (-656 (-624 $))))))) (T -48)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1145 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2721 (*1 *1 *1) (-5 *1 (-48))) (-2647 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) -(-13 (-312) (-27) (-1058 (-576)) (-1058 (-419 (-576))) (-651 (-576)) (-1042) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4112 ($ (-1145 (-576) (-624 $)))) (-15 -2686 ((-1145 (-576) (-624 $)) $)) (-15 -2697 ((-1145 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -2647 ((-1192 $) (-1192 $) (-624 $))) (-15 -2647 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -2647 ($ $ (-624 $))) (-15 -2647 ($ $ (-656 (-624 $)))))) -((-1952 (((-112) $ $) NIL)) (-2473 (((-656 (-518)) $) 17)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 7)) (-4158 (((-1201) $) 18)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-49) (-13 (-1120) (-10 -8 (-15 -2473 ((-656 (-518)) $)) (-15 -4158 ((-1201) $))))) (T -49)) -((-2473 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49))))) -(-13 (-1120) (-10 -8 (-15 -2473 ((-656 (-518)) $)) (-15 -4158 ((-1201) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 85)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3633 (((-112) $) 30)) (-2980 (((-3 |#1| "failed") $) 33)) (-2317 ((|#1| $) 34)) (-3309 (($ $) 40)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1709 ((|#1| $) 31)) (-1973 (($ $) 74)) (-2043 (((-1178) $) NIL)) (-3302 (((-112) $) 43)) (-3115 (((-1140) $) NIL)) (-2547 (($ (-783)) 72)) (-2155 (($ (-656 (-576))) 73)) (-1877 (((-783) $) 44)) (-4112 (((-875) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-4269 ((|#1| $ $) 28)) (-4115 (((-783)) 71 T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 45 T CONST)) (-4320 (($) 17 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 64)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1058 |#1|) (-10 -8 (-15 -1709 (|#1| $)) (-15 -1973 ($ $)) (-15 -3309 ($ $)) (-15 -4269 (|#1| $ $)) (-15 -2547 ($ (-783))) (-15 -2155 ($ (-656 (-576)))) (-15 -3302 ((-112) $)) (-15 -3633 ((-112) $)) (-15 -1877 ((-783) $)) (-15 -2422 ($ (-1 |#1| |#1|) $)))) (-1069) (-656 (-1196))) (T -50)) -((-1709 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) (-1973 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-656 (-1196))))) (-3309 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-656 (-1196))))) (-4269 (*1 *2 *1 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-656 (-1196))))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-656 (-1196))))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-656 (-1196))))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-656 (-1196))))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-656 (-1196))))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1196)))))) -(-13 (-632 |#1|) (-1058 |#1|) (-10 -8 (-15 -1709 (|#1| $)) (-15 -1973 ($ $)) (-15 -3309 ($ $)) (-15 -4269 (|#1| $ $)) (-15 -2547 ($ (-783))) (-15 -2155 ($ (-656 (-576)))) (-15 -3302 ((-112) $)) (-15 -3633 ((-112) $)) (-15 -1877 ((-783) $)) (-15 -2422 ($ (-1 |#1| |#1|) $)))) -((-3633 (((-112) (-52)) 18)) (-2980 (((-3 |#1| "failed") (-52)) 20)) (-2317 ((|#1| (-52)) 21)) (-4112 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -4112 ((-52) |#1|)) (-15 -2980 ((-3 |#1| "failed") (-52))) (-15 -3633 ((-112) (-52))) (-15 -2317 (|#1| (-52)))) (-1237)) (T -51)) -((-2317 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1237)))) (-2980 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1237))))) -(-10 -7 (-15 -4112 ((-52) |#1|)) (-15 -2980 ((-3 |#1| "failed") (-52))) (-15 -3633 ((-112) (-52))) (-15 -2317 (|#1| (-52)))) -((-1952 (((-112) $ $) NIL)) (-1996 (((-786) $) 8)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3697 (((-1124) $) 10)) (-4112 (((-875) $) 15)) (-1994 (((-112) $ $) NIL)) (-2915 (($ (-1124) (-786)) 16)) (-3938 (((-112) $ $) 12))) -(((-52) (-13 (-1120) (-10 -8 (-15 -2915 ($ (-1124) (-786))) (-15 -3697 ((-1124) $)) (-15 -1996 ((-786) $))))) (T -52)) -((-2915 (*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-786)) (-5 *1 (-52)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-52)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(-13 (-1120) (-10 -8 (-15 -2915 ($ (-1124) (-786))) (-15 -3697 ((-1124) $)) (-15 -1996 ((-786) $)))) -((-2649 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2649 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1069) (-660 |#1|) (-865 |#1|)) (T -53)) -((-2649 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1069)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-865 *5))))) -(-10 -7 (-15 -2649 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1983 ((|#3| |#3| (-656 (-1196))) 44)) (-1454 ((|#3| (-656 (-1096 |#1| |#2| |#3|)) |#3| (-939)) 32) ((|#3| (-656 (-1096 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1454 (|#3| (-656 (-1096 |#1| |#2| |#3|)) |#3|)) (-15 -1454 (|#3| (-656 (-1096 |#1| |#2| |#3|)) |#3| (-939))) (-15 -1983 (|#3| |#3| (-656 (-1196))))) (-1120) (-13 (-1069) (-900 |#1|) (-626 (-906 |#1|))) (-13 (-442 |#2|) (-900 |#1|) (-626 (-906 |#1|)))) (T -54)) -((-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1120)) (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))))) (-1454 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1096 *5 *6 *2))) (-5 *4 (-939)) (-4 *5 (-1120)) (-4 *6 (-13 (-1069) (-900 *5) (-626 (-906 *5)))) (-4 *2 (-13 (-442 *6) (-900 *5) (-626 (-906 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1454 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1096 *4 *5 *2))) (-4 *4 (-1120)) (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1454 (|#3| (-656 (-1096 |#1| |#2| |#3|)) |#3|)) (-15 -1454 (|#3| (-656 (-1096 |#1| |#2| |#3|)) |#3| (-939))) (-15 -1983 (|#3| |#3| (-656 (-1196))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 14)) (-2980 (((-3 (-783) "failed") $) 34)) (-2317 (((-783) $) NIL)) (-2287 (((-112) $) 16)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) 18)) (-4112 (((-875) $) 23) (($ (-783)) 29)) (-1994 (((-112) $ $) NIL)) (-2097 (($) 11 T CONST)) (-3938 (((-112) $ $) 20))) -(((-55) (-13 (-1120) (-1058 (-783)) (-10 -8 (-15 -2097 ($) -2665) (-15 -3167 ((-112) $)) (-15 -2287 ((-112) $))))) (T -55)) -((-2097 (*1 *1) (-5 *1 (-55))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1120) (-1058 (-783)) (-10 -8 (-15 -2097 ($) -2665) (-15 -3167 ((-112) $)) (-15 -2287 ((-112) $)))) -((-2337 (((-112) $ (-783)) 27)) (-4110 (($ $ (-576) |#3|) 66)) (-2536 (($ $ (-576) |#4|) 70)) (-2216 ((|#3| $ (-576)) 79)) (-3721 (((-656 |#2|) $) 47)) (-2135 (((-112) $ (-783)) 31)) (-4217 (((-112) |#2| $) 74)) (-1896 (($ (-1 |#2| |#2|) $) 55)) (-2422 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1556 (((-112) $ (-783)) 29)) (-2556 (($ $ |#2|) 52)) (-3587 (((-112) (-1 (-112) |#2|) $) 21)) (-4368 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-3125 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-4286 (($ $) 51)) (-3992 ((|#4| $ (-576)) 82)) (-4112 (((-875) $) 88)) (-1682 (((-112) (-1 (-112) |#2|) $) 20)) (-3938 (((-112) $ $) 73)) (-1968 (((-783) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2536 (|#1| |#1| (-576) |#4|)) (-15 -4110 (|#1| |#1| (-576) |#3|)) (-15 -3721 ((-656 |#2|) |#1|)) (-15 -3992 (|#4| |#1| (-576))) (-15 -2216 (|#3| |#1| (-576))) (-15 -4368 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) (-576))) (-15 -2556 (|#1| |#1| |#2|)) (-15 -4217 ((-112) |#2| |#1|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783))) (-15 -4286 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1237) (-384 |#2|) (-384 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2536 (|#1| |#1| (-576) |#4|)) (-15 -4110 (|#1| |#1| (-576) |#3|)) (-15 -3721 ((-656 |#2|) |#1|)) (-15 -3992 (|#4| |#1| (-576))) (-15 -2216 (|#3| |#1| (-576))) (-15 -4368 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) (-576))) (-15 -2556 (|#1| |#1| |#2|)) (-15 -4217 ((-112) |#2| |#1|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783))) (-15 -4286 (|#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) (-576) |#1|) 45)) (-4110 (($ $ (-576) |#2|) 43)) (-2536 (($ $ (-576) |#3|) 42)) (-4331 (($) 7 T CONST)) (-2216 ((|#2| $ (-576)) 47)) (-1908 ((|#1| $ (-576) (-576) |#1|) 44)) (-3719 ((|#1| $ (-576) (-576)) 49)) (-3721 (((-656 |#1|) $) 31)) (-2758 (((-783) $) 52)) (-1989 (($ (-783) (-783) |#1|) 58)) (-2772 (((-783) $) 51)) (-2135 (((-112) $ (-783)) 9)) (-3263 (((-576) $) 56)) (-3455 (((-576) $) 54)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4285 (((-576) $) 55)) (-2902 (((-576) $) 53)) (-1896 (($ (-1 |#1| |#1|) $) 35)) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) 57)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-3992 ((|#3| $ (-576)) 46)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-57 |#1| |#2| |#3|) (-141) (-1237) (-384 |t#1|) (-384 |t#1|)) (T -57)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1989 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2556 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4285 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-4368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1237)))) (-3719 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1237)))) (-4368 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2216 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-4267 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1908 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-2536 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-1896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2422 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2422 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4464) (-6 -4463) (-15 -1989 ($ (-783) (-783) |t#1|)) (-15 -2556 ($ $ |t#1|)) (-15 -3263 ((-576) $)) (-15 -4285 ((-576) $)) (-15 -3455 ((-576) $)) (-15 -2902 ((-576) $)) (-15 -2758 ((-783) $)) (-15 -2772 ((-783) $)) (-15 -4368 (|t#1| $ (-576) (-576))) (-15 -3719 (|t#1| $ (-576) (-576))) (-15 -4368 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2216 (|t#2| $ (-576))) (-15 -3992 (|t#3| $ (-576))) (-15 -3721 ((-656 |t#1|) $)) (-15 -4267 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1908 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4110 ($ $ (-576) |t#2|)) (-15 -2536 ($ $ (-576) |t#3|)) (-15 -2422 ($ (-1 |t#1| |t#1|) $)) (-15 -1896 ($ (-1 |t#1| |t#1|) $)) (-15 -2422 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2422 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1925 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2422 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1925 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2422 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1237) (-1237)) (T -58)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-58 *5 *2)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1925 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2422 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2947 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-1989 (($ (-783) |#1|) 13)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 10)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2947 ($ (-656 |#1|))) (-15 -2947 ($ (-783) |#1|)))) (-1237)) (T -59)) -((-2947 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-59 *3)))) (-2947 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1237))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2947 ($ (-656 |#1|))) (-15 -2947 ($ (-783) |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4110 (($ $ (-576) (-59 |#1|)) NIL)) (-2536 (($ $ (-576) (-59 |#1|)) NIL)) (-4331 (($) NIL T CONST)) (-2216 (((-59 |#1|) $ (-576)) NIL)) (-1908 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3719 ((|#1| $ (-576) (-576)) NIL)) (-3721 (((-656 |#1|) $) NIL)) (-2758 (((-783) $) NIL)) (-1989 (($ (-783) (-783) |#1|) NIL)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3263 (((-576) $) NIL)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4285 (((-576) $) NIL)) (-2902 (((-576) $) NIL)) (-1896 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-3992 (((-59 |#1|) $ (-576)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4464))) (-1237)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4464))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 74) (((-3 $ "failed") (-1287 (-326 (-576)))) 63) (((-3 $ "failed") (-1287 (-970 (-390)))) 94) (((-3 $ "failed") (-1287 (-970 (-576)))) 84) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 52) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 39)) (-2317 (($ (-1287 (-326 (-390)))) 70) (($ (-1287 (-326 (-576)))) 59) (($ (-1287 (-970 (-390)))) 90) (($ (-1287 (-970 (-576)))) 80) (($ (-1287 (-419 (-970 (-390))))) 48) (($ (-1287 (-419 (-970 (-576))))) 32)) (-3972 (((-1292) $) 124)) (-4112 (((-875) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 101) (($ (-1287 (-350 (-4124 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4124) (-711)))) 31))) -(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4124) (-711))))))) (-1196)) (T -61)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4124) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4124) (-711))))))) -((-3972 (((-1292) $) 54) (((-1292)) 55)) (-4112 (((-875) $) 51))) -(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -3972 ((-1292))))) (-1196)) (T -62)) -((-3972 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-62 *3)) (-14 *3 (-1196))))) -(-13 (-407) (-10 -7 (-15 -3972 ((-1292))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 150) (((-3 $ "failed") (-1287 (-326 (-576)))) 140) (((-3 $ "failed") (-1287 (-970 (-390)))) 170) (((-3 $ "failed") (-1287 (-970 (-576)))) 160) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 129) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 117)) (-2317 (($ (-1287 (-326 (-390)))) 146) (($ (-1287 (-326 (-576)))) 136) (($ (-1287 (-970 (-390)))) 166) (($ (-1287 (-970 (-576)))) 156) (($ (-1287 (-419 (-970 (-390))))) 125) (($ (-1287 (-419 (-970 (-576))))) 110)) (-3972 (((-1292) $) 103)) (-4112 (((-875) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 33) (($ (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711)))) 95))) -(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711))))))) (-1196)) (T -63)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711))))))) -((-2980 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-970 (-390))) 50) (((-3 $ "failed") (-970 (-576))) 54) (((-3 $ "failed") (-419 (-970 (-390)))) 36) (((-3 $ "failed") (-419 (-970 (-576)))) 29)) (-2317 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-970 (-390))) 48) (($ (-970 (-576))) 52) (($ (-419 (-970 (-390)))) 34) (($ (-419 (-970 (-576)))) 26)) (-3972 (((-1292) $) 76)) (-4112 (((-875) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 64) (($ (-350 (-4124 (QUOTE X)) (-4124) (-711))) 25))) -(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124 (QUOTE X)) (-4124) (-711)))))) (-1196)) (T -64)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-350 (-4124 (QUOTE X)) (-4124) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124 (QUOTE X)) (-4124) (-711)))))) -((-2980 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-970 (-390)))) 133) (((-3 $ "failed") (-701 (-970 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-970 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-970 (-576))))) 73)) (-2317 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-970 (-390)))) 129) (($ (-701 (-970 (-576)))) 118) (($ (-701 (-419 (-970 (-390))))) 83) (($ (-701 (-419 (-970 (-576))))) 66)) (-3972 (((-1292) $) 141)) (-4112 (((-875) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 32) (($ (-701 (-350 (-4124) (-4124 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) -(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-4124) (-4124 (QUOTE X) (QUOTE HESS)) (-711))))) (-1196)) (T -65)) -NIL -(-13 (-395) (-628 (-701 (-350 (-4124) (-4124 (QUOTE X) (QUOTE HESS)) (-711))))) -((-2980 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-970 (-390))) 69) (((-3 $ "failed") (-970 (-576))) 73) (((-3 $ "failed") (-419 (-970 (-390)))) 55) (((-3 $ "failed") (-419 (-970 (-576)))) 48)) (-2317 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-970 (-390))) 67) (($ (-970 (-576))) 71) (($ (-419 (-970 (-390)))) 53) (($ (-419 (-970 (-576)))) 45)) (-3972 (((-1292) $) 82)) (-4112 (((-875) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 32) (($ (-350 (-4124) (-4124 (QUOTE XC)) (-711))) 40))) -(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124) (-4124 (QUOTE XC)) (-711)))))) (-1196)) (T -66)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-350 (-4124) (-4124 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124) (-4124 (QUOTE XC)) (-711)))))) -((-3972 (((-1292) $) 65)) (-4112 (((-875) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 55))) -(((-67 |#1|) (-394) (-1196)) (T -67)) +((-1606 (((-112) $) 12)) (-4116 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-47 |#2| |#3|) (-1070) (-804)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1606 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3600 ((|#2| $) 76)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3998 ((|#1| $ |#2|) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-47 |#1| |#2|) (-141) (-1070) (-804)) (T -47)) +((-2089 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-2079 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1945 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2112 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-3998 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-374))))) +(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (-15 -2089 (|t#1| $)) (-15 -2079 ($ $)) (-15 -3600 (|t#2| $)) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -1606 ((-112) $)) (-15 -1945 ($ |t#1| |t#2|)) (-15 -2112 ($ $)) (-15 -3998 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -3056 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3668 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-1842 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1812 (((-112) $) 9)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-3987 (((-656 (-624 $)) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1839 (($ $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-1754 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-4077 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3428 (($ $ $) NIL)) (-4344 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-3685 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3716 (($ $) NIL) (($ (-656 $)) NIL)) (-4221 (((-656 (-115)) $) NIL)) (-1775 (((-115) (-115)) NIL)) (-3215 (((-112) $) 11)) (-2561 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1570 (((-1146 (-576) (-624 $)) $) NIL)) (-4336 (($ $ (-576)) NIL)) (-2471 (((-1193 $) (-1193 $) (-624 $)) NIL) (((-1193 $) (-1193 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2103 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) NIL)) (-1902 (((-3 (-624 $) "failed") $) NIL)) (-3626 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1639 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2158 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2048 (($ $) NIL)) (-2325 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3470 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2975 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3283 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2411 (((-783) $) NIL)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-1546 (($ $) NIL) (($ $ $) NIL)) (-2773 (($ $) NIL) (($ $ (-783)) NIL)) (-1581 (((-1146 (-576) (-624 $)) $) NIL)) (-1897 (($ $) NIL (|has| $ (-1070)))) (-4171 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-3569 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) NIL)) (-1778 (((-783)) NIL T CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-4062 (((-112) (-115)) NIL)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 6 T CONST)) (-2730 (($) 10 T CONST)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2923 (((-112) $ $) 13)) (-3056 (($ $ $) NIL)) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-48) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -2471 ((-1193 $) (-1193 $) (-624 $))) (-15 -2471 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2471 ($ $ (-624 $))) (-15 -2471 ($ $ (-656 (-624 $))))))) (T -48)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3685 (*1 *1 *1) (-5 *1 (-48))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-2471 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-2471 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) +(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -2471 ((-1193 $) (-1193 $) (-624 $))) (-15 -2471 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2471 ($ $ (-624 $))) (-15 -2471 ($ $ (-656 (-624 $)))))) +((-3488 (((-112) $ $) NIL)) (-2090 (((-656 (-518)) $) 17)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 7)) (-2639 (((-1202) $) 18)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-49) (-13 (-1121) (-10 -8 (-15 -2090 ((-656 (-518)) $)) (-15 -2639 ((-1202) $))))) (T -49)) +((-2090 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49))))) +(-13 (-1121) (-10 -8 (-15 -2090 ((-656 (-518)) $)) (-15 -2639 ((-1202) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 85)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2682 (((-112) $) 30)) (-1572 (((-3 |#1| "failed") $) 33)) (-2859 ((|#1| $) 34)) (-2112 (($ $) 40)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2089 ((|#1| $) 31)) (-3240 (($ $) 74)) (-1413 (((-1179) $) NIL)) (-2644 (((-112) $) 43)) (-1450 (((-1141) $) NIL)) (-4128 (($ (-783)) 72)) (-4103 (($ (-656 (-576))) 73)) (-3600 (((-783) $) 44)) (-3569 (((-876) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-3998 ((|#1| $ $) 28)) (-1778 (((-783)) 71 T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 45 T CONST)) (-2730 (($) 17 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 64)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -2089 (|#1| $)) (-15 -3240 ($ $)) (-15 -2112 ($ $)) (-15 -3998 (|#1| $ $)) (-15 -4128 ($ (-783))) (-15 -4103 ($ (-656 (-576)))) (-15 -2644 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -3600 ((-783) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)))) (-1070) (-656 (-1197))) (T -50)) +((-2089 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-3240 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-2112 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-3998 (*1 *2 *1 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1197)))))) +(-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -2089 (|#1| $)) (-15 -3240 ($ $)) (-15 -2112 ($ $)) (-15 -3998 (|#1| $ $)) (-15 -4128 ($ (-783))) (-15 -4103 ($ (-656 (-576)))) (-15 -2644 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -3600 ((-783) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)))) +((-2682 (((-112) (-52)) 18)) (-1572 (((-3 |#1| "failed") (-52)) 20)) (-2859 ((|#1| (-52)) 21)) (-3569 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3569 ((-52) |#1|)) (-15 -1572 ((-3 |#1| "failed") (-52))) (-15 -2682 ((-112) (-52))) (-15 -2859 (|#1| (-52)))) (-1238)) (T -51)) +((-2859 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) (-1572 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238))))) +(-10 -7 (-15 -3569 ((-52) |#1|)) (-15 -1572 ((-3 |#1| "failed") (-52))) (-15 -2682 ((-112) (-52))) (-15 -2859 (|#1| (-52)))) +((-3488 (((-112) $ $) NIL)) (-4023 (((-786) $) 8)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4427 (((-1125) $) 10)) (-3569 (((-876) $) 15)) (-2113 (((-112) $ $) NIL)) (-3481 (($ (-1125) (-786)) 16)) (-2923 (((-112) $ $) 12))) +(((-52) (-13 (-1121) (-10 -8 (-15 -3481 ($ (-1125) (-786))) (-15 -4427 ((-1125) $)) (-15 -4023 ((-786) $))))) (T -52)) +((-3481 (*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52)))) (-4427 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) +(-13 (-1121) (-10 -8 (-15 -3481 ($ (-1125) (-786))) (-15 -4427 ((-1125) $)) (-15 -4023 ((-786) $)))) +((-3568 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3568 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1070) (-660 |#1|) (-866 |#1|)) (T -53)) +((-3568 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1070)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5))))) +(-10 -7 (-15 -3568 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2041 ((|#3| |#3| (-656 (-1197))) 44)) (-2477 ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940)) 32) ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2477 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -2477 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -2041 (|#3| |#3| (-656 (-1197))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -54)) +((-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-2477 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2477 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2477 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -2477 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -2041 (|#3| |#3| (-656 (-1197))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 14)) (-1572 (((-3 (-783) "failed") $) 34)) (-2859 (((-783) $) NIL)) (-3215 (((-112) $) 16)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) 18)) (-3569 (((-876) $) 23) (($ (-783)) 29)) (-2113 (((-112) $ $) NIL)) (-1927 (($) 11 T CONST)) (-2923 (((-112) $ $) 20))) +(((-55) (-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -1927 ($) -1480) (-15 -1812 ((-112) $)) (-15 -3215 ((-112) $))))) (T -55)) +((-1927 (*1 *1) (-5 *1 (-55))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -1927 ($) -1480) (-15 -1812 ((-112) $)) (-15 -3215 ((-112) $)))) +((-2396 (((-112) $ (-783)) 27)) (-1737 (($ $ (-576) |#3|) 66)) (-3864 (($ $ (-576) |#4|) 70)) (-3823 ((|#3| $ (-576)) 79)) (-3965 (((-656 |#2|) $) 47)) (-4252 (((-112) $ (-783)) 31)) (-3456 (((-112) |#2| $) 74)) (-4322 (($ (-1 |#2| |#2|) $) 55)) (-4116 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3557 (((-112) $ (-783)) 29)) (-2740 (($ $ |#2|) 52)) (-3542 (((-112) (-1 (-112) |#2|) $) 21)) (-2796 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-1460 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-1870 (($ $) 51)) (-3083 ((|#4| $ (-576)) 82)) (-3569 (((-876) $) 88)) (-2170 (((-112) (-1 (-112) |#2|) $) 20)) (-2923 (((-112) $ $) 73)) (-3502 (((-783) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3864 (|#1| |#1| (-576) |#4|)) (-15 -1737 (|#1| |#1| (-576) |#3|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -3083 (|#4| |#1| (-576))) (-15 -3823 (|#3| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -3456 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783))) (-15 -1870 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1238) (-384 |#2|) (-384 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3864 (|#1| |#1| (-576) |#4|)) (-15 -1737 (|#1| |#1| (-576) |#3|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -3083 (|#4| |#1| (-576))) (-15 -3823 (|#3| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -3456 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783))) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) (-576) |#1|) 45)) (-1737 (($ $ (-576) |#2|) 43)) (-3864 (($ $ (-576) |#3|) 42)) (-3306 (($) 7 T CONST)) (-3823 ((|#2| $ (-576)) 47)) (-4332 ((|#1| $ (-576) (-576) |#1|) 44)) (-4272 ((|#1| $ (-576) (-576)) 49)) (-3965 (((-656 |#1|) $) 31)) (-1689 (((-783) $) 52)) (-4140 (($ (-783) (-783) |#1|) 58)) (-1699 (((-783) $) 51)) (-4252 (((-112) $ (-783)) 9)) (-3536 (((-576) $) 56)) (-1643 (((-576) $) 54)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2858 (((-576) $) 55)) (-3129 (((-576) $) 53)) (-4322 (($ (-1 |#1| |#1|) $) 35)) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) 57)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3083 ((|#3| $ (-576)) 46)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-57 |#1| |#2| |#3|) (-141) (-1238) (-384 |t#1|) (-384 |t#1|)) (T -57)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4140 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2740 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3823 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3755 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4332 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1737 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-3864 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-4322 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4116 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -4140 ($ (-783) (-783) |t#1|)) (-15 -2740 ($ $ |t#1|)) (-15 -3536 ((-576) $)) (-15 -2858 ((-576) $)) (-15 -1643 ((-576) $)) (-15 -3129 ((-576) $)) (-15 -1689 ((-783) $)) (-15 -1699 ((-783) $)) (-15 -2796 (|t#1| $ (-576) (-576))) (-15 -4272 (|t#1| $ (-576) (-576))) (-15 -2796 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3823 (|t#2| $ (-576))) (-15 -3083 (|t#3| $ (-576))) (-15 -3965 ((-656 |t#1|) $)) (-15 -3755 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4332 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1737 ($ $ (-576) |t#2|)) (-15 -3864 ($ $ (-576) |t#3|)) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -4322 ($ (-1 |t#1| |t#1|) $)) (-15 -4116 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4116 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-2727 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4116 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -2727 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4116 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1238) (-1238)) (T -58)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -2727 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4116 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3476 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-4140 (($ (-783) |#1|) 13)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 10)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3476 ($ (-656 |#1|))) (-15 -3476 ($ (-783) |#1|)))) (-1238)) (T -59)) +((-3476 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3)))) (-3476 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3476 ($ (-656 |#1|))) (-15 -3476 ($ (-783) |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1737 (($ $ (-576) (-59 |#1|)) NIL)) (-3864 (($ $ (-576) (-59 |#1|)) NIL)) (-3306 (($) NIL T CONST)) (-3823 (((-59 |#1|) $ (-576)) NIL)) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3536 (((-576) $) NIL)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2858 (((-576) $) NIL)) (-3129 (((-576) $) NIL)) (-4322 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3083 (((-59 |#1|) $ (-576)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4465))) (-1238)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4465))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 74) (((-3 $ "failed") (-1288 (-326 (-576)))) 63) (((-3 $ "failed") (-1288 (-971 (-390)))) 94) (((-3 $ "failed") (-1288 (-971 (-576)))) 84) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 52) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 39)) (-2859 (($ (-1288 (-326 (-390)))) 70) (($ (-1288 (-326 (-576)))) 59) (($ (-1288 (-971 (-390)))) 90) (($ (-1288 (-971 (-576)))) 80) (($ (-1288 (-419 (-971 (-390))))) 48) (($ (-1288 (-419 (-971 (-576))))) 32)) (-2621 (((-1293) $) 124)) (-3569 (((-876) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 101) (($ (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711)))) 31))) +(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711))))))) (-1197)) (T -61)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711))))))) +((-2621 (((-1293) $) 54) (((-1293)) 55)) (-3569 (((-876) $) 51))) +(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2621 ((-1293))))) (-1197)) (T -62)) +((-2621 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197))))) +(-13 (-407) (-10 -7 (-15 -2621 ((-1293))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 150) (((-3 $ "failed") (-1288 (-326 (-576)))) 140) (((-3 $ "failed") (-1288 (-971 (-390)))) 170) (((-3 $ "failed") (-1288 (-971 (-576)))) 160) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 129) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 117)) (-2859 (($ (-1288 (-326 (-390)))) 146) (($ (-1288 (-326 (-576)))) 136) (($ (-1288 (-971 (-390)))) 166) (($ (-1288 (-971 (-576)))) 156) (($ (-1288 (-419 (-971 (-390))))) 125) (($ (-1288 (-419 (-971 (-576))))) 110)) (-2621 (((-1293) $) 103)) (-3569 (((-876) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 33) (($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) 95))) +(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) (-1197)) (T -63)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-971 (-390))) 50) (((-3 $ "failed") (-971 (-576))) 54) (((-3 $ "failed") (-419 (-971 (-390)))) 36) (((-3 $ "failed") (-419 (-971 (-576)))) 29)) (-2859 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-971 (-390))) 48) (($ (-971 (-576))) 52) (($ (-419 (-971 (-390)))) 34) (($ (-419 (-971 (-576)))) 26)) (-2621 (((-1293) $) 76)) (-3569 (((-876) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 64) (($ (-350 (-3581 (QUOTE X)) (-3581) (-711))) 25))) +(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581) (-711)))))) (-1197)) (T -64)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581 (QUOTE X)) (-3581) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581) (-711)))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-971 (-390)))) 133) (((-3 $ "failed") (-701 (-971 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 73)) (-2859 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-971 (-390)))) 129) (($ (-701 (-971 (-576)))) 118) (($ (-701 (-419 (-971 (-390))))) 83) (($ (-701 (-419 (-971 (-576))))) 66)) (-2621 (((-1293) $) 141)) (-3569 (((-876) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 32) (($ (-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) +(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711))))) (-1197)) (T -65)) +NIL +(-13 (-395) (-628 (-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-971 (-390))) 69) (((-3 $ "failed") (-971 (-576))) 73) (((-3 $ "failed") (-419 (-971 (-390)))) 55) (((-3 $ "failed") (-419 (-971 (-576)))) 48)) (-2859 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-971 (-390))) 67) (($ (-971 (-576))) 71) (($ (-419 (-971 (-390)))) 53) (($ (-419 (-971 (-576)))) 45)) (-2621 (((-1293) $) 82)) (-3569 (((-876) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 32) (($ (-350 (-3581) (-3581 (QUOTE XC)) (-711))) 40))) +(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE XC)) (-711)))))) (-1197)) (T -66)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581) (-3581 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE XC)) (-711)))))) +((-2621 (((-1293) $) 65)) (-3569 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 55))) +(((-67 |#1|) (-394) (-1197)) (T -67)) NIL (-394) -((-3972 (((-1292) $) 66)) (-4112 (((-875) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 57))) -(((-68 |#1|) (-394) (-1196)) (T -68)) +((-2621 (((-1293) $) 66)) (-3569 (((-876) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 57))) +(((-68 |#1|) (-394) (-1197)) (T -68)) NIL (-394) -((-3972 (((-1292) $) NIL) (((-1292)) 33)) (-4112 (((-875) $) NIL))) -(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -3972 ((-1292))))) (-1196)) (T -69)) -((-3972 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196))))) -(-13 (-407) (-10 -7 (-15 -3972 ((-1292))))) -((-3972 (((-1292) $) 75)) (-4112 (((-875) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 60))) -(((-70 |#1|) (-394) (-1196)) (T -70)) +((-2621 (((-1293) $) NIL) (((-1293)) 33)) (-3569 (((-876) $) NIL))) +(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2621 ((-1293))))) (-1197)) (T -69)) +((-2621 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197))))) +(-13 (-407) (-10 -7 (-15 -2621 ((-1293))))) +((-2621 (((-1293) $) 75)) (-3569 (((-876) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 60))) +(((-70 |#1|) (-394) (-1197)) (T -70)) NIL (-394) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 109) (((-3 $ "failed") (-1287 (-326 (-576)))) 98) (((-3 $ "failed") (-1287 (-970 (-390)))) 129) (((-3 $ "failed") (-1287 (-970 (-576)))) 119) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 87) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 74)) (-2317 (($ (-1287 (-326 (-390)))) 105) (($ (-1287 (-326 (-576)))) 94) (($ (-1287 (-970 (-390)))) 125) (($ (-1287 (-970 (-576)))) 115) (($ (-1287 (-419 (-970 (-390))))) 83) (($ (-1287 (-419 (-970 (-576))))) 67)) (-3972 (((-1292) $) 142)) (-4112 (((-875) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 59) (($ (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711)))) 60))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711))))))) (-1196)) (T -71)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711))))))) -((-3972 (((-1292) $) 33) (((-1292)) 32)) (-4112 (((-875) $) 36))) -(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -3972 ((-1292))))) (-1196)) (T -72)) -((-3972 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196))))) -(-13 (-407) (-10 -7 (-15 -3972 ((-1292))))) -((-3972 (((-1292) $) 65)) (-4112 (((-875) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 50))) -(((-73 |#1|) (-394) (-1196)) (T -73)) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 109) (((-3 $ "failed") (-1288 (-326 (-576)))) 98) (((-3 $ "failed") (-1288 (-971 (-390)))) 129) (((-3 $ "failed") (-1288 (-971 (-576)))) 119) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 74)) (-2859 (($ (-1288 (-326 (-390)))) 105) (($ (-1288 (-326 (-576)))) 94) (($ (-1288 (-971 (-390)))) 125) (($ (-1288 (-971 (-576)))) 115) (($ (-1288 (-419 (-971 (-390))))) 83) (($ (-1288 (-419 (-971 (-576))))) 67)) (-2621 (((-1293) $) 142)) (-3569 (((-876) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 59) (($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711)))) 60))) +(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711))))))) (-1197)) (T -71)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711))))))) +((-2621 (((-1293) $) 33) (((-1293)) 32)) (-3569 (((-876) $) 36))) +(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2621 ((-1293))))) (-1197)) (T -72)) +((-2621 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197))))) +(-13 (-407) (-10 -7 (-15 -2621 ((-1293))))) +((-2621 (((-1293) $) 65)) (-3569 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 50))) +(((-73 |#1|) (-394) (-1197)) (T -73)) NIL (-394) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 127) (((-3 $ "failed") (-1287 (-326 (-576)))) 117) (((-3 $ "failed") (-1287 (-970 (-390)))) 147) (((-3 $ "failed") (-1287 (-970 (-576)))) 137) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 107) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 95)) (-2317 (($ (-1287 (-326 (-390)))) 123) (($ (-1287 (-326 (-576)))) 113) (($ (-1287 (-970 (-390)))) 143) (($ (-1287 (-970 (-576)))) 133) (($ (-1287 (-419 (-970 (-390))))) 103) (($ (-1287 (-419 (-970 (-576))))) 88)) (-3972 (((-1292) $) 80)) (-4112 (((-875) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 73) (($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711)))) 67))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711))))))) (-1196)) (T -74)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711))))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 132) (((-3 $ "failed") (-1287 (-326 (-576)))) 121) (((-3 $ "failed") (-1287 (-970 (-390)))) 152) (((-3 $ "failed") (-1287 (-970 (-576)))) 142) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 110) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 97)) (-2317 (($ (-1287 (-326 (-390)))) 128) (($ (-1287 (-326 (-576)))) 117) (($ (-1287 (-970 (-390)))) 148) (($ (-1287 (-970 (-576)))) 138) (($ (-1287 (-419 (-970 (-390))))) 106) (($ (-1287 (-419 (-970 (-576))))) 90)) (-3972 (((-1292) $) 82)) (-4112 (((-875) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) NIL) (($ (-1287 (-350 (-4124 (QUOTE X) (QUOTE EPS)) (-4124 (QUOTE -1438)) (-711)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X) (QUOTE EPS)) (-4124 (QUOTE -1438)) (-711))))))) (-1196) (-1196) (-1196)) (T -75)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE X) (QUOTE EPS)) (-4124 (QUOTE -1438)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X) (QUOTE EPS)) (-4124 (QUOTE -1438)) (-711))))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 138) (((-3 $ "failed") (-1287 (-326 (-576)))) 127) (((-3 $ "failed") (-1287 (-970 (-390)))) 158) (((-3 $ "failed") (-1287 (-970 (-576)))) 148) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 116) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 103)) (-2317 (($ (-1287 (-326 (-390)))) 134) (($ (-1287 (-326 (-576)))) 123) (($ (-1287 (-970 (-390)))) 154) (($ (-1287 (-970 (-576)))) 144) (($ (-1287 (-419 (-970 (-390))))) 112) (($ (-1287 (-419 (-970 (-576))))) 96)) (-3972 (((-1292) $) 88)) (-4112 (((-875) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) NIL) (($ (-1287 (-350 (-4124 (QUOTE EPS)) (-4124 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE EPS)) (-4124 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1196) (-1196) (-1196)) (T -76)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE EPS)) (-4124 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE EPS)) (-4124 (QUOTE YA) (QUOTE YB)) (-711))))))) -((-2980 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-970 (-390))) 92) (((-3 $ "failed") (-970 (-576))) 96) (((-3 $ "failed") (-419 (-970 (-390)))) 78) (((-3 $ "failed") (-419 (-970 (-576)))) 71)) (-2317 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-970 (-390))) 90) (($ (-970 (-576))) 94) (($ (-419 (-970 (-390)))) 76) (($ (-419 (-970 (-576)))) 68)) (-3972 (((-1292) $) 63)) (-4112 (((-875) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 55) (($ (-350 (-4124) (-4124 (QUOTE X)) (-711))) 48))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124) (-4124 (QUOTE X)) (-711)))))) (-1196)) (T -77)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-350 (-4124) (-4124 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124) (-4124 (QUOTE X)) (-711)))))) -((-2980 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-970 (-390))) 56) (((-3 $ "failed") (-970 (-576))) 60) (((-3 $ "failed") (-419 (-970 (-390)))) 42) (((-3 $ "failed") (-419 (-970 (-576)))) 35)) (-2317 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-970 (-390))) 54) (($ (-970 (-576))) 58) (($ (-419 (-970 (-390)))) 40) (($ (-419 (-970 (-576)))) 32)) (-3972 (((-1292) $) 81)) (-4112 (((-875) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 70) (($ (-350 (-4124) (-4124 (QUOTE X)) (-711))) 31))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124) (-4124 (QUOTE X)) (-711)))))) (-1196)) (T -78)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-350 (-4124) (-4124 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124) (-4124 (QUOTE X)) (-711)))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 90) (((-3 $ "failed") (-1287 (-326 (-576)))) 79) (((-3 $ "failed") (-1287 (-970 (-390)))) 110) (((-3 $ "failed") (-1287 (-970 (-576)))) 100) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 68) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 55)) (-2317 (($ (-1287 (-326 (-390)))) 86) (($ (-1287 (-326 (-576)))) 75) (($ (-1287 (-970 (-390)))) 106) (($ (-1287 (-970 (-576)))) 96) (($ (-1287 (-419 (-970 (-390))))) 64) (($ (-1287 (-419 (-970 (-576))))) 48)) (-3972 (((-1292) $) 126)) (-4112 (((-875) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 116) (($ (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711)))) 39))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711))))))) (-1196)) (T -79)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE XC)) (-711))))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 151) (((-3 $ "failed") (-1287 (-326 (-576)))) 141) (((-3 $ "failed") (-1287 (-970 (-390)))) 171) (((-3 $ "failed") (-1287 (-970 (-576)))) 161) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 131) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 119)) (-2317 (($ (-1287 (-326 (-390)))) 147) (($ (-1287 (-326 (-576)))) 137) (($ (-1287 (-970 (-390)))) 167) (($ (-1287 (-970 (-576)))) 157) (($ (-1287 (-419 (-970 (-390))))) 127) (($ (-1287 (-419 (-970 (-576))))) 112)) (-3972 (((-1292) $) 105)) (-4112 (((-875) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 95) (($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711)))) 91))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711))))))) (-1196)) (T -80)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711))))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 79) (((-3 $ "failed") (-1287 (-326 (-576)))) 68) (((-3 $ "failed") (-1287 (-970 (-390)))) 99) (((-3 $ "failed") (-1287 (-970 (-576)))) 89) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 57) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 44)) (-2317 (($ (-1287 (-326 (-390)))) 75) (($ (-1287 (-326 (-576)))) 64) (($ (-1287 (-970 (-390)))) 95) (($ (-1287 (-970 (-576)))) 85) (($ (-1287 (-419 (-970 (-390))))) 53) (($ (-1287 (-419 (-970 (-576))))) 37)) (-3972 (((-1292) $) 125)) (-4112 (((-875) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 114) (($ (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711)))) 36))) -(((-81 |#1|) (-13 (-453) (-628 (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711))))) (-1196)) (T -81)) -NIL -(-13 (-453) (-628 (-1287 (-350 (-4124) (-4124 (QUOTE X)) (-711))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 98) (((-3 $ "failed") (-1287 (-326 (-576)))) 87) (((-3 $ "failed") (-1287 (-970 (-390)))) 118) (((-3 $ "failed") (-1287 (-970 (-576)))) 108) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 76) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 63)) (-2317 (($ (-1287 (-326 (-390)))) 94) (($ (-1287 (-326 (-576)))) 83) (($ (-1287 (-970 (-390)))) 114) (($ (-1287 (-970 (-576)))) 104) (($ (-1287 (-419 (-970 (-390))))) 72) (($ (-1287 (-419 (-970 (-576))))) 56)) (-3972 (((-1292) $) 48)) (-4112 (((-875) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 38) (($ (-1287 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711)))) 33))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711))))))) (-1196)) (T -82)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711))))))) -((-2980 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-970 (-390)))) 140) (((-3 $ "failed") (-701 (-970 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-970 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-970 (-576))))) 83)) (-2317 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-970 (-390)))) 136) (($ (-701 (-970 (-576)))) 125) (($ (-701 (-419 (-970 (-390))))) 92) (($ (-701 (-419 (-970 (-576))))) 76)) (-3972 (((-1292) $) 66)) (-4112 (((-875) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 58) (($ (-701 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711)))) 50))) -(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -4112 ($ (-701 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711))))))) (-1196)) (T -83)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1196))))) -(-13 (-395) (-10 -8 (-15 -4112 ($ (-701 (-350 (-4124 (QUOTE X) (QUOTE -1438)) (-4124) (-711))))))) -((-2980 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-970 (-390)))) 135) (((-3 $ "failed") (-701 (-970 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-970 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-970 (-576))))) 75)) (-2317 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-970 (-390)))) 131) (($ (-701 (-970 (-576)))) 120) (($ (-701 (-419 (-970 (-390))))) 85) (($ (-701 (-419 (-970 (-576))))) 68)) (-3972 (((-1292) $) 60)) (-4112 (((-875) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 45) (($ (-701 (-350 (-4124 (QUOTE X)) (-4124) (-711)))) 46))) -(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -4112 ($ (-701 (-350 (-4124 (QUOTE X)) (-4124) (-711))))))) (-1196)) (T -84)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4124 (QUOTE X)) (-4124) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1196))))) -(-13 (-395) (-10 -8 (-15 -4112 ($ (-701 (-350 (-4124 (QUOTE X)) (-4124) (-711))))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 105) (((-3 $ "failed") (-1287 (-326 (-576)))) 94) (((-3 $ "failed") (-1287 (-970 (-390)))) 125) (((-3 $ "failed") (-1287 (-970 (-576)))) 115) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 83) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 70)) (-2317 (($ (-1287 (-326 (-390)))) 101) (($ (-1287 (-326 (-576)))) 90) (($ (-1287 (-970 (-390)))) 121) (($ (-1287 (-970 (-576)))) 111) (($ (-1287 (-419 (-970 (-390))))) 79) (($ (-1287 (-419 (-970 (-576))))) 63)) (-3972 (((-1292) $) 47)) (-4112 (((-875) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 53) (($ (-1287 (-350 (-4124 (QUOTE X)) (-4124) (-711)))) 38))) -(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X)) (-4124) (-711))))))) (-1196)) (T -85)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE X)) (-4124) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X)) (-4124) (-711))))))) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 80) (((-3 $ "failed") (-1287 (-326 (-576)))) 69) (((-3 $ "failed") (-1287 (-970 (-390)))) 100) (((-3 $ "failed") (-1287 (-970 (-576)))) 90) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 58) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 45)) (-2317 (($ (-1287 (-326 (-390)))) 76) (($ (-1287 (-326 (-576)))) 65) (($ (-1287 (-970 (-390)))) 96) (($ (-1287 (-970 (-576)))) 86) (($ (-1287 (-419 (-970 (-390))))) 54) (($ (-1287 (-419 (-970 (-576))))) 38)) (-3972 (((-1292) $) 126)) (-4112 (((-875) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 115) (($ (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711)))) 37))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711))))))) (-1196)) (T -86)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4112 ($ (-1287 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711))))))) -((-2980 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-970 (-390)))) 139) (((-3 $ "failed") (-701 (-970 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-970 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-970 (-576))))) 79)) (-2317 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-970 (-390)))) 135) (($ (-701 (-970 (-576)))) 124) (($ (-701 (-419 (-970 (-390))))) 89) (($ (-701 (-419 (-970 (-576))))) 72)) (-3972 (((-1292) $) 63)) (-4112 (((-875) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 52) (($ (-701 (-350 (-4124 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4124) (-711)))) 48))) -(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -4112 ($ (-701 (-350 (-4124 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4124) (-711))))))) (-1196)) (T -87)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4124 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4124) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1196))))) -(-13 (-395) (-10 -8 (-15 -4112 ($ (-701 (-350 (-4124 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4124) (-711))))))) -((-3972 (((-1292) $) 45)) (-4112 (((-875) $) 39) (($ (-1287 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 34))) -(((-88 |#1|) (-452) (-1196)) (T -88)) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 127) (((-3 $ "failed") (-1288 (-326 (-576)))) 117) (((-3 $ "failed") (-1288 (-971 (-390)))) 147) (((-3 $ "failed") (-1288 (-971 (-576)))) 137) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 107) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 95)) (-2859 (($ (-1288 (-326 (-390)))) 123) (($ (-1288 (-326 (-576)))) 113) (($ (-1288 (-971 (-390)))) 143) (($ (-1288 (-971 (-576)))) 133) (($ (-1288 (-419 (-971 (-390))))) 103) (($ (-1288 (-419 (-971 (-576))))) 88)) (-2621 (((-1293) $) 80)) (-3569 (((-876) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 73) (($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) 67))) +(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) (-1197)) (T -74)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 132) (((-3 $ "failed") (-1288 (-326 (-576)))) 121) (((-3 $ "failed") (-1288 (-971 (-390)))) 152) (((-3 $ "failed") (-1288 (-971 (-576)))) 142) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 110) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 97)) (-2859 (($ (-1288 (-326 (-390)))) 128) (($ (-1288 (-326 (-576)))) 117) (($ (-1288 (-971 (-390)))) 148) (($ (-1288 (-971 (-576)))) 138) (($ (-1288 (-419 (-971 (-390))))) 106) (($ (-1288 (-419 (-971 (-576))))) 90)) (-2621 (((-1293) $) 82)) (-3569 (((-876) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) NIL) (($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2493)) (-711)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2493)) (-711))))))) (-1197) (-1197) (-1197)) (T -75)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2493)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2493)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 138) (((-3 $ "failed") (-1288 (-326 (-576)))) 127) (((-3 $ "failed") (-1288 (-971 (-390)))) 158) (((-3 $ "failed") (-1288 (-971 (-576)))) 148) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 116) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 103)) (-2859 (($ (-1288 (-326 (-390)))) 134) (($ (-1288 (-326 (-576)))) 123) (($ (-1288 (-971 (-390)))) 154) (($ (-1288 (-971 (-576)))) 144) (($ (-1288 (-419 (-971 (-390))))) 112) (($ (-1288 (-419 (-971 (-576))))) 96)) (-2621 (((-1293) $) 88)) (-3569 (((-876) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) NIL) (($ (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1197) (-1197) (-1197)) (T -76)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711))))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-971 (-390))) 92) (((-3 $ "failed") (-971 (-576))) 96) (((-3 $ "failed") (-419 (-971 (-390)))) 78) (((-3 $ "failed") (-419 (-971 (-576)))) 71)) (-2859 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-971 (-390))) 90) (($ (-971 (-576))) 94) (($ (-419 (-971 (-390)))) 76) (($ (-419 (-971 (-576)))) 68)) (-2621 (((-1293) $) 63)) (-3569 (((-876) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 55) (($ (-350 (-3581) (-3581 (QUOTE X)) (-711))) 48))) +(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) (-1197)) (T -77)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581) (-3581 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-971 (-390))) 56) (((-3 $ "failed") (-971 (-576))) 60) (((-3 $ "failed") (-419 (-971 (-390)))) 42) (((-3 $ "failed") (-419 (-971 (-576)))) 35)) (-2859 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-971 (-390))) 54) (($ (-971 (-576))) 58) (($ (-419 (-971 (-390)))) 40) (($ (-419 (-971 (-576)))) 32)) (-2621 (((-1293) $) 81)) (-3569 (((-876) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 70) (($ (-350 (-3581) (-3581 (QUOTE X)) (-711))) 31))) +(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) (-1197)) (T -78)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581) (-3581 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 90) (((-3 $ "failed") (-1288 (-326 (-576)))) 79) (((-3 $ "failed") (-1288 (-971 (-390)))) 110) (((-3 $ "failed") (-1288 (-971 (-576)))) 100) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 68) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 55)) (-2859 (($ (-1288 (-326 (-390)))) 86) (($ (-1288 (-326 (-576)))) 75) (($ (-1288 (-971 (-390)))) 106) (($ (-1288 (-971 (-576)))) 96) (($ (-1288 (-419 (-971 (-390))))) 64) (($ (-1288 (-419 (-971 (-576))))) 48)) (-2621 (((-1293) $) 126)) (-3569 (((-876) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 116) (($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) 39))) +(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) (-1197)) (T -79)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 151) (((-3 $ "failed") (-1288 (-326 (-576)))) 141) (((-3 $ "failed") (-1288 (-971 (-390)))) 171) (((-3 $ "failed") (-1288 (-971 (-576)))) 161) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 131) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 119)) (-2859 (($ (-1288 (-326 (-390)))) 147) (($ (-1288 (-326 (-576)))) 137) (($ (-1288 (-971 (-390)))) 167) (($ (-1288 (-971 (-576)))) 157) (($ (-1288 (-419 (-971 (-390))))) 127) (($ (-1288 (-419 (-971 (-576))))) 112)) (-2621 (((-1293) $) 105)) (-3569 (((-876) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 95) (($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) 91))) +(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) (-1197)) (T -80)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 79) (((-3 $ "failed") (-1288 (-326 (-576)))) 68) (((-3 $ "failed") (-1288 (-971 (-390)))) 99) (((-3 $ "failed") (-1288 (-971 (-576)))) 89) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 57) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 44)) (-2859 (($ (-1288 (-326 (-390)))) 75) (($ (-1288 (-326 (-576)))) 64) (($ (-1288 (-971 (-390)))) 95) (($ (-1288 (-971 (-576)))) 85) (($ (-1288 (-419 (-971 (-390))))) 53) (($ (-1288 (-419 (-971 (-576))))) 37)) (-2621 (((-1293) $) 125)) (-3569 (((-876) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 114) (($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) 36))) +(((-81 |#1|) (-13 (-453) (-628 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))) (-1197)) (T -81)) +NIL +(-13 (-453) (-628 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 98) (((-3 $ "failed") (-1288 (-326 (-576)))) 87) (((-3 $ "failed") (-1288 (-971 (-390)))) 118) (((-3 $ "failed") (-1288 (-971 (-576)))) 108) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 76) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 63)) (-2859 (($ (-1288 (-326 (-390)))) 94) (($ (-1288 (-326 (-576)))) 83) (($ (-1288 (-971 (-390)))) 114) (($ (-1288 (-971 (-576)))) 104) (($ (-1288 (-419 (-971 (-390))))) 72) (($ (-1288 (-419 (-971 (-576))))) 56)) (-2621 (((-1293) $) 48)) (-3569 (((-876) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 38) (($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711)))) 33))) +(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711))))))) (-1197)) (T -82)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-971 (-390)))) 140) (((-3 $ "failed") (-701 (-971 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 83)) (-2859 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-971 (-390)))) 136) (($ (-701 (-971 (-576)))) 125) (($ (-701 (-419 (-971 (-390))))) 92) (($ (-701 (-419 (-971 (-576))))) 76)) (-2621 (((-1293) $) 66)) (-3569 (((-876) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 58) (($ (-701 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711)))) 50))) +(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711))))))) (-1197)) (T -83)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1197))))) +(-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X) (QUOTE -2493)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-971 (-390)))) 135) (((-3 $ "failed") (-701 (-971 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 75)) (-2859 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-971 (-390)))) 131) (($ (-701 (-971 (-576)))) 120) (($ (-701 (-419 (-971 (-390))))) 85) (($ (-701 (-419 (-971 (-576))))) 68)) (-2621 (((-1293) $) 60)) (-3569 (((-876) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 45) (($ (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) 46))) +(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) (-1197)) (T -84)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1197))))) +(-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 105) (((-3 $ "failed") (-1288 (-326 (-576)))) 94) (((-3 $ "failed") (-1288 (-971 (-390)))) 125) (((-3 $ "failed") (-1288 (-971 (-576)))) 115) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 83) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 70)) (-2859 (($ (-1288 (-326 (-390)))) 101) (($ (-1288 (-326 (-576)))) 90) (($ (-1288 (-971 (-390)))) 121) (($ (-1288 (-971 (-576)))) 111) (($ (-1288 (-419 (-971 (-390))))) 79) (($ (-1288 (-419 (-971 (-576))))) 63)) (-2621 (((-1293) $) 47)) (-3569 (((-876) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 53) (($ (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) 38))) +(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) (-1197)) (T -85)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 80) (((-3 $ "failed") (-1288 (-326 (-576)))) 69) (((-3 $ "failed") (-1288 (-971 (-390)))) 100) (((-3 $ "failed") (-1288 (-971 (-576)))) 90) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 58) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 45)) (-2859 (($ (-1288 (-326 (-390)))) 76) (($ (-1288 (-326 (-576)))) 65) (($ (-1288 (-971 (-390)))) 96) (($ (-1288 (-971 (-576)))) 86) (($ (-1288 (-419 (-971 (-390))))) 54) (($ (-1288 (-419 (-971 (-576))))) 38)) (-2621 (((-1293) $) 126)) (-3569 (((-876) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 115) (($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711)))) 37))) +(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711))))))) (-1197)) (T -86)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711))))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-971 (-390)))) 139) (((-3 $ "failed") (-701 (-971 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 79)) (-2859 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-971 (-390)))) 135) (($ (-701 (-971 (-576)))) 124) (($ (-701 (-419 (-971 (-390))))) 89) (($ (-701 (-419 (-971 (-576))))) 72)) (-2621 (((-1293) $) 63)) (-3569 (((-876) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 52) (($ (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711)))) 48))) +(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711))))))) (-1197)) (T -87)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1197))))) +(-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711))))))) +((-2621 (((-1293) $) 45)) (-3569 (((-876) $) 39) (($ (-1288 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 34))) +(((-88 |#1|) (-452) (-1197)) (T -88)) NIL (-452) -((-2980 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-970 (-390))) 57) (((-3 $ "failed") (-970 (-576))) 61) (((-3 $ "failed") (-419 (-970 (-390)))) 43) (((-3 $ "failed") (-419 (-970 (-576)))) 36)) (-2317 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-970 (-390))) 55) (($ (-970 (-576))) 59) (($ (-419 (-970 (-390)))) 41) (($ (-419 (-970 (-576)))) 33)) (-3972 (((-1292) $) 91)) (-4112 (((-875) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 77) (($ (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711))) 32))) -(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711)))))) (-1196)) (T -89)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4112 ($ (-350 (-4124 (QUOTE X)) (-4124 (QUOTE -1438)) (-711)))))) -((-3192 (((-1287 (-701 |#1|)) (-701 |#1|)) 61)) (-1822 (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-939))))) |#2| (-939)) 49)) (-2517 (((-2 (|:| |minor| (-656 (-939))) (|:| -3378 |#2|) (|:| |minors| (-656 (-656 (-939)))) (|:| |ops| (-656 |#2|))) |#2| (-939)) 72 (|has| |#1| (-374))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1822 ((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-939))))) |#2| (-939))) (-15 -3192 ((-1287 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2517 ((-2 (|:| |minor| (-656 (-939))) (|:| -3378 |#2|) (|:| |minors| (-656 (-656 (-939)))) (|:| |ops| (-656 |#2|))) |#2| (-939))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) -((-2517 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-939))) (|:| -3378 *3) (|:| |minors| (-656 (-656 (-939)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-939)) (-4 *3 (-668 *5)))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-1822 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3608 (-701 *5)) (|:| |vec| (-1287 (-656 (-939)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-939)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -1822 ((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-939))))) |#2| (-939))) (-15 -3192 ((-1287 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2517 ((-2 (|:| |minor| (-656 (-939))) (|:| -3378 |#2|) (|:| |minors| (-656 (-656 (-939)))) (|:| |ops| (-656 |#2|))) |#2| (-939))) |%noBranch|)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3015 ((|#1| $) 40)) (-2337 (((-112) $ (-783)) NIL)) (-4331 (($) NIL T CONST)) (-2133 ((|#1| |#1| $) 35)) (-2034 ((|#1| $) 33)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2976 ((|#1| $) NIL)) (-2782 (($ |#1| $) 36)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1526 ((|#1| $) 34)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 18)) (-3935 (($) 45)) (-4305 (((-783) $) 31)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 17)) (-4112 (((-875) $) 30 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) NIL)) (-4101 (($ (-656 |#1|)) 42)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 15 (|has| |#1| (-102)))) (-1968 (((-783) $) 12 (|has| $ (-6 -4463))))) -(((-91 |#1|) (-13 (-1141 |#1|) (-10 -8 (-15 -4101 ($ (-656 |#1|))))) (-1120)) (T -91)) -((-4101 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-91 *3))))) -(-13 (-1141 |#1|) (-10 -8 (-15 -4101 ($ (-656 |#1|))))) -((-4112 (((-875) $) 13) (($ (-1201)) 9) (((-1201) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4112 ((-1201) |#1|)) (-15 -4112 (|#1| (-1201))) (-15 -4112 ((-875) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4112 ((-1201) |#1|)) (-15 -4112 (|#1| (-1201))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +((-1572 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-971 (-390))) 57) (((-3 $ "failed") (-971 (-576))) 61) (((-3 $ "failed") (-419 (-971 (-390)))) 43) (((-3 $ "failed") (-419 (-971 (-576)))) 36)) (-2859 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-971 (-390))) 55) (($ (-971 (-576))) 59) (($ (-419 (-971 (-390)))) 41) (($ (-419 (-971 (-576)))) 33)) (-2621 (((-1293) $) 91)) (-3569 (((-876) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 77) (($ (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711))) 32))) +(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711)))))) (-1197)) (T -89)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2493)) (-711)))))) +((-4043 (((-1288 (-701 |#1|)) (-701 |#1|)) 61)) (-4264 (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940)) 49)) (-3656 (((-2 (|:| |minor| (-656 (-940))) (|:| -4026 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940)) 72 (|has| |#1| (-374))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -4264 ((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -4043 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3656 ((-2 (|:| |minor| (-656 (-940))) (|:| -4026 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) +((-3656 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-940))) (|:| -4026 *3) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5)))) (-4043 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-4264 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3752 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) +(-10 -7 (-15 -4264 ((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -4043 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3656 ((-2 (|:| |minor| (-656 (-940))) (|:| -4026 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1419 ((|#1| $) 40)) (-2396 (((-112) $ (-783)) NIL)) (-3306 (($) NIL T CONST)) (-4232 ((|#1| |#1| $) 35)) (-2489 ((|#1| $) 33)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3772 ((|#1| $) NIL)) (-4436 (($ |#1| $) 36)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3267 ((|#1| $) 34)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 18)) (-3839 (($) 45)) (-1887 (((-783) $) 31)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 17)) (-3569 (((-876) $) 30 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) NIL)) (-1668 (($ (-656 |#1|)) 42)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 15 (|has| |#1| (-102)))) (-3502 (((-783) $) 12 (|has| $ (-6 -4464))))) +(((-91 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -1668 ($ (-656 |#1|))))) (-1121)) (T -91)) +((-1668 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) +(-13 (-1142 |#1|) (-10 -8 (-15 -1668 ($ (-656 |#1|))))) +((-3569 (((-876) $) 13) (($ (-1202)) 9) (((-1202) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3569 ((-1202) |#1|)) (-15 -3569 (|#1| (-1202))) (-15 -3569 ((-876) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3569 ((-1202) |#1|)) (-15 -3569 (|#1| (-1202))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-93) (-141)) (T -93)) NIL -(-13 (-1120) (-502 (-1201))) -(((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-875)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1120) . T) ((-1237) . T)) -((-3536 (($ $) 10)) (-3549 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3549 (|#1| |#1|)) (-15 -3536 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1121) (-502 (-1202))) +(((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) +((-3982 (($ $) 10)) (-3994 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3549 (|#1| |#1|)) (-15 -3536 (|#1| |#1|))) -((-3509 (($ $) 11)) (-3486 (($ $) 10)) (-3536 (($ $) 9)) (-3549 (($ $) 8)) (-3522 (($ $) 7)) (-3497 (($ $) 6))) +(-10 -8 (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|))) +((-3960 (($ $) 11)) (-3937 (($ $) 10)) (-3982 (($ $) 9)) (-3994 (($ $) 8)) (-3973 (($ $) 7)) (-3950 (($ $) 6))) (((-95) (-141)) (T -95)) -((-3509 (*1 *1 *1) (-4 *1 (-95))) (-3486 (*1 *1 *1) (-4 *1 (-95))) (-3536 (*1 *1 *1) (-4 *1 (-95))) (-3549 (*1 *1 *1) (-4 *1 (-95))) (-3522 (*1 *1 *1) (-4 *1 (-95))) (-3497 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3497 ($ $)) (-15 -3522 ($ $)) (-15 -3549 ($ $)) (-15 -3536 ($ $)) (-15 -3486 ($ $)) (-15 -3509 ($ $)))) -((-1952 (((-112) $ $) NIL)) (-4148 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-96) (-13 (-1103) (-10 -8 (-15 -4148 ((-1155) $))))) (T -96)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-96))))) -(-13 (-1103) (-10 -8 (-15 -4148 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-3895 (((-390) (-1178) (-390)) 46) (((-390) (-1178) (-1178) (-390)) 44)) (-3344 (((-390) (-390)) 35)) (-2871 (((-1292)) 37)) (-2043 (((-1178) $) NIL)) (-1831 (((-390) (-1178) (-1178)) 50) (((-390) (-1178)) 52)) (-3115 (((-1140) $) NIL)) (-3855 (((-390) (-1178) (-1178)) 51)) (-3390 (((-390) (-1178) (-1178)) 53) (((-390) (-1178)) 54)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-97) (-13 (-1120) (-10 -7 (-15 -1831 ((-390) (-1178) (-1178))) (-15 -1831 ((-390) (-1178))) (-15 -3390 ((-390) (-1178) (-1178))) (-15 -3390 ((-390) (-1178))) (-15 -3855 ((-390) (-1178) (-1178))) (-15 -2871 ((-1292))) (-15 -3344 ((-390) (-390))) (-15 -3895 ((-390) (-1178) (-390))) (-15 -3895 ((-390) (-1178) (-1178) (-390))) (-6 -4463)))) (T -97)) -((-1831 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3855 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2871 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3895 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))) (-3895 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97))))) -(-13 (-1120) (-10 -7 (-15 -1831 ((-390) (-1178) (-1178))) (-15 -1831 ((-390) (-1178))) (-15 -3390 ((-390) (-1178) (-1178))) (-15 -3390 ((-390) (-1178))) (-15 -3855 ((-390) (-1178) (-1178))) (-15 -2871 ((-1292))) (-15 -3344 ((-390) (-390))) (-15 -3895 ((-390) (-1178) (-390))) (-15 -3895 ((-390) (-1178) (-1178) (-390))) (-6 -4463))) +((-3960 (*1 *1 *1) (-4 *1 (-95))) (-3937 (*1 *1 *1) (-4 *1 (-95))) (-3982 (*1 *1 *1) (-4 *1 (-95))) (-3994 (*1 *1 *1) (-4 *1 (-95))) (-3973 (*1 *1 *1) (-4 *1 (-95))) (-3950 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3950 ($ $)) (-15 -3973 ($ $)) (-15 -3994 ($ $)) (-15 -3982 ($ $)) (-15 -3937 ($ $)) (-15 -3960 ($ $)))) +((-3488 (((-112) $ $) NIL)) (-2627 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-96) (-13 (-1104) (-10 -8 (-15 -2627 ((-1156) $))))) (T -96)) +((-2627 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96))))) +(-13 (-1104) (-10 -8 (-15 -2627 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3394 (((-390) (-1179) (-390)) 46) (((-390) (-1179) (-1179) (-390)) 44)) (-3114 (((-390) (-390)) 35)) (-2745 (((-1293)) 37)) (-1413 (((-1179) $) NIL)) (-4348 (((-390) (-1179) (-1179)) 50) (((-390) (-1179)) 52)) (-1450 (((-1141) $) NIL)) (-4262 (((-390) (-1179) (-1179)) 51)) (-2280 (((-390) (-1179) (-1179)) 53) (((-390) (-1179)) 54)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-97) (-13 (-1121) (-10 -7 (-15 -4348 ((-390) (-1179) (-1179))) (-15 -4348 ((-390) (-1179))) (-15 -2280 ((-390) (-1179) (-1179))) (-15 -2280 ((-390) (-1179))) (-15 -4262 ((-390) (-1179) (-1179))) (-15 -2745 ((-1293))) (-15 -3114 ((-390) (-390))) (-15 -3394 ((-390) (-1179) (-390))) (-15 -3394 ((-390) (-1179) (-1179) (-390))) (-6 -4464)))) (T -97)) +((-4348 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2280 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4262 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2745 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3394 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) (-3394 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) +(-13 (-1121) (-10 -7 (-15 -4348 ((-390) (-1179) (-1179))) (-15 -4348 ((-390) (-1179))) (-15 -2280 ((-390) (-1179) (-1179))) (-15 -2280 ((-390) (-1179))) (-15 -4262 ((-390) (-1179) (-1179))) (-15 -2745 ((-1293))) (-15 -3114 ((-390) (-390))) (-15 -3394 ((-390) (-1179) (-390))) (-15 -3394 ((-390) (-1179) (-1179) (-390))) (-6 -4464))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4463) (-6 (-4465 "*")) (-6 -4464) (-6 -4460) (-6 -4458) (-6 -4457) (-6 -4456) (-6 -4461) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4459) (-6 -4462) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4450))) -((-1952 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-1971 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 16)) (-3115 (((-1140) $) NIL)) (-4368 ((|#1| $ |#1|) 13)) (-2633 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-4112 (((-875) $) 22)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 8 T CONST)) (-3938 (((-112) $ $) 10)) (-4046 (($ $ $) NIL)) (** (($ $ (-939)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -1971 ($ (-1 |#1| |#1|))) (-15 -1971 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1971 ($ (-1 |#1| |#1| (-576)))))) (-1069)) (T -99)) -((-1971 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) (-1971 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1069)) (-5 *1 (-99 *3))))) -(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -1971 ($ (-1 |#1| |#1|))) (-15 -1971 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1971 ($ (-1 |#1| |#1| (-576)))))) -((-1470 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1470 ((-430 |#2|) |#2| |#2|)) (-15 -1470 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1263 |#1|)) (T -100)) -((-1470 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-1470 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -1470 ((-430 |#2|) |#2| |#2|)) (-15 -1470 ((-430 |#2|) |#2| (-656 |#2|)))) -((-1952 (((-112) $ $) 13)) (-1994 (((-112) $ $) 14)) (-3938 (((-112) $ $) 11))) -(((-101 |#1|) (-10 -8 (-15 -1994 ((-112) |#1| |#1|)) (-15 -1952 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -1994 ((-112) |#1| |#1|)) (-15 -1952 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +(-13 (-10 -7 (-6 -4464) (-6 (-4466 "*")) (-6 -4465) (-6 -4461) (-6 -4459) (-6 -4458) (-6 -4457) (-6 -4462) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4460) (-6 -4463) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4451))) +((-3488 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-3219 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 16)) (-1450 (((-1141) $) NIL)) (-2796 ((|#1| $ |#1|) 13)) (-2318 (($ $ $) NIL)) (-2604 (($ $ $) NIL)) (-3569 (((-876) $) 22)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 8 T CONST)) (-2923 (((-112) $ $) 10)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3219 ($ (-1 |#1| |#1|))) (-15 -3219 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3219 ($ (-1 |#1| |#1| (-576)))))) (-1070)) (T -99)) +((-3219 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-3219 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) +(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3219 ($ (-1 |#1| |#1|))) (-15 -3219 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3219 ($ (-1 |#1| |#1| (-576)))))) +((-3989 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3989 ((-430 |#2|) |#2| |#2|)) (-15 -3989 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1264 |#1|)) (T -100)) +((-3989 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-3989 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3989 ((-430 |#2|) |#2| |#2|)) (-15 -3989 ((-430 |#2|) |#2| (-656 |#2|)))) +((-3488 (((-112) $ $) 13)) (-2113 (((-112) $ $) 14)) (-2923 (((-112) $ $) 11))) +(((-101 |#1|) (-10 -8 (-15 -2113 ((-112) |#1| |#1|)) (-15 -3488 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2113 ((-112) |#1| |#1|)) (-15 -3488 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-102) (-141)) (T -102)) -((-3938 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1952 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1994 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-1237) (-10 -8 (-15 -3938 ((-112) $ $)) (-15 -1952 ((-112) $ $)) (-15 -1994 ((-112) $ $)))) -(((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) 24 (|has| $ (-6 -4464)))) (-2533 (($ $ $) NIL (|has| $ (-6 -4464)))) (-4402 (($ $ $) NIL (|has| $ (-6 -4464)))) (-3922 (($ $ (-656 |#1|)) 30)) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "left" $) NIL (|has| $ (-6 -4464))) (($ $ "right" $) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2110 (($ $) 12)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2303 (($ $ |#1| $) 32)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2185 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2872 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2100 (($ $) 11)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) 13)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 9)) (-3935 (($) 31)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3183 (((-576) $ $) NIL)) (-2003 (((-112) $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3810 (($ (-783) |#1|) 33)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -3810 ($ (-783) |#1|)) (-15 -3922 ($ $ (-656 |#1|))) (-15 -2185 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2185 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2872 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2872 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1120)) (T -103)) -((-3810 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1120)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3)))) (-2185 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1120)))) (-2185 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3)))) (-2872 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2)))) (-2872 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -3810 ($ (-783) |#1|)) (-15 -3922 ($ $ (-656 |#1|))) (-15 -2185 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2185 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2872 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2872 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) -((-1997 ((|#3| |#2| |#2|) 34)) (-1789 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4465 "*"))))) (-2656 ((|#3| |#2| |#2|) 36)) (-4398 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4465 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1997 (|#3| |#2| |#2|)) (-15 -2656 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4465 "*"))) (PROGN (-15 -1789 (|#1| |#2| |#2|)) (-15 -4398 (|#1| |#2|))) |%noBranch|)) (-1069) (-1263 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) -((-4398 (*1 *2 *3) (-12 (|has| *2 (-6 (-4465 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-699 *2 *5 *6)))) (-1789 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4465 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-699 *2 *5 *6)))) (-2656 (*1 *2 *3 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-1997 (*1 *2 *3 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) -(-10 -7 (-15 -1997 (|#3| |#2| |#2|)) (-15 -2656 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4465 "*"))) (PROGN (-15 -1789 (|#1| |#2| |#2|)) (-15 -4398 (|#1| |#2|))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3166 (((-656 (-1196))) 37)) (-3275 (((-2 (|:| |zeros| (-1177 (-227))) (|:| |ones| (-1177 (-227))) (|:| |singularities| (-1177 (-227)))) (-1196)) 39)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-105) (-13 (-1120) (-10 -7 (-15 -3166 ((-656 (-1196)))) (-15 -3275 ((-2 (|:| |zeros| (-1177 (-227))) (|:| |ones| (-1177 (-227))) (|:| |singularities| (-1177 (-227)))) (-1196))) (-6 -4463)))) (T -105)) -((-3166 (*1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-105)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-2 (|:| |zeros| (-1177 (-227))) (|:| |ones| (-1177 (-227))) (|:| |singularities| (-1177 (-227))))) (-5 *1 (-105))))) -(-13 (-1120) (-10 -7 (-15 -3166 ((-656 (-1196)))) (-15 -3275 ((-2 (|:| |zeros| (-1177 (-227))) (|:| |ones| (-1177 (-227))) (|:| |singularities| (-1177 (-227)))) (-1196))) (-6 -4463))) -((-2050 (($ (-656 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -2050 (|#1| (-656 |#2|)))) (-107 |#2|) (-1237)) (T -106)) -NIL -(-10 -8 (-15 -2050 (|#1| (-656 |#2|)))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-107 |#1|) (-141) (-1237)) (T -107)) -((-2050 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-2782 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4464) (-15 -2050 ($ (-656 |t#1|))) (-15 -1526 (|t#1| $)) (-15 -2782 ($ |t#1| $)) (-15 -2976 (|t#1| $)))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-576) $) NIL (|has| (-576) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-576) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1058 (-576))))) (-2317 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1058 (-576)))) (((-576) $) NIL (|has| (-576) (-1058 (-576))))) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-576) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| (-576) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-576) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-576) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-576) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| (-576) (-1172)))) (-3197 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-576) (-861)))) (-2422 (($ (-1 (-576) (-576)) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2804 (((-576) $) NIL (|has| (-576) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-576) $) NIL)) (-1554 (((-906 (-576)) $) NIL (|has| (-576) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-576) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1042))) (((-227) $) NIL (|has| (-576) (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL) (((-1024 2) $) 10)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-576) (-927))) (|has| (-576) (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 (((-576) $) NIL (|has| (-576) (-557)))) (-2193 (($ (-419 (-576))) 9)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| (-576) (-832)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-4046 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-108) (-13 (-1012 (-576)) (-625 (-419 (-576))) (-625 (-1024 2)) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -2193 ($ (-419 (-576))))))) (T -108)) -((-1914 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2193 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) -(-13 (-1012 (-576)) (-625 (-419 (-576))) (-625 (-1024 2)) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -2193 ($ (-419 (-576)))))) -((-3806 (((-656 (-983)) $) 13)) (-4148 (((-518) $) 9)) (-4112 (((-875) $) 20)) (-3232 (($ (-518) (-656 (-983))) 15))) -(((-109) (-13 (-625 (-875)) (-10 -8 (-15 -4148 ((-518) $)) (-15 -3806 ((-656 (-983)) $)) (-15 -3232 ($ (-518) (-656 (-983))))))) (T -109)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-656 (-983))) (-5 *1 (-109)))) (-3232 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-983))) (-5 *1 (-109))))) -(-13 (-625 (-875)) (-10 -8 (-15 -4148 ((-518) $)) (-15 -3806 ((-656 (-983)) $)) (-15 -3232 ($ (-518) (-656 (-983)))))) -((-1952 (((-112) $ $) NIL)) (-1980 (($ $) NIL)) (-4292 (($ $ $) NIL)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1715 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2379 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-4267 (((-112) $ (-1254 (-576)) (-112)) NIL (|has| $ (-6 -4464))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2824 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2721 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-1908 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4464)))) (-3719 (((-112) $ (-576)) NIL)) (-3538 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1120))) (((-576) (-112) $) NIL (|has| (-112) (-1120))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3721 (((-656 (-112)) $) NIL (|has| $ (-6 -4463)))) (-2322 (($ $ $) NIL)) (-2298 (($ $) NIL)) (-3562 (($ $ $) NIL)) (-1989 (($ (-783) (-112)) 10)) (-4114 (($ $ $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL)) (-2144 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3958 (((-656 (-112)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL)) (-1896 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-112) $) NIL (|has| (-576) (-861)))) (-2022 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2556 (($ $ (-112)) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2692 (((-656 (-112)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 (($ $ (-1254 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-2334 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3125 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-4124 (($ (-656 (-112))) NIL)) (-2766 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4112 (((-875) $) NIL)) (-4097 (($ (-783) (-112)) 11)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2310 (($ $ $) NIL)) (-2031 (($ $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-2020 (($ $ $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-110) (-13 (-124) (-10 -8 (-15 -4097 ($ (-783) (-112)))))) (T -110)) -((-4097 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -4097 ($ (-783) (-112))))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1069) (-1069)) (T -111)) -NIL -(-13 (-660 |t#1|) (-1076 |t#2|) (-10 -7 (-6 -4458) (-6 -4457))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-1980 (($ $) 10)) (-4292 (($ $ $) 15)) (-4325 (($) 7 T CONST)) (-1921 (($ $) 6)) (-2199 (((-783)) 24)) (-4369 (($) 32)) (-2322 (($ $ $) 13)) (-2298 (($ $) 9)) (-3562 (($ $ $) 16)) (-4114 (($ $ $) 17)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) 30)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) 28)) (-3746 (($ $ $) 20)) (-3115 (((-1140) $) NIL)) (-3129 (($) 8 T CONST)) (-2829 (($ $ $) 21)) (-1554 (((-548) $) 34)) (-4112 (((-875) $) 36)) (-1994 (((-112) $ $) NIL)) (-2310 (($ $ $) 11)) (-2031 (($ $ $) 14)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 19)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 22)) (-2020 (($ $ $) 12))) -(((-112) (-13 (-856) (-673) (-987) (-626 (-548)) (-10 -8 (-15 -4292 ($ $ $)) (-15 -4114 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -1921 ($ $))))) (T -112)) -((-4292 (*1 *1 *1 *1) (-5 *1 (-112))) (-4114 (*1 *1 *1 *1) (-5 *1 (-112))) (-3562 (*1 *1 *1 *1) (-5 *1 (-112))) (-1921 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-856) (-673) (-987) (-626 (-548)) (-10 -8 (-15 -4292 ($ $ $)) (-15 -4114 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -1921 ($ $)))) -((-2322 (($ $ $) 6)) (-2298 (($ $) 8)) (-2310 (($ $ $) 7))) +((-2923 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3488 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2113 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-1238) (-10 -8 (-15 -2923 ((-112) $ $)) (-15 -3488 ((-112) $ $)) (-15 -2113 ((-112) $ $)))) +(((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) 24 (|has| $ (-6 -4465)))) (-3827 (($ $ $) NIL (|has| $ (-6 -4465)))) (-1548 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3702 (($ $ (-656 |#1|)) 30)) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-4249 (($ $) 12)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2203 (($ $ |#1| $) 32)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3495 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2757 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-4239 (($ $) 11)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) 13)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 9)) (-3839 (($) 31)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3957 (((-576) $ $) NIL)) (-2199 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1844 (($ (-783) |#1|) 33)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -1844 ($ (-783) |#1|)) (-15 -3702 ($ $ (-656 |#1|))) (-15 -3495 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3495 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2757 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2757 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1121)) (T -103)) +((-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-3495 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121)))) (-3495 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-2757 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2)))) (-2757 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -1844 ($ (-783) |#1|)) (-15 -3702 ($ $ (-656 |#1|))) (-15 -3495 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3495 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2757 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2757 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) +((-2136 ((|#3| |#2| |#2|) 34)) (-3938 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4466 "*"))))) (-2530 ((|#3| |#2| |#2|) 36)) (-2692 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4466 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2136 (|#3| |#2| |#2|)) (-15 -2530 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4466 "*"))) (PROGN (-15 -3938 (|#1| |#2| |#2|)) (-15 -2692 (|#1| |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) +((-2692 (*1 *2 *3) (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3938 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-2530 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-2136 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) +(-10 -7 (-15 -2136 (|#3| |#2| |#2|)) (-15 -2530 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4466 "*"))) (PROGN (-15 -3938 (|#1| |#2| |#2|)) (-15 -2692 (|#1| |#2|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-1801 (((-656 (-1197))) 37)) (-3661 (((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197)) 39)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-105) (-13 (-1121) (-10 -7 (-15 -1801 ((-656 (-1197)))) (-15 -3661 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4464)))) (T -105)) +((-1801 (*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227))))) (-5 *1 (-105))))) +(-13 (-1121) (-10 -7 (-15 -1801 ((-656 (-1197)))) (-15 -3661 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4464))) +((-1470 (($ (-656 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1470 (|#1| (-656 |#2|)))) (-107 |#2|) (-1238)) (T -106)) +NIL +(-10 -8 (-15 -1470 (|#1| (-656 |#2|)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-107 |#1|) (-141) (-1238)) (T -107)) +((-1470 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-4436 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4465) (-15 -1470 ($ (-656 |t#1|))) (-15 -3267 (|t#1| $)) (-15 -4436 ($ |t#1| $)) (-15 -3772 (|t#1| $)))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-576) $) NIL (|has| (-576) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-576) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| (-576) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-4099 (((-112) $) NIL (|has| (-576) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3416 (((-576) $) NIL (|has| (-576) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 2) $) 10)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 (((-576) $) NIL (|has| (-576) (-557)))) (-3583 (($ (-419 (-576))) 9)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| (-576) (-832)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3056 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-108) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -3583 ($ (-419 (-576))))))) (T -108)) +((-2638 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -3583 ($ (-419 (-576)))))) +((-1864 (((-656 (-984)) $) 13)) (-2627 (((-518) $) 9)) (-3569 (((-876) $) 20)) (-4443 (($ (-518) (-656 (-984))) 15))) +(((-109) (-13 (-625 (-876)) (-10 -8 (-15 -2627 ((-518) $)) (-15 -1864 ((-656 (-984)) $)) (-15 -4443 ($ (-518) (-656 (-984))))))) (T -109)) +((-2627 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) (-4443 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2627 ((-518) $)) (-15 -1864 ((-656 (-984)) $)) (-15 -4443 ($ (-518) (-656 (-984)))))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) NIL)) (-2693 (($ $ $) NIL)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2450 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-3755 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3945 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3685 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4332 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-4272 (((-112) $ (-576)) NIL)) (-3659 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3965 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2683 (($ $ $) NIL)) (-2662 (($ $) NIL)) (-1410 (($ $ $) NIL)) (-4140 (($ (-783) (-112)) 10)) (-1767 (($ $ $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL)) (-4335 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2735 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL)) (-4322 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-2174 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-112) $) NIL (|has| (-576) (-861)))) (-2366 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2740 (($ $ (-112)) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1681 (((-656 (-112)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3463 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1460 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3581 (($ (-656 (-112))) NIL)) (-1615 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3569 (((-876) $) NIL)) (-1625 (($ (-783) (-112)) 11)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2673 (($ $ $) NIL)) (-3562 (($ $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3551 (($ $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-110) (-13 (-124) (-10 -8 (-15 -1625 ($ (-783) (-112)))))) (T -110)) +((-1625 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -1625 ($ (-783) (-112))))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1070) (-1070)) (T -111)) +NIL +(-13 (-660 |t#1|) (-1077 |t#2|) (-10 -7 (-6 -4459) (-6 -4458))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) 10)) (-2693 (($ $ $) 15)) (-2140 (($) 7 T CONST)) (-3939 (($ $) 6)) (-2096 (((-783)) 24)) (-1836 (($) 32)) (-2683 (($ $ $) 13)) (-2662 (($ $) 9)) (-1410 (($ $ $) 16)) (-1767 (($ $ $) 17)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) 30)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) 28)) (-2502 (($ $ $) 20)) (-1450 (((-1141) $) NIL)) (-3512 (($) 8 T CONST)) (-3664 (($ $ $) 21)) (-4171 (((-548) $) 34)) (-3569 (((-876) $) 36)) (-2113 (((-112) $ $) NIL)) (-2673 (($ $ $) 11)) (-3562 (($ $ $) 14)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 19)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 22)) (-3551 (($ $ $) 12))) +(((-112) (-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -2693 ($ $ $)) (-15 -1767 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -3939 ($ $))))) (T -112)) +((-2693 (*1 *1 *1 *1) (-5 *1 (-112))) (-1767 (*1 *1 *1 *1) (-5 *1 (-112))) (-1410 (*1 *1 *1 *1) (-5 *1 (-112))) (-3939 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -2693 ($ $ $)) (-15 -1767 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -3939 ($ $)))) +((-2683 (($ $ $) 6)) (-2662 (($ $) 8)) (-2673 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2298 (*1 *1 *1) (-4 *1 (-113))) (-2310 (*1 *1 *1 *1) (-4 *1 (-113))) (-2322 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1237) (-10 -8 (-15 -2298 ($ $)) (-15 -2310 ($ $ $)) (-15 -2322 ($ $ $)))) -(((-1237) . T)) -((-3303 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-4023 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-2661 (((-115) |#1|) 63)) (-3599 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -3303 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3303 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3303 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3303 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -4023 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -4023 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4023 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2661 ((-115) |#1|)) (-15 -3599 ((-3 |#1| "failed") (-115)))) (-1120)) (T -114)) -((-3599 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1120)))) (-2661 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1120)))) (-4023 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1120)))) (-4023 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) (-5 *1 (-114 *4)))) (-4023 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1120)) (-5 *1 (-114 *4)))) (-3303 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1120)))) (-3303 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) (-5 *1 (-114 *4)))) (-3303 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1120)) (-5 *1 (-114 *4)))) (-3303 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1120))))) -(-10 -7 (-15 -3303 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3303 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3303 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3303 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -4023 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -4023 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4023 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2661 ((-115) |#1|)) (-15 -3599 ((-3 |#1| "failed") (-115)))) -((-1952 (((-112) $ $) NIL)) (-2869 (((-783) $) 91) (($ $ (-783)) 37)) (-2293 (((-112) $) 41)) (-3919 (($ $ (-1178) (-786)) 58) (($ $ (-518) (-786)) 33)) (-1706 (($ $ (-45 (-1178) (-786))) 16)) (-3969 (((-3 (-786) "failed") $ (-1178)) 27) (((-703 (-786)) $ (-518)) 32)) (-3806 (((-45 (-1178) (-786)) $) 15)) (-1400 (($ (-1196)) 20) (($ (-1196) (-783)) 23) (($ (-1196) (-55)) 24)) (-2208 (((-112) $) 39)) (-1433 (((-112) $) 43)) (-4148 (((-1196) $) 8)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1681 (((-112) $ (-1196)) 11)) (-1659 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-3115 (((-1140) $) NIL)) (-4233 (((-112) $ (-518)) 36)) (-3314 (($ $ (-1 (-112) $ $)) 45)) (-1612 (((-3 (-1 (-875) (-656 (-875))) "failed") $) 69) (($ $ (-1 (-875) (-656 (-875)))) 51) (($ $ (-1 (-875) (-875))) 53)) (-4297 (($ $ (-1178)) 55) (($ $ (-518)) 56)) (-4286 (($ $) 77)) (-2319 (($ $ (-1 (-112) $ $)) 46)) (-4112 (((-875) $) 60)) (-1994 (((-112) $ $) NIL)) (-1716 (($ $ (-518)) 34)) (-2670 (((-55) $) 72)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 89)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 103))) -(((-115) (-13 (-861) (-847 (-1196)) (-10 -8 (-15 -3806 ((-45 (-1178) (-786)) $)) (-15 -4286 ($ $)) (-15 -1400 ($ (-1196))) (-15 -1400 ($ (-1196) (-783))) (-15 -1400 ($ (-1196) (-55))) (-15 -2208 ((-112) $)) (-15 -2293 ((-112) $)) (-15 -1433 ((-112) $)) (-15 -2869 ((-783) $)) (-15 -2869 ($ $ (-783))) (-15 -3314 ($ $ (-1 (-112) $ $))) (-15 -2319 ($ $ (-1 (-112) $ $))) (-15 -1612 ((-3 (-1 (-875) (-656 (-875))) "failed") $)) (-15 -1612 ($ $ (-1 (-875) (-656 (-875))))) (-15 -1612 ($ $ (-1 (-875) (-875)))) (-15 -1659 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1659 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -4233 ((-112) $ (-518))) (-15 -1716 ($ $ (-518))) (-15 -4297 ($ $ (-1178))) (-15 -4297 ($ $ (-518))) (-15 -3969 ((-3 (-786) "failed") $ (-1178))) (-15 -3969 ((-703 (-786)) $ (-518))) (-15 -3919 ($ $ (-1178) (-786))) (-15 -3919 ($ $ (-518) (-786))) (-15 -1706 ($ $ (-45 (-1178) (-786))))))) (T -115)) -((-3806 (*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115)))) (-4286 (*1 *1 *1) (-5 *1 (-115))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) (-1400 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *1 (-115)))) (-1400 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-3314 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2319 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1612 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-875) (-656 (-875)))) (-5 *1 (-115)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-656 (-875)))) (-5 *1 (-115)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-875))) (-5 *1 (-115)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-1659 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-1716 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3969 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-786)) (-5 *1 (-115)))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-3919 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3919 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115))))) -(-13 (-861) (-847 (-1196)) (-10 -8 (-15 -3806 ((-45 (-1178) (-786)) $)) (-15 -4286 ($ $)) (-15 -1400 ($ (-1196))) (-15 -1400 ($ (-1196) (-783))) (-15 -1400 ($ (-1196) (-55))) (-15 -2208 ((-112) $)) (-15 -2293 ((-112) $)) (-15 -1433 ((-112) $)) (-15 -2869 ((-783) $)) (-15 -2869 ($ $ (-783))) (-15 -3314 ($ $ (-1 (-112) $ $))) (-15 -2319 ($ $ (-1 (-112) $ $))) (-15 -1612 ((-3 (-1 (-875) (-656 (-875))) "failed") $)) (-15 -1612 ($ $ (-1 (-875) (-656 (-875))))) (-15 -1612 ($ $ (-1 (-875) (-875)))) (-15 -1659 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1659 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -4233 ((-112) $ (-518))) (-15 -1716 ($ $ (-518))) (-15 -4297 ($ $ (-1178))) (-15 -4297 ($ $ (-518))) (-15 -3969 ((-3 (-786) "failed") $ (-1178))) (-15 -3969 ((-703 (-786)) $ (-518))) (-15 -3919 ($ $ (-1178) (-786))) (-15 -3919 ($ $ (-518) (-786))) (-15 -1706 ($ $ (-45 (-1178) (-786)))))) -((-2783 (((-576) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -2783 ((-576) |#2|))) (-13 (-374) (-1058 (-419 (-576)))) (-1263 |#1|)) (T -116)) -((-2783 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1058 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2783 ((-576) |#2|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $ (-576)) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3133 (($ (-1192 (-576)) (-576)) NIL)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3542 (($ $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3241 (((-783) $) NIL)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2182 (((-576)) NIL)) (-4343 (((-576) $) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3679 (($ $ (-576)) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2913 (((-1177 (-576)) $) NIL)) (-3454 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-576) $ (-576)) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-117 |#1|) (-882 |#1|) (-576)) (T -117)) -NIL -(-882 |#1|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-117 |#1|) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1058 (-576))))) (-2317 (((-117 |#1|) $) NIL) (((-1196) $) NIL (|has| (-117 |#1|) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1058 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1058 (-576))))) (-2971 (($ $) NIL) (($ (-576) $) NIL)) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-117 |#1|))) (|:| |vec| (-1287 (-117 |#1|)))) (-701 $) (-1287 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-117 |#1|) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-117 |#1|) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-117 |#1|) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-117 |#1|) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1172)))) (-3197 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-1654 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-2422 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-117 |#1|))) (|:| |vec| (-1287 (-117 |#1|)))) (-1287 $) $) NIL) (((-701 (-117 |#1|)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-117 |#1|) (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-2804 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1196)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1196) (-117 |#1|)))) (($ $ (-1196) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1196) (-117 |#1|))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-117 |#1|) $) NIL)) (-1554 (((-906 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1042))) (((-227) $) NIL (|has| (-117 |#1|) (-1042)))) (-2324 (((-176 (-419 (-576))) $) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1196)) NIL (|has| (-117 |#1|) (-1058 (-1196))))) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-927))) (|has| (-117 |#1|) (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-419 (-576)) $ (-576)) NIL)) (-2388 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-117 |#1|) (-918 (-1196)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-4046 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1012 (-117 |#1|)) (-10 -8 (-15 -2641 ((-419 (-576)) $ (-576))) (-15 -2324 ((-176 (-419 (-576))) $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)))) (-576)) (T -118)) -((-2641 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-2971 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1012 (-117 |#1|)) (-10 -8 (-15 -2641 ((-419 (-576)) $ (-576))) (-15 -2324 ((-176 (-419 (-576))) $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)))) -((-4267 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3395 (((-656 $) $) 31)) (-2520 (((-112) $ $) 36)) (-4217 (((-112) |#2| $) 40)) (-4185 (((-656 |#2|) $) 25)) (-2887 (((-112) $) 18)) (-4368 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2003 (((-112) $) 57)) (-4112 (((-875) $) 47)) (-4335 (((-656 $) $) 32)) (-3938 (((-112) $ $) 38)) (-1968 (((-783) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -4267 (|#1| |#1| "right" |#1|)) (-15 -4267 (|#1| |#1| "left" |#1|)) (-15 -4368 (|#1| |#1| "right")) (-15 -4368 (|#1| |#1| "left")) (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -2520 ((-112) |#1| |#1|)) (-15 -4185 ((-656 |#2|) |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2887 ((-112) |#1|)) (-15 -3395 ((-656 |#1|) |#1|)) (-15 -4335 ((-656 |#1|) |#1|)) (-15 -4217 ((-112) |#2| |#1|)) (-15 -1968 ((-783) |#1|))) (-120 |#2|) (-1237)) (T -119)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -4267 (|#1| |#1| "right" |#1|)) (-15 -4267 (|#1| |#1| "left" |#1|)) (-15 -4368 (|#1| |#1| "right")) (-15 -4368 (|#1| |#1| "left")) (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -2520 ((-112) |#1| |#1|)) (-15 -4185 ((-656 |#2|) |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2887 ((-112) |#1|)) (-15 -3395 ((-656 |#1|) |#1|)) (-15 -4335 ((-656 |#1|) |#1|)) (-15 -4217 ((-112) |#2| |#1|)) (-15 -1968 ((-783) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-2533 (($ $ $) 53 (|has| $ (-6 -4464)))) (-4402 (($ $ $) 55 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464))) (($ $ "left" $) 56 (|has| $ (-6 -4464))) (($ $ "right" $) 54 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-4331 (($) 7 T CONST)) (-2110 (($ $) 58)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2100 (($ $) 60)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3183 (((-576) $ $) 45)) (-2003 (((-112) $) 47)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-120 |#1|) (-141) (-1237)) (T -120)) -((-2100 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-2110 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-4267 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4464)) (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-4402 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-4267 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4464)) (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-2533 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-120 *2)) (-4 *2 (-1237))))) -(-13 (-1030 |t#1|) (-10 -8 (-15 -2100 ($ $)) (-15 -4368 ($ $ "left")) (-15 -2110 ($ $)) (-15 -4368 ($ $ "right")) (IF (|has| $ (-6 -4464)) (PROGN (-15 -4267 ($ $ "left" $)) (-15 -4402 ($ $ $)) (-15 -4267 ($ $ "right" $)) (-15 -2533 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1030 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1587 (((-112) |#1|) 29)) (-3168 (((-783) (-783)) 28) (((-783)) 27)) (-2563 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -2563 ((-112) |#1|)) (-15 -2563 ((-112) |#1| (-112))) (-15 -3168 ((-783))) (-15 -3168 ((-783) (-783))) (-15 -1587 ((-112) |#1|))) (-1263 (-576))) (T -121)) -((-1587 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-3168 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-2563 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-2563 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(-10 -7 (-15 -2563 ((-112) |#1|)) (-15 -2563 ((-112) |#1| (-112))) (-15 -3168 ((-783))) (-15 -3168 ((-783) (-783))) (-15 -1587 ((-112) |#1|))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) 18)) (-4149 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-2533 (($ $ $) 21 (|has| $ (-6 -4464)))) (-4402 (($ $ $) 23 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "left" $) NIL (|has| $ (-6 -4464))) (($ $ "right" $) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2110 (($ $) 20)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2303 (($ $ |#1| $) 27)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2100 (($ $) 22)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2755 (($ |#1| $) 28)) (-2782 (($ |#1| $) 15)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 17)) (-3935 (($) 11)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3183 (((-576) $ $) NIL)) (-2003 (((-112) $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-4309 (($ (-656 |#1|)) 16)) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4463) (-15 -4309 ($ (-656 |#1|))) (-15 -2782 ($ |#1| $)) (-15 -2755 ($ |#1| $)) (-15 -4149 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122)) -((-4309 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-2782 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-2755 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-4149 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4463) (-15 -4309 ($ (-656 |#1|))) (-15 -2782 ($ |#1| $)) (-15 -2755 ($ |#1| $)) (-15 -4149 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1980 (($ $) 13)) (-2298 (($ $) 11)) (-3562 (($ $ $) 23)) (-4114 (($ $ $) 21)) (-2031 (($ $ $) 19)) (-2020 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -3562 (|#1| |#1| |#1|)) (-15 -4114 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -3562 (|#1| |#1| |#1|)) (-15 -4114 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-1980 (($ $) 104)) (-4292 (($ $ $) 29)) (-4100 (((-1292) $ (-576) (-576)) 67 (|has| $ (-6 -4464)))) (-3063 (((-112) $) 99 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1715 (($ $) 103 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4464)))) (-2379 (($ $) 98 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-2337 (((-112) $ (-783)) 38)) (-4267 (((-112) $ (-1254 (-576)) (-112)) 89 (|has| $ (-6 -4464))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4463)))) (-4331 (($) 39 T CONST)) (-3432 (($ $) 101 (|has| $ (-6 -4464)))) (-4203 (($ $) 91)) (-3966 (($ $) 69 (-12 (|has| (-112) (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4463))) (($ (-112) $) 70 (-12 (|has| (-112) (-1120)) (|has| $ (-6 -4463))))) (-2721 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1120)) (|has| $ (-6 -4463))))) (-1908 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4464)))) (-3719 (((-112) $ (-576)) 56)) (-3538 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1120))) (((-576) (-112) $) 95 (|has| (-112) (-1120))) (((-576) (-1 (-112) (-112)) $) 94)) (-3721 (((-656 (-112)) $) 46 (|has| $ (-6 -4463)))) (-2322 (($ $ $) 109)) (-2298 (($ $) 107)) (-3562 (($ $ $) 30)) (-1989 (($ (-783) (-112)) 79)) (-4114 (($ $ $) 31)) (-2135 (((-112) $ (-783)) 37)) (-2066 (((-576) $) 64 (|has| (-576) (-861)))) (-2905 (($ $ $) 20)) (-2144 (($ $ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3958 (((-656 (-112)) $) 47 (|has| $ (-6 -4463)))) (-4217 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 63 (|has| (-576) (-861)))) (-1654 (($ $ $) 19)) (-1896 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-1556 (((-112) $ (-783)) 36)) (-2043 (((-1178) $) 10)) (-3386 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-3963 (((-656 (-576)) $) 61)) (-1474 (((-112) (-576) $) 60)) (-3115 (((-1140) $) 11)) (-1753 (((-112) $) 65 (|has| (-576) (-861)))) (-2022 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2556 (($ $ (-112)) 66 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-112)) (-656 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-656 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120))))) (-1551 (((-112) $ $) 32)) (-2790 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2692 (((-656 (-112)) $) 59)) (-1937 (((-112) $) 35)) (-3935 (($) 34)) (-4368 (($ $ (-1254 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-2334 (($ $ (-1254 (-576))) 86) (($ $ (-576)) 85)) (-3125 (((-783) (-112) $) 48 (-12 (|has| (-112) (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4463)))) (-3757 (($ $ $ (-576)) 100 (|has| $ (-6 -4464)))) (-4286 (($ $) 33)) (-1554 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-4124 (($ (-656 (-112))) 77)) (-2766 (($ (-656 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-1682 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4463)))) (-2310 (($ $ $) 108)) (-2031 (($ $ $) 106)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-2020 (($ $ $) 105)) (-1968 (((-783) $) 40 (|has| $ (-6 -4463))))) +((-2662 (*1 *1 *1) (-4 *1 (-113))) (-2673 (*1 *1 *1 *1) (-4 *1 (-113))) (-2683 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1238) (-10 -8 (-15 -2662 ($ $)) (-15 -2673 ($ $ $)) (-15 -2683 ($ $ $)))) +(((-1238) . T)) +((-2654 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-2100 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-2575 (((-115) |#1|) 63)) (-3657 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -2654 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2654 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2654 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2654 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2100 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2100 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2100 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2575 ((-115) |#1|)) (-15 -3657 ((-3 |#1| "failed") (-115)))) (-1121)) (T -114)) +((-3657 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121)))) (-2575 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121)))) (-2100 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2654 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-2654 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2654 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2654 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) +(-10 -7 (-15 -2654 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2654 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2654 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2654 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2100 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2100 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2100 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2575 ((-115) |#1|)) (-15 -3657 ((-3 |#1| "failed") (-115)))) +((-3488 (((-112) $ $) NIL)) (-2724 (((-783) $) 91) (($ $ (-783)) 37)) (-3278 (((-112) $) 41)) (-3663 (($ $ (-1179) (-786)) 58) (($ $ (-518) (-786)) 33)) (-2361 (($ $ (-45 (-1179) (-786))) 16)) (-2825 (((-3 (-786) "failed") $ (-1179)) 27) (((-703 (-786)) $ (-518)) 32)) (-1864 (((-45 (-1179) (-786)) $) 15)) (-1775 (($ (-1197)) 20) (($ (-1197) (-783)) 23) (($ (-1197) (-55)) 24)) (-3735 (((-112) $) 39)) (-2273 (((-112) $) 43)) (-2627 (((-1197) $) 8)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-2158 (((-112) $ (-1197)) 11)) (-2020 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-1450 (((-1141) $) NIL)) (-3624 (((-112) $ (-518)) 36)) (-2761 (($ $ (-1 (-112) $ $)) 45)) (-1976 (((-3 (-1 (-876) (-656 (-876))) "failed") $) 69) (($ $ (-1 (-876) (-656 (-876)))) 51) (($ $ (-1 (-876) (-876))) 53)) (-2988 (($ $ (-1179)) 55) (($ $ (-518)) 56)) (-1870 (($ $) 77)) (-2226 (($ $ (-1 (-112) $ $)) 46)) (-3569 (((-876) $) 60)) (-2113 (((-112) $ $) NIL)) (-2710 (($ $ (-518)) 34)) (-1479 (((-55) $) 72)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 89)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 103))) +(((-115) (-13 (-861) (-847 (-1197)) (-10 -8 (-15 -1864 ((-45 (-1179) (-786)) $)) (-15 -1870 ($ $)) (-15 -1775 ($ (-1197))) (-15 -1775 ($ (-1197) (-783))) (-15 -1775 ($ (-1197) (-55))) (-15 -3735 ((-112) $)) (-15 -3278 ((-112) $)) (-15 -2273 ((-112) $)) (-15 -2724 ((-783) $)) (-15 -2724 ($ $ (-783))) (-15 -2761 ($ $ (-1 (-112) $ $))) (-15 -2226 ($ $ (-1 (-112) $ $))) (-15 -1976 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1976 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1976 ($ $ (-1 (-876) (-876)))) (-15 -2020 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2020 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3624 ((-112) $ (-518))) (-15 -2710 ($ $ (-518))) (-15 -2988 ($ $ (-1179))) (-15 -2988 ($ $ (-518))) (-15 -2825 ((-3 (-786) "failed") $ (-1179))) (-15 -2825 ((-703 (-786)) $ (-518))) (-15 -3663 ($ $ (-1179) (-786))) (-15 -3663 ($ $ (-518) (-786))) (-15 -2361 ($ $ (-45 (-1179) (-786))))))) (T -115)) +((-1864 (*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115)))) (-1870 (*1 *1 *1) (-5 *1 (-115))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *1 (-115)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2761 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2226 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1976 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) (-2020 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2020 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-3624 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2710 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-3663 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3663 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-2361 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) +(-13 (-861) (-847 (-1197)) (-10 -8 (-15 -1864 ((-45 (-1179) (-786)) $)) (-15 -1870 ($ $)) (-15 -1775 ($ (-1197))) (-15 -1775 ($ (-1197) (-783))) (-15 -1775 ($ (-1197) (-55))) (-15 -3735 ((-112) $)) (-15 -3278 ((-112) $)) (-15 -2273 ((-112) $)) (-15 -2724 ((-783) $)) (-15 -2724 ($ $ (-783))) (-15 -2761 ($ $ (-1 (-112) $ $))) (-15 -2226 ($ $ (-1 (-112) $ $))) (-15 -1976 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1976 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1976 ($ $ (-1 (-876) (-876)))) (-15 -2020 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2020 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3624 ((-112) $ (-518))) (-15 -2710 ($ $ (-518))) (-15 -2988 ($ $ (-1179))) (-15 -2988 ($ $ (-518))) (-15 -2825 ((-3 (-786) "failed") $ (-1179))) (-15 -2825 ((-703 (-786)) $ (-518))) (-15 -3663 ($ $ (-1179) (-786))) (-15 -3663 ($ $ (-518) (-786))) (-15 -2361 ($ $ (-45 (-1179) (-786)))))) +((-1322 (((-576) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -1322 ((-576) |#2|))) (-13 (-374) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -116)) +((-1322 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1322 ((-576) |#2|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $ (-576)) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-1502 (($ (-1193 (-576)) (-576)) NIL)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-4369 (($ $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3309 (((-783) $) NIL)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 (((-576)) NIL)) (-2144 (((-576) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3169 (($ $ (-576)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3229 (((-1178 (-576)) $) NIL)) (-1633 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-576) $ (-576)) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-883 |#1|) (-576)) (T -117)) +NIL +(-883 |#1|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-2859 (((-117 |#1|) $) NIL) (((-1197) $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-3718 (($ $) NIL) (($ (-576) $) NIL)) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-117 |#1|) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-117 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-117 |#1|) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-117 |#1|) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1173)))) (-4099 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-1951 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-4116 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-1288 $) $) NIL) (((-701 (-117 |#1|)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-117 |#1|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-3416 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1197)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|)))) (($ $ (-1197) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-117 |#1|) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1043))) (((-227) $) NIL (|has| (-117 |#1|) (-1043)))) (-2270 (((-176 (-419 (-576))) $) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1197)) NIL (|has| (-117 |#1|) (-1059 (-1197))))) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))) (|has| (-117 |#1|) (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ (-576)) NIL)) (-1665 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3056 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2270 ((-176 (-419 (-576))) $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)))) (-576)) (T -118)) +((-4165 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-3718 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-3718 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2270 ((-176 (-419 (-576))) $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)))) +((-3755 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2324 (((-656 $) $) 31)) (-3695 (((-112) $ $) 36)) (-3456 (((-112) |#2| $) 40)) (-2351 (((-656 |#2|) $) 25)) (-2953 (((-112) $) 18)) (-2796 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2199 (((-112) $) 57)) (-3569 (((-876) $) 47)) (-3338 (((-656 $) $) 32)) (-2923 (((-112) $ $) 38)) (-3502 (((-783) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3755 (|#1| |#1| "right" |#1|)) (-15 -3755 (|#1| |#1| "left" |#1|)) (-15 -2796 (|#1| |#1| "right")) (-15 -2796 (|#1| |#1| "left")) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -3695 ((-112) |#1| |#1|)) (-15 -2351 ((-656 |#2|) |#1|)) (-15 -2199 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -2953 ((-112) |#1|)) (-15 -2324 ((-656 |#1|) |#1|)) (-15 -3338 ((-656 |#1|) |#1|)) (-15 -3456 ((-112) |#2| |#1|)) (-15 -3502 ((-783) |#1|))) (-120 |#2|) (-1238)) (T -119)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3755 (|#1| |#1| "right" |#1|)) (-15 -3755 (|#1| |#1| "left" |#1|)) (-15 -2796 (|#1| |#1| "right")) (-15 -2796 (|#1| |#1| "left")) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -3695 ((-112) |#1| |#1|)) (-15 -2351 ((-656 |#2|) |#1|)) (-15 -2199 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -2953 ((-112) |#1|)) (-15 -2324 ((-656 |#1|) |#1|)) (-15 -3338 ((-656 |#1|) |#1|)) (-15 -3456 ((-112) |#2| |#1|)) (-15 -3502 ((-783) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3827 (($ $ $) 53 (|has| $ (-6 -4465)))) (-1548 (($ $ $) 55 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) (($ $ "left" $) 56 (|has| $ (-6 -4465))) (($ $ "right" $) 54 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3306 (($) 7 T CONST)) (-4249 (($ $) 58)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-4239 (($ $) 60)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3957 (((-576) $ $) 45)) (-2199 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-120 |#1|) (-141) (-1238)) (T -120)) +((-4239 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4249 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-1548 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-3827 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) +(-13 (-1031 |t#1|) (-10 -8 (-15 -4239 ($ $)) (-15 -2796 ($ $ "left")) (-15 -4249 ($ $)) (-15 -2796 ($ $ "right")) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3755 ($ $ "left" $)) (-15 -1548 ($ $ $)) (-15 -3755 ($ $ "right" $)) (-15 -3827 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3846 (((-112) |#1|) 29)) (-1821 (((-783) (-783)) 28) (((-783)) 27)) (-2829 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -2829 ((-112) |#1|)) (-15 -2829 ((-112) |#1| (-112))) (-15 -1821 ((-783))) (-15 -1821 ((-783) (-783))) (-15 -3846 ((-112) |#1|))) (-1264 (-576))) (T -121)) +((-3846 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-1821 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-2829 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-2829 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) +(-10 -7 (-15 -2829 ((-112) |#1|)) (-15 -2829 ((-112) |#1| (-112))) (-15 -1821 ((-783))) (-15 -1821 ((-783) (-783))) (-15 -3846 ((-112) |#1|))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 18)) (-4064 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3827 (($ $ $) 21 (|has| $ (-6 -4465)))) (-1548 (($ $ $) 23 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-4249 (($ $) 20)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2203 (($ $ |#1| $) 27)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-4239 (($ $) 22)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4223 (($ |#1| $) 28)) (-4436 (($ |#1| $) 15)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 17)) (-3839 (($) 11)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3957 (((-576) $ $) NIL)) (-2199 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3111 (($ (-656 |#1|)) 16)) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -3111 ($ (-656 |#1|))) (-15 -4436 ($ |#1| $)) (-15 -4223 ($ |#1| $)) (-15 -4064 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122)) +((-3111 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-4436 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-4223 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-4064 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -3111 ($ (-656 |#1|))) (-15 -4436 ($ |#1| $)) (-15 -4223 ($ |#1| $)) (-15 -4064 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3516 (($ $) 13)) (-2662 (($ $) 11)) (-1410 (($ $ $) 23)) (-1767 (($ $ $) 21)) (-3562 (($ $ $) 19)) (-3551 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -1410 (|#1| |#1| |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -2662 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -1410 (|#1| |#1| |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -2662 (|#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3516 (($ $) 104)) (-2693 (($ $ $) 29)) (-1656 (((-1293) $ (-576) (-576)) 67 (|has| $ (-6 -4465)))) (-2071 (((-112) $) 99 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2450 (($ $) 103 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4465)))) (-1795 (($ $) 98 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-2396 (((-112) $ (-783)) 38)) (-3755 (((-112) $ (-1255 (-576)) (-112)) 89 (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4464)))) (-3306 (($) 39 T CONST)) (-1474 (($ $) 101 (|has| $ (-6 -4465)))) (-3834 (($ $) 91)) (-2800 (($ $) 69 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4464))) (($ (-112) $) 70 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-3685 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-4332 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4465)))) (-4272 (((-112) $ (-576)) 56)) (-3659 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1121))) (((-576) (-112) $) 95 (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) 94)) (-3965 (((-656 (-112)) $) 46 (|has| $ (-6 -4464)))) (-2683 (($ $ $) 109)) (-2662 (($ $) 107)) (-1410 (($ $ $) 30)) (-4140 (($ (-783) (-112)) 79)) (-1767 (($ $ $) 31)) (-4252 (((-112) $ (-783)) 37)) (-1617 (((-576) $) 64 (|has| (-576) (-861)))) (-3124 (($ $ $) 20)) (-4335 (($ $ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2735 (((-656 (-112)) $) 47 (|has| $ (-6 -4464)))) (-3456 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 63 (|has| (-576) (-861)))) (-1951 (($ $ $) 19)) (-4322 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-3557 (((-112) $ (-783)) 36)) (-1413 (((-1179) $) 10)) (-2174 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-2764 (((-656 (-576)) $) 61)) (-4018 (((-112) (-576) $) 60)) (-1450 (((-1141) $) 11)) (-3580 (((-112) $) 65 (|has| (-576) (-861)))) (-2366 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2740 (($ $ (-112)) 66 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-112)) (-656 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-3509 (((-112) $ $) 32)) (-1385 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1681 (((-656 (-112)) $) 59)) (-2866 (((-112) $) 35)) (-3839 (($) 34)) (-2796 (($ $ (-1255 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-3463 (($ $ (-1255 (-576))) 86) (($ $ (-576)) 85)) (-1460 (((-783) (-112) $) 48 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4464)))) (-2568 (($ $ $ (-576)) 100 (|has| $ (-6 -4465)))) (-1870 (($ $) 33)) (-4171 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-3581 (($ (-656 (-112))) 77)) (-1615 (($ (-656 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2170 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4464)))) (-2673 (($ $ $) 108)) (-3562 (($ $ $) 106)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3551 (($ $ $) 105)) (-3502 (((-783) $) 40 (|has| $ (-6 -4464))))) (((-124) (-141)) (T -124)) -((-4114 (*1 *1 *1 *1) (-4 *1 (-124))) (-3562 (*1 *1 *1 *1) (-4 *1 (-124))) (-4292 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-861) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -4114 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -4292 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-875)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-1896 (($ (-1 |#2| |#2|) $) 22)) (-4286 (($ $) 16)) (-1968 (((-783) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -4286 (|#1| |#1|))) (-126 |#2|) (-1120)) (T -125)) -NIL -(-10 -8 (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -4286 (|#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-2533 (($ $ $) 53 (|has| $ (-6 -4464)))) (-4402 (($ $ $) 55 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464))) (($ $ "left" $) 56 (|has| $ (-6 -4464))) (($ $ "right" $) 54 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-4331 (($) 7 T CONST)) (-2110 (($ $) 58)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-2303 (($ $ |#1| $) 61)) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2100 (($ $) 60)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3183 (((-576) $ $) 45)) (-2003 (((-112) $) 47)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-126 |#1|) (-141) (-1120)) (T -126)) -((-2303 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1120))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4464) (-6 -4463) (-15 -2303 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1030 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) 18)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) 22 (|has| $ (-6 -4464)))) (-2533 (($ $ $) 23 (|has| $ (-6 -4464)))) (-4402 (($ $ $) 21 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "left" $) NIL (|has| $ (-6 -4464))) (($ $ "right" $) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2110 (($ $) 24)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2303 (($ $ |#1| $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2100 (($ $) NIL)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2782 (($ |#1| $) 15)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 17)) (-3935 (($) 11)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3183 (((-576) $ $) NIL)) (-2003 (((-112) $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 20)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2067 (($ (-656 |#1|)) 16)) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4464) (-15 -2067 ($ (-656 |#1|))) (-15 -2782 ($ |#1| $)))) (-861)) (T -127)) -((-2067 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-2782 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4464) (-15 -2067 ($ (-656 |#1|))) (-15 -2782 ($ |#1| $)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) 30)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) 32 (|has| $ (-6 -4464)))) (-2533 (($ $ $) 36 (|has| $ (-6 -4464)))) (-4402 (($ $ $) 34 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "left" $) NIL (|has| $ (-6 -4464))) (($ $ "right" $) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2110 (($ $) 23)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2303 (($ $ |#1| $) 16)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2100 (($ $) 22)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) 25)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 20)) (-3935 (($) 11)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3183 (((-576) $ $) NIL)) (-2003 (((-112) $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2081 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 10 (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2081 ($ |#1|)) (-15 -2081 ($ $ |#1| $)))) (-1120)) (T -128)) -((-2081 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1120)))) (-2081 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1120))))) -(-13 (-126 |#1|) (-10 -8 (-15 -2081 ($ |#1|)) (-15 -2081 ($ $ |#1| $)))) -((-1952 (((-112) $ $) NIL (|has| (-130) (-102)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-1715 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-861))))) (-2379 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4464))) (((-130) $ (-1254 (-576)) (-130)) NIL (|has| $ (-6 -4464)))) (-2662 (((-783) $ (-783)) 34)) (-3603 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-1120))))) (-2824 (($ (-130) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-1120)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-1120)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4463))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4463)))) (-1908 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4464)))) (-3719 (((-130) $ (-576)) 20)) (-3538 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1120))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1120)))) (-3721 (((-656 (-130)) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) (-130)) 14)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 27 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| (-130) (-861)))) (-2144 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-3958 (((-656 (-130)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-1120))))) (-3501 (((-576) $) 30 (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-130) (-861)))) (-1896 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| (-130) (-1120)))) (-3386 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| (-130) (-1120)))) (-1753 (((-130) $) NIL (|has| (-576) (-861)))) (-2022 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2556 (($ $ (-130)) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1120)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1120)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1120)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-1120))))) (-2692 (((-656 (-130)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 12)) (-4368 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1254 (-576))) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4463))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-4124 (($ (-656 (-130))) 46)) (-2766 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-4112 (((-976 (-130)) $) 35) (((-1178) $) 43) (((-875) $) NIL (|has| (-130) (-625 (-875))))) (-2099 (((-783) $) 18)) (-3520 (($ (-783)) 8)) (-1994 (((-112) $ $) NIL (|has| (-130) (-102)))) (-1682 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3938 (((-112) $ $) 32 (|has| (-130) (-102)))) (-3983 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-130) (-861)))) (-1968 (((-783) $) 15 (|has| $ (-6 -4463))))) -(((-129) (-13 (-19 (-130)) (-625 (-976 (-130))) (-625 (-1178)) (-10 -8 (-15 -3520 ($ (-783))) (-15 -2099 ((-783) $)) (-15 -2662 ((-783) $ (-783))) (-6 -4463)))) (T -129)) -((-3520 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-2662 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-625 (-976 (-130))) (-625 (-1178)) (-10 -8 (-15 -3520 ($ (-783))) (-15 -2099 ((-783) $)) (-15 -2662 ((-783) $ (-783))) (-6 -4463))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) 26)) (-4331 (($) NIL T CONST)) (-4369 (($) 35)) (-2905 (($ $ $) NIL) (($) 24 T CONST)) (-1654 (($ $ $) NIL) (($) 25 T CONST)) (-4375 (((-939) $) 33)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) 31)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2856 (($ (-783)) 8)) (-3872 (($ $ $) 37)) (-3859 (($ $ $) 36)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) 22)) (-3974 (((-112) $ $) 20)) (-3938 (((-112) $ $) 18)) (-3983 (((-112) $ $) 21)) (-3962 (((-112) $ $) 19))) -(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -2856 ($ (-783))) (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665)))) (T -130)) -((-2856 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-3859 (*1 *1 *1 *1) (-5 *1 (-130))) (-3872 (*1 *1 *1 *1) (-5 *1 (-130))) (-4331 (*1 *1) (-5 *1 (-130)))) -(-13 (-856) (-502 (-145)) (-10 -8 (-15 -2856 ($ (-783))) (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) +((-1767 (*1 *1 *1 *1) (-4 *1 (-124))) (-1410 (*1 *1 *1 *1) (-4 *1 (-124))) (-2693 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-861) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -1767 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -2693 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-876)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-4322 (($ (-1 |#2| |#2|) $) 22)) (-1870 (($ $) 16)) (-3502 (((-783) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -1870 (|#1| |#1|))) (-126 |#2|) (-1121)) (T -125)) +NIL +(-10 -8 (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3827 (($ $ $) 53 (|has| $ (-6 -4465)))) (-1548 (($ $ $) 55 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) (($ $ "left" $) 56 (|has| $ (-6 -4465))) (($ $ "right" $) 54 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3306 (($) 7 T CONST)) (-4249 (($ $) 58)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-2203 (($ $ |#1| $) 61)) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-4239 (($ $) 60)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3957 (((-576) $ $) 45)) (-2199 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-126 |#1|) (-141) (-1121)) (T -126)) +((-2203 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1121))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2203 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 18)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) 22 (|has| $ (-6 -4465)))) (-3827 (($ $ $) 23 (|has| $ (-6 -4465)))) (-1548 (($ $ $) 21 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-4249 (($ $) 24)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2203 (($ $ |#1| $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-4239 (($ $) NIL)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4436 (($ |#1| $) 15)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 17)) (-3839 (($) 11)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3957 (((-576) $ $) NIL)) (-2199 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 20)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1626 (($ (-656 |#1|)) 16)) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-15 -1626 ($ (-656 |#1|))) (-15 -4436 ($ |#1| $)))) (-861)) (T -127)) +((-1626 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-4436 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-15 -1626 ($ (-656 |#1|))) (-15 -4436 ($ |#1| $)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 30)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) 32 (|has| $ (-6 -4465)))) (-3827 (($ $ $) 36 (|has| $ (-6 -4465)))) (-1548 (($ $ $) 34 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-4249 (($ $) 23)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2203 (($ $ |#1| $) 16)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-4239 (($ $) 22)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) 25)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 20)) (-3839 (($) 11)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3957 (((-576) $ $) NIL)) (-2199 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1758 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 10 (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1758 ($ |#1|)) (-15 -1758 ($ $ |#1| $)))) (-1121)) (T -128)) +((-1758 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) (-1758 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) +(-13 (-126 |#1|) (-10 -8 (-15 -1758 ($ |#1|)) (-15 -1758 ($ $ |#1| $)))) +((-3488 (((-112) $ $) NIL (|has| (-130) (-102)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-2450 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-861))))) (-1795 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4465))) (((-130) $ (-1255 (-576)) (-130)) NIL (|has| $ (-6 -4465)))) (-2588 (((-783) $ (-783)) 34)) (-1971 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-3945 (($ (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4464))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4465)))) (-4272 (((-130) $ (-576)) 20)) (-3659 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1121))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1121)))) (-3965 (((-656 (-130)) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-130)) 14)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 27 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-130) (-861)))) (-4335 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-2735 (((-656 (-130)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-4027 (((-576) $) 30 (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-130) (-861)))) (-4322 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| (-130) (-1121)))) (-2174 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| (-130) (-1121)))) (-3580 (((-130) $) NIL (|has| (-576) (-861)))) (-2366 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2740 (($ $ (-130)) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-1681 (((-656 (-130)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 12)) (-2796 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1255 (-576))) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-3581 (($ (-656 (-130))) 46)) (-1615 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-3569 (((-977 (-130)) $) 35) (((-1179) $) 43) (((-876) $) NIL (|has| (-130) (-625 (-876))))) (-1947 (((-783) $) 18)) (-4207 (($ (-783)) 8)) (-2113 (((-112) $ $) NIL (|has| (-130) (-102)))) (-2170 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2923 (((-112) $ $) 32 (|has| (-130) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3502 (((-783) $) 15 (|has| $ (-6 -4464))))) +(((-129) (-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -4207 ($ (-783))) (-15 -1947 ((-783) $)) (-15 -2588 ((-783) $ (-783))) (-6 -4464)))) (T -129)) +((-4207 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-2588 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -4207 ($ (-783))) (-15 -1947 ((-783) $)) (-15 -2588 ((-783) $ (-783))) (-6 -4464))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) 26)) (-3306 (($) NIL T CONST)) (-1836 (($) 35)) (-3124 (($ $ $) NIL) (($) 24 T CONST)) (-1951 (($ $ $) NIL) (($) 25 T CONST)) (-2460 (((-940) $) 33)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) 31)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3808 (($ (-783)) 8)) (-2355 (($ $ $) 37)) (-2341 (($ $ $) 36)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 22)) (-2962 (((-112) $ $) 20)) (-2923 (((-112) $ $) 18)) (-2978 (((-112) $ $) 21)) (-2948 (((-112) $ $) 19))) +(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -3808 ($ (-783))) (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480)))) (T -130)) +((-3808 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-2341 (*1 *1 *1 *1) (-5 *1 (-130))) (-2355 (*1 *1 *1 *1) (-5 *1 (-130))) (-3306 (*1 *1) (-5 *1 (-130)))) +(-13 (-856) (-502 (-145)) (-10 -8 (-15 -3808 ($ (-783))) (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-1952 (((-112) $ $) NIL)) (-3044 (($) 6 T CONST)) (-1680 (($) 7 T CONST)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 14)) (-4376 (($) 8 T CONST)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 10))) -(((-131) (-13 (-1120) (-10 -8 (-15 -1680 ($) -2665) (-15 -4376 ($) -2665) (-15 -3044 ($) -2665)))) (T -131)) -((-1680 (*1 *1) (-5 *1 (-131))) (-4376 (*1 *1) (-5 *1 (-131))) (-3044 (*1 *1) (-5 *1 (-131)))) -(-13 (-1120) (-10 -8 (-15 -1680 ($) -2665) (-15 -4376 ($) -2665) (-15 -3044 ($) -2665))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16))) +((-3488 (((-112) $ $) NIL)) (-3177 (($) 6 T CONST)) (-2145 (($) 7 T CONST)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 14)) (-2472 (($) 8 T CONST)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 10))) +(((-131) (-13 (-1121) (-10 -8 (-15 -2145 ($) -1480) (-15 -2472 ($) -1480) (-15 -3177 ($) -1480)))) (T -131)) +((-2145 (*1 *1) (-5 *1 (-131))) (-2472 (*1 *1) (-5 *1 (-131))) (-3177 (*1 *1) (-5 *1 (-131)))) +(-13 (-1121) (-10 -8 (-15 -2145 ($) -1480) (-15 -2472 ($) -1480) (-15 -3177 ($) -1480))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-132) (-141)) (T -132)) -((-2559 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -2559 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-4245 (((-1292) $ (-783)) 14)) (-3538 (((-783) $) 15)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +((-2780 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2780 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-3754 (((-1293) $ (-783)) 14)) (-3659 (((-783) $) 15)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-133) (-141)) (T -133)) -((-3538 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-4245 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1292))))) -(-13 (-1120) (-10 -8 (-15 -3538 ((-783) $)) (-15 -4245 ((-1292) $ (-783))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-656 (-1155)) $) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-134) (-13 (-1103) (-10 -8 (-15 -4158 ((-656 (-1155)) $))))) (T -134)) -((-4158 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-134))))) -(-13 (-1103) (-10 -8 (-15 -4158 ((-656 (-1155)) $)))) -((-1952 (((-112) $ $) 49)) (-3167 (((-112) $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-783) "failed") $) 58)) (-2317 (((-783) $) 56)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) 37)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2041 (((-112)) 59)) (-2599 (((-112) (-112)) 61)) (-1949 (((-112) $) 30)) (-1851 (((-112) $) 55)) (-4112 (((-875) $) 28) (($ (-783)) 20)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 18 T CONST)) (-4320 (($) 19 T CONST)) (-4263 (($ (-783)) 21)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) 40)) (-3938 (((-112) $ $) 32)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 35)) (-4036 (((-3 $ "failed") $ $) 42)) (-4026 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-939)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-939) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-861) (-23) (-738) (-1058 (-783)) (-10 -8 (-6 (-4465 "*")) (-15 -4036 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4263 ($ (-783))) (-15 -1949 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -2041 ((-112))) (-15 -2599 ((-112) (-112)))))) (T -135)) -((-4036 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2041 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-861) (-23) (-738) (-1058 (-783)) (-10 -8 (-6 (-4465 "*")) (-15 -4036 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4263 ($ (-783))) (-15 -1949 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -2041 ((-112))) (-15 -2599 ((-112) (-112))))) -((-3413 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2422 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3413 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2422 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3413 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2422 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-1952 (((-112) $ $) NIL)) (-4103 (($ (-656 |#3|)) 61)) (-1592 (($ $) 123) (($ $ (-576) (-576)) 122)) (-4331 (($) 20)) (-2980 (((-3 |#3| "failed") $) 83)) (-2317 ((|#3| $) NIL)) (-2415 (($ $ (-656 (-576))) 124)) (-3397 (((-656 |#3|) $) 56)) (-4134 (((-783) $) 66)) (-4191 (($ $ $) 117)) (-3965 (($) 65)) (-2043 (((-1178) $) NIL)) (-2680 (($) 19)) (-3115 (((-1140) $) NIL)) (-4368 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-1877 (((-783) $) 67)) (-2705 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-4112 (((-875) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1162 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 93 T CONST)) (-4320 (($) 94 T CONST)) (-3938 (((-112) $ $) 104)) (-4036 (($ $) 110) (($ $ $) 108)) (-4026 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -4112 ($ (-245 |#2| |#3|))) (-15 -4112 ($ (-1162 |#2| |#3|))) (-15 -4112 ($ (-656 |#3|))) (-15 -4112 ($ (-656 $))) (-15 -4134 ((-783) $)) (-15 -4368 (|#3| $)) (-15 -4368 (|#3| $ (-576) (-576))) (-15 -4368 (|#3| $ (-576) (-576) (-576))) (-15 -4368 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -4368 (|#3| $ (-656 (-576)))) (-15 -4191 ($ $ $)) (-15 * ($ $ $)) (-15 -2705 ($ $ (-576) $ (-576))) (-15 -2705 ($ $ (-576) (-576))) (-15 -1592 ($ $)) (-15 -1592 ($ $ (-576) (-576))) (-15 -2415 ($ $ (-656 (-576)))) (-15 -2680 ($)) (-15 -3965 ($)) (-15 -3397 ((-656 |#3|) $)) (-15 -4103 ($ (-656 |#3|))) (-15 -4331 ($)))) (-576) (-783) (-174)) (T -137)) -((-4191 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1162 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-4368 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4368 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4368 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2705 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2705 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-1592 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2415 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2680 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3965 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4331 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) -(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -4112 ($ (-245 |#2| |#3|))) (-15 -4112 ($ (-1162 |#2| |#3|))) (-15 -4112 ($ (-656 |#3|))) (-15 -4112 ($ (-656 $))) (-15 -4134 ((-783) $)) (-15 -4368 (|#3| $)) (-15 -4368 (|#3| $ (-576) (-576))) (-15 -4368 (|#3| $ (-576) (-576) (-576))) (-15 -4368 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -4368 (|#3| $ (-656 (-576)))) (-15 -4191 ($ $ $)) (-15 * ($ $ $)) (-15 -2705 ($ $ (-576) $ (-576))) (-15 -2705 ($ $ (-576) (-576))) (-15 -1592 ($ $)) (-15 -1592 ($ $ (-576) (-576))) (-15 -2415 ($ $ (-656 (-576)))) (-15 -2680 ($)) (-15 -3965 ($)) (-15 -3397 ((-656 |#3|) $)) (-15 -4103 ($ (-656 |#3|))) (-15 -4331 ($)))) -((-1952 (((-112) $ $) NIL)) (-1782 (((-1155) $) 11)) (-1774 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-138) (-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $))))) (T -138)) -((-1774 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-138)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-138))))) -(-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3949 (((-188) $) 10)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-656 (-1155)) $) 13)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-139) (-13 (-1103) (-10 -8 (-15 -3949 ((-188) $)) (-15 -4158 ((-656 (-1155)) $))))) (T -139)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-139))))) -(-13 (-1103) (-10 -8 (-15 -3949 ((-188) $)) (-15 -4158 ((-656 (-1155)) $)))) -((-1952 (((-112) $ $) NIL)) (-3866 (((-656 (-878)) $) NIL)) (-4148 (((-518) $) NIL)) (-2043 (((-1178) $) NIL)) (-3949 (((-188) $) NIL)) (-1681 (((-112) $ (-518)) NIL)) (-3115 (((-1140) $) NIL)) (-3096 (((-656 (-112)) $) NIL)) (-4112 (((-875) $) NIL) (((-189) $) 6)) (-1994 (((-112) $ $) NIL)) (-2670 (((-55) $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3659 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) +(-13 (-1121) (-10 -8 (-15 -3659 ((-783) $)) (-15 -3754 ((-1293) $ (-783))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-656 (-1156)) $) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-134) (-13 (-1104) (-10 -8 (-15 -2639 ((-656 (-1156)) $))))) (T -134)) +((-2639 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134))))) +(-13 (-1104) (-10 -8 (-15 -2639 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) 49)) (-1812 (((-112) $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-783) "failed") $) 58)) (-2859 (((-783) $) 56)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) 37)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2555 (((-112)) 59)) (-3264 (((-112) (-112)) 61)) (-3011 (((-112) $) 30)) (-3324 (((-112) $) 55)) (-3569 (((-876) $) 28) (($ (-783)) 20)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 18 T CONST)) (-2730 (($) 19 T CONST)) (-3942 (($ (-783)) 21)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) 40)) (-2923 (((-112) $ $) 32)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 35)) (-3043 (((-3 $ "failed") $ $) 42)) (-3029 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-940) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4466 "*")) (-15 -3043 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3942 ($ (-783))) (-15 -3011 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -2555 ((-112))) (-15 -3264 ((-112) (-112)))))) (T -135)) +((-3043 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2555 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4466 "*")) (-15 -3043 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3942 ($ (-783))) (-15 -3011 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -2555 ((-112))) (-15 -3264 ((-112) (-112))))) +((-3544 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-4116 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3544 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4116 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3544 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4116 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3488 (((-112) $ $) NIL)) (-1687 (($ (-656 |#3|)) 61)) (-2591 (($ $) 123) (($ $ (-576) (-576)) 122)) (-3306 (($) 20)) (-1572 (((-3 |#3| "failed") $) 83)) (-2859 ((|#3| $) NIL)) (-1924 (($ $ (-656 (-576))) 124)) (-3527 (((-656 |#3|) $) 56)) (-3733 (((-783) $) 66)) (-4442 (($ $ $) 117)) (-2783 (($) 65)) (-1413 (((-1179) $) NIL)) (-1567 (($) 19)) (-1450 (((-1141) $) NIL)) (-2796 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-3600 (((-783) $) 67)) (-1803 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-3569 (((-876) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1163 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 93 T CONST)) (-2730 (($) 94 T CONST)) (-2923 (((-112) $ $) 104)) (-3043 (($ $) 110) (($ $ $) 108)) (-3029 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3569 ($ (-245 |#2| |#3|))) (-15 -3569 ($ (-1163 |#2| |#3|))) (-15 -3569 ($ (-656 |#3|))) (-15 -3569 ($ (-656 $))) (-15 -3733 ((-783) $)) (-15 -2796 (|#3| $)) (-15 -2796 (|#3| $ (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-656 (-576)))) (-15 -4442 ($ $ $)) (-15 * ($ $ $)) (-15 -1803 ($ $ (-576) $ (-576))) (-15 -1803 ($ $ (-576) (-576))) (-15 -2591 ($ $)) (-15 -2591 ($ $ (-576) (-576))) (-15 -1924 ($ $ (-656 (-576)))) (-15 -1567 ($)) (-15 -2783 ($)) (-15 -3527 ((-656 |#3|) $)) (-15 -1687 ($ (-656 |#3|))) (-15 -3306 ($)))) (-576) (-783) (-174)) (T -137)) +((-4442 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2796 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2796 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2796 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-1803 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1803 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2591 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2591 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1924 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-1567 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2783 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3306 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) +(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3569 ($ (-245 |#2| |#3|))) (-15 -3569 ($ (-1163 |#2| |#3|))) (-15 -3569 ($ (-656 |#3|))) (-15 -3569 ($ (-656 $))) (-15 -3733 ((-783) $)) (-15 -2796 (|#3| $)) (-15 -2796 (|#3| $ (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-656 (-576)))) (-15 -4442 ($ $ $)) (-15 * ($ $ $)) (-15 -1803 ($ $ (-576) $ (-576))) (-15 -1803 ($ $ (-576) (-576))) (-15 -2591 ($ $)) (-15 -2591 ($ $ (-576) (-576))) (-15 -1924 ($ $ (-656 (-576)))) (-15 -1567 ($)) (-15 -2783 ($)) (-15 -3527 ((-656 |#3|) $)) (-15 -1687 ($ (-656 |#3|))) (-15 -3306 ($)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-138) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -138)) +((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138))))) +(-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1747 (((-188) $) 10)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-656 (-1156)) $) 13)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-139) (-13 (-1104) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2639 ((-656 (-1156)) $))))) (T -139)) +((-1747 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-139))))) +(-13 (-1104) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2639 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) NIL)) (-3296 (((-656 (-879)) $) NIL)) (-2627 (((-518) $) NIL)) (-1413 (((-1179) $) NIL)) (-1747 (((-188) $) NIL)) (-2158 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-2409 (((-656 (-112)) $) NIL)) (-3569 (((-876) $) NIL) (((-189) $) 6)) (-2113 (((-112) $ $) NIL)) (-1479 (((-55) $) NIL)) (-2923 (((-112) $ $) NIL))) (((-140) (-13 (-187) (-625 (-189)))) (T -140)) NIL (-13 (-187) (-625 (-189))) -((-4437 (((-656 (-185 (-140))) $) 13)) (-4051 (((-656 (-185 (-140))) $) 14)) (-1693 (((-656 (-850)) $) 10)) (-1784 (((-140) $) 7)) (-4112 (((-875) $) 16))) -(((-141) (-13 (-625 (-875)) (-10 -8 (-15 -1784 ((-140) $)) (-15 -1693 ((-656 (-850)) $)) (-15 -4437 ((-656 (-185 (-140))) $)) (-15 -4051 ((-656 (-185 (-140))) $))))) (T -141)) -((-1784 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-4437 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-625 (-875)) (-10 -8 (-15 -1784 ((-140) $)) (-15 -1693 ((-656 (-850)) $)) (-15 -4437 ((-656 (-185 (-140))) $)) (-15 -4051 ((-656 (-185 (-140))) $)))) -((-1952 (((-112) $ $) NIL)) (-1525 (($) 17 T CONST)) (-2984 (($) NIL (|has| (-145) (-379)))) (-4025 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3863 (($ $ $) NIL)) (-3702 (((-112) $ $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| (-145) (-379)))) (-3703 (($) NIL) (($ (-656 (-145))) NIL)) (-2146 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-1672 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463))) (($ (-145) $) 60 (|has| $ (-6 -4463)))) (-2824 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4463))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4463))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-4369 (($) NIL (|has| (-145) (-379)))) (-3721 (((-656 (-145)) $) 69 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2905 (((-145) $) NIL (|has| (-145) (-861)))) (-3958 (((-656 (-145)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-1654 (((-145) $) NIL (|has| (-145) (-861)))) (-1896 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-145) (-145)) $) 64)) (-1736 (($) 18 T CONST)) (-4375 (((-939) $) NIL (|has| (-145) (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2710 (($ $ $) 30)) (-2976 (((-145) $) 61)) (-2782 (($ (-145) $) 59)) (-2409 (($ (-939)) NIL (|has| (-145) (-379)))) (-4117 (($) 16 T CONST)) (-3115 (((-1140) $) NIL)) (-2022 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1526 (((-145) $) 62)) (-3587 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 57)) (-3108 (($) 15 T CONST)) (-1907 (($ $ $) 32) (($ $ (-145)) NIL)) (-1437 (($ (-656 (-145))) NIL) (($) NIL)) (-3125 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-1178) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-4124 (($ (-656 (-145))) NIL)) (-1376 (($ $) 33 (|has| (-145) (-379)))) (-4112 (((-875) $) 53)) (-3336 (($ (-1178)) 14) (($ (-656 (-145))) 50)) (-4219 (((-783) $) NIL)) (-1514 (($) 58) (($ (-656 (-145))) NIL)) (-1994 (((-112) $ $) NIL)) (-2050 (($ (-656 (-145))) NIL)) (-1682 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-3751 (($) 21 T CONST)) (-1435 (($) 20 T CONST)) (-3938 (((-112) $ $) 24)) (-1968 (((-783) $) 56 (|has| $ (-6 -4463))))) -(((-142) (-13 (-1120) (-626 (-1178)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -3336 ($ (-1178))) (-15 -3336 ($ (-656 (-145)))) (-15 -3108 ($) -2665) (-15 -4117 ($) -2665) (-15 -1525 ($) -2665) (-15 -1736 ($) -2665) (-15 -1435 ($) -2665) (-15 -3751 ($) -2665)))) (T -142)) -((-3336 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-142)))) (-3336 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-3108 (*1 *1) (-5 *1 (-142))) (-4117 (*1 *1) (-5 *1 (-142))) (-1525 (*1 *1) (-5 *1 (-142))) (-1736 (*1 *1) (-5 *1 (-142))) (-1435 (*1 *1) (-5 *1 (-142))) (-3751 (*1 *1) (-5 *1 (-142)))) -(-13 (-1120) (-626 (-1178)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -3336 ($ (-1178))) (-15 -3336 ($ (-656 (-145)))) (-15 -3108 ($) -2665) (-15 -4117 ($) -2665) (-15 -1525 ($) -2665) (-15 -1736 ($) -2665) (-15 -1435 ($) -2665) (-15 -3751 ($) -2665))) -((-1361 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4212 ((|#1| |#3|) 9)) (-4415 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4212 (|#1| |#3|)) (-15 -4415 (|#3| |#3|)) (-15 -1361 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1012 |#1|) (-384 |#2|)) (T -143)) -((-1361 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-4415 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1012 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-4212 (*1 *2 *3) (-12 (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -4212 (|#1| |#3|)) (-15 -4415 (|#3| |#3|)) (-15 -1361 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3207 (($ $ $) 8)) (-2978 (($ $) 7)) (-4410 (($ $ $) 6))) +((-1891 (((-656 (-185 (-140))) $) 13)) (-2628 (((-656 (-185 (-140))) $) 14)) (-2247 (((-656 (-850)) $) 10)) (-2564 (((-140) $) 7)) (-3569 (((-876) $) 16))) +(((-141) (-13 (-625 (-876)) (-10 -8 (-15 -2564 ((-140) $)) (-15 -2247 ((-656 (-850)) $)) (-15 -1891 ((-656 (-185 (-140))) $)) (-15 -2628 ((-656 (-185 (-140))) $))))) (T -141)) +((-2564 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2564 ((-140) $)) (-15 -2247 ((-656 (-850)) $)) (-15 -1891 ((-656 (-185 (-140))) $)) (-15 -2628 ((-656 (-185 (-140))) $)))) +((-3488 (((-112) $ $) NIL)) (-3254 (($) 17 T CONST)) (-3853 (($) NIL (|has| (-145) (-379)))) (-1820 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-4327 (($ $ $) NIL)) (-2095 (((-112) $ $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| (-145) (-379)))) (-2069 (($) NIL) (($ (-656 (-145))) NIL)) (-4355 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2065 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (($ (-145) $) 60 (|has| $ (-6 -4464)))) (-3945 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1836 (($) NIL (|has| (-145) (-379)))) (-3965 (((-656 (-145)) $) 69 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3124 (((-145) $) NIL (|has| (-145) (-861)))) (-2735 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1951 (((-145) $) NIL (|has| (-145) (-861)))) (-4322 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) 64)) (-1481 (($) 18 T CONST)) (-2460 (((-940) $) NIL (|has| (-145) (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1834 (($ $ $) 30)) (-3772 (((-145) $) 61)) (-4436 (($ (-145) $) 59)) (-3223 (($ (-940)) NIL (|has| (-145) (-379)))) (-1800 (($) 16 T CONST)) (-1450 (((-1141) $) NIL)) (-2366 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3267 (((-145) $) 62)) (-3542 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 57)) (-2518 (($) 15 T CONST)) (-2587 (($ $ $) 32) (($ $ (-145)) NIL)) (-2314 (($ (-656 (-145))) NIL) (($) NIL)) (-1460 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-1179) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-3581 (($ (-656 (-145))) NIL)) (-2737 (($ $) 33 (|has| (-145) (-379)))) (-3569 (((-876) $) 53)) (-3018 (($ (-1179)) 14) (($ (-656 (-145))) 50)) (-3469 (((-783) $) NIL)) (-1894 (($) 58) (($ (-656 (-145))) NIL)) (-2113 (((-112) $ $) NIL)) (-1470 (($ (-656 (-145))) NIL)) (-2170 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2539 (($) 21 T CONST)) (-2293 (($) 20 T CONST)) (-2923 (((-112) $ $) 24)) (-3502 (((-783) $) 56 (|has| $ (-6 -4464))))) +(((-142) (-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -3018 ($ (-1179))) (-15 -3018 ($ (-656 (-145)))) (-15 -2518 ($) -1480) (-15 -1800 ($) -1480) (-15 -3254 ($) -1480) (-15 -1481 ($) -1480) (-15 -2293 ($) -1480) (-15 -2539 ($) -1480)))) (T -142)) +((-3018 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-2518 (*1 *1) (-5 *1 (-142))) (-1800 (*1 *1) (-5 *1 (-142))) (-3254 (*1 *1) (-5 *1 (-142))) (-1481 (*1 *1) (-5 *1 (-142))) (-2293 (*1 *1) (-5 *1 (-142))) (-2539 (*1 *1) (-5 *1 (-142)))) +(-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -3018 ($ (-1179))) (-15 -3018 ($ (-656 (-145)))) (-15 -2518 ($) -1480) (-15 -1800 ($) -1480) (-15 -3254 ($) -1480) (-15 -1481 ($) -1480) (-15 -2293 ($) -1480) (-15 -2539 ($) -1480))) +((-1455 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1493 ((|#1| |#3|) 9)) (-1674 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -1493 (|#1| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1455 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-384 |#2|)) (T -143)) +((-1455 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -1493 (|#1| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1455 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4202 (($ $ $) 8)) (-3792 (($ $) 7)) (-1621 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-3207 (*1 *1 *1 *1) (-4 *1 (-144))) (-2978 (*1 *1 *1) (-4 *1 (-144))) (-4410 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -4410 ($ $ $)) (-15 -2978 ($ $)) (-15 -3207 ($ $ $)))) -((-1952 (((-112) $ $) NIL)) (-3876 (((-112) $) 39)) (-1525 (($ $) 55)) (-2028 (($) 26 T CONST)) (-2199 (((-783)) 13)) (-4369 (($) 25)) (-2878 (($) 27 T CONST)) (-2593 (((-783) $) 21)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-2950 (((-112) $) 41)) (-1736 (($ $) 56)) (-4375 (((-939) $) 23)) (-2043 (((-1178) $) 49)) (-2409 (($ (-939)) 20)) (-4119 (((-112) $) 37)) (-3115 (((-1140) $) NIL)) (-1746 (($) 28 T CONST)) (-2699 (((-112) $) 35)) (-4112 (((-875) $) 30)) (-3860 (($ (-783)) 19) (($ (-1178)) 54)) (-1994 (((-112) $ $) NIL)) (-1964 (((-112) $) 45)) (-2490 (((-112) $) 43)) (-3993 (((-112) $ $) 11)) (-3974 (((-112) $ $) 9)) (-3938 (((-112) $ $) 7)) (-3983 (((-112) $ $) 10)) (-3962 (((-112) $ $) 8))) -(((-145) (-13 (-856) (-10 -8 (-15 -2593 ((-783) $)) (-15 -3860 ($ (-783))) (-15 -3860 ($ (-1178))) (-15 -2028 ($) -2665) (-15 -2878 ($) -2665) (-15 -1746 ($) -2665) (-15 -1525 ($ $)) (-15 -1736 ($ $)) (-15 -2699 ((-112) $)) (-15 -4119 ((-112) $)) (-15 -2490 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -1964 ((-112) $))))) (T -145)) -((-2593 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3860 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3860 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-145)))) (-2028 (*1 *1) (-5 *1 (-145))) (-2878 (*1 *1) (-5 *1 (-145))) (-1746 (*1 *1) (-5 *1 (-145))) (-1525 (*1 *1 *1) (-5 *1 (-145))) (-1736 (*1 *1 *1) (-5 *1 (-145))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-856) (-10 -8 (-15 -2593 ((-783) $)) (-15 -3860 ($ (-783))) (-15 -3860 ($ (-1178))) (-15 -2028 ($) -2665) (-15 -2878 ($) -2665) (-15 -1746 ($) -2665) (-15 -1525 ($ $)) (-15 -1736 ($ $)) (-15 -2699 ((-112) $)) (-15 -4119 ((-112) $)) (-15 -2490 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -1964 ((-112) $)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-1972 (((-3 $ "failed") $) 39)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4202 (*1 *1 *1 *1) (-4 *1 (-144))) (-3792 (*1 *1 *1) (-4 *1 (-144))) (-1621 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -1621 ($ $ $)) (-15 -3792 ($ $)) (-15 -4202 ($ $ $)))) +((-3488 (((-112) $ $) NIL)) (-4435 (((-112) $) 39)) (-3254 (($ $) 55)) (-2432 (($) 26 T CONST)) (-2096 (((-783)) 13)) (-1836 (($) 25)) (-2836 (($) 27 T CONST)) (-3199 (((-783) $) 21)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-3517 (((-112) $) 41)) (-1481 (($ $) 56)) (-2460 (((-940) $) 23)) (-1413 (((-1179) $) 49)) (-3223 (($ (-940)) 20)) (-1810 (((-112) $) 37)) (-1450 (((-1141) $) NIL)) (-1571 (($) 28 T CONST)) (-1740 (((-112) $) 35)) (-3569 (((-876) $) 30)) (-2961 (($ (-783)) 19) (($ (-1179)) 54)) (-2113 (((-112) $ $) NIL)) (-3166 (((-112) $) 45)) (-3388 (((-112) $) 43)) (-2991 (((-112) $ $) 11)) (-2962 (((-112) $ $) 9)) (-2923 (((-112) $ $) 7)) (-2978 (((-112) $ $) 10)) (-2948 (((-112) $ $) 8))) +(((-145) (-13 (-856) (-10 -8 (-15 -3199 ((-783) $)) (-15 -2961 ($ (-783))) (-15 -2961 ($ (-1179))) (-15 -2432 ($) -1480) (-15 -2836 ($) -1480) (-15 -1571 ($) -1480) (-15 -3254 ($ $)) (-15 -1481 ($ $)) (-15 -1740 ((-112) $)) (-15 -1810 ((-112) $)) (-15 -3388 ((-112) $)) (-15 -4435 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -3166 ((-112) $))))) (T -145)) +((-3199 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) (-2432 (*1 *1) (-5 *1 (-145))) (-2836 (*1 *1) (-5 *1 (-145))) (-1571 (*1 *1) (-5 *1 (-145))) (-3254 (*1 *1 *1) (-5 *1 (-145))) (-1481 (*1 *1 *1) (-5 *1 (-145))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-856) (-10 -8 (-15 -3199 ((-783) $)) (-15 -2961 ($ (-783))) (-15 -2961 ($ (-1179))) (-15 -2432 ($) -1480) (-15 -2836 ($) -1480) (-15 -1571 ($) -1480) (-15 -3254 ($ $)) (-15 -1481 ($ $)) (-15 -1740 ((-112) $)) (-15 -1810 ((-112) $)) (-15 -3388 ((-112) $)) (-15 -4435 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -3166 ((-112) $)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3230 (((-3 $ "failed") $) 39)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-1972 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1069) (-10 -8 (-15 -1972 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3069 ((|#1| (-701 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -3069 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) -((-3069 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -3069 (|#1| (-701 |#1|) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3230 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1070) (-10 -8 (-15 -3230 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2137 ((|#1| (-701 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -2137 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) +((-2137 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2137 (|#1| (-701 |#1|) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1069)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2921 (((-2 (|:| -1495 (-783)) (|:| -2861 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-4311 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-3198 (((-2 (|:| -2861 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3083 ((|#1| |#3| |#3|) 44)) (-2143 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-3014 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3198 ((-2 (|:| -2861 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4311 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -2921 ((-2 (|:| -1495 (-783)) (|:| -2861 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -3083 (|#1| |#3| |#3|)) (-15 -2143 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -3014 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1241) (-1263 |#1|) (-1263 (-419 |#2|))) (T -149)) -((-3014 (*1 *2 *3 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-2143 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1263 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1241)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1263 *3)))) (-4311 (*1 *2 *3) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-3198 (*1 *2 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -2861 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) -(-10 -7 (-15 -3198 ((-2 (|:| -2861 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4311 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -2921 ((-2 (|:| -1495 (-783)) (|:| -2861 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -3083 (|#1| |#3| |#3|)) (-15 -2143 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -3014 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) -((-4251 (((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -4251 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)))) (-557) (-167 |#1|)) (T -150)) -((-4251 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -4251 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)))) -((-3603 (($ (-1 (-112) |#2|) $) 37)) (-3966 (($ $) 44)) (-2824 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2721 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2022 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3587 (((-112) (-1 (-112) |#2|) $) 24)) (-3125 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-1682 (((-112) (-1 (-112) |#2|) $) 21)) (-1968 (((-783) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -3966 (|#1| |#1|)) (-15 -2824 (|#1| |#2| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2824 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2022 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1968 ((-783) |#1|))) (-152 |#2|) (-1237)) (T -151)) -NIL -(-10 -8 (-15 -3966 (|#1| |#1|)) (-15 -2824 (|#1| |#2| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2824 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2022 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1968 ((-783) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-3603 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3966 (($ $) 42 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463))) (($ |#1| $) 43 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 50)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-152 |#1|) (-141) (-1237)) (T -152)) -((-4124 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-152 *3)))) (-2022 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2721 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2721 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2824 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *3)) (-4 *3 (-1237)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *3)) (-4 *3 (-1237)))) (-2721 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2824 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) (-4 *2 (-1120)))) (-3966 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) (-4 *2 (-1120))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -4124 ($ (-656 |t#1|))) (-15 -2022 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -2721 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2721 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2824 ($ (-1 (-112) |t#1|) $)) (-15 -3603 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -2721 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2824 ($ |t#1| $)) (-15 -3966 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) 111)) (-2287 (((-112) $) NIL)) (-1562 (($ |#2| (-656 (-939))) 71)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3779 (($ (-939)) 57)) (-1656 (((-135)) 23)) (-4112 (((-875) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-4269 ((|#2| $ (-656 (-939))) 74)) (-4115 (((-783)) 20 T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 47 T CONST)) (-4320 (($) 51 T CONST)) (-3938 (((-112) $ $) 33)) (-4046 (($ $ |#2|) NIL)) (-4036 (($ $) 42) (($ $ $) 40)) (-4026 (($ $ $) 38)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1069) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -3779 ($ (-939))) (-15 -1562 ($ |#2| (-656 (-939)))) (-15 -4269 (|#2| $ (-656 (-939)))) (-15 -3900 ((-3 $ "failed") $)))) (-939) (-374) (-1013 |#1| |#2|)) (T -153)) -((-3900 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-939)) (-4 *3 (-374)) (-14 *4 (-1013 *2 *3)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1013 *3 *4)))) (-1562 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-939)) (-4 *2 (-374)) (-14 *5 (-1013 *4 *2)))) (-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-939))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-939)) (-14 *5 (-1013 *4 *2))))) -(-13 (-1069) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -3779 ($ (-939))) (-15 -1562 ($ |#2| (-656 (-939)))) (-15 -4269 (|#2| $ (-656 (-939)))) (-15 -3900 ((-3 $ "failed") $)))) -((-1684 (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-656 (-961 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2045 (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945)) 96)) (-2052 (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-656 (-961 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-961 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945)) 91))) -(((-154) (-10 -7 (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945))) (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945) (-419 (-576)) (-419 (-576)))) (-15 -2045 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945))) (-15 -2045 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945) (-419 (-576)) (-419 (-576)))) (-15 -1684 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-656 (-961 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-961 (-227))))) (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-656 (-961 (-227)))))))) (T -154)) -((-2052 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-961 (-227))))))) (-2052 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-961 (-227)))))) (-1684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 *4)))) (|:| |xValues| (-1114 *4)) (|:| |yValues| (-1114 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-961 *4)))))) (-2045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-945)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) (-5 *1 (-154)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) (-5 *1 (-154)))) (-2052 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-945)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) (-5 *1 (-154)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945))) (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945) (-419 (-576)) (-419 (-576)))) (-15 -2045 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945))) (-15 -2045 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-945) (-419 (-576)) (-419 (-576)))) (-15 -1684 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-656 (-961 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-961 (-227))))) (-15 -2052 ((-2 (|:| |brans| (-656 (-656 (-961 (-227))))) (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227)))) (-656 (-656 (-961 (-227))))))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1664 (((-656 (-1155)) $) 20)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 27) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-1155) $) 9)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-155) (-13 (-1103) (-10 -8 (-15 -1664 ((-656 (-1155)) $)) (-15 -4158 ((-1155) $))))) (T -155)) -((-1664 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-155)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-155))))) -(-13 (-1103) (-10 -8 (-15 -1664 ((-656 (-1155)) $)) (-15 -4158 ((-1155) $)))) -((-3621 (((-656 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -3621 ((-656 (-171 |#2|)) |#1| |#2|))) (-1263 (-171 (-576))) (-13 (-374) (-860))) (T -156)) -((-3621 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1263 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3621 ((-656 (-171 |#2|)) |#1| |#2|))) -((-1952 (((-112) $ $) NIL)) (-1782 (((-1236) $) 12)) (-1774 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-157) (-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1236) $))))) (T -157)) -((-1774 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-157)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-157))))) -(-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1236) $)))) -((-1952 (((-112) $ $) NIL)) (-3795 (($) 41)) (-3306 (($) 40)) (-2096 (((-939)) 46)) (-2043 (((-1178) $) NIL)) (-3220 (((-576) $) 44)) (-3115 (((-1140) $) NIL)) (-2644 (($) 42)) (-3508 (($ (-576)) 47)) (-4112 (((-875) $) 53)) (-1463 (($) 43)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 38)) (-4026 (($ $ $) 35)) (* (($ (-939) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-939) $)) (-15 * ($ (-227) $)) (-15 -4026 ($ $ $)) (-15 -3306 ($)) (-15 -3795 ($)) (-15 -2644 ($)) (-15 -1463 ($)) (-15 -3220 ((-576) $)) (-15 -2096 ((-939))) (-15 -3508 ($ (-576)))))) (T -158)) -((-4026 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3306 (*1 *1) (-5 *1 (-158))) (-3795 (*1 *1) (-5 *1 (-158))) (-2644 (*1 *1) (-5 *1 (-158))) (-1463 (*1 *1) (-5 *1 (-158))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-2096 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-158)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-939) $)) (-15 * ($ (-227) $)) (-15 -4026 ($ $ $)) (-15 -3306 ($)) (-15 -3795 ($)) (-15 -2644 ($)) (-15 -1463 ($)) (-15 -3220 ((-576) $)) (-15 -2096 ((-939))) (-15 -3508 ($ (-576))))) -((-3297 ((|#2| |#2| (-1112 |#2|)) 98) ((|#2| |#2| (-1196)) 75)) (-4191 ((|#2| |#2| (-1112 |#2|)) 97) ((|#2| |#2| (-1196)) 74)) (-3207 ((|#2| |#2| |#2|) 25)) (-1400 (((-115) (-115)) 111)) (-2380 ((|#2| (-656 |#2|)) 130)) (-2987 ((|#2| (-656 |#2|)) 151)) (-1666 ((|#2| (-656 |#2|)) 138)) (-2468 ((|#2| |#2|) 136)) (-1599 ((|#2| (-656 |#2|)) 124)) (-2646 ((|#2| (-656 |#2|)) 125)) (-1960 ((|#2| (-656 |#2|)) 149)) (-4206 ((|#2| |#2| (-1196)) 63) ((|#2| |#2|) 62)) (-2978 ((|#2| |#2|) 21)) (-4410 ((|#2| |#2| |#2|) 24)) (-2431 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -4410 (|#2| |#2| |#2|)) (-15 -3207 (|#2| |#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4206 (|#2| |#2| (-1196))) (-15 -3297 (|#2| |#2| (-1196))) (-15 -3297 (|#2| |#2| (-1112 |#2|))) (-15 -4191 (|#2| |#2| (-1196))) (-15 -4191 (|#2| |#2| (-1112 |#2|))) (-15 -2468 (|#2| |#2|)) (-15 -1960 (|#2| (-656 |#2|))) (-15 -1666 (|#2| (-656 |#2|))) (-15 -2987 (|#2| (-656 |#2|))) (-15 -1599 (|#2| (-656 |#2|))) (-15 -2646 (|#2| (-656 |#2|))) (-15 -2380 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) -((-2380 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4191 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4191 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4206 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3207 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4410 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -4410 (|#2| |#2| |#2|)) (-15 -3207 (|#2| |#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4206 (|#2| |#2| (-1196))) (-15 -3297 (|#2| |#2| (-1196))) (-15 -3297 (|#2| |#2| (-1112 |#2|))) (-15 -4191 (|#2| |#2| (-1196))) (-15 -4191 (|#2| |#2| (-1112 |#2|))) (-15 -2468 (|#2| |#2|)) (-15 -1960 (|#2| (-656 |#2|))) (-15 -1666 (|#2| (-656 |#2|))) (-15 -2987 (|#2| (-656 |#2|))) (-15 -1599 (|#2| (-656 |#2|))) (-15 -2646 (|#2| (-656 |#2|))) (-15 -2380 (|#2| (-656 |#2|)))) -((-1362 ((|#1| |#1| |#1|) 64)) (-4053 ((|#1| |#1| |#1|) 61)) (-3207 ((|#1| |#1| |#1|) 55)) (-4281 ((|#1| |#1|) 42)) (-3226 ((|#1| |#1| (-656 |#1|)) 53)) (-2978 ((|#1| |#1|) 46)) (-4410 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -4410 (|#1| |#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-656 |#1|))) (-15 -4281 (|#1| |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -4053 (|#1| |#1| |#1|)) (-15 -1362 (|#1| |#1| |#1|))) (-557)) (T -160)) -((-1362 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4053 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3207 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4281 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-2978 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4410 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(-10 -7 (-15 -4410 (|#1| |#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-656 |#1|))) (-15 -4281 (|#1| |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -4053 (|#1| |#1| |#1|)) (-15 -1362 (|#1| |#1| |#1|))) -((-3297 (($ $ (-1196)) 12) (($ $ (-1112 $)) 11)) (-4191 (($ $ (-1196)) 10) (($ $ (-1112 $)) 9)) (-3207 (($ $ $) 8)) (-4206 (($ $) 14) (($ $ (-1196)) 13)) (-2978 (($ $) 7)) (-4410 (($ $ $) 6))) +(-13 (-1070)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3300 (((-2 (|:| -4210 (-783)) (|:| -1714 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-3135 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-4108 (((-2 (|:| -1714 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2284 ((|#1| |#3| |#3|) 44)) (-3283 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-2853 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-2 (|:| -1714 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3135 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3300 ((-2 (|:| -4210 (-783)) (|:| -1714 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2284 (|#1| |#3| |#3|)) (-15 -3283 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2853 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|))) (T -149)) +((-2853 (*1 *2 *3 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-3283 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) (-2284 (*1 *2 *3 *3) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3)))) (-3135 (*1 *2 *3) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-4108 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1714 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) +(-10 -7 (-15 -4108 ((-2 (|:| -1714 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3135 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3300 ((-2 (|:| -4210 (-783)) (|:| -1714 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2284 (|#1| |#3| |#3|)) (-15 -3283 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2853 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) +((-3807 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -3807 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) (-557) (-167 |#1|)) (T -150)) +((-3807 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -3807 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) +((-1971 (($ (-1 (-112) |#2|) $) 37)) (-2800 (($ $) 44)) (-3945 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2366 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3542 (((-112) (-1 (-112) |#2|) $) 24)) (-1460 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2170 (((-112) (-1 (-112) |#2|) $) 21)) (-3502 (((-783) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -2800 (|#1| |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1971 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2366 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) (-152 |#2|) (-1238)) (T -151)) +NIL +(-10 -8 (-15 -2800 (|#1| |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1971 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2366 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-1971 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2800 (($ $) 42 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464))) (($ |#1| $) 43 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 50)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-152 |#1|) (-141) (-1238)) (T -152)) +((-3581 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) (-2366 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3685 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3685 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-1971 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-3685 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3945 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-2800 (*1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3581 ($ (-656 |t#1|))) (-15 -2366 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4464)) (PROGN (-15 -3685 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3685 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3945 ($ (-1 (-112) |t#1|) $)) (-15 -1971 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3685 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3945 ($ |t#1| $)) (-15 -2800 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) 111)) (-3215 (((-112) $) NIL)) (-1945 (($ |#2| (-656 (-940))) 71)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1389 (($ (-940)) 57)) (-1972 (((-135)) 23)) (-3569 (((-876) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-3998 ((|#2| $ (-656 (-940))) 74)) (-1778 (((-783)) 20 T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 47 T CONST)) (-2730 (($) 51 T CONST)) (-2923 (((-112) $ $) 33)) (-3056 (($ $ |#2|) NIL)) (-3043 (($ $) 42) (($ $ $) 40)) (-3029 (($ $ $) 38)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1389 ($ (-940))) (-15 -1945 ($ |#2| (-656 (-940)))) (-15 -3998 (|#2| $ (-656 (-940)))) (-15 -3451 ((-3 $ "failed") $)))) (-940) (-374) (-1014 |#1| |#2|)) (T -153)) +((-3451 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) (-14 *4 (-1014 *2 *3)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1014 *3 *4)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-14 *5 (-1014 *4 *2))))) +(-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1389 ($ (-940))) (-15 -1945 ($ |#2| (-656 (-940)))) (-15 -3998 (|#2| $ (-656 (-940)))) (-15 -3451 ((-3 $ "failed") $)))) +((-2181 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1433 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 96)) (-1485 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 91))) +(((-154) (-10 -7 (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -1433 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -1433 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2181 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))))))) (T -154)) +((-1485 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) (-1485 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) (-2181 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 *4)))) (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4)))))) (-1433 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-1485 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -1433 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -1433 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2181 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -1485 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-3066 (((-656 (-1156)) $) 20)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-1156) $) 9)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-155) (-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2639 ((-1156) $))))) (T -155)) +((-3066 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-155))))) +(-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2639 ((-1156) $)))) +((-3891 (((-656 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -3891 ((-656 (-171 |#2|)) |#1| |#2|))) (-1264 (-171 (-576))) (-13 (-374) (-860))) (T -156)) +((-3891 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -3891 ((-656 (-171 |#2|)) |#1| |#2|))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1237) $) 12)) (-1657 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-157) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1237) $))))) (T -157)) +((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-157)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-157))))) +(-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1237) $)))) +((-3488 (((-112) $ $) NIL)) (-1722 (($) 41)) (-2687 (($) 40)) (-1917 (((-940)) 46)) (-1413 (((-1179) $) NIL)) (-4334 (((-576) $) 44)) (-1450 (((-1141) $) NIL)) (-2436 (($) 42)) (-4105 (($ (-576)) 47)) (-3569 (((-876) $) 53)) (-3924 (($) 43)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 38)) (-3029 (($ $ $) 35)) (* (($ (-940) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -3029 ($ $ $)) (-15 -2687 ($)) (-15 -1722 ($)) (-15 -2436 ($)) (-15 -3924 ($)) (-15 -4334 ((-576) $)) (-15 -1917 ((-940))) (-15 -4105 ($ (-576)))))) (T -158)) +((-3029 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2687 (*1 *1) (-5 *1 (-158))) (-1722 (*1 *1) (-5 *1 (-158))) (-2436 (*1 *1) (-5 *1 (-158))) (-3924 (*1 *1) (-5 *1 (-158))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-1917 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -3029 ($ $ $)) (-15 -2687 ($)) (-15 -1722 ($)) (-15 -2436 ($)) (-15 -3924 ($)) (-15 -4334 ((-576) $)) (-15 -1917 ((-940))) (-15 -4105 ($ (-576))))) +((-3905 ((|#2| |#2| (-1113 |#2|)) 98) ((|#2| |#2| (-1197)) 75)) (-4442 ((|#2| |#2| (-1113 |#2|)) 97) ((|#2| |#2| (-1197)) 74)) (-4202 ((|#2| |#2| |#2|) 25)) (-1775 (((-115) (-115)) 111)) (-1583 ((|#2| (-656 |#2|)) 130)) (-3889 ((|#2| (-656 |#2|)) 151)) (-2026 ((|#2| (-656 |#2|)) 138)) (-4408 ((|#2| |#2|) 136)) (-2652 ((|#2| (-656 |#2|)) 124)) (-2458 ((|#2| (-656 |#2|)) 125)) (-3119 ((|#2| (-656 |#2|)) 149)) (-1439 ((|#2| |#2| (-1197)) 63) ((|#2| |#2|) 62)) (-3792 ((|#2| |#2|) 21)) (-1621 ((|#2| |#2| |#2|) 24)) (-4062 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1621 (|#2| |#2| |#2|)) (-15 -4202 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -1439 (|#2| |#2| (-1197))) (-15 -3905 (|#2| |#2| (-1197))) (-15 -3905 (|#2| |#2| (-1113 |#2|))) (-15 -4442 (|#2| |#2| (-1197))) (-15 -4442 (|#2| |#2| (-1113 |#2|))) (-15 -4408 (|#2| |#2|)) (-15 -3119 (|#2| (-656 |#2|))) (-15 -2026 (|#2| (-656 |#2|))) (-15 -3889 (|#2| (-656 |#2|))) (-15 -2652 (|#2| (-656 |#2|))) (-15 -2458 (|#2| (-656 |#2|))) (-15 -1583 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) +((-1583 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4408 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4442 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4442 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3905 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3905 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1439 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4202 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1621 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1621 (|#2| |#2| |#2|)) (-15 -4202 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -1439 (|#2| |#2| (-1197))) (-15 -3905 (|#2| |#2| (-1197))) (-15 -3905 (|#2| |#2| (-1113 |#2|))) (-15 -4442 (|#2| |#2| (-1197))) (-15 -4442 (|#2| |#2| (-1113 |#2|))) (-15 -4408 (|#2| |#2|)) (-15 -3119 (|#2| (-656 |#2|))) (-15 -2026 (|#2| (-656 |#2|))) (-15 -3889 (|#2| (-656 |#2|))) (-15 -2652 (|#2| (-656 |#2|))) (-15 -2458 (|#2| (-656 |#2|))) (-15 -1583 (|#2| (-656 |#2|)))) +((-1463 ((|#1| |#1| |#1|) 64)) (-2374 ((|#1| |#1| |#1|) 61)) (-4202 ((|#1| |#1| |#1|) 55)) (-2821 ((|#1| |#1|) 42)) (-4382 ((|#1| |#1| (-656 |#1|)) 53)) (-3792 ((|#1| |#1|) 46)) (-1621 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -1621 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-656 |#1|))) (-15 -2821 (|#1| |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -1463 (|#1| |#1| |#1|))) (-557)) (T -160)) +((-1463 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2374 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4202 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2821 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4382 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-3792 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1621 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(-10 -7 (-15 -1621 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-656 |#1|))) (-15 -2821 (|#1| |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -1463 (|#1| |#1| |#1|))) +((-3905 (($ $ (-1197)) 12) (($ $ (-1113 $)) 11)) (-4442 (($ $ (-1197)) 10) (($ $ (-1113 $)) 9)) (-4202 (($ $ $) 8)) (-1439 (($ $) 14) (($ $ (-1197)) 13)) (-3792 (($ $) 7)) (-1621 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-4206 (*1 *1 *1) (-4 *1 (-161))) (-4206 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-3297 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-161)))) (-4191 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -4206 ($ $)) (-15 -4206 ($ $ (-1196))) (-15 -3297 ($ $ (-1196))) (-15 -3297 ($ $ (-1112 $))) (-15 -4191 ($ $ (-1196))) (-15 -4191 ($ $ (-1112 $))))) +((-1439 (*1 *1 *1) (-4 *1 (-161))) (-1439 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) (-4442 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-4442 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -1439 ($ $)) (-15 -1439 ($ $ (-1197))) (-15 -3905 ($ $ (-1197))) (-15 -3905 ($ $ (-1113 $))) (-15 -4442 ($ $ (-1197))) (-15 -4442 ($ $ (-1113 $))))) (((-144) . T)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-656 (-1155)) $) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-162) (-13 (-1103) (-10 -8 (-15 -4158 ((-656 (-1155)) $))))) (T -162)) -((-4158 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-162))))) -(-13 (-1103) (-10 -8 (-15 -4158 ((-656 (-1155)) $)))) -((-1952 (((-112) $ $) NIL)) (-4334 (($ (-576)) 14) (($ $ $) 15)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 18)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 9))) -(((-163) (-13 (-1120) (-10 -8 (-15 -4334 ($ (-576))) (-15 -4334 ($ $ $))))) (T -163)) -((-4334 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-4334 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1120) (-10 -8 (-15 -4334 ($ (-576))) (-15 -4334 ($ $ $)))) -((-1400 (((-115) (-1196)) 102))) -(((-164) (-10 -7 (-15 -1400 ((-115) (-1196))))) (T -164)) -((-1400 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -1400 ((-115) (-1196)))) -((-4128 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -4128 (|#3| |#3|))) (-1069) (-1263 |#1|) (-1263 |#2|)) (T -165)) -((-4128 (*1 *2 *2) (-12 (-4 *3 (-1069)) (-4 *4 (-1263 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1263 *4))))) -(-10 -7 (-15 -4128 (|#3| |#3|))) -((-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 223)) (-3832 ((|#2| $) 102)) (-3585 (($ $) 256)) (-3434 (($ $) 250)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 47)) (-3561 (($ $) 254)) (-3411 (($ $) 248)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-1893 (($ $ $) 229)) (-3222 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 160) (((-701 |#2|) (-701 $)) 154)) (-2721 (($ (-1192 |#2|)) 125) (((-3 $ "failed") (-419 (-1192 |#2|))) NIL)) (-3900 (((-3 $ "failed") $) 214)) (-2936 (((-3 (-419 (-576)) "failed") $) 204)) (-3898 (((-112) $) 199)) (-1982 (((-419 (-576)) $) 202)) (-4134 (((-939)) 96)) (-1903 (($ $ $) 231)) (-1557 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-2722 (($) 245)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 193) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 198)) (-2647 ((|#2| $) 100)) (-2354 (((-1192 |#2|) $) 127)) (-2422 (($ (-1 |#2| |#2|) $) 108)) (-2607 (($ $) 247)) (-2708 (((-1192 |#2|) $) 126)) (-1667 (($ $) 207)) (-3868 (($) 103)) (-3705 (((-430 (-1192 $)) (-1192 $)) 95)) (-1988 (((-430 (-1192 $)) (-1192 $)) 64)) (-1943 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2155 (($ $) 246)) (-2026 (((-783) $) 226)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 236)) (-1451 ((|#2| (-1287 $)) NIL) ((|#2|) 98)) (-4106 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3175 (((-1192 |#2|)) 120)) (-3573 (($ $) 255)) (-3423 (($ $) 249)) (-3435 (((-1287 |#2|) $ (-1287 $)) 136) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 116) (((-701 |#2|) (-1287 $)) NIL)) (-1554 (((-1287 |#2|) $) NIL) (($ (-1287 |#2|)) NIL) (((-1192 |#2|) $) NIL) (($ (-1192 |#2|)) NIL) (((-906 (-576)) $) 184) (((-906 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-2633 (($ $) 104)) (-4112 (((-875) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3069 (((-1192 |#2|) $) 32)) (-4115 (((-783)) 106)) (-1994 (((-112) $ $) 13)) (-3652 (($ $) 259)) (-3509 (($ $) 253)) (-3631 (($ $) 257)) (-3486 (($ $) 251)) (-3840 ((|#2| $) 242)) (-3641 (($ $) 258)) (-3497 (($ $) 252)) (-2388 (($ $) 162)) (-3938 (((-112) $ $) 110)) (-4036 (($ $) 112) (($ $ $) NIL)) (-4026 (($ $ $) 111)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4112 (|#1| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1887 ((-2 (|:| -4288 |#1|) (|:| -4450 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2026 ((-783) |#1|)) (-15 -4293 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -1893 (|#1| |#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -1554 ((-548) |#1|)) (-15 -1554 ((-171 (-227)) |#1|)) (-15 -1554 ((-171 (-390)) |#1|)) (-15 -3434 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3652 (|#1| |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2722 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1988 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3705 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -1557 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3840 (|#2| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2633 (|#1| |#1|)) (-15 -3868 (|#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 (-1192 |#2|)))) (-15 -2708 ((-1192 |#2|) |#1|)) (-15 -1554 (|#1| (-1192 |#2|))) (-15 -2721 (|#1| (-1192 |#2|))) (-15 -3175 ((-1192 |#2|))) (-15 -3222 ((-701 |#2|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -1554 ((-1192 |#2|) |#1|)) (-15 -1451 (|#2|)) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -2354 ((-1192 |#2|) |#1|)) (-15 -3069 ((-1192 |#2|) |#1|)) (-15 -1451 (|#2| (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -2647 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -4134 ((-939))) (-15 -4112 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-939))) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -1994 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-4115 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4134 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-939)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1451 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3175 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4112 (|#1| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1887 ((-2 (|:| -4288 |#1|) (|:| -4450 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2026 ((-783) |#1|)) (-15 -4293 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -1893 (|#1| |#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -1554 ((-548) |#1|)) (-15 -1554 ((-171 (-227)) |#1|)) (-15 -1554 ((-171 (-390)) |#1|)) (-15 -3434 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3652 (|#1| |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2722 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1988 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3705 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -1557 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3840 (|#2| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2633 (|#1| |#1|)) (-15 -3868 (|#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 (-1192 |#2|)))) (-15 -2708 ((-1192 |#2|) |#1|)) (-15 -1554 (|#1| (-1192 |#2|))) (-15 -2721 (|#1| (-1192 |#2|))) (-15 -3175 ((-1192 |#2|))) (-15 -3222 ((-701 |#2|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -1554 ((-1192 |#2|) |#1|)) (-15 -1451 (|#2|)) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -2354 ((-1192 |#2|) |#1|)) (-15 -3069 ((-1192 |#2|) |#1|)) (-15 -1451 (|#2| (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -2647 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -4134 ((-939))) (-15 -4112 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-939))) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -1994 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 105 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-4070 (($ $) 106 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-2378 (((-112) $) 108 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-3313 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-3832 ((|#1| $) 59)) (-3585 (($ $) 236 (|has| |#1| (-1222)))) (-3434 (($ $) 219 (|has| |#1| (-1222)))) (-2053 (((-1209 (-939) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-2559 (((-3 $ "failed") $ $) 20)) (-1946 (((-430 (-1192 $)) (-1192 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-3575 (($ $) 125 (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-3163 (((-430 $) $) 126 (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-1462 (($ $) 249 (-12 (|has| |#1| (-1022)) (|has| |#1| (-1222))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-4057 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2199 (((-783)) 99 (|has| |#1| (-379)))) (-3561 (($ $) 235 (|has| |#1| (-1222)))) (-3411 (($ $) 220 (|has| |#1| (-1222)))) (-3611 (($ $) 234 (|has| |#1| (-1222)))) (-3460 (($ $) 221 (|has| |#1| (-1222)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2317 (((-576) $) 184 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 181)) (-4005 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-1893 (($ $ $) 120 (|has| |#1| (-317)))) (-4228 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-3222 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-2721 (($ (-1192 |#1|)) 169) (((-3 $ "failed") (-419 (-1192 |#1|))) 166 (|has| |#1| (-374)))) (-3900 (((-3 $ "failed") $) 37)) (-1473 ((|#1| $) 261)) (-2936 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-3898 (((-112) $) 256 (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-4134 (((-939)) 61)) (-4369 (($) 102 (|has| |#1| (-379)))) (-1903 (($ $ $) 119 (|has| |#1| (-317)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-3933 (($) 160 (|has| |#1| (-360)))) (-2614 (((-112) $) 161 (|has| |#1| (-360)))) (-3878 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-2443 (((-112) $) 127 (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-1557 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1222))))) (-2722 (($) 246 (|has| |#1| (-1222)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 269 (|has| |#1| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 268 (|has| |#1| (-900 (-390))))) (-3241 (((-939) $) 163 (|has| |#1| (-360))) (((-845 (-939)) $) 149 (|has| |#1| (-360)))) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 248 (-12 (|has| |#1| (-1022)) (|has| |#1| (-1222))))) (-2647 ((|#1| $) 58)) (-1859 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-2354 (((-1192 |#1|) $) 51 (|has| |#1| (-374)))) (-2422 (($ (-1 |#1| |#1|) $) 270)) (-4375 (((-939) $) 101 (|has| |#1| (-379)))) (-2607 (($ $) 243 (|has| |#1| (-1222)))) (-2708 (((-1192 |#1|) $) 167)) (-2198 (((-701 (-576)) (-1287 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 173) (((-701 |#1|) (-1287 $)) 172)) (-3075 (($ (-656 $)) 112 (-3794 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (($ $ $) 111 (-3794 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-2043 (((-1178) $) 10)) (-1667 (($ $) 128 (|has| |#1| (-374)))) (-3650 (($) 154 (|has| |#1| (-360)) CONST)) (-2409 (($ (-939)) 100 (|has| |#1| (-379)))) (-3868 (($) 265)) (-1483 ((|#1| $) 262)) (-3115 (((-1140) $) 11)) (-2547 (($) 171)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 113 (-3794 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-3114 (($ (-656 $)) 110 (-3794 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (($ $ $) 109 (-3794 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 157 (|has| |#1| (-360)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-1988 (((-430 (-1192 $)) (-1192 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-1450 (((-430 $) $) 124 (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 121 (|has| |#1| (-317)))) (-1943 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-2155 (($ $) 244 (|has| |#1| (-1222)))) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 271 (|has| |#1| (-526 (-1196) |#1|)))) (-2026 (((-783) $) 117 (|has| |#1| (-317)))) (-4368 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 118 (|has| |#1| (-317)))) (-1451 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3334 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-4106 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196) (-783)) 140 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-656 (-1196))) 139 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196)) 137 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-783)) 147 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2310 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2310 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-3835 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3175 (((-1192 |#1|)) 170)) (-3622 (($ $) 233 (|has| |#1| (-1222)))) (-3473 (($ $) 222 (|has| |#1| (-1222)))) (-1984 (($) 159 (|has| |#1| (-360)))) (-3598 (($ $) 232 (|has| |#1| (-1222)))) (-3447 (($ $) 223 (|has| |#1| (-1222)))) (-3573 (($ $) 231 (|has| |#1| (-1222)))) (-3423 (($ $) 224 (|has| |#1| (-1222)))) (-3435 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-1554 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69) (((-1192 |#1|) $) 186) (($ (-1192 |#1|)) 168) (((-906 (-576)) $) 267 (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) 266 (|has| |#1| (-626 (-906 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1042))) (((-171 (-227)) $) 217 (|has| |#1| (-1042))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-2633 (($ $) 264)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 156 (-3794 (-2310 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))) (|has| |#1| (-360))))) (-2648 (($ |#1| |#1|) 263)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) 103 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-1972 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-3794 (-2310 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))) (|has| |#1| (-146))))) (-3069 (((-1192 |#1|) $) 52)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3578 (((-1287 $)) 74)) (-3652 (($ $) 242 (|has| |#1| (-1222)))) (-3509 (($ $) 230 (|has| |#1| (-1222)))) (-3111 (((-112) $ $) 107 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927)))))) (-3631 (($ $) 241 (|has| |#1| (-1222)))) (-3486 (($ $) 229 (|has| |#1| (-1222)))) (-3672 (($ $) 240 (|has| |#1| (-1222)))) (-3536 (($ $) 228 (|has| |#1| (-1222)))) (-3840 ((|#1| $) 258 (|has| |#1| (-1222)))) (-1970 (($ $) 239 (|has| |#1| (-1222)))) (-3549 (($ $) 227 (|has| |#1| (-1222)))) (-3663 (($ $) 238 (|has| |#1| (-1222)))) (-3522 (($ $) 226 (|has| |#1| (-1222)))) (-3641 (($ $) 237 (|has| |#1| (-1222)))) (-3497 (($ $) 225 (|has| |#1| (-1222)))) (-2388 (($ $) 259 (|has| |#1| (-1080)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196) (-783)) 143 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-656 (-1196))) 142 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196)) 138 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-783)) 148 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2310 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-3794 (-2310 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2310 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2310 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 132 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1022)) (|has| |#1| (-1222)))) (($ $ $) 245 (|has| |#1| (-1222))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-656 (-1156)) $) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-162) (-13 (-1104) (-10 -8 (-15 -2639 ((-656 (-1156)) $))))) (T -162)) +((-2639 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-162))))) +(-13 (-1104) (-10 -8 (-15 -2639 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) NIL)) (-3326 (($ (-576)) 14) (($ $ $) 15)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 18)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-163) (-13 (-1121) (-10 -8 (-15 -3326 ($ (-576))) (-15 -3326 ($ $ $))))) (T -163)) +((-3326 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-3326 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1121) (-10 -8 (-15 -3326 ($ (-576))) (-15 -3326 ($ $ $)))) +((-1775 (((-115) (-1197)) 102))) +(((-164) (-10 -7 (-15 -1775 ((-115) (-1197))))) (T -164)) +((-1775 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -1775 ((-115) (-1197)))) +((-1896 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1896 (|#3| |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|)) (T -165)) +((-1896 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1264 *4))))) +(-10 -7 (-15 -1896 (|#3| |#3|))) +((-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 223)) (-2208 ((|#2| $) 102)) (-4024 (($ $) 256)) (-3900 (($ $) 250)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 47)) (-4005 (($ $) 254)) (-3876 (($ $) 248)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-3428 (($ $ $) 229)) (-4344 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 160) (((-701 |#2|) (-701 $)) 154)) (-3685 (($ (-1193 |#2|)) 125) (((-3 $ "failed") (-419 (-1193 |#2|))) NIL)) (-3451 (((-3 $ "failed") $) 214)) (-3355 (((-3 (-419 (-576)) "failed") $) 204)) (-3426 (((-112) $) 199)) (-2034 (((-419 (-576)) $) 202)) (-3733 (((-940)) 96)) (-3440 (($ $ $) 231)) (-3570 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1600 (($) 245)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 193) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 198)) (-2471 ((|#2| $) 100)) (-2542 (((-1193 |#2|) $) 127)) (-4116 (($ (-1 |#2| |#2|) $) 108)) (-3744 (($ $) 247)) (-3671 (((-1193 |#2|) $) 126)) (-2048 (($ $) 207)) (-4366 (($) 103)) (-2118 (((-430 (-1193 $)) (-1193 $)) 95)) (-2082 (((-430 (-1193 $)) (-1193 $)) 64)) (-3475 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4103 (($ $) 246)) (-2411 (((-783) $) 226)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 236)) (-2455 ((|#2| (-1288 $)) NIL) ((|#2|) 98)) (-2773 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-1897 (((-1193 |#2|)) 120)) (-4013 (($ $) 255)) (-3888 (($ $) 249)) (-1490 (((-1288 |#2|) $ (-1288 $)) 136) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 116) (((-701 |#2|) (-1288 $)) NIL)) (-4171 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) (((-1193 |#2|) $) NIL) (($ (-1193 |#2|)) NIL) (((-907 (-576)) $) 184) (((-907 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-2318 (($ $) 104)) (-3569 (((-876) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2137 (((-1193 |#2|) $) 32)) (-1778 (((-783)) 106)) (-2113 (((-112) $ $) 13)) (-2789 (($ $) 259)) (-3960 (($ $) 253)) (-4070 (($ $) 257)) (-3937 (($ $) 251)) (-4110 ((|#2| $) 242)) (-4082 (($ $) 258)) (-3950 (($ $) 252)) (-1665 (($ $) 162)) (-2923 (((-112) $ $) 110)) (-3043 (($ $) 112) (($ $ $) NIL)) (-3029 (($ $ $) 111)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3717 ((-2 (|:| -2876 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2411 ((-783) |#1|)) (-15 -2935 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-171 (-227)) |#1|)) (-15 -4171 ((-171 (-390)) |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1600 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2082 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2118 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3570 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4110 (|#2| |#1|)) (-15 -1665 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2318 (|#1| |#1|)) (-15 -4366 (|#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -3671 ((-1193 |#2|) |#1|)) (-15 -4171 (|#1| (-1193 |#2|))) (-15 -3685 (|#1| (-1193 |#2|))) (-15 -1897 ((-1193 |#2|))) (-15 -4344 ((-701 |#2|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-1193 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -2542 ((-1193 |#2|) |#1|)) (-15 -2137 ((-1193 |#2|) |#1|)) (-15 -2455 (|#2| (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2471 (|#2| |#1|)) (-15 -2208 (|#2| |#1|)) (-15 -3733 ((-940))) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2113 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-1778 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3733 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-940)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2455 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1897 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3717 ((-2 (|:| -2876 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2411 ((-783) |#1|)) (-15 -2935 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-171 (-227)) |#1|)) (-15 -4171 ((-171 (-390)) |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1600 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2082 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2118 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3570 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4110 (|#2| |#1|)) (-15 -1665 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2318 (|#1| |#1|)) (-15 -4366 (|#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -3671 ((-1193 |#2|) |#1|)) (-15 -4171 (|#1| (-1193 |#2|))) (-15 -3685 (|#1| (-1193 |#2|))) (-15 -1897 ((-1193 |#2|))) (-15 -4344 ((-701 |#2|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-1193 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -2542 ((-1193 |#2|) |#1|)) (-15 -2137 ((-1193 |#2|) |#1|)) (-15 -2455 (|#2| (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2471 (|#2| |#1|)) (-15 -2208 (|#2| |#1|)) (-15 -3733 ((-940))) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2113 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2544 (($ $) 106 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-1574 (((-112) $) 108 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2747 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2208 ((|#1| $) 59)) (-4024 (($ $) 236 (|has| |#1| (-1223)))) (-3900 (($ $) 219 (|has| |#1| (-1223)))) (-1494 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-2780 (((-3 $ "failed") $ $) 20)) (-2971 (((-430 (-1193 $)) (-1193 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3420 (($ $) 125 (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1770 (((-430 $) $) 126 (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1839 (($ $) 249 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2420 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2096 (((-783)) 99 (|has| |#1| (-379)))) (-4005 (($ $) 235 (|has| |#1| (-1223)))) (-3876 (($ $) 220 (|has| |#1| (-1223)))) (-4049 (($ $) 234 (|has| |#1| (-1223)))) (-3919 (($ $) 221 (|has| |#1| (-1223)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2859 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-3208 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3428 (($ $ $) 120 (|has| |#1| (-317)))) (-3567 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-4344 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-3685 (($ (-1193 |#1|)) 169) (((-3 $ "failed") (-419 (-1193 |#1|))) 166 (|has| |#1| (-374)))) (-3451 (((-3 $ "failed") $) 37)) (-1851 ((|#1| $) 261)) (-3355 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-3426 (((-112) $) 256 (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-3733 (((-940)) 61)) (-1836 (($) 102 (|has| |#1| (-379)))) (-3440 (($ $ $) 119 (|has| |#1| (-317)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-3814 (($) 160 (|has| |#1| (-360)))) (-2117 (((-112) $) 161 (|has| |#1| (-360)))) (-1332 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4169 (((-112) $) 127 (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3570 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-1600 (($) 246 (|has| |#1| (-1223)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 269 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 268 (|has| |#1| (-901 (-390))))) (-3309 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 248 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-2471 ((|#1| $) 58)) (-3396 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-2542 (((-1193 |#1|) $) 51 (|has| |#1| (-374)))) (-4116 (($ (-1 |#1| |#1|) $) 270)) (-2460 (((-940) $) 101 (|has| |#1| (-379)))) (-3744 (($ $) 243 (|has| |#1| (-1223)))) (-3671 (((-1193 |#1|) $) 167)) (-3626 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3457 (($ (-656 $)) 112 (-2758 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 111 (-2758 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-1413 (((-1179) $) 10)) (-2048 (($ $) 128 (|has| |#1| (-374)))) (-3539 (($) 154 (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) 100 (|has| |#1| (-379)))) (-4366 (($) 265)) (-1861 ((|#1| $) 262)) (-1450 (((-1141) $) 11)) (-4128 (($) 171)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 113 (-2758 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3498 (($ (-656 $)) 110 (-2758 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 109 (-2758 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 157 (|has| |#1| (-360)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2082 (((-430 (-1193 $)) (-1193 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1828 (((-430 $) $) 124 (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 121 (|has| |#1| (-317)))) (-3475 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-4103 (($ $) 244 (|has| |#1| (-1223)))) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 271 (|has| |#1| (-526 (-1197) |#1|)))) (-2411 (((-783) $) 117 (|has| |#1| (-317)))) (-2796 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 118 (|has| |#1| (-317)))) (-2455 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-2992 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2773 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 140 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 139 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 137 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 147 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2673 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2673 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-4058 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1897 (((-1193 |#1|)) 170)) (-4060 (($ $) 233 (|has| |#1| (-1223)))) (-3929 (($ $) 222 (|has| |#1| (-1223)))) (-2051 (($) 159 (|has| |#1| (-360)))) (-4036 (($ $) 232 (|has| |#1| (-1223)))) (-3909 (($ $) 223 (|has| |#1| (-1223)))) (-4013 (($ $) 231 (|has| |#1| (-1223)))) (-3888 (($ $) 224 (|has| |#1| (-1223)))) (-1490 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4171 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) (((-1193 |#1|) $) 186) (($ (-1193 |#1|)) 168) (((-907 (-576)) $) 267 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 266 (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1043))) (((-171 (-227)) $) 217 (|has| |#1| (-1043))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-2318 (($ $) 264)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 156 (-2758 (-2673 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-360))))) (-4177 (($ |#1| |#1|) 263)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) 103 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3230 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2758 (-2673 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-146))))) (-2137 (((-1193 |#1|) $) 52)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-3454 (((-1288 $)) 74)) (-2789 (($ $) 242 (|has| |#1| (-1223)))) (-3960 (($ $) 230 (|has| |#1| (-1223)))) (-2537 (((-112) $ $) 107 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4070 (($ $) 241 (|has| |#1| (-1223)))) (-3937 (($ $) 229 (|has| |#1| (-1223)))) (-2814 (($ $) 240 (|has| |#1| (-1223)))) (-3982 (($ $) 228 (|has| |#1| (-1223)))) (-4110 ((|#1| $) 258 (|has| |#1| (-1223)))) (-4387 (($ $) 239 (|has| |#1| (-1223)))) (-3994 (($ $) 227 (|has| |#1| (-1223)))) (-2802 (($ $) 238 (|has| |#1| (-1223)))) (-3973 (($ $) 226 (|has| |#1| (-1223)))) (-4082 (($ $) 237 (|has| |#1| (-1223)))) (-3950 (($ $) 225 (|has| |#1| (-1223)))) (-1665 (($ $) 259 (|has| |#1| (-1081)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 143 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 142 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 138 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 148 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2673 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-2758 (-2673 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2673 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2673 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 132 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) 245 (|has| |#1| (-1223))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-2647 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3868 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2633 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2648 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1943 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1080)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1222)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1080)) (-4 *3 (-1222)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2936 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-736 |t#1| (-1192 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-898 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -2648) (-15 -3868 ($)) (-15 -2633 ($ $)) (-15 -2648 ($ |t#1| |t#1|)) (-15 -1483 (|t#1| $)) (-15 -1473 (|t#1| $)) (-15 -2647 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -1943 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -2388 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1222)) (PROGN (-6 (-1222)) (-15 -3840 (|t#1| $)) (IF (|has| |t#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -1557 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-927)) (IF (|has| |t#1| (-317)) (-6 (-927)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1222)) ((-95) |has| |#1| (-1222)) ((-102) . T) ((-111 #0# #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3794 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-875)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1042)) ((-626 (-171 (-390))) |has| |#1| (-1042)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-906 (-390))) |has| |#1| (-626 (-906 (-390)))) ((-626 (-906 (-576))) |has| |#1| (-626 (-906 (-576)))) ((-626 #1=(-1192 |#1|)) . T) ((-234 $) -3794 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -3794 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -3794 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1222)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3794 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -3794 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3794 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -3794 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1222)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -3794 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-910 $ #3=(-1196)) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-916 (-1196)) |has| |#1| (-916 (-1196))) ((-918 #3#) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-900 (-390)) |has| |#1| (-900 (-390))) ((-900 (-576)) |has| |#1| (-900 (-576))) ((-898 |#1|) . T) ((-927) -12 (|has| |#1| (-317)) (|has| |#1| (-927))) ((-938) -3794 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1022) -12 (|has| |#1| (-1022)) (|has| |#1| (-1222))) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) |has| |#1| (-360)) ((-1222) |has| |#1| (-1222)) ((-1225) |has| |#1| (-1222)) ((-1237) . T) ((-1241) -3794 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) -((-1450 (((-430 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -1450 ((-430 |#2|) |#2|))) (-317) (-1263 (-171 |#1|))) (T -168)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(-10 -7 (-15 -1450 ((-430 |#2|) |#2|))) -((-1548 (((-1155) (-1155) (-301)) 8)) (-2118 (((-656 (-703 (-290))) (-1178)) 81)) (-2890 (((-703 (-290)) (-1155)) 76))) -(((-169) (-13 (-1237) (-10 -7 (-15 -1548 ((-1155) (-1155) (-301))) (-15 -2890 ((-703 (-290)) (-1155))) (-15 -2118 ((-656 (-703 (-290))) (-1178)))))) (T -169)) -((-1548 (*1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-301)) (-5 *1 (-169)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(-13 (-1237) (-10 -7 (-15 -1548 ((-1155) (-1155) (-301))) (-15 -2890 ((-703 (-290)) (-1155))) (-15 -2118 ((-656 (-703 (-290))) (-1178))))) -((-2422 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -2422 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -2422 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 34)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-568))))) (-2378 (((-112) $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-568))))) (-3313 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-3832 ((|#1| $) NIL)) (-3585 (($ $) NIL (|has| |#1| (-1222)))) (-3434 (($ $) NIL (|has| |#1| (-1222)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-3575 (($ $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-3163 (((-430 $) $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-1462 (($ $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1222))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-3561 (($ $) NIL (|has| |#1| (-1222)))) (-3411 (($ $) NIL (|has| |#1| (-1222)))) (-3611 (($ $) NIL (|has| |#1| (-1222)))) (-3460 (($ $) NIL (|has| |#1| (-1222)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-4005 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1893 (($ $ $) NIL (|has| |#1| (-317)))) (-4228 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2721 (($ (-1192 |#1|)) NIL) (((-3 $ "failed") (-419 (-1192 |#1|))) NIL (|has| |#1| (-374)))) (-3900 (((-3 $ "failed") $) NIL)) (-1473 ((|#1| $) 13)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3898 (((-112) $) NIL (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4134 (((-939)) NIL)) (-4369 (($) NIL (|has| |#1| (-379)))) (-1903 (($ $ $) NIL (|has| |#1| (-317)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-3933 (($) NIL (|has| |#1| (-360)))) (-2614 (((-112) $) NIL (|has| |#1| (-360)))) (-3878 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2443 (((-112) $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-1557 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1080)) (|has| |#1| (-1222))))) (-2722 (($) NIL (|has| |#1| (-1222)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| |#1| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| |#1| (-900 (-390))))) (-3241 (((-939) $) NIL (|has| |#1| (-360))) (((-845 (-939)) $) NIL (|has| |#1| (-360)))) (-2287 (((-112) $) 36)) (-2770 (($ $ (-576)) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1222))))) (-2647 ((|#1| $) 47)) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2354 (((-1192 |#1|) $) NIL (|has| |#1| (-374)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-2607 (($ $) NIL (|has| |#1| (-1222)))) (-2708 (((-1192 |#1|) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-3650 (($) NIL (|has| |#1| (-360)) CONST)) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-3868 (($) NIL)) (-1483 ((|#1| $) 15)) (-3115 (((-1140) $) NIL)) (-2547 (($) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-317)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| |#1| (-360)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-927))))) (-1450 (((-430 $) $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-374))))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-317)))) (-1943 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-568))))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2155 (($ $) NIL (|has| |#1| (-1222)))) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-2026 (((-783) $) NIL (|has| |#1| (-317)))) (-4368 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-317)))) (-1451 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-3334 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-4106 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-3835 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3175 (((-1192 |#1|)) NIL)) (-3622 (($ $) NIL (|has| |#1| (-1222)))) (-3473 (($ $) NIL (|has| |#1| (-1222)))) (-1984 (($) NIL (|has| |#1| (-360)))) (-3598 (($ $) NIL (|has| |#1| (-1222)))) (-3447 (($ $) NIL (|has| |#1| (-1222)))) (-3573 (($ $) NIL (|has| |#1| (-1222)))) (-3423 (($ $) NIL (|has| |#1| (-1222)))) (-3435 (((-1287 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1554 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL) (((-1192 |#1|) $) NIL) (($ (-1192 |#1|)) NIL) (((-906 (-576)) $) NIL (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| |#1| (-626 (-906 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1042))) (((-171 (-227)) $) NIL (|has| |#1| (-1042))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2633 (($ $) 46)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-360))))) (-2648 (($ |#1| |#1|) 38)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-568))))) (-1972 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-3069 (((-1192 |#1|) $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL)) (-3652 (($ $) NIL (|has| |#1| (-1222)))) (-3509 (($ $) NIL (|has| |#1| (-1222)))) (-3111 (((-112) $ $) NIL (-3794 (-12 (|has| |#1| (-317)) (|has| |#1| (-927))) (|has| |#1| (-568))))) (-3631 (($ $) NIL (|has| |#1| (-1222)))) (-3486 (($ $) NIL (|has| |#1| (-1222)))) (-3672 (($ $) NIL (|has| |#1| (-1222)))) (-3536 (($ $) NIL (|has| |#1| (-1222)))) (-3840 ((|#1| $) NIL (|has| |#1| (-1222)))) (-1970 (($ $) NIL (|has| |#1| (-1222)))) (-3549 (($ $) NIL (|has| |#1| (-1222)))) (-3663 (($ $) NIL (|has| |#1| (-1222)))) (-3522 (($ $) NIL (|has| |#1| (-1222)))) (-3641 (($ $) NIL (|has| |#1| (-1222)))) (-3497 (($ $) NIL (|has| |#1| (-1222)))) (-2388 (($ $) NIL (|has| |#1| (-1080)))) (-4314 (($) 28 T CONST)) (-4320 (($) 30 T CONST)) (-3678 (((-1178) $) 23 (|has| |#1| (-840))) (((-1178) $ (-112)) 25 (|has| |#1| (-840))) (((-1292) (-834) $) 26 (|has| |#1| (-840))) (((-1292) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-3155 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) (|has| |#1| (-918 (-1196))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3794 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 40)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1222)))) (($ $ $) NIL (|has| |#1| (-1222))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +((-2471 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4366 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2318 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4177 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1665 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3355 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-736 |t#1| (-1193 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-899 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -4177) (-15 -4366 ($)) (-15 -2318 ($ $)) (-15 -4177 ($ |t#1| |t#1|)) (-15 -1861 (|t#1| $)) (-15 -1851 (|t#1| $)) (-15 -2471 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3475 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1043)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -1665 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1223)) (PROGN (-6 (-1223)) (-15 -4110 (|t#1| $)) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -3570 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-317)) (-6 (-928)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1223)) ((-95) |has| |#1| (-1223)) ((-102) . T) ((-111 #0# #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2758 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-876)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1043)) ((-626 (-171 (-390))) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-626 #1=(-1193 |#1|)) . T) ((-234 $) -2758 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -2758 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -2758 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1223)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2758 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2758 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2758 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2758 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1223)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2758 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-911 $ #3=(-1197)) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) -12 (|has| |#1| (-317)) (|has| |#1| (-928))) ((-939) -2758 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1023) -12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1223) |has| |#1| (-1223)) ((-1226) |has| |#1| (-1223)) ((-1238) . T) ((-1242) -2758 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) +((-1828 (((-430 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -1828 ((-430 |#2|) |#2|))) (-317) (-1264 (-171 |#1|))) (T -168)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(-10 -7 (-15 -1828 ((-430 |#2|) |#2|))) +((-2375 (((-1156) (-1156) (-301)) 8)) (-4089 (((-656 (-703 (-290))) (-1179)) 81)) (-2994 (((-703 (-290)) (-1156)) 76))) +(((-169) (-13 (-1238) (-10 -7 (-15 -2375 ((-1156) (-1156) (-301))) (-15 -2994 ((-703 (-290)) (-1156))) (-15 -4089 ((-656 (-703 (-290))) (-1179)))))) (T -169)) +((-2375 (*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) +(-13 (-1238) (-10 -7 (-15 -2375 ((-1156) (-1156) (-301))) (-15 -2994 ((-703 (-290)) (-1156))) (-15 -4089 ((-656 (-703 (-290))) (-1179))))) +((-4116 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -4116 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -4116 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 34)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-2544 (($ $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-1574 (((-112) $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-2747 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-2208 ((|#1| $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-1223)))) (-3900 (($ $) NIL (|has| |#1| (-1223)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3420 (($ $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1770 (((-430 $) $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1839 (($ $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-4005 (($ $) NIL (|has| |#1| (-1223)))) (-3876 (($ $) NIL (|has| |#1| (-1223)))) (-4049 (($ $) NIL (|has| |#1| (-1223)))) (-3919 (($ $) NIL (|has| |#1| (-1223)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3208 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3428 (($ $ $) NIL (|has| |#1| (-317)))) (-3567 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3685 (($ (-1193 |#1|)) NIL) (((-3 $ "failed") (-419 (-1193 |#1|))) NIL (|has| |#1| (-374)))) (-3451 (((-3 $ "failed") $) NIL)) (-1851 ((|#1| $) 13)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3426 (((-112) $) NIL (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL (|has| |#1| (-317)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-3814 (($) NIL (|has| |#1| (-360)))) (-2117 (((-112) $) NIL (|has| |#1| (-360)))) (-1332 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4169 (((-112) $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3570 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-1600 (($) NIL (|has| |#1| (-1223)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-3309 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-3215 (((-112) $) 36)) (-4336 (($ $ (-576)) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-2471 ((|#1| $) 47)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2542 (((-1193 |#1|) $) NIL (|has| |#1| (-374)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-3744 (($ $) NIL (|has| |#1| (-1223)))) (-3671 (((-1193 |#1|) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3539 (($) NIL (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-4366 (($) NIL)) (-1861 ((|#1| $) 15)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-317)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| |#1| (-360)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1828 (((-430 $) $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-317)))) (-3475 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-4103 (($ $) NIL (|has| |#1| (-1223)))) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2411 (((-783) $) NIL (|has| |#1| (-317)))) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-317)))) (-2455 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-2992 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2773 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-4058 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1897 (((-1193 |#1|)) NIL)) (-4060 (($ $) NIL (|has| |#1| (-1223)))) (-3929 (($ $) NIL (|has| |#1| (-1223)))) (-2051 (($) NIL (|has| |#1| (-360)))) (-4036 (($ $) NIL (|has| |#1| (-1223)))) (-3909 (($ $) NIL (|has| |#1| (-1223)))) (-4013 (($ $) NIL (|has| |#1| (-1223)))) (-3888 (($ $) NIL (|has| |#1| (-1223)))) (-1490 (((-1288 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4171 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) (((-1193 |#1|) $) NIL) (($ (-1193 |#1|)) NIL) (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1043))) (((-171 (-227)) $) NIL (|has| |#1| (-1043))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2318 (($ $) 46)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-360))))) (-4177 (($ |#1| |#1|) 38)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-3230 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2137 (((-1193 |#1|) $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL)) (-2789 (($ $) NIL (|has| |#1| (-1223)))) (-3960 (($ $) NIL (|has| |#1| (-1223)))) (-2537 (((-112) $ $) NIL (-2758 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (|has| |#1| (-1223)))) (-3937 (($ $) NIL (|has| |#1| (-1223)))) (-2814 (($ $) NIL (|has| |#1| (-1223)))) (-3982 (($ $) NIL (|has| |#1| (-1223)))) (-4110 ((|#1| $) NIL (|has| |#1| (-1223)))) (-4387 (($ $) NIL (|has| |#1| (-1223)))) (-3994 (($ $) NIL (|has| |#1| (-1223)))) (-2802 (($ $) NIL (|has| |#1| (-1223)))) (-3973 (($ $) NIL (|has| |#1| (-1223)))) (-4082 (($ $) NIL (|has| |#1| (-1223)))) (-3950 (($ $) NIL (|has| |#1| (-1223)))) (-1665 (($ $) NIL (|has| |#1| (-1081)))) (-2719 (($) 28 T CONST)) (-2730 (($) 30 T CONST)) (-3157 (((-1179) $) 23 (|has| |#1| (-840))) (((-1179) $ (-112)) 25 (|has| |#1| (-840))) (((-1293) (-834) $) 26 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-2018 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2758 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 40)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) NIL (|has| |#1| (-1223))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) (((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171)) NIL (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-1554 (((-906 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1554 ((-906 |#1|) |#3|))) (-1120) (-13 (-626 (-906 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-1554 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-906 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1120)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -1554 ((-906 |#1|) |#3|))) -((-1952 (((-112) $ $) NIL)) (-3514 (((-112) $) 9)) (-2821 (((-112) $ (-112)) 11)) (-1989 (($) 13)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4286 (($ $) 14)) (-4112 (((-875) $) 18)) (-3546 (((-112) $) 8)) (-1595 (((-112) $ (-112)) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-173) (-13 (-1120) (-10 -8 (-15 -1989 ($)) (-15 -3546 ((-112) $)) (-15 -3514 ((-112) $)) (-15 -1595 ((-112) $ (-112))) (-15 -2821 ((-112) $ (-112))) (-15 -4286 ($ $))))) (T -173)) -((-1989 (*1 *1) (-5 *1 (-173))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1595 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2821 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4286 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1120) (-10 -8 (-15 -1989 ($)) (-15 -3546 ((-112) $)) (-15 -3514 ((-112) $)) (-15 -1595 ((-112) $ (-112))) (-15 -2821 ((-112) $ (-112))) (-15 -4286 ($ $)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4171 (((-907 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4171 ((-907 |#1|) |#3|))) (-1121) (-13 (-626 (-907 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-4171 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -4171 ((-907 |#1|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-4146 (((-112) $) 9)) (-3585 (((-112) $ (-112)) 11)) (-4140 (($) 13)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1870 (($ $) 14)) (-3569 (((-876) $) 18)) (-4409 (((-112) $) 8)) (-1957 (((-112) $ (-112)) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-173) (-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -4409 ((-112) $)) (-15 -4146 ((-112) $)) (-15 -1957 ((-112) $ (-112))) (-15 -3585 ((-112) $ (-112))) (-15 -1870 ($ $))))) (T -173)) +((-4140 (*1 *1) (-5 *1 (-173))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1957 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3585 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1870 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -4409 ((-112) $)) (-15 -4146 ((-112) $)) (-15 -1957 ((-112) $ (-112))) (-15 -3585 ((-112) $ (-112))) (-15 -1870 ($ $)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1069) (-111 $ $) (-10 -7 (-6 (-4465 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1743 (($ $) 6))) +(-13 (-1070) (-111 $ $) (-10 -7 (-6 (-4466 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-1540 (($ $) 6))) (((-175) (-141)) (T -175)) -((-1743 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -1743 ($ $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 ((|#1| $) 81)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL)) (-2394 (($ $) 21)) (-2156 (($ |#1| (-1177 |#1|)) 50)) (-3900 (((-3 $ "failed") $) 123)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-3315 (((-1177 |#1|) $) 88)) (-2681 (((-1177 |#1|) $) 85)) (-2357 (((-1177 |#1|) $) 86)) (-2287 (((-112) $) NIL)) (-2970 (((-1177 |#1|) $) 94)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3075 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-3679 (($ $ (-576)) 97)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3092 (((-1177 |#1|) $) 95)) (-2423 (((-1177 (-419 |#1|)) $) 14)) (-2324 (($ (-419 |#1|)) 17) (($ |#1| (-1177 |#1|) (-1177 |#1|)) 40)) (-3454 (($ $) 99)) (-4112 (((-875) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4115 (((-783)) 69 T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-1852 (((-1177 (-419 |#1|)) $) 20)) (-4314 (($) 27 T CONST)) (-4320 (($) 30 T CONST)) (-3938 (((-112) $ $) 37)) (-4046 (($ $ $) 121)) (-4036 (($ $) 112) (($ $ $) 109)) (-4026 (($ $ $) 107)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2324 ($ (-419 |#1|))) (-15 -2324 ($ |#1| (-1177 |#1|) (-1177 |#1|))) (-15 -2156 ($ |#1| (-1177 |#1|))) (-15 -2681 ((-1177 |#1|) $)) (-15 -2357 ((-1177 |#1|) $)) (-15 -3315 ((-1177 |#1|) $)) (-15 -1705 (|#1| $)) (-15 -2394 ($ $)) (-15 -1852 ((-1177 (-419 |#1|)) $)) (-15 -2423 ((-1177 (-419 |#1|)) $)) (-15 -2970 ((-1177 |#1|) $)) (-15 -3092 ((-1177 |#1|) $)) (-15 -3679 ($ $ (-576))) (-15 -3454 ($ $)))) (-317)) (T -176)) -((-2324 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-2324 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1177 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2156 (*1 *1 *2 *3) (-12 (-5 *3 (-1177 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1705 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2394 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-1177 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1177 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3679 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3454 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2324 ($ (-419 |#1|))) (-15 -2324 ($ |#1| (-1177 |#1|) (-1177 |#1|))) (-15 -2156 ($ |#1| (-1177 |#1|))) (-15 -2681 ((-1177 |#1|) $)) (-15 -2357 ((-1177 |#1|) $)) (-15 -3315 ((-1177 |#1|) $)) (-15 -1705 (|#1| $)) (-15 -2394 ($ $)) (-15 -1852 ((-1177 (-419 |#1|)) $)) (-15 -2423 ((-1177 (-419 |#1|)) $)) (-15 -2970 ((-1177 |#1|) $)) (-15 -3092 ((-1177 |#1|) $)) (-15 -3679 ($ $ (-576))) (-15 -3454 ($ $)))) -((-2200 (($ (-109) $) 15)) (-1439 (((-703 (-109)) (-518) $) 14)) (-4112 (((-875) $) 18)) (-3221 (((-656 (-109)) $) 8))) -(((-177) (-13 (-625 (-875)) (-10 -8 (-15 -3221 ((-656 (-109)) $)) (-15 -2200 ($ (-109) $)) (-15 -1439 ((-703 (-109)) (-518) $))))) (T -177)) -((-3221 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-2200 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-1439 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) -(-13 (-625 (-875)) (-10 -8 (-15 -3221 ((-656 (-109)) $)) (-15 -2200 ($ (-109) $)) (-15 -1439 ((-703 (-109)) (-518) $)))) -((-3902 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 38)) (-3516 (((-961 |#1|) (-961 |#1|)) 22)) (-2892 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 34)) (-2620 (((-961 |#1|) (-961 |#1|)) 20)) (-1373 (((-961 |#1|) (-961 |#1|)) 28)) (-1897 (((-961 |#1|) (-961 |#1|)) 27)) (-2907 (((-961 |#1|) (-961 |#1|)) 26)) (-3373 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 35)) (-3811 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 33)) (-3023 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 32)) (-3676 (((-961 |#1|) (-961 |#1|)) 21)) (-1898 (((-1 (-961 |#1|) (-961 |#1|)) |#1| |#1|) 41)) (-2236 (((-961 |#1|) (-961 |#1|)) 8)) (-3396 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 37)) (-2037 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -2236 ((-961 |#1|) (-961 |#1|))) (-15 -2620 ((-961 |#1|) (-961 |#1|))) (-15 -3676 ((-961 |#1|) (-961 |#1|))) (-15 -3516 ((-961 |#1|) (-961 |#1|))) (-15 -2907 ((-961 |#1|) (-961 |#1|))) (-15 -1897 ((-961 |#1|) (-961 |#1|))) (-15 -1373 ((-961 |#1|) (-961 |#1|))) (-15 -3023 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3811 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -2892 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3373 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -2037 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3396 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3902 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1898 ((-1 (-961 |#1|) (-961 |#1|)) |#1| |#1|))) (-13 (-374) (-1222) (-1022))) (T -178)) -((-1898 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-3902 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-3396 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-2037 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-3373 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-2892 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-3811 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3)))) (-2907 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3)))) (-3516 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -2236 ((-961 |#1|) (-961 |#1|))) (-15 -2620 ((-961 |#1|) (-961 |#1|))) (-15 -3676 ((-961 |#1|) (-961 |#1|))) (-15 -3516 ((-961 |#1|) (-961 |#1|))) (-15 -2907 ((-961 |#1|) (-961 |#1|))) (-15 -1897 ((-961 |#1|) (-961 |#1|))) (-15 -1373 ((-961 |#1|) (-961 |#1|))) (-15 -3023 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3811 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -2892 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3373 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -2037 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3396 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -3902 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1898 ((-1 (-961 |#1|) (-961 |#1|)) |#1| |#1|))) -((-3069 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3069 (|#2| |#3|))) (-174) (-1263 |#1|) (-736 |#1| |#2|)) (T -179)) -((-3069 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1263 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) -(-10 -7 (-15 -3069 (|#2| |#3|))) -((-1445 (((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)) 44 (|has| (-970 |#2|) (-900 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-970 |#2|) (-900 |#1|)) (-15 -1445 ((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|))) |%noBranch|)) (-1120) (-13 (-900 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-4 *3 (-167 *6)) (-4 (-970 *6) (-900 *5)) (-4 *6 (-13 (-900 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-970 |#2|) (-900 |#1|)) (-15 -1445 ((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|))) |%noBranch|)) -((-2737 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-3162 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-3137 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -3162 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3137 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3137 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2737 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) -((-2737 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-3137 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-3137 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-3162 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -3162 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3137 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3137 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2737 ((-656 |#1|) (-656 |#1|) |#1|))) -((-1952 (((-112) $ $) NIL)) (-4169 (((-1236) $) 13)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2229 (((-1155) $) 10)) (-4112 (((-875) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-182) (-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -4169 ((-1236) $))))) (T -182)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-182)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-182))))) -(-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -4169 ((-1236) $)))) -((-2654 (((-2 (|:| |start| |#2|) (|:| -1749 (-430 |#2|))) |#2|) 66)) (-3653 ((|#1| |#1|) 58)) (-2407 (((-171 |#1|) |#2|) 93)) (-1848 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-1334 ((|#2| |#2|) 91)) (-4108 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-2647 ((|#1| |#2|) 117)) (-3968 ((|#2| |#2|) 130)) (-1450 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-3710 (((-656 (-2 (|:| -1749 (-656 |#2|)) (|:| -2176 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -1749 (-656 |#2|)) (|:| -2176 |#1|))) |#2| |#2| (-112)) 81)) (-3621 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3621 ((-656 (-171 |#1|)) |#2|)) (-15 -3621 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3710 ((-656 (-2 (|:| -1749 (-656 |#2|)) (|:| -2176 |#1|))) |#2| |#2| (-112))) (-15 -3710 ((-656 (-2 (|:| -1749 (-656 |#2|)) (|:| -2176 |#1|))) |#2| |#2|)) (-15 -1450 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1450 ((-430 |#2|) |#2| |#1|)) (-15 -1450 ((-430 |#2|) |#2|)) (-15 -3968 (|#2| |#2|)) (-15 -2647 (|#1| |#2|)) (-15 -4108 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4108 ((-430 |#2|) |#2| |#1|)) (-15 -1334 (|#2| |#2|)) (-15 -1848 (|#1| |#2| |#1|)) (-15 -1848 (|#1| |#2|)) (-15 -2407 ((-171 |#1|) |#2|)) (-15 -3653 (|#1| |#1|)) (-15 -2654 ((-2 (|:| |start| |#2|) (|:| -1749 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1263 (-171 |#1|))) (T -183)) -((-2654 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -1749 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3653 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-2407 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1263 *2)))) (-1848 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1848 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-4108 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2647 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-3968 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1450 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1450 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3710 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1749 (-656 *3)) (|:| -2176 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3710 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1749 (-656 *3)) (|:| -2176 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1263 (-171 *5))))) (-3621 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(-10 -7 (-15 -3621 ((-656 (-171 |#1|)) |#2|)) (-15 -3621 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3710 ((-656 (-2 (|:| -1749 (-656 |#2|)) (|:| -2176 |#1|))) |#2| |#2| (-112))) (-15 -3710 ((-656 (-2 (|:| -1749 (-656 |#2|)) (|:| -2176 |#1|))) |#2| |#2|)) (-15 -1450 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1450 ((-430 |#2|) |#2| |#1|)) (-15 -1450 ((-430 |#2|) |#2|)) (-15 -3968 (|#2| |#2|)) (-15 -2647 (|#1| |#2|)) (-15 -4108 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4108 ((-430 |#2|) |#2| |#1|)) (-15 -1334 (|#2| |#2|)) (-15 -1848 (|#1| |#2| |#1|)) (-15 -1848 (|#1| |#2|)) (-15 -2407 ((-171 |#1|) |#2|)) (-15 -3653 (|#1| |#1|)) (-15 -2654 ((-2 (|:| |start| |#2|) (|:| -1749 (-430 |#2|))) |#2|))) -((-2221 (((-3 |#2| "failed") |#2|) 16)) (-2957 (((-783) |#2|) 18)) (-1909 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -2221 ((-3 |#2| "failed") |#2|)) (-15 -2957 ((-783) |#2|)) (-15 -1909 (|#2| |#2| |#2|))) (-1237) (-686 |#1|)) (T -184)) -((-1909 (*1 *2 *2 *2) (-12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-2957 (*1 *2 *3) (-12 (-4 *4 (-1237)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-2221 (*1 *2 *2) (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(-10 -7 (-15 -2221 ((-3 |#2| "failed") |#2|)) (-15 -2957 ((-783) |#2|)) (-15 -1909 (|#2| |#2| |#2|))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1784 ((|#1| $) 7)) (-4112 (((-875) $) 14)) (-1994 (((-112) $ $) NIL)) (-4284 (((-656 (-1201)) $) 10)) (-3938 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1120) (-10 -8 (-15 -1784 (|#1| $)) (-15 -4284 ((-656 (-1201)) $)))) (-187)) (T -185)) -((-1784 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1120) (-10 -8 (-15 -1784 (|#1| $)) (-15 -4284 ((-656 (-1201)) $)))) -((-3866 (((-656 (-878)) $) 16)) (-3949 (((-188) $) 8)) (-3096 (((-656 (-112)) $) 13)) (-2670 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -3866 ((-656 (-878)) |#1|)) (-15 -3096 ((-656 (-112)) |#1|)) (-15 -3949 ((-188) |#1|)) (-15 -2670 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3866 ((-656 (-878)) |#1|)) (-15 -3096 ((-656 (-112)) |#1|)) (-15 -3949 ((-188) |#1|)) (-15 -2670 ((-55) |#1|))) -((-1952 (((-112) $ $) 7)) (-3866 (((-656 (-878)) $) 19)) (-4148 (((-518) $) 16)) (-2043 (((-1178) $) 10)) (-3949 (((-188) $) 21)) (-1681 (((-112) $ (-518)) 14)) (-3115 (((-1140) $) 11)) (-3096 (((-656 (-112)) $) 20)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-2670 (((-55) $) 15)) (-3938 (((-112) $ $) 8))) +((-1540 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -1540 ($ $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 ((|#1| $) 81)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-1726 (($ $) 21)) (-4433 (($ |#1| (-1178 |#1|)) 50)) (-3451 (((-3 $ "failed") $) 123)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-2774 (((-1178 |#1|) $) 88)) (-1578 (((-1178 |#1|) $) 85)) (-2572 (((-1178 |#1|) $) 86)) (-3215 (((-112) $) NIL)) (-3705 (((-1178 |#1|) $) 94)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3169 (($ $ (-576)) 97)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2376 (((-1178 |#1|) $) 95)) (-1990 (((-1178 (-419 |#1|)) $) 14)) (-2270 (($ (-419 |#1|)) 17) (($ |#1| (-1178 |#1|) (-1178 |#1|)) 40)) (-1633 (($ $) 99)) (-3569 (((-876) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1778 (((-783)) 69 T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-3333 (((-1178 (-419 |#1|)) $) 20)) (-2719 (($) 27 T CONST)) (-2730 (($) 30 T CONST)) (-2923 (((-112) $ $) 37)) (-3056 (($ $ $) 121)) (-3043 (($ $) 112) (($ $ $) 109)) (-3029 (($ $ $) 107)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2270 ($ (-419 |#1|))) (-15 -2270 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -4433 ($ |#1| (-1178 |#1|))) (-15 -1578 ((-1178 |#1|) $)) (-15 -2572 ((-1178 |#1|) $)) (-15 -2774 ((-1178 |#1|) $)) (-15 -2347 (|#1| $)) (-15 -1726 ($ $)) (-15 -3333 ((-1178 (-419 |#1|)) $)) (-15 -1990 ((-1178 (-419 |#1|)) $)) (-15 -3705 ((-1178 |#1|) $)) (-15 -2376 ((-1178 |#1|) $)) (-15 -3169 ($ $ (-576))) (-15 -1633 ($ $)))) (-317)) (T -176)) +((-2270 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-2270 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-4433 (*1 *1 *2 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2347 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-1726 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3169 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1633 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2270 ($ (-419 |#1|))) (-15 -2270 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -4433 ($ |#1| (-1178 |#1|))) (-15 -1578 ((-1178 |#1|) $)) (-15 -2572 ((-1178 |#1|) $)) (-15 -2774 ((-1178 |#1|) $)) (-15 -2347 (|#1| $)) (-15 -1726 ($ $)) (-15 -3333 ((-1178 (-419 |#1|)) $)) (-15 -1990 ((-1178 (-419 |#1|)) $)) (-15 -3705 ((-1178 |#1|) $)) (-15 -2376 ((-1178 |#1|) $)) (-15 -3169 ($ $ (-576))) (-15 -1633 ($ $)))) +((-3637 (($ (-109) $) 15)) (-2329 (((-703 (-109)) (-518) $) 14)) (-3569 (((-876) $) 18)) (-2576 (((-656 (-109)) $) 8))) +(((-177) (-13 (-625 (-876)) (-10 -8 (-15 -2576 ((-656 (-109)) $)) (-15 -3637 ($ (-109) $)) (-15 -2329 ((-703 (-109)) (-518) $))))) (T -177)) +((-2576 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-3637 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2329 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2576 ((-656 (-109)) $)) (-15 -3637 ($ (-109) $)) (-15 -2329 ((-703 (-109)) (-518) $)))) +((-3473 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 38)) (-4166 (((-962 |#1|) (-962 |#1|)) 22)) (-3020 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 34)) (-2189 (((-962 |#1|) (-962 |#1|)) 20)) (-3810 (((-962 |#1|) (-962 |#1|)) 28)) (-3793 (((-962 |#1|) (-962 |#1|)) 27)) (-3164 (((-962 |#1|) (-962 |#1|)) 26)) (-2121 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 35)) (-1855 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 33)) (-2942 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 32)) (-3130 (((-962 |#1|) (-962 |#1|)) 21)) (-3803 (((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|) 41)) (-2695 (((-962 |#1|) (-962 |#1|)) 8)) (-2337 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 37)) (-2519 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -2695 ((-962 |#1|) (-962 |#1|))) (-15 -2189 ((-962 |#1|) (-962 |#1|))) (-15 -3130 ((-962 |#1|) (-962 |#1|))) (-15 -4166 ((-962 |#1|) (-962 |#1|))) (-15 -3164 ((-962 |#1|) (-962 |#1|))) (-15 -3793 ((-962 |#1|) (-962 |#1|))) (-15 -3810 ((-962 |#1|) (-962 |#1|))) (-15 -2942 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1855 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3020 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2121 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2519 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2337 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3473 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3803 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) (-13 (-374) (-1223) (-1023))) (T -178)) +((-3803 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3473 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2337 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2519 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3020 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1855 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -2695 ((-962 |#1|) (-962 |#1|))) (-15 -2189 ((-962 |#1|) (-962 |#1|))) (-15 -3130 ((-962 |#1|) (-962 |#1|))) (-15 -4166 ((-962 |#1|) (-962 |#1|))) (-15 -3164 ((-962 |#1|) (-962 |#1|))) (-15 -3793 ((-962 |#1|) (-962 |#1|))) (-15 -3810 ((-962 |#1|) (-962 |#1|))) (-15 -2942 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1855 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3020 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2121 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2519 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2337 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3473 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3803 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) +((-2137 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2137 (|#2| |#3|))) (-174) (-1264 |#1|) (-736 |#1| |#2|)) (T -179)) +((-2137 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) +(-10 -7 (-15 -2137 (|#2| |#3|))) +((-2399 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 44 (|has| (-971 |#2|) (-901 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -2399 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) (-1121) (-13 (-901 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -2399 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) +((-4054 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-1759 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-1535 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -1759 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -1535 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -1535 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -4054 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) +((-4054 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-1535 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-1535 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-1759 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -1759 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -1535 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -1535 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -4054 ((-656 |#1|) (-656 |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 13)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3122 (((-1156) $) 10)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-182) (-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2983 ((-1237) $))))) (T -182)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182))))) +(-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2983 ((-1237) $)))) +((-2520 (((-2 (|:| |start| |#2|) (|:| -1601 (-430 |#2|))) |#2|) 66)) (-2891 ((|#1| |#1|) 58)) (-1848 (((-171 |#1|) |#2|) 93)) (-3291 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-2934 ((|#2| |#2|) 91)) (-1719 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-2471 ((|#1| |#2|) 117)) (-2812 ((|#2| |#2|) 130)) (-1828 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-2178 (((-656 (-2 (|:| -1601 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -1601 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2| (-112)) 81)) (-3891 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -3891 ((-656 (-171 |#1|)) |#2|)) (-15 -3891 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -2178 ((-656 (-2 (|:| -1601 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2| (-112))) (-15 -2178 ((-656 (-2 (|:| -1601 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2|)) (-15 -1828 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1828 ((-430 |#2|) |#2| |#1|)) (-15 -1828 ((-430 |#2|) |#2|)) (-15 -2812 (|#2| |#2|)) (-15 -2471 (|#1| |#2|)) (-15 -1719 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1719 ((-430 |#2|) |#2| |#1|)) (-15 -2934 (|#2| |#2|)) (-15 -3291 (|#1| |#2| |#1|)) (-15 -3291 (|#1| |#2|)) (-15 -1848 ((-171 |#1|) |#2|)) (-15 -2891 (|#1| |#1|)) (-15 -2520 ((-2 (|:| |start| |#2|) (|:| -1601 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1264 (-171 |#1|))) (T -183)) +((-2520 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -1601 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2891 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1848 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2)))) (-3291 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-3291 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1719 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1719 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2471 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-2812 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1828 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2178 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1601 (-656 *3)) (|:| -3313 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2178 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1601 (-656 *3)) (|:| -3313 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) (-3891 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3891 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(-10 -7 (-15 -3891 ((-656 (-171 |#1|)) |#2|)) (-15 -3891 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -2178 ((-656 (-2 (|:| -1601 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2| (-112))) (-15 -2178 ((-656 (-2 (|:| -1601 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2|)) (-15 -1828 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1828 ((-430 |#2|) |#2| |#1|)) (-15 -1828 ((-430 |#2|) |#2|)) (-15 -2812 (|#2| |#2|)) (-15 -2471 (|#1| |#2|)) (-15 -1719 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1719 ((-430 |#2|) |#2| |#1|)) (-15 -2934 (|#2| |#2|)) (-15 -3291 (|#1| |#2| |#1|)) (-15 -3291 (|#1| |#2|)) (-15 -1848 ((-171 |#1|) |#2|)) (-15 -2891 (|#1| |#1|)) (-15 -2520 ((-2 (|:| |start| |#2|) (|:| -1601 (-430 |#2|))) |#2|))) +((-3872 (((-3 |#2| "failed") |#2|) 16)) (-3563 (((-783) |#2|) 18)) (-2595 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -3872 ((-3 |#2| "failed") |#2|)) (-15 -3563 ((-783) |#2|)) (-15 -2595 (|#2| |#2| |#2|))) (-1238) (-686 |#1|)) (T -184)) +((-2595 (*1 *2 *2 *2) (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-3872 (*1 *2 *2) (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) +(-10 -7 (-15 -3872 ((-3 |#2| "failed") |#2|)) (-15 -3563 ((-783) |#2|)) (-15 -2595 (|#2| |#2| |#2|))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2564 ((|#1| $) 7)) (-3569 (((-876) $) 14)) (-2113 (((-112) $ $) NIL)) (-1928 (((-656 (-1202)) $) 10)) (-2923 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1121) (-10 -8 (-15 -2564 (|#1| $)) (-15 -1928 ((-656 (-1202)) $)))) (-187)) (T -185)) +((-2564 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1121) (-10 -8 (-15 -2564 (|#1| $)) (-15 -1928 ((-656 (-1202)) $)))) +((-3296 (((-656 (-879)) $) 16)) (-1747 (((-188) $) 8)) (-2409 (((-656 (-112)) $) 13)) (-1479 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -3296 ((-656 (-879)) |#1|)) (-15 -2409 ((-656 (-112)) |#1|)) (-15 -1747 ((-188) |#1|)) (-15 -1479 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3296 ((-656 (-879)) |#1|)) (-15 -2409 ((-656 (-112)) |#1|)) (-15 -1747 ((-188) |#1|)) (-15 -1479 ((-55) |#1|))) +((-3488 (((-112) $ $) 7)) (-3296 (((-656 (-879)) $) 19)) (-2627 (((-518) $) 16)) (-1413 (((-1179) $) 10)) (-1747 (((-188) $) 21)) (-2158 (((-112) $ (-518)) 14)) (-1450 (((-1141) $) 11)) (-2409 (((-656 (-112)) $) 20)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-1479 (((-55) $) 15)) (-2923 (((-112) $ $) 8))) (((-187) (-141)) (T -187)) -((-3949 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-878)))))) -(-13 (-847 (-518)) (-10 -8 (-15 -3949 ((-188) $)) (-15 -3096 ((-656 (-112)) $)) (-15 -3866 ((-656 (-878)) $)))) -(((-102) . T) ((-625 (-875)) . T) ((-847 (-518)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-8 (($) 7 T CONST)) (-4112 (((-875) $) 12)) (-9 (($) 6 T CONST)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 10))) -(((-188) (-13 (-1120) (-10 -8 (-15 -9 ($) -2665) (-15 -8 ($) -2665) (-15 -7 ($) -2665)))) (T -188)) +((-1747 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) +(-13 (-847 (-518)) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2409 ((-656 (-112)) $)) (-15 -3296 ((-656 (-879)) $)))) +(((-102) . T) ((-625 (-876)) . T) ((-847 (-518)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-8 (($) 7 T CONST)) (-3569 (((-876) $) 12)) (-9 (($) 6 T CONST)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 10))) +(((-188) (-13 (-1121) (-10 -8 (-15 -9 ($) -1480) (-15 -8 ($) -1480) (-15 -7 ($) -1480)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1120) (-10 -8 (-15 -9 ($) -2665) (-15 -8 ($) -2665) (-15 -7 ($) -2665))) -((-1952 (((-112) $ $) NIL)) (-3866 (((-656 (-878)) $) NIL)) (-4148 (((-518) $) 8)) (-2043 (((-1178) $) NIL)) (-3949 (((-188) $) 10)) (-1681 (((-112) $ (-518)) NIL)) (-3115 (((-1140) $) NIL)) (-1969 (((-703 $) (-518)) 17)) (-3096 (((-656 (-112)) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-2670 (((-55) $) 12)) (-3938 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -1969 ((-703 $) (-518)))))) (T -189)) -((-1969 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -1969 ((-703 $) (-518))))) -((-3626 ((|#2| |#2|) 28)) (-1884 (((-112) |#2|) 19)) (-1473 (((-326 |#1|) |#2|) 12)) (-1483 (((-326 |#1|) |#2|) 14)) (-3156 ((|#2| |#2| (-1196)) 69) ((|#2| |#2|) 70)) (-3513 (((-171 (-326 |#1|)) |#2|) 10)) (-3305 ((|#2| |#2| (-1196)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3156 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-1196))) (-15 -3305 (|#2| |#2|)) (-15 -3305 (|#2| |#2| (-1196))) (-15 -1473 ((-326 |#1|) |#2|)) (-15 -1483 ((-326 |#1|) |#2|)) (-15 -1884 ((-112) |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3513 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1058 (-576))) (-13 (-27) (-1222) (-442 (-171 |#1|)))) (T -190)) -((-3513 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) (-1884 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-1483 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-1473 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3305 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) (-3156 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3))))))) -(-10 -7 (-15 -3156 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-1196))) (-15 -3305 (|#2| |#2|)) (-15 -3305 (|#2| |#2| (-1196))) (-15 -1473 ((-326 |#1|) |#2|)) (-15 -1483 ((-326 |#1|) |#2|)) (-15 -1884 ((-112) |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3513 ((-171 (-326 |#1|)) |#2|))) -((-3754 (((-1287 (-701 (-970 |#1|))) (-1287 (-701 |#1|))) 26)) (-4112 (((-1287 (-701 (-419 (-970 |#1|)))) (-1287 (-701 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -3754 ((-1287 (-701 (-970 |#1|))) (-1287 (-701 |#1|)))) (-15 -4112 ((-1287 (-701 (-419 (-970 |#1|)))) (-1287 (-701 |#1|))))) (-174)) (T -191)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1287 (-701 (-419 (-970 *4))))) (-5 *1 (-191 *4)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1287 (-701 (-970 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -3754 ((-1287 (-701 (-970 |#1|))) (-1287 (-701 |#1|)))) (-15 -4112 ((-1287 (-701 (-419 (-970 |#1|)))) (-1287 (-701 |#1|))))) -((-2775 (((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 93)) (-1885 (((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-4029 (((-1198 (-419 (-576))) (-939)) 54)) (-1486 (((-1198 (-419 (-576))) (-939)) 79)) (-2143 (((-419 (-576)) (-1198 (-419 (-576)))) 89)) (-3600 (((-1198 (-419 (-576))) (-939)) 37)) (-2015 (((-1198 (-419 (-576))) (-939)) 66)) (-1837 (((-1198 (-419 (-576))) (-939)) 61)) (-2903 (((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 87)) (-3454 (((-1198 (-419 (-576))) (-939)) 29)) (-2600 (((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 91)) (-2764 (((-1198 (-419 (-576))) (-939)) 35)) (-1503 (((-1198 (-419 (-576))) (-656 (-939))) 100))) -(((-192) (-10 -7 (-15 -3454 ((-1198 (-419 (-576))) (-939))) (-15 -4029 ((-1198 (-419 (-576))) (-939))) (-15 -3600 ((-1198 (-419 (-576))) (-939))) (-15 -2764 ((-1198 (-419 (-576))) (-939))) (-15 -1837 ((-1198 (-419 (-576))) (-939))) (-15 -2015 ((-1198 (-419 (-576))) (-939))) (-15 -1486 ((-1198 (-419 (-576))) (-939))) (-15 -2600 ((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2903 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2143 ((-419 (-576)) (-1198 (-419 (-576))))) (-15 -2775 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -1503 ((-1198 (-419 (-576))) (-656 (-939)))) (-15 -1885 ((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) -((-1885 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2775 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2903 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2600 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(-10 -7 (-15 -3454 ((-1198 (-419 (-576))) (-939))) (-15 -4029 ((-1198 (-419 (-576))) (-939))) (-15 -3600 ((-1198 (-419 (-576))) (-939))) (-15 -2764 ((-1198 (-419 (-576))) (-939))) (-15 -1837 ((-1198 (-419 (-576))) (-939))) (-15 -2015 ((-1198 (-419 (-576))) (-939))) (-15 -1486 ((-1198 (-419 (-576))) (-939))) (-15 -2600 ((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2903 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2143 ((-419 (-576)) (-1198 (-419 (-576))))) (-15 -2775 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -1503 ((-1198 (-419 (-576))) (-656 (-939)))) (-15 -1885 ((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576))))) -((-3100 (((-430 (-1192 (-576))) (-576)) 38)) (-3000 (((-656 (-1192 (-576))) (-576)) 33)) (-3799 (((-1192 (-576)) (-576)) 28))) -(((-193) (-10 -7 (-15 -3000 ((-656 (-1192 (-576))) (-576))) (-15 -3799 ((-1192 (-576)) (-576))) (-15 -3100 ((-430 (-1192 (-576))) (-576))))) (T -193)) -((-3100 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3799 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3000 (*1 *2 *3) (-12 (-5 *2 (-656 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(-10 -7 (-15 -3000 ((-656 (-1192 (-576))) (-576))) (-15 -3799 ((-1192 (-576)) (-576))) (-15 -3100 ((-430 (-1192 (-576))) (-576)))) -((-1630 (((-1177 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2371 (((-656 (-1178)) (-1177 (-227))) NIL)) (-4052 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1635 (((-656 (-227)) (-326 (-227)) (-1196) (-1114 (-855 (-227)))) NIL)) (-1616 (((-656 (-1178)) (-656 (-227))) NIL)) (-4071 (((-227) (-1114 (-855 (-227)))) 31)) (-3906 (((-227) (-1114 (-855 (-227)))) 32)) (-2294 (((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2276 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-4007 (((-1178) (-227)) NIL)) (-2332 (((-1178) (-656 (-1178))) 27)) (-2901 (((-1055) (-1196) (-1196) (-1055)) 13))) -(((-194) (-10 -7 (-15 -4052 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2276 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4071 ((-227) (-1114 (-855 (-227))))) (-15 -3906 ((-227) (-1114 (-855 (-227))))) (-15 -2294 ((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1635 ((-656 (-227)) (-326 (-227)) (-1196) (-1114 (-855 (-227))))) (-15 -1630 ((-1177 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4007 ((-1178) (-227))) (-15 -1616 ((-656 (-1178)) (-656 (-227)))) (-15 -2371 ((-656 (-1178)) (-1177 (-227)))) (-15 -2332 ((-1178) (-656 (-1178)))) (-15 -2901 ((-1055) (-1196) (-1196) (-1055))))) (T -194)) -((-2901 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1196)) (-5 *1 (-194)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-194)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-1177 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-194)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-194)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -4052 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2276 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4071 ((-227) (-1114 (-855 (-227))))) (-15 -3906 ((-227) (-1114 (-855 (-227))))) (-15 -2294 ((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1635 ((-656 (-227)) (-326 (-227)) (-1196) (-1114 (-855 (-227))))) (-15 -1630 ((-1177 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4007 ((-1178) (-227))) (-15 -1616 ((-656 (-1178)) (-656 (-227)))) (-15 -2371 ((-656 (-1178)) (-1177 (-227)))) (-15 -2332 ((-1178) (-656 (-1178)))) (-15 -2901 ((-1055) (-1196) (-1196) (-1055)))) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 61) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +(-13 (-1121) (-10 -8 (-15 -9 ($) -1480) (-15 -8 ($) -1480) (-15 -7 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-3296 (((-656 (-879)) $) NIL)) (-2627 (((-518) $) 8)) (-1413 (((-1179) $) NIL)) (-1747 (((-188) $) 10)) (-2158 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-3210 (((-703 $) (-518)) 17)) (-2409 (((-656 (-112)) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-1479 (((-55) $) 12)) (-2923 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -3210 ((-703 $) (-518)))))) (T -189)) +((-3210 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -3210 ((-703 $) (-518))))) +((-3932 ((|#2| |#2|) 28)) (-3679 (((-112) |#2|) 19)) (-1851 (((-326 |#1|) |#2|) 12)) (-1861 (((-326 |#1|) |#2|) 14)) (-1701 ((|#2| |#2| (-1197)) 69) ((|#2| |#2|) 70)) (-4138 (((-171 (-326 |#1|)) |#2|) 10)) (-2676 ((|#2| |#2| (-1197)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -1701 (|#2| |#2|)) (-15 -1701 (|#2| |#2| (-1197))) (-15 -2676 (|#2| |#2|)) (-15 -2676 (|#2| |#2| (-1197))) (-15 -1851 ((-326 |#1|) |#2|)) (-15 -1861 ((-326 |#1|) |#2|)) (-15 -3679 ((-112) |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -4138 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-1223) (-442 (-171 |#1|)))) (T -190)) +((-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-3679 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1861 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-2676 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-1701 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3))))))) +(-10 -7 (-15 -1701 (|#2| |#2|)) (-15 -1701 (|#2| |#2| (-1197))) (-15 -2676 (|#2| |#2|)) (-15 -2676 (|#2| |#2| (-1197))) (-15 -1851 ((-326 |#1|) |#2|)) (-15 -1861 ((-326 |#1|) |#2|)) (-15 -3679 ((-112) |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -4138 ((-171 (-326 |#1|)) |#2|))) +((-2556 (((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|))) 26)) (-3569 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -2556 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -3569 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) (-174)) (T -191)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-419 (-971 *4))))) (-5 *1 (-191 *4)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -2556 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -3569 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) +((-4367 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 93)) (-3692 (((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-2134 (((-1199 (-419 (-576))) (-940)) 54)) (-4129 (((-1199 (-419 (-576))) (-940)) 79)) (-3283 (((-419 (-576)) (-1199 (-419 (-576)))) 89)) (-3667 (((-1199 (-419 (-576))) (-940)) 37)) (-2294 (((-1199 (-419 (-576))) (-940)) 66)) (-4407 (((-1199 (-419 (-576))) (-940)) 61)) (-3141 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 87)) (-1633 (((-1199 (-419 (-576))) (-940)) 29)) (-3274 (((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 91)) (-4289 (((-1199 (-419 (-576))) (-940)) 35)) (-4278 (((-1199 (-419 (-576))) (-656 (-940))) 100))) +(((-192) (-10 -7 (-15 -1633 ((-1199 (-419 (-576))) (-940))) (-15 -2134 ((-1199 (-419 (-576))) (-940))) (-15 -3667 ((-1199 (-419 (-576))) (-940))) (-15 -4289 ((-1199 (-419 (-576))) (-940))) (-15 -4407 ((-1199 (-419 (-576))) (-940))) (-15 -2294 ((-1199 (-419 (-576))) (-940))) (-15 -4129 ((-1199 (-419 (-576))) (-940))) (-15 -3274 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3141 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3283 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -4367 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -4278 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -3692 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) +((-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4367 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3141 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4407 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(-10 -7 (-15 -1633 ((-1199 (-419 (-576))) (-940))) (-15 -2134 ((-1199 (-419 (-576))) (-940))) (-15 -3667 ((-1199 (-419 (-576))) (-940))) (-15 -4289 ((-1199 (-419 (-576))) (-940))) (-15 -4407 ((-1199 (-419 (-576))) (-940))) (-15 -2294 ((-1199 (-419 (-576))) (-940))) (-15 -4129 ((-1199 (-419 (-576))) (-940))) (-15 -3274 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3141 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3283 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -4367 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -4278 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -3692 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))))) +((-2443 (((-430 (-1193 (-576))) (-576)) 38)) (-2699 (((-656 (-1193 (-576))) (-576)) 33)) (-1760 (((-1193 (-576)) (-576)) 28))) +(((-193) (-10 -7 (-15 -2699 ((-656 (-1193 (-576))) (-576))) (-15 -1760 ((-1193 (-576)) (-576))) (-15 -2443 ((-430 (-1193 (-576))) (-576))))) (T -193)) +((-2443 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-1760 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-2699 (*1 *2 *3) (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(-10 -7 (-15 -2699 ((-656 (-1193 (-576))) (-576))) (-15 -1760 ((-1193 (-576)) (-576))) (-15 -2443 ((-430 (-1193 (-576))) (-576)))) +((-2990 (((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-1507 (((-656 (-1179)) (-1178 (-227))) NIL)) (-2364 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3055 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) NIL)) (-2833 (((-656 (-1179)) (-656 (-227))) NIL)) (-2554 (((-227) (-1115 (-855 (-227)))) 31)) (-3513 (((-227) (-1115 (-855 (-227)))) 32)) (-2005 (((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3126 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3228 (((-1179) (-227)) NIL)) (-2349 (((-1179) (-656 (-1179))) 27)) (-3116 (((-1056) (-1197) (-1197) (-1056)) 13))) +(((-194) (-10 -7 (-15 -2364 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3126 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2554 ((-227) (-1115 (-855 (-227))))) (-15 -3513 ((-227) (-1115 (-855 (-227))))) (-15 -2005 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3055 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -2990 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3228 ((-1179) (-227))) (-15 -2833 ((-656 (-1179)) (-656 (-227)))) (-15 -1507 ((-656 (-1179)) (-1178 (-227)))) (-15 -2349 ((-1179) (-656 (-1179)))) (-15 -3116 ((-1056) (-1197) (-1197) (-1056))))) (T -194)) +((-3116 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -2364 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3126 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2554 ((-227) (-1115 (-855 (-227))))) (-15 -3513 ((-227) (-1115 (-855 (-227))))) (-15 -2005 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3055 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -2990 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3228 ((-1179) (-227))) (-15 -2833 ((-656 (-1179)) (-656 (-227)))) (-15 -1507 ((-656 (-1179)) (-1178 (-227)))) (-15 -2349 ((-1179) (-656 (-1179)))) (-15 -3116 ((-1056) (-1197) (-1197) (-1056)))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 61) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-195) (-799)) (T -195)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 66) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 66) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-196) (-799)) (T -196)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 81) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 81) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-197) (-799)) (T -197)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 63) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 63) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-198) (-799)) (T -198)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 76) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-199) (-799)) (T -199)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 93) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 93) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-200) (-799)) (T -200)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 90) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-201) (-799)) (T -201)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 78) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 78) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-202) (-799)) (T -202)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 76)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-203) (-799)) (T -203)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 77)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 77)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-204) (-799)) (T -204)) NIL (-799) -((-1952 (((-112) $ $) NIL)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 105) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 105) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-205) (-799)) (T -205)) NIL (-799) -((-1593 (((-3 (-2 (|:| -3961 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2931 (((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1455 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -1593 ((-3 (-2 (|:| -3961 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1455 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2931 ((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-2931 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-1455 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-1593 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3961 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -1593 ((-3 (-2 (|:| -3961 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1455 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2931 ((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3348 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-1707 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3574 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-1990 (((-390) (-701 (-326 (-227)))) 140)) (-3480 (((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196))) 136)) (-2482 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4173 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2143 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227)))) 125)) (-4192 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-2832 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -4192 ((-390) (-390) (-390))) (-15 -4192 ((-390) (-390) (-656 (-390)))) (-15 -1990 ((-390) (-701 (-326 (-227))))) (-15 -3480 ((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196)))) (-15 -2143 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227))))) (-15 -3574 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -1707 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3348 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4173 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2832 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2482 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-2482 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2143 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1196))) (-5 *4 (-1287 (-326 (-227)))) (-5 *1 (-207)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4192 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4192 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) -(-10 -7 (-15 -4192 ((-390) (-390) (-390))) (-15 -4192 ((-390) (-390) (-656 (-390)))) (-15 -1990 ((-390) (-701 (-326 (-227))))) (-15 -3480 ((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196)))) (-15 -2143 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227))))) (-15 -3574 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -1707 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3348 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4173 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2832 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2482 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1952 (((-112) $ $) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-1733 (((-1055) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3938 (((-112) $ $) NIL))) +((-2600 (((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3302 (((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-2487 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -2600 ((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2487 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3302 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-3302 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-2487 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-2600 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1757 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -2600 ((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2487 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3302 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3162 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2371 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3409 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-2092 (((-390) (-701 (-326 (-227)))) 140)) (-1850 (((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197))) 136)) (-1420 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4277 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3283 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227)))) 125)) (-1331 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-3703 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -1331 ((-390) (-390) (-390))) (-15 -1331 ((-390) (-390) (-656 (-390)))) (-15 -2092 ((-390) (-701 (-326 (-227))))) (-15 -1850 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -3283 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -3409 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2371 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3162 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4277 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3703 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1420 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-1420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3283 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1197))) (-5 *4 (-1288 (-326 (-227)))) (-5 *1 (-207)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1331 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) +(-10 -7 (-15 -1331 ((-390) (-390) (-390))) (-15 -1331 ((-390) (-390) (-656 (-390)))) (-15 -2092 ((-390) (-701 (-326 (-227))))) (-15 -1850 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -3283 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -3409 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2371 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3162 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4277 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3703 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1420 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3488 (((-112) $ $) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-1456 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2923 (((-112) $ $) NIL))) (((-208) (-812)) (T -208)) NIL (-812) -((-1952 (((-112) $ $) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-1733 (((-1055) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-1456 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2923 (((-112) $ $) NIL))) (((-209) (-812)) (T -209)) NIL (-812) -((-1952 (((-112) $ $) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-1733 (((-1055) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-1456 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2923 (((-112) $ $) NIL))) (((-210) (-812)) (T -210)) NIL (-812) -((-1952 (((-112) $ $) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-1733 (((-1055) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-1456 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2923 (((-112) $ $) NIL))) (((-211) (-812)) (T -211)) NIL (-812) -((-1417 (((-656 (-1196)) (-1196) (-783)) 26)) (-4211 (((-326 (-227)) (-326 (-227))) 35)) (-3081 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 87)) (-4379 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) -(((-212) (-10 -7 (-15 -1417 ((-656 (-1196)) (-1196) (-783))) (-15 -4211 ((-326 (-227)) (-326 (-227)))) (-15 -4379 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -3081 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))))) (T -212)) -((-3081 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-4379 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-212)) (-5 *3 (-1196))))) -(-10 -7 (-15 -1417 ((-656 (-1196)) (-1196) (-783))) (-15 -4211 ((-326 (-227)) (-326 (-227)))) (-15 -4379 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -3081 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))))) -((-1952 (((-112) $ $) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 28)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-1507 (((-1055) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 70)) (-3938 (((-112) $ $) NIL))) -(((-213) (-911)) (T -213)) -NIL -(-911) -((-1952 (((-112) $ $) NIL)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 24)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-1507 (((-1055) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) NIL)) (-3938 (((-112) $ $) NIL))) -(((-214) (-911)) (T -214)) -NIL -(-911) -((-1952 (((-112) $ $) NIL)) (-3731 ((|#2| $ (-783) |#2|) 11)) (-3719 ((|#2| $ (-783)) 10)) (-1989 (($) 8)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 23)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -1989 ($)) (-15 -3719 (|#2| $ (-783))) (-15 -3731 (|#2| $ (-783) |#2|)))) (-939) (-1120)) (T -215)) -((-1989 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1120)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1120)) (-5 *1 (-215 *4 *2)) (-14 *4 (-939)))) (-3731 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-939)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -1989 ($)) (-15 -3719 (|#2| $ (-783))) (-15 -3731 (|#2| $ (-783) |#2|)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4229 (((-1292) $) 37) (((-1292) $ (-939) (-939)) 41)) (-4368 (($ $ (-1009)) 19) (((-250 (-1178)) $ (-1196)) 15)) (-1612 (((-1292) $) 35)) (-4112 (((-875) $) 32) (($ (-656 |#1|)) 8)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $ $) 27)) (-4026 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1120) (-628 (-656 |#1|)) (-10 -8 (-15 -4368 ($ $ (-1009))) (-15 -4368 ((-250 (-1178)) $ (-1196))) (-15 -4026 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $)) (-15 -4229 ((-1292) $ (-939) (-939))))) (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $))))) (T -216)) -((-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $))))))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-250 (-1178))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ *3)) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $))))))) (-4026 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $))))))) (-4036 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $))))))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 (*2 $)) (-15 -4229 (*2 $))))))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 (*2 $)) (-15 -4229 (*2 $))))))) (-4229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1292)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 (*2 $)) (-15 -4229 (*2 $)))))))) -(-13 (-1120) (-628 (-656 |#1|)) (-10 -8 (-15 -4368 ($ $ (-1009))) (-15 -4368 ((-250 (-1178)) $ (-1196))) (-15 -4026 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $)) (-15 -4229 ((-1292) $ (-939) (-939))))) -((-1501 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1501 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) -((-1501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1263 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) -(-10 -7 (-15 -1501 (|#2| |#4| (-1 |#2| |#2|)))) -((-4215 ((|#2| |#2| (-783) |#2|) 55)) (-2277 ((|#2| |#2| (-783) |#2|) 51)) (-3281 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2168 |#2|)))) 79)) (-3677 (((-656 (-2 (|:| |deg| (-783)) (|:| -2168 |#2|))) |#2|) 73)) (-3518 (((-112) |#2|) 71)) (-2816 (((-430 |#2|) |#2|) 91)) (-1450 (((-430 |#2|) |#2|) 90)) (-1777 ((|#2| |#2| (-783) |#2|) 49)) (-2321 (((-2 (|:| |cont| |#1|) (|:| -1749 (-656 (-2 (|:| |irr| |#2|) (|:| -2432 (-576)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1450 ((-430 |#2|) |#2|)) (-15 -2816 ((-430 |#2|) |#2|)) (-15 -2321 ((-2 (|:| |cont| |#1|) (|:| -1749 (-656 (-2 (|:| |irr| |#2|) (|:| -2432 (-576)))))) |#2| (-112))) (-15 -3677 ((-656 (-2 (|:| |deg| (-783)) (|:| -2168 |#2|))) |#2|)) (-15 -3281 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2168 |#2|))))) (-15 -1777 (|#2| |#2| (-783) |#2|)) (-15 -2277 (|#2| |#2| (-783) |#2|)) (-15 -4215 (|#2| |#2| (-783) |#2|)) (-15 -3518 ((-112) |#2|))) (-360) (-1263 |#1|)) (T -218)) -((-3518 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-4215 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-2277 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-1777 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -2168 *5)))) (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2168 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1263 *5)))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -1450 ((-430 |#2|) |#2|)) (-15 -2816 ((-430 |#2|) |#2|)) (-15 -2321 ((-2 (|:| |cont| |#1|) (|:| -1749 (-656 (-2 (|:| |irr| |#2|) (|:| -2432 (-576)))))) |#2| (-112))) (-15 -3677 ((-656 (-2 (|:| |deg| (-783)) (|:| -2168 |#2|))) |#2|)) (-15 -3281 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2168 |#2|))))) (-15 -1777 (|#2| |#2| (-783) |#2|)) (-15 -2277 (|#2| |#2| (-783) |#2|)) (-15 -4215 (|#2| |#2| (-783) |#2|)) (-15 -3518 ((-112) |#2|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-576) $) NIL (|has| (-576) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-576) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1058 (-576))))) (-2317 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1058 (-576)))) (((-576) $) NIL (|has| (-576) (-1058 (-576))))) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-576) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| (-576) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-576) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-576) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-576) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| (-576) (-1172)))) (-3197 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-576) (-861)))) (-2422 (($ (-1 (-576) (-576)) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2804 (((-576) $) NIL (|has| (-576) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-576) $) NIL)) (-3190 (($ (-419 (-576))) 9)) (-1554 (((-906 (-576)) $) NIL (|has| (-576) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-576) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1042))) (((-227) $) NIL (|has| (-576) (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL) (((-1024 10) $) 10)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-576) (-927))) (|has| (-576) (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 (((-576) $) NIL (|has| (-576) (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| (-576) (-832)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-4046 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-219) (-13 (-1012 (-576)) (-625 (-419 (-576))) (-625 (-1024 10)) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -3190 ($ (-419 (-576))))))) (T -219)) -((-1914 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(-13 (-1012 (-576)) (-625 (-419 (-576))) (-625 (-1024 10)) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -3190 ($ (-419 (-576)))))) -((-1952 (((-112) $ $) NIL)) (-3512 (((-1138) $) 13)) (-2043 (((-1178) $) NIL)) (-3882 (((-495) $) 10)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 23) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-1155) $) 15)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-220) (-13 (-1103) (-10 -8 (-15 -3882 ((-495) $)) (-15 -3512 ((-1138) $)) (-15 -4158 ((-1155) $))))) (T -220)) -((-3882 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-220)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-220))))) -(-13 (-1103) (-10 -8 (-15 -3882 ((-495) $)) (-15 -3512 ((-1138) $)) (-15 -4158 ((-1155) $)))) -((-2944 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1112 (-855 |#2|)) (-1178)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1112 (-855 |#2|))) 25)) (-1602 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -2944 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1112 (-855 |#2|)))) (-15 -2944 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1112 (-855 |#2|)) (-1178))) (-15 -1602 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-977) (-29 |#1|))) (T -221)) -((-1602 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1196)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1222) (-977) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1112 (-855 *3))) (-5 *5 (-1178)) (-4 *3 (-13 (-1222) (-977) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-855 *3))) (-4 *3 (-13 (-1222) (-977) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -2944 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1112 (-855 |#2|)))) (-15 -2944 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1112 (-855 |#2|)) (-1178))) (-15 -1602 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)))) -((-2944 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-419 (-970 |#1|)))) (-1178)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-419 (-970 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-326 |#1|))) (-1178)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-326 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-326 |#1|))))) (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-326 |#1|))) (-1178))) (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-419 (-970 |#1|)))))) (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-419 (-970 |#1|)))) (-1178)))) (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (T -222)) -((-2944 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1112 (-855 (-419 (-970 *6))))) (-5 *5 (-1178)) (-5 *3 (-419 (-970 *6))) (-4 *6 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-855 (-419 (-970 *5))))) (-5 *3 (-419 (-970 *5))) (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-970 *6))) (-5 *4 (-1112 (-855 (-326 *6)))) (-5 *5 (-1178)) (-4 *6 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1112 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-326 |#1|))))) (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-326 |#1|))) (-1178))) (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-419 (-970 |#1|)))))) (-15 -2944 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-970 |#1|)) (-1112 (-855 (-419 (-970 |#1|)))) (-1178)))) -((-2721 (((-2 (|:| -2769 (-1192 |#1|)) (|:| |deg| (-939))) (-1192 |#1|)) 26)) (-3564 (((-656 (-326 |#2|)) (-326 |#2|) (-939)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| -2769 (-1192 |#1|)) (|:| |deg| (-939))) (-1192 |#1|))) (-15 -3564 ((-656 (-326 |#2|)) (-326 |#2|) (-939)))) (-1069) (-568)) (T -223)) -((-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1069)))) (-2721 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-2 (|:| -2769 (-1192 *4)) (|:| |deg| (-939)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-568))))) -(-10 -7 (-15 -2721 ((-2 (|:| -2769 (-1192 |#1|)) (|:| |deg| (-939))) (-1192 |#1|))) (-15 -3564 ((-656 (-326 |#2|)) (-326 |#2|) (-939)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4150 ((|#1| $) NIL)) (-3015 ((|#1| $) 30)) (-2337 (((-112) $ (-783)) NIL)) (-4331 (($) NIL T CONST)) (-3792 (($ $) NIL)) (-3432 (($ $) 39)) (-2133 ((|#1| |#1| $) NIL)) (-2034 ((|#1| $) NIL)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-3107 (((-783) $) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2976 ((|#1| $) NIL)) (-2551 ((|#1| |#1| $) 35)) (-1549 ((|#1| |#1| $) 37)) (-2782 (($ |#1| $) NIL)) (-2952 (((-783) $) 33)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3854 ((|#1| $) NIL)) (-1723 ((|#1| $) 31)) (-2803 ((|#1| $) 29)) (-1526 ((|#1| $) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1754 ((|#1| |#1| $) NIL)) (-1937 (((-112) $) 9)) (-3935 (($) NIL)) (-1461 ((|#1| $) NIL)) (-4301 (($) NIL) (($ (-656 |#1|)) 16)) (-4305 (((-783) $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-2773 ((|#1| $) 13)) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) NIL)) (-4248 ((|#1| $) NIL)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -4301 ($ (-656 |#1|))))) (-1120)) (T -224)) -((-4301 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -4301 ($ (-656 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2738 (($ (-326 |#1|)) 24)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3633 (((-112) $) NIL)) (-2980 (((-3 (-326 |#1|) "failed") $) NIL)) (-2317 (((-326 |#1|) $) NIL)) (-3309 (($ $) 32)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2422 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-1709 (((-326 |#1|) $) NIL)) (-1973 (($ $) 31)) (-2043 (((-1178) $) NIL)) (-3302 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2547 (($ (-783)) NIL)) (-2297 (($ $) 33)) (-1877 (((-576) $) NIL)) (-4112 (((-875) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-4269 (((-326 |#1|) $ $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 26 T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) 29)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 20)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1058 (-326 |#1|)) (-10 -8 (-15 -1709 ((-326 |#1|) $)) (-15 -1973 ($ $)) (-15 -3309 ($ $)) (-15 -4269 ((-326 |#1|) $ $)) (-15 -2547 ($ (-783))) (-15 -3302 ((-112) $)) (-15 -3633 ((-112) $)) (-15 -1877 ((-576) $)) (-15 -2422 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2738 ($ (-326 |#1|))) (-15 -2297 ($ $)))) (-13 (-1069) (-861)) (-656 (-1196))) (T -225)) -((-1709 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) (-1973 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1069) (-861))) (-14 *3 (-656 (-1196))))) (-3309 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1069) (-861))) (-14 *3 (-656 (-1196))))) (-4269 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1069) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1069) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1069) (-861))) (-14 *3 (-656 (-1196)))))) -(-13 (-632 (-326 |#1|)) (-1058 (-326 |#1|)) (-10 -8 (-15 -1709 ((-326 |#1|) $)) (-15 -1973 ($ $)) (-15 -3309 ($ $)) (-15 -4269 ((-326 |#1|) $ $)) (-15 -2547 ($ (-783))) (-15 -3302 ((-112) $)) (-15 -3633 ((-112) $)) (-15 -1877 ((-576) $)) (-15 -2422 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2738 ($ (-326 |#1|))) (-15 -2297 ($ $)))) -((-2982 (((-112) (-1178)) 26)) (-3056 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-1926 (((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-970 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -2982 ((-112) (-1178))) (-15 -3056 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -1926 ((-3 (-112) "failed") (-970 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112))) (-15 -1926 ((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-29 |#1|))) (T -226)) -((-1926 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1222) (-29 *5))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-1926 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-970 *6)) (-5 *4 (-1196)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3056 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1222) (-29 *6))) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4)))))) -(-10 -7 (-15 -2982 ((-112) (-1178))) (-15 -3056 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -1926 ((-3 (-112) "failed") (-970 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112))) (-15 -1926 ((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 98)) (-1705 (((-576) $) 33)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2736 (($ $) NIL)) (-3585 (($ $) 87)) (-3434 (($ $) 75)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-1462 (($ $) 66)) (-4057 (((-112) $ $) NIL)) (-3561 (($ $) 85)) (-3411 (($ $) 73)) (-3773 (((-576) $) 127)) (-3611 (($ $) 90)) (-3460 (($ $) 77)) (-4331 (($) NIL T CONST)) (-3846 (($ $) NIL)) (-2980 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2317 (((-576) $) 124) (((-419 (-576)) $) 121)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) 103)) (-1824 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2757 (((-939)) 28) (((-939) (-939)) NIL (|has| $ (-6 -4454)))) (-2690 (((-112) $) NIL)) (-2722 (($) 46)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL)) (-3241 (((-576) $) 40)) (-2287 (((-112) $) 99)) (-2770 (($ $ (-576)) NIL)) (-2647 (($ $) NIL)) (-3197 (((-112) $) 97)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) 63) (($) 36 (-12 (-2298 (|has| $ (-6 -4446))) (-2298 (|has| $ (-6 -4454)))))) (-1654 (($ $ $) 62) (($) 35 (-12 (-2298 (|has| $ (-6 -4446))) (-2298 (|has| $ (-6 -4454)))))) (-1360 (((-576) $) 26)) (-4159 (($ $) 31)) (-2484 (($ $) 67)) (-2607 (($ $) 72)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3072 (((-939) (-576)) NIL (|has| $ (-6 -4454)))) (-3115 (((-1140) $) 101)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL)) (-2804 (($ $) NIL)) (-2632 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-939)) 110)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1495 (((-576) $) 27)) (-3793 (($) 45)) (-2155 (($ $) 71)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2913 (((-939)) NIL) (((-939) (-939)) NIL (|has| $ (-6 -4454)))) (-4106 (($ $) 104) (($ $ (-783)) NIL)) (-3206 (((-939) (-576)) NIL (|has| $ (-6 -4454)))) (-3622 (($ $) 88)) (-3473 (($ $) 78)) (-3598 (($ $) 89)) (-3447 (($ $) 76)) (-3573 (($ $) 86)) (-3423 (($ $) 74)) (-1554 (((-390) $) 113) (((-227) $) 14) (((-906 (-390)) $) NIL) (((-548) $) 52)) (-4112 (((-875) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-4115 (((-783)) NIL T CONST)) (-2671 (($ $) NIL)) (-4097 (((-939)) 34) (((-939) (-939)) NIL (|has| $ (-6 -4454)))) (-1994 (((-112) $ $) NIL)) (-1865 (((-939)) 24)) (-3652 (($ $) 93)) (-3509 (($ $) 81) (($ $ $) 119)) (-3111 (((-112) $ $) NIL)) (-3631 (($ $) 91)) (-3486 (($ $) 79)) (-3672 (($ $) 96)) (-3536 (($ $) 84)) (-1970 (($ $) 94)) (-3549 (($ $) 82)) (-3663 (($ $) 95)) (-3522 (($ $) 83)) (-3641 (($ $) 92)) (-3497 (($ $) 80)) (-2388 (($ $) 118)) (-4314 (($) 42 T CONST)) (-4320 (($) 43 T CONST)) (-3678 (((-1178) $) 18) (((-1178) $ (-112)) 20) (((-1292) (-834) $) 21) (((-1292) (-834) $ (-112)) 22)) (-4166 (($ $) 107)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-4210 (($ $ $) 109)) (-3993 (((-112) $ $) 56)) (-3974 (((-112) $ $) 54)) (-3938 (((-112) $ $) 64)) (-3983 (((-112) $ $) 55)) (-3962 (((-112) $ $) 53)) (-4046 (($ $ $) 44) (($ $ (-576)) 65)) (-4036 (($ $) 57) (($ $ $) 59)) (-4026 (($ $ $) 58)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-939) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-227) (-13 (-416) (-238) (-840) (-1222) (-626 (-548)) (-10 -8 (-15 -4046 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3793 ($)) (-15 -4159 ($ $)) (-15 -2484 ($ $)) (-15 -3509 ($ $ $)) (-15 -4166 ($ $)) (-15 -4210 ($ $ $)) (-15 -1824 ((-419 (-576)) $ (-783))) (-15 -1824 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-3793 (*1 *1) (-5 *1 (-227))) (-4159 (*1 *1 *1) (-5 *1 (-227))) (-2484 (*1 *1 *1) (-5 *1 (-227))) (-3509 (*1 *1 *1 *1) (-5 *1 (-227))) (-4166 (*1 *1 *1) (-5 *1 (-227))) (-4210 (*1 *1 *1 *1) (-5 *1 (-227))) (-1824 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-1824 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) -(-13 (-416) (-238) (-840) (-1222) (-626 (-548)) (-10 -8 (-15 -4046 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3793 ($)) (-15 -4159 ($ $)) (-15 -2484 ($ $)) (-15 -3509 ($ $ $)) (-15 -4166 ($ $)) (-15 -4210 ($ $ $)) (-15 -1824 ((-419 (-576)) $ (-783))) (-15 -1824 ((-419 (-576)) $ (-783) (-783))))) -((-3333 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-1823 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2417 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3680 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3121 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2909 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-4232 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-3724 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1522 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1388 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-4166 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-4210 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -4166 ((-227) (-227))) (-15 -4166 ((-171 (-227)) (-171 (-227)))) (-15 -4210 ((-227) (-227) (-227))) (-15 -4210 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1823 ((-227) (-227))) (-15 -1823 ((-171 (-227)) (-171 (-227)))) (-15 -3680 ((-227) (-227))) (-15 -3680 ((-171 (-227)) (-171 (-227)))) (-15 -3333 ((-227) (-783) (-227))) (-15 -3333 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -4232 ((-227) (-227) (-227))) (-15 -4232 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3121 ((-227) (-227) (-227))) (-15 -3121 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3724 ((-227) (-227) (-227))) (-15 -3724 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2909 ((-227) (-227) (-227))) (-15 -2909 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1388 ((-171 (-227)) (-171 (-227)))) (-15 -1388 ((-227) (-227))) (-15 -1522 ((-227) (-227))) (-15 -1522 ((-171 (-227)) (-171 (-227)))) (-15 -2417 ((-227) (-227) (-227))) (-15 -2417 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-2417 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2417 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2909 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2909 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3724 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3724 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3121 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3121 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4232 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4232 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3333 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3333 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4210 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4210 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -4166 ((-227) (-227))) (-15 -4166 ((-171 (-227)) (-171 (-227)))) (-15 -4210 ((-227) (-227) (-227))) (-15 -4210 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1823 ((-227) (-227))) (-15 -1823 ((-171 (-227)) (-171 (-227)))) (-15 -3680 ((-227) (-227))) (-15 -3680 ((-171 (-227)) (-171 (-227)))) (-15 -3333 ((-227) (-783) (-227))) (-15 -3333 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -4232 ((-227) (-227) (-227))) (-15 -4232 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3121 ((-227) (-227) (-227))) (-15 -3121 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3724 ((-227) (-227) (-227))) (-15 -3724 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2909 ((-227) (-227) (-227))) (-15 -2909 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1388 ((-171 (-227)) (-171 (-227)))) (-15 -1388 ((-227) (-227))) (-15 -1522 ((-227) (-227))) (-15 -1522 ((-171 (-227)) (-171 (-227)))) (-15 -2417 ((-227) (-227) (-227))) (-15 -2417 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2154 (($ (-783) (-783)) NIL)) (-4123 (($ $ $) NIL)) (-1592 (($ (-1287 |#1|)) NIL) (($ $) NIL)) (-3817 (($ |#1| |#1| |#1|) 33)) (-1540 (((-112) $) NIL)) (-2008 (($ $ (-576) (-576)) NIL)) (-3934 (($ $ (-576) (-576)) NIL)) (-2742 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1613 (($ $) NIL)) (-1796 (((-112) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3225 (($ $ (-576) (-576) $) NIL)) (-4267 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-4110 (($ $ (-576) (-1287 |#1|)) NIL)) (-2536 (($ $ (-576) (-1287 |#1|)) NIL)) (-2664 (($ |#1| |#1| |#1|) 32)) (-1867 (($ (-783) |#1|) NIL)) (-4331 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| |#1| (-317)))) (-2216 (((-1287 |#1|) $ (-576)) NIL)) (-2121 (($ |#1|) 31)) (-2549 (($ |#1|) 30)) (-2571 (($ |#1|) 29)) (-4134 (((-783) $) NIL (|has| |#1| (-568)))) (-1908 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3719 ((|#1| $ (-576) (-576)) NIL)) (-3721 (((-656 |#1|) $) NIL)) (-3519 (((-783) $) NIL (|has| |#1| (-568)))) (-2175 (((-656 (-1287 |#1|)) $) NIL (|has| |#1| (-568)))) (-2758 (((-783) $) NIL)) (-1989 (($ (-783) (-783) |#1|) NIL)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3996 ((|#1| $) NIL (|has| |#1| (-6 (-4465 "*"))))) (-3263 (((-576) $) NIL)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4285 (((-576) $) NIL)) (-2902 (((-576) $) NIL)) (-3409 (($ (-656 (-656 |#1|))) 11) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-1896 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3065 (((-656 (-656 |#1|)) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2658 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-3228 (($) 12)) (-4174 (($ $ $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2762 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-2613 (((-112) $) NIL)) (-1679 ((|#1| $) NIL (|has| |#1| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-3992 (((-1287 |#1|) $ (-576)) NIL)) (-4112 (($ (-1287 |#1|)) NIL) (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-1780 (((-112) $) NIL)) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1287 |#1|) $ (-1287 |#1|)) 15) (((-1287 |#1|) (-1287 |#1|) $) NIL) (((-961 |#1|) $ (-961 |#1|)) 21)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-229 |#1|) (-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-961 |#1|) $ (-961 |#1|))) (-15 -3228 ($)) (-15 -2571 ($ |#1|)) (-15 -2549 ($ |#1|)) (-15 -2121 ($ |#1|)) (-15 -2664 ($ |#1| |#1| |#1|)) (-15 -3817 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1222))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222))) (-5 *1 (-229 *3)))) (-3228 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-2571 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-2549 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-2121 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-2664 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-3817 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-961 |#1|) $ (-961 |#1|))) (-15 -3228 ($)) (-15 -2571 ($ |#1|)) (-15 -2549 ($ |#1|)) (-15 -2121 ($ |#1|)) (-15 -2664 ($ |#1| |#1| |#1|)) (-15 -3817 ($ |#1| |#1| |#1|)))) -((-2146 (($ (-1 (-112) |#2|) $) 16)) (-1672 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1437 (($) NIL) (($ (-656 |#2|)) 11)) (-3938 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1672 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1672 (|#1| |#2| |#1|)) (-15 -1437 (|#1| (-656 |#2|))) (-15 -1437 (|#1|))) (-231 |#2|) (-1120)) (T -230)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1672 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1672 (|#1| |#2| |#1|)) (-15 -1437 (|#1| (-656 |#2|))) (-15 -1437 (|#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-2146 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3966 (($ $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-1437 (($) 50) (($ (-656 |#1|)) 49)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 51)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-231 |#1|) (-141) (-1120)) (T -231)) +((-3446 (((-656 (-1197)) (-1197) (-783)) 26)) (-1484 (((-326 (-227)) (-326 (-227))) 35)) (-2263 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 87)) (-2504 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) +(((-212) (-10 -7 (-15 -3446 ((-656 (-1197)) (-1197) (-783))) (-15 -1484 ((-326 (-227)) (-326 (-227)))) (-15 -2504 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2263 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) (T -212)) +((-2263 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2504 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) (-5 *3 (-1197))))) +(-10 -7 (-15 -3446 ((-656 (-1197)) (-1197) (-783))) (-15 -1484 ((-326 (-227)) (-326 (-227)))) (-15 -2504 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2263 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))))) +((-3488 (((-112) $ $) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 28)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-4323 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 70)) (-2923 (((-112) $ $) NIL))) +(((-213) (-912)) (T -213)) +NIL +(-912) +((-3488 (((-112) $ $) NIL)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 24)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-4323 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) NIL)) (-2923 (((-112) $ $) NIL))) +(((-214) (-912)) (T -214)) +NIL +(-912) +((-3488 (((-112) $ $) NIL)) (-4279 ((|#2| $ (-783) |#2|) 11)) (-4272 ((|#2| $ (-783)) 10)) (-4140 (($) 8)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 23)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -4272 (|#2| $ (-783))) (-15 -4279 (|#2| $ (-783) |#2|)))) (-940) (-1121)) (T -215)) +((-4140 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1121)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1121)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)))) (-4279 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) (-4 *2 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -4272 (|#2| $ (-783))) (-15 -4279 (|#2| $ (-783) |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3579 (((-1293) $) 37) (((-1293) $ (-940) (-940)) 41)) (-2796 (($ $ (-1010)) 19) (((-250 (-1179)) $ (-1197)) 15)) (-1976 (((-1293) $) 35)) (-3569 (((-876) $) 32) (($ (-656 |#1|)) 8)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $ $) 27)) (-3029 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -2796 ($ $ (-1010))) (-15 -2796 ((-250 (-1179)) $ (-1197))) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $)) (-15 -3579 ((-1293) $ (-940) (-940))))) (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $))))) (T -216)) +((-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $))))))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ *3)) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $))))))) (-3029 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $))))))) (-3043 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $))))))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 (*2 $)) (-15 -3579 (*2 $))))))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 (*2 $)) (-15 -3579 (*2 $))))))) (-3579 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 (*2 $)) (-15 -3579 (*2 $)))))))) +(-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -2796 ($ $ (-1010))) (-15 -2796 ((-250 (-1179)) $ (-1197))) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $)) (-15 -3579 ((-1293) $ (-940) (-940))))) +((-4268 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4268 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) +((-4268 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) +(-10 -7 (-15 -4268 (|#2| |#4| (-1 |#2| |#2|)))) +((-3433 ((|#2| |#2| (-783) |#2|) 55)) (-3139 ((|#2| |#2| (-783) |#2|) 51)) (-3736 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3329 |#2|)))) 79)) (-3145 (((-656 (-2 (|:| |deg| (-783)) (|:| -3329 |#2|))) |#2|) 73)) (-4188 (((-112) |#2|) 71)) (-3550 (((-430 |#2|) |#2|) 91)) (-1828 (((-430 |#2|) |#2|) 90)) (-1859 ((|#2| |#2| (-783) |#2|) 49)) (-2248 (((-2 (|:| |cont| |#1|) (|:| -1601 (-656 (-2 (|:| |irr| |#2|) (|:| -4073 (-576)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -1828 ((-430 |#2|) |#2|)) (-15 -3550 ((-430 |#2|) |#2|)) (-15 -2248 ((-2 (|:| |cont| |#1|) (|:| -1601 (-656 (-2 (|:| |irr| |#2|) (|:| -4073 (-576)))))) |#2| (-112))) (-15 -3145 ((-656 (-2 (|:| |deg| (-783)) (|:| -3329 |#2|))) |#2|)) (-15 -3736 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3329 |#2|))))) (-15 -1859 (|#2| |#2| (-783) |#2|)) (-15 -3139 (|#2| |#2| (-783) |#2|)) (-15 -3433 (|#2| |#2| (-783) |#2|)) (-15 -4188 ((-112) |#2|))) (-360) (-1264 |#1|)) (T -218)) +((-4188 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-3433 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-3139 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-1859 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -3329 *5)))) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-3145 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3329 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5)))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1828 ((-430 |#2|) |#2|)) (-15 -3550 ((-430 |#2|) |#2|)) (-15 -2248 ((-2 (|:| |cont| |#1|) (|:| -1601 (-656 (-2 (|:| |irr| |#2|) (|:| -4073 (-576)))))) |#2| (-112))) (-15 -3145 ((-656 (-2 (|:| |deg| (-783)) (|:| -3329 |#2|))) |#2|)) (-15 -3736 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3329 |#2|))))) (-15 -1859 (|#2| |#2| (-783) |#2|)) (-15 -3139 (|#2| |#2| (-783) |#2|)) (-15 -3433 (|#2| |#2| (-783) |#2|)) (-15 -4188 ((-112) |#2|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-576) $) NIL (|has| (-576) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-576) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| (-576) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-4099 (((-112) $) NIL (|has| (-576) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3416 (((-576) $) NIL (|has| (-576) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4019 (($ (-419 (-576))) 9)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 10) $) 10)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 (((-576) $) NIL (|has| (-576) (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| (-576) (-832)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3056 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-219) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -4019 ($ (-419 (-576))))))) (T -219)) +((-2638 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -4019 ($ (-419 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-2703 (((-1139) $) 13)) (-1413 (((-1179) $) NIL)) (-1378 (((-495) $) 10)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 23) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-1156) $) 15)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-220) (-13 (-1104) (-10 -8 (-15 -1378 ((-495) $)) (-15 -2703 ((-1139) $)) (-15 -2639 ((-1156) $))))) (T -220)) +((-1378 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-220))))) +(-13 (-1104) (-10 -8 (-15 -1378 ((-495) $)) (-15 -2703 ((-1139) $)) (-15 -2639 ((-1156) $)))) +((-3441 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|))) 25)) (-2685 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3441 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -3441 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -2685 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -221)) +((-2685 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1197)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-3441 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) (-4 *3 (-13 (-1223) (-978) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -3441 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -3441 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -2685 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) +((-3441 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (T -222)) +((-3441 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) (-5 *5 (-1179)) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -3441 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) +((-3685 (((-2 (|:| -4326 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|)) 26)) (-1942 (((-656 (-326 |#2|)) (-326 |#2|) (-940)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -3685 ((-2 (|:| -4326 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -1942 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) (-1070) (-568)) (T -223)) +((-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-2 (|:| -4326 (-1193 *4)) (|:| |deg| (-940)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568))))) +(-10 -7 (-15 -3685 ((-2 (|:| -4326 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -1942 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4074 ((|#1| $) NIL)) (-1419 ((|#1| $) 30)) (-2396 (((-112) $ (-783)) NIL)) (-3306 (($) NIL T CONST)) (-1703 (($ $) NIL)) (-1474 (($ $) 39)) (-4232 ((|#1| |#1| $) NIL)) (-2489 ((|#1| $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2434 (((-783) $) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3772 ((|#1| $) NIL)) (-2681 ((|#1| |#1| $) 35)) (-3496 ((|#1| |#1| $) 37)) (-4436 (($ |#1| $) NIL)) (-2325 (((-783) $) 33)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4253 ((|#1| $) NIL)) (-2523 ((|#1| $) 31)) (-3403 ((|#1| $) 29)) (-3267 ((|#1| $) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1641 ((|#1| |#1| $) NIL)) (-2866 (((-112) $) 9)) (-3839 (($) NIL)) (-3914 ((|#1| $) NIL)) (-3039 (($) NIL) (($ (-656 |#1|)) 16)) (-1887 (((-783) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4357 ((|#1| $) 13)) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) NIL)) (-3786 ((|#1| $) NIL)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -3039 ($ (-656 |#1|))))) (-1121)) (T -224)) +((-3039 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3))))) +(-13 (-261 |#1|) (-10 -8 (-15 -3039 ($ (-656 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-4068 (($ (-326 |#1|)) 24)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2682 (((-112) $) NIL)) (-1572 (((-3 (-326 |#1|) "failed") $) NIL)) (-2859 (((-326 |#1|) $) NIL)) (-2112 (($ $) 32)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-4116 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-2089 (((-326 |#1|) $) NIL)) (-3240 (($ $) 31)) (-1413 (((-1179) $) NIL)) (-2644 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($ (-783)) NIL)) (-2027 (($ $) 33)) (-3600 (((-576) $) NIL)) (-3569 (((-876) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-3998 (((-326 |#1|) $ $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 26 T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) 29)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -2089 ((-326 |#1|) $)) (-15 -3240 ($ $)) (-15 -2112 ($ $)) (-15 -3998 ((-326 |#1|) $ $)) (-15 -4128 ($ (-783))) (-15 -2644 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -3600 ((-576) $)) (-15 -4116 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -4068 ($ (-326 |#1|))) (-15 -2027 ($ $)))) (-13 (-1070) (-861)) (-656 (-1197))) (T -225)) +((-2089 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-3240 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-2112 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-3998 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-4068 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-2027 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197)))))) +(-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -2089 ((-326 |#1|) $)) (-15 -3240 ($ $)) (-15 -2112 ($ $)) (-15 -3998 ((-326 |#1|) $ $)) (-15 -4128 ($ (-783))) (-15 -2644 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -3600 ((-576) $)) (-15 -4116 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -4068 ($ (-326 |#1|))) (-15 -2027 ($ $)))) +((-3828 (((-112) (-1179)) 26)) (-2000 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-2736 (((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -3828 ((-112) (-1179))) (-15 -2000 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -226)) +((-2736 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1223) (-29 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-2736 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2000 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1223) (-29 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-3828 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) +(-10 -7 (-15 -3828 ((-112) (-1179))) (-15 -2000 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 98)) (-2347 (((-576) $) 33)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-4048 (($ $) NIL)) (-4024 (($ $) 87)) (-3900 (($ $) 75)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1839 (($ $) 66)) (-2420 (((-112) $ $) NIL)) (-4005 (($ $) 85)) (-3876 (($ $) 73)) (-1529 (((-576) $) 127)) (-4049 (($ $) 90)) (-3919 (($ $) 77)) (-3306 (($) NIL T CONST)) (-4175 (($ $) NIL)) (-1572 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2859 (((-576) $) 124) (((-419 (-576)) $) 121)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) 103)) (-4285 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3337 (((-940)) 28) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-1661 (((-112) $) NIL)) (-1600 (($) 46)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3309 (((-576) $) 40)) (-3215 (((-112) $) 99)) (-4336 (($ $ (-576)) NIL)) (-2471 (($ $) NIL)) (-4099 (((-112) $) 97)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) 63) (($) 36 (-12 (-2662 (|has| $ (-6 -4447))) (-2662 (|has| $ (-6 -4455)))))) (-1951 (($ $ $) 62) (($) 35 (-12 (-2662 (|has| $ (-6 -4447))) (-2662 (|has| $ (-6 -4455)))))) (-1492 (((-576) $) 26)) (-4159 (($ $) 31)) (-2327 (($ $) 67)) (-3744 (($ $) 72)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-2176 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-1450 (((-1141) $) 101)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL)) (-3416 (($ $) NIL)) (-3044 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) 110)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4210 (((-576) $) 27)) (-1713 (($) 45)) (-4103 (($ $) 71)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3229 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2773 (($ $) 104) (($ $ (-783)) NIL)) (-4193 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-4060 (($ $) 88)) (-3929 (($ $) 78)) (-4036 (($ $) 89)) (-3909 (($ $) 76)) (-4013 (($ $) 86)) (-3888 (($ $) 74)) (-4171 (((-390) $) 113) (((-227) $) 14) (((-907 (-390)) $) NIL) (((-548) $) 52)) (-3569 (((-876) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-1778 (((-783)) NIL T CONST)) (-1487 (($ $) NIL)) (-1625 (((-940)) 34) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2113 (((-112) $ $) NIL)) (-3515 (((-940)) 24)) (-2789 (($ $) 93)) (-3960 (($ $) 81) (($ $ $) 119)) (-2537 (((-112) $ $) NIL)) (-4070 (($ $) 91)) (-3937 (($ $) 79)) (-2814 (($ $) 96)) (-3982 (($ $) 84)) (-4387 (($ $) 94)) (-3994 (($ $) 82)) (-2802 (($ $) 95)) (-3973 (($ $) 83)) (-4082 (($ $) 92)) (-3950 (($ $) 80)) (-1665 (($ $) 118)) (-2719 (($) 42 T CONST)) (-2730 (($) 43 T CONST)) (-3157 (((-1179) $) 18) (((-1179) $ (-112)) 20) (((-1293) (-834) $) 21) (((-1293) (-834) $ (-112)) 22)) (-4228 (($ $) 107)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-1475 (($ $ $) 109)) (-2991 (((-112) $ $) 56)) (-2962 (((-112) $ $) 54)) (-2923 (((-112) $ $) 64)) (-2978 (((-112) $ $) 55)) (-2948 (((-112) $ $) 53)) (-3056 (($ $ $) 44) (($ $ (-576)) 65)) (-3043 (($ $) 57) (($ $ $) 59)) (-3029 (($ $ $) 58)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-940) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-227) (-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1713 ($)) (-15 -4159 ($ $)) (-15 -2327 ($ $)) (-15 -3960 ($ $ $)) (-15 -4228 ($ $)) (-15 -1475 ($ $ $)) (-15 -4285 ((-419 (-576)) $ (-783))) (-15 -4285 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-1713 (*1 *1) (-5 *1 (-227))) (-4159 (*1 *1 *1) (-5 *1 (-227))) (-2327 (*1 *1 *1) (-5 *1 (-227))) (-3960 (*1 *1 *1 *1) (-5 *1 (-227))) (-4228 (*1 *1 *1) (-5 *1 (-227))) (-1475 (*1 *1 *1 *1) (-5 *1 (-227))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-4285 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) +(-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1713 ($)) (-15 -4159 ($ $)) (-15 -2327 ($ $)) (-15 -3960 ($ $ $)) (-15 -4228 ($ $)) (-15 -1475 ($ $ $)) (-15 -4285 ((-419 (-576)) $ (-783))) (-15 -4285 ((-419 (-576)) $ (-783) (-783))))) +((-2977 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-4274 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1943 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3180 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-1434 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3186 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3614 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2297 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3235 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3704 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-4228 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1475 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -4228 ((-227) (-227))) (-15 -4228 ((-171 (-227)) (-171 (-227)))) (-15 -1475 ((-227) (-227) (-227))) (-15 -1475 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4274 ((-227) (-227))) (-15 -4274 ((-171 (-227)) (-171 (-227)))) (-15 -3180 ((-227) (-227))) (-15 -3180 ((-171 (-227)) (-171 (-227)))) (-15 -2977 ((-227) (-783) (-227))) (-15 -2977 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -3614 ((-227) (-227) (-227))) (-15 -3614 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1434 ((-227) (-227) (-227))) (-15 -1434 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2297 ((-227) (-227) (-227))) (-15 -2297 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3186 ((-227) (-227) (-227))) (-15 -3186 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3704 ((-171 (-227)) (-171 (-227)))) (-15 -3704 ((-227) (-227))) (-15 -3235 ((-227) (-227))) (-15 -3235 ((-171 (-227)) (-171 (-227)))) (-15 -1943 ((-227) (-227) (-227))) (-15 -1943 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3186 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3186 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2297 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2297 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1434 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1434 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3614 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3614 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2977 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-2977 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4274 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4274 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1475 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1475 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -4228 ((-227) (-227))) (-15 -4228 ((-171 (-227)) (-171 (-227)))) (-15 -1475 ((-227) (-227) (-227))) (-15 -1475 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4274 ((-227) (-227))) (-15 -4274 ((-171 (-227)) (-171 (-227)))) (-15 -3180 ((-227) (-227))) (-15 -3180 ((-171 (-227)) (-171 (-227)))) (-15 -2977 ((-227) (-783) (-227))) (-15 -2977 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -3614 ((-227) (-227) (-227))) (-15 -3614 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1434 ((-227) (-227) (-227))) (-15 -1434 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2297 ((-227) (-227) (-227))) (-15 -2297 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3186 ((-227) (-227) (-227))) (-15 -3186 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3704 ((-171 (-227)) (-171 (-227)))) (-15 -3704 ((-227) (-227))) (-15 -3235 ((-227) (-227))) (-15 -3235 ((-171 (-227)) (-171 (-227)))) (-15 -1943 ((-227) (-227) (-227))) (-15 -1943 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) NIL)) (-1852 (($ $ $) NIL)) (-2591 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-1878 (($ |#1| |#1| |#1|) 33)) (-3400 (((-112) $) NIL)) (-2253 (($ $ (-576) (-576)) NIL)) (-3825 (($ $ (-576) (-576)) NIL)) (-4100 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2809 (($ $) NIL)) (-4006 (((-112) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-4375 (($ $ (-576) (-576) $) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1737 (($ $ (-576) (-1288 |#1|)) NIL)) (-3864 (($ $ (-576) (-1288 |#1|)) NIL)) (-2610 (($ |#1| |#1| |#1|) 32)) (-3477 (($ (-783) |#1|) NIL)) (-3306 (($) NIL T CONST)) (-3377 (($ $) NIL (|has| |#1| (-317)))) (-3823 (((-1288 |#1|) $ (-576)) NIL)) (-4118 (($ |#1|) 31)) (-2670 (($ |#1|) 30)) (-2932 (($ |#1|) 29)) (-3733 (((-783) $) NIL (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-4198 (((-783) $) NIL (|has| |#1| (-568)))) (-3392 (((-656 (-1288 |#1|)) $) NIL (|has| |#1| (-568)))) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-6 (-4466 "*"))))) (-3536 (((-576) $) NIL)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2858 (((-576) $) NIL)) (-3129 (((-576) $) NIL)) (-2465 (($ (-656 (-656 |#1|))) 11) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4322 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2093 (((-656 (-656 |#1|)) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2549 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-4403 (($) 12)) (-4288 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4273 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-2106 (((-112) $) NIL)) (-2131 ((|#1| $) NIL (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3083 (((-1288 |#1|) $ (-576)) NIL)) (-3569 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1893 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) 15) (((-1288 |#1|) (-1288 |#1|) $) NIL) (((-962 |#1|) $ (-962 |#1|)) 21)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-229 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -4403 ($)) (-15 -2932 ($ |#1|)) (-15 -2670 ($ |#1|)) (-15 -4118 ($ |#1|)) (-15 -2610 ($ |#1| |#1| |#1|)) (-15 -1878 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1223))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223))) (-5 *1 (-229 *3)))) (-4403 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2932 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2670 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-4118 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2610 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-1878 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -4403 ($)) (-15 -2932 ($ |#1|)) (-15 -2670 ($ |#1|)) (-15 -4118 ($ |#1|)) (-15 -2610 ($ |#1| |#1| |#1|)) (-15 -1878 ($ |#1| |#1| |#1|)))) +((-4355 (($ (-1 (-112) |#2|) $) 16)) (-2065 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2314 (($) NIL) (($ (-656 |#2|)) 11)) (-2923 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -4355 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| |#2| |#1|)) (-15 -2314 (|#1| (-656 |#2|))) (-15 -2314 (|#1|))) (-231 |#2|) (-1121)) (T -230)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -4355 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| |#2| |#1|)) (-15 -2314 (|#1| (-656 |#2|))) (-15 -2314 (|#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-4355 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2800 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2314 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-231 |#1|) (-141) (-1121)) (T -231)) NIL (-13 (-240 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1196)) 55 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 53 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 52 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 51 (|has| |#1| (-918 (-1196)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1196)) 54 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 50 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 49 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 48 (|has| |#1| (-918 (-1196)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-232 |#1|) (-141) (-1069)) (T -232)) -NIL -(-13 (-1069) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-916 (-1196))) (-6 (-916 (-1196))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-234 $) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-910 $ #0=(-1196)) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-916 (-1196)) |has| |#1| (-916 (-1196))) ((-918 #0#) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3155 ((|#2| $) 9))) -(((-233 |#1| |#2|) (-10 -8 (-15 -3155 (|#2| |#1|))) (-234 |#2|) (-1237)) (T -233)) -NIL -(-10 -8 (-15 -3155 (|#2| |#1|))) -((-4106 ((|#1| $) 7)) (-3155 ((|#1| $) 6))) -(((-234 |#1|) (-141) (-1237)) (T -234)) -((-4106 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -4106 (|t#1| $)) (-15 -3155 (|t#1| $)))) -(((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $ (-783)) 37) (($ $) 35)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3155 (($ $ (-783)) 38) (($ $) 36)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-235 |#1|) (-141) (-1069)) (T -235)) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1197)) 55 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#1| (-919 (-1197)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1197)) 54 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#1| (-919 (-1197)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-232 |#1|) (-141) (-1070)) (T -232)) +NIL +(-13 (-1070) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ #0=(-1197)) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #0#) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2018 ((|#2| $) 9))) +(((-233 |#1| |#2|) (-10 -8 (-15 -2018 (|#2| |#1|))) (-234 |#2|) (-1238)) (T -233)) +NIL +(-10 -8 (-15 -2018 (|#2| |#1|))) +((-2773 ((|#1| $) 7)) (-2018 ((|#1| $) 6))) +(((-234 |#1|) (-141) (-1238)) (T -234)) +((-2773 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2773 (|t#1| $)) (-15 -2018 (|t#1| $)))) +(((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $ (-783)) 37) (($ $) 35)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2018 (($ $ (-783)) 38) (($ $) 36)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-235 |#1|) (-141) (-1070)) (T -235)) NIL (-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-4106 (($ $) NIL) (($ $ (-783)) 9)) (-3155 (($ $) NIL) (($ $ (-783)) 11))) -(((-236 |#1|) (-10 -8 (-15 -3155 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-783))) (-15 -3155 (|#1| |#1|)) (-15 -4106 (|#1| |#1|))) (-237)) (T -236)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-2773 (($ $) NIL) (($ $ (-783)) 9)) (-2018 (($ $) NIL) (($ $ (-783)) 11))) +(((-236 |#1|) (-10 -8 (-15 -2018 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2018 (|#1| |#1|)) (-15 -2773 (|#1| |#1|))) (-237)) (T -236)) NIL -(-10 -8 (-15 -3155 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-783))) (-15 -3155 (|#1| |#1|)) (-15 -4106 (|#1| |#1|))) -((-4106 (($ $) 7) (($ $ (-783)) 10)) (-3155 (($ $) 6) (($ $ (-783)) 9))) +(-10 -8 (-15 -2018 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2018 (|#1| |#1|)) (-15 -2773 (|#1| |#1|))) +((-2773 (($ $) 7) (($ $ (-783)) 10)) (-2018 (($ $) 6) (($ $ (-783)) 9))) (((-237) (-141)) (T -237)) -((-4106 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) -(-13 (-234 $) (-10 -8 (-15 -4106 ($ $ (-783))) (-15 -3155 ($ $ (-783))))) -(((-234 $) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $ (-783)) 42) (($ $) 40)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-783)) 43) (($ $) 41)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2773 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-2018 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) +(-13 (-234 $) (-10 -8 (-15 -2773 ($ $ (-783))) (-15 -2018 ($ $ (-783))))) +(((-234 $) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $ (-783)) 42) (($ $) 40)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-783)) 43) (($ $) 41)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-238) (-141)) (T -238)) NIL -(-13 (-1069) (-237)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1437 (($) 12) (($ (-656 |#2|)) NIL)) (-4286 (($ $) 14)) (-4124 (($ (-656 |#2|)) 10)) (-4112 (((-875) $) 21))) -(((-239 |#1| |#2|) (-10 -8 (-15 -4112 ((-875) |#1|)) (-15 -1437 (|#1| (-656 |#2|))) (-15 -1437 (|#1|)) (-15 -4124 (|#1| (-656 |#2|))) (-15 -4286 (|#1| |#1|))) (-240 |#2|) (-1120)) (T -239)) -NIL -(-10 -8 (-15 -4112 ((-875) |#1|)) (-15 -1437 (|#1| (-656 |#2|))) (-15 -1437 (|#1|)) (-15 -4124 (|#1| (-656 |#2|))) (-15 -4286 (|#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-2146 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3966 (($ $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-1437 (($) 50) (($ (-656 |#1|)) 49)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 51)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-240 |#1|) (-141) (-1120)) (T -240)) -((-1437 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1120)))) (-1437 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-240 *3)))) (-1672 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-240 *2)) (-4 *2 (-1120)))) (-1672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-240 *3)) (-4 *3 (-1120)))) (-2146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-240 *3)) (-4 *3 (-1120))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1437 ($)) (-15 -1437 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4463)) (PROGN (-15 -1672 ($ |t#1| $)) (-15 -1672 ($ (-1 (-112) |t#1|) $)) (-15 -2146 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-3582 (((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-970 (-576)))) 42))) -(((-241) (-10 -7 (-15 -3582 ((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-970 (-576))))))) (T -241)) -((-3582 (*1 *2 *3) (-12 (-5 *3 (-304 (-970 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783)))))) (-5 *1 (-241))))) -(-10 -7 (-15 -3582 ((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-970 (-576)))))) -((-2199 (((-783)) 56)) (-3222 (((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1656 (((-135)) 62)) (-4106 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4112 (((-1287 |#3|) $) NIL) (($ |#3|) NIL) (((-875) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-4115 (((-783)) 15)) (-4046 (($ $ |#3|) 59))) -(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| (-576))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4112 ((-875) |#1|)) (-15 -4115 ((-783))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -4112 (|#1| |#3|)) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3222 ((-701 |#3|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2199 ((-783))) (-15 -4046 (|#1| |#1| |#3|)) (-15 -1656 ((-135))) (-15 -4112 ((-1287 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1237)) (T -242)) -((-1656 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1237)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2199 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-4115 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) -(-10 -8 (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| (-576))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4112 ((-875) |#1|)) (-15 -4115 ((-783))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -4112 (|#1| |#3|)) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3222 ((-701 |#3|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2199 ((-783))) (-15 -4046 (|#1| |#1| |#3|)) (-15 -1656 ((-135))) (-15 -4112 ((-1287 |#3|) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#2| (-102)))) (-3167 (((-112) $) 76 (|has| |#2| (-23)))) (-2793 (($ (-939)) 129 (|has| |#2| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-2390 (($ $ $) 125 (|has| |#2| (-805)))) (-2559 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-2337 (((-112) $ (-783)) 8)) (-2199 (((-783)) 115 (|has| |#2| (-379)))) (-4267 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4464)))) (-4331 (($) 7 T CONST)) (-2980 (((-3 (-576) "failed") $) 71 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-3 (-419 (-576)) "failed") $) 68 (-2310 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1120)))) (-2317 (((-576) $) 70 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-419 (-576)) $) 67 (-2310 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) ((|#2| $) 66 (|has| |#2| (-1120)))) (-3222 (((-701 (-576)) (-701 $)) 112 (-2310 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 111 (-2310 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 110 (|has| |#2| (-1069))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1069)))) (-3900 (((-3 $ "failed") $) 86 (|has| |#2| (-1069)))) (-4369 (($) 118 (|has| |#2| (-379)))) (-1908 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#2| $ (-576)) 52)) (-3721 (((-656 |#2|) $) 31 (|has| $ (-6 -4463)))) (-2287 (((-112) $) 88 (|has| |#2| (-1069)))) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-2905 (($ $ $) 119 (|has| |#2| (-861)))) (-3958 (((-656 |#2|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1654 (($ $ $) 120 (|has| |#2| (-861)))) (-1896 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2|) $) 36)) (-4375 (((-939) $) 117 (|has| |#2| (-379)))) (-1556 (((-112) $ (-783)) 10)) (-2198 (((-701 (-576)) (-1287 $)) 114 (-2310 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 113 (-2310 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 108 (|has| |#2| (-1069))) (((-701 |#2|) (-1287 $)) 107 (|has| |#2| (-1069)))) (-2043 (((-1178) $) 23 (|has| |#2| (-1120)))) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-2409 (($ (-939)) 116 (|has| |#2| (-379)))) (-3115 (((-1140) $) 22 (|has| |#2| (-1120)))) (-1753 ((|#2| $) 43 (|has| (-576) (-861)))) (-2556 (($ $ |#2|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-4139 ((|#2| $ $) 128 (|has| |#2| (-1069)))) (-1491 (($ (-1287 |#2|)) 130)) (-1656 (((-135)) 127 (|has| |#2| (-374)))) (-4106 (($ $ (-783)) 105 (-2310 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) 103 (-2310 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) 99 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) 98 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) 97 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) 95 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1069)))) (-3125 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4463))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-1287 |#2|) $) 131) (($ (-576)) 72 (-3794 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069)))) (($ (-419 (-576))) 69 (-2310 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (($ |#2|) 64 (|has| |#2| (-1120))) (((-875) $) 18 (|has| |#2| (-625 (-875))))) (-4115 (((-783)) 90 (|has| |#2| (-1069)) CONST)) (-1994 (((-112) $ $) 21 (|has| |#2| (-102)))) (-1682 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4463)))) (-4314 (($) 75 (|has| |#2| (-23)) CONST)) (-4320 (($) 89 (|has| |#2| (-1069)) CONST)) (-3155 (($ $ (-783)) 106 (-2310 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) 104 (-2310 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) 102 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) 101 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) 100 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) 96 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1069)))) (-3993 (((-112) $ $) 121 (|has| |#2| (-861)))) (-3974 (((-112) $ $) 123 (|has| |#2| (-861)))) (-3938 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3983 (((-112) $ $) 122 (|has| |#2| (-861)))) (-3962 (((-112) $ $) 124 (|has| |#2| (-861)))) (-4046 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-4036 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-4026 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1069))) (($ $ (-939)) 84 (|has| |#2| (-1069)))) (* (($ $ $) 85 (|has| |#2| (-1069))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-939) $) 74 (|has| |#2| (-25)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-243 |#1| |#2|) (-141) (-783) (-1237)) (T -243)) -((-1491 (*1 *1 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-243 *3 *4)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1069)) (-4 *4 (-1237)))) (-4139 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1069))))) -(-13 (-616 (-576) |t#2|) (-625 (-1287 |t#2|)) (-10 -8 (-6 -4463) (-15 -1491 ($ (-1287 |t#2|))) (IF (|has| |t#2| (-1120)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1069)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -2793 ($ (-939))) (-15 -4139 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1294 |t#2|)) |%noBranch|))) -(((-21) -3794 (|has| |#2| (-1069)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3794 (|has| |#2| (-1069)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3794 (|has| |#2| (-1069)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3794 (|has| |#2| (-1120)) (|has| |#2| (-1069)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3794 (|has| |#2| (-1069)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -3794 (|has| |#2| (-1069)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120))) ((-628 (-576)) -3794 (|has| |#2| (-1069)) (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) ((-628 |#2|) |has| |#2| (-1120)) ((-625 (-875)) -3794 (|has| |#2| (-1120)) (|has| |#2| (-1069)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-875))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1287 |#2|)) . T) ((-234 $) -3794 (-12 (|has| |#2| (-237)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1069)))) ((-232 |#2|) |has| |#2| (-1069)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1069))) ((-237) -3794 (-12 (|has| |#2| (-237)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1069)))) ((-272 |#2|) |has| |#2| (-1069)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1069)) ((-423 |#2|) |has| |#2| (-1120)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-658 (-576)) -3794 (|has| |#2| (-1069)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -3794 (|has| |#2| (-1069)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1069)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069))) ((-660 |#2|) -3794 (|has| |#2| (-1069)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1069)) ((-652 |#2|) -3794 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069))) ((-651 |#2|) |has| |#2| (-1069)) ((-729 |#2|) -3794 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1069)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-861) -3794 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-863) -3794 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-910 $ #3=(-1196)) -3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069)))) ((-916 (-1196)) -12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069))) ((-918 #3#) -3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-916 (-1196))) (|has| |#2| (-1069)))) ((-1058 #0#) -12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120))) ((-1058 (-576)) -12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) ((-1058 |#2|) |has| |#2| (-1120)) ((-1071 |#2|) -3794 (|has| |#2| (-1069)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1076 |#2|) -3794 (|has| |#2| (-1069)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1069) |has| |#2| (-1069)) ((-1078) |has| |#2| (-1069)) ((-1132) |has| |#2| (-1069)) ((-1120) -3794 (|has| |#2| (-1120)) (|has| |#2| (-1069)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1237) . T) ((-1294 |#2|) |has| |#2| (-374))) -((-1925 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2721 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-2422 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -1925 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2721 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2422 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1237) (-1237)) (T -244)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-244 *5 *6 *2)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) -(-10 -7 (-15 -1925 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2721 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2422 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) -((-1952 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3167 (((-112) $) NIL (|has| |#2| (-23)))) (-2793 (($ (-939)) 62 (|has| |#2| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2390 (($ $ $) 68 (|has| |#2| (-805)))) (-2559 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#2| (-379)))) (-4267 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1120)))) (-2317 (((-576) $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) ((|#2| $) 28 (|has| |#2| (-1120)))) (-3222 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1069))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1069)))) (-3900 (((-3 $ "failed") $) 58 (|has| |#2| (-1069)))) (-4369 (($) NIL (|has| |#2| (-379)))) (-1908 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ (-576)) 56)) (-3721 (((-656 |#2|) $) 14 (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL (|has| |#2| (-1069)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 19 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#2| (-861)))) (-3958 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#2| (-861)))) (-1896 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#2| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1069))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1069)))) (-2043 (((-1178) $) NIL (|has| |#2| (-1120)))) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-2409 (($ (-939)) NIL (|has| |#2| (-379)))) (-3115 (((-1140) $) NIL (|has| |#2| (-1120)))) (-1753 ((|#2| $) NIL (|has| (-576) (-861)))) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-4139 ((|#2| $ $) NIL (|has| |#2| (-1069)))) (-1491 (($ (-1287 |#2|)) 17)) (-1656 (((-135)) NIL (|has| |#2| (-374)))) (-4106 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1069)))) (-3125 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1287 |#2|) $) 9) (($ (-576)) NIL (-3794 (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (($ |#2|) 12 (|has| |#2| (-1120))) (((-875) $) NIL (|has| |#2| (-625 (-875))))) (-4115 (((-783)) NIL (|has| |#2| (-1069)) CONST)) (-1994 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1682 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4314 (($) 36 (|has| |#2| (-23)) CONST)) (-4320 (($) 40 (|has| |#2| (-1069)) CONST)) (-3155 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1069)))) (-3993 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3938 (((-112) $ $) 27 (|has| |#2| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3962 (((-112) $ $) 66 (|has| |#2| (-861)))) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4026 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1069))) (($ $ (-939)) NIL (|has| |#2| (-1069)))) (* (($ $ $) 46 (|has| |#2| (-1069))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-939) $) NIL (|has| |#2| (-25)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1237)) (T -245)) +(-13 (-1070) (-237)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2314 (($) 12) (($ (-656 |#2|)) NIL)) (-1870 (($ $) 14)) (-3581 (($ (-656 |#2|)) 10)) (-3569 (((-876) $) 21))) +(((-239 |#1| |#2|) (-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -2314 (|#1| (-656 |#2|))) (-15 -2314 (|#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1870 (|#1| |#1|))) (-240 |#2|) (-1121)) (T -239)) +NIL +(-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -2314 (|#1| (-656 |#2|))) (-15 -2314 (|#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-4355 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2800 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2314 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-240 |#1|) (-141) (-1121)) (T -240)) +((-2314 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) (-2065 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) (-4 *3 (-1121)))) (-4355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) (-4 *3 (-1121))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2314 ($)) (-15 -2314 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2065 ($ |t#1| $)) (-15 -2065 ($ (-1 (-112) |t#1|) $)) (-15 -4355 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3491 (((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))) 42))) +(((-241) (-10 -7 (-15 -3491 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576))))))) (T -241)) +((-3491 (*1 *2 *3) (-12 (-5 *3 (-304 (-971 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783)))))) (-5 *1 (-241))))) +(-10 -7 (-15 -3491 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))))) +((-2096 (((-783)) 56)) (-4344 (((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1972 (((-135)) 62)) (-2773 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3569 (((-1288 |#3|) $) NIL) (($ |#3|) NIL) (((-876) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-1778 (((-783)) 15)) (-3056 (($ $ |#3|) 59))) +(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 ((-876) |#1|)) (-15 -1778 ((-783))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4344 ((-701 |#3|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2096 ((-783))) (-15 -3056 (|#1| |#1| |#3|)) (-15 -1972 ((-135))) (-15 -3569 ((-1288 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1238)) (T -242)) +((-1972 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2096 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1778 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) +(-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 ((-876) |#1|)) (-15 -1778 ((-783))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4344 ((-701 |#3|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2096 ((-783))) (-15 -3056 (|#1| |#1| |#3|)) (-15 -1972 ((-135))) (-15 -3569 ((-1288 |#3|) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#2| (-102)))) (-1812 (((-112) $) 76 (|has| |#2| (-23)))) (-1417 (($ (-940)) 129 (|has| |#2| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-1685 (($ $ $) 125 (|has| |#2| (-805)))) (-2780 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-2396 (((-112) $ (-783)) 8)) (-2096 (((-783)) 115 (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4465)))) (-3306 (($) 7 T CONST)) (-1572 (((-3 (-576) "failed") $) 71 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) 68 (-2673 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1121)))) (-2859 (((-576) $) 70 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) 67 (-2673 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 66 (|has| |#2| (-1121)))) (-4344 (((-701 (-576)) (-701 $)) 112 (-2673 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 111 (-2673 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 110 (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1070)))) (-3451 (((-3 $ "failed") $) 86 (|has| |#2| (-1070)))) (-1836 (($) 118 (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) 52)) (-3965 (((-656 |#2|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $) 88 (|has| |#2| (-1070)))) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 119 (|has| |#2| (-861)))) (-2735 (((-656 |#2|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-1951 (($ $ $) 120 (|has| |#2| (-861)))) (-4322 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) 36)) (-2460 (((-940) $) 117 (|has| |#2| (-379)))) (-3557 (((-112) $ (-783)) 10)) (-3626 (((-701 (-576)) (-1288 $)) 114 (-2673 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113 (-2673 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 108 (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) 107 (|has| |#2| (-1070)))) (-1413 (((-1179) $) 23 (|has| |#2| (-1121)))) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-3223 (($ (-940)) 116 (|has| |#2| (-379)))) (-1450 (((-1141) $) 22 (|has| |#2| (-1121)))) (-3580 ((|#2| $) 43 (|has| (-576) (-861)))) (-2740 (($ $ |#2|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-1984 ((|#2| $ $) 128 (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) 130)) (-1972 (((-135)) 127 (|has| |#2| (-374)))) (-2773 (($ $ (-783)) 105 (-2673 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 103 (-2673 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 99 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 98 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 97 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 95 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4464))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-1288 |#2|) $) 131) (($ (-576)) 72 (-2758 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) 69 (-2673 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 64 (|has| |#2| (-1121))) (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-1778 (((-783)) 90 (|has| |#2| (-1070)) CONST)) (-2113 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2170 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4464)))) (-2719 (($) 75 (|has| |#2| (-23)) CONST)) (-2730 (($) 89 (|has| |#2| (-1070)) CONST)) (-2018 (($ $ (-783)) 106 (-2673 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 104 (-2673 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 102 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 101 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 100 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 96 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1070)))) (-2991 (((-112) $ $) 121 (|has| |#2| (-861)))) (-2962 (((-112) $ $) 123 (|has| |#2| (-861)))) (-2923 (((-112) $ $) 19 (|has| |#2| (-102)))) (-2978 (((-112) $ $) 122 (|has| |#2| (-861)))) (-2948 (((-112) $ $) 124 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-3043 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3029 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1070))) (($ $ (-940)) 84 (|has| |#2| (-1070)))) (* (($ $ $) 85 (|has| |#2| (-1070))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-940) $) 74 (|has| |#2| (-25)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-243 |#1| |#2|) (-141) (-783) (-1238)) (T -243)) +((-1871 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4)))) (-1417 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) (-4 *4 (-1238)))) (-1984 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) +(-13 (-616 (-576) |t#2|) (-625 (-1288 |t#2|)) (-10 -8 (-6 -4464) (-15 -1871 ($ (-1288 |t#2|))) (IF (|has| |t#2| (-1121)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1070)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -1417 ($ (-940))) (-15 -1984 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1295 |t#2|)) |%noBranch|))) +(((-21) -2758 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2758 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2758 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2758 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2758 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2758 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-628 (-576)) -2758 (|has| |#2| (-1070)) (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) ((-628 |#2|) |has| |#2| (-1121)) ((-625 (-876)) -2758 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-876))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1288 |#2|)) . T) ((-234 $) -2758 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-232 |#2|) |has| |#2| (-1070)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1070))) ((-237) -2758 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-272 |#2|) |has| |#2| (-1070)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1070)) ((-423 |#2|) |has| |#2| (-1121)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) -2758 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -2758 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1070)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-660 |#2|) -2758 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1070)) ((-652 |#2|) -2758 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-651 |#2|) |has| |#2| (-1070)) ((-729 |#2|) -2758 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1070)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-861) -2758 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-864) -2758 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-911 $ #3=(-1197)) -2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-917 (-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) ((-919 #3#) -2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-1059 #0#) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-1059 (-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) ((-1059 |#2|) |has| |#2| (-1121)) ((-1072 |#2|) -2758 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1077 |#2|) -2758 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1070) |has| |#2| (-1070)) ((-1079) |has| |#2| (-1070)) ((-1133) |has| |#2| (-1070)) ((-1121) -2758 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1238) . T) ((-1295 |#2|) |has| |#2| (-374))) +((-2727 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-3685 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-4116 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -2727 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3685 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4116 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1238) (-1238)) (T -244)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-244 *5 *6 *2)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) +(-10 -7 (-15 -2727 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3685 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4116 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) +((-3488 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1812 (((-112) $) NIL (|has| |#2| (-23)))) (-1417 (($ (-940)) 62 (|has| |#2| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1685 (($ $ $) 68 (|has| |#2| (-805)))) (-2780 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 28 (|has| |#2| (-1121)))) (-4344 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-3451 (((-3 $ "failed") $) 58 (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) 56)) (-3965 (((-656 |#2|) $) 14 (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL (|has| |#2| (-1070)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 19 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-2735 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#2| (-861)))) (-4322 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#2| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-1413 (((-1179) $) NIL (|has| |#2| (-1121)))) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3580 ((|#2| $) NIL (|has| (-576) (-861)))) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-1984 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) 17)) (-1972 (((-135)) NIL (|has| |#2| (-374)))) (-2773 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#2|) $) 9) (($ (-576)) NIL (-2758 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 12 (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-1778 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2113 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2170 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2719 (($) 36 (|has| |#2| (-23)) CONST)) (-2730 (($) 40 (|has| |#2| (-1070)) CONST)) (-2018 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2991 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2923 (((-112) $ $) 27 (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2948 (((-112) $ $) 66 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3029 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) 46 (|has| |#2| (-1070))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1238)) (T -245)) NIL (-243 |#1| |#2|) -((-2148 (((-576) (-656 (-1178))) 36) (((-576) (-1178)) 29)) (-2491 (((-1292) (-656 (-1178))) 40) (((-1292) (-1178)) 39)) (-1325 (((-1178)) 16)) (-1779 (((-1178) (-576) (-1178)) 23)) (-3187 (((-656 (-1178)) (-656 (-1178)) (-576) (-1178)) 37) (((-1178) (-1178) (-576) (-1178)) 35)) (-2122 (((-656 (-1178)) (-656 (-1178))) 15) (((-656 (-1178)) (-1178)) 11))) -(((-246) (-10 -7 (-15 -2122 ((-656 (-1178)) (-1178))) (-15 -2122 ((-656 (-1178)) (-656 (-1178)))) (-15 -1325 ((-1178))) (-15 -1779 ((-1178) (-576) (-1178))) (-15 -3187 ((-1178) (-1178) (-576) (-1178))) (-15 -3187 ((-656 (-1178)) (-656 (-1178)) (-576) (-1178))) (-15 -2491 ((-1292) (-1178))) (-15 -2491 ((-1292) (-656 (-1178)))) (-15 -2148 ((-576) (-1178))) (-15 -2148 ((-576) (-656 (-1178)))))) (T -246)) -((-2148 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-576)) (-5 *1 (-246)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-246)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1292)) (-5 *1 (-246)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-246)))) (-3187 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1178))) (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *1 (-246)))) (-3187 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1779 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1325 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-246)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)))) (-2122 (*1 *2 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)) (-5 *3 (-1178))))) -(-10 -7 (-15 -2122 ((-656 (-1178)) (-1178))) (-15 -2122 ((-656 (-1178)) (-656 (-1178)))) (-15 -1325 ((-1178))) (-15 -1779 ((-1178) (-576) (-1178))) (-15 -3187 ((-1178) (-1178) (-576) (-1178))) (-15 -3187 ((-656 (-1178)) (-656 (-1178)) (-576) (-1178))) (-15 -2491 ((-1292) (-1178))) (-15 -2491 ((-1292) (-656 (-1178)))) (-15 -2148 ((-576) (-1178))) (-15 -2148 ((-576) (-656 (-1178))))) -((** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) -(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-939))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) (-248)) (T -247)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-939))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 47)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) +((-4374 (((-576) (-656 (-1179))) 36) (((-576) (-1179)) 29)) (-1340 (((-1293) (-656 (-1179))) 40) (((-1293) (-1179)) 39)) (-2820 (((-1179)) 16)) (-1882 (((-1179) (-576) (-1179)) 23)) (-2394 (((-656 (-1179)) (-656 (-1179)) (-576) (-1179)) 37) (((-1179) (-1179) (-576) (-1179)) 35)) (-3263 (((-656 (-1179)) (-656 (-1179))) 15) (((-656 (-1179)) (-1179)) 11))) +(((-246) (-10 -7 (-15 -3263 ((-656 (-1179)) (-1179))) (-15 -3263 ((-656 (-1179)) (-656 (-1179)))) (-15 -2820 ((-1179))) (-15 -1882 ((-1179) (-576) (-1179))) (-15 -2394 ((-1179) (-1179) (-576) (-1179))) (-15 -2394 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -1340 ((-1293) (-1179))) (-15 -1340 ((-1293) (-656 (-1179)))) (-15 -4374 ((-576) (-1179))) (-15 -4374 ((-576) (-656 (-1179)))))) (T -246)) +((-4374 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) (-2394 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *1 (-246)))) (-2394 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1882 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-2820 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) (-3263 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179))))) +(-10 -7 (-15 -3263 ((-656 (-1179)) (-1179))) (-15 -3263 ((-656 (-1179)) (-656 (-1179)))) (-15 -2820 ((-1179))) (-15 -1882 ((-1179) (-576) (-1179))) (-15 -2394 ((-1179) (-1179) (-576) (-1179))) (-15 -2394 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -1340 ((-1293) (-1179))) (-15 -1340 ((-1293) (-656 (-1179)))) (-15 -4374 ((-576) (-1179))) (-15 -4374 ((-576) (-656 (-1179))))) +((** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) +(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-248)) (T -247)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 47)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) (((-248) (-141)) (T -248)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-1667 (*1 *1 *1) (-4 *1 (-248)))) -(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -1667 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-3094 (($ $) 58)) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-2810 (($ $ $) 54 (|has| $ (-6 -4464)))) (-2963 (($ $ $) 53 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-4331 (($) 7 T CONST)) (-1998 (($ $) 57)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-4175 (($ $) 56)) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2849 ((|#1| $) 60)) (-3882 (($ $) 59)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48)) (-3183 (((-576) $ $) 45)) (-2003 (((-112) $) 47)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-3424 (($ $ $) 55 (|has| $ (-6 -4464)))) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-249 |#1|) (-141) (-1237)) (T -249)) -((-2849 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3882 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-1998 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-4175 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3424 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-2810 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-2963 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(-13 (-1030 |t#1|) (-10 -8 (-15 -2849 (|t#1| $)) (-15 -3882 ($ $)) (-15 -3094 ($ $)) (-15 -1998 ($ $)) (-15 -4175 ($ $)) (IF (|has| $ (-6 -4464)) (PROGN (-15 -3424 ($ $ $)) (-15 -2810 ($ $ $)) (-15 -2963 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1030 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) NIL)) (-3456 ((|#1| $) NIL)) (-3094 (($ $) NIL)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1715 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2379 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3134 (($ $ $) NIL (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "rest" $) NIL (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3442 ((|#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-1762 (($ $) NIL) (($ $ (-783)) NIL)) (-3308 (($ $) NIL (|has| |#1| (-1120)))) (-3966 (($ $) 7 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) NIL (|has| |#1| (-1120))) (($ (-1 (-112) |#1|) $) NIL)) (-2824 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3588 (((-112) $) NIL)) (-3538 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120))) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-3881 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2144 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2785 (($ |#1|) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2849 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2782 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3498 (((-112) $) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-3183 (((-576) $ $) NIL)) (-3571 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2334 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2507 (($ (-656 |#1|)) 22)) (-2003 (((-112) $) NIL)) (-4385 (($ $) NIL)) (-1788 (($ $) NIL (|has| $ (-6 -4464)))) (-4093 (((-783) $) NIL)) (-2820 (($ $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) NIL)) (-3424 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2766 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4112 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-875) $) 21 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) 14 (|has| $ (-6 -4463))))) -(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -2507 ($ (-656 |#1|))) (-15 -4368 ($ $ "unique")) (-15 -4368 ($ $ "sort")) (-15 -4368 ((-783) $ "count")))) (-861)) (T -250)) -((-2507 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861))))) -(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -2507 ($ (-656 |#1|))) (-15 -4368 ($ $ "unique")) (-15 -4368 ($ $ "sort")) (-15 -4368 ((-783) $ "count")))) -((-2801 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) -(((-251 |#1|) (-10 -7 (-15 -2801 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) -((-2801 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) -(-10 -7 (-15 -2801 ((-3 (-783) "failed") |#1| |#1| (-783)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1196)) 50 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 48 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 47 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 46 (|has| |#1| (-918 (-1196)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3155 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1196)) 49 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 45 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 44 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 43 (|has| |#1| (-918 (-1196)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-252 |#1|) (-141) (-1069)) (T -252)) -NIL -(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-918 (-1196))) (-6 (-915 |t#1| (-1196))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -3794 (-12 (|has| |#1| (-174)) (|has| |#1| (-918 (-1196)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -3794 (-12 (|has| |#1| (-174)) (|has| |#1| (-918 (-1196)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-910 $ #0=(-1196)) |has| |#1| (-918 (-1196))) ((-915 |#1| (-1196)) |has| |#1| (-918 (-1196))) ((-918 #0#) |has| |#1| (-918 (-1196))) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-877 |#1|)) $) NIL)) (-1420 (((-1192 $) $ (-877 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4070 (($ $) NIL (|has| |#2| (-568)))) (-2378 (((-112) $) NIL (|has| |#2| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-877 |#1|))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-3575 (($ $) NIL (|has| |#2| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-877 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-877 |#1|) $) NIL)) (-3954 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-2342 (($ $ (-656 (-576))) NIL)) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#2| (-927)))) (-3897 (($ $ |#2| (-245 (-1968 |#1|) (-783)) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#2|) (-877 |#1|)) NIL) (($ (-1192 $) (-877 |#1|)) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#2| (-245 (-1968 |#1|) (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-877 |#1|)) NIL)) (-3661 (((-245 (-1968 |#1|) (-783)) $) NIL) (((-783) $ (-877 |#1|)) NIL) (((-656 (-783)) $ (-656 (-877 |#1|))) NIL)) (-3820 (($ (-1 (-245 (-1968 |#1|) (-783)) (-245 (-1968 |#1|) (-783))) $) NIL)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-2653 (((-3 (-877 |#1|) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#2| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -1495 (-783))) "failed") $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#2| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#2| (-927)))) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-877 |#1|) |#2|) NIL) (($ $ (-656 (-877 |#1|)) (-656 |#2|)) NIL) (($ $ (-877 |#1|) $) NIL) (($ $ (-656 (-877 |#1|)) (-656 $)) NIL)) (-1451 (($ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-4106 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-1877 (((-245 (-1968 |#1|) (-783)) $) NIL) (((-783) $ (-877 |#1|)) NIL) (((-656 (-783)) $ (-656 (-877 |#1|))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-877 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3430 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-877 |#1|)) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-245 (-1968 |#1|) (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#2| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-967 |#2| (-245 (-1968 |#1|) (-783)) (-877 |#1|)) (-10 -8 (-15 -2342 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1069)) (T -253)) -((-2342 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1196))) (-4 *4 (-1069))))) -(-13 (-967 |#2| (-245 (-1968 |#1|) (-783)) (-877 |#1|)) (-10 -8 (-15 -2342 ($ $ (-656 (-576)))))) -((-1952 (((-112) $ $) NIL)) (-1657 (((-1292) $) 17)) (-2515 (((-185 (-255)) $) 11)) (-3392 (($ (-185 (-255))) 12)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1784 (((-255) $) 7)) (-4112 (((-875) $) 9)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 15))) -(((-254) (-13 (-1120) (-10 -8 (-15 -1784 ((-255) $)) (-15 -2515 ((-185 (-255)) $)) (-15 -3392 ($ (-185 (-255)))) (-15 -1657 ((-1292) $))))) (T -254)) -((-1784 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-254))))) -(-13 (-1120) (-10 -8 (-15 -1784 ((-255) $)) (-15 -2515 ((-185 (-255)) $)) (-15 -3392 ($ (-185 (-255)))) (-15 -1657 ((-1292) $)))) -((-1952 (((-112) $ $) NIL)) (-3866 (((-656 (-878)) $) NIL)) (-4148 (((-518) $) NIL)) (-2043 (((-1178) $) NIL)) (-3949 (((-188) $) NIL)) (-1681 (((-112) $ (-518)) NIL)) (-3115 (((-1140) $) NIL)) (-3070 (((-343) $) 7)) (-3096 (((-656 (-112)) $) NIL)) (-4112 (((-875) $) NIL) (((-189) $) 8)) (-1994 (((-112) $ $) NIL)) (-2670 (((-55) $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -3070 ((-343) $))))) (T -255)) -((-3070 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(-13 (-187) (-625 (-189)) (-10 -8 (-15 -3070 ((-343) $)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4368 (((-1201) $ (-783)) 13)) (-4112 (((-875) $) 20)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 16)) (-1968 (((-783) $) 9))) -(((-256) (-13 (-1120) (-296 (-783) (-1201)) (-10 -8 (-15 -1968 ((-783) $))))) (T -256)) -((-1968 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) -(-13 (-1120) (-296 (-783) (-1201)) (-10 -8 (-15 -1968 ((-783) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2793 (($ (-939)) NIL (|has| |#4| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2390 (($ $ $) NIL (|has| |#4| (-805)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#4| (-379)))) (-4267 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1120))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1058 (-576))) (|has| |#4| (-1120)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1058 (-419 (-576)))) (|has| |#4| (-1120))))) (-2317 ((|#4| $) NIL (|has| |#4| (-1120))) (((-576) $) NIL (-12 (|has| |#4| (-1058 (-576))) (|has| |#4| (-1120)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1058 (-419 (-576)))) (|has| |#4| (-1120))))) (-3222 (((-2 (|:| -3608 (-701 |#4|)) (|:| |vec| (-1287 |#4|))) (-701 $) (-1287 $)) NIL (|has| |#4| (-1069))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1069)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1069))))) (-3900 (((-3 $ "failed") $) NIL (|has| |#4| (-1069)))) (-4369 (($) NIL (|has| |#4| (-379)))) (-1908 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#4| $ (-576)) NIL)) (-3721 (((-656 |#4|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL (|has| |#4| (-1069)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#4| (-861)))) (-3958 (((-656 |#4|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#4| (-861)))) (-1896 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#4| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-2 (|:| -3608 (-701 |#4|)) (|:| |vec| (-1287 |#4|))) (-1287 $) $) NIL (|has| |#4| (-1069))) (((-701 |#4|) (-1287 $)) NIL (|has| |#4| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1069)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1069))))) (-2043 (((-1178) $) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-2409 (($ (-939)) NIL (|has| |#4| (-379)))) (-3115 (((-1140) $) NIL)) (-1753 ((|#4| $) NIL (|has| (-576) (-861)))) (-2556 (($ $ |#4|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-2692 (((-656 |#4|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-4139 ((|#4| $ $) NIL (|has| |#4| (-1069)))) (-1491 (($ (-1287 |#4|)) NIL)) (-1656 (((-135)) NIL (|has| |#4| (-374)))) (-4106 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1069))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1069))))) (($ $) NIL (-3794 (-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1069)))))) (-3125 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1287 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1120))) (((-875) $) NIL) (($ (-576)) NIL (-3794 (-12 (|has| |#4| (-1058 (-576))) (|has| |#4| (-1120))) (|has| |#4| (-1069)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1058 (-419 (-576)))) (|has| |#4| (-1120))))) (-4115 (((-783)) NIL (|has| |#4| (-1069)) CONST)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL (|has| |#4| (-1069)) CONST)) (-3155 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1069))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#4| (-916 (-1196))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1196))) (|has| |#4| (-1069))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1069))))) (($ $) NIL (-3794 (-12 (|has| |#4| (-238)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1069)))))) (-3993 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#4| (-861)))) (-4046 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1069))) (($ $ (-939)) NIL (|has| |#4| (-1069)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-939) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1069)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-939) (-1069) (-1143 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-660 |#2|)) (T -257)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-2048 (*1 *1 *1) (-4 *1 (-248)))) +(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -2048 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-4425 (($ $) 58)) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3486 (($ $ $) 54 (|has| $ (-6 -4465)))) (-3620 (($ $ $) 53 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3306 (($) 7 T CONST)) (-3641 (($ $) 57)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4295 (($ $) 56)) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3967 ((|#1| $) 60)) (-1378 (($ $) 59)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48)) (-3957 (((-576) $ $) 45)) (-2199 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-2563 (($ $ $) 55 (|has| $ (-6 -4465)))) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-249 |#1|) (-141) (-1238)) (T -249)) +((-3967 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-1378 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3641 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4295 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-2563 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3486 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3620 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(-13 (-1031 |t#1|) (-10 -8 (-15 -3967 (|t#1| $)) (-15 -1378 ($ $)) (-15 -4425 ($ $)) (-15 -3641 ($ $)) (-15 -4295 ($ $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2563 ($ $ $)) (-15 -3486 ($ $ $)) (-15 -3620 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2897 ((|#1| $) NIL)) (-4425 (($ $) NIL)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2450 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1512 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) |#1|) $) NIL)) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2882 ((|#1| $) NIL)) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-3592 (($ $) NIL) (($ $ (-783)) NIL)) (-2696 (($ $) NIL (|has| |#1| (-1121)))) (-2800 (($ $) 7 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3554 (((-112) $) NIL)) (-3659 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1367 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4335 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1649 (($ |#1|) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3967 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-4436 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2174 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3997 (((-112) $) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-3957 (((-576) $ $) NIL)) (-3389 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3463 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3670 (($ (-656 |#1|)) 22)) (-2199 (((-112) $) NIL)) (-2560 (($ $) NIL)) (-3930 (($ $) NIL (|has| $ (-6 -4465)))) (-1594 (((-783) $) NIL)) (-3574 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-2563 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3569 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-876) $) 21 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 14 (|has| $ (-6 -4464))))) +(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3670 ($ (-656 |#1|))) (-15 -2796 ($ $ "unique")) (-15 -2796 ($ $ "sort")) (-15 -2796 ((-783) $ "count")))) (-861)) (T -250)) +((-3670 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861))))) +(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3670 ($ (-656 |#1|))) (-15 -2796 ($ $ "unique")) (-15 -2796 ($ $ "sort")) (-15 -2796 ((-783) $ "count")))) +((-3384 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) +(((-251 |#1|) (-10 -7 (-15 -3384 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) +((-3384 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) +(-10 -7 (-15 -3384 ((-3 (-783) "failed") |#1| |#1| (-783)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1197)) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 48 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 47 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 46 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2018 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1197)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 45 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 44 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 43 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-252 |#1|) (-141) (-1070)) (T -252)) +NIL +(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-916 |t#1| (-1197))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -2758 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -2758 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-916 |#1| (-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-878 |#1|)) $) NIL)) (-1799 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2544 (($ $) NIL (|has| |#2| (-568)))) (-1574 (((-112) $) NIL (|has| |#2| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3420 (($ $) NIL (|has| |#2| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4004 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2452 (($ $ (-656 (-576))) NIL)) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#2| (-928)))) (-3415 (($ $ |#2| (-245 (-3502 |#1|) (-783)) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#2| (-245 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-878 |#1|)) NIL)) (-2987 (((-245 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-1938 (($ (-1 (-245 (-3502 |#1|) (-783)) (-245 (-3502 |#1|) (-783))) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2512 (((-3 (-878 |#1|) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4210 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#2| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-2455 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2773 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3600 (((-245 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-245 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-253 |#1| |#2|) (-13 (-968 |#2| (-245 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2452 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -253)) +((-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) +(-13 (-968 |#2| (-245 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2452 ($ $ (-656 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-2582 (((-1293) $) 17)) (-3632 (((-185 (-255)) $) 11)) (-2290 (($ (-185 (-255))) 12)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2564 (((-255) $) 7)) (-3569 (((-876) $) 9)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 15))) +(((-254) (-13 (-1121) (-10 -8 (-15 -2564 ((-255) $)) (-15 -3632 ((-185 (-255)) $)) (-15 -2290 ($ (-185 (-255)))) (-15 -2582 ((-1293) $))))) (T -254)) +((-2564 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) +(-13 (-1121) (-10 -8 (-15 -2564 ((-255) $)) (-15 -3632 ((-185 (-255)) $)) (-15 -2290 ($ (-185 (-255)))) (-15 -2582 ((-1293) $)))) +((-3488 (((-112) $ $) NIL)) (-3296 (((-656 (-879)) $) NIL)) (-2627 (((-518) $) NIL)) (-1413 (((-1179) $) NIL)) (-1747 (((-188) $) NIL)) (-2158 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-2152 (((-343) $) 7)) (-2409 (((-656 (-112)) $) NIL)) (-3569 (((-876) $) NIL) (((-189) $) 8)) (-2113 (((-112) $ $) NIL)) (-1479 (((-55) $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -2152 ((-343) $))))) (T -255)) +((-2152 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(-13 (-187) (-625 (-189)) (-10 -8 (-15 -2152 ((-343) $)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 (((-1202) $ (-783)) 13)) (-3569 (((-876) $) 20)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 16)) (-3502 (((-783) $) 9))) +(((-256) (-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -3502 ((-783) $))))) (T -256)) +((-3502 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) +(-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -3502 ((-783) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1417 (($ (-940)) NIL (|has| |#4| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1685 (($ $ $) NIL (|has| |#4| (-805)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#4| (-379)))) (-3755 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-2859 ((|#4| $) NIL (|has| |#4| (-1121))) (((-576) $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-4344 (((-2 (|:| -3752 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-701 $) (-1288 $)) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-3451 (((-3 $ "failed") $) NIL (|has| |#4| (-1070)))) (-1836 (($) NIL (|has| |#4| (-379)))) (-4332 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#4| $ (-576)) NIL)) (-3965 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL (|has| |#4| (-1070)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#4| (-861)))) (-2735 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#4| (-861)))) (-4322 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#4| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-2 (|:| -3752 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-1288 $) $) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-1288 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-1413 (((-1179) $) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#4| (-379)))) (-1450 (((-1141) $) NIL)) (-3580 ((|#4| $) NIL (|has| (-576) (-861)))) (-2740 (($ $ |#4|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1681 (((-656 |#4|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-1984 ((|#4| $ $) NIL (|has| |#4| (-1070)))) (-1871 (($ (-1288 |#4|)) NIL)) (-1972 (((-135)) NIL (|has| |#4| (-374)))) (-2773 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-2758 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-1460 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-2758 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-1778 (((-783)) NIL (|has| |#4| (-1070)) CONST)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL (|has| |#4| (-1070)) CONST)) (-2018 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-2758 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-2991 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3056 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1070))) (($ $ (-940)) NIL (|has| |#4| (-1070)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1070)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-940) (-1070) (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-660 |#2|)) (T -257)) NIL (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2793 (($ (-939)) NIL (|has| |#3| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2390 (($ $ $) NIL (|has| |#3| (-805)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#3| (-379)))) (-4267 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1120))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120))))) (-2317 ((|#3| $) NIL (|has| |#3| (-1120))) (((-576) $) NIL (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120))))) (-3222 (((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) NIL (|has| |#3| (-1069))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069))))) (-3900 (((-3 $ "failed") $) NIL (|has| |#3| (-1069)))) (-4369 (($) NIL (|has| |#3| (-379)))) (-1908 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#3| $ (-576)) NIL)) (-3721 (((-656 |#3|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL (|has| |#3| (-1069)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#3| (-861)))) (-3958 (((-656 |#3|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#3| (-861)))) (-1896 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#3| |#3|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#3| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL (|has| |#3| (-1069))) (((-701 |#3|) (-1287 $)) NIL (|has| |#3| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069))))) (-2043 (((-1178) $) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-2409 (($ (-939)) NIL (|has| |#3| (-379)))) (-3115 (((-1140) $) NIL)) (-1753 ((|#3| $) NIL (|has| (-576) (-861)))) (-2556 (($ $ |#3|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-2692 (((-656 |#3|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-4139 ((|#3| $ $) NIL (|has| |#3| (-1069)))) (-1491 (($ (-1287 |#3|)) NIL)) (-1656 (((-135)) NIL (|has| |#3| (-374)))) (-4106 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069))))) (($ $) NIL (-3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))))) (-3125 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1287 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1120))) (((-875) $) NIL) (($ (-576)) NIL (-3794 (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120))) (|has| |#3| (-1069)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120))))) (-4115 (((-783)) NIL (|has| |#3| (-1069)) CONST)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL (|has| |#3| (-1069)) CONST)) (-3155 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#3| (-916 (-1196))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069))))) (($ $) NIL (-3794 (-12 (|has| |#3| (-238)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))))) (-3993 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#3| (-861)))) (-4046 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1069))) (($ $ (-939)) NIL (|has| |#3| (-1069)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-939) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1069)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-660 |#2|)) (-783) (-1069) (-660 |#2|)) (T -258)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1417 (($ (-940)) NIL (|has| |#3| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1685 (($ $ $) NIL (|has| |#3| (-805)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#3| (-379)))) (-3755 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-2859 ((|#3| $) NIL (|has| |#3| (-1121))) (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-4344 (((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-3451 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-1836 (($) NIL (|has| |#3| (-379)))) (-4332 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#3| $ (-576)) NIL)) (-3965 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL (|has| |#3| (-1070)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#3| (-861)))) (-2735 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#3| (-861)))) (-4322 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#3| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-1413 (((-1179) $) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#3| (-379)))) (-1450 (((-1141) $) NIL)) (-3580 ((|#3| $) NIL (|has| (-576) (-861)))) (-2740 (($ $ |#3|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1681 (((-656 |#3|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-1984 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1871 (($ (-1288 |#3|)) NIL)) (-1972 (((-135)) NIL (|has| |#3| (-374)))) (-2773 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-1460 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-2758 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-1778 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL (|has| |#3| (-1070)) CONST)) (-2018 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-2758 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-2991 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3056 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1070)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-660 |#2|)) (-783) (-1070) (-660 |#2|)) (T -258)) NIL (-13 (-243 |#1| |#3|) (-660 |#2|)) -((-3135 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2869 (((-783) $) 58) (((-783) $ |#3|) 61)) (-3120 (($ $) 76)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3241 (((-783) $ |#3|) 43) (((-783) $) 38)) (-3738 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-4194 ((|#4| $) 69)) (-3558 (((-112) $) 67)) (-2295 (($ $) 75)) (-2143 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-4106 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3630 (((-656 |#3|) $) 86)) (-1877 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4112 (|#1| |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2143 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#3| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#3| |#1|)) (-15 -3738 ((-1 |#1| (-783)) |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -4194 (|#4| |#1|)) (-15 -3558 ((-112) |#1|)) (-15 -2869 ((-783) |#1| |#3|)) (-15 -3135 ((-656 (-783)) |#1| |#3|)) (-15 -2869 ((-783) |#1|)) (-15 -3135 ((-656 (-783)) |#1|)) (-15 -1877 ((-783) |#1| |#3|)) (-15 -3241 ((-783) |#1|)) (-15 -3241 ((-783) |#1| |#3|)) (-15 -3630 ((-656 |#3|) |#1|)) (-15 -3738 ((-1 |#1| (-783)) |#3|)) (-15 -4112 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1877 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -1877 ((-783) |#1| |#4|)) (-15 -4112 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#4| |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#4| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1877 (|#5| |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -4106 (|#1| |#1| |#4|)) (-15 -4106 (|#1| |#1| (-656 |#4|))) (-15 -4106 (|#1| |#1| |#4| (-783))) (-15 -4106 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1069) (-861) (-275 |#3|) (-805)) (T -259)) -NIL -(-10 -8 (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4112 (|#1| |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2143 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#3| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#3| |#1|)) (-15 -3738 ((-1 |#1| (-783)) |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -4194 (|#4| |#1|)) (-15 -3558 ((-112) |#1|)) (-15 -2869 ((-783) |#1| |#3|)) (-15 -3135 ((-656 (-783)) |#1| |#3|)) (-15 -2869 ((-783) |#1|)) (-15 -3135 ((-656 (-783)) |#1|)) (-15 -1877 ((-783) |#1| |#3|)) (-15 -3241 ((-783) |#1|)) (-15 -3241 ((-783) |#1| |#3|)) (-15 -3630 ((-656 |#3|) |#1|)) (-15 -3738 ((-1 |#1| (-783)) |#3|)) (-15 -4112 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1877 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -1877 ((-783) |#1| |#4|)) (-15 -4112 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#4| |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#4| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1877 (|#5| |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -4106 (|#1| |#1| |#4|)) (-15 -4106 (|#1| |#1| (-656 |#4|))) (-15 -4106 (|#1| |#1| |#4| (-783))) (-15 -4106 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-3135 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-2869 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1582 (((-656 |#3|) $) 113)) (-1420 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4070 (($ $) 91 (|has| |#1| (-568)))) (-2378 (((-112) $) 93 (|has| |#1| (-568)))) (-4230 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2559 (((-3 $ "failed") $ $) 20)) (-1946 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-927)))) (-3575 (($ $) 101 (|has| |#1| (-464)))) (-3163 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-927)))) (-3120 (($ $) 229)) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1058 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1058 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-3954 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-3309 (($ $) 161)) (-3222 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3900 (((-3 $ "failed") $) 37)) (-3557 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-3296 (((-656 $) $) 112)) (-2443 (((-112) $) 99 (|has| |#1| (-927)))) (-3897 (($ $ |#1| |#4| $) 179)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 87 (-12 (|has| |#3| (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 86 (-12 (|has| |#3| (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-3241 (((-783) $ |#2|) 239) (((-783) $) 238)) (-2287 (((-112) $) 35)) (-1757 (((-783) $) 176)) (-1571 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-1894 (((-656 $) $) 129)) (-3146 (((-112) $) 159)) (-1562 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#3|) 123)) (-3661 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3820 (($ (-1 |#4| |#4|) $) 178)) (-2422 (($ (-1 |#1| |#1|) $) 158)) (-3738 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-2653 (((-3 |#3| "failed") $) 126)) (-2198 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-1698 (($ $) 156)) (-1709 ((|#1| $) 155)) (-4194 ((|#3| $) 231)) (-3075 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2043 (((-1178) $) 10)) (-3558 (((-112) $) 232)) (-2000 (((-3 (-656 $) "failed") $) 117)) (-2279 (((-3 (-656 $) "failed") $) 118)) (-4044 (((-3 (-2 (|:| |var| |#3|) (|:| -1495 (-783))) "failed") $) 116)) (-2295 (($ $) 230)) (-3115 (((-1140) $) 11)) (-1677 (((-112) $) 173)) (-1685 ((|#1| $) 174)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3114 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-927)))) (-1450 (((-430 $) $) 102 (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-1451 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-4106 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1196)) 219 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 217 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 216 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 215 (|has| |#1| (-918 (-1196))))) (-3630 (((-656 |#2|) $) 240)) (-1877 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-1554 (((-906 (-390)) $) 85 (-12 (|has| |#3| (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) 84 (-12 (|has| |#3| (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2310 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) 175)) (-4269 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-1972 (((-3 $ "failed") $) 82 (-3794 (-2310 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) 32 T CONST)) (-4081 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1196)) 218 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 214 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 213 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 212 (|has| |#1| (-918 (-1196))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-260 |#1| |#2| |#3| |#4|) (-141) (-1069) (-861) (-275 |t#2|) (-805)) (T -260)) -((-3738 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3241 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1877 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3135 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2869 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-3120 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-3738 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-967 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1058 |t#2|) (-10 -8 (-15 -3738 ((-1 $ (-783)) |t#2|)) (-15 -3630 ((-656 |t#2|) $)) (-15 -3241 ((-783) $ |t#2|)) (-15 -3241 ((-783) $)) (-15 -1877 ((-783) $ |t#2|)) (-15 -3135 ((-656 (-783)) $)) (-15 -2869 ((-783) $)) (-15 -3135 ((-656 (-783)) $ |t#2|)) (-15 -2869 ((-783) $ |t#2|)) (-15 -3558 ((-112) $)) (-15 -4194 (|t#3| $)) (-15 -2295 ($ $)) (-15 -3120 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -3738 ((-1 $ (-783)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-906 (-390))) -12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#3| (-626 (-906 (-390))))) ((-626 (-906 (-576))) -12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#3| (-626 (-906 (-576))))) ((-234 $) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3794 (|has| |#1| (-927)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-910 $ #2=(-1196)) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-910 $ |#3|) . T) ((-916 (-1196)) |has| |#1| (-916 (-1196))) ((-916 |#3|) . T) ((-918 #2#) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-918 |#3|) . T) ((-900 (-390)) -12 (|has| |#1| (-900 (-390))) (|has| |#3| (-900 (-390)))) ((-900 (-576)) -12 (|has| |#1| (-900 (-576))) (|has| |#3| (-900 (-576)))) ((-967 |#1| |#4| |#3|) . T) ((-927) |has| |#1| (-927)) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1058 |#2|) . T) ((-1058 |#3|) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) |has| |#1| (-927))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4150 ((|#1| $) 55)) (-3015 ((|#1| $) 45)) (-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-3792 (($ $) 61)) (-3432 (($ $) 49)) (-2133 ((|#1| |#1| $) 47)) (-2034 ((|#1| $) 46)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-3107 (((-783) $) 62)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2551 ((|#1| |#1| $) 53)) (-1549 ((|#1| |#1| $) 52)) (-2782 (($ |#1| $) 41)) (-2952 (((-783) $) 56)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3854 ((|#1| $) 63)) (-1723 ((|#1| $) 51)) (-2803 ((|#1| $) 50)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1754 ((|#1| |#1| $) 59)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-1461 ((|#1| $) 60)) (-4301 (($) 58) (($ (-656 |#1|)) 57)) (-4305 (((-783) $) 44)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-2773 ((|#1| $) 54)) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-4248 ((|#1| $) 64)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-261 |#1|) (-141) (-1237)) (T -261)) -((-4301 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-4301 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-261 *3)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-2551 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-1549 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3432 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(-13 (-1141 |t#1|) (-1015 |t#1|) (-10 -8 (-15 -4301 ($)) (-15 -4301 ($ (-656 |t#1|))) (-15 -2952 ((-783) $)) (-15 -4150 (|t#1| $)) (-15 -2773 (|t#1| $)) (-15 -2551 (|t#1| |t#1| $)) (-15 -1549 (|t#1| |t#1| $)) (-15 -1723 (|t#1| $)) (-15 -2803 (|t#1| $)) (-15 -3432 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1015 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1141 |#1|) . T) ((-1237) . T)) -((-2353 (((-1 (-961 (-227)) (-227) (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-2843 (((-1153 (-227)) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390))) 173) (((-1153 (-227)) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)) (-656 (-270))) 171) (((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390))) 176) (((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270))) 172) (((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390))) 164) (((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270))) 163) (((-1153 (-227)) (-1 (-961 (-227)) (-227)) (-1114 (-390))) 145) (((-1153 (-227)) (-1 (-961 (-227)) (-227)) (-1114 (-390)) (-656 (-270))) 143) (((-1153 (-227)) (-893 (-1 (-227) (-227))) (-1114 (-390))) 144) (((-1153 (-227)) (-893 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270))) 141)) (-2794 (((-1289) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390))) 175) (((-1289) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)) (-656 (-270))) 174) (((-1289) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390))) 178) (((-1289) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270))) 177) (((-1289) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390))) 166) (((-1289) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270))) 165) (((-1289) (-1 (-961 (-227)) (-227)) (-1114 (-390))) 151) (((-1289) (-1 (-961 (-227)) (-227)) (-1114 (-390)) (-656 (-270))) 150) (((-1289) (-893 (-1 (-227) (-227))) (-1114 (-390))) 149) (((-1289) (-893 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270))) 148) (((-1288) (-891 (-1 (-227) (-227))) (-1114 (-390))) 113) (((-1288) (-891 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270))) 112) (((-1288) (-1 (-227) (-227)) (-1114 (-390))) 107) (((-1288) (-1 (-227) (-227)) (-1114 (-390)) (-656 (-270))) 105))) -(((-262) (-10 -7 (-15 -2794 ((-1288) (-1 (-227) (-227)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) (-1 (-227) (-227)) (-1114 (-390)))) (-15 -2794 ((-1288) (-891 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) (-891 (-1 (-227) (-227))) (-1114 (-390)))) (-15 -2794 ((-1289) (-893 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-893 (-1 (-227) (-227))) (-1114 (-390)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-893 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-893 (-1 (-227) (-227))) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227)) (-1114 (-390)))) (-15 -2794 ((-1289) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2794 ((-1289) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)))) (-15 -2353 ((-1 (-961 (-227)) (-227) (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-2353 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-961 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1114 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))) -(-10 -7 (-15 -2794 ((-1288) (-1 (-227) (-227)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) (-1 (-227) (-227)) (-1114 (-390)))) (-15 -2794 ((-1288) (-891 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) (-891 (-1 (-227) (-227))) (-1114 (-390)))) (-15 -2794 ((-1289) (-893 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-893 (-1 (-227) (-227))) (-1114 (-390)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-893 (-1 (-227) (-227))) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-893 (-1 (-227) (-227))) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227)) (-1114 (-390)))) (-15 -2794 ((-1289) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-390)) (-1114 (-390)))) (-15 -2794 ((-1289) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)))) (-15 -2843 ((-1153 (-227)) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-896 (-1 (-227) (-227) (-227))) (-1114 (-390)) (-1114 (-390)))) (-15 -2353 ((-1 (-961 (-227)) (-227) (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-2794 (((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -2794 ((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))))) (-13 (-568) (-861) (-1058 (-576))) (-442 |#1|)) (T -263)) -((-2794 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1196)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1058 (-576)))) (-5 *2 (-1288)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -2794 ((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))))) -((-3285 (((-576) (-576)) 71)) (-4003 (((-576) (-576)) 72)) (-2129 (((-227) (-227)) 73)) (-1600 (((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1114 (-227)) (-1114 (-227))) 70)) (-3385 (((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1114 (-227)) (-1114 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -3385 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1114 (-227)) (-1114 (-227)) (-112))) (-15 -1600 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1114 (-227)) (-1114 (-227)))) (-15 -3285 ((-576) (-576))) (-15 -4003 ((-576) (-576))) (-15 -2129 ((-227) (-227))))) (T -264)) -((-2129 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1600 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1114 (-227))) (-5 *2 (-1289)) (-5 *1 (-264)))) (-3385 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1114 (-227))) (-5 *5 (-112)) (-5 *2 (-1289)) (-5 *1 (-264))))) -(-10 -7 (-15 -3385 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1114 (-227)) (-1114 (-227)) (-112))) (-15 -1600 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1114 (-227)) (-1114 (-227)))) (-15 -3285 ((-576) (-576))) (-15 -4003 ((-576) (-576))) (-15 -2129 ((-227) (-227)))) -((-4112 (((-1112 (-390)) (-1112 (-326 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -4112 ((-1112 (-390)) (-1112 (-326 |#1|))))) (-13 (-861) (-568) (-626 (-390)))) (T -265)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-1112 (-326 *4))) (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1112 (-390))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -4112 ((-1112 (-390)) (-1112 (-326 |#1|))))) -((-2843 (((-1153 (-227)) (-896 |#1|) (-1112 (-390)) (-1112 (-390))) 75) (((-1153 (-227)) (-896 |#1|) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 74) (((-1153 (-227)) |#1| (-1112 (-390)) (-1112 (-390))) 65) (((-1153 (-227)) |#1| (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 64) (((-1153 (-227)) (-893 |#1|) (-1112 (-390))) 56) (((-1153 (-227)) (-893 |#1|) (-1112 (-390)) (-656 (-270))) 55)) (-2794 (((-1289) (-896 |#1|) (-1112 (-390)) (-1112 (-390))) 78) (((-1289) (-896 |#1|) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 77) (((-1289) |#1| (-1112 (-390)) (-1112 (-390))) 68) (((-1289) |#1| (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 67) (((-1289) (-893 |#1|) (-1112 (-390))) 60) (((-1289) (-893 |#1|) (-1112 (-390)) (-656 (-270))) 59) (((-1288) (-891 |#1|) (-1112 (-390))) 47) (((-1288) (-891 |#1|) (-1112 (-390)) (-656 (-270))) 46) (((-1288) |#1| (-1112 (-390))) 38) (((-1288) |#1| (-1112 (-390)) (-656 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -2794 ((-1288) |#1| (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) |#1| (-1112 (-390)))) (-15 -2794 ((-1288) (-891 |#1|) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) (-891 |#1|) (-1112 (-390)))) (-15 -2794 ((-1289) (-893 |#1|) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-893 |#1|) (-1112 (-390)))) (-15 -2843 ((-1153 (-227)) (-893 |#1|) (-1112 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-893 |#1|) (-1112 (-390)))) (-15 -2794 ((-1289) |#1| (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) |#1| (-1112 (-390)) (-1112 (-390)))) (-15 -2843 ((-1153 (-227)) |#1| (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) |#1| (-1112 (-390)) (-1112 (-390)))) (-15 -2794 ((-1289) (-896 |#1|) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-896 |#1|) (-1112 (-390)) (-1112 (-390)))) (-15 -2843 ((-1153 (-227)) (-896 |#1|) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-896 |#1|) (-1112 (-390)) (-1112 (-390))))) (-13 (-626 (-548)) (-1120))) (T -266)) -((-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-390))) (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *5)))) (-2843 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *6)))) (-2794 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-390))) (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-2794 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-2843 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1112 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) (-2843 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) (-2794 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1112 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) (-2794 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-390))) (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *5)))) (-2843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *6)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-390))) (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1112 (-390))) (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120)))))) -(-10 -7 (-15 -2794 ((-1288) |#1| (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) |#1| (-1112 (-390)))) (-15 -2794 ((-1288) (-891 |#1|) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1288) (-891 |#1|) (-1112 (-390)))) (-15 -2794 ((-1289) (-893 |#1|) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-893 |#1|) (-1112 (-390)))) (-15 -2843 ((-1153 (-227)) (-893 |#1|) (-1112 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-893 |#1|) (-1112 (-390)))) (-15 -2794 ((-1289) |#1| (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) |#1| (-1112 (-390)) (-1112 (-390)))) (-15 -2843 ((-1153 (-227)) |#1| (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) |#1| (-1112 (-390)) (-1112 (-390)))) (-15 -2794 ((-1289) (-896 |#1|) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2794 ((-1289) (-896 |#1|) (-1112 (-390)) (-1112 (-390)))) (-15 -2843 ((-1153 (-227)) (-896 |#1|) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -2843 ((-1153 (-227)) (-896 |#1|) (-1112 (-390)) (-1112 (-390))))) -((-2794 (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1288) (-656 (-961 (-227))) (-656 (-270))) 16) (((-1288) (-656 (-961 (-227)))) 17) (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1288) (-656 (-227)) (-656 (-227))) 21))) -(((-267) (-10 -7 (-15 -2794 ((-1288) (-656 (-227)) (-656 (-227)))) (-15 -2794 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -2794 ((-1288) (-656 (-961 (-227))))) (-15 -2794 ((-1288) (-656 (-961 (-227))) (-656 (-270)))) (-15 -2794 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -2794 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) -((-2794 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-2794 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-961 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-656 (-961 (-227)))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-2794 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-2794 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267))))) -(-10 -7 (-15 -2794 ((-1288) (-656 (-227)) (-656 (-227)))) (-15 -2794 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -2794 ((-1288) (-656 (-961 (-227))))) (-15 -2794 ((-1288) (-656 (-961 (-227))) (-656 (-270)))) (-15 -2794 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -2794 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) -((-2509 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3242 (((-939) (-656 (-270)) (-939)) 52)) (-2826 (((-939) (-656 (-270)) (-939)) 51)) (-3479 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-2387 (((-390) (-656 (-270)) (-390)) 57)) (-3253 (((-939) (-656 (-270)) (-939)) 53)) (-2828 (((-112) (-656 (-270)) (-112)) 27)) (-3750 (((-1178) (-656 (-270)) (-1178)) 19)) (-2162 (((-1178) (-656 (-270)) (-1178)) 26)) (-2028 (((-1153 (-227)) (-656 (-270))) 46)) (-2147 (((-656 (-1114 (-390))) (-656 (-270)) (-656 (-1114 (-390)))) 40)) (-1500 (((-887) (-656 (-270)) (-887)) 32)) (-2076 (((-887) (-656 (-270)) (-887)) 33)) (-3758 (((-1 (-961 (-227)) (-961 (-227))) (-656 (-270)) (-1 (-961 (-227)) (-961 (-227)))) 63)) (-3572 (((-112) (-656 (-270)) (-112)) 14)) (-4089 (((-112) (-656 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -4089 ((-112) (-656 (-270)) (-112))) (-15 -3572 ((-112) (-656 (-270)) (-112))) (-15 -2509 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3750 ((-1178) (-656 (-270)) (-1178))) (-15 -2162 ((-1178) (-656 (-270)) (-1178))) (-15 -2828 ((-112) (-656 (-270)) (-112))) (-15 -1500 ((-887) (-656 (-270)) (-887))) (-15 -2076 ((-887) (-656 (-270)) (-887))) (-15 -2147 ((-656 (-1114 (-390))) (-656 (-270)) (-656 (-1114 (-390))))) (-15 -2826 ((-939) (-656 (-270)) (-939))) (-15 -3242 ((-939) (-656 (-270)) (-939))) (-15 -2028 ((-1153 (-227)) (-656 (-270)))) (-15 -3253 ((-939) (-656 (-270)) (-939))) (-15 -2387 ((-390) (-656 (-270)) (-390))) (-15 -3758 ((-1 (-961 (-227)) (-961 (-227))) (-656 (-270)) (-1 (-961 (-227)) (-961 (-227))))) (-15 -3479 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) -((-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3758 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-961 (-227)) (-961 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3253 (*1 *2 *3 *2) (-12 (-5 *2 (-939)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-268)))) (-3242 (*1 *2 *3 *2) (-12 (-5 *2 (-939)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2826 (*1 *2 *3 *2) (-12 (-5 *2 (-939)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2076 (*1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2828 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2162 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3750 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2509 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4089 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -4089 ((-112) (-656 (-270)) (-112))) (-15 -3572 ((-112) (-656 (-270)) (-112))) (-15 -2509 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3750 ((-1178) (-656 (-270)) (-1178))) (-15 -2162 ((-1178) (-656 (-270)) (-1178))) (-15 -2828 ((-112) (-656 (-270)) (-112))) (-15 -1500 ((-887) (-656 (-270)) (-887))) (-15 -2076 ((-887) (-656 (-270)) (-887))) (-15 -2147 ((-656 (-1114 (-390))) (-656 (-270)) (-656 (-1114 (-390))))) (-15 -2826 ((-939) (-656 (-270)) (-939))) (-15 -3242 ((-939) (-656 (-270)) (-939))) (-15 -2028 ((-1153 (-227)) (-656 (-270)))) (-15 -3253 ((-939) (-656 (-270)) (-939))) (-15 -2387 ((-390) (-656 (-270)) (-390))) (-15 -3758 ((-1 (-961 (-227)) (-961 (-227))) (-656 (-270)) (-1 (-961 (-227)) (-961 (-227))))) (-15 -3479 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) -((-3109 (((-3 |#1| "failed") (-656 (-270)) (-1196)) 17))) -(((-269 |#1|) (-10 -7 (-15 -3109 ((-3 |#1| "failed") (-656 (-270)) (-1196)))) (-1237)) (T -269)) -((-3109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *1 (-269 *2)) (-4 *2 (-1237))))) -(-10 -7 (-15 -3109 ((-3 |#1| "failed") (-656 (-270)) (-1196)))) -((-1952 (((-112) $ $) NIL)) (-2509 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3242 (($ (-939)) 81)) (-2826 (($ (-939)) 80)) (-4288 (($ (-656 (-390))) 87)) (-2387 (($ (-390)) 66)) (-3253 (($ (-939)) 82)) (-2828 (($ (-112)) 33)) (-3750 (($ (-1178)) 28)) (-2162 (($ (-1178)) 29)) (-2028 (($ (-1153 (-227))) 76)) (-2147 (($ (-656 (-1114 (-390)))) 72)) (-2925 (($ (-656 (-1114 (-390)))) 68) (($ (-656 (-1114 (-419 (-576))))) 71)) (-3813 (($ (-390)) 38) (($ (-887)) 42)) (-2961 (((-112) (-656 $) (-1196)) 100)) (-3109 (((-3 (-52) "failed") (-656 $) (-1196)) 102)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2197 (($ (-390)) 43) (($ (-887)) 44)) (-3435 (($ (-1 (-961 (-227)) (-961 (-227)))) 65)) (-3758 (($ (-1 (-961 (-227)) (-961 (-227)))) 83)) (-4221 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-4112 (((-875) $) 93)) (-2052 (($ (-112)) 34) (($ (-656 (-1114 (-390)))) 60)) (-1994 (((-112) $ $) NIL)) (-4089 (($ (-112)) 35)) (-3938 (((-112) $ $) 97))) -(((-270) (-13 (-1120) (-10 -8 (-15 -4089 ($ (-112))) (-15 -2052 ($ (-112))) (-15 -2509 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3750 ($ (-1178))) (-15 -2162 ($ (-1178))) (-15 -2828 ($ (-112))) (-15 -2052 ($ (-656 (-1114 (-390))))) (-15 -3435 ($ (-1 (-961 (-227)) (-961 (-227))))) (-15 -3813 ($ (-390))) (-15 -3813 ($ (-887))) (-15 -2197 ($ (-390))) (-15 -2197 ($ (-887))) (-15 -4221 ($ (-1 (-227) (-227)))) (-15 -4221 ($ (-1 (-227) (-227) (-227)))) (-15 -4221 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2387 ($ (-390))) (-15 -2925 ($ (-656 (-1114 (-390))))) (-15 -2925 ($ (-656 (-1114 (-419 (-576)))))) (-15 -2147 ($ (-656 (-1114 (-390))))) (-15 -2028 ($ (-1153 (-227)))) (-15 -2826 ($ (-939))) (-15 -3242 ($ (-939))) (-15 -3253 ($ (-939))) (-15 -3758 ($ (-1 (-961 (-227)) (-961 (-227))))) (-15 -4288 ($ (-656 (-390)))) (-15 -3109 ((-3 (-52) "failed") (-656 $) (-1196))) (-15 -2961 ((-112) (-656 $) (-1196)))))) (T -270)) -((-4089 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-2828 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-270)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-1 (-961 (-227)) (-961 (-227)))) (-5 *1 (-270)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-270)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-419 (-576))))) (-5 *1 (-270)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-270)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-270)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-270)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-270)))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-270)))) (-3758 (*1 *1 *2) (-12 (-5 *2 (-1 (-961 (-227)) (-961 (-227)))) (-5 *1 (-270)))) (-4288 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-3109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-52)) (-5 *1 (-270)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1120) (-10 -8 (-15 -4089 ($ (-112))) (-15 -2052 ($ (-112))) (-15 -2509 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3750 ($ (-1178))) (-15 -2162 ($ (-1178))) (-15 -2828 ($ (-112))) (-15 -2052 ($ (-656 (-1114 (-390))))) (-15 -3435 ($ (-1 (-961 (-227)) (-961 (-227))))) (-15 -3813 ($ (-390))) (-15 -3813 ($ (-887))) (-15 -2197 ($ (-390))) (-15 -2197 ($ (-887))) (-15 -4221 ($ (-1 (-227) (-227)))) (-15 -4221 ($ (-1 (-227) (-227) (-227)))) (-15 -4221 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2387 ($ (-390))) (-15 -2925 ($ (-656 (-1114 (-390))))) (-15 -2925 ($ (-656 (-1114 (-419 (-576)))))) (-15 -2147 ($ (-656 (-1114 (-390))))) (-15 -2028 ($ (-1153 (-227)))) (-15 -2826 ($ (-939))) (-15 -3242 ($ (-939))) (-15 -3253 ($ (-939))) (-15 -3758 ($ (-1 (-961 (-227)) (-961 (-227))))) (-15 -4288 ($ (-656 (-390)))) (-15 -3109 ((-3 (-52) "failed") (-656 $) (-1196))) (-15 -2961 ((-112) (-656 $) (-1196))))) -((-4106 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-3155 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -3155 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3155 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3155 (|#1| |#1| (-656 (-1196)))) (-15 -3155 (|#1| |#1| (-1196) (-783))) (-15 -3155 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3155 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1237)) (T -271)) -NIL -(-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -3155 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3155 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3155 (|#1| |#1| (-656 (-1196)))) (-15 -3155 (|#1| |#1| (-1196) (-783))) (-15 -3155 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3155 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|)))) -((-4106 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1196)) (-656 (-783))) 16 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 15 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 14 (|has| |#1| (-918 (-1196)))) (($ $ (-1196)) 12 (|has| |#1| (-918 (-1196)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-3155 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1196)) (-656 (-783))) 19 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 18 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 17 (|has| |#1| (-918 (-1196)))) (($ $ (-1196)) 13 (|has| |#1| (-918 (-1196)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) -(((-272 |#1|) (-141) (-1237)) (T -272)) -((-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) (-4106 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1237)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) (-3155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -4106 ($ $ (-1 |t#1| |t#1|))) (-15 -4106 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3155 ($ $ (-1 |t#1| |t#1|))) (-15 -3155 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-918 (-1196))) (-6 (-918 (-1196))) |%noBranch|))) -(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-910 $ #0=(-1196)) |has| |#1| (-918 (-1196))) ((-918 #0#) |has| |#1| (-918 (-1196))) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-3135 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2869 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1582 (((-656 |#3|) $) NIL)) (-1420 (((-1192 $) $ |#3|) NIL) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3120 (($ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1145 |#1| |#2|) "failed") $) 23)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1145 |#1| |#2|) $) NIL)) (-3954 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-543 |#3|) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| |#1| (-900 (-390))) (|has| |#3| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| |#1| (-900 (-576))) (|has| |#3| (-900 (-576)))))) (-3241 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#1|) |#3|) NIL) (($ (-1192 $) |#3|) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#3|) NIL)) (-3661 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-3820 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3738 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2653 (((-3 |#3| "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-4194 ((|#3| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-3558 (((-112) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| |#3|) (|:| -1495 (-783))) "failed") $) NIL)) (-2295 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1451 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3630 (((-656 |#2|) $) NIL)) (-1877 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#3| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#3| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-3430 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1145 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1058 (-1145 |#1| |#2|))) (-1069) (-861) (-275 |#2|)) (T -273)) -NIL -(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1058 (-1145 |#1| |#2|))) -((-2869 (((-783) $) 37)) (-2980 (((-3 |#2| "failed") $) 22)) (-2317 ((|#2| $) 33)) (-4106 (($ $ (-783)) 18) (($ $) 14)) (-4112 (((-875) $) 32) (($ |#2|) 11)) (-3938 (((-112) $ $) 26)) (-3962 (((-112) $ $) 36))) -(((-274 |#1| |#2|) (-10 -8 (-15 -2869 ((-783) |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -3962 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-275 |#2|) (-861)) (T -274)) -NIL -(-10 -8 (-15 -2869 ((-783) |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -3962 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-2869 (((-783) $) 23)) (-1652 ((|#1| $) 24)) (-2980 (((-3 |#1| "failed") $) 28)) (-2317 ((|#1| $) 29)) (-3241 (((-783) $) 25)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-3738 (($ |#1| (-783)) 26)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $ (-783)) 32) (($ $) 30)) (-4112 (((-875) $) 12) (($ |#1|) 27)) (-1994 (((-112) $ $) 6)) (-3155 (($ $ (-783)) 33) (($ $) 31)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15))) +((-1519 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2724 (((-783) $) 58) (((-783) $ |#3|) 61)) (-1423 (($ $) 76)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3309 (((-783) $ |#3|) 43) (((-783) $) 38)) (-2421 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-2763 ((|#4| $) 69)) (-1380 (((-112) $) 67)) (-4284 (($ $) 75)) (-3283 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-2773 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2659 (((-656 |#3|) $) 86)) (-3600 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3283 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#3| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#3| |#1|)) (-15 -2421 ((-1 |#1| (-783)) |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -2763 (|#4| |#1|)) (-15 -1380 ((-112) |#1|)) (-15 -2724 ((-783) |#1| |#3|)) (-15 -1519 ((-656 (-783)) |#1| |#3|)) (-15 -2724 ((-783) |#1|)) (-15 -1519 ((-656 (-783)) |#1|)) (-15 -3600 ((-783) |#1| |#3|)) (-15 -3309 ((-783) |#1|)) (-15 -3309 ((-783) |#1| |#3|)) (-15 -2659 ((-656 |#3|) |#1|)) (-15 -2421 ((-1 |#1| (-783)) |#3|)) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3600 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -3600 ((-783) |#1| |#4|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#4| |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#4| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3600 (|#5| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2773 (|#1| |#1| |#4|)) (-15 -2773 (|#1| |#1| (-656 |#4|))) (-15 -2773 (|#1| |#1| |#4| (-783))) (-15 -2773 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1070) (-861) (-275 |#3|) (-805)) (T -259)) +NIL +(-10 -8 (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3283 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#3| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#3| |#1|)) (-15 -2421 ((-1 |#1| (-783)) |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -2763 (|#4| |#1|)) (-15 -1380 ((-112) |#1|)) (-15 -2724 ((-783) |#1| |#3|)) (-15 -1519 ((-656 (-783)) |#1| |#3|)) (-15 -2724 ((-783) |#1|)) (-15 -1519 ((-656 (-783)) |#1|)) (-15 -3600 ((-783) |#1| |#3|)) (-15 -3309 ((-783) |#1|)) (-15 -3309 ((-783) |#1| |#3|)) (-15 -2659 ((-656 |#3|) |#1|)) (-15 -2421 ((-1 |#1| (-783)) |#3|)) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3600 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -3600 ((-783) |#1| |#4|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#4| |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#4| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3600 (|#5| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2773 (|#1| |#1| |#4|)) (-15 -2773 (|#1| |#1| (-656 |#4|))) (-15 -2773 (|#1| |#1| |#4| (-783))) (-15 -2773 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1519 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-2724 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1966 (((-656 |#3|) $) 113)) (-1799 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2544 (($ $) 91 (|has| |#1| (-568)))) (-1574 (((-112) $) 93 (|has| |#1| (-568)))) (-3591 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2780 (((-3 $ "failed") $ $) 20)) (-2971 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3420 (($ $) 101 (|has| |#1| (-464)))) (-1770 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-1423 (($ $) 229)) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-4004 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2112 (($ $) 161)) (-4344 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3451 (((-3 $ "failed") $) 37)) (-1371 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2101 (((-656 $) $) 112)) (-4169 (((-112) $) 99 (|has| |#1| (-928)))) (-3415 (($ $ |#1| |#4| $) 179)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3309 (((-783) $ |#2|) 239) (((-783) $) 238)) (-3215 (((-112) $) 35)) (-1675 (((-783) $) 176)) (-1955 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-3773 (((-656 $) $) 129)) (-1606 (((-112) $) 159)) (-1945 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#3|) 123)) (-2987 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-1938 (($ (-1 |#4| |#4|) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-2421 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-2512 (((-3 |#3| "failed") $) 126)) (-3626 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2079 (($ $) 156)) (-2089 ((|#1| $) 155)) (-2763 ((|#3| $) 231)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1413 (((-1179) $) 10)) (-1380 (((-112) $) 232)) (-2164 (((-3 (-656 $) "failed") $) 117)) (-3163 (((-3 (-656 $) "failed") $) 118)) (-2292 (((-3 (-2 (|:| |var| |#3|) (|:| -4210 (-783))) "failed") $) 116)) (-4284 (($ $) 230)) (-1450 (((-1141) $) 11)) (-2058 (((-112) $) 173)) (-2068 ((|#1| $) 174)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-2455 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2773 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 216 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 215 (|has| |#1| (-919 (-1197))))) (-2659 (((-656 |#2|) $) 240)) (-3600 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2673 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) 175)) (-3998 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3230 (((-3 $ "failed") $) 82 (-2758 (-2673 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) 32 T CONST)) (-2655 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1197)) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 213 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 212 (|has| |#1| (-919 (-1197))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-260 |#1| |#2| |#3| |#4|) (-141) (-1070) (-861) (-275 |t#2|) (-805)) (T -260)) +((-2421 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3309 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3600 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1519 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2724 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-4284 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-1423 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2421 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) +(-13 (-968 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1059 |t#2|) (-10 -8 (-15 -2421 ((-1 $ (-783)) |t#2|)) (-15 -2659 ((-656 |t#2|) $)) (-15 -3309 ((-783) $ |t#2|)) (-15 -3309 ((-783) $)) (-15 -3600 ((-783) $ |t#2|)) (-15 -1519 ((-656 (-783)) $)) (-15 -2724 ((-783) $)) (-15 -1519 ((-656 (-783)) $ |t#2|)) (-15 -2724 ((-783) $ |t#2|)) (-15 -1380 ((-112) $)) (-15 -2763 (|t#3| $)) (-15 -4284 ($ $)) (-15 -1423 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -2421 ((-1 $ (-783)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-234 $) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2758 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ #2=(-1197)) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-911 $ |#3|) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-917 |#3|) . T) ((-919 #2#) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#4| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#2|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4074 ((|#1| $) 55)) (-1419 ((|#1| $) 45)) (-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-1703 (($ $) 61)) (-1474 (($ $) 49)) (-4232 ((|#1| |#1| $) 47)) (-2489 ((|#1| $) 46)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-2434 (((-783) $) 62)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-2681 ((|#1| |#1| $) 53)) (-3496 ((|#1| |#1| $) 52)) (-4436 (($ |#1| $) 41)) (-2325 (((-783) $) 56)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4253 ((|#1| $) 63)) (-2523 ((|#1| $) 51)) (-3403 ((|#1| $) 50)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1641 ((|#1| |#1| $) 59)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-3914 ((|#1| $) 60)) (-3039 (($) 58) (($ (-656 |#1|)) 57)) (-1887 (((-783) $) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4357 ((|#1| $) 54)) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-3786 ((|#1| $) 64)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-261 |#1|) (-141) (-1238)) (T -261)) +((-3039 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2681 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3496 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(-13 (-1142 |t#1|) (-1016 |t#1|) (-10 -8 (-15 -3039 ($)) (-15 -3039 ($ (-656 |t#1|))) (-15 -2325 ((-783) $)) (-15 -4074 (|t#1| $)) (-15 -4357 (|t#1| $)) (-15 -2681 (|t#1| |t#1| $)) (-15 -3496 (|t#1| |t#1| $)) (-15 -2523 (|t#1| $)) (-15 -3403 (|t#1| $)) (-15 -1474 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1016 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1142 |#1|) . T) ((-1238) . T)) +((-2535 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1704 (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 173) (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 171) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 176) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 172) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 164) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 163) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 145) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 143) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390))) 144) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 141)) (-1662 (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 175) (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 174) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 178) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 177) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 166) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 165) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 151) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 150) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390))) 149) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 148) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390))) 113) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 112) (((-1289) (-1 (-227) (-227)) (-1115 (-390))) 107) (((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270))) 105))) +(((-262) (-10 -7 (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -2535 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) +((-2535 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))) +(-10 -7 (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -2535 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1662 (((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))) 101))) +(((-263 |#1| |#2|) (-10 -7 (-15 -1662 ((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))))) (-13 (-568) (-861) (-1059 (-576))) (-442 |#1|)) (T -263)) +((-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1197)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1059 (-576)))) (-5 *2 (-1289)) (-5 *1 (-263 *6 *7))))) +(-10 -7 (-15 -1662 ((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))))) +((-3778 (((-576) (-576)) 71)) (-3194 (((-576) (-576)) 72)) (-4192 (((-227) (-227)) 73)) (-2663 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227))) 70)) (-2237 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112)) 68))) +(((-264) (-10 -7 (-15 -2237 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2663 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3778 ((-576) (-576))) (-15 -3194 ((-576) (-576))) (-15 -4192 ((-227) (-227))))) (T -264)) +((-4192 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-3194 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2663 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *2 (-1290)) (-5 *1 (-264)))) (-2237 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) +(-10 -7 (-15 -2237 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2663 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3778 ((-576) (-576))) (-15 -3194 ((-576) (-576))) (-15 -4192 ((-227) (-227)))) +((-3569 (((-1113 (-390)) (-1113 (-326 |#1|))) 16))) +(((-265 |#1|) (-10 -7 (-15 -3569 ((-1113 (-390)) (-1113 (-326 |#1|))))) (-13 (-861) (-568) (-626 (-390)))) (T -265)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-1113 (-326 *4))) (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1113 (-390))) (-5 *1 (-265 *4))))) +(-10 -7 (-15 -3569 ((-1113 (-390)) (-1113 (-326 |#1|))))) +((-1704 (((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))) 75) (((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 74) (((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390))) 65) (((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 64) (((-1154 (-227)) (-894 |#1|) (-1113 (-390))) 56) (((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270))) 55)) (-1662 (((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390))) 78) (((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 77) (((-1290) |#1| (-1113 (-390)) (-1113 (-390))) 68) (((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 67) (((-1290) (-894 |#1|) (-1113 (-390))) 60) (((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270))) 59) (((-1289) (-892 |#1|) (-1113 (-390))) 47) (((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270))) 46) (((-1289) |#1| (-1113 (-390))) 38) (((-1289) |#1| (-1113 (-390)) (-656 (-270))) 36))) +(((-266 |#1|) (-10 -7 (-15 -1662 ((-1289) |#1| (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) |#1| (-1113 (-390)))) (-15 -1662 ((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 |#1|) (-1113 (-390)))) (-15 -1662 ((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 |#1|) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)))) (-15 -1662 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -1662 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))))) (-13 (-626 (-548)) (-1121))) (T -266)) +((-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121)))))) +(-10 -7 (-15 -1662 ((-1289) |#1| (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) |#1| (-1113 (-390)))) (-15 -1662 ((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 |#1|) (-1113 (-390)))) (-15 -1662 ((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 |#1|) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)))) (-15 -1662 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -1662 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))))) +((-1662 (((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1289) (-656 (-962 (-227))) (-656 (-270))) 16) (((-1289) (-656 (-962 (-227)))) 17) (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1289) (-656 (-227)) (-656 (-227))) 21))) +(((-267) (-10 -7 (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1662 ((-1289) (-656 (-962 (-227))))) (-15 -1662 ((-1289) (-656 (-962 (-227))) (-656 (-270)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) +((-1662 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267))))) +(-10 -7 (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1662 ((-1289) (-656 (-962 (-227))))) (-15 -1662 ((-1289) (-656 (-962 (-227))) (-656 (-270)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) +((-3578 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3320 (((-940) (-656 (-270)) (-940)) 52)) (-3628 (((-940) (-656 (-270)) (-940)) 51)) (-2326 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-1654 (((-390) (-656 (-270)) (-390)) 57)) (-3423 (((-940) (-656 (-270)) (-940)) 53)) (-3652 (((-112) (-656 (-270)) (-112)) 27)) (-1357 (((-1179) (-656 (-270)) (-1179)) 19)) (-1374 (((-1179) (-656 (-270)) (-1179)) 26)) (-2432 (((-1154 (-227)) (-656 (-270))) 46)) (-4365 (((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390)))) 40)) (-4259 (((-888) (-656 (-270)) (-888)) 32)) (-1710 (((-888) (-656 (-270)) (-888)) 33)) (-2578 (((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227)))) 63)) (-3398 (((-112) (-656 (-270)) (-112)) 14)) (-1552 (((-112) (-656 (-270)) (-112)) 13))) +(((-268) (-10 -7 (-15 -1552 ((-112) (-656 (-270)) (-112))) (-15 -3398 ((-112) (-656 (-270)) (-112))) (-15 -3578 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1179) (-656 (-270)) (-1179))) (-15 -1374 ((-1179) (-656 (-270)) (-1179))) (-15 -3652 ((-112) (-656 (-270)) (-112))) (-15 -4259 ((-888) (-656 (-270)) (-888))) (-15 -1710 ((-888) (-656 (-270)) (-888))) (-15 -4365 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -3628 ((-940) (-656 (-270)) (-940))) (-15 -3320 ((-940) (-656 (-270)) (-940))) (-15 -2432 ((-1154 (-227)) (-656 (-270)))) (-15 -3423 ((-940) (-656 (-270)) (-940))) (-15 -1654 ((-390) (-656 (-270)) (-390))) (-15 -2578 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -2326 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) +((-2326 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2578 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1654 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3423 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) (-3320 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3628 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4365 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1710 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4259 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3652 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1374 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1357 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3578 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3398 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1552 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(-10 -7 (-15 -1552 ((-112) (-656 (-270)) (-112))) (-15 -3398 ((-112) (-656 (-270)) (-112))) (-15 -3578 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1179) (-656 (-270)) (-1179))) (-15 -1374 ((-1179) (-656 (-270)) (-1179))) (-15 -3652 ((-112) (-656 (-270)) (-112))) (-15 -4259 ((-888) (-656 (-270)) (-888))) (-15 -1710 ((-888) (-656 (-270)) (-888))) (-15 -4365 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -3628 ((-940) (-656 (-270)) (-940))) (-15 -3320 ((-940) (-656 (-270)) (-940))) (-15 -2432 ((-1154 (-227)) (-656 (-270)))) (-15 -3423 ((-940) (-656 (-270)) (-940))) (-15 -1654 ((-390) (-656 (-270)) (-390))) (-15 -2578 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -2326 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) +((-2577 (((-3 |#1| "failed") (-656 (-270)) (-1197)) 17))) +(((-269 |#1|) (-10 -7 (-15 -2577 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) (-1238)) (T -269)) +((-2577 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *1 (-269 *2)) (-4 *2 (-1238))))) +(-10 -7 (-15 -2577 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) +((-3488 (((-112) $ $) NIL)) (-3578 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3320 (($ (-940)) 81)) (-3628 (($ (-940)) 80)) (-2876 (($ (-656 (-390))) 87)) (-1654 (($ (-390)) 66)) (-3423 (($ (-940)) 82)) (-3652 (($ (-112)) 33)) (-1357 (($ (-1179)) 28)) (-1374 (($ (-1179)) 29)) (-2432 (($ (-1154 (-227))) 76)) (-4365 (($ (-656 (-1115 (-390)))) 72)) (-3343 (($ (-656 (-1115 (-390)))) 68) (($ (-656 (-1115 (-419 (-576))))) 71)) (-1879 (($ (-390)) 38) (($ (-888)) 42)) (-3610 (((-112) (-656 $) (-1197)) 100)) (-2577 (((-3 (-52) "failed") (-656 $) (-1197)) 102)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3616 (($ (-390)) 43) (($ (-888)) 44)) (-1490 (($ (-1 (-962 (-227)) (-962 (-227)))) 65)) (-2578 (($ (-1 (-962 (-227)) (-962 (-227)))) 83)) (-3493 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3569 (((-876) $) 93)) (-1485 (($ (-112)) 34) (($ (-656 (-1115 (-390)))) 60)) (-2113 (((-112) $ $) NIL)) (-1552 (($ (-112)) 35)) (-2923 (((-112) $ $) 97))) +(((-270) (-13 (-1121) (-10 -8 (-15 -1552 ($ (-112))) (-15 -1485 ($ (-112))) (-15 -3578 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1179))) (-15 -1374 ($ (-1179))) (-15 -3652 ($ (-112))) (-15 -1485 ($ (-656 (-1115 (-390))))) (-15 -1490 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -1879 ($ (-390))) (-15 -1879 ($ (-888))) (-15 -3616 ($ (-390))) (-15 -3616 ($ (-888))) (-15 -3493 ($ (-1 (-227) (-227)))) (-15 -3493 ($ (-1 (-227) (-227) (-227)))) (-15 -3493 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1654 ($ (-390))) (-15 -3343 ($ (-656 (-1115 (-390))))) (-15 -3343 ($ (-656 (-1115 (-419 (-576)))))) (-15 -4365 ($ (-656 (-1115 (-390))))) (-15 -2432 ($ (-1154 (-227)))) (-15 -3628 ($ (-940))) (-15 -3320 ($ (-940))) (-15 -3423 ($ (-940))) (-15 -2578 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -2876 ($ (-656 (-390)))) (-15 -2577 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -3610 ((-112) (-656 $) (-1197)))))) (T -270)) +((-1552 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-1374 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-3652 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-3616 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3616 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-1654 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) (-4365 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-2577 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) (-5 *1 (-270))))) +(-13 (-1121) (-10 -8 (-15 -1552 ($ (-112))) (-15 -1485 ($ (-112))) (-15 -3578 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1179))) (-15 -1374 ($ (-1179))) (-15 -3652 ($ (-112))) (-15 -1485 ($ (-656 (-1115 (-390))))) (-15 -1490 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -1879 ($ (-390))) (-15 -1879 ($ (-888))) (-15 -3616 ($ (-390))) (-15 -3616 ($ (-888))) (-15 -3493 ($ (-1 (-227) (-227)))) (-15 -3493 ($ (-1 (-227) (-227) (-227)))) (-15 -3493 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1654 ($ (-390))) (-15 -3343 ($ (-656 (-1115 (-390))))) (-15 -3343 ($ (-656 (-1115 (-419 (-576)))))) (-15 -4365 ($ (-656 (-1115 (-390))))) (-15 -2432 ($ (-1154 (-227)))) (-15 -3628 ($ (-940))) (-15 -3320 ($ (-940))) (-15 -3423 ($ (-940))) (-15 -2578 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -2876 ($ (-656 (-390)))) (-15 -2577 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -3610 ((-112) (-656 $) (-1197))))) +((-2773 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-2018 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) +(((-271 |#1| |#2|) (-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2018 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2018 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2018 (|#1| |#1| (-656 (-1197)))) (-15 -2018 (|#1| |#1| (-1197) (-783))) (-15 -2018 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2018 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2018 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1238)) (T -271)) +NIL +(-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2018 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2018 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2018 (|#1| |#1| (-656 (-1197)))) (-15 -2018 (|#1| |#1| (-1197) (-783))) (-15 -2018 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2018 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2018 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|)))) +((-2773 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1197)) (-656 (-783))) 16 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 15 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 14 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 12 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-2018 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1197)) (-656 (-783))) 19 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 18 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 17 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 13 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) +(((-272 |#1|) (-141) (-1238)) (T -272)) +((-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-2773 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238)))) (-2018 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-2018 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2773 ($ $ (-1 |t#1| |t#1|))) (-15 -2773 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -2018 ($ $ (-1 |t#1| |t#1|))) (-15 -2018 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-919 (-1197))) |%noBranch|))) +(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1519 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2724 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1966 (((-656 |#3|) $) NIL)) (-1799 (((-1193 $) $ |#3|) NIL) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1423 (($ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1146 |#1| |#2|) "failed") $) 23)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1146 |#1| |#2|) $) NIL)) (-4004 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-543 |#3|) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))))) (-3309 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) |#3|) NIL) (($ (-1193 $) |#3|) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#3|) NIL)) (-2987 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-1938 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2421 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2512 (((-3 |#3| "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-2763 ((|#3| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-1380 (((-112) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| |#3|) (|:| -4210 (-783))) "failed") $) NIL)) (-4284 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-2455 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2659 (((-656 |#2|) $) NIL)) (-3600 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-1457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1146 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861) (-275 |#2|)) (T -273)) +NIL +(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) +((-2724 (((-783) $) 37)) (-1572 (((-3 |#2| "failed") $) 22)) (-2859 ((|#2| $) 33)) (-2773 (($ $ (-783)) 18) (($ $) 14)) (-3569 (((-876) $) 32) (($ |#2|) 11)) (-2923 (((-112) $ $) 26)) (-2948 (((-112) $ $) 36))) +(((-274 |#1| |#2|) (-10 -8 (-15 -2724 ((-783) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-275 |#2|) (-861)) (T -274)) +NIL +(-10 -8 (-15 -2724 ((-783) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-2724 (((-783) $) 23)) (-3054 ((|#1| $) 24)) (-1572 (((-3 |#1| "failed") $) 28)) (-2859 ((|#1| $) 29)) (-3309 (((-783) $) 25)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-2421 (($ |#1| (-783)) 26)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $ (-783)) 32) (($ $) 30)) (-3569 (((-876) $) 12) (($ |#1|) 27)) (-2113 (((-112) $ $) 6)) (-2018 (($ $ (-783)) 33) (($ $) 31)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15))) (((-275 |#1|) (-141) (-861)) (T -275)) -((-4112 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-3738 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) -(-13 (-861) (-237) (-1058 |t#1|) (-10 -8 (-15 -3738 ($ |t#1| (-783))) (-15 -3241 ((-783) $)) (-15 -1652 (|t#1| $)) (-15 -2869 ((-783) $)) (-15 -4112 ($ |t#1|)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-234 $) . T) ((-237) . T) ((-861) . T) ((-863) . T) ((-1058 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1582 (((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 53)) (-1417 (((-656 (-1196)) (-326 (-227)) (-783)) 94)) (-2157 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-3745 (((-326 (-227)) (-326 (-227))) 79)) (-3570 (((-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-2476 (((-112) (-656 (-326 (-227)))) 104)) (-3450 (((-112) (-326 (-227))) 36)) (-2373 (((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) 132)) (-2668 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-1758 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-3901 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-2574 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-2119 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-4382 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 126)) (-3431 (((-1055) (-1196) (-1055)) 46))) -(((-276) (-10 -7 (-15 -2119 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3570 ((-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2157 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3745 ((-326 (-227)) (-326 (-227)))) (-15 -2476 ((-112) (-656 (-326 (-227))))) (-15 -2574 ((-112) (-656 (-326 (-227))))) (-15 -2574 ((-112) (-326 (-227)))) (-15 -3901 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1758 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2668 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3450 ((-112) (-326 (-227)))) (-15 -1582 ((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -1417 ((-656 (-1196)) (-326 (-227)) (-783))) (-15 -3431 ((-1055) (-1196) (-1055))) (-15 -4382 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -2373 ((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))))))) (T -276)) -((-2373 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) (-5 *2 (-656 (-1178))) (-5 *1 (-276)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-3431 (*1 *2 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1196)) (-5 *1 (-276)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2157 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) -(-10 -7 (-15 -2119 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3570 ((-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2157 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3745 ((-326 (-227)) (-326 (-227)))) (-15 -2476 ((-112) (-656 (-326 (-227))))) (-15 -2574 ((-112) (-656 (-326 (-227))))) (-15 -2574 ((-112) (-326 (-227)))) (-15 -3901 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1758 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2668 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3450 ((-112) (-326 (-227)))) (-15 -1582 ((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -1417 ((-656 (-1196)) (-326 (-227)) (-783))) (-15 -3431 ((-1055) (-1196) (-1055))) (-15 -4382 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -2373 ((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))))) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3569 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2421 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) +(-13 (-861) (-237) (-1059 |t#1|) (-10 -8 (-15 -2421 ($ |t#1| (-783))) (-15 -3309 ((-783) $)) (-15 -3054 (|t#1| $)) (-15 -2724 ((-783) $)) (-15 -3569 ($ |t#1|)))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-861) . T) ((-864) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-1966 (((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 53)) (-3446 (((-656 (-1197)) (-326 (-227)) (-783)) 94)) (-1323 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-2490 (((-326 (-227)) (-326 (-227))) 79)) (-3378 (((-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-1359 (((-112) (-656 (-326 (-227)))) 104)) (-1592 (((-112) (-326 (-227))) 36)) (-1524 (((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) 132)) (-2629 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-1684 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-3461 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-2972 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-4098 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-2532 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 126)) (-1467 (((-1056) (-1197) (-1056)) 46))) +(((-276) (-10 -7 (-15 -4098 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3378 ((-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -1323 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2490 ((-326 (-227)) (-326 (-227)))) (-15 -1359 ((-112) (-656 (-326 (-227))))) (-15 -2972 ((-112) (-656 (-326 (-227))))) (-15 -2972 ((-112) (-326 (-227)))) (-15 -3461 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1684 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2629 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1592 ((-112) (-326 (-227)))) (-15 -1966 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3446 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -1467 ((-1056) (-1197) (-1056))) (-15 -2532 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -1524 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))))))) (T -276)) +((-1524 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) (-5 *2 (-656 (-1179))) (-5 *1 (-276)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-1467 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-1323 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) +(-10 -7 (-15 -4098 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3378 ((-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -1323 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2490 ((-326 (-227)) (-326 (-227)))) (-15 -1359 ((-112) (-656 (-326 (-227))))) (-15 -2972 ((-112) (-656 (-326 (-227))))) (-15 -2972 ((-112) (-326 (-227)))) (-15 -3461 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1684 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2629 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1592 ((-112) (-326 (-227)))) (-15 -1966 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3446 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -1467 ((-1056) (-1197) (-1056))) (-15 -2532 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -1524 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-277) (-851)) (T -277)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 72) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 43)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 72) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 43)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-278) (-851)) (T -278)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 90) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 65)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 65)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-279) (-851)) (T -279)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-280) (-851)) (T -280)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-281) (-851)) (T -281)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-282) (-851)) (T -282)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) (((-283) (-851)) (T -283)) NIL (-851) -((-1952 (((-112) $ $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1710 (((-656 (-576)) $) 29)) (-1877 (((-783) $) 27)) (-4112 (((-875) $) 33) (($ (-656 (-576))) 23)) (-1994 (((-112) $ $) NIL)) (-2222 (($ (-783)) 30)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 9)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 17))) -(((-284) (-13 (-861) (-10 -8 (-15 -4112 ($ (-656 (-576)))) (-15 -1877 ((-783) $)) (-15 -1710 ((-656 (-576)) $)) (-15 -2222 ($ (-783)))))) (T -284)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(-13 (-861) (-10 -8 (-15 -4112 ($ (-656 (-576)))) (-15 -1877 ((-783) $)) (-15 -1710 ((-656 (-576)) $)) (-15 -2222 ($ (-783))))) -((-3585 ((|#2| |#2|) 77)) (-3434 ((|#2| |#2|) 65)) (-3591 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3561 ((|#2| |#2|) 75)) (-3411 ((|#2| |#2|) 63)) (-3611 ((|#2| |#2|) 79)) (-3460 ((|#2| |#2|) 67)) (-2722 ((|#2|) 46)) (-1400 (((-115) (-115)) 100)) (-2607 ((|#2| |#2|) 61)) (-1596 (((-112) |#2|) 147)) (-3145 ((|#2| |#2|) 195)) (-3227 ((|#2| |#2|) 171)) (-2400 ((|#2|) 59)) (-2402 ((|#2|) 58)) (-3366 ((|#2| |#2|) 191)) (-1344 ((|#2| |#2|) 167)) (-3161 ((|#2| |#2|) 199)) (-3020 ((|#2| |#2|) 175)) (-3150 ((|#2| |#2|) 163)) (-3796 ((|#2| |#2|) 165)) (-2339 ((|#2| |#2|) 201)) (-3989 ((|#2| |#2|) 177)) (-3931 ((|#2| |#2|) 197)) (-2694 ((|#2| |#2|) 173)) (-4214 ((|#2| |#2|) 193)) (-3771 ((|#2| |#2|) 169)) (-2318 ((|#2| |#2|) 207)) (-3503 ((|#2| |#2|) 183)) (-2101 ((|#2| |#2|) 203)) (-2848 ((|#2| |#2|) 179)) (-3929 ((|#2| |#2|) 211)) (-3711 ((|#2| |#2|) 187)) (-1634 ((|#2| |#2|) 213)) (-2714 ((|#2| |#2|) 189)) (-2753 ((|#2| |#2|) 209)) (-2047 ((|#2| |#2|) 185)) (-3658 ((|#2| |#2|) 205)) (-1584 ((|#2| |#2|) 181)) (-2155 ((|#2| |#2|) 62)) (-3622 ((|#2| |#2|) 80)) (-3473 ((|#2| |#2|) 68)) (-3598 ((|#2| |#2|) 78)) (-3447 ((|#2| |#2|) 66)) (-3573 ((|#2| |#2|) 76)) (-3423 ((|#2| |#2|) 64)) (-2431 (((-112) (-115)) 98)) (-3652 ((|#2| |#2|) 83)) (-3509 ((|#2| |#2|) 71)) (-3631 ((|#2| |#2|) 81)) (-3486 ((|#2| |#2|) 69)) (-3672 ((|#2| |#2|) 85)) (-3536 ((|#2| |#2|) 73)) (-1970 ((|#2| |#2|) 86)) (-3549 ((|#2| |#2|) 74)) (-3663 ((|#2| |#2|) 84)) (-3522 ((|#2| |#2|) 72)) (-3641 ((|#2| |#2|) 82)) (-3497 ((|#2| |#2|) 70))) -(((-285 |#1| |#2|) (-10 -7 (-15 -2155 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -3423 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3460 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3522 (|#2| |#2|)) (-15 -3536 (|#2| |#2|)) (-15 -3549 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3585 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -3611 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -2722 (|#2|)) (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -2402 (|#2|)) (-15 -2400 (|#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -1344 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -2848 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -4214 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3161 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -3591 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1596 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1022))) (T -285)) -((-1596 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1022))))) (-3591 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1022))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-1634 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2101 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-4214 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2047 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2848 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-1344 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3150 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2400 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1022))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2402 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1022))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1022))))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1022))))) (-2722 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1022))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3549 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3536 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3460 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3423 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022))))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022)))))) -(-10 -7 (-15 -2155 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -3423 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3460 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3522 (|#2| |#2|)) (-15 -3536 (|#2| |#2|)) (-15 -3549 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3585 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -3611 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -2722 (|#2|)) (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -2402 (|#2|)) (-15 -2400 (|#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -1344 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -2848 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -4214 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3161 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -3591 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1596 ((-112) |#2|))) -((-1727 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196)) 151)) (-3532 ((|#2| (-419 (-576)) |#2|) 49)) (-3159 ((|#2| |#2| (-624 |#2|)) 144)) (-2024 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196)) 143)) (-2827 ((|#2| |#2| (-1196)) 20) ((|#2| |#2|) 23)) (-3233 ((|#2| |#2| (-1196)) 157) ((|#2| |#2|) 155))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3233 (|#2| |#2|)) (-15 -3233 (|#2| |#2| (-1196))) (-15 -2024 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196))) (-15 -2827 (|#2| |#2|)) (-15 -2827 (|#2| |#2| (-1196))) (-15 -1727 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196))) (-15 -3159 (|#2| |#2| (-624 |#2|))) (-15 -3532 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -286)) -((-3532 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3159 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))) (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-1727 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1196)) (-4 *2 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-2827 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-2024 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(-10 -7 (-15 -3233 (|#2| |#2|)) (-15 -3233 (|#2| |#2| (-1196))) (-15 -2024 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196))) (-15 -2827 (|#2| |#2|)) (-15 -2827 (|#2| |#2| (-1196))) (-15 -1727 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196))) (-15 -3159 (|#2| |#2| (-624 |#2|))) (-15 -3532 (|#2| (-419 (-576)) |#2|))) -((-4414 (((-3 |#3| "failed") |#3|) 120)) (-3585 ((|#3| |#3|) 142)) (-3363 (((-3 |#3| "failed") |#3|) 89)) (-3434 ((|#3| |#3|) 132)) (-2706 (((-3 |#3| "failed") |#3|) 65)) (-3561 ((|#3| |#3|) 140)) (-3970 (((-3 |#3| "failed") |#3|) 53)) (-3411 ((|#3| |#3|) 130)) (-2956 (((-3 |#3| "failed") |#3|) 122)) (-3611 ((|#3| |#3|) 144)) (-1874 (((-3 |#3| "failed") |#3|) 91)) (-3460 ((|#3| |#3|) 134)) (-2416 (((-3 |#3| "failed") |#3| (-783)) 41)) (-2691 (((-3 |#3| "failed") |#3|) 81)) (-2607 ((|#3| |#3|) 129)) (-2505 (((-3 |#3| "failed") |#3|) 51)) (-2155 ((|#3| |#3|) 128)) (-2048 (((-3 |#3| "failed") |#3|) 123)) (-3622 ((|#3| |#3|) 145)) (-3928 (((-3 |#3| "failed") |#3|) 92)) (-3473 ((|#3| |#3|) 135)) (-4431 (((-3 |#3| "failed") |#3|) 121)) (-3598 ((|#3| |#3|) 143)) (-2519 (((-3 |#3| "failed") |#3|) 90)) (-3447 ((|#3| |#3|) 133)) (-4259 (((-3 |#3| "failed") |#3|) 67)) (-3573 ((|#3| |#3|) 141)) (-3937 (((-3 |#3| "failed") |#3|) 55)) (-3423 ((|#3| |#3|) 131)) (-2019 (((-3 |#3| "failed") |#3|) 73)) (-3652 ((|#3| |#3|) 148)) (-1747 (((-3 |#3| "failed") |#3|) 114)) (-3509 ((|#3| |#3|) 152)) (-4303 (((-3 |#3| "failed") |#3|) 69)) (-3631 ((|#3| |#3|) 146)) (-4060 (((-3 |#3| "failed") |#3|) 57)) (-3486 ((|#3| |#3|) 136)) (-3909 (((-3 |#3| "failed") |#3|) 77)) (-3672 ((|#3| |#3|) 150)) (-2469 (((-3 |#3| "failed") |#3|) 61)) (-3536 ((|#3| |#3|) 138)) (-4041 (((-3 |#3| "failed") |#3|) 79)) (-1970 ((|#3| |#3|) 151)) (-2587 (((-3 |#3| "failed") |#3|) 63)) (-3549 ((|#3| |#3|) 139)) (-1391 (((-3 |#3| "failed") |#3|) 75)) (-3663 ((|#3| |#3|) 149)) (-3371 (((-3 |#3| "failed") |#3|) 117)) (-3522 ((|#3| |#3|) 153)) (-2127 (((-3 |#3| "failed") |#3|) 71)) (-3641 ((|#3| |#3|) 147)) (-4231 (((-3 |#3| "failed") |#3|) 59)) (-3497 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) -(((-287 |#1| |#2| |#3|) (-13 (-1003 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2155 (|#3| |#3|)) (-15 -2607 (|#3| |#3|)) (-15 -3411 (|#3| |#3|)) (-15 -3423 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3460 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3509 (|#3| |#3|)) (-15 -3522 (|#3| |#3|)) (-15 -3536 (|#3| |#3|)) (-15 -3549 (|#3| |#3|)) (-15 -3561 (|#3| |#3|)) (-15 -3573 (|#3| |#3|)) (-15 -3585 (|#3| |#3|)) (-15 -3598 (|#3| |#3|)) (-15 -3611 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3652 (|#3| |#3|)) (-15 -3663 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)))) (-38 (-419 (-576))) (-1278 |#1|) (-1249 |#1| |#2|)) (T -287)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1278 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1249 *4 *5)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3423 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3460 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3536 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3549 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))) -(-13 (-1003 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2155 (|#3| |#3|)) (-15 -2607 (|#3| |#3|)) (-15 -3411 (|#3| |#3|)) (-15 -3423 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3460 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3509 (|#3| |#3|)) (-15 -3522 (|#3| |#3|)) (-15 -3536 (|#3| |#3|)) (-15 -3549 (|#3| |#3|)) (-15 -3561 (|#3| |#3|)) (-15 -3573 (|#3| |#3|)) (-15 -3585 (|#3| |#3|)) (-15 -3598 (|#3| |#3|)) (-15 -3611 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3652 (|#3| |#3|)) (-15 -3663 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)))) -((-4414 (((-3 |#3| "failed") |#3|) 70)) (-3585 ((|#3| |#3|) 137)) (-3363 (((-3 |#3| "failed") |#3|) 54)) (-3434 ((|#3| |#3|) 125)) (-2706 (((-3 |#3| "failed") |#3|) 66)) (-3561 ((|#3| |#3|) 135)) (-3970 (((-3 |#3| "failed") |#3|) 50)) (-3411 ((|#3| |#3|) 123)) (-2956 (((-3 |#3| "failed") |#3|) 74)) (-3611 ((|#3| |#3|) 139)) (-1874 (((-3 |#3| "failed") |#3|) 58)) (-3460 ((|#3| |#3|) 127)) (-2416 (((-3 |#3| "failed") |#3| (-783)) 38)) (-2691 (((-3 |#3| "failed") |#3|) 48)) (-2607 ((|#3| |#3|) 111)) (-2505 (((-3 |#3| "failed") |#3|) 46)) (-2155 ((|#3| |#3|) 122)) (-2048 (((-3 |#3| "failed") |#3|) 76)) (-3622 ((|#3| |#3|) 140)) (-3928 (((-3 |#3| "failed") |#3|) 60)) (-3473 ((|#3| |#3|) 128)) (-4431 (((-3 |#3| "failed") |#3|) 72)) (-3598 ((|#3| |#3|) 138)) (-2519 (((-3 |#3| "failed") |#3|) 56)) (-3447 ((|#3| |#3|) 126)) (-4259 (((-3 |#3| "failed") |#3|) 68)) (-3573 ((|#3| |#3|) 136)) (-3937 (((-3 |#3| "failed") |#3|) 52)) (-3423 ((|#3| |#3|) 124)) (-2019 (((-3 |#3| "failed") |#3|) 78)) (-3652 ((|#3| |#3|) 143)) (-1747 (((-3 |#3| "failed") |#3|) 62)) (-3509 ((|#3| |#3|) 131)) (-4303 (((-3 |#3| "failed") |#3|) 112)) (-3631 ((|#3| |#3|) 141)) (-4060 (((-3 |#3| "failed") |#3|) 100)) (-3486 ((|#3| |#3|) 129)) (-3909 (((-3 |#3| "failed") |#3|) 116)) (-3672 ((|#3| |#3|) 145)) (-2469 (((-3 |#3| "failed") |#3|) 107)) (-3536 ((|#3| |#3|) 133)) (-4041 (((-3 |#3| "failed") |#3|) 117)) (-1970 ((|#3| |#3|) 146)) (-2587 (((-3 |#3| "failed") |#3|) 109)) (-3549 ((|#3| |#3|) 134)) (-1391 (((-3 |#3| "failed") |#3|) 80)) (-3663 ((|#3| |#3|) 144)) (-3371 (((-3 |#3| "failed") |#3|) 64)) (-3522 ((|#3| |#3|) 132)) (-2127 (((-3 |#3| "failed") |#3|) 113)) (-3641 ((|#3| |#3|) 142)) (-4231 (((-3 |#3| "failed") |#3|) 103)) (-3497 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-1003 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2155 (|#3| |#3|)) (-15 -2607 (|#3| |#3|)) (-15 -3411 (|#3| |#3|)) (-15 -3423 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3460 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3509 (|#3| |#3|)) (-15 -3522 (|#3| |#3|)) (-15 -3536 (|#3| |#3|)) (-15 -3549 (|#3| |#3|)) (-15 -3561 (|#3| |#3|)) (-15 -3573 (|#3| |#3|)) (-15 -3585 (|#3| |#3|)) (-15 -3598 (|#3| |#3|)) (-15 -3611 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3652 (|#3| |#3|)) (-15 -3663 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)))) (-38 (-419 (-576))) (-1247 |#1|) (-1270 |#1| |#2|) (-1003 |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1247 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1270 *4 *5)) (-4 *6 (-1003 *5)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3423 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3460 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3536 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3549 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4))))) -(-13 (-1003 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2155 (|#3| |#3|)) (-15 -2607 (|#3| |#3|)) (-15 -3411 (|#3| |#3|)) (-15 -3423 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3460 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3509 (|#3| |#3|)) (-15 -3522 (|#3| |#3|)) (-15 -3536 (|#3| |#3|)) (-15 -3549 (|#3| |#3|)) (-15 -3561 (|#3| |#3|)) (-15 -3573 (|#3| |#3|)) (-15 -3585 (|#3| |#3|)) (-15 -3598 (|#3| |#3|)) (-15 -3611 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3652 (|#3| |#3|)) (-15 -3663 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)))) -((-3414 (((-112) $) 20)) (-1889 (((-1201) $) 7)) (-2113 (((-3 (-518) "failed") $) 14)) (-3478 (((-3 (-656 $) "failed") $) NIL)) (-2330 (((-3 (-518) "failed") $) 21)) (-3372 (((-3 (-1124) "failed") $) 18)) (-1744 (((-112) $) 16)) (-4112 (((-875) $) NIL)) (-1447 (((-112) $) 9))) -(((-289) (-13 (-625 (-875)) (-10 -8 (-15 -1889 ((-1201) $)) (-15 -1744 ((-112) $)) (-15 -3372 ((-3 (-1124) "failed") $)) (-15 -3414 ((-112) $)) (-15 -2330 ((-3 (-518) "failed") $)) (-15 -1447 ((-112) $)) (-15 -2113 ((-3 (-518) "failed") $)) (-15 -3478 ((-3 (-656 $) "failed") $))))) (T -289)) -((-1889 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-289)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3372 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-289)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2330 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2113 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-3478 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) -(-13 (-625 (-875)) (-10 -8 (-15 -1889 ((-1201) $)) (-15 -1744 ((-112) $)) (-15 -3372 ((-3 (-1124) "failed") $)) (-15 -3414 ((-112) $)) (-15 -2330 ((-3 (-518) "failed") $)) (-15 -1447 ((-112) $)) (-15 -2113 ((-3 (-518) "failed") $)) (-15 -3478 ((-3 (-656 $) "failed") $)))) -((-3756 (((-609) $) 10)) (-4381 (((-597) $) 8)) (-2435 (((-301) $) 12)) (-4223 (($ (-597) (-609) (-301)) NIL)) (-4112 (((-875) $) 19))) -(((-290) (-13 (-625 (-875)) (-10 -8 (-15 -4223 ($ (-597) (-609) (-301))) (-15 -4381 ((-597) $)) (-15 -3756 ((-609) $)) (-15 -2435 ((-301) $))))) (T -290)) -((-4223 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(-13 (-625 (-875)) (-10 -8 (-15 -4223 ($ (-597) (-609) (-301))) (-15 -4381 ((-597) $)) (-15 -3756 ((-609) $)) (-15 -2435 ((-301) $)))) -((-3603 (($ (-1 (-112) |#2|) $) 24)) (-3966 (($ $) 38)) (-1672 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2824 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3881 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-3386 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-2334 (($ $ (-576)) 11) (($ $ (-1254 (-576))) 14)) (-3424 (($ $ |#2|) 32) (($ $ $) NIL)) (-2766 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) -(((-291 |#1| |#2|) (-10 -8 (-15 -3881 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#2| |#1|)) (-15 -3881 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1672 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3424 (|#1| |#1| |#1|)) (-15 -3424 (|#1| |#1| |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2334 (|#1| |#1| (-1254 (-576)))) (-15 -2334 (|#1| |#1| (-576))) (-15 -2766 (|#1| (-656 |#1|))) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -2824 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2824 (|#1| |#2| |#1|)) (-15 -3966 (|#1| |#1|))) (-292 |#2|) (-1237)) (T -291)) -NIL -(-10 -8 (-15 -3881 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#2| |#1|)) (-15 -3881 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1672 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3424 (|#1| |#1| |#1|)) (-15 -3424 (|#1| |#1| |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2334 (|#1| |#1| (-1254 (-576)))) (-15 -2334 (|#1| |#1| (-576))) (-15 -2766 (|#1| (-656 |#1|))) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -2824 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2824 (|#1| |#2| |#1|)) (-15 -3966 (|#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) |#1|) $) 88)) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3308 (($ $) 86 (|has| |#1| (-1120)))) (-3966 (($ $) 80 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1120)))) (-2824 (($ |#1| $) 79 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 52)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-3881 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2782 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 43 (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2556 (($ $ |#1|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-3571 (($ $ (-576)) 94) (($ $ (-1254 (-576))) 93)) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 72)) (-3424 (($ $ |#1|) 96) (($ $ $) 95)) (-2766 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-292 |#1|) (-141) (-1237)) (T -292)) -((-3424 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-3424 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-1672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-2782 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-2782 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3881 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-2146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-1672 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1120)))) (-3308 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1120)))) (-3881 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-861))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4464) (-15 -3424 ($ $ |t#1|)) (-15 -3424 ($ $ $)) (-15 -3571 ($ $ (-576))) (-15 -3571 ($ $ (-1254 (-576)))) (-15 -1672 ($ (-1 (-112) |t#1|) $)) (-15 -2782 ($ |t#1| $ (-576))) (-15 -2782 ($ $ $ (-576))) (-15 -3881 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2146 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -1672 ($ |t#1| $)) (-15 -3308 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -3881 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2395 (((-656 (-576)) $) 29)) (-3600 (((-783) $) 27)) (-3569 (((-876) $) 33) (($ (-656 (-576))) 23)) (-2113 (((-112) $ $) NIL)) (-3884 (($ (-783)) 30)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 17))) +(((-284) (-13 (-861) (-10 -8 (-15 -3569 ($ (-656 (-576)))) (-15 -3600 ((-783) $)) (-15 -2395 ((-656 (-576)) $)) (-15 -3884 ($ (-783)))))) (T -284)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) +(-13 (-861) (-10 -8 (-15 -3569 ($ (-656 (-576)))) (-15 -3600 ((-783) $)) (-15 -2395 ((-656 (-576)) $)) (-15 -3884 ($ (-783))))) +((-4024 ((|#2| |#2|) 77)) (-3900 ((|#2| |#2|) 65)) (-3577 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-4005 ((|#2| |#2|) 75)) (-3876 ((|#2| |#2|) 63)) (-4049 ((|#2| |#2|) 79)) (-3919 ((|#2| |#2|) 67)) (-1600 ((|#2|) 46)) (-1775 (((-115) (-115)) 100)) (-3744 ((|#2| |#2|) 61)) (-2620 (((-112) |#2|) 147)) (-1595 ((|#2| |#2|) 195)) (-4392 ((|#2| |#2|) 171)) (-1787 ((|#2|) 59)) (-1796 ((|#2|) 58)) (-2046 ((|#2| |#2|) 191)) (-3147 ((|#2| |#2|) 167)) (-1748 ((|#2| |#2|) 199)) (-2917 ((|#2| |#2|) 175)) (-1646 ((|#2| |#2|) 163)) (-1731 ((|#2| |#2|) 165)) (-2418 ((|#2| |#2|) 201)) (-3047 ((|#2| |#2|) 177)) (-3790 ((|#2| |#2|) 197)) (-1702 ((|#2| |#2|) 173)) (-3421 ((|#2| |#2|) 193)) (-1513 ((|#2| |#2|) 169)) (-2216 ((|#2| |#2|) 207)) (-4051 ((|#2| |#2|) 183)) (-1958 ((|#2| |#2|) 203)) (-3874 ((|#2| |#2|) 179)) (-3770 ((|#2| |#2|) 211)) (-2190 ((|#2| |#2|) 187)) (-3041 ((|#2| |#2|) 213)) (-1880 ((|#2| |#2|) 189)) (-4204 ((|#2| |#2|) 209)) (-1451 ((|#2| |#2|) 185)) (-2944 ((|#2| |#2|) 205)) (-3811 ((|#2| |#2|) 181)) (-4103 ((|#2| |#2|) 62)) (-4060 ((|#2| |#2|) 80)) (-3929 ((|#2| |#2|) 68)) (-4036 ((|#2| |#2|) 78)) (-3909 ((|#2| |#2|) 66)) (-4013 ((|#2| |#2|) 76)) (-3888 ((|#2| |#2|) 64)) (-4062 (((-112) (-115)) 98)) (-2789 ((|#2| |#2|) 83)) (-3960 ((|#2| |#2|) 71)) (-4070 ((|#2| |#2|) 81)) (-3937 ((|#2| |#2|) 69)) (-2814 ((|#2| |#2|) 85)) (-3982 ((|#2| |#2|) 73)) (-4387 ((|#2| |#2|) 86)) (-3994 ((|#2| |#2|) 74)) (-2802 ((|#2| |#2|) 84)) (-3973 ((|#2| |#2|) 72)) (-4082 ((|#2| |#2|) 82)) (-3950 ((|#2| |#2|) 70))) +(((-285 |#1| |#2|) (-10 -7 (-15 -4103 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -2802 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -4387 (|#2| |#2|)) (-15 -1600 (|#2|)) (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1796 (|#2|)) (-15 -1787 (|#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -4392 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -2046 (|#2| |#2|)) (-15 -3421 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3041 (|#2| |#2|)) (-15 -3577 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2620 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1023))) (T -285)) +((-2620 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1023))))) (-3577 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-3041 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2944 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2418 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3421 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2046 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2190 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4392 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3147 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1787 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1796 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023))))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) (-1600 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) +(-10 -7 (-15 -4103 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -2802 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -4387 (|#2| |#2|)) (-15 -1600 (|#2|)) (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1796 (|#2|)) (-15 -1787 (|#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -4392 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -2046 (|#2| |#2|)) (-15 -3421 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3041 (|#2| |#2|)) (-15 -3577 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2620 ((-112) |#2|))) +((-1401 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197)) 151)) (-4297 ((|#2| (-419 (-576)) |#2|) 49)) (-1729 ((|#2| |#2| (-624 |#2|)) 144)) (-2389 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197)) 143)) (-3639 ((|#2| |#2| (-1197)) 20) ((|#2| |#2|) 23)) (-1333 ((|#2| |#2| (-1197)) 157) ((|#2| |#2|) 155))) +(((-286 |#1| |#2|) (-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-1197))) (-15 -2389 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1197))) (-15 -1401 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -1729 (|#2| |#2| (-624 |#2|))) (-15 -4297 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -286)) +((-4297 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1729 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-1401 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-1333 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-1197))) (-15 -2389 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1197))) (-15 -1401 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -1729 (|#2| |#2| (-624 |#2|))) (-15 -4297 (|#2| (-419 (-576)) |#2|))) +((-1663 (((-3 |#3| "failed") |#3|) 120)) (-4024 ((|#3| |#3|) 142)) (-2017 (((-3 |#3| "failed") |#3|) 89)) (-3900 ((|#3| |#3|) 132)) (-1814 (((-3 |#3| "failed") |#3|) 65)) (-4005 ((|#3| |#3|) 140)) (-2837 (((-3 |#3| "failed") |#3|) 53)) (-3876 ((|#3| |#3|) 130)) (-3553 (((-3 |#3| "failed") |#3|) 122)) (-4049 ((|#3| |#3|) 144)) (-3564 (((-3 |#3| "failed") |#3|) 91)) (-3919 ((|#3| |#3|) 134)) (-1933 (((-3 |#3| "failed") |#3| (-783)) 41)) (-1673 (((-3 |#3| "failed") |#3|) 81)) (-3744 ((|#3| |#3|) 129)) (-3543 (((-3 |#3| "failed") |#3|) 51)) (-4103 ((|#3| |#3|) 128)) (-1462 (((-3 |#3| "failed") |#3|) 123)) (-4060 ((|#3| |#3|) 145)) (-3760 (((-3 |#3| "failed") |#3|) 92)) (-3929 ((|#3| |#3|) 135)) (-1835 (((-3 |#3| "failed") |#3|) 121)) (-4036 ((|#3| |#3|) 143)) (-3682 (((-3 |#3| "failed") |#3|) 90)) (-3909 ((|#3| |#3|) 133)) (-3903 (((-3 |#3| "failed") |#3|) 67)) (-4013 ((|#3| |#3|) 141)) (-3862 (((-3 |#3| "failed") |#3|) 55)) (-3888 ((|#3| |#3|) 131)) (-2342 (((-3 |#3| "failed") |#3|) 73)) (-2789 ((|#3| |#3|) 148)) (-1582 (((-3 |#3| "failed") |#3|) 114)) (-3960 ((|#3| |#3|) 152)) (-3065 (((-3 |#3| "failed") |#3|) 69)) (-4070 ((|#3| |#3|) 146)) (-2442 (((-3 |#3| "failed") |#3|) 57)) (-3937 ((|#3| |#3|) 136)) (-3549 (((-3 |#3| "failed") |#3|) 77)) (-2814 ((|#3| |#3|) 150)) (-4417 (((-3 |#3| "failed") |#3|) 61)) (-3982 ((|#3| |#3|) 138)) (-2261 (((-3 |#3| "failed") |#3|) 79)) (-4387 ((|#3| |#3|) 151)) (-3134 (((-3 |#3| "failed") |#3|) 63)) (-3994 ((|#3| |#3|) 139)) (-2881 (((-3 |#3| "failed") |#3|) 75)) (-2802 ((|#3| |#3|) 149)) (-2099 (((-3 |#3| "failed") |#3|) 117)) (-3973 ((|#3| |#3|) 153)) (-4174 (((-3 |#3| "failed") |#3|) 71)) (-4082 ((|#3| |#3|) 147)) (-3603 (((-3 |#3| "failed") |#3|) 59)) (-3950 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) +(((-287 |#1| |#2| |#3|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) (-38 (-419 (-576))) (-1279 |#1|) (-1250 |#1| |#2|)) (T -287)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1279 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4))))) +(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) +((-1663 (((-3 |#3| "failed") |#3|) 70)) (-4024 ((|#3| |#3|) 137)) (-2017 (((-3 |#3| "failed") |#3|) 54)) (-3900 ((|#3| |#3|) 125)) (-1814 (((-3 |#3| "failed") |#3|) 66)) (-4005 ((|#3| |#3|) 135)) (-2837 (((-3 |#3| "failed") |#3|) 50)) (-3876 ((|#3| |#3|) 123)) (-3553 (((-3 |#3| "failed") |#3|) 74)) (-4049 ((|#3| |#3|) 139)) (-3564 (((-3 |#3| "failed") |#3|) 58)) (-3919 ((|#3| |#3|) 127)) (-1933 (((-3 |#3| "failed") |#3| (-783)) 38)) (-1673 (((-3 |#3| "failed") |#3|) 48)) (-3744 ((|#3| |#3|) 111)) (-3543 (((-3 |#3| "failed") |#3|) 46)) (-4103 ((|#3| |#3|) 122)) (-1462 (((-3 |#3| "failed") |#3|) 76)) (-4060 ((|#3| |#3|) 140)) (-3760 (((-3 |#3| "failed") |#3|) 60)) (-3929 ((|#3| |#3|) 128)) (-1835 (((-3 |#3| "failed") |#3|) 72)) (-4036 ((|#3| |#3|) 138)) (-3682 (((-3 |#3| "failed") |#3|) 56)) (-3909 ((|#3| |#3|) 126)) (-3903 (((-3 |#3| "failed") |#3|) 68)) (-4013 ((|#3| |#3|) 136)) (-3862 (((-3 |#3| "failed") |#3|) 52)) (-3888 ((|#3| |#3|) 124)) (-2342 (((-3 |#3| "failed") |#3|) 78)) (-2789 ((|#3| |#3|) 143)) (-1582 (((-3 |#3| "failed") |#3|) 62)) (-3960 ((|#3| |#3|) 131)) (-3065 (((-3 |#3| "failed") |#3|) 112)) (-4070 ((|#3| |#3|) 141)) (-2442 (((-3 |#3| "failed") |#3|) 100)) (-3937 ((|#3| |#3|) 129)) (-3549 (((-3 |#3| "failed") |#3|) 116)) (-2814 ((|#3| |#3|) 145)) (-4417 (((-3 |#3| "failed") |#3|) 107)) (-3982 ((|#3| |#3|) 133)) (-2261 (((-3 |#3| "failed") |#3|) 117)) (-4387 ((|#3| |#3|) 146)) (-3134 (((-3 |#3| "failed") |#3|) 109)) (-3994 ((|#3| |#3|) 134)) (-2881 (((-3 |#3| "failed") |#3|) 80)) (-2802 ((|#3| |#3|) 144)) (-2099 (((-3 |#3| "failed") |#3|) 64)) (-3973 ((|#3| |#3|) 132)) (-4174 (((-3 |#3| "failed") |#3|) 113)) (-4082 ((|#3| |#3|) 142)) (-3603 (((-3 |#3| "failed") |#3|) 103)) (-3950 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) +(((-288 |#1| |#2| |#3| |#4|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) (-38 (-419 (-576))) (-1248 |#1|) (-1271 |#1| |#2|) (-1004 |#2|)) (T -288)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) (-4 *6 (-1004 *5)))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4))))) +(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) +((-2474 (((-112) $) 20)) (-3034 (((-1202) $) 7)) (-4045 (((-3 (-518) "failed") $) 14)) (-1840 (((-3 (-656 $) "failed") $) NIL)) (-2321 (((-3 (-518) "failed") $) 21)) (-2109 (((-3 (-1125) "failed") $) 18)) (-1549 (((-112) $) 16)) (-3569 (((-876) $) NIL)) (-2422 (((-112) $) 9))) +(((-289) (-13 (-625 (-876)) (-10 -8 (-15 -3034 ((-1202) $)) (-15 -1549 ((-112) $)) (-15 -2109 ((-3 (-1125) "failed") $)) (-15 -2474 ((-112) $)) (-15 -2321 ((-3 (-518) "failed") $)) (-15 -2422 ((-112) $)) (-15 -4045 ((-3 (-518) "failed") $)) (-15 -1840 ((-3 (-656 $) "failed") $))))) (T -289)) +((-3034 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2109 (*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2321 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-4045 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-1840 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3034 ((-1202) $)) (-15 -1549 ((-112) $)) (-15 -2109 ((-3 (-1125) "failed") $)) (-15 -2474 ((-112) $)) (-15 -2321 ((-3 (-518) "failed") $)) (-15 -2422 ((-112) $)) (-15 -4045 ((-3 (-518) "failed") $)) (-15 -1840 ((-3 (-656 $) "failed") $)))) +((-3648 (((-609) $) 10)) (-2522 (((-597) $) 8)) (-4094 (((-301) $) 12)) (-3521 (($ (-597) (-609) (-301)) NIL)) (-3569 (((-876) $) 19))) +(((-290) (-13 (-625 (-876)) (-10 -8 (-15 -3521 ($ (-597) (-609) (-301))) (-15 -2522 ((-597) $)) (-15 -3648 ((-609) $)) (-15 -4094 ((-301) $))))) (T -290)) +((-3521 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3521 ($ (-597) (-609) (-301))) (-15 -2522 ((-597) $)) (-15 -3648 ((-609) $)) (-15 -4094 ((-301) $)))) +((-1971 (($ (-1 (-112) |#2|) $) 24)) (-2800 (($ $) 38)) (-2065 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3945 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1367 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2174 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3463 (($ $ (-576)) 11) (($ $ (-1255 (-576))) 14)) (-2563 (($ $ |#2|) 32) (($ $ $) NIL)) (-1615 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) +(((-291 |#1| |#2|) (-10 -8 (-15 -1367 (|#1| |#1| |#1|)) (-15 -2065 (|#1| |#2| |#1|)) (-15 -1367 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2065 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#2|)) (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -3463 (|#1| |#1| (-1255 (-576)))) (-15 -3463 (|#1| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1971 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -2800 (|#1| |#1|))) (-292 |#2|) (-1238)) (T -291)) +NIL +(-10 -8 (-15 -1367 (|#1| |#1| |#1|)) (-15 -2065 (|#1| |#2| |#1|)) (-15 -1367 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2065 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#2|)) (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -3463 (|#1| |#1| (-1255 (-576)))) (-15 -3463 (|#1| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1971 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -2800 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) |#1|) $) 88)) (-1971 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2696 (($ $) 86 (|has| |#1| (-1121)))) (-2800 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1121)))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-1367 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-4436 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2174 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3389 (($ $ (-576)) 94) (($ $ (-1255 (-576))) 93)) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-2563 (($ $ |#1|) 96) (($ $ $) 95)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-292 |#1|) (-141) (-1238)) (T -292)) +((-2563 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-2563 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-3389 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-3389 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-4436 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-4436 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-1367 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-4355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2065 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-2696 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-1367 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) +(-13 (-663 |t#1|) (-10 -8 (-6 -4465) (-15 -2563 ($ $ |t#1|)) (-15 -2563 ($ $ $)) (-15 -3389 ($ $ (-576))) (-15 -3389 ($ $ (-1255 (-576)))) (-15 -2065 ($ (-1 (-112) |t#1|) $)) (-15 -4436 ($ |t#1| $ (-576))) (-15 -4436 ($ $ $ (-576))) (-15 -1367 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4355 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -2065 ($ |t#1| $)) (-15 -2696 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -1367 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) ((** (($ $ $) 10))) (((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2607 (($ $) 6)) (-2155 (($ $) 7)) (** (($ $ $) 8))) +((-3744 (($ $) 6)) (-4103 (($ $) 7)) (** (($ $ $) 8))) (((-294) (-141)) (T -294)) -((** (*1 *1 *1 *1) (-4 *1 (-294))) (-2155 (*1 *1 *1) (-4 *1 (-294))) (-2607 (*1 *1 *1) (-4 *1 (-294)))) -(-13 (-10 -8 (-15 -2607 ($ $)) (-15 -2155 ($ $)) (-15 ** ($ $ $)))) -((-3368 (((-656 (-1177 |#1|)) (-1177 |#1|) |#1|) 35)) (-3053 ((|#2| |#2| |#1|) 39)) (-2250 ((|#2| |#2| |#1|) 41)) (-3446 ((|#2| |#2| |#1|) 40))) -(((-295 |#1| |#2|) (-10 -7 (-15 -3053 (|#2| |#2| |#1|)) (-15 -3446 (|#2| |#2| |#1|)) (-15 -2250 (|#2| |#2| |#1|)) (-15 -3368 ((-656 (-1177 |#1|)) (-1177 |#1|) |#1|))) (-374) (-1278 |#1|)) (T -295)) -((-3368 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1177 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1177 *4)) (-4 *5 (-1278 *4)))) (-2250 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))) (-3446 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))) (-3053 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) -(-10 -7 (-15 -3053 (|#2| |#2| |#1|)) (-15 -3446 (|#2| |#2| |#1|)) (-15 -2250 (|#2| |#2| |#1|)) (-15 -3368 ((-656 (-1177 |#1|)) (-1177 |#1|) |#1|))) -((-4368 ((|#2| $ |#1|) 6))) -(((-296 |#1| |#2|) (-141) (-1237) (-1237)) (T -296)) -((-4368 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -4368 (|t#2| $ |t#1|)))) -(((-1237) . T)) -((-1908 ((|#3| $ |#2| |#3|) 12)) (-3719 ((|#3| $ |#2|) 10))) -(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -1908 (|#3| |#1| |#2| |#3|)) (-15 -3719 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1120) (-1237)) (T -297)) -NIL -(-10 -8 (-15 -1908 (|#3| |#1| |#2| |#3|)) (-15 -3719 (|#3| |#1| |#2|))) -((-4267 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4464)))) (-1908 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) 11)) (-4368 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-298 |#1| |#2|) (-141) (-1120) (-1237)) (T -298)) -((-4368 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237)))) (-3719 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237)))) (-4267 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237)))) (-1908 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237))))) -(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -4368 (|t#2| $ |t#1| |t#2|)) (-15 -3719 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4464)) (PROGN (-15 -4267 (|t#2| $ |t#1| |t#2|)) (-15 -1908 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-296 |#1| |#2|) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 37)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 44)) (-4070 (($ $) 41)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) 35)) (-2721 (($ |#2| |#3|) 18)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2182 ((|#3| $) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 19)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2720 (((-3 $ "failed") $ $) NIL)) (-2026 (((-783) $) 36)) (-4368 ((|#2| $ |#2|) 46)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 23)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 31 T CONST)) (-4320 (($) 39 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) -(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -2182 (|#3| $)) (-15 -4112 (|#2| $)) (-15 -2721 ($ |#2| |#3|)) (-15 -2720 ((-3 $ "failed") $ $)) (-15 -3900 ((-3 $ "failed") $)) (-15 -1667 ($ $)))) (-174) (-1263 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) -((-3900 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2182 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4112 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2721 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2720 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1667 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -2182 (|#3| $)) (-15 -4112 (|#2| $)) (-15 -2721 ($ |#2| |#3|)) (-15 -2720 ((-3 $ "failed") $ $)) (-15 -3900 ((-3 $ "failed") $)) (-15 -1667 ($ $)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((** (*1 *1 *1 *1) (-4 *1 (-294))) (-4103 (*1 *1 *1) (-4 *1 (-294))) (-3744 (*1 *1 *1) (-4 *1 (-294)))) +(-13 (-10 -8 (-15 -3744 ($ $)) (-15 -4103 ($ $)) (-15 ** ($ $ $)))) +((-2066 (((-656 (-1178 |#1|)) (-1178 |#1|) |#1|) 35)) (-3962 ((|#2| |#2| |#1|) 39)) (-2823 ((|#2| |#2| |#1|) 41)) (-2014 ((|#2| |#2| |#1|) 40))) +(((-295 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2| |#1|)) (-15 -2014 (|#2| |#2| |#1|)) (-15 -2823 (|#2| |#2| |#1|)) (-15 -2066 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) (-374) (-1279 |#1|)) (T -295)) +((-2066 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4)))) (-2823 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-3962 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) +(-10 -7 (-15 -3962 (|#2| |#2| |#1|)) (-15 -2014 (|#2| |#2| |#1|)) (-15 -2823 (|#2| |#2| |#1|)) (-15 -2066 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) +((-2796 ((|#2| $ |#1|) 6))) +(((-296 |#1| |#2|) (-141) (-1238) (-1238)) (T -296)) +((-2796 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2796 (|t#2| $ |t#1|)))) +(((-1238) . T)) +((-4332 ((|#3| $ |#2| |#3|) 12)) (-4272 ((|#3| $ |#2|) 10))) +(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -4332 (|#3| |#1| |#2| |#3|)) (-15 -4272 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1121) (-1238)) (T -297)) +NIL +(-10 -8 (-15 -4332 (|#3| |#1| |#2| |#3|)) (-15 -4272 (|#3| |#1| |#2|))) +((-3755 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4465)))) (-4332 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 11)) (-2796 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-298 |#1| |#2|) (-141) (-1121) (-1238)) (T -298)) +((-2796 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4272 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4332 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238))))) +(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2796 (|t#2| $ |t#1| |t#2|)) (-15 -4272 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3755 (|t#2| $ |t#1| |t#2|)) (-15 -4332 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-296 |#1| |#2|) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 37)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 44)) (-2544 (($ $) 41)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) 35)) (-3685 (($ |#2| |#3|) 18)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 ((|#3| $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 19)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1939 (((-3 $ "failed") $ $) NIL)) (-2411 (((-783) $) 36)) (-2796 ((|#2| $ |#2|) 46)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 23)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 31 T CONST)) (-2730 (($) 39 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) +(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3459 (|#3| $)) (-15 -3569 (|#2| $)) (-15 -3685 ($ |#2| |#3|)) (-15 -1939 ((-3 $ "failed") $ $)) (-15 -3451 ((-3 $ "failed") $)) (-15 -2048 ($ $)))) (-174) (-1264 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) +((-3451 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3459 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3569 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3685 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1939 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2048 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3459 (|#3| $)) (-15 -3569 (|#2| $)) (-15 -3685 ($ |#2| |#3|)) (-15 -1939 ((-3 $ "failed") $ $)) (-15 -3451 ((-3 $ "failed") $)) (-15 -2048 ($ $)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-300) (-141)) (T -300)) NIL -(-13 (-1069) (-111 $ $) (-10 -7 (-6 -4456))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3490 (((-656 (-1105)) $) 10)) (-4080 (($ (-518) (-518) (-1124) $) 19)) (-3533 (($ (-518) (-656 (-983)) $) 23)) (-1481 (($) 25)) (-3452 (((-703 (-1124)) (-518) (-518) $) 18)) (-1372 (((-656 (-983)) (-518) $) 22)) (-3935 (($) 7)) (-1799 (($) 24)) (-4112 (((-875) $) 29)) (-3229 (($) 26))) -(((-301) (-13 (-625 (-875)) (-10 -8 (-15 -3935 ($)) (-15 -3490 ((-656 (-1105)) $)) (-15 -3452 ((-703 (-1124)) (-518) (-518) $)) (-15 -4080 ($ (-518) (-518) (-1124) $)) (-15 -1372 ((-656 (-983)) (-518) $)) (-15 -3533 ($ (-518) (-656 (-983)) $)) (-15 -1799 ($)) (-15 -1481 ($)) (-15 -3229 ($))))) (T -301)) -((-3935 (*1 *1) (-5 *1 (-301))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-656 (-1105))) (-5 *1 (-301)))) (-3452 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1124))) (-5 *1 (-301)))) (-4080 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-301)))) (-1372 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-983))) (-5 *1 (-301)))) (-3533 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-983))) (-5 *1 (-301)))) (-1799 (*1 *1) (-5 *1 (-301))) (-1481 (*1 *1) (-5 *1 (-301))) (-3229 (*1 *1) (-5 *1 (-301)))) -(-13 (-625 (-875)) (-10 -8 (-15 -3935 ($)) (-15 -3490 ((-656 (-1105)) $)) (-15 -3452 ((-703 (-1124)) (-518) (-518) $)) (-15 -4080 ($ (-518) (-518) (-1124) $)) (-15 -1372 ((-656 (-983)) (-518) $)) (-15 -3533 ($ (-518) (-656 (-983)) $)) (-15 -1799 ($)) (-15 -1481 ($)) (-15 -3229 ($)))) -((-2346 (((-656 (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-970 |#1|))))))) (-701 (-419 (-970 |#1|)))) 102)) (-2529 (((-656 (-701 (-419 (-970 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 |#1|)))))) (-701 (-419 (-970 |#1|)))) 97) (((-656 (-701 (-419 (-970 |#1|)))) (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|))) (-701 (-419 (-970 |#1|))) (-783) (-783)) 41)) (-4428 (((-656 (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 |#1|))))))) (-701 (-419 (-970 |#1|)))) 99)) (-4345 (((-656 (-701 (-419 (-970 |#1|)))) (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|))) (-701 (-419 (-970 |#1|)))) 75)) (-1520 (((-656 (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (-701 (-419 (-970 |#1|)))) 74)) (-3069 (((-970 |#1|) (-701 (-419 (-970 |#1|)))) 55) (((-970 |#1|) (-701 (-419 (-970 |#1|))) (-1196)) 56))) -(((-302 |#1|) (-10 -7 (-15 -3069 ((-970 |#1|) (-701 (-419 (-970 |#1|))) (-1196))) (-15 -3069 ((-970 |#1|) (-701 (-419 (-970 |#1|))))) (-15 -1520 ((-656 (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (-701 (-419 (-970 |#1|))))) (-15 -4345 ((-656 (-701 (-419 (-970 |#1|)))) (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|))) (-701 (-419 (-970 |#1|))))) (-15 -2529 ((-656 (-701 (-419 (-970 |#1|)))) (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|))) (-701 (-419 (-970 |#1|))) (-783) (-783))) (-15 -2529 ((-656 (-701 (-419 (-970 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 |#1|)))))) (-701 (-419 (-970 |#1|))))) (-15 -2346 ((-656 (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-970 |#1|))))))) (-701 (-419 (-970 |#1|))))) (-15 -4428 ((-656 (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 |#1|))))))) (-701 (-419 (-970 |#1|)))))) (-464)) (T -302)) -((-4428 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-970 *4)) (-1185 (-1196) (-970 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-970 *4)))))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-970 *4)) (-1185 (-1196) (-970 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-970 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-970 *4)))))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-970 *5)) (-1185 (-1196) (-970 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-970 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-970 *5)))))) (-2529 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-970 *6)) (-1185 (-1196) (-970 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-970 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-970 *6)))))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-970 *5)) (-1185 (-1196) (-970 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-970 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-970 *5)))))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-970 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-970 *4)) (-1185 (-1196) (-970 *4))))) (-5 *1 (-302 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-970 *4)))) (-5 *2 (-970 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-970 *5)))) (-5 *4 (-1196)) (-5 *2 (-970 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) -(-10 -7 (-15 -3069 ((-970 |#1|) (-701 (-419 (-970 |#1|))) (-1196))) (-15 -3069 ((-970 |#1|) (-701 (-419 (-970 |#1|))))) (-15 -1520 ((-656 (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (-701 (-419 (-970 |#1|))))) (-15 -4345 ((-656 (-701 (-419 (-970 |#1|)))) (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|))) (-701 (-419 (-970 |#1|))))) (-15 -2529 ((-656 (-701 (-419 (-970 |#1|)))) (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|))) (-701 (-419 (-970 |#1|))) (-783) (-783))) (-15 -2529 ((-656 (-701 (-419 (-970 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 |#1|)))))) (-701 (-419 (-970 |#1|))))) (-15 -2346 ((-656 (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-970 |#1|))))))) (-701 (-419 (-970 |#1|))))) (-15 -4428 ((-656 (-2 (|:| |eigval| (-3 (-419 (-970 |#1|)) (-1185 (-1196) (-970 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-970 |#1|))))))) (-701 (-419 (-970 |#1|)))))) -((-2422 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) -(((-303 |#1| |#2|) (-10 -7 (-15 -2422 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1237) (-1237)) (T -303)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -2422 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-3167 (((-112) $) NIL (|has| |#1| (-21)))) (-4128 (($ $) 12)) (-2559 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1791 (($ $ $) 95 (|has| |#1| (-312)))) (-4331 (($) NIL (-3794 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-1610 (($ $) 51 (|has| |#1| (-21)))) (-3818 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1782 ((|#1| $) 11)) (-3900 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-2287 (((-112) $) NIL (|has| |#1| (-738)))) (-2422 (($ (-1 |#1| |#1|) $) 14)) (-1774 ((|#1| $) 10)) (-2170 (($ $) 50 (|has| |#1| (-21)))) (-2313 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-1667 (($ $) 64 (-3794 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3682 (((-656 $) $) 85 (|has| |#1| (-568)))) (-2143 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1196) |#1|)))) (-2440 (($ |#1| |#1|) 9)) (-1656 (((-135)) 90 (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) 87 (|has| |#1| (-916 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-916 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-916 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-916 (-1196))))) (-2633 (($ $ $) NIL (|has| |#1| (-485)))) (-2362 (($ $ $) NIL (|has| |#1| (-485)))) (-4112 (($ (-576)) NIL (|has| |#1| (-1069))) (((-112) $) 37 (|has| |#1| (-1120))) (((-875) $) 36 (|has| |#1| (-1120)))) (-4115 (((-783)) 67 (|has| |#1| (-1069)) CONST)) (-1994 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-4314 (($) 47 (|has| |#1| (-21)) CONST)) (-4320 (($) 57 (|has| |#1| (-738)) CONST)) (-3155 (($ $ (-1196)) NIL (|has| |#1| (-916 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-916 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-916 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-916 (-1196))))) (-3938 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1120)))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-3794 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-4036 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4026 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-939)) NIL (|has| |#1| (-1132)))) (* (($ $ |#1|) 55 (|has| |#1| (-1132))) (($ |#1| $) 54 (|has| |#1| (-1132))) (($ $ $) 53 (|has| |#1| (-1132))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-939) $) NIL (|has| |#1| (-25))))) -(((-304 |#1|) (-13 (-1237) (-10 -8 (-15 -3938 ($ |#1| |#1|)) (-15 -2440 ($ |#1| |#1|)) (-15 -4128 ($ $)) (-15 -1774 (|#1| $)) (-15 -1782 (|#1| $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2143 ($ $ $)) (-15 -2143 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4026 ($ |#1| $)) (-15 -4026 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2170 ($ $)) (-15 -1610 ($ $)) (-15 -4036 ($ |#1| $)) (-15 -4036 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2313 ((-3 $ "failed") $)) (-15 -3818 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2313 ((-3 $ "failed") $)) (-15 -3818 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3682 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-916 (-1196))) (-6 (-916 (-1196))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1294 |#1|)) (-15 -4046 ($ $ $)) (-15 -1667 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1791 ($ $ $)) |%noBranch|))) (-1237)) (T -304)) -((-3938 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2440 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-4128 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-1774 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-1782 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) (-2143 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-1237)) (-5 *1 (-304 *2)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) (-4026 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-1610 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4036 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-2313 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))) (-3818 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1237)))) (-1791 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1237)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) (-4046 (*1 *1 *1 *1) (-3794 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) (-1667 (*1 *1 *1) (-3794 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237)))))) -(-13 (-1237) (-10 -8 (-15 -3938 ($ |#1| |#1|)) (-15 -2440 ($ |#1| |#1|)) (-15 -4128 ($ $)) (-15 -1774 (|#1| $)) (-15 -1782 (|#1| $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2143 ($ $ $)) (-15 -2143 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4026 ($ |#1| $)) (-15 -4026 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2170 ($ $)) (-15 -1610 ($ $)) (-15 -4036 ($ |#1| $)) (-15 -4036 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2313 ((-3 $ "failed") $)) (-15 -3818 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2313 ((-3 $ "failed") $)) (-15 -3818 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3682 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-916 (-1196))) (-6 (-916 (-1196))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1294 |#1|)) (-15 -4046 ($ $ $)) (-15 -1667 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1791 ($ $ $)) |%noBranch|))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#2| $ |#1| |#2|) NIL)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) NIL)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2351 (((-656 |#1|) $) NIL)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3963 (((-656 |#1|) $) NIL)) (-1474 (((-112) |#1| $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-305 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) (-1120) (-1120)) (T -305)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) -((-2176 (((-322) (-1178) (-656 (-1178))) 17) (((-322) (-1178) (-1178)) 16) (((-322) (-656 (-1178))) 15) (((-322) (-1178)) 14))) -(((-306) (-10 -7 (-15 -2176 ((-322) (-1178))) (-15 -2176 ((-322) (-656 (-1178)))) (-15 -2176 ((-322) (-1178) (-1178))) (-15 -2176 ((-322) (-1178) (-656 (-1178)))))) (T -306)) -((-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1178))) (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2176 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-322)) (-5 *1 (-306)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306))))) -(-10 -7 (-15 -2176 ((-322) (-1178))) (-15 -2176 ((-322) (-656 (-1178)))) (-15 -2176 ((-322) (-1178) (-1178))) (-15 -2176 ((-322) (-1178) (-656 (-1178))))) -((-2422 ((|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)) 18))) -(((-307 |#1| |#2|) (-10 -7 (-15 -2422 (|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)))) (-312) (-1237)) (T -307)) -((-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1237)) (-5 *1 (-307 *6 *2))))) -(-10 -7 (-15 -2422 (|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)))) -((-2422 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) -(((-308 |#1| |#2|) (-10 -7 (-15 -2422 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) -(-10 -7 (-15 -2422 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) -((-1673 (((-112) (-227)) 12))) -(((-309 |#1| |#2|) (-10 -7 (-15 -1673 ((-112) (-227)))) (-227) (-227)) (T -309)) -((-1673 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -1673 ((-112) (-227)))) -((-2518 (((-1177 (-227)) (-326 (-227)) (-656 (-1196)) (-1114 (-855 (-227)))) 118)) (-1630 (((-1177 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1114 (-855 (-227)))) 135) (((-1177 (-227)) (-326 (-227)) (-656 (-1196)) (-1114 (-855 (-227)))) 72)) (-2371 (((-656 (-1178)) (-1177 (-227))) NIL)) (-1635 (((-656 (-227)) (-326 (-227)) (-1196) (-1114 (-855 (-227)))) 69)) (-4432 (((-656 (-227)) (-970 (-419 (-576))) (-1196) (-1114 (-855 (-227)))) 59)) (-1616 (((-656 (-1178)) (-656 (-227))) NIL)) (-4071 (((-227) (-1114 (-855 (-227)))) 29)) (-3906 (((-227) (-1114 (-855 (-227)))) 30)) (-2086 (((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-4007 (((-1178) (-227)) NIL))) -(((-310) (-10 -7 (-15 -4071 ((-227) (-1114 (-855 (-227))))) (-15 -3906 ((-227) (-1114 (-855 (-227))))) (-15 -2086 ((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1635 ((-656 (-227)) (-326 (-227)) (-1196) (-1114 (-855 (-227))))) (-15 -2518 ((-1177 (-227)) (-326 (-227)) (-656 (-1196)) (-1114 (-855 (-227))))) (-15 -1630 ((-1177 (-227)) (-326 (-227)) (-656 (-1196)) (-1114 (-855 (-227))))) (-15 -1630 ((-1177 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1114 (-855 (-227))))) (-15 -4432 ((-656 (-227)) (-970 (-419 (-576))) (-1196) (-1114 (-855 (-227))))) (-15 -4007 ((-1178) (-227))) (-15 -1616 ((-656 (-1178)) (-656 (-227)))) (-15 -2371 ((-656 (-1178)) (-1177 (-227)))))) (T -310)) -((-2371 (*1 *2 *3) (-12 (-5 *3 (-1177 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-310)))) (-4432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-970 (-419 (-576)))) (-5 *4 (-1196)) (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-310)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-310)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-310)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) -(-10 -7 (-15 -4071 ((-227) (-1114 (-855 (-227))))) (-15 -3906 ((-227) (-1114 (-855 (-227))))) (-15 -2086 ((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1635 ((-656 (-227)) (-326 (-227)) (-1196) (-1114 (-855 (-227))))) (-15 -2518 ((-1177 (-227)) (-326 (-227)) (-656 (-1196)) (-1114 (-855 (-227))))) (-15 -1630 ((-1177 (-227)) (-326 (-227)) (-656 (-1196)) (-1114 (-855 (-227))))) (-15 -1630 ((-1177 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1114 (-855 (-227))))) (-15 -4432 ((-656 (-227)) (-970 (-419 (-576))) (-1196) (-1114 (-855 (-227))))) (-15 -4007 ((-1178) (-227))) (-15 -1616 ((-656 (-1178)) (-656 (-227)))) (-15 -2371 ((-656 (-1178)) (-1177 (-227))))) -((-4442 (((-656 (-624 $)) $) 27)) (-1791 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2980 (((-3 (-624 $) "failed") $) 127)) (-2317 (((-624 $) $) 126)) (-1390 (($ $) 17) (($ (-656 $)) 54)) (-3209 (((-656 (-115)) $) 35)) (-1400 (((-115) (-115)) 88)) (-1589 (((-112) $) 150)) (-2422 (($ (-1 $ $) (-624 $)) 86)) (-2413 (((-3 (-624 $) "failed") $) 94)) (-2774 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-1681 (((-112) $ (-115)) 132) (((-112) $ (-1196)) 131)) (-2952 (((-783) $) 44)) (-1546 (((-112) $ $) 57) (((-112) $ (-1196)) 49)) (-4296 (((-112) $) 148)) (-2143 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) 67) (($ $ (-1196) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-4368 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-2678 (($ $) 51) (($ $ $) 135)) (-2344 (($ $) 15) (($ (-656 $)) 53)) (-2431 (((-112) (-115)) 21))) -(((-311 |#1|) (-10 -8 (-15 -1589 ((-112) |#1|)) (-15 -4296 ((-112) |#1|)) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -1546 ((-112) |#1| (-1196))) (-15 -1546 ((-112) |#1| |#1|)) (-15 -2422 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -2774 (|#1| (-115) (-656 |#1|))) (-15 -2774 (|#1| (-115) |#1|)) (-15 -1681 ((-112) |#1| (-1196))) (-15 -1681 ((-112) |#1| (-115))) (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -3209 ((-656 (-115)) |#1|)) (-15 -4442 ((-656 (-624 |#1|)) |#1|)) (-15 -2413 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2952 ((-783) |#1|)) (-15 -2678 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -1390 (|#1| (-656 |#1|))) (-15 -1390 (|#1| |#1|)) (-15 -2344 (|#1| (-656 |#1|))) (-15 -2344 (|#1| |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4368 (|#1| (-115) (-656 |#1|))) (-15 -4368 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2143 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2980 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|))) (-312)) (T -311)) -((-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) -(-10 -8 (-15 -1589 ((-112) |#1|)) (-15 -4296 ((-112) |#1|)) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -1546 ((-112) |#1| (-1196))) (-15 -1546 ((-112) |#1| |#1|)) (-15 -2422 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -2774 (|#1| (-115) (-656 |#1|))) (-15 -2774 (|#1| (-115) |#1|)) (-15 -1681 ((-112) |#1| (-1196))) (-15 -1681 ((-112) |#1| (-115))) (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -3209 ((-656 (-115)) |#1|)) (-15 -4442 ((-656 (-624 |#1|)) |#1|)) (-15 -2413 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2952 ((-783) |#1|)) (-15 -2678 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -1390 (|#1| (-656 |#1|))) (-15 -1390 (|#1| |#1|)) (-15 -2344 (|#1| (-656 |#1|))) (-15 -2344 (|#1| |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4368 (|#1| (-115) (-656 |#1|))) (-15 -4368 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2143 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2980 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|))) -((-1952 (((-112) $ $) 7)) (-4442 (((-656 (-624 $)) $) 39)) (-1791 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2980 (((-3 (-624 $) "failed") $) 64)) (-2317 (((-624 $) $) 65)) (-1390 (($ $) 46) (($ (-656 $)) 45)) (-3209 (((-656 (-115)) $) 38)) (-1400 (((-115) (-115)) 37)) (-1589 (((-112) $) 17 (|has| $ (-1058 (-576))))) (-3066 (((-1192 $) (-624 $)) 20 (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) 31)) (-2413 (((-3 (-624 $) "failed") $) 41)) (-2043 (((-1178) $) 10)) (-1389 (((-656 (-624 $)) $) 40)) (-2774 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1681 (((-112) $ (-115)) 35) (((-112) $ (-1196)) 34)) (-2952 (((-783) $) 42)) (-3115 (((-1140) $) 11)) (-1546 (((-112) $ $) 30) (((-112) $ (-1196)) 29)) (-4296 (((-112) $) 18 (|has| $ (-1058 (-576))))) (-2143 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1196) (-1 $ (-656 $))) 26) (($ $ (-1196) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-4368 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-2678 (($ $) 44) (($ $ $) 43)) (-3175 (($ $) 19 (|has| $ (-1069)))) (-4112 (((-875) $) 12) (($ (-624 $)) 63)) (-2344 (($ $) 48) (($ (-656 $)) 47)) (-2431 (((-112) (-115)) 36)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +(-13 (-1070) (-111 $ $) (-10 -7 (-6 -4457))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-1944 (((-656 (-1106)) $) 10)) (-2646 (($ (-518) (-518) (-1125) $) 19)) (-4308 (($ (-518) (-656 (-984)) $) 23)) (-4088 (($) 25)) (-1612 (((-703 (-1125)) (-518) (-518) $) 18)) (-3797 (((-656 (-984)) (-518) $) 22)) (-3839 (($) 7)) (-1688 (($) 24)) (-3569 (((-876) $) 29)) (-4412 (($) 26))) +(((-301) (-13 (-625 (-876)) (-10 -8 (-15 -3839 ($)) (-15 -1944 ((-656 (-1106)) $)) (-15 -1612 ((-703 (-1125)) (-518) (-518) $)) (-15 -2646 ($ (-518) (-518) (-1125) $)) (-15 -3797 ((-656 (-984)) (-518) $)) (-15 -4308 ($ (-518) (-656 (-984)) $)) (-15 -1688 ($)) (-15 -4088 ($)) (-15 -4412 ($))))) (T -301)) +((-3839 (*1 *1) (-5 *1 (-301))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301)))) (-1612 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301)))) (-2646 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301)))) (-3797 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301)))) (-4308 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301)))) (-1688 (*1 *1) (-5 *1 (-301))) (-4088 (*1 *1) (-5 *1 (-301))) (-4412 (*1 *1) (-5 *1 (-301)))) +(-13 (-625 (-876)) (-10 -8 (-15 -3839 ($)) (-15 -1944 ((-656 (-1106)) $)) (-15 -1612 ((-703 (-1125)) (-518) (-518) $)) (-15 -2646 ($ (-518) (-518) (-1125) $)) (-15 -3797 ((-656 (-984)) (-518) $)) (-15 -4308 ($ (-518) (-656 (-984)) $)) (-15 -1688 ($)) (-15 -4088 ($)) (-15 -4412 ($)))) +((-2484 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 102)) (-3794 (((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|)))) 97) (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783)) 41)) (-1805 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 99)) (-2169 (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|)))) 75)) (-4444 (((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|)))) 74)) (-2137 (((-971 |#1|) (-701 (-419 (-971 |#1|)))) 55) (((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197)) 56))) +(((-302 |#1|) (-10 -7 (-15 -2137 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -2137 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -4444 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -2169 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -3794 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -3794 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -2484 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -1805 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) (-464)) (T -302)) +((-1805 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-3794 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-4444 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) (-5 *1 (-302 *4)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) +(-10 -7 (-15 -2137 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -2137 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -4444 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -2169 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -3794 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -3794 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -2484 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -1805 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) +((-4116 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) +(((-303 |#1| |#2|) (-10 -7 (-15 -4116 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1238) (-1238)) (T -303)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) +(-10 -7 (-15 -4116 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1812 (((-112) $) NIL (|has| |#1| (-21)))) (-1896 (($ $) 12)) (-2780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3427 (($ $ $) 95 (|has| |#1| (-312)))) (-3306 (($) NIL (-2758 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-2784 (($ $) 51 (|has| |#1| (-21)))) (-1919 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1669 ((|#1| $) 11)) (-3451 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-3215 (((-112) $) NIL (|has| |#1| (-738)))) (-4116 (($ (-1 |#1| |#1|) $) 14)) (-1657 ((|#1| $) 10)) (-3351 (($ $) 50 (|has| |#1| (-21)))) (-2171 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2048 (($ $) 64 (-2758 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3202 (((-656 $) $) 85 (|has| |#1| (-568)))) (-3283 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1197) |#1|)))) (-2335 (($ |#1| |#1|) 9)) (-1972 (((-135)) 90 (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) 87 (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2318 (($ $ $) NIL (|has| |#1| (-485)))) (-2604 (($ $ $) NIL (|has| |#1| (-485)))) (-3569 (($ (-576)) NIL (|has| |#1| (-1070))) (((-112) $) 37 (|has| |#1| (-1121))) (((-876) $) 36 (|has| |#1| (-1121)))) (-1778 (((-783)) 67 (|has| |#1| (-1070)) CONST)) (-2113 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2719 (($) 47 (|has| |#1| (-21)) CONST)) (-2730 (($) 57 (|has| |#1| (-738)) CONST)) (-2018 (($ $ (-1197)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2923 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1121)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2758 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3043 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3029 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-940)) NIL (|has| |#1| (-1133)))) (* (($ $ |#1|) 55 (|has| |#1| (-1133))) (($ |#1| $) 54 (|has| |#1| (-1133))) (($ $ $) 53 (|has| |#1| (-1133))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-25))))) +(((-304 |#1|) (-13 (-1238) (-10 -8 (-15 -2923 ($ |#1| |#1|)) (-15 -2335 ($ |#1| |#1|)) (-15 -1896 ($ $)) (-15 -1657 (|#1| $)) (-15 -1669 (|#1| $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3283 ($ $ $)) (-15 -3283 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3029 ($ |#1| $)) (-15 -3029 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3351 ($ $)) (-15 -2784 ($ $)) (-15 -3043 ($ |#1| $)) (-15 -3043 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2171 ((-3 $ "failed") $)) (-15 -1919 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2171 ((-3 $ "failed") $)) (-15 -1919 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3202 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -3056 ($ $ $)) (-15 -2048 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3427 ($ $ $)) |%noBranch|))) (-1238)) (T -304)) +((-2923 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-2335 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1896 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1657 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1669 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-3283 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)) (-5 *1 (-304 *2)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-3029 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-2784 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3043 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-2171 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-1919 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1238)))) (-3427 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (-3056 (*1 *1 *1 *1) (-2758 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) (-2048 (*1 *1 *1) (-2758 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238)))))) +(-13 (-1238) (-10 -8 (-15 -2923 ($ |#1| |#1|)) (-15 -2335 ($ |#1| |#1|)) (-15 -1896 ($ $)) (-15 -1657 (|#1| $)) (-15 -1669 (|#1| $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3283 ($ $ $)) (-15 -3283 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3029 ($ |#1| $)) (-15 -3029 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3351 ($ $)) (-15 -2784 ($ $)) (-15 -3043 ($ |#1| $)) (-15 -3043 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2171 ((-3 $ "failed") $)) (-15 -1919 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2171 ((-3 $ "failed") $)) (-15 -1919 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3202 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -3056 ($ $ $)) (-15 -2048 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3427 ($ $ $)) |%noBranch|))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2764 (((-656 |#1|) $) NIL)) (-4018 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-305 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121)) (T -305)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-3313 (((-322) (-1179) (-656 (-1179))) 17) (((-322) (-1179) (-1179)) 16) (((-322) (-656 (-1179))) 15) (((-322) (-1179)) 14))) +(((-306) (-10 -7 (-15 -3313 ((-322) (-1179))) (-15 -3313 ((-322) (-656 (-1179)))) (-15 -3313 ((-322) (-1179) (-1179))) (-15 -3313 ((-322) (-1179) (-656 (-1179)))))) (T -306)) +((-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306))))) +(-10 -7 (-15 -3313 ((-322) (-1179))) (-15 -3313 ((-322) (-656 (-1179)))) (-15 -3313 ((-322) (-1179) (-1179))) (-15 -3313 ((-322) (-1179) (-656 (-1179))))) +((-4116 ((|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)) 18))) +(((-307 |#1| |#2|) (-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) (-312) (-1238)) (T -307)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1238)) (-5 *1 (-307 *6 *2))))) +(-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) +((-4116 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) +(((-308 |#1| |#2|) (-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) +(-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) +((-2075 (((-112) (-227)) 12))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2075 ((-112) (-227)))) (-227) (-227)) (T -309)) +((-2075 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2075 ((-112) (-227)))) +((-3668 (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 118)) (-2990 (((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227)))) 135) (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 72)) (-1507 (((-656 (-1179)) (-1178 (-227))) NIL)) (-3055 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) 69)) (-1846 (((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227)))) 59)) (-2833 (((-656 (-1179)) (-656 (-227))) NIL)) (-2554 (((-227) (-1115 (-855 (-227)))) 29)) (-3513 (((-227) (-1115 (-855 (-227)))) 30)) (-1811 (((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3228 (((-1179) (-227)) NIL))) +(((-310) (-10 -7 (-15 -2554 ((-227) (-1115 (-855 (-227))))) (-15 -3513 ((-227) (-1115 (-855 (-227))))) (-15 -1811 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3055 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3668 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -2990 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -2990 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1846 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -3228 ((-1179) (-227))) (-15 -2833 ((-656 (-1179)) (-656 (-227)))) (-15 -1507 ((-656 (-1179)) (-1178 (-227)))))) (T -310)) +((-1507 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) (-1846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-2990 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-2990 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-3668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) +(-10 -7 (-15 -2554 ((-227) (-1115 (-855 (-227))))) (-15 -3513 ((-227) (-1115 (-855 (-227))))) (-15 -1811 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3055 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3668 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -2990 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -2990 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1846 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -3228 ((-1179) (-227))) (-15 -2833 ((-656 (-1179)) (-656 (-227)))) (-15 -1507 ((-656 (-1179)) (-1178 (-227))))) +((-3987 (((-656 (-624 $)) $) 27)) (-3427 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) 127)) (-2859 (((-624 $) $) 126)) (-3716 (($ $) 17) (($ (-656 $)) 54)) (-4221 (((-656 (-115)) $) 35)) (-1775 (((-115) (-115)) 88)) (-2561 (((-112) $) 150)) (-4116 (($ (-1 $ $) (-624 $)) 86)) (-1902 (((-3 (-624 $) "failed") $) 94)) (-1639 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-2158 (((-112) $ (-115)) 132) (((-112) $ (-1197)) 131)) (-2325 (((-783) $) 44)) (-3470 (((-112) $ $) 57) (((-112) $ (-1197)) 49)) (-2975 (((-112) $) 148)) (-3283 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) 67) (($ $ (-1197) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2796 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-1546 (($ $) 51) (($ $ $) 135)) (-3680 (($ $) 15) (($ (-656 $)) 53)) (-4062 (((-112) (-115)) 21))) +(((-311 |#1|) (-10 -8 (-15 -2561 ((-112) |#1|)) (-15 -2975 ((-112) |#1|)) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -3470 ((-112) |#1| (-1197))) (-15 -3470 ((-112) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1639 (|#1| (-115) (-656 |#1|))) (-15 -1639 (|#1| (-115) |#1|)) (-15 -2158 ((-112) |#1| (-1197))) (-15 -2158 ((-112) |#1| (-115))) (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -4221 ((-656 (-115)) |#1|)) (-15 -3987 ((-656 (-624 |#1|)) |#1|)) (-15 -1902 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2325 ((-783) |#1|)) (-15 -1546 (|#1| |#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -3716 (|#1| (-656 |#1|))) (-15 -3716 (|#1| |#1|)) (-15 -3680 (|#1| (-656 |#1|))) (-15 -3680 (|#1| |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3283 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|))) (-312)) (T -311)) +((-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) +(-10 -8 (-15 -2561 ((-112) |#1|)) (-15 -2975 ((-112) |#1|)) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -3470 ((-112) |#1| (-1197))) (-15 -3470 ((-112) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1639 (|#1| (-115) (-656 |#1|))) (-15 -1639 (|#1| (-115) |#1|)) (-15 -2158 ((-112) |#1| (-1197))) (-15 -2158 ((-112) |#1| (-115))) (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -4221 ((-656 (-115)) |#1|)) (-15 -3987 ((-656 (-624 |#1|)) |#1|)) (-15 -1902 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2325 ((-783) |#1|)) (-15 -1546 (|#1| |#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -3716 (|#1| (-656 |#1|))) (-15 -3716 (|#1| |#1|)) (-15 -3680 (|#1| (-656 |#1|))) (-15 -3680 (|#1| |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3283 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|))) +((-3488 (((-112) $ $) 7)) (-3987 (((-656 (-624 $)) $) 39)) (-3427 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1572 (((-3 (-624 $) "failed") $) 64)) (-2859 (((-624 $) $) 65)) (-3716 (($ $) 46) (($ (-656 $)) 45)) (-4221 (((-656 (-115)) $) 38)) (-1775 (((-115) (-115)) 37)) (-2561 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-2103 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 31)) (-1902 (((-3 (-624 $) "failed") $) 41)) (-1413 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 40)) (-1639 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2158 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2325 (((-783) $) 42)) (-1450 (((-1141) $) 11)) (-3470 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-2975 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-3283 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2796 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1546 (($ $) 44) (($ $ $) 43)) (-1897 (($ $) 19 (|has| $ (-1070)))) (-3569 (((-876) $) 12) (($ (-624 $)) 63)) (-3680 (($ $) 48) (($ (-656 $)) 47)) (-4062 (((-112) (-115)) 36)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-312) (-141)) (T -312)) -((-4368 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4368 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4368 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4368 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-1791 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2344 (*1 *1 *1) (-4 *1 (-312))) (-2344 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1390 (*1 *1 *1) (-4 *1 (-312))) (-1390 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-2678 (*1 *1 *1) (-4 *1 (-312))) (-2678 (*1 *1 *1 *1) (-4 *1 (-312))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2413 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4442 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-1400 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2431 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) (-2774 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2774 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-1546 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-1546 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1069)) (-4 *1 (-312)) (-5 *2 (-1192 *1)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-1069)) (-4 *1 (-312)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1058 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-1058 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) -(-13 (-1120) (-1058 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -4368 ($ (-115) $)) (-15 -4368 ($ (-115) $ $)) (-15 -4368 ($ (-115) $ $ $)) (-15 -4368 ($ (-115) $ $ $ $)) (-15 -4368 ($ (-115) (-656 $))) (-15 -1791 ($ $ (-304 $))) (-15 -1791 ($ $ (-656 (-304 $)))) (-15 -1791 ($ $ (-656 (-624 $)) (-656 $))) (-15 -2344 ($ $)) (-15 -2344 ($ (-656 $))) (-15 -1390 ($ $)) (-15 -1390 ($ (-656 $))) (-15 -2678 ($ $)) (-15 -2678 ($ $ $)) (-15 -2952 ((-783) $)) (-15 -2413 ((-3 (-624 $) "failed") $)) (-15 -1389 ((-656 (-624 $)) $)) (-15 -4442 ((-656 (-624 $)) $)) (-15 -3209 ((-656 (-115)) $)) (-15 -1400 ((-115) (-115))) (-15 -2431 ((-112) (-115))) (-15 -1681 ((-112) $ (-115))) (-15 -1681 ((-112) $ (-1196))) (-15 -2774 ($ (-115) $)) (-15 -2774 ($ (-115) (-656 $))) (-15 -2422 ($ (-1 $ $) (-624 $))) (-15 -1546 ((-112) $ $)) (-15 -1546 ((-112) $ (-1196))) (-15 -2143 ($ $ (-656 (-1196)) (-656 (-1 $ $)))) (-15 -2143 ($ $ (-656 (-1196)) (-656 (-1 $ (-656 $))))) (-15 -2143 ($ $ (-1196) (-1 $ (-656 $)))) (-15 -2143 ($ $ (-1196) (-1 $ $))) (-15 -2143 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -2143 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -2143 ($ $ (-115) (-1 $ (-656 $)))) (-15 -2143 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1069)) (PROGN (-15 -3066 ((-1192 $) (-624 $))) (-15 -3175 ($ $))) |%noBranch|) (IF (|has| $ (-1058 (-576))) (PROGN (-15 -4296 ((-112) $)) (-15 -1589 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-875)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1058 #0#) . T) ((-1120) . T) ((-1237) . T)) -((-1352 (((-656 |#1|) (-656 |#1|)) 10))) -(((-313 |#1|) (-10 -7 (-15 -1352 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) -((-1352 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(-10 -7 (-15 -1352 ((-656 |#1|) (-656 |#1|)))) -((-2422 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2422 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1069) (-1069)) (T -314)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2422 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) -((-3808 (((-1287 (-326 (-390))) (-1287 (-326 (-227)))) 110)) (-3179 (((-1114 (-855 (-227))) (-1114 (-855 (-390)))) 43)) (-2371 (((-656 (-1178)) (-1177 (-227))) 92)) (-1397 (((-326 (-390)) (-970 (-227))) 53)) (-2226 (((-227) (-970 (-227))) 49)) (-2427 (((-1178) (-390)) 195)) (-4403 (((-855 (-227)) (-855 (-390))) 37)) (-3975 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227)))) 165)) (-1448 (((-1055) (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) 207) (((-1055) (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) 205)) (-3608 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-1843 (((-1287 (-711)) (-656 (-227))) 99)) (-1616 (((-656 (-1178)) (-656 (-227))) 79)) (-2899 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-1673 (((-112) (-227) (-1114 (-855 (-227)))) 117)) (-3761 (((-1055) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-4071 (((-227) (-1114 (-855 (-227)))) 112)) (-3906 (((-227) (-1114 (-855 (-227)))) 113)) (-3288 (((-227) (-419 (-576))) 31)) (-3543 (((-1178) (-390)) 77)) (-3034 (((-227) (-390)) 22)) (-4382 (((-390) (-1287 (-326 (-227)))) 177)) (-3634 (((-326 (-227)) (-326 (-390))) 28)) (-3062 (((-419 (-576)) (-326 (-227))) 56)) (-3416 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-3405 (((-326 (-390)) (-326 (-227))) 103)) (-3022 (((-227) (-326 (-227))) 57)) (-2217 (((-656 (-227)) (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) 68)) (-3266 (((-1114 (-855 (-227))) (-1114 (-855 (-227)))) 65)) (-4007 (((-1178) (-227)) 76)) (-2527 (((-711) (-227)) 95)) (-2933 (((-419 (-576)) (-227)) 58)) (-3247 (((-326 (-390)) (-227)) 52)) (-1554 (((-656 (-1114 (-855 (-227)))) (-656 (-1114 (-855 (-390))))) 46)) (-2766 (((-1055) (-656 (-1055))) 191) (((-1055) (-1055) (-1055)) 185)) (-3097 (((-1055) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-315) (-10 -7 (-15 -3034 ((-227) (-390))) (-15 -3634 ((-326 (-227)) (-326 (-390)))) (-15 -4403 ((-855 (-227)) (-855 (-390)))) (-15 -3179 ((-1114 (-855 (-227))) (-1114 (-855 (-390))))) (-15 -1554 ((-656 (-1114 (-855 (-227)))) (-656 (-1114 (-855 (-390)))))) (-15 -2933 ((-419 (-576)) (-227))) (-15 -3062 ((-419 (-576)) (-326 (-227)))) (-15 -3022 ((-227) (-326 (-227)))) (-15 -2899 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -4382 ((-390) (-1287 (-326 (-227))))) (-15 -3975 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227))))) (-15 -3416 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3266 ((-1114 (-855 (-227))) (-1114 (-855 (-227))))) (-15 -2217 ((-656 (-227)) (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) (-15 -2527 ((-711) (-227))) (-15 -1843 ((-1287 (-711)) (-656 (-227)))) (-15 -3405 ((-326 (-390)) (-326 (-227)))) (-15 -3808 ((-1287 (-326 (-390))) (-1287 (-326 (-227))))) (-15 -1673 ((-112) (-227) (-1114 (-855 (-227))))) (-15 -4007 ((-1178) (-227))) (-15 -3543 ((-1178) (-390))) (-15 -1616 ((-656 (-1178)) (-656 (-227)))) (-15 -2371 ((-656 (-1178)) (-1177 (-227)))) (-15 -4071 ((-227) (-1114 (-855 (-227))))) (-15 -3906 ((-227) (-1114 (-855 (-227))))) (-15 -2766 ((-1055) (-1055) (-1055))) (-15 -2766 ((-1055) (-656 (-1055)))) (-15 -2427 ((-1178) (-390))) (-15 -1448 ((-1055) (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))))) (-15 -1448 ((-1055) (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))))) (-15 -3097 ((-1055) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3761 ((-1055) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -1397 ((-326 (-390)) (-970 (-227)))) (-15 -2226 ((-227) (-970 (-227)))) (-15 -3247 ((-326 (-390)) (-227))) (-15 -3288 ((-227) (-419 (-576)))) (-15 -3608 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) -((-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-970 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-970 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-656 (-1055))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-2766 (*1 *2 *2 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-315)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-1177 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-1287 (-326 (-390)))) (-5 *1 (-315)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287 (-711))) (-5 *1 (-315)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1114 (-855 (-227)))) (-5 *1 (-315)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2899 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-656 (-1114 (-855 (-390))))) (-5 *2 (-656 (-1114 (-855 (-227))))) (-5 *1 (-315)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1114 (-855 (-390)))) (-5 *2 (-1114 (-855 (-227)))) (-5 *1 (-315)))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(-10 -7 (-15 -3034 ((-227) (-390))) (-15 -3634 ((-326 (-227)) (-326 (-390)))) (-15 -4403 ((-855 (-227)) (-855 (-390)))) (-15 -3179 ((-1114 (-855 (-227))) (-1114 (-855 (-390))))) (-15 -1554 ((-656 (-1114 (-855 (-227)))) (-656 (-1114 (-855 (-390)))))) (-15 -2933 ((-419 (-576)) (-227))) (-15 -3062 ((-419 (-576)) (-326 (-227)))) (-15 -3022 ((-227) (-326 (-227)))) (-15 -2899 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -4382 ((-390) (-1287 (-326 (-227))))) (-15 -3975 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227))))) (-15 -3416 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3266 ((-1114 (-855 (-227))) (-1114 (-855 (-227))))) (-15 -2217 ((-656 (-227)) (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) (-15 -2527 ((-711) (-227))) (-15 -1843 ((-1287 (-711)) (-656 (-227)))) (-15 -3405 ((-326 (-390)) (-326 (-227)))) (-15 -3808 ((-1287 (-326 (-390))) (-1287 (-326 (-227))))) (-15 -1673 ((-112) (-227) (-1114 (-855 (-227))))) (-15 -4007 ((-1178) (-227))) (-15 -3543 ((-1178) (-390))) (-15 -1616 ((-656 (-1178)) (-656 (-227)))) (-15 -2371 ((-656 (-1178)) (-1177 (-227)))) (-15 -4071 ((-227) (-1114 (-855 (-227))))) (-15 -3906 ((-227) (-1114 (-855 (-227))))) (-15 -2766 ((-1055) (-1055) (-1055))) (-15 -2766 ((-1055) (-656 (-1055)))) (-15 -2427 ((-1178) (-390))) (-15 -1448 ((-1055) (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))))) (-15 -1448 ((-1055) (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))))) (-15 -3097 ((-1055) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3761 ((-1055) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -1397 ((-326 (-390)) (-970 (-227)))) (-15 -2226 ((-227) (-970 (-227)))) (-15 -3247 ((-326 (-390)) (-227))) (-15 -3288 ((-227) (-419 (-576)))) (-15 -3608 ((-701 (-227)) (-656 (-227)) (-783)))) -((-4057 (((-112) $ $) 14)) (-1893 (($ $ $) 18)) (-1903 (($ $ $) 17)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 50)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3114 (($ $ $) 25) (($ (-656 $)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-1943 (((-3 $ "failed") $ $) 21)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 53))) -(((-316 |#1|) (-10 -8 (-15 -2477 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4241 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4241 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2547 |#1|)) |#1| |#1|)) (-15 -1893 (|#1| |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3871 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3086 ((-2 (|:| -2861 (-656 |#1|)) (|:| -2547 |#1|)) (-656 |#1|))) (-15 -3114 (|#1| (-656 |#1|))) (-15 -3114 (|#1| |#1| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) -NIL -(-10 -8 (-15 -2477 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4241 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4241 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2547 |#1|)) |#1| |#1|)) (-15 -1893 (|#1| |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3871 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3086 ((-2 (|:| -2861 (-656 |#1|)) (|:| -2547 |#1|)) (-656 |#1|))) (-15 -3114 (|#1| (-656 |#1|))) (-15 -3114 (|#1| |#1| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2287 (((-112) $) 35)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2796 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-3427 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3680 (*1 *1 *1) (-4 *1 (-312))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-3716 (*1 *1 *1) (-4 *1 (-312))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1546 (*1 *1 *1) (-4 *1 (-312))) (-1546 (*1 *1 *1 *1) (-4 *1 (-312))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-1902 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-1775 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4062 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-1639 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1639 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-4116 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-3470 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-3470 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) (-5 *2 (-1193 *1)))) (-1897 (*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) +(-13 (-1121) (-1059 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2796 ($ (-115) $)) (-15 -2796 ($ (-115) $ $)) (-15 -2796 ($ (-115) $ $ $)) (-15 -2796 ($ (-115) $ $ $ $)) (-15 -2796 ($ (-115) (-656 $))) (-15 -3427 ($ $ (-304 $))) (-15 -3427 ($ $ (-656 (-304 $)))) (-15 -3427 ($ $ (-656 (-624 $)) (-656 $))) (-15 -3680 ($ $)) (-15 -3680 ($ (-656 $))) (-15 -3716 ($ $)) (-15 -3716 ($ (-656 $))) (-15 -1546 ($ $)) (-15 -1546 ($ $ $)) (-15 -2325 ((-783) $)) (-15 -1902 ((-3 (-624 $) "failed") $)) (-15 -1763 ((-656 (-624 $)) $)) (-15 -3987 ((-656 (-624 $)) $)) (-15 -4221 ((-656 (-115)) $)) (-15 -1775 ((-115) (-115))) (-15 -4062 ((-112) (-115))) (-15 -2158 ((-112) $ (-115))) (-15 -2158 ((-112) $ (-1197))) (-15 -1639 ($ (-115) $)) (-15 -1639 ($ (-115) (-656 $))) (-15 -4116 ($ (-1 $ $) (-624 $))) (-15 -3470 ((-112) $ $)) (-15 -3470 ((-112) $ (-1197))) (-15 -3283 ($ $ (-656 (-1197)) (-656 (-1 $ $)))) (-15 -3283 ($ $ (-656 (-1197)) (-656 (-1 $ (-656 $))))) (-15 -3283 ($ $ (-1197) (-1 $ (-656 $)))) (-15 -3283 ($ $ (-1197) (-1 $ $))) (-15 -3283 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -3283 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -3283 ($ $ (-115) (-1 $ (-656 $)))) (-15 -3283 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1070)) (PROGN (-15 -2103 ((-1193 $) (-624 $))) (-15 -1897 ($ $))) |%noBranch|) (IF (|has| $ (-1059 (-576))) (PROGN (-15 -2975 ((-112) $)) (-15 -2561 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-876)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1059 #0#) . T) ((-1121) . T) ((-1238) . T)) +((-1375 (((-656 |#1|) (-656 |#1|)) 10))) +(((-313 |#1|) (-10 -7 (-15 -1375 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) +((-1375 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) +(-10 -7 (-15 -1375 ((-656 |#1|) (-656 |#1|)))) +((-4116 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) +(((-314 |#1| |#2|) (-10 -7 (-15 -4116 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1070) (-1070)) (T -314)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -4116 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) +((-1833 (((-1288 (-326 (-390))) (-1288 (-326 (-227)))) 110)) (-1936 (((-1115 (-855 (-227))) (-1115 (-855 (-390)))) 43)) (-1507 (((-656 (-1179)) (-1178 (-227))) 92)) (-4086 (((-326 (-390)) (-971 (-227))) 53)) (-3925 (((-227) (-971 (-227))) 49)) (-4015 (((-1179) (-390)) 195)) (-1558 (((-855 (-227)) (-855 (-390))) 37)) (-2874 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227)))) 165)) (-2433 (((-1056) (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) 207) (((-1056) (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) 205)) (-3752 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-1348 (((-1288 (-711)) (-656 (-227))) 99)) (-2833 (((-656 (-1179)) (-656 (-227))) 79)) (-2272 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-2075 (((-112) (-227) (-1115 (-855 (-227)))) 117)) (-2608 (((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-2554 (((-227) (-1115 (-855 (-227)))) 112)) (-3513 (((-227) (-1115 (-855 (-227)))) 113)) (-3812 (((-227) (-419 (-576))) 31)) (-4379 (((-1179) (-390)) 77)) (-3072 (((-227) (-390)) 22)) (-2532 (((-390) (-1288 (-326 (-227)))) 177)) (-2690 (((-326 (-227)) (-326 (-390))) 28)) (-2061 (((-419 (-576)) (-326 (-227))) 56)) (-2495 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-2406 (((-326 (-390)) (-326 (-227))) 103)) (-2930 (((-227) (-326 (-227))) 57)) (-3836 (((-656 (-227)) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) 68)) (-3571 (((-1115 (-855 (-227))) (-1115 (-855 (-227)))) 65)) (-3228 (((-1179) (-227)) 76)) (-3774 (((-711) (-227)) 95)) (-3325 (((-419 (-576)) (-227)) 58)) (-3372 (((-326 (-390)) (-227)) 52)) (-4171 (((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390))))) 46)) (-1615 (((-1056) (-656 (-1056))) 191) (((-1056) (-1056) (-1056)) 185)) (-2423 (((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-315) (-10 -7 (-15 -3072 ((-227) (-390))) (-15 -2690 ((-326 (-227)) (-326 (-390)))) (-15 -1558 ((-855 (-227)) (-855 (-390)))) (-15 -1936 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -4171 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -3325 ((-419 (-576)) (-227))) (-15 -2061 ((-419 (-576)) (-326 (-227)))) (-15 -2930 ((-227) (-326 (-227)))) (-15 -2272 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2532 ((-390) (-1288 (-326 (-227))))) (-15 -2874 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -2495 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3571 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -3836 ((-656 (-227)) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-15 -3774 ((-711) (-227))) (-15 -1348 ((-1288 (-711)) (-656 (-227)))) (-15 -2406 ((-326 (-390)) (-326 (-227)))) (-15 -1833 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -2075 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -3228 ((-1179) (-227))) (-15 -4379 ((-1179) (-390))) (-15 -2833 ((-656 (-1179)) (-656 (-227)))) (-15 -1507 ((-656 (-1179)) (-1178 (-227)))) (-15 -2554 ((-227) (-1115 (-855 (-227))))) (-15 -3513 ((-227) (-1115 (-855 (-227))))) (-15 -1615 ((-1056) (-1056) (-1056))) (-15 -1615 ((-1056) (-656 (-1056)))) (-15 -4015 ((-1179) (-390))) (-15 -2433 ((-1056) (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -2433 ((-1056) (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -2423 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2608 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4086 ((-326 (-390)) (-971 (-227)))) (-15 -3925 ((-227) (-971 (-227)))) (-15 -3372 ((-326 (-390)) (-227))) (-15 -3812 ((-227) (-419 (-576)))) (-15 -3752 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) +((-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-656 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1615 (*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-4379 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1115 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) (-5 *1 (-315)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2272 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-656 (-1115 (-855 (-390))))) (-5 *2 (-656 (-1115 (-855 (-227))))) (-5 *1 (-315)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(-10 -7 (-15 -3072 ((-227) (-390))) (-15 -2690 ((-326 (-227)) (-326 (-390)))) (-15 -1558 ((-855 (-227)) (-855 (-390)))) (-15 -1936 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -4171 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -3325 ((-419 (-576)) (-227))) (-15 -2061 ((-419 (-576)) (-326 (-227)))) (-15 -2930 ((-227) (-326 (-227)))) (-15 -2272 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2532 ((-390) (-1288 (-326 (-227))))) (-15 -2874 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -2495 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3571 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -3836 ((-656 (-227)) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-15 -3774 ((-711) (-227))) (-15 -1348 ((-1288 (-711)) (-656 (-227)))) (-15 -2406 ((-326 (-390)) (-326 (-227)))) (-15 -1833 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -2075 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -3228 ((-1179) (-227))) (-15 -4379 ((-1179) (-390))) (-15 -2833 ((-656 (-1179)) (-656 (-227)))) (-15 -1507 ((-656 (-1179)) (-1178 (-227)))) (-15 -2554 ((-227) (-1115 (-855 (-227))))) (-15 -3513 ((-227) (-1115 (-855 (-227))))) (-15 -1615 ((-1056) (-1056) (-1056))) (-15 -1615 ((-1056) (-656 (-1056)))) (-15 -4015 ((-1179) (-390))) (-15 -2433 ((-1056) (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -2433 ((-1056) (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -2423 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2608 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4086 ((-326 (-390)) (-971 (-227)))) (-15 -3925 ((-227) (-971 (-227)))) (-15 -3372 ((-326 (-390)) (-227))) (-15 -3812 ((-227) (-419 (-576)))) (-15 -3752 ((-701 (-227)) (-656 (-227)) (-783)))) +((-2420 (((-112) $ $) 14)) (-3428 (($ $ $) 18)) (-3440 (($ $ $) 17)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 50)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3498 (($ $ $) 25) (($ (-656 $)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3475 (((-3 $ "failed") $ $) 21)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 53))) +(((-316 |#1|) (-10 -8 (-15 -1370 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3721 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3721 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -2420 ((-112) |#1| |#1|)) (-15 -4397 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2304 ((-2 (|:| -1714 (-656 |#1|)) (|:| -4128 |#1|)) (-656 |#1|))) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) +NIL +(-10 -8 (-15 -1370 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3721 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3721 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -2420 ((-112) |#1| |#1|)) (-15 -4397 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2304 ((-2 (|:| -1714 (-656 |#1|)) (|:| -4128 |#1|)) (-656 |#1|))) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3215 (((-112) $) 35)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-317) (-141)) (T -317)) -((-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-4293 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-317)))) (-1903 (*1 *1 *1 *1) (-4 *1 (-317))) (-1893 (*1 *1 *1 *1) (-4 *1 (-317))) (-4241 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2547 *1))) (-4 *1 (-317)))) (-4241 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-2477 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(-13 (-938) (-10 -8 (-15 -4057 ((-112) $ $)) (-15 -2026 ((-783) $)) (-15 -4293 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -1903 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -4241 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $)) (-15 -4241 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2477 ((-3 (-656 $) "failed") (-656 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2143 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) -(((-318 |#1| |#2|) (-10 -8 (-15 -2143 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2143 (|#1| |#1| (-304 |#2|))) (-15 -2143 (|#1| |#1| |#2| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1120)) (T -318)) -NIL -(-10 -8 (-15 -2143 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2143 (|#1| |#1| (-304 |#2|))) (-15 -2143 (|#1| |#1| |#2| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) -((-2143 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) -(((-319 |#1|) (-141) (-1120)) (T -319)) -((-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1120))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -2143 ($ $ (-304 |t#1|))) (-15 -2143 ($ $ (-656 (-304 |t#1|)))))) +((-2420 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-2935 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-317)))) (-3440 (*1 *1 *1 *1) (-4 *1 (-317))) (-3428 (*1 *1 *1 *1) (-4 *1 (-317))) (-3721 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) (-4 *1 (-317)))) (-3721 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-1370 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) +(-13 (-939) (-10 -8 (-15 -2420 ((-112) $ $)) (-15 -2411 ((-783) $)) (-15 -2935 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -3440 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3721 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $)) (-15 -3721 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1370 ((-3 (-656 $) "failed") (-656 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3283 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) +(((-318 |#1| |#2|) (-10 -8 (-15 -3283 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3283 (|#1| |#1| (-304 |#2|))) (-15 -3283 (|#1| |#1| |#2| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1121)) (T -318)) +NIL +(-10 -8 (-15 -3283 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3283 (|#1| |#1| (-304 |#2|))) (-15 -3283 (|#1| |#1| |#2| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) +((-3283 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) +(((-319 |#1|) (-141) (-1121)) (T -319)) +((-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1121))))) +(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3283 ($ $ (-304 |t#1|))) (-15 -3283 ($ $ (-656 (-304 |t#1|)))))) (((-526 |#1| |#1|) . T)) -((-2143 ((|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))) 26))) -(((-320 |#1|) (-10 -7 (-15 -2143 (|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) -((-2143 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1198 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) -(-10 -7 (-15 -2143 (|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))))) -((-1952 (((-112) $ $) NIL)) (-2105 (((-576) $) 12)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2229 (((-1155) $) 9)) (-4112 (((-875) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-321) (-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -2105 ((-576) $))))) (T -321)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-321)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) -(-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -2105 ((-576) $)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 7)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 9))) -(((-322) (-1120)) (T -322)) -NIL -(-1120) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 60)) (-1705 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-1273 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-576)))) (((-3 (-1272 |#2| |#3| |#4|) "failed") $) 26)) (-2317 (((-1273 |#1| |#2| |#3| |#4|) $) NIL) (((-1196) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-576)))) (((-576) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-576)))) (((-1272 |#2| |#3| |#4|) $) NIL)) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1273 |#1| |#2| |#3| |#4|)))) (-701 $) (-1287 $)) NIL) (((-701 (-1273 |#1| |#2| |#3| |#4|)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-1273 |#1| |#2| |#3| |#4|) $) 22)) (-1859 (((-3 $ "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1172)))) (-3197 (((-112) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-861)))) (-1654 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-861)))) (-2422 (($ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) $) NIL)) (-3504 (((-3 (-855 |#2|) "failed") $) 80)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1273 |#1| |#2| |#3| |#4|)))) (-1287 $) $) NIL) (((-701 (-1273 |#1| |#2| |#3| |#4|)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-317)))) (-2804 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-1273 |#1| |#2| |#3| |#4|)) (-656 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1273 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1196)) (-656 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-1196) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-296 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-1273 |#1| |#2| |#3| |#4|) $) 19)) (-1554 (((-906 (-576)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1042))) (((-227) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1273 |#1| |#2| |#3| |#4|)) 30) (($ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1058 (-1196)))) (($ (-1272 |#2| |#3| |#4|)) 37)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-927))) (|has| (-1273 |#1| |#2| |#3| |#4|) (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-918 (-1196)))) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-861)))) (-4046 (($ $ $) 35) (($ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) 32)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1273 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL))) -(((-323 |#1| |#2| |#3| |#4|) (-13 (-1012 (-1273 |#1| |#2| |#3| |#4|)) (-1058 (-1272 |#2| |#3| |#4|)) (-10 -8 (-15 -3504 ((-3 (-855 |#2|) "failed") $)) (-15 -4112 ($ (-1272 |#2| |#3| |#4|))))) (-13 (-1058 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -323)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1272 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4) (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-3504 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) -(-13 (-1012 (-1273 |#1| |#2| |#3| |#4|)) (-1058 (-1272 |#2| |#3| |#4|)) (-10 -8 (-15 -3504 ((-3 (-855 |#2|) "failed") $)) (-15 -4112 ($ (-1272 |#2| |#3| |#4|))))) -((-2422 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) -(((-324 |#1| |#2|) (-10 -7 (-15 -2422 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1120) (-1120)) (T -324)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -2422 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-1627 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1196)) 26)) (-2860 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1196)) 55)) (-1646 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1196)) 50)) (-1637 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1196)) 43))) -(((-325 |#1| |#2|) (-10 -7 (-15 -1627 ((-52) (-1196))) (-15 -1627 ((-52) |#2|)) (-15 -1627 ((-52) |#2| (-783))) (-15 -1627 ((-52) |#2| (-304 |#2|))) (-15 -1627 ((-52) |#2| (-304 |#2|) (-783))) (-15 -1637 ((-52) (-1196))) (-15 -1637 ((-52) |#2|)) (-15 -1637 ((-52) |#2| (-576))) (-15 -1637 ((-52) |#2| (-304 |#2|))) (-15 -1637 ((-52) |#2| (-304 |#2|) (-576))) (-15 -1646 ((-52) (-1196))) (-15 -1646 ((-52) |#2|)) (-15 -1646 ((-52) |#2| (-419 (-576)))) (-15 -1646 ((-52) |#2| (-304 |#2|))) (-15 -1646 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -2860 ((-52) (-1196))) (-15 -2860 ((-52) |#2|)) (-15 -2860 ((-52) |#2| (-419 (-576)))) (-15 -2860 ((-52) |#2| (-304 |#2|))) (-15 -2860 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -325)) -((-2860 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-2860 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1058 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1058 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-1627 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1627 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4)))))) -(-10 -7 (-15 -1627 ((-52) (-1196))) (-15 -1627 ((-52) |#2|)) (-15 -1627 ((-52) |#2| (-783))) (-15 -1627 ((-52) |#2| (-304 |#2|))) (-15 -1627 ((-52) |#2| (-304 |#2|) (-783))) (-15 -1637 ((-52) (-1196))) (-15 -1637 ((-52) |#2|)) (-15 -1637 ((-52) |#2| (-576))) (-15 -1637 ((-52) |#2| (-304 |#2|))) (-15 -1637 ((-52) |#2| (-304 |#2|) (-576))) (-15 -1646 ((-52) (-1196))) (-15 -1646 ((-52) |#2|)) (-15 -1646 ((-52) |#2| (-419 (-576)))) (-15 -1646 ((-52) |#2| (-304 |#2|))) (-15 -1646 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -2860 ((-52) (-1196))) (-15 -2860 ((-52) |#2|)) (-15 -2860 ((-52) |#2| (-419 (-576)))) (-15 -2860 ((-52) |#2| (-304 |#2|))) (-15 -2860 ((-52) |#2| (-304 |#2|) (-419 (-576))))) -((-1952 (((-112) $ $) NIL)) (-2518 (((-656 $) $ (-1196)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $)) NIL (|has| |#1| (-568))) (((-656 $) (-970 $)) NIL (|has| |#1| (-568)))) (-2089 (($ $ (-1196)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (($ (-1192 $)) NIL (|has| |#1| (-568))) (($ (-970 $)) NIL (|has| |#1| (-568)))) (-3167 (((-112) $) 27 (-3794 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))))) (-1582 (((-656 (-1196)) $) 368)) (-1420 (((-419 (-1192 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4442 (((-656 (-624 $)) $) NIL)) (-3585 (($ $) 171 (|has| |#1| (-568)))) (-3434 (($ $) 147 (|has| |#1| (-568)))) (-3297 (($ $ (-1112 $)) 232 (|has| |#1| (-568))) (($ $ (-1196)) 228 (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) NIL (-3794 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))))) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-1946 (((-430 (-1192 $)) (-1192 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-3575 (($ $) NIL (|has| |#1| (-568)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1462 (($ $) NIL (|has| |#1| (-568)))) (-4057 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3561 (($ $) 167 (|has| |#1| (-568)))) (-3411 (($ $) 143 (|has| |#1| (-568)))) (-3704 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-3611 (($ $) 175 (|has| |#1| (-568)))) (-3460 (($ $) 151 (|has| |#1| (-568)))) (-4331 (($) NIL (-3794 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))) (|has| |#1| (-1132))) CONST)) (-3468 (((-656 $) $ (-1196)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $)) NIL (|has| |#1| (-568))) (((-656 $) (-970 $)) NIL (|has| |#1| (-568)))) (-1480 (($ $ (-1196)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1192 $) (-1196)) 134 (|has| |#1| (-568))) (($ (-1192 $)) NIL (|has| |#1| (-568))) (($ (-970 $)) NIL (|has| |#1| (-568)))) (-2980 (((-3 (-624 $) "failed") $) 18) (((-3 (-1196) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-970 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-970 |#1|) "failed") $) NIL (|has| |#1| (-1069))) (((-3 (-419 (-576)) "failed") $) 46 (-3794 (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-2317 (((-624 $) $) 12) (((-1196) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-970 |#1|)) $) NIL (|has| |#1| (-568))) (((-970 |#1|) $) NIL (|has| |#1| (-1069))) (((-419 (-576)) $) 319 (-3794 (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-1893 (($ $ $) NIL (|has| |#1| (-568)))) (-3222 (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 125 (|has| |#1| (-1069))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (-2721 (($ $) 96 (|has| |#1| (-568)))) (-3900 (((-3 $ "failed") $) NIL (|has| |#1| (-1132)))) (-1903 (($ $ $) NIL (|has| |#1| (-568)))) (-4191 (($ $ (-1112 $)) 236 (|has| |#1| (-568))) (($ $ (-1196)) 234 (|has| |#1| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-2443 (((-112) $) NIL (|has| |#1| (-568)))) (-3333 (($ $ $) 202 (|has| |#1| (-568)))) (-2722 (($) 137 (|has| |#1| (-568)))) (-3207 (($ $ $) 222 (|has| |#1| (-568)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 392 (|has| |#1| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 399 (|has| |#1| (-900 (-390))))) (-1390 (($ $) NIL) (($ (-656 $)) NIL)) (-3209 (((-656 (-115)) $) NIL)) (-1400 (((-115) (-115)) 276)) (-2287 (((-112) $) 25 (|has| |#1| (-1132)))) (-1589 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2461 (($ $) 72 (|has| |#1| (-1069)))) (-2686 (((-1145 |#1| (-624 $)) $) 91 (|has| |#1| (-1069)))) (-2172 (((-112) $) 62 (|has| |#1| (-568)))) (-2770 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3066 (((-1192 $) (-624 $)) 277 (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) 426)) (-2413 (((-3 (-624 $) "failed") $) NIL)) (-2607 (($ $) 141 (|has| |#1| (-568)))) (-1825 (($ $) 247 (|has| |#1| (-568)))) (-2198 (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL (|has| |#1| (-1069))) (((-701 |#1|) (-1287 $)) NIL (|has| |#1| (-1069))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (-3075 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2043 (((-1178) $) NIL)) (-1389 (((-656 (-624 $)) $) 49)) (-2774 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-2000 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1132)))) (-2192 (((-3 (-2 (|:| |val| $) (|:| -1495 (-576))) "failed") $) NIL (|has| |#1| (-1069)))) (-2279 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-3656 (((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-4044 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $) NIL (|has| |#1| (-1132))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1069))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-1196)) NIL (|has| |#1| (-1069)))) (-1681 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) 51)) (-1667 (($ $) NIL (-3794 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3681 (($ $ (-1196)) 251 (|has| |#1| (-568))) (($ $ (-1112 $)) 253 (|has| |#1| (-568)))) (-2952 (((-783) $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) 43)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 301 (|has| |#1| (-568)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1546 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-4206 (($ $ (-1196)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-2978 (($ $) 218 (|has| |#1| (-568)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1450 (((-430 $) $) NIL (|has| |#1| (-568)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-568)))) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2155 (($ $) 139 (|has| |#1| (-568)))) (-4296 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2143 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1196)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1069))) (($ $ (-1196) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1069))) (($ $ (-1196) (-783) (-1 $ $)) NIL (|has| |#1| (-1069)))) (-2026 (((-783) $) NIL (|has| |#1| (-568)))) (-3362 (($ $) 239 (|has| |#1| (-568)))) (-4368 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-2678 (($ $) NIL) (($ $ $) NIL)) (-3398 (($ $) 249 (|has| |#1| (-568)))) (-3680 (($ $) 200 (|has| |#1| (-568)))) (-4106 (($ $ (-1196)) NIL (|has| |#1| (-1069))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-1069))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-1069)))) (-2521 (($ $) 74 (|has| |#1| (-568)))) (-2697 (((-1145 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-3175 (($ $) 317 (|has| $ (-1069)))) (-3622 (($ $) 177 (|has| |#1| (-568)))) (-3473 (($ $) 153 (|has| |#1| (-568)))) (-3598 (($ $) 173 (|has| |#1| (-568)))) (-3447 (($ $) 149 (|has| |#1| (-568)))) (-3573 (($ $) 169 (|has| |#1| (-568)))) (-3423 (($ $) 145 (|has| |#1| (-568)))) (-1554 (((-906 (-576)) $) NIL (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| |#1| (-626 (-906 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-2633 (($ $ $) NIL (|has| |#1| (-485)))) (-2362 (($ $ $) NIL (|has| |#1| (-485)))) (-4112 (((-875) $) 424) (($ (-624 $)) 415) (($ (-1196)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576))))) (($ (-1145 |#1| (-624 $))) 95 (|has| |#1| (-1069))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-970 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-970 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-970 |#1|))) NIL (|has| |#1| (-568))) (($ (-970 |#1|)) NIL (|has| |#1| (-1069))) (($ (-576)) 34 (-3794 (|has| |#1| (-1058 (-576))) (|has| |#1| (-1069)))) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-568)) (|has| |#1| (-1058 (-419 (-576))))))) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL (|has| |#1| (-1069)) CONST)) (-2344 (($ $) NIL) (($ (-656 $)) NIL)) (-4410 (($ $ $) 220 (|has| |#1| (-568)))) (-3121 (($ $ $) 206 (|has| |#1| (-568)))) (-2909 (($ $ $) 210 (|has| |#1| (-568)))) (-4232 (($ $ $) 204 (|has| |#1| (-568)))) (-3724 (($ $ $) 208 (|has| |#1| (-568)))) (-2431 (((-112) (-115)) 10)) (-1994 (((-112) $ $) 86)) (-3652 (($ $) 183 (|has| |#1| (-568)))) (-3509 (($ $) 159 (|has| |#1| (-568)))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) 179 (|has| |#1| (-568)))) (-3486 (($ $) 155 (|has| |#1| (-568)))) (-3672 (($ $) 187 (|has| |#1| (-568)))) (-3536 (($ $) 163 (|has| |#1| (-568)))) (-3700 (($ (-1196) $) NIL) (($ (-1196) $ $) NIL) (($ (-1196) $ $ $) NIL) (($ (-1196) $ $ $ $) NIL) (($ (-1196) (-656 $)) NIL)) (-1522 (($ $) 214 (|has| |#1| (-568)))) (-1388 (($ $) 212 (|has| |#1| (-568)))) (-1970 (($ $) 189 (|has| |#1| (-568)))) (-3549 (($ $) 165 (|has| |#1| (-568)))) (-3663 (($ $) 185 (|has| |#1| (-568)))) (-3522 (($ $) 161 (|has| |#1| (-568)))) (-3641 (($ $) 181 (|has| |#1| (-568)))) (-3497 (($ $) 157 (|has| |#1| (-568)))) (-2388 (($ $) 192 (|has| |#1| (-568)))) (-4314 (($) 21 (-3794 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) CONST)) (-3812 (($ $) 243 (|has| |#1| (-568)))) (-4320 (($) 23 (|has| |#1| (-1132)) CONST)) (-4166 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-3819 (($ $) 241 (|has| |#1| (-568)))) (-3155 (($ $ (-1196)) NIL (|has| |#1| (-1069))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-1069))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-1069)))) (-1917 (($ $) 245 (|has| |#1| (-568)))) (-4210 (($ $ $) 198 (|has| |#1| (-568)))) (-3938 (((-112) $ $) 88)) (-4046 (($ (-1145 |#1| (-624 $)) (-1145 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-3794 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4036 (($ $ $) 40 (-3794 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (($ $) 29 (-3794 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))))) (-4026 (($ $ $) 38 (-3794 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-3794 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1132))) (($ $ (-939)) 84 (|has| |#1| (-1132)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1069))) (($ $ $) 36 (|has| |#1| (-1132))) (($ (-576) $) 32 (-3794 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (($ (-783) $) NIL (-3794 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))) (($ (-939) $) NIL (-3794 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))))))) -(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-161)) (-6 (-641)) (-6 (-1159)) (-15 -2721 ($ $)) (-15 -2172 ((-112) $)) (-15 -3704 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -1988 ((-430 (-1192 $)) (-1192 $))) (-15 -1946 ((-430 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1058 (-576))) (-6 (-1058 (-48))) |%noBranch|)) |%noBranch|))) (-1120)) (T -326)) -((-2721 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1120)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) (-1988 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120)))) (-1946 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120))))) -(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-161)) (-6 (-641)) (-6 (-1159)) (-15 -2721 ($ $)) (-15 -2172 ((-112) $)) (-15 -3704 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -1988 ((-430 (-1192 $)) (-1192 $))) (-15 -1946 ((-430 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1058 (-576))) (-6 (-1058 (-48))) |%noBranch|)) |%noBranch|))) -((-4213 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) -(((-327 |#1| |#2|) (-10 -7 (-15 -4213 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -4213 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -4213 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -4213 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -4213 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -4213 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -4213 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -4213 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -4213 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -4213 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) -((-4213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-4213 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-4213 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-4213 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-4213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-4213 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-4213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-4213 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-4213 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-4213 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -4213 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -4213 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -4213 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -4213 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -4213 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -4213 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -4213 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -4213 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -4213 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -4213 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-1787 (((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-227) (-576) (-1178)) 67) (((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-227) (-576)) 68) (((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-1 (-227) (-227)) (-576) (-1178)) 64) (((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-1795 (((-1 (-227) (-227)) (-227)) 66))) -(((-328) (-10 -7 (-15 -1795 ((-1 (-227) (-227)) (-227))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-1 (-227) (-227)) (-576))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-1 (-227) (-227)) (-576) (-1178))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-227) (-576))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-227) (-576) (-1178))))) (T -328)) -((-1787 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1114 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1178)) (-5 *2 (-1232 (-944))) (-5 *1 (-328)))) (-1787 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1114 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1232 (-944))) (-5 *1 (-328)))) (-1787 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1114 (-227))) (-5 *6 (-576)) (-5 *7 (-1178)) (-5 *2 (-1232 (-944))) (-5 *1 (-328)))) (-1787 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1114 (-227))) (-5 *6 (-576)) (-5 *2 (-1232 (-944))) (-5 *1 (-328)))) (-1795 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(-10 -7 (-15 -1795 ((-1 (-227) (-227)) (-227))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-1 (-227) (-227)) (-576))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-1 (-227) (-227)) (-576) (-1178))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-227) (-576))) (-15 -1787 ((-1232 (-944)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-227) (-576) (-1178)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 26)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) 36)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) NIL) (($ $ (-419 (-576))) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-419 (-576))) NIL) (($ $ (-1102) (-419 (-576))) NIL) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2944 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222)))))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) NIL)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2201 (((-419 (-576)) $) 17)) (-1322 (($ (-1272 |#1| |#2| |#3|)) 11)) (-1495 (((-1272 |#1| |#2| |#3|) $) 12)) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1877 (((-419 (-576)) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 10)) (-4112 (((-875) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) 34)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) NIL)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 28)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 37)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-329 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-804) (-10 -8 (-15 -1322 ($ (-1272 |#1| |#2| |#3|))) (-15 -1495 ((-1272 |#1| |#2| |#3|) $)) (-15 -2201 ((-419 (-576)) $)))) (-374) (-1196) |#1|) (T -329)) -((-1322 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3)))) -(-13 (-1268 |#1|) (-804) (-10 -8 (-15 -1322 ($ (-1272 |#1| |#2| |#3|))) (-15 -1495 ((-1272 |#1| |#2| |#3|) $)) (-15 -2201 ((-419 (-576)) $)))) -((-2770 (((-2 (|:| -1495 (-783)) (|:| -2861 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-2607 (((-656 (-2 (|:| -2861 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) -(((-330 |#1|) (-10 -7 (-15 -2770 ((-2 (|:| -1495 (-783)) (|:| -2861 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -2607 ((-656 (-2 (|:| -2861 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) -((-2607 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -2861 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) -(-10 -7 (-15 -2770 ((-2 (|:| -1495 (-783)) (|:| -2861 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -2607 ((-656 (-2 (|:| -2861 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) -((-1582 (((-656 |#2|) (-1192 |#4|)) 44)) (-3886 ((|#3| (-576)) 47)) (-3317 (((-1192 |#4|) (-1192 |#3|)) 30)) (-1392 (((-1192 |#4|) (-1192 |#4|) (-576)) 66)) (-4282 (((-1192 |#3|) (-1192 |#4|)) 21)) (-1877 (((-656 (-783)) (-1192 |#4|) (-656 |#2|)) 41)) (-3659 (((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|)) 35))) -(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3659 ((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -1877 ((-656 (-783)) (-1192 |#4|) (-656 |#2|))) (-15 -1582 ((-656 |#2|) (-1192 |#4|))) (-15 -4282 ((-1192 |#3|) (-1192 |#4|))) (-15 -3317 ((-1192 |#4|) (-1192 |#3|))) (-15 -1392 ((-1192 |#4|) (-1192 |#4|) (-576))) (-15 -3886 (|#3| (-576)))) (-805) (-861) (-1069) (-967 |#3| |#1| |#2|)) (T -331)) -((-3886 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1069)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-967 *2 *4 *5)))) (-1392 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *7)) (-5 *3 (-576)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-5 *1 (-331 *4 *5 *6 *7)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1192 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-5 *2 (-1192 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) (-4 *8 (-967 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1069)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-3659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-861)) (-4 *8 (-1069)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1192 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(-10 -7 (-15 -3659 ((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -1877 ((-656 (-783)) (-1192 |#4|) (-656 |#2|))) (-15 -1582 ((-656 |#2|) (-1192 |#4|))) (-15 -4282 ((-1192 |#3|) (-1192 |#4|))) (-15 -3317 ((-1192 |#4|) (-1192 |#3|))) (-15 -1392 ((-1192 |#4|) (-1192 |#4|) (-576))) (-15 -3886 (|#3| (-576)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 19)) (-1560 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-576)))) $) 21)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2199 (((-783) $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3908 ((|#1| $ (-576)) NIL)) (-4386 (((-576) $ (-576)) NIL)) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-3687 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (($ (-1 (-576) (-576)) $) 11)) (-2043 (((-1178) $) NIL)) (-2778 (($ $ $) NIL (|has| (-576) (-804)))) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ |#1|) NIL)) (-4269 (((-576) |#1| $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) 29 (|has| |#1| (-861)))) (-4036 (($ $) 12) (($ $ $) 28)) (-4026 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) -(((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1120)) (T -332)) +((-3283 ((|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))) 26))) +(((-320 |#1|) (-10 -7 (-15 -3283 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) +((-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1199 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) +(-10 -7 (-15 -3283 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-2815 (((-576) $) 12)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3122 (((-1156) $) 9)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-321) (-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2815 ((-576) $))))) (T -321)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) +(-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2815 ((-576) $)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 7)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-322) (-1121)) (T -322)) +NIL +(-1121) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 60)) (-2347 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-1274 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 26)) (-2859 (((-1274 |#1| |#2| |#3| |#4|) $) NIL) (((-1197) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-701 $) (-1288 $)) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-1274 |#1| |#2| |#3| |#4|) $) 22)) (-3396 (((-3 $ "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)))) (-4099 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-1951 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-4116 (($ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) $) NIL)) (-4063 (((-3 (-855 |#2|) "failed") $) 80)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-1288 $) $) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-3416 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-1274 |#1| |#2| |#3| |#4|)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1274 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1197)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1197) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-296 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-1274 |#1| |#2| |#3| |#4|) $) 19)) (-4171 (((-907 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043))) (((-227) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1274 |#1| |#2| |#3| |#4|)) 30) (($ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (($ (-1273 |#2| |#3| |#4|)) 37)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))) (|has| (-1274 |#1| |#2| |#3| |#4|) (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3056 (($ $ $) 35) (($ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) 32)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1274 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL))) +(((-323 |#1| |#2| |#3| |#4|) (-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -4063 ((-3 (-855 |#2|) "failed") $)) (-15 -3569 ($ (-1273 |#2| |#3| |#4|))))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -323)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1273 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4) (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-4063 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) +(-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -4063 ((-3 (-855 |#2|) "failed") $)) (-15 -3569 ($ (-1273 |#2| |#3| |#4|))))) +((-4116 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) +(((-324 |#1| |#2|) (-10 -7 (-15 -4116 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1121) (-1121)) (T -324)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) +(-10 -7 (-15 -4116 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) +((-2008 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1197)) 26)) (-3079 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1197)) 55)) (-2029 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1197)) 50)) (-2019 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1197)) 43))) +(((-325 |#1| |#2|) (-10 -7 (-15 -2008 ((-52) (-1197))) (-15 -2008 ((-52) |#2|)) (-15 -2008 ((-52) |#2| (-783))) (-15 -2008 ((-52) |#2| (-304 |#2|))) (-15 -2008 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2019 ((-52) (-1197))) (-15 -2019 ((-52) |#2|)) (-15 -2019 ((-52) |#2| (-576))) (-15 -2019 ((-52) |#2| (-304 |#2|))) (-15 -2019 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2029 ((-52) (-1197))) (-15 -2029 ((-52) |#2|)) (-15 -2029 ((-52) |#2| (-419 (-576)))) (-15 -2029 ((-52) |#2| (-304 |#2|))) (-15 -2029 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3079 ((-52) (-1197))) (-15 -3079 ((-52) |#2|)) (-15 -3079 ((-52) |#2| (-419 (-576)))) (-15 -3079 ((-52) |#2| (-304 |#2|))) (-15 -3079 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -325)) +((-3079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2029 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2029 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2019 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1059 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2019 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2008 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4)))))) +(-10 -7 (-15 -2008 ((-52) (-1197))) (-15 -2008 ((-52) |#2|)) (-15 -2008 ((-52) |#2| (-783))) (-15 -2008 ((-52) |#2| (-304 |#2|))) (-15 -2008 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2019 ((-52) (-1197))) (-15 -2019 ((-52) |#2|)) (-15 -2019 ((-52) |#2| (-576))) (-15 -2019 ((-52) |#2| (-304 |#2|))) (-15 -2019 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2029 ((-52) (-1197))) (-15 -2029 ((-52) |#2|)) (-15 -2029 ((-52) |#2| (-419 (-576)))) (-15 -2029 ((-52) |#2| (-304 |#2|))) (-15 -2029 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3079 ((-52) (-1197))) (-15 -3079 ((-52) |#2|)) (-15 -3079 ((-52) |#2| (-419 (-576)))) (-15 -3079 ((-52) |#2| (-304 |#2|))) (-15 -3079 ((-52) |#2| (-304 |#2|) (-419 (-576))))) +((-3488 (((-112) $ $) NIL)) (-3668 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-1842 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-1812 (((-112) $) 27 (-2758 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1966 (((-656 (-1197)) $) 368)) (-1799 (((-419 (-1193 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3987 (((-656 (-624 $)) $) NIL)) (-4024 (($ $) 171 (|has| |#1| (-568)))) (-3900 (($ $) 147 (|has| |#1| (-568)))) (-3905 (($ $ (-1113 $)) 232 (|has| |#1| (-568))) (($ $ (-1197)) 228 (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) NIL (-2758 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-2971 (((-430 (-1193 $)) (-1193 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-3420 (($ $) NIL (|has| |#1| (-568)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1839 (($ $) NIL (|has| |#1| (-568)))) (-2420 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4005 (($ $) 167 (|has| |#1| (-568)))) (-3876 (($ $) 143 (|has| |#1| (-568)))) (-2105 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-4049 (($ $) 175 (|has| |#1| (-568)))) (-3919 (($ $) 151 (|has| |#1| (-568)))) (-3306 (($) NIL (-2758 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) (|has| |#1| (-1133))) CONST)) (-1754 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-4077 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) 134 (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-1572 (((-3 (-624 $) "failed") $) 18) (((-3 (-1197) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-971 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) NIL (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 46 (-2758 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 (((-624 $) $) 12) (((-1197) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-971 |#1|)) $) NIL (|has| |#1| (-568))) (((-971 |#1|) $) NIL (|has| |#1| (-1070))) (((-419 (-576)) $) 319 (-2758 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3428 (($ $ $) NIL (|has| |#1| (-568)))) (-4344 (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 125 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3685 (($ $) 96 (|has| |#1| (-568)))) (-3451 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-3440 (($ $ $) NIL (|has| |#1| (-568)))) (-4442 (($ $ (-1113 $)) 236 (|has| |#1| (-568))) (($ $ (-1197)) 234 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-4169 (((-112) $) NIL (|has| |#1| (-568)))) (-2977 (($ $ $) 202 (|has| |#1| (-568)))) (-1600 (($) 137 (|has| |#1| (-568)))) (-4202 (($ $ $) 222 (|has| |#1| (-568)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 392 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 399 (|has| |#1| (-901 (-390))))) (-3716 (($ $) NIL) (($ (-656 $)) NIL)) (-4221 (((-656 (-115)) $) NIL)) (-1775 (((-115) (-115)) 276)) (-3215 (((-112) $) 25 (|has| |#1| (-1133)))) (-2561 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-4340 (($ $) 72 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 91 (|has| |#1| (-1070)))) (-3373 (((-112) $) 62 (|has| |#1| (-568)))) (-4336 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2103 (((-1193 $) (-624 $)) 277 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 426)) (-1902 (((-3 (-624 $) "failed") $) NIL)) (-3744 (($ $) 141 (|has| |#1| (-568)))) (-3851 (($ $) 247 (|has| |#1| (-568)))) (-3626 (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) NIL (|has| |#1| (-1070))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3457 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1413 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) 49)) (-1639 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-2164 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1133)))) (-3572 (((-3 (-2 (|:| |val| $) (|:| -4210 (-576))) "failed") $) NIL (|has| |#1| (-1070)))) (-3163 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-2919 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2292 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $) NIL (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-1197)) NIL (|has| |#1| (-1070)))) (-2158 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) 51)) (-2048 (($ $) NIL (-2758 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3191 (($ $ (-1197)) 251 (|has| |#1| (-568))) (($ $ (-1113 $)) 253 (|has| |#1| (-568)))) (-2325 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) 43)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 301 (|has| |#1| (-568)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3470 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1439 (($ $ (-1197)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-3792 (($ $) 218 (|has| |#1| (-568)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-568)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-4103 (($ $) 139 (|has| |#1| (-568)))) (-2975 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3283 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) NIL (|has| |#1| (-1070)))) (-2411 (((-783) $) NIL (|has| |#1| (-568)))) (-3826 (($ $) 239 (|has| |#1| (-568)))) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-1546 (($ $) NIL) (($ $ $) NIL)) (-3863 (($ $) 249 (|has| |#1| (-568)))) (-3180 (($ $) 200 (|has| |#1| (-568)))) (-2773 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-3708 (($ $) 74 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-1897 (($ $) 317 (|has| $ (-1070)))) (-4060 (($ $) 177 (|has| |#1| (-568)))) (-3929 (($ $) 153 (|has| |#1| (-568)))) (-4036 (($ $) 173 (|has| |#1| (-568)))) (-3909 (($ $) 149 (|has| |#1| (-568)))) (-4013 (($ $) 169 (|has| |#1| (-568)))) (-3888 (($ $) 145 (|has| |#1| (-568)))) (-4171 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-2318 (($ $ $) NIL (|has| |#1| (-485)))) (-2604 (($ $ $) NIL (|has| |#1| (-485)))) (-3569 (((-876) $) 424) (($ (-624 $)) 415) (($ (-1197)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (($ (-1146 |#1| (-624 $))) 95 (|has| |#1| (-1070))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) NIL (|has| |#1| (-568))) (($ (-971 |#1|)) NIL (|has| |#1| (-1070))) (($ (-576)) 34 (-2758 (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070)))) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))))) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL (|has| |#1| (-1070)) CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-1621 (($ $ $) 220 (|has| |#1| (-568)))) (-1434 (($ $ $) 206 (|has| |#1| (-568)))) (-3186 (($ $ $) 210 (|has| |#1| (-568)))) (-3614 (($ $ $) 204 (|has| |#1| (-568)))) (-2297 (($ $ $) 208 (|has| |#1| (-568)))) (-4062 (((-112) (-115)) 10)) (-2113 (((-112) $ $) 86)) (-2789 (($ $) 183 (|has| |#1| (-568)))) (-3960 (($ $) 159 (|has| |#1| (-568)))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 179 (|has| |#1| (-568)))) (-3937 (($ $) 155 (|has| |#1| (-568)))) (-2814 (($ $) 187 (|has| |#1| (-568)))) (-3982 (($ $) 163 (|has| |#1| (-568)))) (-2851 (($ (-1197) $) NIL) (($ (-1197) $ $) NIL) (($ (-1197) $ $ $) NIL) (($ (-1197) $ $ $ $) NIL) (($ (-1197) (-656 $)) NIL)) (-3235 (($ $) 214 (|has| |#1| (-568)))) (-3704 (($ $) 212 (|has| |#1| (-568)))) (-4387 (($ $) 189 (|has| |#1| (-568)))) (-3994 (($ $) 165 (|has| |#1| (-568)))) (-2802 (($ $) 185 (|has| |#1| (-568)))) (-3973 (($ $) 161 (|has| |#1| (-568)))) (-4082 (($ $) 181 (|has| |#1| (-568)))) (-3950 (($ $) 157 (|has| |#1| (-568)))) (-1665 (($ $) 192 (|has| |#1| (-568)))) (-2719 (($) 21 (-2758 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) CONST)) (-1868 (($ $) 243 (|has| |#1| (-568)))) (-2730 (($) 23 (|has| |#1| (-1133)) CONST)) (-4228 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-1930 (($ $) 241 (|has| |#1| (-568)))) (-2018 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-2668 (($ $) 245 (|has| |#1| (-568)))) (-1475 (($ $ $) 198 (|has| |#1| (-568)))) (-2923 (((-112) $ $) 88)) (-3056 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2758 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3043 (($ $ $) 40 (-2758 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ $) 29 (-2758 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3029 (($ $ $) 38 (-2758 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2758 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1133))) (($ $ (-940)) 84 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1070))) (($ $ $) 36 (|has| |#1| (-1133))) (($ (-576) $) 32 (-2758 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-783) $) NIL (-2758 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-940) $) NIL (-2758 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))))) +(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -3685 ($ $)) (-15 -3373 ((-112) $)) (-15 -2105 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -2082 ((-430 (-1193 $)) (-1193 $))) (-15 -2971 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) (-1121)) (T -326)) +((-3685 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1121)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) (-2971 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121))))) +(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -3685 ($ $)) (-15 -3373 ((-112) $)) (-15 -2105 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -2082 ((-430 (-1193 $)) (-1193 $))) (-15 -2971 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) +((-3411 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) +(((-327 |#1| |#2|) (-10 -7 (-15 -3411 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3411 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3411 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3411 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3411 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3411 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3411 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3411 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3411 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3411 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) +((-3411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-3411 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3411 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3411 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-3411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3411 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3411 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3411 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3411 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) +(-10 -7 (-15 -3411 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3411 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3411 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3411 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3411 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3411 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3411 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3411 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3411 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3411 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) +((-3920 (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)) 67) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576)) 68) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179)) 64) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-3995 (((-1 (-227) (-227)) (-227)) 66))) +(((-328) (-10 -7 (-15 -3995 ((-1 (-227) (-227)) (-227))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179))))) (T -328)) +((-3920 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3920 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3920 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3920 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3995 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(-10 -7 (-15 -3995 ((-1 (-227) (-227)) (-227))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -3920 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 26)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) 36)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3441 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3650 (((-419 (-576)) $) 17)) (-2794 (($ (-1273 |#1| |#2| |#3|)) 11)) (-4210 (((-1273 |#1| |#2| |#3|) $) 12)) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3600 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 10)) (-3569 (((-876) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) 34)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) NIL)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 28)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 37)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-329 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-804) (-10 -8 (-15 -2794 ($ (-1273 |#1| |#2| |#3|))) (-15 -4210 ((-1273 |#1| |#2| |#3|) $)) (-15 -3650 ((-419 (-576)) $)))) (-374) (-1197) |#1|) (T -329)) +((-2794 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3)))) +(-13 (-1269 |#1|) (-804) (-10 -8 (-15 -2794 ($ (-1273 |#1| |#2| |#3|))) (-15 -4210 ((-1273 |#1| |#2| |#3|) $)) (-15 -3650 ((-419 (-576)) $)))) +((-4336 (((-2 (|:| -4210 (-783)) (|:| -1714 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3744 (((-656 (-2 (|:| -1714 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) +(((-330 |#1|) (-10 -7 (-15 -4336 ((-2 (|:| -4210 (-783)) (|:| -1714 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3744 ((-656 (-2 (|:| -1714 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) +((-3744 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1714 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) +(-10 -7 (-15 -4336 ((-2 (|:| -4210 (-783)) (|:| -1714 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3744 ((-656 (-2 (|:| -1714 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) +((-1966 (((-656 |#2|) (-1193 |#4|)) 44)) (-1406 ((|#3| (-576)) 47)) (-2798 (((-1193 |#4|) (-1193 |#3|)) 30)) (-2892 (((-1193 |#4|) (-1193 |#4|) (-576)) 66)) (-2831 (((-1193 |#3|) (-1193 |#4|)) 21)) (-3600 (((-656 (-783)) (-1193 |#4|) (-656 |#2|)) 41)) (-2957 (((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|)) 35))) +(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2957 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -3600 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1966 ((-656 |#2|) (-1193 |#4|))) (-15 -2831 ((-1193 |#3|) (-1193 |#4|))) (-15 -2798 ((-1193 |#4|) (-1193 |#3|))) (-15 -2892 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -1406 (|#3| (-576)))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|)) (T -331)) +((-1406 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5)))) (-2892 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-2957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(-10 -7 (-15 -2957 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -3600 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1966 ((-656 |#2|) (-1193 |#4|))) (-15 -2831 ((-1193 |#3|) (-1193 |#4|))) (-15 -2798 ((-1193 |#4|) (-1193 |#3|))) (-15 -2892 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -1406 (|#3| (-576)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 19)) (-3605 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $) 21)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2096 (((-783) $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3537 ((|#1| $ (-576)) NIL)) (-2570 (((-576) $ (-576)) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-3250 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (($ (-1 (-576) (-576)) $) 11)) (-1413 (((-1179) $) NIL)) (-4396 (($ $ $) NIL (|has| (-576) (-804)))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-3998 (((-576) |#1| $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) 29 (|has| |#1| (-861)))) (-3043 (($ $) 12) (($ $ $) 28)) (-3029 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) +(((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1121)) (T -332)) NIL (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1560 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))) $) 28)) (-2559 (((-3 $ "failed") $ $) 20)) (-2199 (((-783) $) 29)) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 33)) (-2317 ((|#1| $) 34)) (-3908 ((|#1| $ (-576)) 26)) (-4386 ((|#2| $ (-576)) 27)) (-3687 (($ (-1 |#1| |#1|) $) 23)) (-1358 (($ (-1 |#2| |#2|) $) 24)) (-2043 (((-1178) $) 10)) (-2778 (($ $ $) 22 (|has| |#2| (-804)))) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ |#1|) 32)) (-4269 ((|#2| |#1| $) 25)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4026 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) -(((-333 |#1| |#2|) (-141) (-1120) (-132)) (T -333)) -((-4026 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-132)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-132)) (-5 *2 (-783)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 *4)))))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1120)) (-4 *2 (-132)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1120)))) (-4269 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-132)))) (-1358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-132)))) (-3687 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-132)))) (-2778 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-132)) (-4 *3 (-804))))) -(-13 (-132) (-1058 |t#1|) (-10 -8 (-15 -4026 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2199 ((-783) $)) (-15 -1560 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2155 |t#2|))) $)) (-15 -4386 (|t#2| $ (-576))) (-15 -3908 (|t#1| $ (-576))) (-15 -4269 (|t#2| |t#1| $)) (-15 -1358 ($ (-1 |t#2| |t#2|) $)) (-15 -3687 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -2778 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-1058 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1560 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-783)))) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2199 (((-783) $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3908 ((|#1| $ (-576)) NIL)) (-4386 (((-783) $ (-576)) NIL)) (-3687 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (($ (-1 (-783) (-783)) $) NIL)) (-2043 (((-1178) $) NIL)) (-2778 (($ $ $) NIL (|has| (-783) (-804)))) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ |#1|) NIL)) (-4269 (((-783) |#1| $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) -(((-334 |#1|) (-333 |#1| (-783)) (-1120)) (T -334)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3605 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $) 28)) (-2780 (((-3 $ "failed") $ $) 20)) (-2096 (((-783) $) 29)) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 33)) (-2859 ((|#1| $) 34)) (-3537 ((|#1| $ (-576)) 26)) (-2570 ((|#2| $ (-576)) 27)) (-3250 (($ (-1 |#1| |#1|) $) 23)) (-1435 (($ (-1 |#2| |#2|) $) 24)) (-1413 (((-1179) $) 10)) (-4396 (($ $ $) 22 (|has| |#2| (-804)))) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ |#1|) 32)) (-3998 ((|#2| |#1| $) 25)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3029 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) +(((-333 |#1| |#2|) (-141) (-1121) (-132)) (T -333)) +((-3029 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-783)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))))) (-2570 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) (-4 *2 (-132)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1121)))) (-3998 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-1435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-3250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-4396 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) (-4 *3 (-804))))) +(-13 (-132) (-1059 |t#1|) (-10 -8 (-15 -3029 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2096 ((-783) $)) (-15 -3605 ((-656 (-2 (|:| |gen| |t#1|) (|:| -4103 |t#2|))) $)) (-15 -2570 (|t#2| $ (-576))) (-15 -3537 (|t#1| $ (-576))) (-15 -3998 (|t#2| |t#1| $)) (-15 -1435 ($ (-1 |t#2| |t#2|) $)) (-15 -3250 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -4396 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3605 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2096 (((-783) $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3537 ((|#1| $ (-576)) NIL)) (-2570 (((-783) $ (-576)) NIL)) (-3250 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (($ (-1 (-783) (-783)) $) NIL)) (-1413 (((-1179) $) NIL)) (-4396 (($ $ $) NIL (|has| (-783) (-804)))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-3998 (((-783) |#1| $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) +(((-334 |#1|) (-333 |#1| (-783)) (-1121)) (T -334)) NIL (-333 |#1| (-783)) -((-3557 (($ $) 72)) (-3897 (($ $ |#2| |#3| $) 14)) (-3820 (($ (-1 |#3| |#3|) $) 51)) (-1677 (((-112) $) 42)) (-1685 ((|#2| $) 44)) (-1943 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3430 ((|#2| $) 68)) (-1410 (((-656 |#2|) $) 56)) (-4081 (($ $ $ (-783)) 37)) (-4046 (($ $ |#2|) 60))) -(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -3557 (|#1| |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4081 (|#1| |#1| |#1| (-783))) (-15 -3897 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3820 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1410 ((-656 |#2|) |#1|)) (-15 -1685 (|#2| |#1|)) (-15 -1677 ((-112) |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4046 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1069) (-804)) (T -335)) -NIL -(-10 -8 (-15 -3557 (|#1| |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4081 (|#1| |#1| |#1| (-783))) (-15 -3897 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3820 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1410 ((-656 |#2|) |#1|)) (-15 -1685 (|#2| |#1|)) (-15 -1677 ((-112) |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4046 (|#1| |#1| |#2|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2317 (((-576) $) 99 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 96)) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-3557 (($ $) 84 (|has| |#1| (-464)))) (-3897 (($ $ |#1| |#2| $) 88)) (-2287 (((-112) $) 35)) (-1757 (((-783) $) 91)) (-3146 (((-112) $) 74)) (-1562 (($ |#1| |#2|) 73)) (-3661 ((|#2| $) 90)) (-3820 (($ (-1 |#2| |#2|) $) 89)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1677 (((-112) $) 94)) (-1685 ((|#1| $) 93)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-1877 ((|#2| $) 76)) (-3430 ((|#1| $) 85 (|has| |#1| (-464)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-1410 (((-656 |#1|) $) 92)) (-4269 ((|#1| $ |#2|) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-4081 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-336 |#1| |#2|) (-141) (-1069) (-804)) (T -336)) -((-1677 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-5 *2 (-783)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-3820 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)))) (-3897 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) (-4081 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-4 *3 (-174)))) (-1943 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)) (-4 *2 (-568)))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)) (-4 *2 (-464)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -1677 ((-112) $)) (-15 -1685 (|t#1| $)) (-15 -1410 ((-656 |t#1|) $)) (-15 -1757 ((-783) $)) (-15 -3661 (|t#2| $)) (-15 -3820 ($ (-1 |t#2| |t#2|) $)) (-15 -3897 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -4081 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -1943 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3430 (|t#1| $)) (-15 -3557 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-3524 (((-112) (-112)) NIL)) (-4267 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3308 (($ $) NIL (|has| |#1| (-1120)))) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) NIL (|has| |#1| (-1120))) (($ (-1 (-112) |#1|) $) NIL)) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-2562 (($ $ (-576)) NIL)) (-4098 (((-783) $) NIL)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-3881 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2782 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3208 (($ (-656 |#1|)) NIL)) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3571 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) NIL)) (-3424 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3208 ($ (-656 |#1|))) (-15 -4098 ((-783) $)) (-15 -2562 ($ $ (-576))) (-15 -3524 ((-112) (-112))))) (-1237)) (T -337)) -((-3208 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-337 *3)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) (-2562 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1237))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3208 ($ (-656 |#1|))) (-15 -4098 ((-783) $)) (-15 -2562 ($ $ (-576))) (-15 -3524 ((-112) (-112))))) -((-2391 (((-112) $) 47)) (-4186 (((-783)) 23)) (-3832 ((|#2| $) 51) (($ $ (-939)) 121)) (-2199 (((-783)) 122)) (-4005 (($ (-1287 |#2|)) 20)) (-2588 (((-112) $) 134)) (-2647 ((|#2| $) 53) (($ $ (-939)) 118)) (-2354 (((-1192 |#2|) $) NIL) (((-1192 $) $ (-939)) 109)) (-3003 (((-1192 |#2|) $) 95)) (-2586 (((-1192 |#2|) $) 91) (((-3 (-1192 |#2|) "failed") $ $) 88)) (-1579 (($ $ (-1192 |#2|)) 58)) (-4416 (((-845 (-939))) 30) (((-939)) 48)) (-1656 (((-135)) 27)) (-1877 (((-845 (-939)) $) 32) (((-939) $) 137)) (-2209 (($) 128)) (-3435 (((-1287 |#2|) $) NIL) (((-701 |#2|) (-1287 $)) 42)) (-1972 (($ $) NIL) (((-3 $ "failed") $) 98)) (-3331 (((-112) $) 45))) -(((-338 |#1| |#2|) (-10 -8 (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -2199 ((-783))) (-15 -1972 (|#1| |#1|)) (-15 -2586 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -2586 ((-1192 |#2|) |#1|)) (-15 -3003 ((-1192 |#2|) |#1|)) (-15 -1579 (|#1| |#1| (-1192 |#2|))) (-15 -2588 ((-112) |#1|)) (-15 -2209 (|#1|)) (-15 -3832 (|#1| |#1| (-939))) (-15 -2647 (|#1| |#1| (-939))) (-15 -2354 ((-1192 |#1|) |#1| (-939))) (-15 -3832 (|#2| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -1877 ((-939) |#1|)) (-15 -4416 ((-939))) (-15 -2354 ((-1192 |#2|) |#1|)) (-15 -4005 (|#1| (-1287 |#2|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -4186 ((-783))) (-15 -4416 ((-845 (-939)))) (-15 -1877 ((-845 (-939)) |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -3331 ((-112) |#1|)) (-15 -1656 ((-135)))) (-339 |#2|) (-374)) (T -338)) -((-1656 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4416 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-939))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4186 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4416 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-939)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2199 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) -(-10 -8 (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -2199 ((-783))) (-15 -1972 (|#1| |#1|)) (-15 -2586 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -2586 ((-1192 |#2|) |#1|)) (-15 -3003 ((-1192 |#2|) |#1|)) (-15 -1579 (|#1| |#1| (-1192 |#2|))) (-15 -2588 ((-112) |#1|)) (-15 -2209 (|#1|)) (-15 -3832 (|#1| |#1| (-939))) (-15 -2647 (|#1| |#1| (-939))) (-15 -2354 ((-1192 |#1|) |#1| (-939))) (-15 -3832 (|#2| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -1877 ((-939) |#1|)) (-15 -4416 ((-939))) (-15 -2354 ((-1192 |#2|) |#1|)) (-15 -4005 (|#1| (-1287 |#2|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -4186 ((-783))) (-15 -4416 ((-845 (-939)))) (-15 -1877 ((-845 (-939)) |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -3331 ((-112) |#1|)) (-15 -1656 ((-135)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2391 (((-112) $) 104)) (-4186 (((-783)) 100)) (-3832 ((|#1| $) 151) (($ $ (-939)) 148 (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-4057 (((-112) $ $) 65)) (-2199 (((-783)) 123 (|has| |#1| (-379)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 111)) (-2317 ((|#1| $) 112)) (-4005 (($ (-1287 |#1|)) 157)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-4369 (($) 120 (|has| |#1| (-379)))) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-3933 (($) 135 (|has| |#1| (-379)))) (-2614 (((-112) $) 136 (|has| |#1| (-379)))) (-3878 (($ $ (-783)) 97 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) 79)) (-3241 (((-939) $) 138 (|has| |#1| (-379))) (((-845 (-939)) $) 94 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) 35)) (-2558 (($) 146 (|has| |#1| (-379)))) (-2588 (((-112) $) 145 (|has| |#1| (-379)))) (-2647 ((|#1| $) 152) (($ $ (-939)) 149 (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2354 (((-1192 |#1|) $) 156) (((-1192 $) $ (-939)) 150 (|has| |#1| (-379)))) (-4375 (((-939) $) 121 (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) 142 (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) 143 (|has| |#1| (-379)))) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3650 (($) 125 (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) 122 (|has| |#1| (-379)))) (-3274 (((-112) $) 103)) (-3115 (((-1140) $) 11)) (-2547 (($) 144 (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 132 (|has| |#1| (-379)))) (-1450 (((-430 $) $) 82)) (-4416 (((-845 (-939))) 101) (((-939)) 154)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-3334 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) 109)) (-4106 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) 102) (((-939) $) 153)) (-3175 (((-1192 |#1|)) 155)) (-1984 (($) 134 (|has| |#1| (-379)))) (-2209 (($) 147 (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) 159) (((-701 |#1|) (-1287 $)) 158)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-1972 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3578 (((-1287 $)) 161) (((-1287 $) (-939)) 160)) (-3111 (((-112) $ $) 45)) (-3331 (((-112) $) 105)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-2269 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3155 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73) (($ $ |#1|) 108)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-1371 (($ $) 72)) (-3415 (($ $ |#2| |#3| $) 14)) (-1938 (($ (-1 |#3| |#3|) $) 51)) (-2058 (((-112) $) 42)) (-2068 ((|#2| $) 44)) (-3475 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1457 ((|#2| $) 68)) (-2060 (((-656 |#2|) $) 56)) (-2655 (($ $ $ (-783)) 37)) (-3056 (($ $ |#2|) 60))) +(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -1371 (|#1| |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2655 (|#1| |#1| |#1| (-783))) (-15 -3415 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1938 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2060 ((-656 |#2|) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3056 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1070) (-804)) (T -335)) +NIL +(-10 -8 (-15 -1371 (|#1| |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2655 (|#1| |#1| |#1| (-783))) (-15 -3415 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1938 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2060 ((-656 |#2|) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3056 (|#1| |#1| |#2|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2859 (((-576) $) 99 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-1371 (($ $) 84 (|has| |#1| (-464)))) (-3415 (($ $ |#1| |#2| $) 88)) (-3215 (((-112) $) 35)) (-1675 (((-783) $) 91)) (-1606 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73)) (-2987 ((|#2| $) 90)) (-1938 (($ (-1 |#2| |#2|) $) 89)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2058 (((-112) $) 94)) (-2068 ((|#1| $) 93)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-3600 ((|#2| $) 76)) (-1457 ((|#1| $) 85 (|has| |#1| (-464)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2060 (((-656 |#1|) $) 92)) (-3998 ((|#1| $ |#2|) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2655 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-336 |#1| |#2|) (-141) (-1070) (-804)) (T -336)) +((-2058 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-783)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-3415 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2655 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *3 (-174)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-568)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-1371 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-464))))) +(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -2058 ((-112) $)) (-15 -2068 (|t#1| $)) (-15 -2060 ((-656 |t#1|) $)) (-15 -1675 ((-783) $)) (-15 -2987 (|t#2| $)) (-15 -1938 ($ (-1 |t#2| |t#2|) $)) (-15 -3415 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2655 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3475 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1457 (|t#1| $)) (-15 -1371 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-4236 (((-112) (-112)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) |#1|) $) NIL)) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2696 (($ $) NIL (|has| |#1| (-1121)))) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-2818 (($ $ (-576)) NIL)) (-1634 (((-783) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1367 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4436 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4211 (($ (-656 |#1|)) NIL)) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3389 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-2563 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -4211 ($ (-656 |#1|))) (-15 -1634 ((-783) $)) (-15 -2818 ($ $ (-576))) (-15 -4236 ((-112) (-112))))) (-1238)) (T -337)) +((-4211 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -4211 ($ (-656 |#1|))) (-15 -1634 ((-783) $)) (-15 -2818 ($ $ (-576))) (-15 -4236 ((-112) (-112))))) +((-1697 (((-112) $) 47)) (-4391 (((-783)) 23)) (-2208 ((|#2| $) 51) (($ $ (-940)) 121)) (-2096 (((-783)) 122)) (-3208 (($ (-1288 |#2|)) 20)) (-3146 (((-112) $) 134)) (-2471 ((|#2| $) 53) (($ $ (-940)) 118)) (-2542 (((-1193 |#2|) $) NIL) (((-1193 $) $ (-940)) 109)) (-2726 (((-1193 |#2|) $) 95)) (-3121 (((-1193 |#2|) $) 91) (((-3 (-1193 |#2|) "failed") $ $) 88)) (-3777 (($ $ (-1193 |#2|)) 58)) (-1683 (((-845 (-940))) 30) (((-940)) 48)) (-1972 (((-135)) 27)) (-3600 (((-845 (-940)) $) 32) (((-940) $) 137)) (-3746 (($) 128)) (-1490 (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $)) 42)) (-3230 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2951 (((-112) $) 45))) +(((-338 |#1| |#2|) (-10 -8 (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -2096 ((-783))) (-15 -3230 (|#1| |#1|)) (-15 -3121 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -3121 ((-1193 |#2|) |#1|)) (-15 -2726 ((-1193 |#2|) |#1|)) (-15 -3777 (|#1| |#1| (-1193 |#2|))) (-15 -3146 ((-112) |#1|)) (-15 -3746 (|#1|)) (-15 -2208 (|#1| |#1| (-940))) (-15 -2471 (|#1| |#1| (-940))) (-15 -2542 ((-1193 |#1|) |#1| (-940))) (-15 -2208 (|#2| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -3600 ((-940) |#1|)) (-15 -1683 ((-940))) (-15 -2542 ((-1193 |#2|) |#1|)) (-15 -3208 (|#1| (-1288 |#2|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -4391 ((-783))) (-15 -1683 ((-845 (-940)))) (-15 -3600 ((-845 (-940)) |#1|)) (-15 -1697 ((-112) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -1972 ((-135)))) (-339 |#2|) (-374)) (T -338)) +((-1972 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1683 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4391 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1683 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2096 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) +(-10 -8 (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -2096 ((-783))) (-15 -3230 (|#1| |#1|)) (-15 -3121 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -3121 ((-1193 |#2|) |#1|)) (-15 -2726 ((-1193 |#2|) |#1|)) (-15 -3777 (|#1| |#1| (-1193 |#2|))) (-15 -3146 ((-112) |#1|)) (-15 -3746 (|#1|)) (-15 -2208 (|#1| |#1| (-940))) (-15 -2471 (|#1| |#1| (-940))) (-15 -2542 ((-1193 |#1|) |#1| (-940))) (-15 -2208 (|#2| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -3600 ((-940) |#1|)) (-15 -1683 ((-940))) (-15 -2542 ((-1193 |#2|) |#1|)) (-15 -3208 (|#1| (-1288 |#2|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -4391 ((-783))) (-15 -1683 ((-845 (-940)))) (-15 -3600 ((-845 (-940)) |#1|)) (-15 -1697 ((-112) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -1972 ((-135)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-1697 (((-112) $) 104)) (-4391 (((-783)) 100)) (-2208 ((|#1| $) 151) (($ $ (-940)) 148 (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-2420 (((-112) $ $) 65)) (-2096 (((-783)) 123 (|has| |#1| (-379)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 111)) (-2859 ((|#1| $) 112)) (-3208 (($ (-1288 |#1|)) 157)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-1836 (($) 120 (|has| |#1| (-379)))) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3814 (($) 135 (|has| |#1| (-379)))) (-2117 (((-112) $) 136 (|has| |#1| (-379)))) (-1332 (($ $ (-783)) 97 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) 79)) (-3309 (((-940) $) 138 (|has| |#1| (-379))) (((-845 (-940)) $) 94 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) 35)) (-2767 (($) 146 (|has| |#1| (-379)))) (-3146 (((-112) $) 145 (|has| |#1| (-379)))) (-2471 ((|#1| $) 152) (($ $ (-940)) 149 (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2542 (((-1193 |#1|) $) 156) (((-1193 $) $ (-940)) 150 (|has| |#1| (-379)))) (-2460 (((-940) $) 121 (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) 142 (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) 143 (|has| |#1| (-379)))) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-3539 (($) 125 (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 122 (|has| |#1| (-379)))) (-3651 (((-112) $) 103)) (-1450 (((-1141) $) 11)) (-4128 (($) 144 (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 132 (|has| |#1| (-379)))) (-1828 (((-430 $) $) 82)) (-1683 (((-845 (-940))) 101) (((-940)) 154)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-2992 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) 109)) (-2773 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) 102) (((-940) $) 153)) (-1897 (((-1193 |#1|)) 155)) (-2051 (($) 134 (|has| |#1| (-379)))) (-3746 (($) 147 (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) 159) (((-701 |#1|) (-1288 $)) 158)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3230 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-3454 (((-1288 $)) 161) (((-1288 $) (-940)) 160)) (-2537 (((-112) $ $) 45)) (-2951 (((-112) $) 105)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-3046 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2018 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73) (($ $ |#1|) 108)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-339 |#1|) (-141) (-374)) (T -339)) -((-3578 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *3)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-939)) (-4 *4 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *4)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1287 *3)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-4005 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) (-3175 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) (-4416 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-939)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-939)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (-939)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1192 *1)) (-4 *1 (-339 *4)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3832 (*1 *1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2209 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2558 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-2547 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1579 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))) (-2586 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3))))) -(-13 (-1306 |t#1|) (-1058 |t#1|) (-10 -8 (-15 -3578 ((-1287 $))) (-15 -3578 ((-1287 $) (-939))) (-15 -3435 ((-1287 |t#1|) $)) (-15 -3435 ((-701 |t#1|) (-1287 $))) (-15 -4005 ($ (-1287 |t#1|))) (-15 -2354 ((-1192 |t#1|) $)) (-15 -3175 ((-1192 |t#1|))) (-15 -4416 ((-939))) (-15 -1877 ((-939) $)) (-15 -2647 (|t#1| $)) (-15 -3832 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -2354 ((-1192 $) $ (-939))) (-15 -2647 ($ $ (-939))) (-15 -3832 ($ $ (-939))) (-15 -2209 ($)) (-15 -2558 ($)) (-15 -2588 ((-112) $)) (-15 -2547 ($)) (-15 -1579 ($ $ (-1192 |t#1|))) (-15 -3003 ((-1192 |t#1|) $)) (-15 -2586 ((-1192 |t#1|) $)) (-15 -2586 ((-3 (-1192 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3794 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1306 |#1|) . T) ((-374) . T) ((-414) -3794 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1058 |#1|) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) |has| |#1| (-379)) ((-1237) . T) ((-1241) . T) ((-1294 |#1|) . T)) -((-1952 (((-112) $ $) NIL)) (-3338 (($ (-1195) $) 100)) (-1321 (($) 89)) (-3312 (((-1140) (-1140)) 9)) (-2550 (($) 90)) (-4349 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-3027 (($ (-1195) $) 101)) (-2452 (($ (-656 (-875))) 91)) (-2437 (((-1292) $) 87)) (-3547 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1456 (($ (-1140)) 58)) (-2247 (((-1124) $) 30)) (-3258 (($ (-1112 (-970 (-576))) $) 97) (($ (-1112 (-970 (-576))) (-970 (-576)) $) 98)) (-3026 (($ (-1140)) 99)) (-3654 (($ (-1195) $) 129) (($ (-1195) $ $) 130)) (-1643 (($ (-1196) (-656 (-1196))) 88)) (-3307 (($ (-1178)) 94) (($ (-656 (-1178))) 92)) (-4112 (((-875) $) 132)) (-3535 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-970 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1937 (-112)) (|:| -1688 (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2925 (-1112 (-970 (-576)))) (|:| |span| (-970 (-576))) (|:| -4158 $))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4158 $))) (|:| |commonBranch| (-2 (|:| -4148 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-875)))) $) 50)) (-2995 (($ (-1178)) 202)) (-3523 (($ (-656 $)) 128)) (-1994 (((-112) $ $) NIL)) (-4261 (($ (-1196) (-1178)) 135) (($ (-1196) (-326 (-713))) 175) (($ (-1196) (-326 (-711))) 176) (($ (-1196) (-326 (-706))) 177) (($ (-1196) (-701 (-713))) 138) (($ (-1196) (-701 (-711))) 141) (($ (-1196) (-701 (-706))) 144) (($ (-1196) (-1287 (-713))) 147) (($ (-1196) (-1287 (-711))) 150) (($ (-1196) (-1287 (-706))) 153) (($ (-1196) (-701 (-326 (-713)))) 156) (($ (-1196) (-701 (-326 (-711)))) 159) (($ (-1196) (-701 (-326 (-706)))) 162) (($ (-1196) (-1287 (-326 (-713)))) 165) (($ (-1196) (-1287 (-326 (-711)))) 168) (($ (-1196) (-1287 (-326 (-706)))) 171) (($ (-1196) (-656 (-970 (-576))) (-326 (-713))) 172) (($ (-1196) (-656 (-970 (-576))) (-326 (-711))) 173) (($ (-1196) (-656 (-970 (-576))) (-326 (-706))) 174) (($ (-1196) (-326 (-576))) 199) (($ (-1196) (-326 (-390))) 200) (($ (-1196) (-326 (-171 (-390)))) 201) (($ (-1196) (-701 (-326 (-576)))) 180) (($ (-1196) (-701 (-326 (-390)))) 183) (($ (-1196) (-701 (-326 (-171 (-390))))) 186) (($ (-1196) (-1287 (-326 (-576)))) 189) (($ (-1196) (-1287 (-326 (-390)))) 192) (($ (-1196) (-1287 (-326 (-171 (-390))))) 195) (($ (-1196) (-656 (-970 (-576))) (-326 (-576))) 196) (($ (-1196) (-656 (-970 (-576))) (-326 (-390))) 197) (($ (-1196) (-656 (-970 (-576))) (-326 (-171 (-390)))) 198)) (-3938 (((-112) $ $) NIL))) -(((-340) (-13 (-1120) (-10 -8 (-15 -3258 ($ (-1112 (-970 (-576))) $)) (-15 -3258 ($ (-1112 (-970 (-576))) (-970 (-576)) $)) (-15 -3338 ($ (-1195) $)) (-15 -3027 ($ (-1195) $)) (-15 -1456 ($ (-1140))) (-15 -3026 ($ (-1140))) (-15 -3307 ($ (-1178))) (-15 -3307 ($ (-656 (-1178)))) (-15 -2995 ($ (-1178))) (-15 -4349 ($)) (-15 -4349 ($ (-326 (-711)))) (-15 -4349 ($ (-326 (-713)))) (-15 -4349 ($ (-326 (-706)))) (-15 -4349 ($ (-326 (-390)))) (-15 -4349 ($ (-326 (-576)))) (-15 -4349 ($ (-326 (-171 (-390))))) (-15 -3654 ($ (-1195) $)) (-15 -3654 ($ (-1195) $ $)) (-15 -4261 ($ (-1196) (-1178))) (-15 -4261 ($ (-1196) (-326 (-713)))) (-15 -4261 ($ (-1196) (-326 (-711)))) (-15 -4261 ($ (-1196) (-326 (-706)))) (-15 -4261 ($ (-1196) (-701 (-713)))) (-15 -4261 ($ (-1196) (-701 (-711)))) (-15 -4261 ($ (-1196) (-701 (-706)))) (-15 -4261 ($ (-1196) (-1287 (-713)))) (-15 -4261 ($ (-1196) (-1287 (-711)))) (-15 -4261 ($ (-1196) (-1287 (-706)))) (-15 -4261 ($ (-1196) (-701 (-326 (-713))))) (-15 -4261 ($ (-1196) (-701 (-326 (-711))))) (-15 -4261 ($ (-1196) (-701 (-326 (-706))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-713))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-711))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-706))))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-713)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-711)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-706)))) (-15 -4261 ($ (-1196) (-326 (-576)))) (-15 -4261 ($ (-1196) (-326 (-390)))) (-15 -4261 ($ (-1196) (-326 (-171 (-390))))) (-15 -4261 ($ (-1196) (-701 (-326 (-576))))) (-15 -4261 ($ (-1196) (-701 (-326 (-390))))) (-15 -4261 ($ (-1196) (-701 (-326 (-171 (-390)))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-576))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-390))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-171 (-390)))))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-576)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-390)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-171 (-390))))) (-15 -3523 ($ (-656 $))) (-15 -1321 ($)) (-15 -2550 ($)) (-15 -2452 ($ (-656 (-875)))) (-15 -1643 ($ (-1196) (-656 (-1196)))) (-15 -3547 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3535 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-970 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1937 (-112)) (|:| -1688 (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2925 (-1112 (-970 (-576)))) (|:| |span| (-970 (-576))) (|:| -4158 $))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4158 $))) (|:| |commonBranch| (-2 (|:| -4148 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-875)))) $)) (-15 -2437 ((-1292) $)) (-15 -2247 ((-1124) $)) (-15 -3312 ((-1140) (-1140)))))) (T -340)) -((-3258 (*1 *1 *2 *1) (-12 (-5 *2 (-1112 (-970 (-576)))) (-5 *1 (-340)))) (-3258 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1112 (-970 (-576)))) (-5 *3 (-970 (-576))) (-5 *1 (-340)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-1456 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-340)))) (-3026 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-340)))) (-3307 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))) (-3307 (*1 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-340)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))) (-4349 (*1 *1) (-5 *1 (-340))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3654 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-3654 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-713))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-711))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-706))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-711)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-706)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-576)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-390)))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-4261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-1321 (*1 *1) (-5 *1 (-340))) (-2550 (*1 *1) (-5 *1 (-340))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-340)))) (-1643 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-340)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-970 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -1937 (-112)) (|:| -1688 (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2925 (-1112 (-970 (-576)))) (|:| |span| (-970 (-576))) (|:| -4158 (-340)))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4158 (-340)))) (|:| |commonBranch| (-2 (|:| -4148 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-875))))) (-5 *1 (-340)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-340)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-340)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-340))))) -(-13 (-1120) (-10 -8 (-15 -3258 ($ (-1112 (-970 (-576))) $)) (-15 -3258 ($ (-1112 (-970 (-576))) (-970 (-576)) $)) (-15 -3338 ($ (-1195) $)) (-15 -3027 ($ (-1195) $)) (-15 -1456 ($ (-1140))) (-15 -3026 ($ (-1140))) (-15 -3307 ($ (-1178))) (-15 -3307 ($ (-656 (-1178)))) (-15 -2995 ($ (-1178))) (-15 -4349 ($)) (-15 -4349 ($ (-326 (-711)))) (-15 -4349 ($ (-326 (-713)))) (-15 -4349 ($ (-326 (-706)))) (-15 -4349 ($ (-326 (-390)))) (-15 -4349 ($ (-326 (-576)))) (-15 -4349 ($ (-326 (-171 (-390))))) (-15 -3654 ($ (-1195) $)) (-15 -3654 ($ (-1195) $ $)) (-15 -4261 ($ (-1196) (-1178))) (-15 -4261 ($ (-1196) (-326 (-713)))) (-15 -4261 ($ (-1196) (-326 (-711)))) (-15 -4261 ($ (-1196) (-326 (-706)))) (-15 -4261 ($ (-1196) (-701 (-713)))) (-15 -4261 ($ (-1196) (-701 (-711)))) (-15 -4261 ($ (-1196) (-701 (-706)))) (-15 -4261 ($ (-1196) (-1287 (-713)))) (-15 -4261 ($ (-1196) (-1287 (-711)))) (-15 -4261 ($ (-1196) (-1287 (-706)))) (-15 -4261 ($ (-1196) (-701 (-326 (-713))))) (-15 -4261 ($ (-1196) (-701 (-326 (-711))))) (-15 -4261 ($ (-1196) (-701 (-326 (-706))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-713))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-711))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-706))))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-713)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-711)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-706)))) (-15 -4261 ($ (-1196) (-326 (-576)))) (-15 -4261 ($ (-1196) (-326 (-390)))) (-15 -4261 ($ (-1196) (-326 (-171 (-390))))) (-15 -4261 ($ (-1196) (-701 (-326 (-576))))) (-15 -4261 ($ (-1196) (-701 (-326 (-390))))) (-15 -4261 ($ (-1196) (-701 (-326 (-171 (-390)))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-576))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-390))))) (-15 -4261 ($ (-1196) (-1287 (-326 (-171 (-390)))))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-576)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-390)))) (-15 -4261 ($ (-1196) (-656 (-970 (-576))) (-326 (-171 (-390))))) (-15 -3523 ($ (-656 $))) (-15 -1321 ($)) (-15 -2550 ($)) (-15 -2452 ($ (-656 (-875)))) (-15 -1643 ($ (-1196) (-656 (-1196)))) (-15 -3547 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3535 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-970 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1937 (-112)) (|:| -1688 (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2925 (-1112 (-970 (-576)))) (|:| |span| (-970 (-576))) (|:| -4158 $))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4158 $))) (|:| |commonBranch| (-2 (|:| -4148 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-875)))) $)) (-15 -2437 ((-1292) $)) (-15 -2247 ((-1124) $)) (-15 -3312 ((-1140) (-1140))))) -((-1952 (((-112) $ $) NIL)) (-1323 (((-112) $) 13)) (-3411 (($ |#1|) 10)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3423 (($ |#1|) 12)) (-4112 (((-875) $) 19)) (-1994 (((-112) $ $) NIL)) (-3840 ((|#1| $) 14)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 21))) -(((-341 |#1|) (-13 (-861) (-10 -8 (-15 -3411 ($ |#1|)) (-15 -3423 ($ |#1|)) (-15 -1323 ((-112) $)) (-15 -3840 (|#1| $)))) (-861)) (T -341)) -((-3411 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3423 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861)))) (-3840 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861))))) -(-13 (-861) (-10 -8 (-15 -3411 ($ |#1|)) (-15 -3423 ($ |#1|)) (-15 -1323 ((-112) $)) (-15 -3840 (|#1| $)))) -((-2442 (((-340) (-1196) (-970 (-576))) 23)) (-4313 (((-340) (-1196) (-970 (-576))) 27)) (-4083 (((-340) (-1196) (-1112 (-970 (-576))) (-1112 (-970 (-576)))) 26) (((-340) (-1196) (-970 (-576)) (-970 (-576))) 24)) (-2376 (((-340) (-1196) (-970 (-576))) 31))) -(((-342) (-10 -7 (-15 -2442 ((-340) (-1196) (-970 (-576)))) (-15 -4083 ((-340) (-1196) (-970 (-576)) (-970 (-576)))) (-15 -4083 ((-340) (-1196) (-1112 (-970 (-576))) (-1112 (-970 (-576))))) (-15 -4313 ((-340) (-1196) (-970 (-576)))) (-15 -2376 ((-340) (-1196) (-970 (-576)))))) (T -342)) -((-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4083 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1112 (-970 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4083 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) -(-10 -7 (-15 -2442 ((-340) (-1196) (-970 (-576)))) (-15 -4083 ((-340) (-1196) (-970 (-576)) (-970 (-576)))) (-15 -4083 ((-340) (-1196) (-1112 (-970 (-576))) (-1112 (-970 (-576))))) (-15 -4313 ((-340) (-1196) (-970 (-576)))) (-15 -2376 ((-340) (-1196) (-970 (-576))))) -((-1952 (((-112) $ $) NIL)) (-2120 (((-518) $) 20)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2688 (((-976 (-783)) $) 18)) (-3173 (((-256) $) 7)) (-4112 (((-875) $) 26)) (-4024 (((-976 (-185 (-140))) $) 16)) (-1994 (((-112) $ $) NIL)) (-2230 (((-656 (-886 (-1201) (-783))) $) 12)) (-3938 (((-112) $ $) 22))) -(((-343) (-13 (-1120) (-10 -8 (-15 -3173 ((-256) $)) (-15 -2230 ((-656 (-886 (-1201) (-783))) $)) (-15 -2688 ((-976 (-783)) $)) (-15 -4024 ((-976 (-185 (-140))) $)) (-15 -2120 ((-518) $))))) (T -343)) -((-3173 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-656 (-886 (-1201) (-783)))) (-5 *1 (-343)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-976 (-783))) (-5 *1 (-343)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-976 (-185 (-140)))) (-5 *1 (-343)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(-13 (-1120) (-10 -8 (-15 -3173 ((-256) $)) (-15 -2230 ((-656 (-886 (-1201) (-783))) $)) (-15 -2688 ((-976 (-783)) $)) (-15 -4024 ((-976 (-185 (-140))) $)) (-15 -2120 ((-518) $)))) -((-2422 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2422 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1263 |#5|) (-1263 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) -(-10 -7 (-15 -2422 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) -((-4061 (((-112) $) 14))) -(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4061 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) -NIL -(-10 -8 (-15 -4061 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2721 (($ $) 29)) (-4061 (((-112) $) 28)) (-2043 (((-1178) $) 10)) (-1927 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-3115 (((-1140) $) 11)) (-2547 (((-3 |#4| "failed") $) 27)) (-1974 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2497 (((-2 (|:| -1683 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) -(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1263 |t#1|) (-1263 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) -((-1927 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1974 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1974 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1974 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1263 *2)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -1683 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2721 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-2547 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1974 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1927 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1974 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1974 ($ |t#4|)) (-15 -1974 ($ |t#1| |t#1|)) (-15 -1974 ($ |t#1| |t#1| (-576))) (-15 -2497 ((-2 (|:| -1683 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2721 ($ $)) (-15 -4061 ((-112) $)) (-15 -2547 ((-3 |t#4| "failed") $)) (-15 -1974 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2721 (($ $) 33)) (-4061 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-2837 (((-1287 |#4|) $) 134)) (-1927 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-3115 (((-1140) $) NIL)) (-2547 (((-3 |#4| "failed") $) 36)) (-3472 (((-1287 |#4|) $) 126)) (-1974 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2497 (((-2 (|:| -1683 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4112 (((-875) $) 17)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 14 T CONST)) (-3938 (((-112) $ $) 20)) (-4036 (($ $) 27) (($ $ $) NIL)) (-4026 (($ $ $) 25)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) -(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3472 ((-1287 |#4|) $)) (-15 -2837 ((-1287 |#4|) $)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) -((-3472 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-2837 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) -(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3472 ((-1287 |#4|) $)) (-15 -2837 ((-1287 |#4|) $)))) -((-2143 (($ $ (-1196) |#2|) NIL) (($ $ (-656 (-1196)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-4368 (($ $ |#2|) 11))) -(((-348 |#1| |#2|) (-10 -8 (-15 -4368 (|#1| |#1| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#2| |#2|)) (-15 -2143 (|#1| |#1| (-304 |#2|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 |#2|))) (-15 -2143 (|#1| |#1| (-1196) |#2|))) (-349 |#2|) (-1120)) (T -348)) -NIL -(-10 -8 (-15 -4368 (|#1| |#1| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#2| |#2|)) (-15 -2143 (|#1| |#1| (-304 |#2|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 |#2|))) (-15 -2143 (|#1| |#1| (-1196) |#2|))) -((-2422 (($ (-1 |#1| |#1|) $) 6)) (-2143 (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-4368 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) -(((-349 |#1|) (-141) (-1120)) (T -349)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1120))))) -(-13 (-10 -8 (-15 -2422 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1196) |t#1|)) (-6 (-526 (-1196) |t#1|)) |%noBranch|))) -(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1237) |has| |#1| (-296 |#1| |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1196)) $) NIL)) (-3979 (((-112)) 96) (((-112) (-112)) 97)) (-4442 (((-656 (-624 $)) $) NIL)) (-3585 (($ $) NIL)) (-3434 (($ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1462 (($ $) NIL)) (-3561 (($ $) NIL)) (-3411 (($ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1196)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1058 (-576)))) (((-3 $ "failed") (-419 (-970 (-576)))) 70 (|has| |#3| (-1058 (-576)))) (((-3 $ "failed") (-970 (-576))) 65 (|has| |#3| (-1058 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1058 (-390)))) (((-3 $ "failed") (-419 (-970 (-390)))) 88 (|has| |#3| (-1058 (-390)))) (((-3 $ "failed") (-970 (-390))) 83 (|has| |#3| (-1058 (-390))))) (-2317 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1196)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1058 (-576)))) (($ (-419 (-970 (-576)))) 71 (|has| |#3| (-1058 (-576)))) (($ (-970 (-576))) 67 (|has| |#3| (-1058 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1058 (-390)))) (($ (-419 (-970 (-390)))) 89 (|has| |#3| (-1058 (-390)))) (($ (-970 (-390))) 85 (|has| |#3| (-1058 (-390))))) (-3900 (((-3 $ "failed") $) NIL)) (-2722 (($) 101)) (-1390 (($ $) NIL) (($ (-656 $)) NIL)) (-3209 (((-656 (-115)) $) NIL)) (-1400 (((-115) (-115)) NIL)) (-2287 (((-112) $) NIL)) (-1589 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-3066 (((-1192 $) (-624 $)) NIL (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) NIL)) (-2413 (((-3 (-624 $) "failed") $) NIL)) (-2484 (($ $) 99)) (-2607 (($ $) NIL)) (-2043 (((-1178) $) NIL)) (-1389 (((-656 (-624 $)) $) NIL)) (-2774 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-1681 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-2952 (((-783) $) NIL)) (-3115 (((-1140) $) NIL)) (-1546 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-2155 (($ $) NIL)) (-4296 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2143 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4368 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2678 (($ $) NIL) (($ $ $) NIL)) (-4106 (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3175 (($ $) NIL (|has| $ (-1069)))) (-3573 (($ $) NIL)) (-3423 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-4115 (((-783)) NIL T CONST)) (-2344 (($ $) NIL) (($ (-656 $)) NIL)) (-2431 (((-112) (-115)) NIL)) (-1994 (((-112) $ $) NIL)) (-3509 (($ $) NIL)) (-3486 (($ $) NIL)) (-3497 (($ $) NIL)) (-2388 (($ $) NIL)) (-4314 (($) 100 T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-939)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-939) $) NIL))) -(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1058 |#3|) (-916 (-1196)) (-10 -8 (-15 -2317 ($ (-326 |#3|))) (-15 -2980 ((-3 $ "failed") (-326 |#3|))) (-15 -2317 ($ (-1196))) (-15 -2980 ((-3 $ "failed") (-1196))) (-15 -4112 ((-326 |#3|) $)) (IF (|has| |#3| (-1058 (-576))) (PROGN (-15 -2317 ($ (-326 (-576)))) (-15 -2980 ((-3 $ "failed") (-326 (-576)))) (-15 -2317 ($ (-419 (-970 (-576))))) (-15 -2980 ((-3 $ "failed") (-419 (-970 (-576))))) (-15 -2317 ($ (-970 (-576)))) (-15 -2980 ((-3 $ "failed") (-970 (-576))))) |%noBranch|) (IF (|has| |#3| (-1058 (-390))) (PROGN (-15 -2317 ($ (-326 (-390)))) (-15 -2980 ((-3 $ "failed") (-326 (-390)))) (-15 -2317 ($ (-419 (-970 (-390))))) (-15 -2980 ((-3 $ "failed") (-419 (-970 (-390))))) (-15 -2317 ($ (-970 (-390)))) (-15 -2980 ((-3 $ "failed") (-970 (-390))))) |%noBranch|) (-15 -2388 ($ $)) (-15 -1462 ($ $)) (-15 -2155 ($ $)) (-15 -2607 ($ $)) (-15 -2484 ($ $)) (-15 -3411 ($ $)) (-15 -3423 ($ $)) (-15 -3434 ($ $)) (-15 -3486 ($ $)) (-15 -3497 ($ $)) (-15 -3509 ($ $)) (-15 -3561 ($ $)) (-15 -3573 ($ $)) (-15 -3585 ($ $)) (-15 -2722 ($)) (-15 -1582 ((-656 (-1196)) $)) (-15 -3979 ((-112))) (-15 -3979 ((-112) (-112))))) (-656 (-1196)) (-656 (-1196)) (-399)) (T -350)) -((-2317 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-970 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-970 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-970 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-970 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2607 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2484 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3411 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3423 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3486 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3497 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3509 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3561 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3573 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2722 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-3979 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399))))) -(-13 (-312) (-38 |#3|) (-1058 |#3|) (-916 (-1196)) (-10 -8 (-15 -2317 ($ (-326 |#3|))) (-15 -2980 ((-3 $ "failed") (-326 |#3|))) (-15 -2317 ($ (-1196))) (-15 -2980 ((-3 $ "failed") (-1196))) (-15 -4112 ((-326 |#3|) $)) (IF (|has| |#3| (-1058 (-576))) (PROGN (-15 -2317 ($ (-326 (-576)))) (-15 -2980 ((-3 $ "failed") (-326 (-576)))) (-15 -2317 ($ (-419 (-970 (-576))))) (-15 -2980 ((-3 $ "failed") (-419 (-970 (-576))))) (-15 -2317 ($ (-970 (-576)))) (-15 -2980 ((-3 $ "failed") (-970 (-576))))) |%noBranch|) (IF (|has| |#3| (-1058 (-390))) (PROGN (-15 -2317 ($ (-326 (-390)))) (-15 -2980 ((-3 $ "failed") (-326 (-390)))) (-15 -2317 ($ (-419 (-970 (-390))))) (-15 -2980 ((-3 $ "failed") (-419 (-970 (-390))))) (-15 -2317 ($ (-970 (-390)))) (-15 -2980 ((-3 $ "failed") (-970 (-390))))) |%noBranch|) (-15 -2388 ($ $)) (-15 -1462 ($ $)) (-15 -2155 ($ $)) (-15 -2607 ($ $)) (-15 -2484 ($ $)) (-15 -3411 ($ $)) (-15 -3423 ($ $)) (-15 -3434 ($ $)) (-15 -3486 ($ $)) (-15 -3497 ($ $)) (-15 -3509 ($ $)) (-15 -3561 ($ $)) (-15 -3573 ($ $)) (-15 -3585 ($ $)) (-15 -2722 ($)) (-15 -1582 ((-656 (-1196)) $)) (-15 -3979 ((-112))) (-15 -3979 ((-112) (-112))))) -((-2422 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2422 (|#8| (-1 |#5| |#1|) |#4|))) (-1241) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1241) (-1263 |#5|) (-1263 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1263 (-419 *9)))))) -(-10 -7 (-15 -2422 (|#8| (-1 |#5| |#1|) |#4|))) -((-3828 (((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) $) 39)) (-4005 (($ (-1287 (-419 |#3|)) (-1287 $)) NIL) (($ (-1287 (-419 |#3|))) NIL) (($ (-1287 |#3|) |#3|) 173)) (-1428 (((-1287 $) (-1287 $)) 156)) (-2756 (((-656 (-656 |#2|))) 126)) (-3907 (((-112) |#2| |#2|) 76)) (-3557 (($ $) 148)) (-2014 (((-783)) 172)) (-2695 (((-1287 $) (-1287 $)) 218)) (-3593 (((-656 (-970 |#2|)) (-1196)) 115)) (-3880 (((-112) $) 169)) (-4187 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-1833 (((-3 |#3| "failed")) 52)) (-3892 (((-783)) 184)) (-4368 ((|#2| $ |#2| |#2|) 140)) (-3023 (((-3 |#3| "failed")) 71)) (-4106 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2834 (((-1287 $) (-1287 $)) 162)) (-3418 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1792 (((-112)) 34))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2756 ((-656 (-656 |#2|)))) (-15 -3593 ((-656 (-970 |#2|)) (-1196))) (-15 -3418 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1833 ((-3 |#3| "failed"))) (-15 -3023 ((-3 |#3| "failed"))) (-15 -4368 (|#2| |#1| |#2| |#2|)) (-15 -3557 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4187 ((-112) |#1| |#3|)) (-15 -4187 ((-112) |#1| |#2|)) (-15 -4005 (|#1| (-1287 |#3|) |#3|)) (-15 -3828 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1428 ((-1287 |#1|) (-1287 |#1|))) (-15 -2695 ((-1287 |#1|) (-1287 |#1|))) (-15 -2834 ((-1287 |#1|) (-1287 |#1|))) (-15 -4187 ((-112) |#1|)) (-15 -3880 ((-112) |#1|)) (-15 -3907 ((-112) |#2| |#2|)) (-15 -1792 ((-112))) (-15 -3892 ((-783))) (-15 -2014 ((-783))) (-15 -4106 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -4106 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -4005 (|#1| (-1287 (-419 |#3|)))) (-15 -4005 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|)))) (-353 |#2| |#3| |#4|) (-1241) (-1263 |#2|) (-1263 (-419 |#3|))) (T -352)) -((-2014 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3892 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-1792 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3907 (*1 *2 *3 *3) (-12 (-4 *3 (-1241)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-3023 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-1833 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-656 (-970 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-2756 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) -(-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2756 ((-656 (-656 |#2|)))) (-15 -3593 ((-656 (-970 |#2|)) (-1196))) (-15 -3418 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1833 ((-3 |#3| "failed"))) (-15 -3023 ((-3 |#3| "failed"))) (-15 -4368 (|#2| |#1| |#2| |#2|)) (-15 -3557 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4187 ((-112) |#1| |#3|)) (-15 -4187 ((-112) |#1| |#2|)) (-15 -4005 (|#1| (-1287 |#3|) |#3|)) (-15 -3828 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1428 ((-1287 |#1|) (-1287 |#1|))) (-15 -2695 ((-1287 |#1|) (-1287 |#1|))) (-15 -2834 ((-1287 |#1|) (-1287 |#1|))) (-15 -4187 ((-112) |#1|)) (-15 -3880 ((-112) |#1|)) (-15 -3907 ((-112) |#2| |#2|)) (-15 -1792 ((-112))) (-15 -3892 ((-783))) (-15 -2014 ((-783))) (-15 -4106 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -4106 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -4005 (|#1| (-1287 (-419 |#3|)))) (-15 -4005 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-3828 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 211)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-4070 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-2378 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-3313 (((-701 (-419 |#2|)) (-1287 $)) 53) (((-701 (-419 |#2|))) 68)) (-3832 (((-419 |#2|) $) 59)) (-2053 (((-1209 (-939) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-3163 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-4057 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2199 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-4401 (((-112)) 228)) (-2846 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1058 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2317 (((-576) $) 184 (|has| (-419 |#2|) (-1058 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1058 (-419 (-576))))) (((-419 |#2|) $) 181)) (-4005 (($ (-1287 (-419 |#2|)) (-1287 $)) 55) (($ (-1287 (-419 |#2|))) 71) (($ (-1287 |#2|) |#2|) 210)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-1893 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-4228 (((-701 (-419 |#2|)) $ (-1287 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-3222 (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174)) (-1428 (((-1287 $) (-1287 $)) 216)) (-2721 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-3900 (((-3 $ "failed") $) 37)) (-2756 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-3907 (((-112) |#1| |#1|) 232)) (-4134 (((-939)) 61)) (-4369 (($) 102 (|has| (-419 |#2|) (-379)))) (-3374 (((-112)) 225)) (-4273 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-1903 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-3557 (($ $) 203)) (-3933 (($) 160 (|has| (-419 |#2|) (-360)))) (-2614 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-3878 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-2443 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3241 (((-939) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-939)) $) 149 (|has| (-419 |#2|) (-360)))) (-2287 (((-112) $) 35)) (-2014 (((-783)) 235)) (-2695 (((-1287 $) (-1287 $)) 217)) (-2647 (((-419 |#2|) $) 58)) (-3593 (((-656 (-970 |#1|)) (-1196)) 198 (|has| |#1| (-374)))) (-1859 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-2354 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-4375 (((-939) $) 101 (|has| (-419 |#2|) (-379)))) (-2708 ((|#3| $) 167)) (-2198 (((-701 (-576)) (-1287 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) 173) (((-701 (-419 |#2|)) (-1287 $)) 172)) (-3075 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-2043 (((-1178) $) 10)) (-3826 (((-701 (-419 |#2|))) 212)) (-4140 (((-701 (-419 |#2|))) 214)) (-1667 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-1341 (($ (-1287 |#2|) |#2|) 208)) (-2744 (((-701 (-419 |#2|))) 213)) (-2713 (((-701 (-419 |#2|))) 215)) (-3873 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-3248 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 209)) (-1625 (((-1287 $)) 221)) (-1527 (((-1287 $)) 222)) (-3880 (((-112) $) 220)) (-4187 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-3650 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-2409 (($ (-939)) 100 (|has| (-419 |#2|) (-379)))) (-1833 (((-3 |#2| "failed")) 200)) (-3115 (((-1140) $) 11)) (-3892 (((-783)) 234)) (-2547 (($) 171)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 113 (|has| (-419 |#2|) (-374)))) (-3114 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1450 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-1943 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-2026 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-4368 ((|#1| $ |#1| |#1|) 202)) (-3023 (((-3 |#2| "failed")) 201)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-1451 (((-419 |#2|) (-1287 $)) 54) (((-419 |#2|)) 67)) (-3334 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-4106 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196) (-783)) 140 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1196))) 139 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196)) 137 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2310 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2310 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3835 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-3175 ((|#3|) 170)) (-1984 (($) 159 (|has| (-419 |#2|) (-360)))) (-3435 (((-1287 (-419 |#2|)) $ (-1287 $)) 57) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) 56) (((-1287 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1287 $)) 72)) (-1554 (((-1287 (-419 |#2|)) $) 70) (($ (-1287 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-2834 (((-1287 $) (-1287 $)) 218)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-3794 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1058 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-1972 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-3069 ((|#3| $) 52)) (-4115 (((-783)) 32 T CONST)) (-1919 (((-112)) 231)) (-1669 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-1994 (((-112) $ $) 6)) (-3578 (((-1287 $)) 74)) (-3111 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-3418 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-1792 (((-112)) 233)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196) (-783)) 143 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1196))) 142 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196)) 138 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-2310 (|has| (-419 |#2|) (-918 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2310 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-3794 (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2310 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2310 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) -(((-353 |#1| |#2| |#3|) (-141) (-1241) (-1263 |t#1|) (-1263 (-419 |t#2|))) (T -353)) -((-2014 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) (-3892 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) (-1792 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3907 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1919 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1669 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1669 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-4401 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2846 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2846 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-3374 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-4273 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-4273 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-1527 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1625 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-2713 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4140 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2744 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3826 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-4005 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-1341 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-4187 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-4187 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-4368 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-3023 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-1833 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1241)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-970 *4))))) (-2756 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -2014 ((-783))) (-15 -3892 ((-783))) (-15 -1792 ((-112))) (-15 -3907 ((-112) |t#1| |t#1|)) (-15 -1919 ((-112))) (-15 -1669 ((-112) |t#1|)) (-15 -1669 ((-112) |t#2|)) (-15 -4401 ((-112))) (-15 -2846 ((-112) |t#1|)) (-15 -2846 ((-112) |t#2|)) (-15 -3374 ((-112))) (-15 -4273 ((-112) |t#1|)) (-15 -4273 ((-112) |t#2|)) (-15 -1527 ((-1287 $))) (-15 -1625 ((-1287 $))) (-15 -3880 ((-112) $)) (-15 -4187 ((-112) $)) (-15 -2834 ((-1287 $) (-1287 $))) (-15 -2695 ((-1287 $) (-1287 $))) (-15 -1428 ((-1287 $) (-1287 $))) (-15 -2713 ((-701 (-419 |t#2|)))) (-15 -4140 ((-701 (-419 |t#2|)))) (-15 -2744 ((-701 (-419 |t#2|)))) (-15 -3826 ((-701 (-419 |t#2|)))) (-15 -3828 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4005 ($ (-1287 |t#2|) |t#2|)) (-15 -3248 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1341 ($ (-1287 |t#2|) |t#2|)) (-15 -3873 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4187 ((-112) $ |t#1|)) (-15 -4187 ((-112) $ |t#2|)) (-15 -4106 ($ $ (-1 |t#2| |t#2|))) (-15 -3557 ($ $)) (-15 -4368 (|t#1| $ |t#1| |t#1|)) (-15 -3023 ((-3 |t#2| "failed"))) (-15 -1833 ((-3 |t#2| "failed"))) (-15 -3418 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3593 ((-656 (-970 |t#1|)) (-1196))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -2756 ((-656 (-656 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -3794 (|has| (-419 |#2|) (-1058 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-875)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -3794 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -3794 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -3794 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -3794 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-910 $ #3=(-1196)) -3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196))))) ((-916 (-1196)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) ((-918 #3#) -3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196))))) ((-938) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1058 (-419 (-576))) |has| (-419 |#2|) (-1058 (-419 (-576)))) ((-1058 #1#) . T) ((-1058 (-576)) |has| (-419 |#2|) (-1058 (-576))) ((-1071 #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1071 #1#) . T) ((-1071 $) . T) ((-1076 #0#) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1076 #1#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) |has| (-419 |#2|) (-360)) ((-1237) . T) ((-1241) -3794 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 (((-928 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-928 |#1|) (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| (-928 |#1|) (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-928 |#1|) "failed") $) NIL)) (-2317 (((-928 |#1|) $) NIL)) (-4005 (($ (-1287 (-928 |#1|))) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-928 |#1|) (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-928 |#1|) (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| (-928 |#1|) (-379)))) (-2614 (((-112) $) NIL (|has| (-928 |#1|) (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379)))) (($ $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| (-928 |#1|) (-379))) (((-845 (-939)) $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| (-928 |#1|) (-379)))) (-2588 (((-112) $) NIL (|has| (-928 |#1|) (-379)))) (-2647 (((-928 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| (-928 |#1|) (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 (-928 |#1|)) $) NIL) (((-1192 $) $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-4375 (((-939) $) NIL (|has| (-928 |#1|) (-379)))) (-3003 (((-1192 (-928 |#1|)) $) NIL (|has| (-928 |#1|) (-379)))) (-2586 (((-1192 (-928 |#1|)) $) NIL (|has| (-928 |#1|) (-379))) (((-3 (-1192 (-928 |#1|)) "failed") $ $) NIL (|has| (-928 |#1|) (-379)))) (-1579 (($ $ (-1192 (-928 |#1|))) NIL (|has| (-928 |#1|) (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-928 |#1|) (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-3419 (((-976 (-1140))) NIL)) (-2547 (($) NIL (|has| (-928 |#1|) (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-928 |#1|) (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| (-928 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| (-928 |#1|) (-379))) (($ $) NIL (|has| (-928 |#1|) (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 (-928 |#1|))) NIL)) (-1984 (($) NIL (|has| (-928 |#1|) (-379)))) (-2209 (($) NIL (|has| (-928 |#1|) (-379)))) (-3435 (((-1287 (-928 |#1|)) $) NIL) (((-701 (-928 |#1|)) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-928 |#1|) (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-928 |#1|)) NIL)) (-1972 (($ $) NIL (|has| (-928 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| (-928 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-928 |#1|) (-379)))) (-3155 (($ $ (-783)) NIL (|has| (-928 |#1|) (-379))) (($ $) NIL (|has| (-928 |#1|) (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ (-928 |#1|)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-928 |#1|)) NIL) (($ (-928 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-339 (-928 |#1|)) (-10 -7 (-15 -3419 ((-976 (-1140)))))) (-939) (-939)) (T -354)) -((-3419 (*1 *2) (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-354 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939))))) -(-13 (-339 (-928 |#1|)) (-10 -7 (-15 -3419 ((-976 (-1140)))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 58)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 142)) (-2317 ((|#1| $) 113)) (-4005 (($ (-1287 |#1|)) 130)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) 124 (|has| |#1| (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) 160 (|has| |#1| (-379)))) (-2614 (((-112) $) 66 (|has| |#1| (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) 60 (|has| |#1| (-379))) (((-845 (-939)) $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) 62)) (-2558 (($) 162 (|has| |#1| (-379)))) (-2588 (((-112) $) NIL (|has| |#1| (-379)))) (-2647 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 |#1|) $) 117) (((-1192 $) $ (-939)) NIL (|has| |#1| (-379)))) (-4375 (((-939) $) 171 (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 178)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) 96 (|has| |#1| (-379)))) (-3274 (((-112) $) 147)) (-3115 (((-1140) $) NIL)) (-3419 (((-976 (-1140))) 57)) (-2547 (($) 158 (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 119 (|has| |#1| (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) 90) (((-939)) 91)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 |#1|)) 122)) (-1984 (($) 159 (|has| |#1| (-379)))) (-2209 (($) 167 (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) 77) (((-701 |#1|) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-1972 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) 155 T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) 144) (((-1287 $) (-939)) 98)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) 67 T CONST)) (-4320 (($) 103 T CONST)) (-2269 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3155 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3938 (((-112) $ $) 65)) (-4046 (($ $ $) 176) (($ $ |#1|) 177)) (-4036 (($ $) 157) (($ $ $) NIL)) (-4026 (($ $ $) 86)) (** (($ $ (-939)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3419 ((-976 (-1140)))))) (-360) (-1192 |#1|)) (T -355)) -((-3419 (*1 *2) (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1192 *3))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3419 ((-976 (-1140)))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-4005 (($ (-1287 |#1|)) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| |#1| (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| |#1| (-379)))) (-2614 (((-112) $) NIL (|has| |#1| (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| |#1| (-379))) (((-845 (-939)) $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| |#1| (-379)))) (-2588 (((-112) $) NIL (|has| |#1| (-379)))) (-2647 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-939)) NIL (|has| |#1| (-379)))) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-3419 (((-976 (-1140))) NIL)) (-2547 (($) NIL (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| |#1| (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 |#1|)) NIL)) (-1984 (($) NIL (|has| |#1| (-379)))) (-2209 (($) NIL (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-1972 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3155 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3419 ((-976 (-1140)))))) (-360) (-939)) (T -356)) -((-3419 (*1 *2) (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-939))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3419 ((-976 (-1140)))))) -((-2365 (((-783) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) 61)) (-1764 (((-976 (-1140)) (-1192 |#1|)) 112)) (-3849 (((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) (-1192 |#1|)) 103)) (-2425 (((-701 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) 113)) (-1814 (((-3 (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) "failed") (-939)) 13)) (-2886 (((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) (-939)) 18))) -(((-357 |#1|) (-10 -7 (-15 -1764 ((-976 (-1140)) (-1192 |#1|))) (-15 -3849 ((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) (-1192 |#1|))) (-15 -2425 ((-701 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -2365 ((-783) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -1814 ((-3 (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) "failed") (-939))) (-15 -2886 ((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) (-939)))) (-360)) (T -357)) -((-2886 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-3 (-1192 *4) (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-1814 (*1 *2 *3) (|partial| -12 (-5 *3 (-939)) (-5 *2 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) (-5 *1 (-357 *4)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-976 (-1140))) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -1764 ((-976 (-1140)) (-1192 |#1|))) (-15 -3849 ((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) (-1192 |#1|))) (-15 -2425 ((-701 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -2365 ((-783) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -1814 ((-3 (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) "failed") (-939))) (-15 -2886 ((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) (-939)))) -((-4112 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -4112 (|#3| |#1|)) (-15 -4112 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) -((-4112 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-4112 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) -(-10 -7 (-15 -4112 (|#3| |#1|)) (-15 -4112 (|#1| |#3|))) -((-2614 (((-112) $) 60)) (-3241 (((-845 (-939)) $) 23) (((-939) $) 64)) (-1859 (((-3 $ "failed") $) 18)) (-3650 (($) 9)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 114)) (-3334 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-4106 (($ $) 8) (($ $ (-783)) NIL)) (-1984 (($) 53)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 38)) (-1972 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-359 |#1|) (-10 -8 (-15 -3241 ((-939) |#1|)) (-15 -3334 ((-783) |#1|)) (-15 -2614 ((-112) |#1|)) (-15 -1984 (|#1|)) (-15 -3080 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -1972 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3241 ((-845 (-939)) |#1|)) (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-360)) (T -359)) -NIL -(-10 -8 (-15 -3241 ((-939) |#1|)) (-15 -3334 ((-783) |#1|)) (-15 -2614 ((-112) |#1|)) (-15 -1984 (|#1|)) (-15 -3080 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -1972 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3241 ((-845 (-939)) |#1|)) (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2053 (((-1209 (-939) (-783)) (-576)) 102)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-4057 (((-112) $ $) 65)) (-2199 (((-783)) 112)) (-4331 (($) 18 T CONST)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-4369 (($) 115)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-3933 (($) 100)) (-2614 (((-112) $) 99)) (-3878 (($ $) 87) (($ $ (-783)) 86)) (-2443 (((-112) $) 79)) (-3241 (((-845 (-939)) $) 89) (((-939) $) 97)) (-2287 (((-112) $) 35)) (-1859 (((-3 $ "failed") $) 111)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-4375 (((-939) $) 114)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3650 (($) 110 T CONST)) (-2409 (($ (-939)) 113)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 103)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-3334 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-4106 (($ $) 109) (($ $ (-783)) 107)) (-1984 (($) 101)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 104)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1972 (((-3 $ "failed") $) 90) (($ $) 105)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $) 108) (($ $ (-783)) 106)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3454 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *4)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-1897 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-1683 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2542 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) (-4 *1 (-339 *4)))) (-2471 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3746 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2767 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-4128 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-3121 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3))))) +(-13 (-1307 |t#1|) (-1059 |t#1|) (-10 -8 (-15 -3454 ((-1288 $))) (-15 -3454 ((-1288 $) (-940))) (-15 -1490 ((-1288 |t#1|) $)) (-15 -1490 ((-701 |t#1|) (-1288 $))) (-15 -3208 ($ (-1288 |t#1|))) (-15 -2542 ((-1193 |t#1|) $)) (-15 -1897 ((-1193 |t#1|))) (-15 -1683 ((-940))) (-15 -3600 ((-940) $)) (-15 -2471 (|t#1| $)) (-15 -2208 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -2542 ((-1193 $) $ (-940))) (-15 -2471 ($ $ (-940))) (-15 -2208 ($ $ (-940))) (-15 -3746 ($)) (-15 -2767 ($)) (-15 -3146 ((-112) $)) (-15 -4128 ($)) (-15 -3777 ($ $ (-1193 |t#1|))) (-15 -2726 ((-1193 |t#1|) $)) (-15 -3121 ((-1193 |t#1|) $)) (-15 -3121 ((-3 (-1193 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2758 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1307 |#1|) . T) ((-374) . T) ((-414) -2758 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-379)) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-3045 (($ (-1196) $) 100)) (-4168 (($) 89)) (-2732 (((-1141) (-1141)) 9)) (-1391 (($) 90)) (-2214 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-2985 (($ (-1196) $) 101)) (-4246 (($ (-656 (-876))) 91)) (-4113 (((-1293) $) 87)) (-3943 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2498 (($ (-1141)) 58)) (-2785 (((-1125) $) 30)) (-3482 (($ (-1113 (-971 (-576))) $) 97) (($ (-1113 (-971 (-576))) (-971 (-576)) $) 98)) (-1429 (($ (-1141)) 99)) (-2855 (($ (-1196) $) 129) (($ (-1196) $ $) 130)) (-2425 (($ (-1197) (-656 (-1197))) 88)) (-2387 (($ (-1179)) 94) (($ (-656 (-1179))) 92)) (-3569 (((-876) $) 132)) (-4349 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2866 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3343 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2639 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2639 $))) (|:| |commonBranch| (-2 (|:| -2627 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $) 50)) (-2648 (($ (-1179)) 202)) (-4226 (($ (-656 $)) 128)) (-2113 (((-112) $ $) NIL)) (-3923 (($ (-1197) (-1179)) 135) (($ (-1197) (-326 (-713))) 175) (($ (-1197) (-326 (-711))) 176) (($ (-1197) (-326 (-706))) 177) (($ (-1197) (-701 (-713))) 138) (($ (-1197) (-701 (-711))) 141) (($ (-1197) (-701 (-706))) 144) (($ (-1197) (-1288 (-713))) 147) (($ (-1197) (-1288 (-711))) 150) (($ (-1197) (-1288 (-706))) 153) (($ (-1197) (-701 (-326 (-713)))) 156) (($ (-1197) (-701 (-326 (-711)))) 159) (($ (-1197) (-701 (-326 (-706)))) 162) (($ (-1197) (-1288 (-326 (-713)))) 165) (($ (-1197) (-1288 (-326 (-711)))) 168) (($ (-1197) (-1288 (-326 (-706)))) 171) (($ (-1197) (-656 (-971 (-576))) (-326 (-713))) 172) (($ (-1197) (-656 (-971 (-576))) (-326 (-711))) 173) (($ (-1197) (-656 (-971 (-576))) (-326 (-706))) 174) (($ (-1197) (-326 (-576))) 199) (($ (-1197) (-326 (-390))) 200) (($ (-1197) (-326 (-171 (-390)))) 201) (($ (-1197) (-701 (-326 (-576)))) 180) (($ (-1197) (-701 (-326 (-390)))) 183) (($ (-1197) (-701 (-326 (-171 (-390))))) 186) (($ (-1197) (-1288 (-326 (-576)))) 189) (($ (-1197) (-1288 (-326 (-390)))) 192) (($ (-1197) (-1288 (-326 (-171 (-390))))) 195) (($ (-1197) (-656 (-971 (-576))) (-326 (-576))) 196) (($ (-1197) (-656 (-971 (-576))) (-326 (-390))) 197) (($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390)))) 198)) (-2923 (((-112) $ $) NIL))) +(((-340) (-13 (-1121) (-10 -8 (-15 -3482 ($ (-1113 (-971 (-576))) $)) (-15 -3482 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -3045 ($ (-1196) $)) (-15 -2985 ($ (-1196) $)) (-15 -2498 ($ (-1141))) (-15 -1429 ($ (-1141))) (-15 -2387 ($ (-1179))) (-15 -2387 ($ (-656 (-1179)))) (-15 -2648 ($ (-1179))) (-15 -2214 ($)) (-15 -2214 ($ (-326 (-711)))) (-15 -2214 ($ (-326 (-713)))) (-15 -2214 ($ (-326 (-706)))) (-15 -2214 ($ (-326 (-390)))) (-15 -2214 ($ (-326 (-576)))) (-15 -2214 ($ (-326 (-171 (-390))))) (-15 -2855 ($ (-1196) $)) (-15 -2855 ($ (-1196) $ $)) (-15 -3923 ($ (-1197) (-1179))) (-15 -3923 ($ (-1197) (-326 (-713)))) (-15 -3923 ($ (-1197) (-326 (-711)))) (-15 -3923 ($ (-1197) (-326 (-706)))) (-15 -3923 ($ (-1197) (-701 (-713)))) (-15 -3923 ($ (-1197) (-701 (-711)))) (-15 -3923 ($ (-1197) (-701 (-706)))) (-15 -3923 ($ (-1197) (-1288 (-713)))) (-15 -3923 ($ (-1197) (-1288 (-711)))) (-15 -3923 ($ (-1197) (-1288 (-706)))) (-15 -3923 ($ (-1197) (-701 (-326 (-713))))) (-15 -3923 ($ (-1197) (-701 (-326 (-711))))) (-15 -3923 ($ (-1197) (-701 (-326 (-706))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-713))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-711))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-706))))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -3923 ($ (-1197) (-326 (-576)))) (-15 -3923 ($ (-1197) (-326 (-390)))) (-15 -3923 ($ (-1197) (-326 (-171 (-390))))) (-15 -3923 ($ (-1197) (-701 (-326 (-576))))) (-15 -3923 ($ (-1197) (-701 (-326 (-390))))) (-15 -3923 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-576))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-390))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -4226 ($ (-656 $))) (-15 -4168 ($)) (-15 -1391 ($)) (-15 -4246 ($ (-656 (-876)))) (-15 -2425 ($ (-1197) (-656 (-1197)))) (-15 -3943 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4349 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2866 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3343 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2639 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2639 $))) (|:| |commonBranch| (-2 (|:| -2627 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -4113 ((-1293) $)) (-15 -2785 ((-1125) $)) (-15 -2732 ((-1141) (-1141)))))) (T -340)) +((-3482 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340)))) (-3482 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) (-5 *1 (-340)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2985 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2498 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) (-2648 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-2214 (*1 *1) (-5 *1 (-340))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2855 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2855 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-3923 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4168 (*1 *1) (-5 *1 (-340))) (-1391 (*1 *1) (-5 *1 (-340))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340)))) (-2425 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -2866 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3343 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2639 (-340)))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2639 (-340)))) (|:| |commonBranch| (-2 (|:| -2627 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876))))) (-5 *1 (-340)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(-13 (-1121) (-10 -8 (-15 -3482 ($ (-1113 (-971 (-576))) $)) (-15 -3482 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -3045 ($ (-1196) $)) (-15 -2985 ($ (-1196) $)) (-15 -2498 ($ (-1141))) (-15 -1429 ($ (-1141))) (-15 -2387 ($ (-1179))) (-15 -2387 ($ (-656 (-1179)))) (-15 -2648 ($ (-1179))) (-15 -2214 ($)) (-15 -2214 ($ (-326 (-711)))) (-15 -2214 ($ (-326 (-713)))) (-15 -2214 ($ (-326 (-706)))) (-15 -2214 ($ (-326 (-390)))) (-15 -2214 ($ (-326 (-576)))) (-15 -2214 ($ (-326 (-171 (-390))))) (-15 -2855 ($ (-1196) $)) (-15 -2855 ($ (-1196) $ $)) (-15 -3923 ($ (-1197) (-1179))) (-15 -3923 ($ (-1197) (-326 (-713)))) (-15 -3923 ($ (-1197) (-326 (-711)))) (-15 -3923 ($ (-1197) (-326 (-706)))) (-15 -3923 ($ (-1197) (-701 (-713)))) (-15 -3923 ($ (-1197) (-701 (-711)))) (-15 -3923 ($ (-1197) (-701 (-706)))) (-15 -3923 ($ (-1197) (-1288 (-713)))) (-15 -3923 ($ (-1197) (-1288 (-711)))) (-15 -3923 ($ (-1197) (-1288 (-706)))) (-15 -3923 ($ (-1197) (-701 (-326 (-713))))) (-15 -3923 ($ (-1197) (-701 (-326 (-711))))) (-15 -3923 ($ (-1197) (-701 (-326 (-706))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-713))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-711))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-706))))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -3923 ($ (-1197) (-326 (-576)))) (-15 -3923 ($ (-1197) (-326 (-390)))) (-15 -3923 ($ (-1197) (-326 (-171 (-390))))) (-15 -3923 ($ (-1197) (-701 (-326 (-576))))) (-15 -3923 ($ (-1197) (-701 (-326 (-390))))) (-15 -3923 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-576))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-390))))) (-15 -3923 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -3923 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -4226 ($ (-656 $))) (-15 -4168 ($)) (-15 -1391 ($)) (-15 -4246 ($ (-656 (-876)))) (-15 -2425 ($ (-1197) (-656 (-1197)))) (-15 -3943 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4349 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2866 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3343 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2639 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2639 $))) (|:| |commonBranch| (-2 (|:| -2627 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -4113 ((-1293) $)) (-15 -2785 ((-1125) $)) (-15 -2732 ((-1141) (-1141))))) +((-3488 (((-112) $ $) NIL)) (-2807 (((-112) $) 13)) (-3876 (($ |#1|) 10)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3888 (($ |#1|) 12)) (-3569 (((-876) $) 19)) (-2113 (((-112) $ $) NIL)) (-4110 ((|#1| $) 14)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 21))) +(((-341 |#1|) (-13 (-861) (-10 -8 (-15 -3876 ($ |#1|)) (-15 -3888 ($ |#1|)) (-15 -2807 ((-112) $)) (-15 -4110 (|#1| $)))) (-861)) (T -341)) +((-3876 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3888 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861)))) (-4110 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861))))) +(-13 (-861) (-10 -8 (-15 -3876 ($ |#1|)) (-15 -3888 ($ |#1|)) (-15 -2807 ((-112) $)) (-15 -4110 (|#1| $)))) +((-4157 (((-340) (-1197) (-971 (-576))) 23)) (-3159 (((-340) (-1197) (-971 (-576))) 27)) (-2677 (((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576)))) 26) (((-340) (-1197) (-971 (-576)) (-971 (-576))) 24)) (-1550 (((-340) (-1197) (-971 (-576))) 31))) +(((-342) (-10 -7 (-15 -4157 ((-340) (-1197) (-971 (-576)))) (-15 -2677 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -2677 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -3159 ((-340) (-1197) (-971 (-576)))) (-15 -1550 ((-340) (-1197) (-971 (-576)))))) (T -342)) +((-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) +(-10 -7 (-15 -4157 ((-340) (-1197) (-971 (-576)))) (-15 -2677 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -2677 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -3159 ((-340) (-1197) (-971 (-576)))) (-15 -1550 ((-340) (-1197) (-971 (-576))))) +((-3488 (((-112) $ $) NIL)) (-4109 (((-518) $) 20)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1637 (((-977 (-783)) $) 18)) (-1876 (((-256) $) 7)) (-3569 (((-876) $) 26)) (-1564 (((-977 (-185 (-140))) $) 16)) (-2113 (((-112) $ $) NIL)) (-2645 (((-656 (-887 (-1202) (-783))) $) 12)) (-2923 (((-112) $ $) 22))) +(((-343) (-13 (-1121) (-10 -8 (-15 -1876 ((-256) $)) (-15 -2645 ((-656 (-887 (-1202) (-783))) $)) (-15 -1637 ((-977 (-783)) $)) (-15 -1564 ((-977 (-185 (-140))) $)) (-15 -4109 ((-518) $))))) (T -343)) +((-1876 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(-13 (-1121) (-10 -8 (-15 -1876 ((-256) $)) (-15 -2645 ((-656 (-887 (-1202) (-783))) $)) (-15 -1637 ((-977 (-783)) $)) (-15 -1564 ((-977 (-185 (-140))) $)) (-15 -4109 ((-518) $)))) +((-4116 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) +(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) +(-10 -7 (-15 -4116 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) +((-2454 (((-112) $) 14))) +(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2454 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) +NIL +(-10 -8 (-15 -2454 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3685 (($ $) 29)) (-2454 (((-112) $) 28)) (-1413 (((-1179) $) 10)) (-2752 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-1450 (((-1141) $) 11)) (-4128 (((-3 |#4| "failed") $) 27)) (-1977 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3443 (((-2 (|:| -3098 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1264 |t#1|) (-1264 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) +((-2752 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1977 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1977 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1977 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -3098 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-3685 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-4128 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1977 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2752 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1977 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1977 ($ |t#4|)) (-15 -1977 ($ |t#1| |t#1|)) (-15 -1977 ($ |t#1| |t#1| (-576))) (-15 -3443 ((-2 (|:| -3098 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3685 ($ $)) (-15 -2454 ((-112) $)) (-15 -4128 ((-3 |t#4| "failed") $)) (-15 -1977 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3685 (($ $) 33)) (-2454 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-3759 (((-1288 |#4|) $) 134)) (-2752 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-1450 (((-1141) $) NIL)) (-4128 (((-3 |#4| "failed") $) 36)) (-1798 (((-1288 |#4|) $) 126)) (-1977 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3443 (((-2 (|:| -3098 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3569 (((-876) $) 17)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 14 T CONST)) (-2923 (((-112) $ $) 20)) (-3043 (($ $) 27) (($ $ $) NIL)) (-3029 (($ $ $) 25)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) +(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1798 ((-1288 |#4|) $)) (-15 -3759 ((-1288 |#4|) $)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) +((-1798 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-3759 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) +(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1798 ((-1288 |#4|) $)) (-15 -3759 ((-1288 |#4|) $)))) +((-3283 (($ $ (-1197) |#2|) NIL) (($ $ (-656 (-1197)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2796 (($ $ |#2|) 11))) +(((-348 |#1| |#2|) (-10 -8 (-15 -2796 (|#1| |#1| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#2| |#2|)) (-15 -3283 (|#1| |#1| (-304 |#2|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -3283 (|#1| |#1| (-1197) |#2|))) (-349 |#2|) (-1121)) (T -348)) +NIL +(-10 -8 (-15 -2796 (|#1| |#1| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#2| |#2|)) (-15 -3283 (|#1| |#1| (-304 |#2|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -3283 (|#1| |#1| (-1197) |#2|))) +((-4116 (($ (-1 |#1| |#1|) $) 6)) (-3283 (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2796 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) +(((-349 |#1|) (-141) (-1121)) (T -349)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1121))))) +(-13 (-10 -8 (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1197) |t#1|)) (-6 (-526 (-1197) |t#1|)) |%noBranch|))) +(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1238) |has| |#1| (-296 |#1| |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1197)) $) NIL)) (-2927 (((-112)) 96) (((-112) (-112)) 97)) (-3987 (((-656 (-624 $)) $) NIL)) (-4024 (($ $) NIL)) (-3900 (($ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1839 (($ $) NIL)) (-4005 (($ $) NIL)) (-3876 (($ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1197)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-419 (-971 (-576)))) 70 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-971 (-576))) 65 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-419 (-971 (-390)))) 88 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-971 (-390))) 83 (|has| |#3| (-1059 (-390))))) (-2859 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1197)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1059 (-576)))) (($ (-419 (-971 (-576)))) 71 (|has| |#3| (-1059 (-576)))) (($ (-971 (-576))) 67 (|has| |#3| (-1059 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1059 (-390)))) (($ (-419 (-971 (-390)))) 89 (|has| |#3| (-1059 (-390)))) (($ (-971 (-390))) 85 (|has| |#3| (-1059 (-390))))) (-3451 (((-3 $ "failed") $) NIL)) (-1600 (($) 101)) (-3716 (($ $) NIL) (($ (-656 $)) NIL)) (-4221 (((-656 (-115)) $) NIL)) (-1775 (((-115) (-115)) NIL)) (-3215 (((-112) $) NIL)) (-2561 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2103 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) NIL)) (-1902 (((-3 (-624 $) "failed") $) NIL)) (-2327 (($ $) 99)) (-3744 (($ $) NIL)) (-1413 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1639 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-2158 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2325 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-3470 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-4103 (($ $) NIL)) (-2975 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3283 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1546 (($ $) NIL) (($ $ $) NIL)) (-2773 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-1897 (($ $) NIL (|has| $ (-1070)))) (-4013 (($ $) NIL)) (-3888 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-1778 (((-783)) NIL T CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-4062 (((-112) (-115)) NIL)) (-2113 (((-112) $ $) NIL)) (-3960 (($ $) NIL)) (-3937 (($ $) NIL)) (-3950 (($ $) NIL)) (-1665 (($ $) NIL)) (-2719 (($) 100 T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2859 ($ (-326 |#3|))) (-15 -1572 ((-3 $ "failed") (-326 |#3|))) (-15 -2859 ($ (-1197))) (-15 -1572 ((-3 $ "failed") (-1197))) (-15 -3569 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2859 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2859 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2859 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2859 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2859 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2859 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -1665 ($ $)) (-15 -1839 ($ $)) (-15 -4103 ($ $)) (-15 -3744 ($ $)) (-15 -2327 ($ $)) (-15 -3876 ($ $)) (-15 -3888 ($ $)) (-15 -3900 ($ $)) (-15 -3937 ($ $)) (-15 -3950 ($ $)) (-15 -3960 ($ $)) (-15 -4005 ($ $)) (-15 -4013 ($ $)) (-15 -4024 ($ $)) (-15 -1600 ($)) (-15 -1966 ((-656 (-1197)) $)) (-15 -2927 ((-112))) (-15 -2927 ((-112) (-112))))) (-656 (-1197)) (-656 (-1197)) (-399)) (T -350)) +((-2859 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1665 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1839 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4103 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3744 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2327 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3876 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3900 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3950 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4005 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4013 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4024 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1600 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-2927 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2927 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) +(-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2859 ($ (-326 |#3|))) (-15 -1572 ((-3 $ "failed") (-326 |#3|))) (-15 -2859 ($ (-1197))) (-15 -1572 ((-3 $ "failed") (-1197))) (-15 -3569 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2859 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2859 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2859 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2859 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2859 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2859 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -1665 ($ $)) (-15 -1839 ($ $)) (-15 -4103 ($ $)) (-15 -3744 ($ $)) (-15 -2327 ($ $)) (-15 -3876 ($ $)) (-15 -3888 ($ $)) (-15 -3900 ($ $)) (-15 -3937 ($ $)) (-15 -3950 ($ $)) (-15 -3960 ($ $)) (-15 -4005 ($ $)) (-15 -4013 ($ $)) (-15 -4024 ($ $)) (-15 -1600 ($)) (-15 -1966 ((-656 (-1197)) $)) (-15 -2927 ((-112))) (-15 -2927 ((-112) (-112))))) +((-4116 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1264 (-419 *9)))))) +(-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|))) +((-2002 (((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) $) 39)) (-3208 (($ (-1288 (-419 |#3|)) (-1288 $)) NIL) (($ (-1288 (-419 |#3|))) NIL) (($ (-1288 |#3|) |#3|) 173)) (-2229 (((-1288 $) (-1288 $)) 156)) (-4233 (((-656 (-656 |#2|))) 126)) (-3525 (((-112) |#2| |#2|) 76)) (-1371 (($ $) 148)) (-2285 (((-783)) 172)) (-1712 (((-1288 $) (-1288 $)) 218)) (-3598 (((-656 (-971 |#2|)) (-1197)) 115)) (-1352 (((-112) $) 169)) (-4401 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4368 (((-3 |#3| "failed")) 52)) (-1464 (((-783)) 184)) (-2796 ((|#2| $ |#2| |#2|) 140)) (-2942 (((-3 |#3| "failed")) 71)) (-2773 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3725 (((-1288 $) (-1288 $)) 162)) (-2515 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3961 (((-112)) 34))) +(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4233 ((-656 (-656 |#2|)))) (-15 -3598 ((-656 (-971 |#2|)) (-1197))) (-15 -2515 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4368 ((-3 |#3| "failed"))) (-15 -2942 ((-3 |#3| "failed"))) (-15 -2796 (|#2| |#1| |#2| |#2|)) (-15 -1371 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4401 ((-112) |#1| |#3|)) (-15 -4401 ((-112) |#1| |#2|)) (-15 -3208 (|#1| (-1288 |#3|) |#3|)) (-15 -2002 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2229 ((-1288 |#1|) (-1288 |#1|))) (-15 -1712 ((-1288 |#1|) (-1288 |#1|))) (-15 -3725 ((-1288 |#1|) (-1288 |#1|))) (-15 -4401 ((-112) |#1|)) (-15 -1352 ((-112) |#1|)) (-15 -3525 ((-112) |#2| |#2|)) (-15 -3961 ((-112))) (-15 -1464 ((-783))) (-15 -2285 ((-783))) (-15 -2773 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2773 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -3208 (|#1| (-1288 (-419 |#3|)))) (-15 -3208 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) (-353 |#2| |#3| |#4|) (-1242) (-1264 |#2|) (-1264 (-419 |#3|))) (T -352)) +((-2285 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-1464 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3961 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3525 (*1 *2 *3 *3) (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-2942 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-4368 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-4233 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) +(-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4233 ((-656 (-656 |#2|)))) (-15 -3598 ((-656 (-971 |#2|)) (-1197))) (-15 -2515 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4368 ((-3 |#3| "failed"))) (-15 -2942 ((-3 |#3| "failed"))) (-15 -2796 (|#2| |#1| |#2| |#2|)) (-15 -1371 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4401 ((-112) |#1| |#3|)) (-15 -4401 ((-112) |#1| |#2|)) (-15 -3208 (|#1| (-1288 |#3|) |#3|)) (-15 -2002 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2229 ((-1288 |#1|) (-1288 |#1|))) (-15 -1712 ((-1288 |#1|) (-1288 |#1|))) (-15 -3725 ((-1288 |#1|) (-1288 |#1|))) (-15 -4401 ((-112) |#1|)) (-15 -1352 ((-112) |#1|)) (-15 -3525 ((-112) |#2| |#2|)) (-15 -3961 ((-112))) (-15 -1464 ((-783))) (-15 -2285 ((-783))) (-15 -2773 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2773 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -3208 (|#1| (-1288 (-419 |#3|)))) (-15 -3208 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2002 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 211)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-2544 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-1574 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-2747 (((-701 (-419 |#2|)) (-1288 $)) 53) (((-701 (-419 |#2|))) 68)) (-2208 (((-419 |#2|) $) 59)) (-1494 (((-1210 (-940) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-1770 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-2420 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2096 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-1539 (((-112)) 228)) (-3847 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2859 (((-576) $) 184 (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) 181)) (-3208 (($ (-1288 (-419 |#2|)) (-1288 $)) 55) (($ (-1288 (-419 |#2|))) 71) (($ (-1288 |#2|) |#2|) 210)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-3428 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-3567 (((-701 (-419 |#2|)) $ (-1288 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-4344 (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174)) (-2229 (((-1288 $) (-1288 $)) 216)) (-3685 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-3451 (((-3 $ "failed") $) 37)) (-4233 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-3525 (((-112) |#1| |#1|) 232)) (-3733 (((-940)) 61)) (-1836 (($) 102 (|has| (-419 |#2|) (-379)))) (-2132 (((-112)) 225)) (-4041 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3440 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-1371 (($ $) 203)) (-3814 (($) 160 (|has| (-419 |#2|) (-360)))) (-2117 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-1332 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-4169 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3309 (((-940) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) 149 (|has| (-419 |#2|) (-360)))) (-3215 (((-112) $) 35)) (-2285 (((-783)) 235)) (-1712 (((-1288 $) (-1288 $)) 217)) (-2471 (((-419 |#2|) $) 58)) (-3598 (((-656 (-971 |#1|)) (-1197)) 198 (|has| |#1| (-374)))) (-3396 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-2542 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-2460 (((-940) $) 101 (|has| (-419 |#2|) (-379)))) (-3671 ((|#3| $) 167)) (-3626 (((-701 (-576)) (-1288 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) 173) (((-701 (-419 |#2|)) (-1288 $)) 172)) (-3457 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-1413 (((-1179) $) 10)) (-1987 (((-701 (-419 |#2|))) 212)) (-1992 (((-701 (-419 |#2|))) 214)) (-2048 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-3026 (($ (-1288 |#2|) |#2|) 208)) (-4120 (((-701 (-419 |#2|))) 213)) (-1867 (((-701 (-419 |#2|))) 215)) (-4405 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-3382 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 209)) (-2936 (((-1288 $)) 221)) (-3277 (((-1288 $)) 222)) (-1352 (((-112) $) 220)) (-4401 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-3539 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-3223 (($ (-940)) 100 (|has| (-419 |#2|) (-379)))) (-4368 (((-3 |#2| "failed")) 200)) (-1450 (((-1141) $) 11)) (-1464 (((-783)) 234)) (-4128 (($) 171)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| (-419 |#2|) (-374)))) (-3498 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-3475 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-2411 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-2796 ((|#1| $ |#1| |#1|) 202)) (-2942 (((-3 |#2| "failed")) 201)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-2455 (((-419 |#2|) (-1288 $)) 54) (((-419 |#2|)) 67)) (-2992 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2773 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 140 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 139 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 137 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2673 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2673 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4058 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-1897 ((|#3|) 170)) (-2051 (($) 159 (|has| (-419 |#2|) (-360)))) (-1490 (((-1288 (-419 |#2|)) $ (-1288 $)) 57) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) 56) (((-1288 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1288 $)) 72)) (-4171 (((-1288 (-419 |#2|)) $) 70) (($ (-1288 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-3725 (((-1288 $) (-1288 $)) 218)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1059 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-3230 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-2137 ((|#3| $) 52)) (-1778 (((-783)) 32 T CONST)) (-2688 (((-112)) 231)) (-2045 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-2113 (((-112) $ $) 6)) (-3454 (((-1288 $)) 74)) (-2537 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-2515 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-3961 (((-112)) 233)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 143 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 142 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 138 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2673 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2673 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-2758 (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2673 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2673 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) +(((-353 |#1| |#2| |#3|) (-141) (-1242) (-1264 |t#1|) (-1264 (-419 |t#2|))) (T -353)) +((-2285 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-1464 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-3961 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3525 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2688 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2045 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2045 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-1539 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3847 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3847 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-2132 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4041 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4041 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-3277 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2936 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1867 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-1992 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4120 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-1987 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-3208 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-3026 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-4405 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-4401 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4401 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1371 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-2796 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-2942 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-4368 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-2515 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-971 *4))))) (-4233 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) +(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -2285 ((-783))) (-15 -1464 ((-783))) (-15 -3961 ((-112))) (-15 -3525 ((-112) |t#1| |t#1|)) (-15 -2688 ((-112))) (-15 -2045 ((-112) |t#1|)) (-15 -2045 ((-112) |t#2|)) (-15 -1539 ((-112))) (-15 -3847 ((-112) |t#1|)) (-15 -3847 ((-112) |t#2|)) (-15 -2132 ((-112))) (-15 -4041 ((-112) |t#1|)) (-15 -4041 ((-112) |t#2|)) (-15 -3277 ((-1288 $))) (-15 -2936 ((-1288 $))) (-15 -1352 ((-112) $)) (-15 -4401 ((-112) $)) (-15 -3725 ((-1288 $) (-1288 $))) (-15 -1712 ((-1288 $) (-1288 $))) (-15 -2229 ((-1288 $) (-1288 $))) (-15 -1867 ((-701 (-419 |t#2|)))) (-15 -1992 ((-701 (-419 |t#2|)))) (-15 -4120 ((-701 (-419 |t#2|)))) (-15 -1987 ((-701 (-419 |t#2|)))) (-15 -2002 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3208 ($ (-1288 |t#2|) |t#2|)) (-15 -3382 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3026 ($ (-1288 |t#2|) |t#2|)) (-15 -4405 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4401 ((-112) $ |t#1|)) (-15 -4401 ((-112) $ |t#2|)) (-15 -2773 ($ $ (-1 |t#2| |t#2|))) (-15 -1371 ($ $)) (-15 -2796 (|t#1| $ |t#1| |t#1|)) (-15 -2942 ((-3 |t#2| "failed"))) (-15 -4368 ((-3 |t#2| "failed"))) (-15 -2515 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3598 ((-656 (-971 |t#1|)) (-1197))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -4233 ((-656 (-656 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2758 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -2758 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -2758 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -2758 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2758 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-911 $ #3=(-1197)) -2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-917 (-1197)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) ((-919 #3#) -2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-939) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1059 (-419 (-576))) |has| (-419 |#2|) (-1059 (-419 (-576)))) ((-1059 #1#) . T) ((-1059 (-576)) |has| (-419 |#2|) (-1059 (-576))) ((-1072 #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| (-419 |#2|) (-360)) ((-1238) . T) ((-1242) -2758 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2859 (((-929 |#1|) $) NIL)) (-3208 (($ (-1288 (-929 |#1|))) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| (-929 |#1|) (-379)))) (-2117 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| (-929 |#1|) (-379)))) (-3146 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2471 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2460 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2726 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3121 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-3777 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2524 (((-977 (-1141))) NIL)) (-4128 (($) NIL (|has| (-929 |#1|) (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 (-929 |#1|))) NIL)) (-2051 (($) NIL (|has| (-929 |#1|) (-379)))) (-3746 (($) NIL (|has| (-929 |#1|) (-379)))) (-1490 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-3230 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2018 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2524 ((-977 (-1141)))))) (-940) (-940)) (T -354)) +((-2524 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) +(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2524 ((-977 (-1141)))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 58)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 142)) (-2859 ((|#1| $) 113)) (-3208 (($ (-1288 |#1|)) 130)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) 124 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) 160 (|has| |#1| (-379)))) (-2117 (((-112) $) 66 (|has| |#1| (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) 60 (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) 62)) (-2767 (($) 162 (|has| |#1| (-379)))) (-3146 (((-112) $) NIL (|has| |#1| (-379)))) (-2471 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 |#1|) $) 117) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-2460 (((-940) $) 171 (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 178)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 96 (|has| |#1| (-379)))) (-3651 (((-112) $) 147)) (-1450 (((-1141) $) NIL)) (-2524 (((-977 (-1141))) 57)) (-4128 (($) 158 (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 119 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) 90) (((-940)) 91)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 |#1|)) 122)) (-2051 (($) 159 (|has| |#1| (-379)))) (-3746 (($) 167 (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) 77) (((-701 |#1|) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3230 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) 155 T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) 144) (((-1288 $) (-940)) 98)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) 67 T CONST)) (-2730 (($) 103 T CONST)) (-3046 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2018 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2923 (((-112) $ $) 65)) (-3056 (($ $ $) 176) (($ $ |#1|) 177)) (-3043 (($ $) 157) (($ $ $) NIL)) (-3029 (($ $ $) 86)) (** (($ $ (-940)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2524 ((-977 (-1141)))))) (-360) (-1193 |#1|)) (T -355)) +((-2524 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1193 *3))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2524 ((-977 (-1141)))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3208 (($ (-1288 |#1|)) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| |#1| (-379)))) (-2117 (((-112) $) NIL (|has| |#1| (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| |#1| (-379)))) (-3146 (((-112) $) NIL (|has| |#1| (-379)))) (-2471 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2524 (((-977 (-1141))) NIL)) (-4128 (($) NIL (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 |#1|)) NIL)) (-2051 (($) NIL (|has| |#1| (-379)))) (-3746 (($) NIL (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3230 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2018 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2524 ((-977 (-1141)))))) (-360) (-940)) (T -356)) +((-2524 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2524 ((-977 (-1141)))))) +((-1468 (((-783) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) 61)) (-1734 (((-977 (-1141)) (-1193 |#1|)) 112)) (-4205 (((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) (-1193 |#1|)) 103)) (-3996 (((-701 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) 113)) (-4187 (((-3 (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) "failed") (-940)) 13)) (-2937 (((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) (-940)) 18))) +(((-357 |#1|) (-10 -7 (-15 -1734 ((-977 (-1141)) (-1193 |#1|))) (-15 -4205 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) (-1193 |#1|))) (-15 -3996 ((-701 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -1468 ((-783) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -4187 ((-3 (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) "failed") (-940))) (-15 -2937 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) (-940)))) (-360)) (T -357)) +((-2937 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-3 (-1193 *4) (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-4187 (*1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-5 *1 (-357 *4)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -1734 ((-977 (-1141)) (-1193 |#1|))) (-15 -4205 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) (-1193 |#1|))) (-15 -3996 ((-701 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -1468 ((-783) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -4187 ((-3 (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) "failed") (-940))) (-15 -2937 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) (-940)))) +((-3569 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3569 (|#3| |#1|)) (-15 -3569 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) +((-3569 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) +(-10 -7 (-15 -3569 (|#3| |#1|)) (-15 -3569 (|#1| |#3|))) +((-2117 (((-112) $) 60)) (-3309 (((-845 (-940)) $) 23) (((-940) $) 64)) (-3396 (((-3 $ "failed") $) 18)) (-3539 (($) 9)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 114)) (-2992 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-2773 (($ $) 8) (($ $ (-783)) NIL)) (-2051 (($) 53)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 38)) (-3230 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-359 |#1|) (-10 -8 (-15 -3309 ((-940) |#1|)) (-15 -2992 ((-783) |#1|)) (-15 -2117 ((-112) |#1|)) (-15 -2051 (|#1|)) (-15 -2254 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -3230 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -2992 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3309 ((-845 (-940)) |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-360)) (T -359)) +NIL +(-10 -8 (-15 -3309 ((-940) |#1|)) (-15 -2992 ((-783) |#1|)) (-15 -2117 ((-112) |#1|)) (-15 -2051 (|#1|)) (-15 -2254 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -3230 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -2992 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3309 ((-845 (-940)) |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-1494 (((-1210 (-940) (-783)) (-576)) 102)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-2420 (((-112) $ $) 65)) (-2096 (((-783)) 112)) (-3306 (($) 18 T CONST)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-1836 (($) 115)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3814 (($) 100)) (-2117 (((-112) $) 99)) (-1332 (($ $) 87) (($ $ (-783)) 86)) (-4169 (((-112) $) 79)) (-3309 (((-845 (-940)) $) 89) (((-940) $) 97)) (-3215 (((-112) $) 35)) (-3396 (((-3 $ "failed") $) 111)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2460 (((-940) $) 114)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-3539 (($) 110 T CONST)) (-3223 (($ (-940)) 113)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 103)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-2992 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-2773 (($ $) 109) (($ $ (-783)) 107)) (-2051 (($) 101)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 104)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3230 (((-3 $ "failed") $) 90) (($ $) 105)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $) 108) (($ $ (-783)) 106)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-360) (-141)) (T -360)) -((-1972 (*1 *1 *1) (-4 *1 (-360))) (-3080 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1287 *1)))) (-3224 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))))) (-2053 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1209 (-939) (-783))))) (-1984 (*1 *1) (-4 *1 (-360))) (-3933 (*1 *1) (-4 *1 (-360))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-939)))) (-2943 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-379) (-1172) (-238) (-10 -8 (-15 -1972 ($ $)) (-15 -3080 ((-3 (-1287 $) "failed") (-701 $))) (-15 -3224 ((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576)))))) (-15 -2053 ((-1209 (-939) (-783)) (-576))) (-15 -1984 ($)) (-15 -3933 ($)) (-15 -2614 ((-112) $)) (-15 -3334 ((-783) $)) (-15 -3241 ((-939) $)) (-15 -2943 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) . T) ((-1237) . T) ((-1241) . T)) -((-2282 (((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-1527 (((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -1527 ((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2282 ((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $)))) (-1263 |#1|) (-421 |#1| |#2|)) (T -361)) -((-2282 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1527 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(-10 -7 (-15 -1527 ((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2282 ((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 (((-928 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-928 |#1|) (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-2365 (((-783)) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| (-928 |#1|) (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-928 |#1|) "failed") $) NIL)) (-2317 (((-928 |#1|) $) NIL)) (-4005 (($ (-1287 (-928 |#1|))) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-928 |#1|) (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-928 |#1|) (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| (-928 |#1|) (-379)))) (-2614 (((-112) $) NIL (|has| (-928 |#1|) (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379)))) (($ $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| (-928 |#1|) (-379))) (((-845 (-939)) $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| (-928 |#1|) (-379)))) (-2588 (((-112) $) NIL (|has| (-928 |#1|) (-379)))) (-2647 (((-928 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| (-928 |#1|) (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 (-928 |#1|)) $) NIL) (((-1192 $) $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-4375 (((-939) $) NIL (|has| (-928 |#1|) (-379)))) (-3003 (((-1192 (-928 |#1|)) $) NIL (|has| (-928 |#1|) (-379)))) (-2586 (((-1192 (-928 |#1|)) $) NIL (|has| (-928 |#1|) (-379))) (((-3 (-1192 (-928 |#1|)) "failed") $ $) NIL (|has| (-928 |#1|) (-379)))) (-1579 (($ $ (-1192 (-928 |#1|))) NIL (|has| (-928 |#1|) (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-928 |#1|) (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2624 (((-1287 (-656 (-2 (|:| -1688 (-928 |#1|)) (|:| -2409 (-1140)))))) NIL)) (-2612 (((-701 (-928 |#1|))) NIL)) (-2547 (($) NIL (|has| (-928 |#1|) (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-928 |#1|) (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| (-928 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| (-928 |#1|) (-379))) (($ $) NIL (|has| (-928 |#1|) (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 (-928 |#1|))) NIL)) (-1984 (($) NIL (|has| (-928 |#1|) (-379)))) (-2209 (($) NIL (|has| (-928 |#1|) (-379)))) (-3435 (((-1287 (-928 |#1|)) $) NIL) (((-701 (-928 |#1|)) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-928 |#1|) (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-928 |#1|)) NIL)) (-1972 (($ $) NIL (|has| (-928 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| (-928 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-928 |#1|) (-379)))) (-3155 (($ $ (-783)) NIL (|has| (-928 |#1|) (-379))) (($ $) NIL (|has| (-928 |#1|) (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ (-928 |#1|)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-928 |#1|)) NIL) (($ (-928 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-13 (-339 (-928 |#1|)) (-10 -7 (-15 -2624 ((-1287 (-656 (-2 (|:| -1688 (-928 |#1|)) (|:| -2409 (-1140))))))) (-15 -2612 ((-701 (-928 |#1|)))) (-15 -2365 ((-783))))) (-939) (-939)) (T -362)) -((-2624 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1688 (-928 *3)) (|:| -2409 (-1140)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939)))) (-2612 (*1 *2) (-12 (-5 *2 (-701 (-928 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939)))) (-2365 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939))))) -(-13 (-339 (-928 |#1|)) (-10 -7 (-15 -2624 ((-1287 (-656 (-2 (|:| -1688 (-928 |#1|)) (|:| -2409 (-1140))))))) (-15 -2612 ((-701 (-928 |#1|)))) (-15 -2365 ((-783))))) -((-1952 (((-112) $ $) 73)) (-3167 (((-112) $) 88)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 ((|#1| $) 106) (($ $ (-939)) 104 (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-2365 (((-783)) 103)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) 187 (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 127)) (-2317 ((|#1| $) 105)) (-4005 (($ (-1287 |#1|)) 71)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) 182 (|has| |#1| (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) 171 (|has| |#1| (-379)))) (-2614 (((-112) $) NIL (|has| |#1| (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| |#1| (-379))) (((-845 (-939)) $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) 113 (|has| |#1| (-379)))) (-2588 (((-112) $) 200 (|has| |#1| (-379)))) (-2647 ((|#1| $) 108) (($ $ (-939)) 107 (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 |#1|) $) 214) (((-1192 $) $ (-939)) NIL (|has| |#1| (-379)))) (-4375 (((-939) $) 148 (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) 87 (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) 83 (|has| |#1| (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 218)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) 150 (|has| |#1| (-379)))) (-3274 (((-112) $) 123)) (-3115 (((-1140) $) NIL)) (-2624 (((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) 97)) (-2612 (((-701 |#1|)) 101)) (-2547 (($) 110 (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 173 (|has| |#1| (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) 174)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) 75)) (-3175 (((-1192 |#1|)) 175)) (-1984 (($) 147 (|has| |#1| (-379)))) (-2209 (($) NIL (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) 121) (((-701 |#1|) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-1972 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) 180 T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) 197) (((-1287 $) (-939)) 116)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) 186 T CONST)) (-4320 (($) 161 T CONST)) (-2269 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-3155 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3938 (((-112) $ $) 208)) (-4046 (($ $ $) 119) (($ $ |#1|) 120)) (-4036 (($ $) 202) (($ $ $) 206)) (-4026 (($ $ $) 204)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2624 ((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -2612 ((-701 |#1|))) (-15 -2365 ((-783))))) (-360) (-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (T -363)) -((-2624 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) *2)))) (-2612 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140))))))))) (-2365 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140)))))))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2624 ((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -2612 ((-701 |#1|))) (-15 -2365 ((-783))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-2365 (((-783)) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-4005 (($ (-1287 |#1|)) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| |#1| (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| |#1| (-379)))) (-2614 (((-112) $) NIL (|has| |#1| (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| |#1| (-379))) (((-845 (-939)) $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| |#1| (-379)))) (-2588 (((-112) $) NIL (|has| |#1| (-379)))) (-2647 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-939)) NIL (|has| |#1| (-379)))) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2624 (((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140)))))) NIL)) (-2612 (((-701 |#1|)) NIL)) (-2547 (($) NIL (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| |#1| (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 |#1|)) NIL)) (-1984 (($) NIL (|has| |#1| (-379)))) (-2209 (($) NIL (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-1972 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3155 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2624 ((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -2612 ((-701 |#1|))) (-15 -2365 ((-783))))) (-360) (-939)) (T -364)) -((-2624 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-939)))) (-2612 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-939)))) (-2365 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-939))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2624 ((-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))))) (-15 -2612 ((-701 |#1|))) (-15 -2365 ((-783))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 (((-928 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-928 |#1|) (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| (-928 |#1|) (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-928 |#1|) "failed") $) NIL)) (-2317 (((-928 |#1|) $) NIL)) (-4005 (($ (-1287 (-928 |#1|))) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-928 |#1|) (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-928 |#1|) (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| (-928 |#1|) (-379)))) (-2614 (((-112) $) NIL (|has| (-928 |#1|) (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379)))) (($ $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| (-928 |#1|) (-379))) (((-845 (-939)) $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| (-928 |#1|) (-379)))) (-2588 (((-112) $) NIL (|has| (-928 |#1|) (-379)))) (-2647 (((-928 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| (-928 |#1|) (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 (-928 |#1|)) $) NIL) (((-1192 $) $ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-4375 (((-939) $) NIL (|has| (-928 |#1|) (-379)))) (-3003 (((-1192 (-928 |#1|)) $) NIL (|has| (-928 |#1|) (-379)))) (-2586 (((-1192 (-928 |#1|)) $) NIL (|has| (-928 |#1|) (-379))) (((-3 (-1192 (-928 |#1|)) "failed") $ $) NIL (|has| (-928 |#1|) (-379)))) (-1579 (($ $ (-1192 (-928 |#1|))) NIL (|has| (-928 |#1|) (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-928 |#1|) (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| (-928 |#1|) (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2547 (($) NIL (|has| (-928 |#1|) (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-928 |#1|) (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| (-928 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| (-928 |#1|) (-379))) (($ $) NIL (|has| (-928 |#1|) (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 (-928 |#1|))) NIL)) (-1984 (($) NIL (|has| (-928 |#1|) (-379)))) (-2209 (($) NIL (|has| (-928 |#1|) (-379)))) (-3435 (((-1287 (-928 |#1|)) $) NIL) (((-701 (-928 |#1|)) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-928 |#1|) (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-928 |#1|)) NIL)) (-1972 (($ $) NIL (|has| (-928 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| (-928 |#1|) (-146)) (|has| (-928 |#1|) (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| (-928 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-928 |#1|) (-379)))) (-3155 (($ $ (-783)) NIL (|has| (-928 |#1|) (-379))) (($ $) NIL (|has| (-928 |#1|) (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ (-928 |#1|)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-928 |#1|)) NIL) (($ (-928 |#1|) $) NIL))) -(((-365 |#1| |#2|) (-339 (-928 |#1|)) (-939) (-939)) (T -365)) -NIL -(-339 (-928 |#1|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) 155 (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 103)) (-2317 ((|#1| $) 100)) (-4005 (($ (-1287 |#1|)) 95)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) 92 (|has| |#1| (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) 51 (|has| |#1| (-379)))) (-2614 (((-112) $) NIL (|has| |#1| (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| |#1| (-379))) (((-845 (-939)) $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) 130 (|has| |#1| (-379)))) (-2588 (((-112) $) 84 (|has| |#1| (-379)))) (-2647 ((|#1| $) 47) (($ $ (-939)) 52 (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 |#1|) $) 75) (((-1192 $) $ (-939)) NIL (|has| |#1| (-379)))) (-4375 (((-939) $) 107 (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) 105 (|has| |#1| (-379)))) (-3274 (((-112) $) 157)) (-3115 (((-1140) $) NIL)) (-2547 (($) 44 (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 124 (|has| |#1| (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) 154)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) 67)) (-3175 (((-1192 |#1|)) 98)) (-1984 (($) 135 (|has| |#1| (-379)))) (-2209 (($) NIL (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) 63) (((-701 |#1|) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-1972 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) 159 T CONST)) (-1994 (((-112) $ $) 161)) (-3578 (((-1287 $)) 119) (((-1287 $) (-939)) 58)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) 121 T CONST)) (-4320 (($) 40 T CONST)) (-2269 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3155 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3938 (((-112) $ $) 117)) (-4046 (($ $ $) 109) (($ $ |#1|) 110)) (-4036 (($ $) 90) (($ $ $) 115)) (-4026 (($ $ $) 113)) (** (($ $ (-939)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1192 |#1|)) (T -366)) +((-3230 (*1 *1 *1) (-4 *1 (-360))) (-2254 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) (-4364 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))))) (-1494 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783))))) (-2051 (*1 *1) (-4 *1 (-360))) (-3814 (*1 *1) (-4 *1 (-360))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) (-3429 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-414) (-379) (-1173) (-238) (-10 -8 (-15 -3230 ($ $)) (-15 -2254 ((-3 (-1288 $) "failed") (-701 $))) (-15 -4364 ((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576)))))) (-15 -1494 ((-1210 (-940) (-783)) (-576))) (-15 -2051 ($)) (-15 -3814 ($)) (-15 -2117 ((-112) $)) (-15 -2992 ((-783) $)) (-15 -3309 ((-940) $)) (-15 -3429 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) . T) ((-1238) . T) ((-1242) . T)) +((-3185 (((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-3277 (((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3277 ((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -3185 ((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -361)) +((-3185 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3277 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(-10 -7 (-15 -3277 ((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -3185 ((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1468 (((-783)) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2859 (((-929 |#1|) $) NIL)) (-3208 (($ (-1288 (-929 |#1|))) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| (-929 |#1|) (-379)))) (-2117 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| (-929 |#1|) (-379)))) (-3146 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2471 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2460 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2726 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3121 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-3777 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2233 (((-1288 (-656 (-2 (|:| -3104 (-929 |#1|)) (|:| -3223 (-1141)))))) NIL)) (-2094 (((-701 (-929 |#1|))) NIL)) (-4128 (($) NIL (|has| (-929 |#1|) (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 (-929 |#1|))) NIL)) (-2051 (($) NIL (|has| (-929 |#1|) (-379)))) (-3746 (($) NIL (|has| (-929 |#1|) (-379)))) (-1490 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-3230 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2018 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) +(((-362 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2233 ((-1288 (-656 (-2 (|:| -3104 (-929 |#1|)) (|:| -3223 (-1141))))))) (-15 -2094 ((-701 (-929 |#1|)))) (-15 -1468 ((-783))))) (-940) (-940)) (T -362)) +((-2233 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 (-929 *3)) (|:| -3223 (-1141)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2094 (*1 *2) (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-1468 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) +(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2233 ((-1288 (-656 (-2 (|:| -3104 (-929 |#1|)) (|:| -3223 (-1141))))))) (-15 -2094 ((-701 (-929 |#1|)))) (-15 -1468 ((-783))))) +((-3488 (((-112) $ $) 73)) (-1812 (((-112) $) 88)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 ((|#1| $) 106) (($ $ (-940)) 104 (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1468 (((-783)) 103)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) 187 (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 127)) (-2859 ((|#1| $) 105)) (-3208 (($ (-1288 |#1|)) 71)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) 182 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) 171 (|has| |#1| (-379)))) (-2117 (((-112) $) NIL (|has| |#1| (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) 113 (|has| |#1| (-379)))) (-3146 (((-112) $) 200 (|has| |#1| (-379)))) (-2471 ((|#1| $) 108) (($ $ (-940)) 107 (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 |#1|) $) 214) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-2460 (((-940) $) 148 (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) 87 (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) 83 (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 218)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 150 (|has| |#1| (-379)))) (-3651 (((-112) $) 123)) (-1450 (((-1141) $) NIL)) (-2233 (((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) 97)) (-2094 (((-701 |#1|)) 101)) (-4128 (($) 110 (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 173 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) 174)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) 75)) (-1897 (((-1193 |#1|)) 175)) (-2051 (($) 147 (|has| |#1| (-379)))) (-3746 (($) NIL (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) 121) (((-701 |#1|) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3230 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) 180 T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) 197) (((-1288 $) (-940)) 116)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) 186 T CONST)) (-2730 (($) 161 T CONST)) (-3046 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-2018 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2923 (((-112) $ $) 208)) (-3056 (($ $ $) 119) (($ $ |#1|) 120)) (-3043 (($ $) 202) (($ $ $) 206)) (-3029 (($ $ $) 204)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2233 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2094 ((-701 |#1|))) (-15 -1468 ((-783))))) (-360) (-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (T -363)) +((-2233 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) (-2094 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141))))))))) (-1468 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2233 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2094 ((-701 |#1|))) (-15 -1468 ((-783))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1468 (((-783)) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3208 (($ (-1288 |#1|)) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| |#1| (-379)))) (-2117 (((-112) $) NIL (|has| |#1| (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| |#1| (-379)))) (-3146 (((-112) $) NIL (|has| |#1| (-379)))) (-2471 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2233 (((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) NIL)) (-2094 (((-701 |#1|)) NIL)) (-4128 (($) NIL (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 |#1|)) NIL)) (-2051 (($) NIL (|has| |#1| (-379)))) (-3746 (($) NIL (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3230 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2018 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2233 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2094 ((-701 |#1|))) (-15 -1468 ((-783))))) (-360) (-940)) (T -364)) +((-2233 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-2094 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-1468 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2233 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2094 ((-701 |#1|))) (-15 -1468 ((-783))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2859 (((-929 |#1|) $) NIL)) (-3208 (($ (-1288 (-929 |#1|))) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| (-929 |#1|) (-379)))) (-2117 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| (-929 |#1|) (-379)))) (-3146 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2471 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2460 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2726 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3121 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-3777 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| (-929 |#1|) (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 (-929 |#1|))) NIL)) (-2051 (($) NIL (|has| (-929 |#1|) (-379)))) (-3746 (($) NIL (|has| (-929 |#1|) (-379)))) (-1490 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-3230 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2018 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) +(((-365 |#1| |#2|) (-339 (-929 |#1|)) (-940) (-940)) (T -365)) +NIL +(-339 (-929 |#1|)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) 155 (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 103)) (-2859 ((|#1| $) 100)) (-3208 (($ (-1288 |#1|)) 95)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) 92 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) 51 (|has| |#1| (-379)))) (-2117 (((-112) $) NIL (|has| |#1| (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) 130 (|has| |#1| (-379)))) (-3146 (((-112) $) 84 (|has| |#1| (-379)))) (-2471 ((|#1| $) 47) (($ $ (-940)) 52 (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 |#1|) $) 75) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-2460 (((-940) $) 107 (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 105 (|has| |#1| (-379)))) (-3651 (((-112) $) 157)) (-1450 (((-1141) $) NIL)) (-4128 (($) 44 (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 124 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) 154)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) 67)) (-1897 (((-1193 |#1|)) 98)) (-2051 (($) 135 (|has| |#1| (-379)))) (-3746 (($) NIL (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) 63) (((-701 |#1|) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3230 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) 159 T CONST)) (-2113 (((-112) $ $) 161)) (-3454 (((-1288 $)) 119) (((-1288 $) (-940)) 58)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) 121 T CONST)) (-2730 (($) 40 T CONST)) (-3046 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2018 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2923 (((-112) $ $) 117)) (-3056 (($ $ $) 109) (($ $ |#1|) 110)) (-3043 (($ $) 90) (($ $ $) 115)) (-3029 (($ $ $) 113)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1193 |#1|)) (T -366)) NIL (-339 |#1|) -((-4307 ((|#1| (-1192 |#2|)) 59))) -(((-367 |#1| |#2|) (-10 -7 (-15 -4307 (|#1| (-1192 |#2|)))) (-13 (-414) (-10 -7 (-15 -4112 (|#1| |#2|)) (-15 -4375 ((-939) |#1|)) (-15 -3578 ((-1287 |#1|) (-939))) (-15 -2269 (|#1| |#1|)))) (-360)) (T -367)) -((-4307 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4112 (*2 *4)) (-15 -4375 ((-939) *2)) (-15 -3578 ((-1287 *2) (-939))) (-15 -2269 (*2 *2))))) (-5 *1 (-367 *2 *4))))) -(-10 -7 (-15 -4307 (|#1| (-1192 |#2|)))) -((-3698 (((-976 (-1192 |#1|)) (-1192 |#1|)) 49)) (-4369 (((-1192 |#1|) (-939) (-939)) 154) (((-1192 |#1|) (-939)) 150)) (-2614 (((-112) (-1192 |#1|)) 107)) (-3604 (((-939) (-939)) 85)) (-3853 (((-939) (-939)) 92)) (-1629 (((-939) (-939)) 83)) (-2588 (((-112) (-1192 |#1|)) 111)) (-2870 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 135)) (-2195 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 140)) (-3440 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 139)) (-1965 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 138)) (-2149 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 131)) (-3539 (((-1192 |#1|) (-1192 |#1|)) 71)) (-2139 (((-1192 |#1|) (-939)) 145)) (-2489 (((-1192 |#1|) (-939)) 148)) (-3412 (((-1192 |#1|) (-939)) 147)) (-3394 (((-1192 |#1|) (-939)) 146)) (-1951 (((-1192 |#1|) (-939)) 143))) -(((-368 |#1|) (-10 -7 (-15 -2614 ((-112) (-1192 |#1|))) (-15 -2588 ((-112) (-1192 |#1|))) (-15 -1629 ((-939) (-939))) (-15 -3604 ((-939) (-939))) (-15 -3853 ((-939) (-939))) (-15 -1951 ((-1192 |#1|) (-939))) (-15 -2139 ((-1192 |#1|) (-939))) (-15 -3394 ((-1192 |#1|) (-939))) (-15 -3412 ((-1192 |#1|) (-939))) (-15 -2489 ((-1192 |#1|) (-939))) (-15 -2149 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2870 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1965 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -3440 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2195 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -4369 ((-1192 |#1|) (-939))) (-15 -4369 ((-1192 |#1|) (-939) (-939))) (-15 -3539 ((-1192 |#1|) (-1192 |#1|))) (-15 -3698 ((-976 (-1192 |#1|)) (-1192 |#1|)))) (-360)) (T -368)) -((-3698 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-976 (-1192 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1192 *4)))) (-3539 (*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-4369 (*1 *2 *3 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4369 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2195 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3440 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1965 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2870 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2149 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-1629 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) -(-10 -7 (-15 -2614 ((-112) (-1192 |#1|))) (-15 -2588 ((-112) (-1192 |#1|))) (-15 -1629 ((-939) (-939))) (-15 -3604 ((-939) (-939))) (-15 -3853 ((-939) (-939))) (-15 -1951 ((-1192 |#1|) (-939))) (-15 -2139 ((-1192 |#1|) (-939))) (-15 -3394 ((-1192 |#1|) (-939))) (-15 -3412 ((-1192 |#1|) (-939))) (-15 -2489 ((-1192 |#1|) (-939))) (-15 -2149 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2870 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1965 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -3440 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2195 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -4369 ((-1192 |#1|) (-939))) (-15 -4369 ((-1192 |#1|) (-939) (-939))) (-15 -3539 ((-1192 |#1|) (-1192 |#1|))) (-15 -3698 ((-976 (-1192 |#1|)) (-1192 |#1|)))) -((-4251 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) -(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -4251 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1263 |#1|) (-1263 |#2|)) (T -369)) -((-4251 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) -(-10 -7 (-15 -4251 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-4005 (($ (-1287 |#1|)) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| |#1| (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| |#1| (-379)))) (-2614 (((-112) $) NIL (|has| |#1| (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| |#1| (-379))) (((-845 (-939)) $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| |#1| (-379)))) (-2588 (((-112) $) NIL (|has| |#1| (-379)))) (-2647 ((|#1| $) NIL) (($ $ (-939)) NIL (|has| |#1| (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-939)) NIL (|has| |#1| (-379)))) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-3003 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-2586 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1579 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2547 (($) NIL (|has| |#1| (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| |#1| (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 |#1|)) NIL)) (-1984 (($) NIL (|has| |#1| (-379)))) (-2209 (($) NIL (|has| |#1| (-379)))) (-3435 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-1972 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3155 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-370 |#1| |#2|) (-339 |#1|) (-360) (-939)) (T -370)) +((-3088 ((|#1| (-1193 |#2|)) 59))) +(((-367 |#1| |#2|) (-10 -7 (-15 -3088 (|#1| (-1193 |#2|)))) (-13 (-414) (-10 -7 (-15 -3569 (|#1| |#2|)) (-15 -2460 ((-940) |#1|)) (-15 -3454 ((-1288 |#1|) (-940))) (-15 -3046 (|#1| |#1|)))) (-360)) (T -367)) +((-3088 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -3569 (*2 *4)) (-15 -2460 ((-940) *2)) (-15 -3454 ((-1288 *2) (-940))) (-15 -3046 (*2 *2))))) (-5 *1 (-367 *2 *4))))) +(-10 -7 (-15 -3088 (|#1| (-1193 |#2|)))) +((-2063 (((-977 (-1193 |#1|)) (-1193 |#1|)) 49)) (-1836 (((-1193 |#1|) (-940) (-940)) 154) (((-1193 |#1|) (-940)) 150)) (-2117 (((-112) (-1193 |#1|)) 107)) (-3707 (((-940) (-940)) 85)) (-4243 (((-940) (-940)) 92)) (-2976 (((-940) (-940)) 83)) (-3146 (((-112) (-1193 |#1|)) 111)) (-2734 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 135)) (-3606 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 140)) (-1532 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 139)) (-3178 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 138)) (-4384 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 131)) (-4339 (((-1193 |#1|) (-1193 |#1|)) 71)) (-4291 (((-1193 |#1|) (-940)) 145)) (-3379 (((-1193 |#1|) (-940)) 148)) (-2461 (((-1193 |#1|) (-940)) 147)) (-2311 (((-1193 |#1|) (-940)) 146)) (-3035 (((-1193 |#1|) (-940)) 143))) +(((-368 |#1|) (-10 -7 (-15 -2117 ((-112) (-1193 |#1|))) (-15 -3146 ((-112) (-1193 |#1|))) (-15 -2976 ((-940) (-940))) (-15 -3707 ((-940) (-940))) (-15 -4243 ((-940) (-940))) (-15 -3035 ((-1193 |#1|) (-940))) (-15 -4291 ((-1193 |#1|) (-940))) (-15 -2311 ((-1193 |#1|) (-940))) (-15 -2461 ((-1193 |#1|) (-940))) (-15 -3379 ((-1193 |#1|) (-940))) (-15 -4384 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2734 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3178 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1532 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3606 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1836 ((-1193 |#1|) (-940))) (-15 -1836 ((-1193 |#1|) (-940) (-940))) (-15 -4339 ((-1193 |#1|) (-1193 |#1|))) (-15 -2063 ((-977 (-1193 |#1|)) (-1193 |#1|)))) (-360)) (T -368)) +((-2063 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1193 *4)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1836 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3606 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1532 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3178 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2734 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-4384 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4243 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) +(-10 -7 (-15 -2117 ((-112) (-1193 |#1|))) (-15 -3146 ((-112) (-1193 |#1|))) (-15 -2976 ((-940) (-940))) (-15 -3707 ((-940) (-940))) (-15 -4243 ((-940) (-940))) (-15 -3035 ((-1193 |#1|) (-940))) (-15 -4291 ((-1193 |#1|) (-940))) (-15 -2311 ((-1193 |#1|) (-940))) (-15 -2461 ((-1193 |#1|) (-940))) (-15 -3379 ((-1193 |#1|) (-940))) (-15 -4384 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2734 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3178 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1532 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3606 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1836 ((-1193 |#1|) (-940))) (-15 -1836 ((-1193 |#1|) (-940) (-940))) (-15 -4339 ((-1193 |#1|) (-1193 |#1|))) (-15 -2063 ((-977 (-1193 |#1|)) (-1193 |#1|)))) +((-3807 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) +(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -3807 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -369)) +((-3807 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) +(-10 -7 (-15 -3807 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3208 (($ (-1288 |#1|)) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| |#1| (-379)))) (-2117 (((-112) $) NIL (|has| |#1| (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| |#1| (-379)))) (-3146 (((-112) $) NIL (|has| |#1| (-379)))) (-2471 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-2726 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3121 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3777 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| |#1| (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 |#1|)) NIL)) (-2051 (($) NIL (|has| |#1| (-379)))) (-3746 (($) NIL (|has| |#1| (-379)))) (-1490 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3230 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2018 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-370 |#1| |#2|) (-339 |#1|) (-360) (-940)) (T -370)) NIL (-339 |#1|) -((-2569 (((-112) (-656 (-970 |#1|))) 41)) (-2393 (((-656 (-970 |#1|)) (-656 (-970 |#1|))) 53)) (-2784 (((-3 (-656 (-970 |#1|)) "failed") (-656 (-970 |#1|))) 48))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2569 ((-112) (-656 (-970 |#1|)))) (-15 -2784 ((-3 (-656 (-970 |#1|)) "failed") (-656 (-970 |#1|)))) (-15 -2393 ((-656 (-970 |#1|)) (-656 (-970 |#1|))))) (-464) (-656 (-1196))) (T -371)) -((-2393 (*1 *2 *2) (-12 (-5 *2 (-656 (-970 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) (-2784 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-970 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1196)))))) -(-10 -7 (-15 -2569 ((-112) (-656 (-970 |#1|)))) (-15 -2784 ((-3 (-656 (-970 |#1|)) "failed") (-656 (-970 |#1|)))) (-15 -2393 ((-656 (-970 |#1|)) (-656 (-970 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783) $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) 17)) (-3908 ((|#1| $ (-576)) NIL)) (-2731 (((-576) $ (-576)) NIL)) (-3687 (($ (-1 |#1| |#1|) $) 34)) (-1402 (($ (-1 (-576) (-576)) $) 26)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 28)) (-3115 (((-1140) $) NIL)) (-1749 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-576)))) $) 30)) (-2633 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-4112 (((-875) $) 40) (($ |#1|) NIL)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 11 T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-372 |#1|) (-13 (-485) (-1058 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2199 ((-783) $)) (-15 -2731 ((-576) $ (-576))) (-15 -3908 (|#1| $ (-576))) (-15 -1402 ($ (-1 (-576) (-576)) $)) (-15 -3687 ($ (-1 |#1| |#1|) $)) (-15 -1749 ((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-576)))) $)))) (-1120)) (T -372)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1120)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1120)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1120)))) (-2731 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1120)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1120)))) (-1402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1120)))) (-3687 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-372 *3)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1120))))) -(-13 (-485) (-1058 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2199 ((-783) $)) (-15 -2731 ((-576) $ (-576))) (-15 -3908 (|#1| $ (-576))) (-15 -1402 ($ (-1 (-576) (-576)) $)) (-15 -3687 ($ (-1 |#1| |#1|) $)) (-15 -1749 ((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-576)))) $)))) -((-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 13)) (-4070 (($ $) 14)) (-3163 (((-430 $) $) 34)) (-2443 (((-112) $) 30)) (-1667 (($ $) 19)) (-3114 (($ $ $) 25) (($ (-656 $)) NIL)) (-1450 (((-430 $) $) 35)) (-1943 (((-3 $ "failed") $ $) 24)) (-2026 (((-783) $) 28)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 39)) (-3111 (((-112) $ $) 16)) (-4046 (($ $ $) 37))) -(((-373 |#1|) (-10 -8 (-15 -4046 (|#1| |#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -2443 ((-112) |#1|)) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -4293 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -2026 ((-783) |#1|)) (-15 -3114 (|#1| (-656 |#1|))) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3111 ((-112) |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -4288 |#1|) (|:| -4450 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) -NIL -(-10 -8 (-15 -4046 (|#1| |#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -2443 ((-112) |#1|)) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -4293 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -2026 ((-783) |#1|)) (-15 -3114 (|#1| (-656 |#1|))) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3111 ((-112) |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -4288 |#1|) (|:| -4450 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2443 (((-112) $) 79)) (-2287 (((-112) $) 35)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2906 (((-112) (-656 (-971 |#1|))) 41)) (-1718 (((-656 (-971 |#1|)) (-656 (-971 |#1|))) 53)) (-1335 (((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|))) 48))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2906 ((-112) (-656 (-971 |#1|)))) (-15 -1335 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -1718 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) (-464) (-656 (-1197))) (T -371)) +((-1718 (*1 *2 *2) (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-1335 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197)))))) +(-10 -7 (-15 -2906 ((-112) (-656 (-971 |#1|)))) (-15 -1335 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -1718 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783) $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) 17)) (-3537 ((|#1| $ (-576)) NIL)) (-2013 (((-576) $ (-576)) NIL)) (-3250 (($ (-1 |#1| |#1|) $) 34)) (-3075 (($ (-1 (-576) (-576)) $) 26)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 28)) (-1450 (((-1141) $) NIL)) (-1601 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $) 30)) (-2318 (($ $ $) NIL)) (-2604 (($ $ $) NIL)) (-3569 (((-876) $) 40) (($ |#1|) NIL)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 11 T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-372 |#1|) (-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2096 ((-783) $)) (-15 -2013 ((-576) $ (-576))) (-15 -3537 (|#1| $ (-576))) (-15 -3075 ($ (-1 (-576) (-576)) $)) (-15 -3250 ($ (-1 |#1| |#1|) $)) (-15 -1601 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $)))) (-1121)) (T -372)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-2013 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-3075 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-3250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1121))))) +(-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2096 ((-783) $)) (-15 -2013 ((-576) $ (-576))) (-15 -3537 (|#1| $ (-576))) (-15 -3075 ($ (-1 (-576) (-576)) $)) (-15 -3250 ($ (-1 |#1| |#1|) $)) (-15 -1601 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $)))) +((-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 13)) (-2544 (($ $) 14)) (-1770 (((-430 $) $) 34)) (-4169 (((-112) $) 30)) (-2048 (($ $) 19)) (-3498 (($ $ $) 25) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) 35)) (-3475 (((-3 $ "failed") $ $) 24)) (-2411 (((-783) $) 28)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 39)) (-2537 (((-112) $ $) 16)) (-3056 (($ $ $) 37))) +(((-373 |#1|) (-10 -8 (-15 -3056 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -4169 ((-112) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2935 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -2411 ((-783) |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2537 ((-112) |#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3717 ((-2 (|:| -2876 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) +NIL +(-10 -8 (-15 -3056 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -4169 ((-112) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2935 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -2411 ((-783) |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2537 ((-112) |#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3717 ((-2 (|:| -2876 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-4169 (((-112) $) 79)) (-3215 (((-112) $) 35)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-374) (-141)) (T -374)) -((-4046 (*1 *1 *1 *1) (-4 *1 (-374)))) -(-13 (-317) (-1241) (-248) (-10 -8 (-15 -4046 ($ $ $)) (-6 -4461) (-6 -4455))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-1952 (((-112) $ $) 7)) (-4199 ((|#2| $ |#2|) 14)) (-1985 (($ $ (-1178)) 19)) (-3627 ((|#2| $) 15)) (-3822 (($ |#1|) 21) (($ |#1| (-1178)) 20)) (-4148 ((|#1| $) 17)) (-2043 (((-1178) $) 10)) (-1368 (((-1178) $) 16)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1743 (($ $) 18)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-375 |#1| |#2|) (-141) (-1120) (-1120)) (T -375)) -((-3822 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3822 (*1 *1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1120)) (-4 *4 (-1120)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-1743 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-1178)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-4199 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3822 ($ |t#1|)) (-15 -3822 ($ |t#1| (-1178))) (-15 -1985 ($ $ (-1178))) (-15 -1743 ($ $)) (-15 -4148 (|t#1| $)) (-15 -1368 ((-1178) $)) (-15 -3627 (|t#2| $)) (-15 -4199 (|t#2| $ |t#2|)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-4199 ((|#1| $ |#1|) 31)) (-1985 (($ $ (-1178)) 23)) (-4420 (((-3 |#1| "failed") $) 30)) (-3627 ((|#1| $) 28)) (-3822 (($ (-400)) 22) (($ (-400) (-1178)) 21)) (-4148 (((-400) $) 25)) (-2043 (((-1178) $) NIL)) (-1368 (((-1178) $) 26)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 20)) (-1743 (($ $) 24)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 19))) -(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -4420 ((-3 |#1| "failed") $)))) (-1120)) (T -376)) -((-4420 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1120))))) -(-13 (-375 (-400) |#1|) (-10 -8 (-15 -4420 ((-3 |#1| "failed") $)))) -((-2108 (((-1287 (-701 |#2|)) (-1287 $)) 67)) (-2206 (((-701 |#2|) (-1287 $)) 139)) (-3500 ((|#2| $) 36)) (-4032 (((-701 |#2|) $ (-1287 $)) 142)) (-2942 (((-3 $ "failed") $) 89)) (-2590 ((|#2| $) 39)) (-3138 (((-1192 |#2|) $) 98)) (-4078 ((|#2| (-1287 $)) 122)) (-1748 (((-1192 |#2|) $) 32)) (-2896 (((-112)) 116)) (-4005 (($ (-1287 |#2|) (-1287 $)) 132)) (-3900 (((-3 $ "failed") $) 93)) (-2582 (((-112)) 111)) (-2396 (((-112)) 106)) (-2304 (((-112)) 58)) (-1647 (((-701 |#2|) (-1287 $)) 137)) (-1881 ((|#2| $) 35)) (-2882 (((-701 |#2|) $ (-1287 $)) 141)) (-1793 (((-3 $ "failed") $) 87)) (-1845 ((|#2| $) 38)) (-2557 (((-1192 |#2|) $) 97)) (-4037 ((|#2| (-1287 $)) 120)) (-3491 (((-1192 |#2|) $) 30)) (-3403 (((-112)) 115)) (-1658 (((-112)) 108)) (-1530 (((-112)) 56)) (-2502 (((-112)) 103)) (-2231 (((-112)) 117)) (-3435 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) 128)) (-2631 (((-112)) 113)) (-2341 (((-656 (-1287 |#2|))) 102)) (-1962 (((-112)) 114)) (-1528 (((-112)) 112)) (-3484 (((-112)) 51)) (-2289 (((-112)) 118))) -(((-377 |#1| |#2|) (-10 -8 (-15 -3138 ((-1192 |#2|) |#1|)) (-15 -2557 ((-1192 |#2|) |#1|)) (-15 -2341 ((-656 (-1287 |#2|)))) (-15 -2942 ((-3 |#1| "failed") |#1|)) (-15 -1793 ((-3 |#1| "failed") |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 -2396 ((-112))) (-15 -1658 ((-112))) (-15 -2582 ((-112))) (-15 -1530 ((-112))) (-15 -2304 ((-112))) (-15 -2502 ((-112))) (-15 -2289 ((-112))) (-15 -2231 ((-112))) (-15 -2896 ((-112))) (-15 -3403 ((-112))) (-15 -3484 ((-112))) (-15 -1962 ((-112))) (-15 -1528 ((-112))) (-15 -2631 ((-112))) (-15 -1748 ((-1192 |#2|) |#1|)) (-15 -3491 ((-1192 |#2|) |#1|)) (-15 -2206 ((-701 |#2|) (-1287 |#1|))) (-15 -1647 ((-701 |#2|) (-1287 |#1|))) (-15 -4078 (|#2| (-1287 |#1|))) (-15 -4037 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -2590 (|#2| |#1|)) (-15 -1845 (|#2| |#1|)) (-15 -3500 (|#2| |#1|)) (-15 -1881 (|#2| |#1|)) (-15 -4032 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2882 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2108 ((-1287 (-701 |#2|)) (-1287 |#1|)))) (-378 |#2|) (-174)) (T -377)) -((-2631 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1528 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1962 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3484 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3403 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2896 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2231 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2289 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2502 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2304 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1530 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2582 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1658 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2396 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2341 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1287 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) -(-10 -8 (-15 -3138 ((-1192 |#2|) |#1|)) (-15 -2557 ((-1192 |#2|) |#1|)) (-15 -2341 ((-656 (-1287 |#2|)))) (-15 -2942 ((-3 |#1| "failed") |#1|)) (-15 -1793 ((-3 |#1| "failed") |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 -2396 ((-112))) (-15 -1658 ((-112))) (-15 -2582 ((-112))) (-15 -1530 ((-112))) (-15 -2304 ((-112))) (-15 -2502 ((-112))) (-15 -2289 ((-112))) (-15 -2231 ((-112))) (-15 -2896 ((-112))) (-15 -3403 ((-112))) (-15 -3484 ((-112))) (-15 -1962 ((-112))) (-15 -1528 ((-112))) (-15 -2631 ((-112))) (-15 -1748 ((-1192 |#2|) |#1|)) (-15 -3491 ((-1192 |#2|) |#1|)) (-15 -2206 ((-701 |#2|) (-1287 |#1|))) (-15 -1647 ((-701 |#2|) (-1287 |#1|))) (-15 -4078 (|#2| (-1287 |#1|))) (-15 -4037 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -2590 (|#2| |#1|)) (-15 -1845 (|#2| |#1|)) (-15 -3500 (|#2| |#1|)) (-15 -1881 (|#2| |#1|)) (-15 -4032 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2882 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2108 ((-1287 (-701 |#2|)) (-1287 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-4288 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) 20)) (-2108 (((-1287 (-701 |#1|)) (-1287 $)) 83)) (-3791 (((-1287 $)) 86)) (-4331 (($) 18 T CONST)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-2426 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-2206 (((-701 |#1|) (-1287 $)) 70)) (-3500 ((|#1| $) 79)) (-4032 (((-701 |#1|) $ (-1287 $)) 81)) (-2942 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2711 (($ $ (-939)) 31)) (-2590 ((|#1| $) 77)) (-3138 (((-1192 |#1|) $) 47 (|has| |#1| (-568)))) (-4078 ((|#1| (-1287 $)) 72)) (-1748 (((-1192 |#1|) $) 68)) (-2896 (((-112)) 62)) (-4005 (($ (-1287 |#1|) (-1287 $)) 74)) (-3900 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4134 (((-939)) 85)) (-1670 (((-112)) 59)) (-4222 (($ $ (-939)) 38)) (-2582 (((-112)) 55)) (-2396 (((-112)) 53)) (-2304 (((-112)) 57)) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3510 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1647 (((-701 |#1|) (-1287 $)) 71)) (-1881 ((|#1| $) 80)) (-2882 (((-701 |#1|) $ (-1287 $)) 82)) (-1793 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1604 (($ $ (-939)) 32)) (-1845 ((|#1| $) 78)) (-2557 (((-1192 |#1|) $) 48 (|has| |#1| (-568)))) (-4037 ((|#1| (-1287 $)) 73)) (-3491 (((-1192 |#1|) $) 69)) (-3403 (((-112)) 63)) (-2043 (((-1178) $) 10)) (-1658 (((-112)) 54)) (-1530 (((-112)) 56)) (-2502 (((-112)) 58)) (-3115 (((-1140) $) 11)) (-2231 (((-112)) 61)) (-3435 (((-1287 |#1|) $ (-1287 $)) 76) (((-701 |#1|) (-1287 $) (-1287 $)) 75)) (-2531 (((-656 (-970 |#1|)) (-1287 $)) 84)) (-2362 (($ $ $) 28)) (-2631 (((-112)) 67)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-2341 (((-656 (-1287 |#1|))) 49 (|has| |#1| (-568)))) (-3240 (($ $ $ $) 29)) (-1962 (((-112)) 65)) (-2027 (($ $ $) 27)) (-1528 (((-112)) 66)) (-3484 (((-112)) 64)) (-2289 (((-112)) 60)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 33)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3056 (*1 *1 *1 *1) (-4 *1 (-374)))) +(-13 (-317) (-1242) (-248) (-10 -8 (-15 -3056 ($ $ $)) (-6 -4462) (-6 -4456))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-3488 (((-112) $ $) 7)) (-1394 ((|#2| $ |#2|) 14)) (-2062 (($ $ (-1179)) 19)) (-3940 ((|#2| $) 15)) (-3256 (($ |#1|) 21) (($ |#1| (-1179)) 20)) (-2627 ((|#1| $) 17)) (-1413 (((-1179) $) 10)) (-3197 (((-1179) $) 16)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-1540 (($ $) 18)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-375 |#1| |#2|) (-141) (-1121) (-1121)) (T -375)) +((-3256 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3256 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-1179)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1394 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3256 ($ |t#1|)) (-15 -3256 ($ |t#1| (-1179))) (-15 -2062 ($ $ (-1179))) (-15 -1540 ($ $)) (-15 -2627 (|t#1| $)) (-15 -3197 ((-1179) $)) (-15 -3940 (|t#2| $)) (-15 -1394 (|t#2| $ |t#2|)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1394 ((|#1| $ |#1|) 31)) (-2062 (($ $ (-1179)) 23)) (-1724 (((-3 |#1| "failed") $) 30)) (-3940 ((|#1| $) 28)) (-3256 (($ (-400)) 22) (($ (-400) (-1179)) 21)) (-2627 (((-400) $) 25)) (-1413 (((-1179) $) NIL)) (-3197 (((-1179) $) 26)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20)) (-1540 (($ $) 24)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 19))) +(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -1724 ((-3 |#1| "failed") $)))) (-1121)) (T -376)) +((-1724 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121))))) +(-13 (-375 (-400) |#1|) (-10 -8 (-15 -1724 ((-3 |#1| "failed") $)))) +((-4001 (((-1288 (-701 |#2|)) (-1288 $)) 67)) (-3712 (((-701 |#2|) (-1288 $)) 139)) (-4016 ((|#2| $) 36)) (-2173 (((-701 |#2|) $ (-1288 $)) 142)) (-3417 (((-3 $ "failed") $) 89)) (-3168 ((|#2| $) 39)) (-1544 (((-1193 |#2|) $) 98)) (-2624 ((|#2| (-1288 $)) 122)) (-1591 (((-1193 |#2|) $) 32)) (-3070 (((-112)) 116)) (-3208 (($ (-1288 |#2|) (-1288 $)) 132)) (-3451 (((-3 $ "failed") $) 93)) (-3073 (((-112)) 111)) (-1744 (((-112)) 106)) (-2076 (((-112)) 58)) (-3160 (((-701 |#2|) (-1288 $)) 137)) (-3643 ((|#2| $) 35)) (-2888 (((-701 |#2|) $ (-1288 $)) 141)) (-3974 (((-3 $ "failed") $) 87)) (-3261 ((|#2| $) 38)) (-2754 (((-1193 |#2|) $) 97)) (-2218 ((|#2| (-1288 $)) 120)) (-1953 (((-1193 |#2|) $) 30)) (-2384 (((-112)) 115)) (-1981 (((-112)) 108)) (-3307 (((-112)) 56)) (-3505 (((-112)) 103)) (-2653 (((-112)) 117)) (-1490 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 128)) (-2306 (((-112)) 113)) (-2440 (((-656 (-1288 |#2|))) 102)) (-3143 (((-112)) 114)) (-3288 (((-112)) 112)) (-1892 (((-112)) 51)) (-3236 (((-112)) 118))) +(((-377 |#1| |#2|) (-10 -8 (-15 -1544 ((-1193 |#2|) |#1|)) (-15 -2754 ((-1193 |#2|) |#1|)) (-15 -2440 ((-656 (-1288 |#2|)))) (-15 -3417 ((-3 |#1| "failed") |#1|)) (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 -1744 ((-112))) (-15 -1981 ((-112))) (-15 -3073 ((-112))) (-15 -3307 ((-112))) (-15 -2076 ((-112))) (-15 -3505 ((-112))) (-15 -3236 ((-112))) (-15 -2653 ((-112))) (-15 -3070 ((-112))) (-15 -2384 ((-112))) (-15 -1892 ((-112))) (-15 -3143 ((-112))) (-15 -3288 ((-112))) (-15 -2306 ((-112))) (-15 -1591 ((-1193 |#2|) |#1|)) (-15 -1953 ((-1193 |#2|) |#1|)) (-15 -3712 ((-701 |#2|) (-1288 |#1|))) (-15 -3160 ((-701 |#2|) (-1288 |#1|))) (-15 -2624 (|#2| (-1288 |#1|))) (-15 -2218 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3168 (|#2| |#1|)) (-15 -3261 (|#2| |#1|)) (-15 -4016 (|#2| |#1|)) (-15 -3643 (|#2| |#1|)) (-15 -2173 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2888 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4001 ((-1288 (-701 |#2|)) (-1288 |#1|)))) (-378 |#2|) (-174)) (T -377)) +((-2306 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3288 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3143 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1892 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2384 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3070 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2653 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3236 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3505 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2076 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3307 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3073 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1981 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1744 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2440 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) +(-10 -8 (-15 -1544 ((-1193 |#2|) |#1|)) (-15 -2754 ((-1193 |#2|) |#1|)) (-15 -2440 ((-656 (-1288 |#2|)))) (-15 -3417 ((-3 |#1| "failed") |#1|)) (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 -1744 ((-112))) (-15 -1981 ((-112))) (-15 -3073 ((-112))) (-15 -3307 ((-112))) (-15 -2076 ((-112))) (-15 -3505 ((-112))) (-15 -3236 ((-112))) (-15 -2653 ((-112))) (-15 -3070 ((-112))) (-15 -2384 ((-112))) (-15 -1892 ((-112))) (-15 -3143 ((-112))) (-15 -3288 ((-112))) (-15 -2306 ((-112))) (-15 -1591 ((-1193 |#2|) |#1|)) (-15 -1953 ((-1193 |#2|) |#1|)) (-15 -3712 ((-701 |#2|) (-1288 |#1|))) (-15 -3160 ((-701 |#2|) (-1288 |#1|))) (-15 -2624 (|#2| (-1288 |#1|))) (-15 -2218 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3168 (|#2| |#1|)) (-15 -3261 (|#2| |#1|)) (-15 -4016 (|#2| |#1|)) (-15 -3643 (|#2| |#1|)) (-15 -2173 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2888 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4001 ((-1288 (-701 |#2|)) (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2876 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) 20)) (-4001 (((-1288 (-701 |#1|)) (-1288 $)) 83)) (-1692 (((-1288 $)) 86)) (-3306 (($) 18 T CONST)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-4008 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3712 (((-701 |#1|) (-1288 $)) 70)) (-4016 ((|#1| $) 79)) (-2173 (((-701 |#1|) $ (-1288 $)) 81)) (-3417 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-1845 (($ $ (-940)) 31)) (-3168 ((|#1| $) 77)) (-1544 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-2624 ((|#1| (-1288 $)) 72)) (-1591 (((-1193 |#1|) $) 68)) (-3070 (((-112)) 62)) (-3208 (($ (-1288 |#1|) (-1288 $)) 74)) (-3451 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3733 (((-940)) 85)) (-2055 (((-112)) 59)) (-3507 (($ $ (-940)) 38)) (-3073 (((-112)) 55)) (-1744 (((-112)) 53)) (-2076 (((-112)) 57)) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-4114 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-3160 (((-701 |#1|) (-1288 $)) 71)) (-3643 ((|#1| $) 80)) (-2888 (((-701 |#1|) $ (-1288 $)) 82)) (-3974 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-2707 (($ $ (-940)) 32)) (-3261 ((|#1| $) 78)) (-2754 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-2218 ((|#1| (-1288 $)) 73)) (-1953 (((-1193 |#1|) $) 69)) (-2384 (((-112)) 63)) (-1413 (((-1179) $) 10)) (-1981 (((-112)) 54)) (-3307 (((-112)) 56)) (-3505 (((-112)) 58)) (-1450 (((-1141) $) 11)) (-2653 (((-112)) 61)) (-1490 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75)) (-3818 (((-656 (-971 |#1|)) (-1288 $)) 84)) (-2604 (($ $ $) 28)) (-2306 (((-112)) 67)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2440 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-3298 (($ $ $ $) 29)) (-3143 (((-112)) 65)) (-2424 (($ $ $) 27)) (-3288 (((-112)) 66)) (-1892 (((-112)) 64)) (-3236 (((-112)) 60)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-378 |#1|) (-141) (-174)) (T -378)) -((-3791 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-378 *3)))) (-4134 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-939)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-970 *4))))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2590 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3435 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1287 *4)))) (-3435 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4005 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))) (-2631 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1528 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1962 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3484 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3403 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2896 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2231 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2289 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1670 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2502 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2304 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1530 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2582 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1658 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2396 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3900 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1793 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2942 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2341 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1287 *3))))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1192 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1192 *3)))) (-3913 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3578 (-656 *1)))) (-4 *1 (-378 *3)))) (-3427 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3578 (-656 *1)))) (-4 *1 (-378 *3)))) (-3510 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2426 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4288 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(-13 (-756 |t#1|) (-10 -8 (-15 -3791 ((-1287 $))) (-15 -4134 ((-939))) (-15 -2531 ((-656 (-970 |t#1|)) (-1287 $))) (-15 -2108 ((-1287 (-701 |t#1|)) (-1287 $))) (-15 -2882 ((-701 |t#1|) $ (-1287 $))) (-15 -4032 ((-701 |t#1|) $ (-1287 $))) (-15 -1881 (|t#1| $)) (-15 -3500 (|t#1| $)) (-15 -1845 (|t#1| $)) (-15 -2590 (|t#1| $)) (-15 -3435 ((-1287 |t#1|) $ (-1287 $))) (-15 -3435 ((-701 |t#1|) (-1287 $) (-1287 $))) (-15 -4005 ($ (-1287 |t#1|) (-1287 $))) (-15 -4037 (|t#1| (-1287 $))) (-15 -4078 (|t#1| (-1287 $))) (-15 -1647 ((-701 |t#1|) (-1287 $))) (-15 -2206 ((-701 |t#1|) (-1287 $))) (-15 -3491 ((-1192 |t#1|) $)) (-15 -1748 ((-1192 |t#1|) $)) (-15 -2631 ((-112))) (-15 -1528 ((-112))) (-15 -1962 ((-112))) (-15 -3484 ((-112))) (-15 -3403 ((-112))) (-15 -2896 ((-112))) (-15 -2231 ((-112))) (-15 -2289 ((-112))) (-15 -1670 ((-112))) (-15 -2502 ((-112))) (-15 -2304 ((-112))) (-15 -1530 ((-112))) (-15 -2582 ((-112))) (-15 -1658 ((-112))) (-15 -2396 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3900 ((-3 $ "failed") $)) (-15 -1793 ((-3 $ "failed") $)) (-15 -2942 ((-3 $ "failed") $)) (-15 -2341 ((-656 (-1287 |t#1|)))) (-15 -2557 ((-1192 |t#1|) $)) (-15 -3138 ((-1192 |t#1|) $)) (-15 -3913 ((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed"))) (-15 -3427 ((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed"))) (-15 -3510 ((-3 $ "failed"))) (-15 -2426 ((-3 $ "failed"))) (-15 -4288 ((-3 $ "failed"))) (-6 -4460)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-2199 (((-783)) 17)) (-4369 (($) 14)) (-4375 (((-939) $) 15)) (-2043 (((-1178) $) 10)) (-2409 (($ (-939)) 16)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +((-1692 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3)))) (-3733 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-940)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2173 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 *4)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3208 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-2306 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3288 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3143 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1892 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2384 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3070 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2653 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3236 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2055 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3505 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2076 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3307 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3073 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1981 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1744 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3451 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3974 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3417 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2440 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1288 *3))))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-3596 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3454 (-656 *1)))) (-4 *1 (-378 *3)))) (-2592 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3454 (-656 *1)))) (-4 *1 (-378 *3)))) (-4114 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4008 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2876 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(-13 (-756 |t#1|) (-10 -8 (-15 -1692 ((-1288 $))) (-15 -3733 ((-940))) (-15 -3818 ((-656 (-971 |t#1|)) (-1288 $))) (-15 -4001 ((-1288 (-701 |t#1|)) (-1288 $))) (-15 -2888 ((-701 |t#1|) $ (-1288 $))) (-15 -2173 ((-701 |t#1|) $ (-1288 $))) (-15 -3643 (|t#1| $)) (-15 -4016 (|t#1| $)) (-15 -3261 (|t#1| $)) (-15 -3168 (|t#1| $)) (-15 -1490 ((-1288 |t#1|) $ (-1288 $))) (-15 -1490 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -3208 ($ (-1288 |t#1|) (-1288 $))) (-15 -2218 (|t#1| (-1288 $))) (-15 -2624 (|t#1| (-1288 $))) (-15 -3160 ((-701 |t#1|) (-1288 $))) (-15 -3712 ((-701 |t#1|) (-1288 $))) (-15 -1953 ((-1193 |t#1|) $)) (-15 -1591 ((-1193 |t#1|) $)) (-15 -2306 ((-112))) (-15 -3288 ((-112))) (-15 -3143 ((-112))) (-15 -1892 ((-112))) (-15 -2384 ((-112))) (-15 -3070 ((-112))) (-15 -2653 ((-112))) (-15 -3236 ((-112))) (-15 -2055 ((-112))) (-15 -3505 ((-112))) (-15 -2076 ((-112))) (-15 -3307 ((-112))) (-15 -3073 ((-112))) (-15 -1981 ((-112))) (-15 -1744 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3451 ((-3 $ "failed") $)) (-15 -3974 ((-3 $ "failed") $)) (-15 -3417 ((-3 $ "failed") $)) (-15 -2440 ((-656 (-1288 |t#1|)))) (-15 -2754 ((-1193 |t#1|) $)) (-15 -1544 ((-1193 |t#1|) $)) (-15 -3596 ((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed"))) (-15 -2592 ((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed"))) (-15 -4114 ((-3 $ "failed"))) (-15 -4008 ((-3 $ "failed"))) (-15 -2876 ((-3 $ "failed"))) (-6 -4461)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-2096 (((-783)) 17)) (-1836 (($) 14)) (-2460 (((-940) $) 15)) (-1413 (((-1179) $) 10)) (-3223 (($ (-940)) 16)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-379) (-141)) (T -379)) -((-2199 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-379)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-939)))) (-4369 (*1 *1) (-4 *1 (-379)))) -(-13 (-1120) (-10 -8 (-15 -2199 ((-783))) (-15 -2409 ($ (-939))) (-15 -4375 ((-939) $)) (-15 -4369 ($)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-3313 (((-701 |#2|) (-1287 $)) 45)) (-4005 (($ (-1287 |#2|) (-1287 $)) 39)) (-4228 (((-701 |#2|) $ (-1287 $)) 47)) (-1451 ((|#2| (-1287 $)) 13)) (-3435 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) 27))) -(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -3313 ((-701 |#2|) (-1287 |#1|))) (-15 -1451 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4228 ((-701 |#2|) |#1| (-1287 |#1|)))) (-381 |#2| |#3|) (-174) (-1263 |#2|)) (T -380)) -NIL -(-10 -8 (-15 -3313 ((-701 |#2|) (-1287 |#1|))) (-15 -1451 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4228 ((-701 |#2|) |#1| (-1287 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-3313 (((-701 |#1|) (-1287 $)) 53)) (-3832 ((|#1| $) 59)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-4005 (($ (-1287 |#1|) (-1287 $)) 55)) (-4228 (((-701 |#1|) $ (-1287 $)) 60)) (-3900 (((-3 $ "failed") $) 37)) (-4134 (((-939)) 61)) (-2287 (((-112) $) 35)) (-2647 ((|#1| $) 58)) (-2354 ((|#2| $) 51 (|has| |#1| (-374)))) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1451 ((|#1| (-1287 $)) 54)) (-3435 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1972 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3069 ((|#2| $) 52)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-381 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -381)) -((-4134 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-939)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-3435 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) (-3435 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-4005 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1263 *4)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1263 *2)) (-4 *2 (-174)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1263 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -4134 ((-939))) (-15 -4228 ((-701 |t#1|) $ (-1287 $))) (-15 -3832 (|t#1| $)) (-15 -2647 (|t#1| $)) (-15 -3435 ((-1287 |t#1|) $ (-1287 $))) (-15 -3435 ((-701 |t#1|) (-1287 $) (-1287 $))) (-15 -4005 ($ (-1287 |t#1|) (-1287 $))) (-15 -1451 (|t#1| (-1287 $))) (-15 -3313 ((-701 |t#1|) (-1287 $))) (-15 -3069 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -2354 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1925 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2721 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2422 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1925 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1237) (-384 |#1|) (-1237) (-384 |#3|)) (T -382)) -((-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) -(-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1925 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3063 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1715 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2379 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4203 (($ $) 25)) (-3538 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-2144 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-383 |#1| |#2|) (-10 -8 (-15 -1715 (|#1| |#1|)) (-15 -1715 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3538 ((-576) |#2| |#1| (-576))) (-15 -3538 ((-576) |#2| |#1|)) (-15 -3538 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3063 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2379 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2144 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1237)) (T -383)) -NIL -(-10 -8 (-15 -1715 (|#1| |#1|)) (-15 -1715 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3538 ((-576) |#2| |#1| (-576))) (-15 -3538 ((-576) |#2| |#1|)) (-15 -3538 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3063 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2379 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2144 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4464))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4464))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3432 (($ $) 93 (|has| $ (-6 -4464)))) (-4203 (($ $) 103)) (-3966 (($ $) 80 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 79 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 52)) (-3538 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-2905 (($ $ $) 85 (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1654 (($ $ $) 86 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 43 (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2556 (($ $ |#1|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3757 (($ $ $ (-576)) 94 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 72)) (-2766 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3983 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 90 (|has| |#1| (-861)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-384 |#1|) (-141) (-1237)) (T -384)) -((-2144 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)))) (-2379 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-3063 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3538 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) (-5 *2 (-576)))) (-3538 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-576)))) (-3538 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)))) (-2144 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-861)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-861)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-861)) (-5 *2 (-112)))) (-3757 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4464)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-3432 (*1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-384 *2)) (-4 *2 (-1237)))) (-1715 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4464)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-1715 (*1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-861))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4463) (-15 -2144 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4203 ($ $)) (-15 -2379 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3063 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3538 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -3538 ((-576) |t#1| $)) (-15 -3538 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -2144 ($ $ $)) (-15 -2379 ($ $)) (-15 -3063 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4464)) (PROGN (-15 -3757 ($ $ $ (-576))) (-15 -3432 ($ $)) (-15 -1715 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -1715 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1120) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861))) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1417 (((-656 |#1|) $) 37)) (-2725 (($ $ (-783)) 38)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-4226 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 41)) (-3848 (($ $) 39)) (-3052 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 42)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2143 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-1877 (((-783) $) 43)) (-4124 (($ $ $) 34)) (-4112 (((-875) $) 12) (($ |#1|) 46) (((-1302 |#1| |#2|) $) 45) (((-1311 |#1| |#2|) $) 44)) (-2861 ((|#2| (-1311 |#1| |#2|) $) 47)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3320 (($ (-684 |#1|)) 40)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +((-2096 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) (-1836 (*1 *1) (-4 *1 (-379)))) +(-13 (-1121) (-10 -8 (-15 -2096 ((-783))) (-15 -3223 ($ (-940))) (-15 -2460 ((-940) $)) (-15 -1836 ($)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-2747 (((-701 |#2|) (-1288 $)) 45)) (-3208 (($ (-1288 |#2|) (-1288 $)) 39)) (-3567 (((-701 |#2|) $ (-1288 $)) 47)) (-2455 ((|#2| (-1288 $)) 13)) (-1490 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 27))) +(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -2747 ((-701 |#2|) (-1288 |#1|))) (-15 -2455 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3567 ((-701 |#2|) |#1| (-1288 |#1|)))) (-381 |#2| |#3|) (-174) (-1264 |#2|)) (T -380)) +NIL +(-10 -8 (-15 -2747 ((-701 |#2|) (-1288 |#1|))) (-15 -2455 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3567 ((-701 |#2|) |#1| (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2747 (((-701 |#1|) (-1288 $)) 53)) (-2208 ((|#1| $) 59)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3208 (($ (-1288 |#1|) (-1288 $)) 55)) (-3567 (((-701 |#1|) $ (-1288 $)) 60)) (-3451 (((-3 $ "failed") $) 37)) (-3733 (((-940)) 61)) (-3215 (((-112) $) 35)) (-2471 ((|#1| $) 58)) (-2542 ((|#2| $) 51 (|has| |#1| (-374)))) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2455 ((|#1| (-1288 $)) 54)) (-1490 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3230 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2137 ((|#2| $) 52)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-381 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -381)) +((-3733 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-940)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-3208 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) (-4 *2 (-174)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2137 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1264 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3733 ((-940))) (-15 -3567 ((-701 |t#1|) $ (-1288 $))) (-15 -2208 (|t#1| $)) (-15 -2471 (|t#1| $)) (-15 -1490 ((-1288 |t#1|) $ (-1288 $))) (-15 -1490 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -3208 ($ (-1288 |t#1|) (-1288 $))) (-15 -2455 (|t#1| (-1288 $))) (-15 -2747 ((-701 |t#1|) (-1288 $))) (-15 -2137 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -2542 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2727 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3685 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4116 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2727 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1238) (-384 |#1|) (-1238) (-384 |#3|)) (T -382)) +((-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2727 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2071 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2450 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1795 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3834 (($ $) 25)) (-3659 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-4335 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-383 |#1| |#2|) (-10 -8 (-15 -2450 (|#1| |#1|)) (-15 -2450 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2071 ((-112) |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1795 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -4335 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1238)) (T -383)) +NIL +(-10 -8 (-15 -2450 (|#1| |#1|)) (-15 -2450 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2071 ((-112) |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1795 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -4335 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-1474 (($ $) 93 (|has| $ (-6 -4465)))) (-3834 (($ $) 103)) (-2800 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-1951 (($ $ $) 86 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2568 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-384 |#1|) (-141) (-1238)) (T -384)) +((-4335 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-2071 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3659 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-576)))) (-3659 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-576)))) (-3659 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)))) (-4335 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-1795 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) (-2568 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-1474 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-2450 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-2450 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) +(-13 (-663 |t#1|) (-10 -8 (-6 -4464) (-15 -4335 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3834 ($ $)) (-15 -1795 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2071 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3659 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3659 ((-576) |t#1| $)) (-15 -3659 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -4335 ($ $ $)) (-15 -1795 ($ $)) (-15 -2071 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2568 ($ $ $ (-576))) (-15 -1474 ($ $)) (-15 -2450 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -2450 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3446 (((-656 |#1|) $) 37)) (-1970 (($ $ (-783)) 38)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3556 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 41)) (-4195 (($ $) 39)) (-1978 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 42)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3283 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-3600 (((-783) $) 43)) (-3581 (($ $ $) 34)) (-3569 (((-876) $) 12) (($ |#1|) 46) (((-1303 |#1| |#2|) $) 45) (((-1312 |#1| |#2|) $) 44)) (-1714 ((|#2| (-1312 |#1| |#2|) $) 47)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2824 (($ (-684 |#1|)) 40)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) (((-385 |#1| |#2|) (-141) (-861) (-174)) (T -385)) -((-2861 (*1 *2 *3 *1) (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-4112 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1302 *3 *4)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1311 *3 *4)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-783)))) (-3052 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4226 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-2143 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174))))) -(-13 (-646 |t#2|) (-10 -8 (-15 -2861 (|t#2| (-1311 |t#1| |t#2|) $)) (-15 -4112 ($ |t#1|)) (-15 -4112 ((-1302 |t#1| |t#2|) $)) (-15 -4112 ((-1311 |t#1| |t#2|) $)) (-15 -1877 ((-783) $)) (-15 -3052 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -4226 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -3320 ($ (-684 |t#1|))) (-15 -3848 ($ $)) (-15 -2725 ($ $ (-783))) (-15 -1417 ((-656 |t#1|) $)) (-15 -2143 ($ $ |t#1| $)) (-15 -2143 ($ $ (-656 |t#1|) (-656 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1120) . T) ((-1237) . T)) -((-3959 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-4196 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1401 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-386 |#1| |#2|) (-10 -7 (-15 -4196 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1401 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3959 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1237) (-13 (-384 |#1|) (-10 -7 (-6 -4464)))) (T -386)) -((-3959 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464)))))) (-1401 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464)))))) (-4196 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) -(-10 -7 (-15 -4196 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1401 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3959 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3222 (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 22) (((-701 (-576)) (-701 $)) 14))) -(((-387 |#1| |#2|) (-10 -8 (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 |#2|) (-701 |#1|)))) (-388 |#2|) (-1069)) (T -387)) -NIL -(-10 -8 (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 |#2|) (-701 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3222 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 29) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576))))) (-2198 (((-701 |#1|) (-1287 $)) 32) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 31) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1287 $)) 38 (|has| |#1| (-651 (-576))))) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-388 |#1|) (-141) (-1069)) (T -388)) +((-1714 (*1 *2 *3 *1) (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-3569 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1303 *3 *4)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1312 *3 *4)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-783)))) (-1978 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3556 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-4195 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1970 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-3283 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174))))) +(-13 (-646 |t#2|) (-10 -8 (-15 -1714 (|t#2| (-1312 |t#1| |t#2|) $)) (-15 -3569 ($ |t#1|)) (-15 -3569 ((-1303 |t#1| |t#2|) $)) (-15 -3569 ((-1312 |t#1| |t#2|) $)) (-15 -3600 ((-783) $)) (-15 -1978 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -3556 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -2824 ($ (-684 |t#1|))) (-15 -4195 ($ $)) (-15 -1970 ($ $ (-783))) (-15 -3446 ((-656 |t#1|) $)) (-15 -3283 ($ $ |t#1| $)) (-15 -3283 ($ $ (-656 |t#1|) (-656 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1121) . T) ((-1238) . T)) +((-2749 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1363 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4076 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-386 |#1| |#2|) (-10 -7 (-15 -1363 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4076 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2749 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1238) (-13 (-384 |#1|) (-10 -7 (-6 -4465)))) (T -386)) +((-2749 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-4076 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-1363 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(-10 -7 (-15 -1363 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4076 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2749 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-4344 (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 22) (((-701 (-576)) (-701 $)) 14))) +(((-387 |#1| |#2|) (-10 -8 (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 |#2|) (-701 |#1|)))) (-388 |#2|) (-1070)) (T -387)) +NIL +(-10 -8 (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 |#2|) (-701 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-4344 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576))))) (-3626 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1288 $)) 38 (|has| |#1| (-651 (-576))))) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +(((-388 |#1|) (-141) (-1070)) (T -388)) NIL (-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-2472 (((-656 (-304 (-970 (-171 |#1|)))) (-304 (-419 (-970 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-970 (-171 |#1|)))) (-419 (-970 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-970 (-171 |#1|))))) (-656 (-304 (-419 (-970 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-970 (-171 |#1|))))) (-656 (-419 (-970 (-171 (-576))))) |#1|) 41)) (-3920 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-970 (-171 (-576))))) (-656 (-1196)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-970 (-171 (-576)))) |#1|) 18))) -(((-389 |#1|) (-10 -7 (-15 -2472 ((-656 (-656 (-304 (-970 (-171 |#1|))))) (-656 (-419 (-970 (-171 (-576))))) |#1|)) (-15 -2472 ((-656 (-656 (-304 (-970 (-171 |#1|))))) (-656 (-304 (-419 (-970 (-171 (-576)))))) |#1|)) (-15 -2472 ((-656 (-304 (-970 (-171 |#1|)))) (-419 (-970 (-171 (-576)))) |#1|)) (-15 -2472 ((-656 (-304 (-970 (-171 |#1|)))) (-304 (-419 (-970 (-171 (-576))))) |#1|)) (-15 -3920 ((-656 (-171 |#1|)) (-419 (-970 (-171 (-576)))) |#1|)) (-15 -3920 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-970 (-171 (-576))))) (-656 (-1196)) |#1|))) (-13 (-374) (-860))) (T -389)) -((-3920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-970 (-171 (-576)))))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-970 (-171 (-576)))))) (-5 *2 (-656 (-304 (-970 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 (-171 (-576))))) (-5 *2 (-656 (-304 (-970 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-970 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-970 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-970 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-970 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2472 ((-656 (-656 (-304 (-970 (-171 |#1|))))) (-656 (-419 (-970 (-171 (-576))))) |#1|)) (-15 -2472 ((-656 (-656 (-304 (-970 (-171 |#1|))))) (-656 (-304 (-419 (-970 (-171 (-576)))))) |#1|)) (-15 -2472 ((-656 (-304 (-970 (-171 |#1|)))) (-419 (-970 (-171 (-576)))) |#1|)) (-15 -2472 ((-656 (-304 (-970 (-171 |#1|)))) (-304 (-419 (-970 (-171 (-576))))) |#1|)) (-15 -3920 ((-656 (-171 |#1|)) (-419 (-970 (-171 (-576)))) |#1|)) (-15 -3920 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-970 (-171 (-576))))) (-656 (-1196)) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 35)) (-1705 (((-576) $) 62)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2736 (($ $) 136)) (-3585 (($ $) 98)) (-3434 (($ $) 90)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-1462 (($ $) 47)) (-4057 (((-112) $ $) NIL)) (-3561 (($ $) 96)) (-3411 (($ $) 85)) (-3773 (((-576) $) 78)) (-3384 (($ $ (-576)) 73)) (-3611 (($ $) NIL)) (-3460 (($ $) NIL)) (-4331 (($) NIL T CONST)) (-3846 (($ $) 138)) (-2980 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2317 (((-576) $) 229) (((-419 (-576)) $) 225)) (-1893 (($ $ $) NIL)) (-3692 (((-576) $ $) 125)) (-3900 (((-3 $ "failed") $) 141)) (-1824 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2757 (((-939)) 121) (((-939) (-939)) 122 (|has| $ (-6 -4454)))) (-2690 (((-112) $) 130)) (-2722 (($) 41)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL)) (-1375 (((-1292) (-783)) 191)) (-4411 (((-1292)) 196) (((-1292) (-783)) 197)) (-2150 (((-1292)) 198) (((-1292) (-783)) 199)) (-2795 (((-1292)) 194) (((-1292) (-783)) 195)) (-3241 (((-576) $) 68)) (-2287 (((-112) $) 40)) (-2770 (($ $ (-576)) NIL)) (-3233 (($ $) 51)) (-2647 (($ $) NIL)) (-3197 (((-112) $) 37)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL) (($) NIL (-12 (-2298 (|has| $ (-6 -4446))) (-2298 (|has| $ (-6 -4454)))))) (-1654 (($ $ $) NIL) (($) NIL (-12 (-2298 (|has| $ (-6 -4446))) (-2298 (|has| $ (-6 -4454)))))) (-1360 (((-576) $) 17)) (-4159 (($) 106) (($ $) 113)) (-2484 (($) 112) (($ $) 114)) (-2607 (($ $) 101)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 143)) (-3072 (((-939) (-576)) 46 (|has| $ (-6 -4454)))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) 60)) (-2804 (($ $) 135)) (-2632 (($ (-576) (-576)) 131) (($ (-576) (-576) (-939)) 132)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1495 (((-576) $) 19)) (-3793 (($) 115)) (-2155 (($ $) 95)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2913 (((-939)) 123) (((-939) (-939)) 124 (|has| $ (-6 -4454)))) (-4106 (($ $) 142) (($ $ (-783)) NIL)) (-3206 (((-939) (-576)) 50 (|has| $ (-6 -4454)))) (-3622 (($ $) NIL)) (-3473 (($ $) NIL)) (-3598 (($ $) NIL)) (-3447 (($ $) NIL)) (-3573 (($ $) 97)) (-3423 (($ $) 89)) (-1554 (((-390) $) 216) (((-227) $) 218) (((-906 (-390)) $) NIL) (((-1178) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-4112 (((-875) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-4115 (((-783)) NIL T CONST)) (-2671 (($ $) 137)) (-4097 (((-939)) 61) (((-939) (-939)) 80 (|has| $ (-6 -4454)))) (-1994 (((-112) $ $) NIL)) (-1865 (((-939)) 126)) (-3652 (($ $) 104)) (-3509 (($ $) 49) (($ $ $) 59)) (-3111 (((-112) $ $) NIL)) (-3631 (($ $) 102)) (-3486 (($ $) 39)) (-3672 (($ $) NIL)) (-3536 (($ $) NIL)) (-1970 (($ $) NIL)) (-3549 (($ $) NIL)) (-3663 (($ $) NIL)) (-3522 (($ $) NIL)) (-3641 (($ $) 103)) (-3497 (($ $) 52)) (-2388 (($ $) 58)) (-4314 (($) 36 T CONST)) (-4320 (($) 43 T CONST)) (-3678 (((-1178) $) 27) (((-1178) $ (-112)) 29) (((-1292) (-834) $) 30) (((-1292) (-834) $ (-112)) 31)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3993 (((-112) $ $) 203)) (-3974 (((-112) $ $) 45)) (-3938 (((-112) $ $) 56)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 57)) (-4046 (($ $ $) 48) (($ $ (-576)) 42)) (-4036 (($ $) 38) (($ $ $) 53)) (-4026 (($ $ $) 72)) (** (($ $ (-939)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-939) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-390) (-13 (-416) (-238) (-626 (-1178)) (-840) (-625 (-227)) (-1222) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4046 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3233 ($ $)) (-15 -3692 ((-576) $ $)) (-15 -3384 ($ $ (-576))) (-15 -1824 ((-419 (-576)) $ (-783))) (-15 -1824 ((-419 (-576)) $ (-783) (-783))) (-15 -4159 ($)) (-15 -2484 ($)) (-15 -3793 ($)) (-15 -3509 ($ $ $)) (-15 -4159 ($ $)) (-15 -2484 ($ $)) (-15 -2150 ((-1292))) (-15 -2150 ((-1292) (-783))) (-15 -2795 ((-1292))) (-15 -2795 ((-1292) (-783))) (-15 -4411 ((-1292))) (-15 -4411 ((-1292) (-783))) (-15 -1375 ((-1292) (-783))) (-6 -4454) (-6 -4446)))) (T -390)) -((** (*1 *1 *1 *1) (-5 *1 (-390))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3233 (*1 *1 *1) (-5 *1 (-390))) (-3692 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-1824 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-1824 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4159 (*1 *1) (-5 *1 (-390))) (-2484 (*1 *1) (-5 *1 (-390))) (-3793 (*1 *1) (-5 *1 (-390))) (-3509 (*1 *1 *1 *1) (-5 *1 (-390))) (-4159 (*1 *1 *1) (-5 *1 (-390))) (-2484 (*1 *1 *1) (-5 *1 (-390))) (-2150 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-2795 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-4411 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-4411 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))) -(-13 (-416) (-238) (-626 (-1178)) (-840) (-625 (-227)) (-1222) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4046 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3233 ($ $)) (-15 -3692 ((-576) $ $)) (-15 -3384 ($ $ (-576))) (-15 -1824 ((-419 (-576)) $ (-783))) (-15 -1824 ((-419 (-576)) $ (-783) (-783))) (-15 -4159 ($)) (-15 -2484 ($)) (-15 -3793 ($)) (-15 -3509 ($ $ $)) (-15 -4159 ($ $)) (-15 -2484 ($ $)) (-15 -2150 ((-1292))) (-15 -2150 ((-1292) (-783))) (-15 -2795 ((-1292))) (-15 -2795 ((-1292) (-783))) (-15 -4411 ((-1292))) (-15 -4411 ((-1292) (-783))) (-15 -1375 ((-1292) (-783))) (-6 -4454) (-6 -4446))) -((-3177 (((-656 (-304 (-970 |#1|))) (-304 (-419 (-970 (-576)))) |#1|) 46) (((-656 (-304 (-970 |#1|))) (-419 (-970 (-576))) |#1|) 45) (((-656 (-656 (-304 (-970 |#1|)))) (-656 (-304 (-419 (-970 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-970 |#1|)))) (-656 (-419 (-970 (-576)))) |#1|) 36)) (-2748 (((-656 |#1|) (-419 (-970 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-970 (-576)))) (-656 (-1196)) |#1|) 30))) -(((-391 |#1|) (-10 -7 (-15 -3177 ((-656 (-656 (-304 (-970 |#1|)))) (-656 (-419 (-970 (-576)))) |#1|)) (-15 -3177 ((-656 (-656 (-304 (-970 |#1|)))) (-656 (-304 (-419 (-970 (-576))))) |#1|)) (-15 -3177 ((-656 (-304 (-970 |#1|))) (-419 (-970 (-576))) |#1|)) (-15 -3177 ((-656 (-304 (-970 |#1|))) (-304 (-419 (-970 (-576)))) |#1|)) (-15 -2748 ((-656 (-656 |#1|)) (-656 (-419 (-970 (-576)))) (-656 (-1196)) |#1|)) (-15 -2748 ((-656 |#1|) (-419 (-970 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) -((-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-970 (-576))))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-970 (-576))))) (-5 *2 (-656 (-304 (-970 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 (-576)))) (-5 *2 (-656 (-304 (-970 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-970 (-576)))))) (-5 *2 (-656 (-656 (-304 (-970 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-970 (-576))))) (-5 *2 (-656 (-656 (-304 (-970 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) -(-10 -7 (-15 -3177 ((-656 (-656 (-304 (-970 |#1|)))) (-656 (-419 (-970 (-576)))) |#1|)) (-15 -3177 ((-656 (-656 (-304 (-970 |#1|)))) (-656 (-304 (-419 (-970 (-576))))) |#1|)) (-15 -3177 ((-656 (-304 (-970 |#1|))) (-419 (-970 (-576))) |#1|)) (-15 -3177 ((-656 (-304 (-970 |#1|))) (-304 (-419 (-970 (-576)))) |#1|)) (-15 -2748 ((-656 (-656 |#1|)) (-656 (-419 (-970 (-576)))) (-656 (-1196)) |#1|)) (-15 -2748 ((-656 |#1|) (-419 (-970 (-576))) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 30)) (-2317 ((|#2| $) 32)) (-3309 (($ $) NIL)) (-1757 (((-783) $) 11)) (-1894 (((-656 $) $) 23)) (-3146 (((-112) $) NIL)) (-1617 (($ |#2| |#1|) 21)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3544 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1698 ((|#2| $) 18)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 51) (($ |#2|) 31)) (-1410 (((-656 |#1|) $) 20)) (-4269 ((|#1| $ |#2|) 55)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 33 T CONST)) (-2883 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1069) (-861)) (T -392)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-861))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-1327 (((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|) 41)) (-3676 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|) 18))) +(((-389 |#1|) (-10 -7 (-15 -1327 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -1327 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -1327 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -1327 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -3676 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -3676 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) (-13 (-374) (-860))) (T -389)) +((-3676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1327 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -1327 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -1327 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -1327 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -3676 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -3676 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 35)) (-2347 (((-576) $) 62)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-4048 (($ $) 136)) (-4024 (($ $) 98)) (-3900 (($ $) 90)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1839 (($ $) 47)) (-2420 (((-112) $ $) NIL)) (-4005 (($ $) 96)) (-3876 (($ $) 85)) (-1529 (((-576) $) 78)) (-2742 (($ $ (-576)) 73)) (-4049 (($ $) NIL)) (-3919 (($ $) NIL)) (-3306 (($) NIL T CONST)) (-4175 (($ $) 138)) (-1572 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2859 (((-576) $) 229) (((-419 (-576)) $) 225)) (-3428 (($ $ $) NIL)) (-3293 (((-576) $ $) 125)) (-3451 (((-3 $ "failed") $) 141)) (-4285 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3337 (((-940)) 121) (((-940) (-940)) 122 (|has| $ (-6 -4455)))) (-1661 (((-112) $) 130)) (-1600 (($) 41)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-4135 (((-1293) (-783)) 191)) (-1630 (((-1293)) 196) (((-1293) (-783)) 197)) (-4394 (((-1293)) 198) (((-1293) (-783)) 199)) (-1425 (((-1293)) 194) (((-1293) (-783)) 195)) (-3309 (((-576) $) 68)) (-3215 (((-112) $) 40)) (-4336 (($ $ (-576)) NIL)) (-1333 (($ $) 51)) (-2471 (($ $) NIL)) (-4099 (((-112) $) 37)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL) (($) NIL (-12 (-2662 (|has| $ (-6 -4447))) (-2662 (|has| $ (-6 -4455)))))) (-1951 (($ $ $) NIL) (($) NIL (-12 (-2662 (|has| $ (-6 -4447))) (-2662 (|has| $ (-6 -4455)))))) (-1492 (((-576) $) 17)) (-4159 (($) 106) (($ $) 113)) (-2327 (($) 112) (($ $) 114)) (-3744 (($ $) 101)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 143)) (-2176 (((-940) (-576)) 46 (|has| $ (-6 -4455)))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) 60)) (-3416 (($ $) 135)) (-3044 (($ (-576) (-576)) 131) (($ (-576) (-576) (-940)) 132)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4210 (((-576) $) 19)) (-1713 (($) 115)) (-4103 (($ $) 95)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3229 (((-940)) 123) (((-940) (-940)) 124 (|has| $ (-6 -4455)))) (-2773 (($ $) 142) (($ $ (-783)) NIL)) (-4193 (((-940) (-576)) 50 (|has| $ (-6 -4455)))) (-4060 (($ $) NIL)) (-3929 (($ $) NIL)) (-4036 (($ $) NIL)) (-3909 (($ $) NIL)) (-4013 (($ $) 97)) (-3888 (($ $) 89)) (-4171 (((-390) $) 216) (((-227) $) 218) (((-907 (-390)) $) NIL) (((-1179) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-3569 (((-876) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-1778 (((-783)) NIL T CONST)) (-1487 (($ $) 137)) (-1625 (((-940)) 61) (((-940) (-940)) 80 (|has| $ (-6 -4455)))) (-2113 (((-112) $ $) NIL)) (-3515 (((-940)) 126)) (-2789 (($ $) 104)) (-3960 (($ $) 49) (($ $ $) 59)) (-2537 (((-112) $ $) NIL)) (-4070 (($ $) 102)) (-3937 (($ $) 39)) (-2814 (($ $) NIL)) (-3982 (($ $) NIL)) (-4387 (($ $) NIL)) (-3994 (($ $) NIL)) (-2802 (($ $) NIL)) (-3973 (($ $) NIL)) (-4082 (($ $) 103)) (-3950 (($ $) 52)) (-1665 (($ $) 58)) (-2719 (($) 36 T CONST)) (-2730 (($) 43 T CONST)) (-3157 (((-1179) $) 27) (((-1179) $ (-112)) 29) (((-1293) (-834) $) 30) (((-1293) (-834) $ (-112)) 31)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) 203)) (-2962 (((-112) $ $) 45)) (-2923 (((-112) $ $) 56)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 57)) (-3056 (($ $ $) 48) (($ $ (-576)) 42)) (-3043 (($ $) 38) (($ $ $) 53)) (-3029 (($ $ $) 72)) (** (($ $ (-940)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-940) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-390) (-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1333 ($ $)) (-15 -3293 ((-576) $ $)) (-15 -2742 ($ $ (-576))) (-15 -4285 ((-419 (-576)) $ (-783))) (-15 -4285 ((-419 (-576)) $ (-783) (-783))) (-15 -4159 ($)) (-15 -2327 ($)) (-15 -1713 ($)) (-15 -3960 ($ $ $)) (-15 -4159 ($ $)) (-15 -2327 ($ $)) (-15 -4394 ((-1293))) (-15 -4394 ((-1293) (-783))) (-15 -1425 ((-1293))) (-15 -1425 ((-1293) (-783))) (-15 -1630 ((-1293))) (-15 -1630 ((-1293) (-783))) (-15 -4135 ((-1293) (-783))) (-6 -4455) (-6 -4447)))) (T -390)) +((** (*1 *1 *1 *1) (-5 *1 (-390))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-1333 (*1 *1 *1) (-5 *1 (-390))) (-3293 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2742 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4285 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4159 (*1 *1) (-5 *1 (-390))) (-2327 (*1 *1) (-5 *1 (-390))) (-1713 (*1 *1) (-5 *1 (-390))) (-3960 (*1 *1 *1 *1) (-5 *1 (-390))) (-4159 (*1 *1 *1) (-5 *1 (-390))) (-2327 (*1 *1 *1) (-5 *1 (-390))) (-4394 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-1425 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-1630 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) +(-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1333 ($ $)) (-15 -3293 ((-576) $ $)) (-15 -2742 ($ $ (-576))) (-15 -4285 ((-419 (-576)) $ (-783))) (-15 -4285 ((-419 (-576)) $ (-783) (-783))) (-15 -4159 ($)) (-15 -2327 ($)) (-15 -1713 ($)) (-15 -3960 ($ $ $)) (-15 -4159 ($ $)) (-15 -2327 ($ $)) (-15 -4394 ((-1293))) (-15 -4394 ((-1293) (-783))) (-15 -1425 ((-1293))) (-15 -1425 ((-1293) (-783))) (-15 -1630 ((-1293))) (-15 -1630 ((-1293) (-783))) (-15 -4135 ((-1293) (-783))) (-6 -4455) (-6 -4447))) +((-1918 (((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|) 46) (((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|) 45) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|) 36)) (-4163 (((-656 |#1|) (-419 (-971 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|) 30))) +(((-391 |#1|) (-10 -7 (-15 -1918 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -1918 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -1918 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -1918 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -4163 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -4163 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) +((-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-576))))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) +(-10 -7 (-15 -1918 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -1918 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -1918 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -1918 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -4163 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -4163 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 30)) (-2859 ((|#2| $) 32)) (-2112 (($ $) NIL)) (-1675 (((-783) $) 11)) (-3773 (((-656 $) $) 23)) (-1606 (((-112) $) NIL)) (-3684 (($ |#2| |#1|) 21)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-4389 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2079 ((|#2| $) 18)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 51) (($ |#2|) 31)) (-2060 (((-656 |#1|) $) 20)) (-3998 ((|#1| $ |#2|) 55)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 33 T CONST)) (-2903 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1070) (-861)) (T -392)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861))))) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#2| "failed") $) 49)) (-2317 ((|#2| $) 50)) (-3309 (($ $) 35)) (-1757 (((-783) $) 39)) (-1894 (((-656 $) $) 40)) (-3146 (((-112) $) 43)) (-1617 (($ |#2| |#1|) 44)) (-2422 (($ (-1 |#1| |#1|) $) 45)) (-3544 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1698 ((|#2| $) 38)) (-1709 ((|#1| $) 37)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ |#2|) 48)) (-1410 (((-656 |#1|) $) 41)) (-4269 ((|#1| $ |#2|) 46)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-2883 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-393 |#1| |#2|) (-141) (-1069) (-1120)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1120)))) (-4269 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1069)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)))) (-1617 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1120)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-112)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-656 *3)))) (-1894 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-783)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1120)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1069)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1120))))) -(-13 (-111 |t#1| |t#1|) (-1058 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4269 (|t#1| $ |t#2|)) (-15 -2422 ($ (-1 |t#1| |t#1|) $)) (-15 -1617 ($ |t#2| |t#1|)) (-15 -3146 ((-112) $)) (-15 -2883 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1410 ((-656 |t#1|) $)) (-15 -1894 ((-656 $) $)) (-15 -1757 ((-783) $)) (-15 -1698 (|t#2| $)) (-15 -1709 (|t#1| $)) (-15 -3544 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3309 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1058 |#2|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-3972 (((-1292) $) 7)) (-4112 (((-875) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 11))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 49)) (-2859 ((|#2| $) 50)) (-2112 (($ $) 35)) (-1675 (((-783) $) 39)) (-3773 (((-656 $) $) 40)) (-1606 (((-112) $) 43)) (-3684 (($ |#2| |#1|) 44)) (-4116 (($ (-1 |#1| |#1|) $) 45)) (-4389 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2079 ((|#2| $) 38)) (-2089 ((|#1| $) 37)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ |#2|) 48)) (-2060 (((-656 |#1|) $) 41)) (-3998 ((|#1| $ |#2|) 46)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2903 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-393 |#1| |#2|) (-141) (-1070) (-1121)) (T -393)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) (-3998 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)))) (-3684 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2112 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121))))) +(-13 (-111 |t#1| |t#1|) (-1059 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3998 (|t#1| $ |t#2|)) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -3684 ($ |t#2| |t#1|)) (-15 -1606 ((-112) $)) (-15 -2903 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2060 ((-656 |t#1|) $)) (-15 -3773 ((-656 $) $)) (-15 -1675 ((-783) $)) (-15 -2079 (|t#2| $)) (-15 -2089 (|t#1| $)) (-15 -4389 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2112 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1059 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-2621 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 11))) (((-394) (-141)) (T -394)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) (-4 *1 (-394))))) -(-13 (-407) (-10 -8 (-15 -4112 ($ (-701 (-711)))) (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-340))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))))) -(((-625 (-875)) . T) ((-407) . T) ((-1237) . T)) -((-2980 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-970 (-390)))) 17) (((-3 $ "failed") (-701 (-970 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-970 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-970 (-576))))) 11)) (-2317 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-970 (-390)))) 18) (($ (-701 (-970 (-576)))) 16) (($ (-701 (-419 (-970 (-390))))) 14) (($ (-701 (-419 (-970 (-576))))) 12)) (-3972 (((-1292) $) 7)) (-4112 (((-875) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 23))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-394))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-701 (-711)))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))))) +(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-971 (-390)))) 17) (((-3 $ "failed") (-701 (-971 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 11)) (-2859 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-971 (-390)))) 18) (($ (-701 (-971 (-576)))) 16) (($ (-701 (-419 (-971 (-390))))) 14) (($ (-701 (-419 (-971 (-576))))) 12)) (-2621 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 23))) (((-395) (-141)) (T -395)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-970 (-390)))) (-4 *1 (-395)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-970 (-390)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-970 (-576)))) (-4 *1 (-395)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-970 (-576)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-970 (-390))))) (-4 *1 (-395)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-970 (-390))))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-970 (-576))))) (-4 *1 (-395)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-970 (-576))))) (-4 *1 (-395))))) -(-13 (-407) (-10 -8 (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-340))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))) (-15 -2317 ($ (-701 (-326 (-390))))) (-15 -2980 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2317 ($ (-701 (-326 (-576))))) (-15 -2980 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2317 ($ (-701 (-970 (-390))))) (-15 -2980 ((-3 $ "failed") (-701 (-970 (-390))))) (-15 -2317 ($ (-701 (-970 (-576))))) (-15 -2980 ((-3 $ "failed") (-701 (-970 (-576))))) (-15 -2317 ($ (-701 (-419 (-970 (-390)))))) (-15 -2980 ((-3 $ "failed") (-701 (-419 (-970 (-390)))))) (-15 -2317 ($ (-701 (-419 (-970 (-576)))))) (-15 -2980 ((-3 $ "failed") (-701 (-419 (-970 (-576)))))))) -(((-625 (-875)) . T) ((-407) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1560 (((-656 (-886 |#2| |#1|)) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-1562 (($ |#1| |#2|) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1913 ((|#2| $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 33)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 12 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1069) (-861)) (T -396)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -2859 ($ (-701 (-326 (-390))))) (-15 -1572 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2859 ($ (-701 (-326 (-576))))) (-15 -1572 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2859 ($ (-701 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-701 (-971 (-390))))) (-15 -2859 ($ (-701 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-701 (-971 (-576))))) (-15 -2859 ($ (-701 (-419 (-971 (-390)))))) (-15 -1572 ((-3 $ "failed") (-701 (-419 (-971 (-390)))))) (-15 -2859 ($ (-701 (-419 (-971 (-576)))))) (-15 -1572 ((-3 $ "failed") (-701 (-419 (-971 (-576)))))))) +(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3605 (((-656 (-887 |#2| |#1|)) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2625 ((|#2| $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 33)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 12 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1070) (-861)) (T -396)) NIL (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) -((-1952 (((-112) $ $) 7)) (-2199 (((-783) $) 35)) (-4331 (($) 19 T CONST)) (-4226 (((-3 $ "failed") $ $) 38)) (-2980 (((-3 |#1| "failed") $) 46)) (-2317 ((|#1| $) 47)) (-3900 (((-3 $ "failed") $) 16)) (-2666 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-2287 (((-112) $) 18)) (-3908 ((|#1| $ (-576)) 32)) (-2731 (((-783) $ (-576)) 33)) (-2905 (($ $ $) 24 (|has| |#1| (-861)))) (-1654 (($ $ $) 25 (|has| |#1| (-861)))) (-3687 (($ (-1 |#1| |#1|) $) 30)) (-1402 (($ (-1 (-783) (-783)) $) 31)) (-3052 (((-3 $ "failed") $ $) 39)) (-2043 (((-1178) $) 10)) (-3867 (($ $ $) 40)) (-1827 (($ $ $) 41)) (-3115 (((-1140) $) 11)) (-1749 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-783)))) $) 34)) (-4293 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-4112 (((-875) $) 12) (($ |#1|) 45)) (-1994 (((-112) $ $) 6)) (-4320 (($) 20 T CONST)) (-3993 (((-112) $ $) 26 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 28 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 27 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 29 (|has| |#1| (-861)))) (** (($ $ (-939)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) -(((-397 |#1|) (-141) (-1120)) (T -397)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (-1827 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (-3052 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (-4226 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (-4293 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1120)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2666 (*1 *2 *1 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1120)) (-5 *2 (-783)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1120)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 (-783))))))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1120)) (-5 *2 (-783)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1120)))) (-1402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1120)))) (-3687 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1120))))) -(-13 (-738) (-1058 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -1827 ($ $ $)) (-15 -3867 ($ $ $)) (-15 -3052 ((-3 $ "failed") $ $)) (-15 -4226 ((-3 $ "failed") $ $)) (-15 -4293 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2666 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2199 ((-783) $)) (-15 -1749 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2155 (-783)))) $)) (-15 -2731 ((-783) $ (-576))) (-15 -3908 (|t#1| $ (-576))) (-15 -1402 ($ (-1 (-783) (-783)) $)) (-15 -3687 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1058 |#1|) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783) $) 74)) (-4331 (($) NIL T CONST)) (-4226 (((-3 $ "failed") $ $) 77)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2666 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2287 (((-112) $) 17)) (-3908 ((|#1| $ (-576)) NIL)) (-2731 (((-783) $ (-576)) NIL)) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-3687 (($ (-1 |#1| |#1|) $) 40)) (-1402 (($ (-1 (-783) (-783)) $) 37)) (-3052 (((-3 $ "failed") $ $) 60)) (-2043 (((-1178) $) NIL)) (-3867 (($ $ $) 28)) (-1827 (($ $ $) 26)) (-3115 (((-1140) $) NIL)) (-1749 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-783)))) $) 34)) (-4293 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4112 (((-875) $) 24) (($ |#1|) NIL)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 11 T CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-398 |#1|) (-397 |#1|) (-1120)) (T -398)) +((-3488 (((-112) $ $) 7)) (-2096 (((-783) $) 35)) (-3306 (($) 19 T CONST)) (-3556 (((-3 $ "failed") $ $) 38)) (-1572 (((-3 |#1| "failed") $) 46)) (-2859 ((|#1| $) 47)) (-3451 (((-3 $ "failed") $) 16)) (-2617 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-3215 (((-112) $) 18)) (-3537 ((|#1| $ (-576)) 32)) (-2013 (((-783) $ (-576)) 33)) (-3124 (($ $ $) 24 (|has| |#1| (-861)))) (-1951 (($ $ $) 25 (|has| |#1| (-861)))) (-3250 (($ (-1 |#1| |#1|) $) 30)) (-3075 (($ (-1 (-783) (-783)) $) 31)) (-1978 (((-3 $ "failed") $ $) 39)) (-1413 (((-1179) $) 10)) (-4358 (($ $ $) 40)) (-4307 (($ $ $) 41)) (-1450 (((-1141) $) 11)) (-1601 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) 34)) (-2935 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-3569 (((-876) $) 12) (($ |#1|) 45)) (-2113 (((-112) $ $) 6)) (-2730 (($) 20 T CONST)) (-2991 (((-112) $ $) 26 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 28 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 27 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 29 (|has| |#1| (-861)))) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) +(((-397 |#1|) (-141) (-1121)) (T -397)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-4307 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-4358 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-1978 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3556 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-2935 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2617 (*1 *2 *1 *1) (-12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-783))))))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3075 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) (-3250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121))))) +(-13 (-738) (-1059 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -4307 ($ $ $)) (-15 -4358 ($ $ $)) (-15 -1978 ((-3 $ "failed") $ $)) (-15 -3556 ((-3 $ "failed") $ $)) (-15 -2935 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2617 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2096 ((-783) $)) (-15 -1601 ((-656 (-2 (|:| |gen| |t#1|) (|:| -4103 (-783)))) $)) (-15 -2013 ((-783) $ (-576))) (-15 -3537 (|t#1| $ (-576))) (-15 -3075 ($ (-1 (-783) (-783)) $)) (-15 -3250 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 |#1|) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783) $) 74)) (-3306 (($) NIL T CONST)) (-3556 (((-3 $ "failed") $ $) 77)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-2617 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3215 (((-112) $) 17)) (-3537 ((|#1| $ (-576)) NIL)) (-2013 (((-783) $ (-576)) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-3250 (($ (-1 |#1| |#1|) $) 40)) (-3075 (($ (-1 (-783) (-783)) $) 37)) (-1978 (((-3 $ "failed") $ $) 60)) (-1413 (((-1179) $) NIL)) (-4358 (($ $ $) 28)) (-4307 (($ $ $) 26)) (-1450 (((-1141) $) NIL)) (-1601 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) 34)) (-2935 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3569 (((-876) $) 24) (($ |#1|) NIL)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 11 T CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-398 |#1|) (-397 |#1|) (-1121)) (T -398)) NIL (-397 |#1|) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 54)) (-2317 (((-576) $) 55)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2905 (($ $ $) 56)) (-1654 (($ $ $) 57)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ $) 48)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 58)) (-3974 (((-112) $ $) 60)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 59)) (-3962 (((-112) $ $) 61)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 54)) (-2859 (((-576) $) 55)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-3124 (($ $ $) 56)) (-1951 (($ $ $) 57)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 58)) (-2962 (((-112) $ $) 60)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 59)) (-2948 (((-112) $ $) 61)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-399) (-141)) (T -399)) NIL -(-13 (-568) (-861) (-1058 (-576))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-863) . T) ((-1058 (-576)) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2369 (((-112) $) 25)) (-2140 (((-112) $) 22)) (-1989 (($ (-1178) (-1178) (-1178)) 26)) (-4148 (((-1178) $) 16)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2262 (($ (-1178) (-1178) (-1178)) 14)) (-2986 (((-1178) $) 17)) (-3375 (((-112) $) 18)) (-2962 (((-1178) $) 15)) (-4112 (((-875) $) 12) (($ (-1178)) 13) (((-1178) $) 9)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 7))) +(-13 (-568) (-861) (-1059 (-576))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-864) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1499 (((-112) $) 25)) (-4301 (((-112) $) 22)) (-4140 (($ (-1179) (-1179) (-1179)) 26)) (-2627 (((-1179) $) 16)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4321 (($ (-1179) (-1179) (-1179)) 14)) (-3877 (((-1179) $) 17)) (-2146 (((-112) $) 18)) (-2308 (((-1179) $) 15)) (-3569 (((-876) $) 12) (($ (-1179)) 13) (((-1179) $) 9)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 7))) (((-400) (-401)) (T -400)) NIL (-401) -((-1952 (((-112) $ $) 7)) (-2369 (((-112) $) 17)) (-2140 (((-112) $) 18)) (-1989 (($ (-1178) (-1178) (-1178)) 16)) (-4148 (((-1178) $) 21)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2262 (($ (-1178) (-1178) (-1178)) 23)) (-2986 (((-1178) $) 20)) (-3375 (((-112) $) 19)) (-2962 (((-1178) $) 22)) (-4112 (((-875) $) 12) (($ (-1178)) 25) (((-1178) $) 24)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-1499 (((-112) $) 17)) (-4301 (((-112) $) 18)) (-4140 (($ (-1179) (-1179) (-1179)) 16)) (-2627 (((-1179) $) 21)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4321 (($ (-1179) (-1179) (-1179)) 23)) (-3877 (((-1179) $) 20)) (-2146 (((-112) $) 19)) (-2308 (((-1179) $) 22)) (-3569 (((-876) $) 12) (($ (-1179)) 25) (((-1179) $) 24)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-401) (-141)) (T -401)) -((-2262 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1989 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401))))) -(-13 (-1120) (-502 (-1178)) (-10 -8 (-15 -2262 ($ (-1178) (-1178) (-1178))) (-15 -2962 ((-1178) $)) (-15 -4148 ((-1178) $)) (-15 -2986 ((-1178) $)) (-15 -3375 ((-112) $)) (-15 -2140 ((-112) $)) (-15 -2369 ((-112) $)) (-15 -1989 ($ (-1178) (-1178) (-1178))))) -(((-102) . T) ((-628 #0=(-1178)) . T) ((-625 (-875)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4049 (((-875) $) 63)) (-4331 (($) NIL T CONST)) (-2711 (($ $ (-939)) NIL)) (-4222 (($ $ (-939)) NIL)) (-1604 (($ $ (-939)) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2547 (($ (-783)) 38)) (-1656 (((-783)) 18)) (-4136 (((-875) $) 65)) (-2362 (($ $ $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3240 (($ $ $ $) NIL)) (-2027 (($ $ $) NIL)) (-4314 (($) 24 T CONST)) (-3938 (((-112) $ $) 41)) (-4036 (($ $) 48) (($ $ $) 50)) (-4026 (($ $ $) 51)) (** (($ $ (-939)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -1656 ((-783))) (-15 -4136 ((-875) $)) (-15 -4049 ((-875) $)) (-15 -2547 ($ (-783))))) (-783) (-783) (-174)) (T -402)) -((-1656 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-756 |#3|) (-10 -8 (-15 -1656 ((-783))) (-15 -4136 ((-875) $)) (-15 -4049 ((-875) $)) (-15 -2547 ($ (-783))))) -((-2621 (((-1178)) 12)) (-4290 (((-1167 (-1178))) 30)) (-3948 (((-1292) (-1178)) 27) (((-1292) (-400)) 26)) (-3960 (((-1292)) 28)) (-1508 (((-1167 (-1178))) 29))) -(((-403) (-10 -7 (-15 -1508 ((-1167 (-1178)))) (-15 -4290 ((-1167 (-1178)))) (-15 -3960 ((-1292))) (-15 -3948 ((-1292) (-400))) (-15 -3948 ((-1292) (-1178))) (-15 -2621 ((-1178))))) (T -403)) -((-2621 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-403)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-403)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-403)))) (-3960 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-403)))) (-4290 (*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-403)))) (-1508 (*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-403))))) -(-10 -7 (-15 -1508 ((-1167 (-1178)))) (-15 -4290 ((-1167 (-1178)))) (-15 -3960 ((-1292))) (-15 -3948 ((-1292) (-400))) (-15 -3948 ((-1292) (-1178))) (-15 -2621 ((-1178)))) -((-3241 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3241 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) -((-3241 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) -(-10 -7 (-15 -3241 ((-783) (-347 |#1| |#2| |#3| |#4|)))) -((-4112 (((-406) |#1|) 11))) -(((-405 |#1|) (-10 -7 (-15 -4112 ((-406) |#1|))) (-1120)) (T -405)) -((-4112 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1120))))) -(-10 -7 (-15 -4112 ((-406) |#1|))) -((-1952 (((-112) $ $) NIL)) (-2749 (((-656 (-1178)) $ (-656 (-1178))) 42)) (-2273 (((-656 (-1178)) $ (-656 (-1178))) 43)) (-1882 (((-656 (-1178)) $ (-656 (-1178))) 44)) (-2934 (((-656 (-1178)) $) 39)) (-1989 (($) 30)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2707 (((-656 (-1178)) $) 40)) (-2868 (((-656 (-1178)) $) 41)) (-1612 (((-1292) $ (-576)) 37) (((-1292) $) 38)) (-1554 (($ (-875) (-576)) 35)) (-4112 (((-875) $) 49) (($ (-875)) 32)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-406) (-13 (-1120) (-628 (-875)) (-10 -8 (-15 -1554 ($ (-875) (-576))) (-15 -1612 ((-1292) $ (-576))) (-15 -1612 ((-1292) $)) (-15 -2868 ((-656 (-1178)) $)) (-15 -2707 ((-656 (-1178)) $)) (-15 -1989 ($)) (-15 -2934 ((-656 (-1178)) $)) (-15 -1882 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2273 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2749 ((-656 (-1178)) $ (-656 (-1178))))))) (T -406)) -((-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-875)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1612 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-406)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-406)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-1989 (*1 *1) (-5 *1 (-406))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-1882 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2273 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2749 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))) -(-13 (-1120) (-628 (-875)) (-10 -8 (-15 -1554 ($ (-875) (-576))) (-15 -1612 ((-1292) $ (-576))) (-15 -1612 ((-1292) $)) (-15 -2868 ((-656 (-1178)) $)) (-15 -2707 ((-656 (-1178)) $)) (-15 -1989 ($)) (-15 -2934 ((-656 (-1178)) $)) (-15 -1882 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2273 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2749 ((-656 (-1178)) $ (-656 (-1178)))))) -((-3972 (((-1292) $) 7)) (-4112 (((-875) $) 8))) +((-4321 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4140 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) +(-13 (-1121) (-502 (-1179)) (-10 -8 (-15 -4321 ($ (-1179) (-1179) (-1179))) (-15 -2308 ((-1179) $)) (-15 -2627 ((-1179) $)) (-15 -3877 ((-1179) $)) (-15 -2146 ((-112) $)) (-15 -4301 ((-112) $)) (-15 -1499 ((-112) $)) (-15 -4140 ($ (-1179) (-1179) (-1179))))) +(((-102) . T) ((-628 #0=(-1179)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2339 (((-876) $) 63)) (-3306 (($) NIL T CONST)) (-1845 (($ $ (-940)) NIL)) (-3507 (($ $ (-940)) NIL)) (-2707 (($ $ (-940)) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($ (-783)) 38)) (-1972 (((-783)) 18)) (-1956 (((-876) $) 65)) (-2604 (($ $ $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-3298 (($ $ $ $) NIL)) (-2424 (($ $ $) NIL)) (-2719 (($) 24 T CONST)) (-2923 (((-112) $ $) 41)) (-3043 (($ $) 48) (($ $ $) 50)) (-3029 (($ $ $) 51)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -1972 ((-783))) (-15 -1956 ((-876) $)) (-15 -2339 ((-876) $)) (-15 -4128 ($ (-783))))) (-783) (-783) (-174)) (T -402)) +((-1972 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-756 |#3|) (-10 -8 (-15 -1972 ((-783))) (-15 -1956 ((-876) $)) (-15 -2339 ((-876) $)) (-15 -4128 ($ (-783))))) +((-2200 (((-1179)) 12)) (-2908 (((-1168 (-1179))) 30)) (-2601 (((-1293) (-1179)) 27) (((-1293) (-400)) 26)) (-2612 (((-1293)) 28)) (-4333 (((-1168 (-1179))) 29))) +(((-403) (-10 -7 (-15 -4333 ((-1168 (-1179)))) (-15 -2908 ((-1168 (-1179)))) (-15 -2612 ((-1293))) (-15 -2601 ((-1293) (-400))) (-15 -2601 ((-1293) (-1179))) (-15 -2200 ((-1179))))) (T -403)) +((-2200 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-2612 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403)))) (-2908 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403)))) (-4333 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) +(-10 -7 (-15 -4333 ((-1168 (-1179)))) (-15 -2908 ((-1168 (-1179)))) (-15 -2612 ((-1293))) (-15 -2601 ((-1293) (-400))) (-15 -2601 ((-1293) (-1179))) (-15 -2200 ((-1179)))) +((-3309 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) +(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3309 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) +((-3309 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) +(-10 -7 (-15 -3309 ((-783) (-347 |#1| |#2| |#3| |#4|)))) +((-3569 (((-406) |#1|) 11))) +(((-405 |#1|) (-10 -7 (-15 -3569 ((-406) |#1|))) (-1121)) (T -405)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121))))) +(-10 -7 (-15 -3569 ((-406) |#1|))) +((-3488 (((-112) $ $) NIL)) (-4176 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-3090 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-3655 (((-656 (-1179)) $ (-656 (-1179))) 44)) (-3334 (((-656 (-1179)) $) 39)) (-4140 (($) 30)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1645 (((-656 (-1179)) $) 40)) (-2712 (((-656 (-1179)) $) 41)) (-1976 (((-1293) $ (-576)) 37) (((-1293) $) 38)) (-4171 (($ (-876) (-576)) 35)) (-3569 (((-876) $) 49) (($ (-876)) 32)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-406) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -1976 ((-1293) $ (-576))) (-15 -1976 ((-1293) $)) (-15 -2712 ((-656 (-1179)) $)) (-15 -1645 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3334 ((-656 (-1179)) $)) (-15 -3655 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3090 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4176 ((-656 (-1179)) $ (-656 (-1179))))))) (T -406)) +((-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-4140 (*1 *1) (-5 *1 (-406))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-3655 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-3090 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-4176 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) +(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -1976 ((-1293) $ (-576))) (-15 -1976 ((-1293) $)) (-15 -2712 ((-656 (-1179)) $)) (-15 -1645 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3334 ((-656 (-1179)) $)) (-15 -3655 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3090 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4176 ((-656 (-1179)) $ (-656 (-1179)))))) +((-2621 (((-1293) $) 7)) (-3569 (((-876) $) 8))) (((-407) (-141)) (T -407)) -((-3972 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1292))))) -(-13 (-1237) (-625 (-875)) (-10 -8 (-15 -3972 ((-1292) $)))) -(((-625 (-875)) . T) ((-1237) . T)) -((-2980 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-970 (-390))) 17) (((-3 $ "failed") (-970 (-576))) 15) (((-3 $ "failed") (-419 (-970 (-390)))) 13) (((-3 $ "failed") (-419 (-970 (-576)))) 11)) (-2317 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-970 (-390))) 18) (($ (-970 (-576))) 16) (($ (-419 (-970 (-390)))) 14) (($ (-419 (-970 (-576)))) 12)) (-3972 (((-1292) $) 7)) (-4112 (((-875) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 23))) +((-2621 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1293))))) +(-13 (-1238) (-625 (-876)) (-10 -8 (-15 -2621 ((-1293) $)))) +(((-625 (-876)) . T) ((-1238) . T)) +((-1572 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-971 (-390))) 17) (((-3 $ "failed") (-971 (-576))) 15) (((-3 $ "failed") (-419 (-971 (-390)))) 13) (((-3 $ "failed") (-419 (-971 (-576)))) 11)) (-2859 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-971 (-390))) 18) (($ (-971 (-576))) 16) (($ (-419 (-971 (-390)))) 14) (($ (-419 (-971 (-576)))) 12)) (-2621 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 23))) (((-408) (-141)) (T -408)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-970 (-390))) (-4 *1 (-408)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-390))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-970 (-576))) (-4 *1 (-408)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-576))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-390)))) (-4 *1 (-408)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-970 (-390)))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-576)))) (-4 *1 (-408)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-970 (-576)))) (-4 *1 (-408))))) -(-13 (-407) (-10 -8 (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-340))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))) (-15 -2317 ($ (-326 (-390)))) (-15 -2980 ((-3 $ "failed") (-326 (-390)))) (-15 -2317 ($ (-326 (-576)))) (-15 -2980 ((-3 $ "failed") (-326 (-576)))) (-15 -2317 ($ (-970 (-390)))) (-15 -2980 ((-3 $ "failed") (-970 (-390)))) (-15 -2317 ($ (-970 (-576)))) (-15 -2980 ((-3 $ "failed") (-970 (-576)))) (-15 -2317 ($ (-419 (-970 (-390))))) (-15 -2980 ((-3 $ "failed") (-419 (-970 (-390))))) (-15 -2317 ($ (-419 (-970 (-576))))) (-15 -2980 ((-3 $ "failed") (-419 (-970 (-576))))))) -(((-625 (-875)) . T) ((-407) . T) ((-1237) . T)) -((-2205 (((-656 (-1178)) (-656 (-1178))) 9)) (-3972 (((-1292) (-400)) 26)) (-3295 (((-1124) (-1196) (-656 (-1196)) (-1199) (-656 (-1196))) 59) (((-1124) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196)) 34) (((-1124) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196))) 33))) -(((-409) (-10 -7 (-15 -3295 ((-1124) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)))) (-15 -3295 ((-1124) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196))) (-15 -3295 ((-1124) (-1196) (-656 (-1196)) (-1199) (-656 (-1196)))) (-15 -3972 ((-1292) (-400))) (-15 -2205 ((-656 (-1178)) (-656 (-1178)))))) (T -409)) -((-2205 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-409)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-409)))) (-3295 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) (-5 *2 (-1124)) (-5 *1 (-409)))) (-3295 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1124)) (-5 *1 (-409)))) (-3295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1124)) (-5 *1 (-409))))) -(-10 -7 (-15 -3295 ((-1124) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)))) (-15 -3295 ((-1124) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196))) (-15 -3295 ((-1124) (-1196) (-656 (-1196)) (-1199) (-656 (-1196)))) (-15 -3972 ((-1292) (-400))) (-15 -2205 ((-656 (-1178)) (-656 (-1178))))) -((-3972 (((-1292) $) 35)) (-4112 (((-875) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -4112 ($ (-340))) (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))) (-15 -4112 ($ (-326 (-713)))) (-15 -4112 ($ (-326 (-711)))) (-15 -4112 ($ (-326 (-706)))) (-15 -4112 ($ (-304 (-326 (-713))))) (-15 -4112 ($ (-304 (-326 (-711))))) (-15 -4112 ($ (-304 (-326 (-706))))) (-15 -4112 ($ (-326 (-576)))) (-15 -4112 ($ (-326 (-390)))) (-15 -4112 ($ (-326 (-171 (-390))))) (-15 -4112 ($ (-304 (-326 (-576))))) (-15 -4112 ($ (-304 (-326 (-390))))) (-15 -4112 ($ (-304 (-326 (-171 (-390)))))))) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-1196)) (-1200)) (T -410)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))) -(-13 (-407) (-10 -8 (-15 -4112 ($ (-340))) (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))) (-15 -4112 ($ (-326 (-713)))) (-15 -4112 ($ (-326 (-711)))) (-15 -4112 ($ (-326 (-706)))) (-15 -4112 ($ (-304 (-326 (-713))))) (-15 -4112 ($ (-304 (-326 (-711))))) (-15 -4112 ($ (-304 (-326 (-706))))) (-15 -4112 ($ (-326 (-576)))) (-15 -4112 ($ (-326 (-390)))) (-15 -4112 ($ (-326 (-171 (-390))))) (-15 -4112 ($ (-304 (-326 (-576))))) (-15 -4112 ($ (-304 (-326 (-390))))) (-15 -4112 ($ (-304 (-326 (-171 (-390)))))))) -((-1952 (((-112) $ $) NIL)) (-3747 ((|#2| $) 38)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1381 (($ (-419 |#2|)) 93)) (-1676 (((-656 (-2 (|:| -1495 (-783)) (|:| -3187 |#2|) (|:| |num| |#2|))) $) 39)) (-4106 (($ $ (-783)) 36) (($ $) 34)) (-1554 (((-419 |#2|) $) 49)) (-4124 (($ (-656 (-2 (|:| -1495 (-783)) (|:| -3187 |#2|) (|:| |num| |#2|)))) 33)) (-4112 (((-875) $) 131)) (-1994 (((-112) $ $) NIL)) (-3155 (($ $ (-783)) 37) (($ $) 35)) (-3938 (((-112) $ $) NIL)) (-4026 (($ |#2| $) 41))) -(((-411 |#1| |#2|) (-13 (-1120) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -4026 ($ |#2| $)) (-15 -1381 ($ (-419 |#2|))) (-15 -3747 (|#2| $)) (-15 -1676 ((-656 (-2 (|:| -1495 (-783)) (|:| -3187 |#2|) (|:| |num| |#2|))) $)) (-15 -4124 ($ (-656 (-2 (|:| -1495 (-783)) (|:| -3187 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1263 |#1|)) (T -411)) -((-4026 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1263 *3)))) (-1381 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3747 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-1676 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -1495 (-783)) (|:| -3187 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1495 (-783)) (|:| -3187 *4) (|:| |num| *4)))) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) -(-13 (-1120) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -4026 ($ |#2| $)) (-15 -1381 ($ (-419 |#2|))) (-15 -3747 (|#2| $)) (-15 -1676 ((-656 (-2 (|:| -1495 (-783)) (|:| -3187 |#2|) (|:| |num| |#2|))) $)) (-15 -4124 ($ (-656 (-2 (|:| -1495 (-783)) (|:| -3187 |#2|) (|:| |num| |#2|))))))) -((-1952 (((-112) $ $) 10 (-3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))))) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 16 (|has| |#1| (-900 (-390)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 15 (|has| |#1| (-900 (-576))))) (-2043 (((-1178) $) 14 (-3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))))) (-3115 (((-1140) $) 13 (-3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))))) (-4112 (((-875) $) 12 (-3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))))) (-1994 (((-112) $ $) 11 (-3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))))) (-3938 (((-112) $ $) 9 (-3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390))))))) -(((-412 |#1|) (-141) (-1237)) (T -412)) -NIL -(-13 (-1237) (-10 -7 (IF (|has| |t#1| (-900 (-576))) (-6 (-900 (-576))) |%noBranch|) (IF (|has| |t#1| (-900 (-390))) (-6 (-900 (-390))) |%noBranch|))) -(((-102) -3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))) ((-625 (-875)) -3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))) ((-900 (-390)) |has| |#1| (-900 (-390))) ((-900 (-576)) |has| |#1| (-900 (-576))) ((-1120) -3794 (|has| |#1| (-900 (-576))) (|has| |#1| (-900 (-390)))) ((-1237) . T)) -((-3878 (($ $) 10) (($ $ (-783)) 12))) -(((-413 |#1|) (-10 -8 (-15 -3878 (|#1| |#1| (-783))) (-15 -3878 (|#1| |#1|))) (-414)) (T -413)) -NIL -(-10 -8 (-15 -3878 (|#1| |#1| (-783))) (-15 -3878 (|#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-3878 (($ $) 87) (($ $ (-783)) 86)) (-2443 (((-112) $) 79)) (-3241 (((-845 (-939)) $) 89)) (-2287 (((-112) $) 35)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-3334 (((-3 (-783) "failed") $ $) 88)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1972 (((-3 $ "failed") $) 90)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -2859 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2859 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2859 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390)))) (-15 -2859 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2859 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2859 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))))) +(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) +((-3700 (((-656 (-1179)) (-656 (-1179))) 9)) (-2621 (((-1293) (-400)) 26)) (-3896 (((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197))) 59) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197)) 34) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197))) 33))) +(((-409) (-10 -7 (-15 -3896 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -3896 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -3896 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -2621 ((-1293) (-400))) (-15 -3700 ((-656 (-1179)) (-656 (-1179)))))) (T -409)) +((-3700 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-409)))) (-3896 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-3896 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-3896 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409))))) +(-10 -7 (-15 -3896 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -3896 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -3896 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -2621 ((-1293) (-400))) (-15 -3700 ((-656 (-1179)) (-656 (-1179))))) +((-2621 (((-1293) $) 35)) (-3569 (((-876) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) +(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -3569 ($ (-340))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -3569 ($ (-326 (-713)))) (-15 -3569 ($ (-326 (-711)))) (-15 -3569 ($ (-326 (-706)))) (-15 -3569 ($ (-304 (-326 (-713))))) (-15 -3569 ($ (-304 (-326 (-711))))) (-15 -3569 ($ (-304 (-326 (-706))))) (-15 -3569 ($ (-326 (-576)))) (-15 -3569 ($ (-326 (-390)))) (-15 -3569 ($ (-326 (-171 (-390))))) (-15 -3569 ($ (-304 (-326 (-576))))) (-15 -3569 ($ (-304 (-326 (-390))))) (-15 -3569 ($ (-304 (-326 (-171 (-390)))))))) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-1201)) (T -410)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-340))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -3569 ($ (-326 (-713)))) (-15 -3569 ($ (-326 (-711)))) (-15 -3569 ($ (-326 (-706)))) (-15 -3569 ($ (-304 (-326 (-713))))) (-15 -3569 ($ (-304 (-326 (-711))))) (-15 -3569 ($ (-304 (-326 (-706))))) (-15 -3569 ($ (-326 (-576)))) (-15 -3569 ($ (-326 (-390)))) (-15 -3569 ($ (-326 (-171 (-390))))) (-15 -3569 ($ (-304 (-326 (-576))))) (-15 -3569 ($ (-304 (-326 (-390))))) (-15 -3569 ($ (-304 (-326 (-171 (-390)))))))) +((-3488 (((-112) $ $) NIL)) (-2511 ((|#2| $) 38)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2328 (($ (-419 |#2|)) 93)) (-2108 (((-656 (-2 (|:| -4210 (-783)) (|:| -2394 |#2|) (|:| |num| |#2|))) $) 39)) (-2773 (($ $ (-783)) 36) (($ $) 34)) (-4171 (((-419 |#2|) $) 49)) (-3581 (($ (-656 (-2 (|:| -4210 (-783)) (|:| -2394 |#2|) (|:| |num| |#2|)))) 33)) (-3569 (((-876) $) 131)) (-2113 (((-112) $ $) NIL)) (-2018 (($ $ (-783)) 37) (($ $) 35)) (-2923 (((-112) $ $) NIL)) (-3029 (($ |#2| $) 41))) +(((-411 |#1| |#2|) (-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3029 ($ |#2| $)) (-15 -2328 ($ (-419 |#2|))) (-15 -2511 (|#2| $)) (-15 -2108 ((-656 (-2 (|:| -4210 (-783)) (|:| -2394 |#2|) (|:| |num| |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -4210 (-783)) (|:| -2394 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1264 |#1|)) (T -411)) +((-3029 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1264 *3)))) (-2328 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-2511 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-2108 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -4210 (-783)) (|:| -2394 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4210 (-783)) (|:| -2394 *4) (|:| |num| *4)))) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) +(-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3029 ($ |#2| $)) (-15 -2328 ($ (-419 |#2|))) (-15 -2511 (|#2| $)) (-15 -2108 ((-656 (-2 (|:| -4210 (-783)) (|:| -2394 |#2|) (|:| |num| |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -4210 (-783)) (|:| -2394 |#2|) (|:| |num| |#2|))))))) +((-3488 (((-112) $ $) 10 (-2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 16 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 15 (|has| |#1| (-901 (-576))))) (-1413 (((-1179) $) 14 (-2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-1450 (((-1141) $) 13 (-2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-3569 (((-876) $) 12 (-2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2113 (((-112) $ $) 11 (-2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2923 (((-112) $ $) 9 (-2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390))))))) +(((-412 |#1|) (-141) (-1238)) (T -412)) +NIL +(-13 (-1238) (-10 -7 (IF (|has| |t#1| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|))) +(((-102) -2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-625 (-876)) -2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-1121) -2758 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-1238) . T)) +((-1332 (($ $) 10) (($ $ (-783)) 12))) +(((-413 |#1|) (-10 -8 (-15 -1332 (|#1| |#1| (-783))) (-15 -1332 (|#1| |#1|))) (-414)) (T -413)) +NIL +(-10 -8 (-15 -1332 (|#1| |#1| (-783))) (-15 -1332 (|#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-1332 (($ $) 87) (($ $ (-783)) 86)) (-4169 (((-112) $) 79)) (-3309 (((-845 (-940)) $) 89)) (-3215 (((-112) $) 35)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-2992 (((-3 (-783) "failed") $ $) 88)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3230 (((-3 $ "failed") $) 90)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-414) (-141)) (T -414)) -((-3241 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-939))))) (-3334 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-3878 (*1 *1 *1) (-4 *1 (-414))) (-3878 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) -(-13 (-374) (-146) (-10 -8 (-15 -3241 ((-845 (-939)) $)) (-15 -3334 ((-3 (-783) "failed") $ $)) (-15 -3878 ($ $)) (-15 -3878 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-2632 (($ (-576) (-576)) 11) (($ (-576) (-576) (-939)) NIL)) (-2913 (((-939)) 19) (((-939) (-939)) NIL))) -(((-415 |#1|) (-10 -8 (-15 -2913 ((-939) (-939))) (-15 -2913 ((-939))) (-15 -2632 (|#1| (-576) (-576) (-939))) (-15 -2632 (|#1| (-576) (-576)))) (-416)) (T -415)) -((-2913 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-2913 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -(-10 -8 (-15 -2913 ((-939) (-939))) (-15 -2913 ((-939))) (-15 -2632 (|#1| (-576) (-576) (-939))) (-15 -2632 (|#1| (-576) (-576)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1705 (((-576) $) 98)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2736 (($ $) 96)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-1462 (($ $) 106)) (-4057 (((-112) $ $) 65)) (-3773 (((-576) $) 123)) (-4331 (($) 18 T CONST)) (-3846 (($ $) 95)) (-2980 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2317 (((-576) $) 112) (((-419 (-576)) $) 109)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2443 (((-112) $) 79)) (-2757 (((-939)) 139) (((-939) (-939)) 136 (|has| $ (-6 -4454)))) (-2690 (((-112) $) 121)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 102)) (-3241 (((-576) $) 145)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 105)) (-2647 (($ $) 101)) (-3197 (((-112) $) 122)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2905 (($ $ $) 115) (($) 133 (-12 (-2298 (|has| $ (-6 -4454))) (-2298 (|has| $ (-6 -4446)))))) (-1654 (($ $ $) 116) (($) 132 (-12 (-2298 (|has| $ (-6 -4454))) (-2298 (|has| $ (-6 -4446)))))) (-1360 (((-576) $) 142)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3072 (((-939) (-576)) 135 (|has| $ (-6 -4454)))) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1914 (($ $) 97)) (-2804 (($ $) 99)) (-2632 (($ (-576) (-576)) 147) (($ (-576) (-576) (-939)) 146)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1495 (((-576) $) 143)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-2913 (((-939)) 140) (((-939) (-939)) 137 (|has| $ (-6 -4454)))) (-3206 (((-939) (-576)) 134 (|has| $ (-6 -4454)))) (-1554 (((-390) $) 114) (((-227) $) 113) (((-906 (-390)) $) 103)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-4115 (((-783)) 32 T CONST)) (-2671 (($ $) 100)) (-4097 (((-939)) 141) (((-939) (-939)) 138 (|has| $ (-6 -4454)))) (-1994 (((-112) $ $) 6)) (-1865 (((-939)) 144)) (-3111 (((-112) $ $) 45)) (-2388 (($ $) 124)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 117)) (-3974 (((-112) $ $) 119)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 118)) (-3962 (((-112) $ $) 120)) (-4046 (($ $ $) 73)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3309 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) (-2992 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-1332 (*1 *1 *1) (-4 *1 (-414))) (-1332 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) +(-13 (-374) (-146) (-10 -8 (-15 -3309 ((-845 (-940)) $)) (-15 -2992 ((-3 (-783) "failed") $ $)) (-15 -1332 ($ $)) (-15 -1332 ($ $ (-783))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-3044 (($ (-576) (-576)) 11) (($ (-576) (-576) (-940)) NIL)) (-3229 (((-940)) 19) (((-940) (-940)) NIL))) +(((-415 |#1|) (-10 -8 (-15 -3229 ((-940) (-940))) (-15 -3229 ((-940))) (-15 -3044 (|#1| (-576) (-576) (-940))) (-15 -3044 (|#1| (-576) (-576)))) (-416)) (T -415)) +((-3229 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) +(-10 -8 (-15 -3229 ((-940) (-940))) (-15 -3229 ((-940))) (-15 -3044 (|#1| (-576) (-576) (-940))) (-15 -3044 (|#1| (-576) (-576)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2347 (((-576) $) 98)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-4048 (($ $) 96)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-1839 (($ $) 106)) (-2420 (((-112) $ $) 65)) (-1529 (((-576) $) 123)) (-3306 (($) 18 T CONST)) (-4175 (($ $) 95)) (-1572 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2859 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-4169 (((-112) $) 79)) (-3337 (((-940)) 139) (((-940) (-940)) 136 (|has| $ (-6 -4455)))) (-1661 (((-112) $) 121)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-3309 (((-576) $) 145)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 105)) (-2471 (($ $) 101)) (-4099 (((-112) $) 122)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3124 (($ $ $) 115) (($) 133 (-12 (-2662 (|has| $ (-6 -4455))) (-2662 (|has| $ (-6 -4447)))))) (-1951 (($ $ $) 116) (($) 132 (-12 (-2662 (|has| $ (-6 -4455))) (-2662 (|has| $ (-6 -4447)))))) (-1492 (((-576) $) 142)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-2176 (((-940) (-576)) 135 (|has| $ (-6 -4455)))) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2638 (($ $) 97)) (-3416 (($ $) 99)) (-3044 (($ (-576) (-576)) 147) (($ (-576) (-576) (-940)) 146)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4210 (((-576) $) 143)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-3229 (((-940)) 140) (((-940) (-940)) 137 (|has| $ (-6 -4455)))) (-4193 (((-940) (-576)) 134 (|has| $ (-6 -4455)))) (-4171 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-1778 (((-783)) 32 T CONST)) (-1487 (($ $) 100)) (-1625 (((-940)) 141) (((-940) (-940)) 138 (|has| $ (-6 -4455)))) (-2113 (((-112) $ $) 6)) (-3515 (((-940)) 144)) (-2537 (((-112) $ $) 45)) (-1665 (($ $) 124)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 117)) (-2962 (((-112) $ $) 119)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 118)) (-2948 (((-112) $ $) 120)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-416) (-141)) (T -416)) -((-2632 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-2632 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-939)) (-4 *1 (-416)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1865 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4097 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) (-2913 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) (-2757 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-939)) (|has| *1 (-6 -4454)) (-4 *1 (-416)))) (-2913 (*1 *2 *2) (-12 (-5 *2 (-939)) (|has| *1 (-6 -4454)) (-4 *1 (-416)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-939)) (|has| *1 (-6 -4454)) (-4 *1 (-416)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4454)) (-4 *1 (-416)) (-5 *2 (-939)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4454)) (-4 *1 (-416)) (-5 *2 (-939)))) (-2905 (*1 *1) (-12 (-4 *1 (-416)) (-2298 (|has| *1 (-6 -4454))) (-2298 (|has| *1 (-6 -4446))))) (-1654 (*1 *1) (-12 (-4 *1 (-416)) (-2298 (|has| *1 (-6 -4454))) (-2298 (|has| *1 (-6 -4446)))))) -(-13 (-1080) (-10 -8 (-6 -2641) (-15 -2632 ($ (-576) (-576))) (-15 -2632 ($ (-576) (-576) (-939))) (-15 -3241 ((-576) $)) (-15 -1865 ((-939))) (-15 -1495 ((-576) $)) (-15 -1360 ((-576) $)) (-15 -4097 ((-939))) (-15 -2913 ((-939))) (-15 -2757 ((-939))) (IF (|has| $ (-6 -4454)) (PROGN (-15 -4097 ((-939) (-939))) (-15 -2913 ((-939) (-939))) (-15 -2757 ((-939) (-939))) (-15 -3072 ((-939) (-576))) (-15 -3206 ((-939) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4446)) |%noBranch| (IF (|has| $ (-6 -4454)) |%noBranch| (PROGN (-15 -2905 ($)) (-15 -1654 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-906 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-863) . T) ((-900 (-390)) . T) ((-938) . T) ((-1022) . T) ((-1042) . T) ((-1080) . T) ((-1058 (-419 (-576))) . T) ((-1058 (-576)) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-2422 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) -(((-417 |#1| |#2|) (-10 -7 (-15 -2422 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) -(-10 -7 (-15 -2422 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) -((-2422 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) -(((-418 |#1| |#2|) (-10 -7 (-15 -2422 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -2422 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 13)) (-1705 ((|#1| $) 21 (|has| |#1| (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| |#1| (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 17) (((-3 (-1196) "failed") $) NIL (|has| |#1| (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576))))) (-2317 ((|#1| $) 15) (((-1196) $) NIL (|has| |#1| (-1058 (-1196)))) (((-419 (-576)) $) 69 (|has| |#1| (-1058 (-576)))) (((-576) $) NIL (|has| |#1| (-1058 (-576))))) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) 51)) (-4369 (($) NIL (|has| |#1| (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| |#1| (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| |#1| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| |#1| (-900 (-390))))) (-2287 (((-112) $) 57)) (-2461 (($ $) NIL)) (-2686 ((|#1| $) 73)) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-1172)))) (-3197 (((-112) $) NIL (|has| |#1| (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 100)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| |#1| (-317)))) (-2804 ((|#1| $) 28 (|has| |#1| (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 145 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 138 (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-2026 (((-783) $) NIL)) (-4368 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2521 (($ $) NIL)) (-2697 ((|#1| $) 75)) (-1554 (((-906 (-576)) $) NIL (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| |#1| (-626 (-906 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1042))) (((-227) $) NIL (|has| |#1| (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1196)) NIL (|has| |#1| (-1058 (-1196))))) (-1972 (((-3 $ "failed") $) 102 (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) 103 T CONST)) (-2671 ((|#1| $) 26 (|has| |#1| (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| |#1| (-832)))) (-4314 (($) 22 T CONST)) (-4320 (($) 8 T CONST)) (-3678 (((-1178) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1178) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1292) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1292) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-3155 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) 66)) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) 24 (|has| |#1| (-861)))) (-4046 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4036 (($ $) 25) (($ $ $) 56)) (-4026 (($ $ $) 54)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-419 |#1|) (-13 (-1012 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4461)) (-6 -4450) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -(-13 (-1012 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4461)) (-6 -4450) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3313 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 18)) (-4005 (($ (-1287 |#2|) (-1287 $)) NIL) (($ (-1287 |#2|)) 24)) (-4228 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 40)) (-2354 ((|#3| $) 69)) (-1451 ((|#2| (-1287 $)) NIL) ((|#2|) 20)) (-3435 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 22) (((-701 |#2|) (-1287 $)) 38)) (-1554 (((-1287 |#2|) $) 11) (($ (-1287 |#2|)) 13)) (-3069 ((|#3| $) 55))) -(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -4228 ((-701 |#2|) |#1|)) (-15 -1451 (|#2|)) (-15 -3313 ((-701 |#2|))) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -4005 (|#1| (-1287 |#2|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -2354 (|#3| |#1|)) (-15 -3069 (|#3| |#1|)) (-15 -3313 ((-701 |#2|) (-1287 |#1|))) (-15 -1451 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4228 ((-701 |#2|) |#1| (-1287 |#1|)))) (-421 |#2| |#3|) (-174) (-1263 |#2|)) (T -420)) -((-3313 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-1451 (*1 *2) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) -(-10 -8 (-15 -4228 ((-701 |#2|) |#1|)) (-15 -1451 (|#2|)) (-15 -3313 ((-701 |#2|))) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -4005 (|#1| (-1287 |#2|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -2354 (|#3| |#1|)) (-15 -3069 (|#3| |#1|)) (-15 -3313 ((-701 |#2|) (-1287 |#1|))) (-15 -1451 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4228 ((-701 |#2|) |#1| (-1287 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-3313 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-3832 ((|#1| $) 59)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-4005 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-4228 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-3900 (((-3 $ "failed") $) 37)) (-4134 (((-939)) 61)) (-2287 (((-112) $) 35)) (-2647 ((|#1| $) 58)) (-2354 ((|#2| $) 51 (|has| |#1| (-374)))) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1451 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3435 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-1554 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1972 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3069 ((|#2| $) 52)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3578 (((-1287 $)) 74)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-421 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -421)) -((-3578 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) (-4 *1 (-421 *3 *4)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-4005 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1263 *3)))) (-1554 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1263 *3)))) (-3313 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-701 *3)))) (-1451 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-701 *3))))) -(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -3578 ((-1287 $))) (-15 -3435 ((-1287 |t#1|) $)) (-15 -3435 ((-701 |t#1|) (-1287 $))) (-15 -4005 ($ (-1287 |t#1|))) (-15 -1554 ((-1287 |t#1|) $)) (-15 -1554 ($ (-1287 |t#1|))) (-15 -3313 ((-701 |t#1|))) (-15 -1451 (|t#1|)) (-15 -4228 ((-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-4112 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) -(((-422 |#1| |#2|) (-10 -8 (-15 -4112 (|#1| (-576))) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|))) (-423 |#2|) (-1237)) (T -422)) -NIL -(-10 -8 (-15 -4112 (|#1| (-576))) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|))) -((-2980 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1058 (-576))))) (-2317 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1058 (-576))))) (-4112 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1058 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1058 (-576)))))) -(((-423 |#1|) (-141) (-1237)) (T -423)) -NIL -(-13 (-1058 |t#1|) (-10 -7 (IF (|has| |t#1| (-1058 (-576))) (-6 (-1058 (-576))) |%noBranch|) (IF (|has| |t#1| (-1058 (-419 (-576)))) (-6 (-1058 (-419 (-576)))) |%noBranch|))) -(((-628 #0=(-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1058 (-576))) ((-628 |#1|) . T) ((-1058 #0#) |has| |#1| (-1058 (-419 (-576)))) ((-1058 #1#) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T)) -((-2422 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2422 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1012 |#1|) (-1263 |#2|) (-13 (-421 |#2| |#3|) (-1058 |#2|)) (-317) (-1012 |#5|) (-1263 |#6|) (-13 (-421 |#6| |#7|) (-1058 |#6|))) (T -424)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1012 *5)) (-4 *7 (-1263 *6)) (-4 *8 (-13 (-421 *6 *7) (-1058 *6))) (-4 *9 (-317)) (-4 *10 (-1012 *9)) (-4 *11 (-1263 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1058 *10)))))) -(-10 -7 (-15 -2422 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) -((-1952 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2214 ((|#4| (-783) (-1287 |#4|)) 55)) (-2287 (((-112) $) NIL)) (-2686 (((-1287 |#4|) $) 15)) (-2647 ((|#2| $) 53)) (-2404 (($ $) 157)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 103)) (-1927 (($ (-1287 |#4|)) 102)) (-3115 (((-1140) $) NIL)) (-2697 ((|#1| $) 16)) (-2633 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-4112 (((-875) $) 148)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 |#4|) $) 141)) (-4320 (($) 11 T CONST)) (-3938 (((-112) $ $) 39)) (-4046 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -1927 ($ (-1287 |#4|))) (-15 -3578 ((-1287 |#4|) $)) (-15 -2647 (|#2| $)) (-15 -2686 ((-1287 |#4|) $)) (-15 -2697 (|#1| $)) (-15 -2404 ($ $)) (-15 -2214 (|#4| (-783) (-1287 |#4|))))) (-317) (-1012 |#1|) (-1263 |#2|) (-13 (-421 |#2| |#3|) (-1058 |#2|))) (T -425)) -((-1927 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-421 *4 *5) (-1058 *4))) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-3578 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1058 *4))))) (-2647 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1058 *2))))) (-2686 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1058 *4))))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-1012 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1058 *3))))) (-2404 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1012 *2)) (-4 *4 (-1263 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1058 *3))))) (-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1287 *2)) (-4 *5 (-317)) (-4 *6 (-1012 *5)) (-4 *2 (-13 (-421 *6 *7) (-1058 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6))))) -(-13 (-485) (-10 -8 (-15 -1927 ($ (-1287 |#4|))) (-15 -3578 ((-1287 |#4|) $)) (-15 -2647 (|#2| $)) (-15 -2686 ((-1287 |#4|) $)) (-15 -2697 (|#1| $)) (-15 -2404 ($ $)) (-15 -2214 (|#4| (-783) (-1287 |#4|))))) -((-1952 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2647 ((|#2| $) 71)) (-1644 (($ (-1287 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1058 |#2|)))) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 37)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 |#4|) $) 28)) (-4320 (($) 25 T CONST)) (-3938 (((-112) $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) -(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -3578 ((-1287 |#4|) $)) (-15 -2647 (|#2| $)) (-15 -1644 ($ (-1287 |#4|))) (IF (|has| |#4| (-1058 |#2|)) (-15 -1644 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1012 |#1|) (-1263 |#2|) (-421 |#2| |#3|) (-1287 |#4|)) (T -426)) -((-3578 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-2647 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1287 *5)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1058 *4)) (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) -(-13 (-738) (-10 -8 (-15 -3578 ((-1287 |#4|) $)) (-15 -2647 (|#2| $)) (-15 -1644 ($ (-1287 |#4|))) (IF (|has| |#4| (-1058 |#2|)) (-15 -1644 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2422 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -2422 (|#3| (-1 |#4| |#2|) |#1|))) -((-4288 (((-3 $ "failed")) 98)) (-2108 (((-1287 (-701 |#2|)) (-1287 $)) NIL) (((-1287 (-701 |#2|))) 103)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) 96)) (-2426 (((-3 $ "failed")) 95)) (-2206 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 114)) (-4032 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 122)) (-4137 (((-1192 (-970 |#2|))) 63)) (-4078 ((|#2| (-1287 $)) NIL) ((|#2|) 118)) (-4005 (($ (-1287 |#2|) (-1287 $)) NIL) (($ (-1287 |#2|)) 124)) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) 94)) (-3510 (((-3 $ "failed")) 86)) (-1647 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 112)) (-2882 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 120)) (-3689 (((-1192 (-970 |#2|))) 62)) (-4037 ((|#2| (-1287 $)) NIL) ((|#2|) 116)) (-3435 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 123) (((-701 |#2|) (-1287 $)) 132)) (-1554 (((-1287 |#2|) $) 108) (($ (-1287 |#2|)) 110)) (-2531 (((-656 (-970 |#2|)) (-1287 $)) NIL) (((-656 (-970 |#2|))) 106)) (-2649 (($ (-701 |#2|) $) 102))) -(((-428 |#1| |#2|) (-10 -8 (-15 -2649 (|#1| (-701 |#2|) |#1|)) (-15 -4137 ((-1192 (-970 |#2|)))) (-15 -3689 ((-1192 (-970 |#2|)))) (-15 -4032 ((-701 |#2|) |#1|)) (-15 -2882 ((-701 |#2|) |#1|)) (-15 -2206 ((-701 |#2|))) (-15 -1647 ((-701 |#2|))) (-15 -4078 (|#2|)) (-15 -4037 (|#2|)) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -4005 (|#1| (-1287 |#2|))) (-15 -2531 ((-656 (-970 |#2|)))) (-15 -2108 ((-1287 (-701 |#2|)))) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -4288 ((-3 |#1| "failed"))) (-15 -2426 ((-3 |#1| "failed"))) (-15 -3510 ((-3 |#1| "failed"))) (-15 -3427 ((-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed"))) (-15 -3913 ((-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed"))) (-15 -2206 ((-701 |#2|) (-1287 |#1|))) (-15 -1647 ((-701 |#2|) (-1287 |#1|))) (-15 -4078 (|#2| (-1287 |#1|))) (-15 -4037 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4032 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2882 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2108 ((-1287 (-701 |#2|)) (-1287 |#1|))) (-15 -2531 ((-656 (-970 |#2|)) (-1287 |#1|)))) (-429 |#2|) (-174)) (T -428)) -((-2108 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2531 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-970 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4037 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-4078 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1647 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2206 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3689 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-970 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4137 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-970 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -2649 (|#1| (-701 |#2|) |#1|)) (-15 -4137 ((-1192 (-970 |#2|)))) (-15 -3689 ((-1192 (-970 |#2|)))) (-15 -4032 ((-701 |#2|) |#1|)) (-15 -2882 ((-701 |#2|) |#1|)) (-15 -2206 ((-701 |#2|))) (-15 -1647 ((-701 |#2|))) (-15 -4078 (|#2|)) (-15 -4037 (|#2|)) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -4005 (|#1| (-1287 |#2|))) (-15 -2531 ((-656 (-970 |#2|)))) (-15 -2108 ((-1287 (-701 |#2|)))) (-15 -3435 ((-701 |#2|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1|)) (-15 -4288 ((-3 |#1| "failed"))) (-15 -2426 ((-3 |#1| "failed"))) (-15 -3510 ((-3 |#1| "failed"))) (-15 -3427 ((-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed"))) (-15 -3913 ((-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed"))) (-15 -2206 ((-701 |#2|) (-1287 |#1|))) (-15 -1647 ((-701 |#2|) (-1287 |#1|))) (-15 -4078 (|#2| (-1287 |#1|))) (-15 -4037 (|#2| (-1287 |#1|))) (-15 -4005 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3435 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3435 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4032 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2882 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -2108 ((-1287 (-701 |#2|)) (-1287 |#1|))) (-15 -2531 ((-656 (-970 |#2|)) (-1287 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-4288 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) 20)) (-2108 (((-1287 (-701 |#1|)) (-1287 $)) 83) (((-1287 (-701 |#1|))) 106)) (-3791 (((-1287 $)) 86)) (-4331 (($) 18 T CONST)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-2426 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-2206 (((-701 |#1|) (-1287 $)) 70) (((-701 |#1|)) 98)) (-3500 ((|#1| $) 79)) (-4032 (((-701 |#1|) $ (-1287 $)) 81) (((-701 |#1|) $) 96)) (-2942 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-4137 (((-1192 (-970 |#1|))) 94 (|has| |#1| (-374)))) (-2711 (($ $ (-939)) 31)) (-2590 ((|#1| $) 77)) (-3138 (((-1192 |#1|) $) 47 (|has| |#1| (-568)))) (-4078 ((|#1| (-1287 $)) 72) ((|#1|) 100)) (-1748 (((-1192 |#1|) $) 68)) (-2896 (((-112)) 62)) (-4005 (($ (-1287 |#1|) (-1287 $)) 74) (($ (-1287 |#1|)) 104)) (-3900 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4134 (((-939)) 85)) (-1670 (((-112)) 59)) (-4222 (($ $ (-939)) 38)) (-2582 (((-112)) 55)) (-2396 (((-112)) 53)) (-2304 (((-112)) 57)) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3510 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1647 (((-701 |#1|) (-1287 $)) 71) (((-701 |#1|)) 99)) (-1881 ((|#1| $) 80)) (-2882 (((-701 |#1|) $ (-1287 $)) 82) (((-701 |#1|) $) 97)) (-1793 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3689 (((-1192 (-970 |#1|))) 95 (|has| |#1| (-374)))) (-1604 (($ $ (-939)) 32)) (-1845 ((|#1| $) 78)) (-2557 (((-1192 |#1|) $) 48 (|has| |#1| (-568)))) (-4037 ((|#1| (-1287 $)) 73) ((|#1|) 101)) (-3491 (((-1192 |#1|) $) 69)) (-3403 (((-112)) 63)) (-2043 (((-1178) $) 10)) (-1658 (((-112)) 54)) (-1530 (((-112)) 56)) (-2502 (((-112)) 58)) (-3115 (((-1140) $) 11)) (-2231 (((-112)) 61)) (-4368 ((|#1| $ (-576)) 110)) (-3435 (((-1287 |#1|) $ (-1287 $)) 76) (((-701 |#1|) (-1287 $) (-1287 $)) 75) (((-1287 |#1|) $) 108) (((-701 |#1|) (-1287 $)) 107)) (-1554 (((-1287 |#1|) $) 103) (($ (-1287 |#1|)) 102)) (-2531 (((-656 (-970 |#1|)) (-1287 $)) 84) (((-656 (-970 |#1|))) 105)) (-2362 (($ $ $) 28)) (-2631 (((-112)) 67)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3578 (((-1287 $)) 109)) (-2341 (((-656 (-1287 |#1|))) 49 (|has| |#1| (-568)))) (-3240 (($ $ $ $) 29)) (-1962 (((-112)) 65)) (-2649 (($ (-701 |#1|) $) 93)) (-2027 (($ $ $) 27)) (-1528 (((-112)) 66)) (-3484 (((-112)) 64)) (-2289 (((-112)) 60)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 33)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3044 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-3044 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3515 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1625 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3229 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3337 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-1625 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) (-5 *2 (-940)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) (-5 *2 (-940)))) (-3124 (*1 *1) (-12 (-4 *1 (-416)) (-2662 (|has| *1 (-6 -4455))) (-2662 (|has| *1 (-6 -4447))))) (-1951 (*1 *1) (-12 (-4 *1 (-416)) (-2662 (|has| *1 (-6 -4455))) (-2662 (|has| *1 (-6 -4447)))))) +(-13 (-1081) (-10 -8 (-6 -4165) (-15 -3044 ($ (-576) (-576))) (-15 -3044 ($ (-576) (-576) (-940))) (-15 -3309 ((-576) $)) (-15 -3515 ((-940))) (-15 -4210 ((-576) $)) (-15 -1492 ((-576) $)) (-15 -1625 ((-940))) (-15 -3229 ((-940))) (-15 -3337 ((-940))) (IF (|has| $ (-6 -4455)) (PROGN (-15 -1625 ((-940) (-940))) (-15 -3229 ((-940) (-940))) (-15 -3337 ((-940) (-940))) (-15 -2176 ((-940) (-576))) (-15 -4193 ((-940) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4447)) |%noBranch| (IF (|has| $ (-6 -4455)) |%noBranch| (PROGN (-15 -3124 ($)) (-15 -1951 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-907 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-390)) . T) ((-939) . T) ((-1023) . T) ((-1043) . T) ((-1081) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-4116 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) +(((-417 |#1| |#2|) (-10 -7 (-15 -4116 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) +(-10 -7 (-15 -4116 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) +((-4116 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4116 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -4116 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 13)) (-2347 ((|#1| $) 21 (|has| |#1| (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| |#1| (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 17) (((-3 (-1197) "failed") $) NIL (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576))))) (-2859 ((|#1| $) 15) (((-1197) $) NIL (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 69 (|has| |#1| (-1059 (-576)))) (((-576) $) NIL (|has| |#1| (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) 51)) (-1836 (($) NIL (|has| |#1| (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| |#1| (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-3215 (((-112) $) 57)) (-4340 (($ $) NIL)) (-1570 ((|#1| $) 73)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-4099 (((-112) $) NIL (|has| |#1| (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 100)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| |#1| (-317)))) (-3416 ((|#1| $) 28 (|has| |#1| (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 145 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 138 (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2411 (((-783) $) NIL)) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3708 (($ $) NIL)) (-1581 ((|#1| $) 75)) (-4171 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1043))) (((-227) $) NIL (|has| |#1| (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1197)) NIL (|has| |#1| (-1059 (-1197))))) (-3230 (((-3 $ "failed") $) 102 (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) 103 T CONST)) (-1487 ((|#1| $) 26 (|has| |#1| (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-832)))) (-2719 (($) 22 T CONST)) (-2730 (($) 8 T CONST)) (-3157 (((-1179) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1179) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-2018 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) 66)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) 24 (|has| |#1| (-861)))) (-3056 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3043 (($ $) 25) (($ $ $) 56)) (-3029 (($ $ $) 54)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-419 |#1|) (-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4462)) (-6 -4451) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) +NIL +(-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4462)) (-6 -4451) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2747 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 18)) (-3208 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 24)) (-3567 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 40)) (-2542 ((|#3| $) 69)) (-2455 ((|#2| (-1288 $)) NIL) ((|#2|) 20)) (-1490 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 22) (((-701 |#2|) (-1288 $)) 38)) (-4171 (((-1288 |#2|) $) 11) (($ (-1288 |#2|)) 13)) (-2137 ((|#3| $) 55))) +(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -3567 ((-701 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -2747 ((-701 |#2|))) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -3208 (|#1| (-1288 |#2|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -2542 (|#3| |#1|)) (-15 -2137 (|#3| |#1|)) (-15 -2747 ((-701 |#2|) (-1288 |#1|))) (-15 -2455 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3567 ((-701 |#2|) |#1| (-1288 |#1|)))) (-421 |#2| |#3|) (-174) (-1264 |#2|)) (T -420)) +((-2747 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-2455 (*1 *2) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) +(-10 -8 (-15 -3567 ((-701 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -2747 ((-701 |#2|))) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -3208 (|#1| (-1288 |#2|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -2542 (|#3| |#1|)) (-15 -2137 (|#3| |#1|)) (-15 -2747 ((-701 |#2|) (-1288 |#1|))) (-15 -2455 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3567 ((-701 |#2|) |#1| (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2747 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2208 ((|#1| $) 59)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3208 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-3567 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-3451 (((-3 $ "failed") $) 37)) (-3733 (((-940)) 61)) (-3215 (((-112) $) 35)) (-2471 ((|#1| $) 58)) (-2542 ((|#2| $) 51 (|has| |#1| (-374)))) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2455 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-1490 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4171 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3230 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2137 ((|#2| $) 52)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-3454 (((-1288 $)) 74)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-421 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -421)) +((-3454 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) (-4 *1 (-421 *3 *4)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-2747 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3)))) (-2455 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3))))) +(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -3454 ((-1288 $))) (-15 -1490 ((-1288 |t#1|) $)) (-15 -1490 ((-701 |t#1|) (-1288 $))) (-15 -3208 ($ (-1288 |t#1|))) (-15 -4171 ((-1288 |t#1|) $)) (-15 -4171 ($ (-1288 |t#1|))) (-15 -2747 ((-701 |t#1|))) (-15 -2455 (|t#1|)) (-15 -3567 ((-701 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-3569 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) +(((-422 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| (-576))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|))) (-423 |#2|) (-1238)) (T -422)) +NIL +(-10 -8 (-15 -3569 (|#1| (-576))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|))) +((-1572 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1059 (-576))))) (-2859 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1059 (-576))))) (-3569 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1059 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1059 (-576)))))) +(((-423 |#1|) (-141) (-1238)) (T -423)) +NIL +(-13 (-1059 |t#1|) (-10 -7 (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-576))) |%noBranch|) (IF (|has| |t#1| (-1059 (-419 (-576)))) (-6 (-1059 (-419 (-576)))) |%noBranch|))) +(((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1059 (-576))) ((-628 |#1|) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 #1#) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T)) +((-4116 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|)) (-317) (-1013 |#5|) (-1264 |#6|) (-13 (-421 |#6| |#7|) (-1059 |#6|))) (T -424)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *7 (-1264 *6)) (-4 *8 (-13 (-421 *6 *7) (-1059 *6))) (-4 *9 (-317)) (-4 *10 (-1013 *9)) (-4 *11 (-1264 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1059 *10)))))) +(-10 -7 (-15 -4116 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) +((-3488 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3799 ((|#4| (-783) (-1288 |#4|)) 55)) (-3215 (((-112) $) NIL)) (-1570 (((-1288 |#4|) $) 15)) (-2471 ((|#2| $) 53)) (-1817 (($ $) 157)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 103)) (-2752 (($ (-1288 |#4|)) 102)) (-1450 (((-1141) $) NIL)) (-1581 ((|#1| $) 16)) (-2318 (($ $ $) NIL)) (-2604 (($ $ $) NIL)) (-3569 (((-876) $) 148)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 |#4|) $) 141)) (-2730 (($) 11 T CONST)) (-2923 (((-112) $ $) 39)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) +(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2752 ($ (-1288 |#4|))) (-15 -3454 ((-1288 |#4|) $)) (-15 -2471 (|#2| $)) (-15 -1570 ((-1288 |#4|) $)) (-15 -1581 (|#1| $)) (-15 -1817 ($ $)) (-15 -3799 (|#4| (-783) (-1288 |#4|))))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|))) (T -425)) +((-2752 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-3454 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-2471 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-1817 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-3799 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) +(-13 (-485) (-10 -8 (-15 -2752 ($ (-1288 |#4|))) (-15 -3454 ((-1288 |#4|) $)) (-15 -2471 (|#2| $)) (-15 -1570 ((-1288 |#4|) $)) (-15 -1581 (|#1| $)) (-15 -1817 ($ $)) (-15 -3799 (|#4| (-783) (-1288 |#4|))))) +((-3488 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-2471 ((|#2| $) 71)) (-3137 (($ (-1288 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1059 |#2|)))) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 37)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 |#4|) $) 28)) (-2730 (($) 25 T CONST)) (-2923 (((-112) $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) +(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -3454 ((-1288 |#4|) $)) (-15 -2471 (|#2| $)) (-15 -3137 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -3137 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1013 |#1|) (-1264 |#2|) (-421 |#2| |#3|) (-1288 |#4|)) (T -426)) +((-3454 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-2471 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1288 *5)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) +(-13 (-738) (-10 -8 (-15 -3454 ((-1288 |#4|) $)) (-15 -2471 (|#2| $)) (-15 -3137 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -3137 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4116 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) +(-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) +((-2876 (((-3 $ "failed")) 98)) (-4001 (((-1288 (-701 |#2|)) (-1288 $)) NIL) (((-1288 (-701 |#2|))) 103)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) 96)) (-4008 (((-3 $ "failed")) 95)) (-3712 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 114)) (-2173 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 122)) (-1968 (((-1193 (-971 |#2|))) 63)) (-2624 ((|#2| (-1288 $)) NIL) ((|#2|) 118)) (-3208 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 124)) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) 94)) (-4114 (((-3 $ "failed")) 86)) (-3160 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 112)) (-2888 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 120)) (-3275 (((-1193 (-971 |#2|))) 62)) (-2218 ((|#2| (-1288 $)) NIL) ((|#2|) 116)) (-1490 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 123) (((-701 |#2|) (-1288 $)) 132)) (-4171 (((-1288 |#2|) $) 108) (($ (-1288 |#2|)) 110)) (-3818 (((-656 (-971 |#2|)) (-1288 $)) NIL) (((-656 (-971 |#2|))) 106)) (-3568 (($ (-701 |#2|) $) 102))) +(((-428 |#1| |#2|) (-10 -8 (-15 -3568 (|#1| (-701 |#2|) |#1|)) (-15 -1968 ((-1193 (-971 |#2|)))) (-15 -3275 ((-1193 (-971 |#2|)))) (-15 -2173 ((-701 |#2|) |#1|)) (-15 -2888 ((-701 |#2|) |#1|)) (-15 -3712 ((-701 |#2|))) (-15 -3160 ((-701 |#2|))) (-15 -2624 (|#2|)) (-15 -2218 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -3208 (|#1| (-1288 |#2|))) (-15 -3818 ((-656 (-971 |#2|)))) (-15 -4001 ((-1288 (-701 |#2|)))) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -2876 ((-3 |#1| "failed"))) (-15 -4008 ((-3 |#1| "failed"))) (-15 -4114 ((-3 |#1| "failed"))) (-15 -2592 ((-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed"))) (-15 -3596 ((-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed"))) (-15 -3712 ((-701 |#2|) (-1288 |#1|))) (-15 -3160 ((-701 |#2|) (-1288 |#1|))) (-15 -2624 (|#2| (-1288 |#1|))) (-15 -2218 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2173 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2888 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4001 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -3818 ((-656 (-971 |#2|)) (-1288 |#1|)))) (-429 |#2|) (-174)) (T -428)) +((-4001 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3818 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2218 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2624 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-3160 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3712 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3275 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1968 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) +(-10 -8 (-15 -3568 (|#1| (-701 |#2|) |#1|)) (-15 -1968 ((-1193 (-971 |#2|)))) (-15 -3275 ((-1193 (-971 |#2|)))) (-15 -2173 ((-701 |#2|) |#1|)) (-15 -2888 ((-701 |#2|) |#1|)) (-15 -3712 ((-701 |#2|))) (-15 -3160 ((-701 |#2|))) (-15 -2624 (|#2|)) (-15 -2218 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -3208 (|#1| (-1288 |#2|))) (-15 -3818 ((-656 (-971 |#2|)))) (-15 -4001 ((-1288 (-701 |#2|)))) (-15 -1490 ((-701 |#2|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1|)) (-15 -2876 ((-3 |#1| "failed"))) (-15 -4008 ((-3 |#1| "failed"))) (-15 -4114 ((-3 |#1| "failed"))) (-15 -2592 ((-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed"))) (-15 -3596 ((-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed"))) (-15 -3712 ((-701 |#2|) (-1288 |#1|))) (-15 -3160 ((-701 |#2|) (-1288 |#1|))) (-15 -2624 (|#2| (-1288 |#1|))) (-15 -2218 (|#2| (-1288 |#1|))) (-15 -3208 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -1490 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -1490 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2173 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2888 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4001 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -3818 ((-656 (-971 |#2|)) (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2876 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) 20)) (-4001 (((-1288 (-701 |#1|)) (-1288 $)) 83) (((-1288 (-701 |#1|))) 106)) (-1692 (((-1288 $)) 86)) (-3306 (($) 18 T CONST)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-4008 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3712 (((-701 |#1|) (-1288 $)) 70) (((-701 |#1|)) 98)) (-4016 ((|#1| $) 79)) (-2173 (((-701 |#1|) $ (-1288 $)) 81) (((-701 |#1|) $) 96)) (-3417 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-1968 (((-1193 (-971 |#1|))) 94 (|has| |#1| (-374)))) (-1845 (($ $ (-940)) 31)) (-3168 ((|#1| $) 77)) (-1544 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-2624 ((|#1| (-1288 $)) 72) ((|#1|) 100)) (-1591 (((-1193 |#1|) $) 68)) (-3070 (((-112)) 62)) (-3208 (($ (-1288 |#1|) (-1288 $)) 74) (($ (-1288 |#1|)) 104)) (-3451 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3733 (((-940)) 85)) (-2055 (((-112)) 59)) (-3507 (($ $ (-940)) 38)) (-3073 (((-112)) 55)) (-1744 (((-112)) 53)) (-2076 (((-112)) 57)) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-4114 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-3160 (((-701 |#1|) (-1288 $)) 71) (((-701 |#1|)) 99)) (-3643 ((|#1| $) 80)) (-2888 (((-701 |#1|) $ (-1288 $)) 82) (((-701 |#1|) $) 97)) (-3974 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3275 (((-1193 (-971 |#1|))) 95 (|has| |#1| (-374)))) (-2707 (($ $ (-940)) 32)) (-3261 ((|#1| $) 78)) (-2754 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-2218 ((|#1| (-1288 $)) 73) ((|#1|) 101)) (-1953 (((-1193 |#1|) $) 69)) (-2384 (((-112)) 63)) (-1413 (((-1179) $) 10)) (-1981 (((-112)) 54)) (-3307 (((-112)) 56)) (-3505 (((-112)) 58)) (-1450 (((-1141) $) 11)) (-2653 (((-112)) 61)) (-2796 ((|#1| $ (-576)) 110)) (-1490 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75) (((-1288 |#1|) $) 108) (((-701 |#1|) (-1288 $)) 107)) (-4171 (((-1288 |#1|) $) 103) (($ (-1288 |#1|)) 102)) (-3818 (((-656 (-971 |#1|)) (-1288 $)) 84) (((-656 (-971 |#1|))) 105)) (-2604 (($ $ $) 28)) (-2306 (((-112)) 67)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-3454 (((-1288 $)) 109)) (-2440 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-3298 (($ $ $ $) 29)) (-3143 (((-112)) 65)) (-3568 (($ (-701 |#1|) $) 93)) (-2424 (($ $ $) 27)) (-3288 (((-112)) 66)) (-1892 (((-112)) 64)) (-3236 (((-112)) 60)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-429 |#1|) (-141) (-174)) (T -429)) -((-3578 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-429 *3)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2108 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 (-701 *3))))) (-2531 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-970 *3))))) (-4005 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1554 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4037 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-4078 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1647 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2206 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3689 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1192 (-970 *3))))) (-4137 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1192 (-970 *3))))) (-2649 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) -(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -3578 ((-1287 $))) (-15 -3435 ((-1287 |t#1|) $)) (-15 -3435 ((-701 |t#1|) (-1287 $))) (-15 -2108 ((-1287 (-701 |t#1|)))) (-15 -2531 ((-656 (-970 |t#1|)))) (-15 -4005 ($ (-1287 |t#1|))) (-15 -1554 ((-1287 |t#1|) $)) (-15 -1554 ($ (-1287 |t#1|))) (-15 -4037 (|t#1|)) (-15 -4078 (|t#1|)) (-15 -1647 ((-701 |t#1|))) (-15 -2206 ((-701 |t#1|))) (-15 -2882 ((-701 |t#1|) $)) (-15 -4032 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3689 ((-1192 (-970 |t#1|)))) (-15 -4137 ((-1192 (-970 |t#1|))))) |%noBranch|) (-15 -2649 ($ (-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 60)) (-2078 (($ $) 78)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 192)) (-4070 (($ $) NIL)) (-2378 (((-112) $) 48)) (-4288 ((|#1| $) 16)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-1241)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-1241)))) (-3987 (($ |#1| (-576)) 42)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 74)) (-3900 (((-3 $ "failed") $) 165)) (-2936 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3898 (((-112) $) 81 (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-1863 (($ |#1| (-576)) 44)) (-2443 (((-112) $) 212 (|has| |#1| (-1241)))) (-2287 (((-112) $) 62)) (-3445 (((-783) $) 51)) (-1769 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-3908 ((|#1| $ (-576)) 175)) (-2862 (((-576) $ (-576)) 174)) (-2583 (($ |#1| (-576)) 41)) (-2422 (($ (-1 |#1| |#1|) $) 184)) (-1750 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-2891 (($ |#1| (-576)) 43)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-3259 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1749 (((-656 (-2 (|:| -1450 |#1|) (|:| -1495 (-576)))) $) 73)) (-4435 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1450 (((-430 $) $) NIL (|has| |#1| (-1241)))) (-1943 (((-3 $ "failed") $ $) 177)) (-1495 (((-576) $) 168)) (-3564 ((|#1| $) 75)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) $) NIL (|has| |#1| (-526 (-1196) $))) (($ $ (-656 (-1196)) (-656 $)) 108 (|has| |#1| (-526 (-1196) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-4368 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-4106 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-1554 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1042))) (((-227) $) 120 (|has| |#1| (-1042)))) (-4112 (((-875) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576)))))) (-4115 (((-783)) 67 T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 53 T CONST)) (-4320 (($) 52 T CONST)) (-3155 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-3938 (((-112) $ $) 160)) (-4036 (($ $) 162) (($ $ $) NIL)) (-4026 (($ $ $) 181)) (** (($ $ (-939)) NIL) (($ $ (-783)) 126)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3564 (|#1| $)) (-15 -1495 ((-576) $)) (-15 -1750 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -4435 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2583 ($ |#1| (-576))) (-15 -1749 ((-656 (-2 (|:| -1450 |#1|) (|:| -1495 (-576)))) $)) (-15 -2891 ($ |#1| (-576))) (-15 -2862 ((-576) $ (-576))) (-15 -3908 (|#1| $ (-576))) (-15 -1769 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3445 ((-783) $)) (-15 -1863 ($ |#1| (-576))) (-15 -3987 ($ |#1| (-576))) (-15 -3259 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4288 (|#1| $)) (-15 -2078 ($ $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1042)) (-6 (-1042)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|))) (-568)) (T -430)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-3564 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1750 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2583 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1450 *3) (|:| -1495 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2862 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3987 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3259 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4288 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2936 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) -(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3564 (|#1| $)) (-15 -1495 ((-576) $)) (-15 -1750 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -4435 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2583 ($ |#1| (-576))) (-15 -1749 ((-656 (-2 (|:| -1450 |#1|) (|:| -1495 (-576)))) $)) (-15 -2891 ($ |#1| (-576))) (-15 -2862 ((-576) $ (-576))) (-15 -3908 (|#1| $ (-576))) (-15 -1769 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3445 ((-783) $)) (-15 -1863 ($ |#1| (-576))) (-15 -3987 ($ |#1| (-576))) (-15 -3259 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4288 (|#1| $)) (-15 -2078 ($ $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1042)) (-6 (-1042)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|))) -((-4014 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2730 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) -(((-431 |#1|) (-10 -7 (-15 -4014 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2730 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) -((-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) -(-10 -7 (-15 -4014 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2730 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) -((-3040 ((|#2| |#2|) 183)) (-1735 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112)) 60))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112))) (-15 -3040 (|#2| |#2|))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -432)) -((-3040 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-442 *3))) (-14 *4 (-1196)) (-14 *5 *2))) (-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-14 *6 (-1196)) (-14 *7 *3)))) -(-10 -7 (-15 -1735 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112))) (-15 -3040 (|#2| |#2|))) -((-2422 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|))) (-1069) (-442 |#1|) (-1069) (-442 |#3|)) (T -433)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) -(-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|))) -((-3040 ((|#2| |#2|) 106)) (-1564 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178)) 52)) (-2069 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178)) 170))) -(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1564 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -2069 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -3040 (|#2| |#2|))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|) (-10 -8 (-15 -4112 ($ |#3|)))) (-860) (-13 (-1265 |#2| |#3|) (-374) (-1222) (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $)))) (-1003 |#4|) (-1196)) (T -434)) -((-3040 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1222) (-442 *3) (-10 -8 (-15 -4112 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1265 *2 *4) (-374) (-1222) (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1003 *5)) (-14 *7 (-1196)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4112 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1265 *3 *7) (-374) (-1222) (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1003 *8)) (-14 *10 (-1196)))) (-1564 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4112 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1265 *3 *7) (-374) (-1222) (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1003 *8)) (-14 *10 (-1196))))) -(-10 -7 (-15 -1564 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -2069 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -3040 (|#2| |#2|))) -((-1925 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2721 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2422 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1925 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1120) (-437 |#1|) (-1120) (-437 |#3|)) (T -435)) -((-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) -(-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1925 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2984 (($) 51)) (-4025 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3863 (($ $ $) 46)) (-3702 (((-112) $ $) 35)) (-2199 (((-783)) 55)) (-3703 (($ (-656 |#2|)) 23) (($) NIL)) (-4369 (($) 66)) (-1553 (((-112) $ $) 15)) (-2905 ((|#2| $) 77)) (-1654 ((|#2| $) 75)) (-4375 (((-939) $) 70)) (-2710 (($ $ $) 42)) (-2409 (($ (-939)) 60)) (-1907 (($ $ |#2|) NIL) (($ $ $) 45)) (-3125 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-4124 (($ (-656 |#2|)) 27)) (-1376 (($ $) 53)) (-4112 (((-875) $) 40)) (-4219 (((-783) $) 24)) (-1514 (($ (-656 |#2|)) 22) (($) NIL)) (-3938 (((-112) $ $) 19))) -(((-436 |#1| |#2|) (-10 -8 (-15 -2199 ((-783))) (-15 -2409 (|#1| (-939))) (-15 -4375 ((-939) |#1|)) (-15 -4369 (|#1|)) (-15 -2905 (|#2| |#1|)) (-15 -1654 (|#2| |#1|)) (-15 -2984 (|#1|)) (-15 -1376 (|#1| |#1|)) (-15 -4219 ((-783) |#1|)) (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -1553 ((-112) |#1| |#1|)) (-15 -1514 (|#1|)) (-15 -1514 (|#1| (-656 |#2|))) (-15 -3703 (|#1|)) (-15 -3703 (|#1| (-656 |#2|))) (-15 -2710 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#2|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -3702 ((-112) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#2| |#1|)) (-15 -4124 (|#1| (-656 |#2|))) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1120)) (T -436)) -((-2199 (*1 *2) (-12 (-4 *4 (-1120)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) -(-10 -8 (-15 -2199 ((-783))) (-15 -2409 (|#1| (-939))) (-15 -4375 ((-939) |#1|)) (-15 -4369 (|#1|)) (-15 -2905 (|#2| |#1|)) (-15 -1654 (|#2| |#1|)) (-15 -2984 (|#1|)) (-15 -1376 (|#1| |#1|)) (-15 -4219 ((-783) |#1|)) (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -1553 ((-112) |#1| |#1|)) (-15 -1514 (|#1|)) (-15 -1514 (|#1| (-656 |#2|))) (-15 -3703 (|#1|)) (-15 -3703 (|#1| (-656 |#2|))) (-15 -2710 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#2|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -3702 ((-112) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#2| |#1|)) (-15 -4124 (|#1| (-656 |#2|))) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|))) -((-1952 (((-112) $ $) 20)) (-2984 (($) 68 (|has| |#1| (-379)))) (-4025 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3863 (($ $ $) 79)) (-3702 (((-112) $ $) 80)) (-2337 (((-112) $ (-783)) 8)) (-2199 (((-783)) 62 (|has| |#1| (-379)))) (-3703 (($ (-656 |#1|)) 75) (($) 74)) (-2146 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3966 (($ $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4463)))) (-4369 (($) 65 (|has| |#1| (-379)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) 71)) (-2135 (((-112) $ (-783)) 9)) (-2905 ((|#1| $) 66 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1654 ((|#1| $) 67 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-4375 (((-939) $) 64 (|has| |#1| (-379)))) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23)) (-2710 (($ $ $) 76)) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-2409 (($ (-939)) 63 (|has| |#1| (-379)))) (-3115 (((-1140) $) 22)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-1907 (($ $ |#1|) 78) (($ $ $) 77)) (-1437 (($) 50) (($ (-656 |#1|)) 49)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 51)) (-1376 (($ $) 69 (|has| |#1| (-379)))) (-4112 (((-875) $) 18)) (-4219 (((-783) $) 70)) (-1514 (($ (-656 |#1|)) 73) (($) 72)) (-1994 (((-112) $ $) 21)) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19)) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-437 |#1|) (-141) (-1120)) (T -437)) -((-4219 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1120)) (-5 *2 (-783)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1120)) (-4 *2 (-379)))) (-2984 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1120)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1120)) (-4 *2 (-861)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1120)) (-4 *2 (-861))))) -(-13 (-231 |t#1|) (-1118 |t#1|) (-10 -8 (-6 -4463) (-15 -4219 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -1376 ($ $)) (-15 -2984 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -1654 (|t#1| $)) (-15 -2905 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-875)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1118 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1443 (((-598 |#2|) |#2| (-1196)) 36)) (-2385 (((-598 |#2|) |#2| (-1196)) 21)) (-3829 ((|#2| |#2| (-1196)) 26))) -(((-438 |#1| |#2|) (-10 -7 (-15 -2385 ((-598 |#2|) |#2| (-1196))) (-15 -1443 ((-598 |#2|) |#2| (-1196))) (-15 -3829 (|#2| |#2| (-1196)))) (-13 (-317) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-29 |#1|))) (T -438)) -((-3829 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) (-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5))))) (-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5)))))) -(-10 -7 (-15 -2385 ((-598 |#2|) |#2| (-1196))) (-15 -1443 ((-598 |#2|) |#2| (-1196))) (-15 -3829 (|#2| |#2| (-1196)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2637 (($ |#2| |#1|) 37)) (-3184 (($ |#2| |#1|) 35)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 10 T CONST)) (-4320 (($) 16 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 36)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4450)) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|) |%noBranch|) (-15 -4112 ($ |#1|)) (-15 -4112 ($ (-341 |#2|))) (-15 -2637 ($ |#2| |#1|)) (-15 -3184 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-861) (-21))) (T -439)) -((-4112 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-861) (-21))))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-2637 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21))))) (-3184 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4450)) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|) |%noBranch|) (-15 -4112 ($ |#1|)) (-15 -4112 ($ (-341 |#2|))) (-15 -2637 ($ |#2| |#1|)) (-15 -3184 ($ |#2| |#1|)))) -((-2944 (((-3 |#2| (-656 |#2|)) |#2| (-1196)) 115))) -(((-440 |#1| |#2|) (-10 -7 (-15 -2944 ((-3 |#2| (-656 |#2|)) |#2| (-1196)))) (-13 (-317) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-977) (-29 |#1|))) (T -440)) -((-2944 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-977) (-29 *5)))))) -(-10 -7 (-15 -2944 ((-3 |#2| (-656 |#2|)) |#2| (-1196)))) -((-1582 (((-656 (-1196)) $) 81)) (-1420 (((-419 (-1192 $)) $ (-624 $)) 313)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-2980 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1196) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-970 |#2|)) "failed") $) 363) (((-3 (-970 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-624 $) $) NIL) (((-1196) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-970 |#2|)) $) 345) (((-970 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1400 (((-115) (-115)) 47)) (-2461 (($ $) 99)) (-2413 (((-3 (-624 $) "failed") $) 268)) (-1389 (((-656 (-624 $)) $) 269)) (-2000 (((-3 (-656 $) "failed") $) 287)) (-2192 (((-3 (-2 (|:| |val| $) (|:| -1495 (-576))) "failed") $) 294)) (-2279 (((-3 (-656 $) "failed") $) 285)) (-3656 (((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-4044 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-1196)) 257)) (-1677 (((-112) $) 17)) (-1685 ((|#2| $) 19)) (-2143 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1196)) 62) (($ $ (-656 (-1196))) 280) (($ $) 281) (($ $ (-115) $ (-1196)) 65) (($ $ (-656 (-115)) (-656 $) (-1196)) 72) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1196) (-783) (-1 $ (-656 $))) 105) (($ $ (-1196) (-783) (-1 $ $)) 104)) (-4368 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-4106 (($ $ (-1196)) 278) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2521 (($ $) 324)) (-1554 (((-906 (-576)) $) 297) (((-906 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-4112 (((-875) $) 279) (($ (-624 $)) 93) (($ (-1196)) 24) (($ |#2|) NIL) (($ (-1145 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-970 (-419 |#2|))) 368) (($ (-419 (-970 (-419 |#2|)))) 341) (($ (-419 (-970 |#2|))) 335) (($ $) NIL) (($ (-970 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-4115 (((-783)) 88)) (-2431 (((-112) (-115)) 42)) (-3700 (($ (-1196) $) 31) (($ (-1196) $ $) 32) (($ (-1196) $ $ $) 33) (($ (-1196) $ $ $ $) 34) (($ (-1196) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-939) $) NIL))) -(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-939) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4112 (|#1| (-576))) (-15 -4115 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -4112 (|#1| (-970 |#2|))) (-15 -2980 ((-3 (-970 |#2|) "failed") |#1|)) (-15 -2317 ((-970 |#2|) |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -4112 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4112 (|#1| (-419 (-970 |#2|)))) (-15 -2980 ((-3 (-419 (-970 |#2|)) "failed") |#1|)) (-15 -2317 ((-419 (-970 |#2|)) |#1|)) (-15 -1420 ((-419 (-1192 |#1|)) |#1| (-624 |#1|))) (-15 -4112 (|#1| (-419 (-970 (-419 |#2|))))) (-15 -4112 (|#1| (-970 (-419 |#2|)))) (-15 -4112 (|#1| (-419 |#2|))) (-15 -2521 (|#1| |#1|)) (-15 -1554 (|#1| (-430 |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-783) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -2192 ((-3 (-2 (|:| |val| |#1|) (|:| -1495 (-576))) "failed") |#1|)) (-15 -4044 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1495 (-576))) "failed") |#1| (-1196))) (-15 -4044 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1495 (-576))) "failed") |#1| (-115))) (-15 -2461 (|#1| |#1|)) (-15 -4112 (|#1| (-1145 |#2| (-624 |#1|)))) (-15 -3656 ((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2279 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -4044 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1495 (-576))) "failed") |#1|)) (-15 -2000 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1196))) (-15 -2143 (|#1| |#1| (-115) |#1| (-1196))) (-15 -2143 (|#1| |#1|)) (-15 -2143 (|#1| |#1| (-656 (-1196)))) (-15 -2143 (|#1| |#1| (-1196))) (-15 -3700 (|#1| (-1196) (-656 |#1|))) (-15 -3700 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -3700 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -3700 (|#1| (-1196) |#1| |#1|)) (-15 -3700 (|#1| (-1196) |#1|)) (-15 -1582 ((-656 (-1196)) |#1|)) (-15 -1685 (|#2| |#1|)) (-15 -1677 ((-112) |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -4112 (|#1| (-1196))) (-15 -2980 ((-3 (-1196) "failed") |#1|)) (-15 -2317 ((-1196) |#1|)) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -1389 ((-656 (-624 |#1|)) |#1|)) (-15 -2413 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4368 (|#1| (-115) (-656 |#1|))) (-15 -4368 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2143 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -4112 (|#1| (-624 |#1|))) (-15 -2980 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|)) (-15 -4112 ((-875) |#1|))) (-442 |#2|) (-1120)) (T -441)) -((-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1120)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1120)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-4115 (*1 *2) (-12 (-4 *4 (-1120)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) -(-10 -8 (-15 * (|#1| (-939) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4112 (|#1| (-576))) (-15 -4115 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -4112 (|#1| (-970 |#2|))) (-15 -2980 ((-3 (-970 |#2|) "failed") |#1|)) (-15 -2317 ((-970 |#2|) |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -4112 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4112 (|#1| (-419 (-970 |#2|)))) (-15 -2980 ((-3 (-419 (-970 |#2|)) "failed") |#1|)) (-15 -2317 ((-419 (-970 |#2|)) |#1|)) (-15 -1420 ((-419 (-1192 |#1|)) |#1| (-624 |#1|))) (-15 -4112 (|#1| (-419 (-970 (-419 |#2|))))) (-15 -4112 (|#1| (-970 (-419 |#2|)))) (-15 -4112 (|#1| (-419 |#2|))) (-15 -2521 (|#1| |#1|)) (-15 -1554 (|#1| (-430 |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-783) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -2192 ((-3 (-2 (|:| |val| |#1|) (|:| -1495 (-576))) "failed") |#1|)) (-15 -4044 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1495 (-576))) "failed") |#1| (-1196))) (-15 -4044 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1495 (-576))) "failed") |#1| (-115))) (-15 -2461 (|#1| |#1|)) (-15 -4112 (|#1| (-1145 |#2| (-624 |#1|)))) (-15 -3656 ((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2279 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -4044 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1495 (-576))) "failed") |#1|)) (-15 -2000 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1196))) (-15 -2143 (|#1| |#1| (-115) |#1| (-1196))) (-15 -2143 (|#1| |#1|)) (-15 -2143 (|#1| |#1| (-656 (-1196)))) (-15 -2143 (|#1| |#1| (-1196))) (-15 -3700 (|#1| (-1196) (-656 |#1|))) (-15 -3700 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -3700 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -3700 (|#1| (-1196) |#1| |#1|)) (-15 -3700 (|#1| (-1196) |#1|)) (-15 -1582 ((-656 (-1196)) |#1|)) (-15 -1685 (|#2| |#1|)) (-15 -1677 ((-112) |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -4112 (|#1| (-1196))) (-15 -2980 ((-3 (-1196) "failed") |#1|)) (-15 -2317 ((-1196) |#1|)) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2143 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2143 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -1389 ((-656 (-624 |#1|)) |#1|)) (-15 -2413 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4368 (|#1| (-115) (-656 |#1|))) (-15 -4368 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1| |#1|)) (-15 -4368 (|#1| (-115) |#1|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2143 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2143 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -4112 (|#1| (-624 |#1|))) (-15 -2980 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|)) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 117 (|has| |#1| (-25)))) (-1582 (((-656 (-1196)) $) 208)) (-1420 (((-419 (-1192 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-4070 (($ $) 149 (|has| |#1| (-568)))) (-2378 (((-112) $) 151 (|has| |#1| (-568)))) (-4442 (((-656 (-624 $)) $) 39)) (-2559 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1791 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-3575 (($ $) 168 (|has| |#1| (-568)))) (-3163 (((-430 $) $) 169 (|has| |#1| (-568)))) (-4057 (((-112) $ $) 159 (|has| |#1| (-568)))) (-4331 (($) 105 (-3794 (|has| |#1| (-1132)) (|has| |#1| (-25))) CONST)) (-2980 (((-3 (-624 $) "failed") $) 64) (((-3 (-1196) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1058 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-970 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-970 |#1|) "failed") $) 124 (|has| |#1| (-1069))) (((-3 (-419 (-576)) "failed") $) 99 (-3794 (-12 (|has| |#1| (-1058 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1058 (-419 (-576))))))) (-2317 (((-624 $) $) 65) (((-1196) $) 222) (((-576) $) 214 (|has| |#1| (-1058 (-576)))) ((|#1| $) 213) (((-419 (-970 |#1|)) $) 175 (|has| |#1| (-568))) (((-970 |#1|) $) 125 (|has| |#1| (-1069))) (((-419 (-576)) $) 100 (-3794 (-12 (|has| |#1| (-1058 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1058 (-419 (-576))))))) (-1893 (($ $ $) 163 (|has| |#1| (-568)))) (-3222 (((-701 (-576)) (-701 $)) 141 (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 140 (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 139 (|has| |#1| (-1069))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1069)))) (-3900 (((-3 $ "failed") $) 107 (|has| |#1| (-1132)))) (-1903 (($ $ $) 162 (|has| |#1| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-2443 (((-112) $) 170 (|has| |#1| (-568)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 217 (|has| |#1| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 216 (|has| |#1| (-900 (-390))))) (-1390 (($ $) 46) (($ (-656 $)) 45)) (-3209 (((-656 (-115)) $) 38)) (-1400 (((-115) (-115)) 37)) (-2287 (((-112) $) 106 (|has| |#1| (-1132)))) (-1589 (((-112) $) 17 (|has| $ (-1058 (-576))))) (-2461 (($ $) 191 (|has| |#1| (-1069)))) (-2686 (((-1145 |#1| (-624 $)) $) 192 (|has| |#1| (-1069)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-3066 (((-1192 $) (-624 $)) 20 (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) 31)) (-2413 (((-3 (-624 $) "failed") $) 41)) (-2198 (((-701 (-576)) (-1287 $)) 143 (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 142 (-2310 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 137 (|has| |#1| (-1069))) (((-701 |#1|) (-1287 $)) 136 (|has| |#1| (-1069)))) (-3075 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-2043 (((-1178) $) 10)) (-1389 (((-656 (-624 $)) $) 40)) (-2774 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2000 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1132)))) (-2192 (((-3 (-2 (|:| |val| $) (|:| -1495 (-576))) "failed") $) 188 (|has| |#1| (-1069)))) (-2279 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-3656 (((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-4044 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $) 196 (|has| |#1| (-1132))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1069))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-1196)) 189 (|has| |#1| (-1069)))) (-1681 (((-112) $ (-115)) 35) (((-112) $ (-1196)) 34)) (-1667 (($ $) 109 (-3794 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2952 (((-783) $) 42)) (-3115 (((-1140) $) 11)) (-1677 (((-112) $) 210)) (-1685 ((|#1| $) 209)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 156 (|has| |#1| (-568)))) (-3114 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-1546 (((-112) $ $) 30) (((-112) $ (-1196)) 29)) (-1450 (((-430 $) $) 167 (|has| |#1| (-568)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 164 (|has| |#1| (-568)))) (-1943 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-4296 (((-112) $) 18 (|has| $ (-1058 (-576))))) (-2143 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1196) (-1 $ (-656 $))) 26) (($ $ (-1196) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1196)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1196)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1069))) (($ $ (-1196) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1069))) (($ $ (-1196) (-783) (-1 $ $)) 184 (|has| |#1| (-1069)))) (-2026 (((-783) $) 160 (|has| |#1| (-568)))) (-4368 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 161 (|has| |#1| (-568)))) (-2678 (($ $) 44) (($ $ $) 43)) (-4106 (($ $ (-1196)) 134 (|has| |#1| (-1069))) (($ $ (-656 (-1196))) 132 (|has| |#1| (-1069))) (($ $ (-1196) (-783)) 131 (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) 130 (|has| |#1| (-1069)))) (-2521 (($ $) 181 (|has| |#1| (-568)))) (-2697 (((-1145 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-3175 (($ $) 19 (|has| $ (-1069)))) (-1554 (((-906 (-576)) $) 219 (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) 218 (|has| |#1| (-626 (-906 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-2633 (($ $ $) 112 (|has| |#1| (-485)))) (-2362 (($ $ $) 113 (|has| |#1| (-485)))) (-4112 (((-875) $) 12) (($ (-624 $)) 63) (($ (-1196)) 220) (($ |#1|) 211) (($ (-1145 |#1| (-624 $))) 193 (|has| |#1| (-1069))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-970 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-970 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-970 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-970 |#1|)) 123 (|has| |#1| (-1069))) (($ (-419 (-576))) 98 (-3794 (|has| |#1| (-568)) (-12 (|has| |#1| (-1058 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1058 (-419 (-576)))))) (($ (-576)) 97 (-3794 (|has| |#1| (-1069)) (|has| |#1| (-1058 (-576)))))) (-1972 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-4115 (((-783)) 126 (|has| |#1| (-1069)) CONST)) (-2344 (($ $) 48) (($ (-656 $)) 47)) (-2431 (((-112) (-115)) 36)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 150 (|has| |#1| (-568)))) (-3700 (($ (-1196) $) 207) (($ (-1196) $ $) 206) (($ (-1196) $ $ $) 205) (($ (-1196) $ $ $ $) 204) (($ (-1196) (-656 $)) 203)) (-4314 (($) 116 (|has| |#1| (-25)) CONST)) (-4320 (($) 104 (|has| |#1| (-1132)) CONST)) (-3155 (($ $ (-1196)) 133 (|has| |#1| (-1069))) (($ $ (-656 (-1196))) 129 (|has| |#1| (-1069))) (($ $ (-1196) (-783)) 128 (|has| |#1| (-1069))) (($ $ (-656 (-1196)) (-656 (-783))) 127 (|has| |#1| (-1069)))) (-3938 (((-112) $ $) 8)) (-4046 (($ (-1145 |#1| (-624 $)) (-1145 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-3794 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4036 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-4026 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-3794 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1132))) (($ $ (-939)) 103 (|has| |#1| (-1132)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1069))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-939) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1132))))) -(((-442 |#1|) (-141) (-1120)) (T -442)) -((-1677 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-5 *2 (-112)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-5 *2 (-656 (-1196))))) (-3700 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) (-3700 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) (-3700 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) (-3700 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) (-3700 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1120)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-4 *3 (-626 (-548))))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-4 *3 (-626 (-548))))) (-2143 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)) (-4 *2 (-626 (-548))))) (-2143 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-442 *4)) (-4 *4 (-1120)) (-4 *4 (-626 (-548))))) (-2143 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1196)) (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-626 (-548))))) (-2000 (*1 *2 *1) (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1120)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-4044 (*1 *2 *1) (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1495 (-576)))) (-4 *1 (-442 *3)))) (-2279 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-3656 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| -2861 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1145 *3 (-624 *1))) (-4 *3 (-1069)) (-4 *3 (-1120)) (-4 *1 (-442 *3)))) (-2686 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *3 (-1120)) (-5 *2 (-1145 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2461 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)) (-4 *2 (-1069)))) (-4044 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1069)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1495 (-576)))) (-4 *1 (-442 *4)))) (-4044 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1069)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1495 (-576)))) (-4 *1 (-442 *4)))) (-2192 (*1 *2 *1) (|partial| -12 (-4 *3 (-1069)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| |val| *1) (|:| -1495 (-576)))) (-4 *1 (-442 *3)))) (-2143 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-1069)))) (-2143 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-1069)))) (-2143 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-1069)))) (-2143 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-1069)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1120)) (-5 *2 (-1145 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)) (-4 *2 (-568)))) (-4046 (*1 *1 *2 *2) (-12 (-5 *2 (-1145 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-442 *3)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-442 *3)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-970 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-442 *3)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-442 *3)))) (-1420 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1120)) (-4 *4 (-568)) (-5 *2 (-419 (-1192 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-4 *3 (-1132))))) -(-13 (-312) (-1058 (-1196)) (-898 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -1677 ((-112) $)) (-15 -1685 (|t#1| $)) (-15 -1582 ((-656 (-1196)) $)) (-15 -3700 ($ (-1196) $)) (-15 -3700 ($ (-1196) $ $)) (-15 -3700 ($ (-1196) $ $ $)) (-15 -3700 ($ (-1196) $ $ $ $)) (-15 -3700 ($ (-1196) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -2143 ($ $ (-1196))) (-15 -2143 ($ $ (-656 (-1196)))) (-15 -2143 ($ $)) (-15 -2143 ($ $ (-115) $ (-1196))) (-15 -2143 ($ $ (-656 (-115)) (-656 $) (-1196)))) |%noBranch|) (IF (|has| |t#1| (-1132)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -2000 ((-3 (-656 $) "failed") $)) (-15 -4044 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2279 ((-3 (-656 $) "failed") $)) (-15 -3656 ((-3 (-2 (|:| -2861 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-1058 (-970 |t#1|))) (-6 (-916 (-1196))) (-6 (-388 |t#1|)) (-15 -4112 ($ (-1145 |t#1| (-624 $)))) (-15 -2686 ((-1145 |t#1| (-624 $)) $)) (-15 -2461 ($ $)) (-15 -4044 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-115))) (-15 -4044 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1495 (-576))) "failed") $ (-1196))) (-15 -2192 ((-3 (-2 (|:| |val| $) (|:| -1495 (-576))) "failed") $)) (-15 -2143 ($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -2143 ($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -2143 ($ $ (-1196) (-783) (-1 $ (-656 $)))) (-15 -2143 ($ $ (-1196) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1058 (-419 (-970 |t#1|)))) (-15 -1554 ($ (-430 $))) (-15 -2697 ((-1145 |t#1| (-624 $)) $)) (-15 -2521 ($ $)) (-15 -4046 ($ (-1145 |t#1| (-624 $)) (-1145 |t#1| (-624 $)))) (-15 -4112 ($ (-419 |t#1|))) (-15 -4112 ($ (-970 (-419 |t#1|)))) (-15 -4112 ($ (-419 (-970 (-419 |t#1|))))) (-15 -1420 ((-419 (-1192 $)) $ (-624 $))) (IF (|has| |t#1| (-1058 (-576))) (-6 (-1058 (-419 (-576)))) |%noBranch|)) |%noBranch|))) -(((-21) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-970 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -3794 (|has| |#1| (-1069)) (|has| |#1| (-1058 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-970 |#1|)) |has| |#1| (-1069)) ((-628 #4=(-1196)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-906 (-390))) |has| |#1| (-626 (-906 (-390)))) ((-626 (-906 (-576))) |has| |#1| (-626 (-906 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1069)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -3794 (|has| |#1| (-1069)) (|has| |#1| (-174))) ((-658 $) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))) ((-660 |#1|) -3794 (|has| |#1| (-1069)) (|has| |#1| (-174))) ((-660 $) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1069))) ((-651 |#1|) |has| |#1| (-1069)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -3794 (|has| |#1| (-1132)) (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-910 $ #6=(-1196)) |has| |#1| (-1069)) ((-916 #6#) |has| |#1| (-1069)) ((-918 #6#) |has| |#1| (-1069)) ((-900 (-390)) |has| |#1| (-900 (-390))) ((-900 (-576)) |has| |#1| (-900 (-576))) ((-898 |#1|) . T) ((-938) |has| |#1| (-568)) ((-1058 (-419 (-576))) -3794 (|has| |#1| (-1058 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1058 (-576))))) ((-1058 #1#) |has| |#1| (-568)) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 #2#) . T) ((-1058 #3#) |has| |#1| (-1069)) ((-1058 #4#) . T) ((-1058 |#1|) . T) ((-1071 #0#) |has| |#1| (-568)) ((-1071 |#1|) |has| |#1| (-174)) ((-1071 $) |has| |#1| (-568)) ((-1076 #0#) |has| |#1| (-568)) ((-1076 |#1|) |has| |#1| (-174)) ((-1076 $) |has| |#1| (-568)) ((-1069) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1078) -3794 (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1132) -3794 (|has| |#1| (-1132)) (|has| |#1| (-1069)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1120) . T) ((-1237) . T) ((-1241) |has| |#1| (-568))) -((-3333 ((|#2| |#2| |#2|) 31)) (-1400 (((-115) (-115)) 43)) (-2844 ((|#2| |#2|) 63)) (-3612 ((|#2| |#2|) 66)) (-3680 ((|#2| |#2|) 30)) (-3121 ((|#2| |#2| |#2|) 33)) (-2909 ((|#2| |#2| |#2|) 35)) (-4232 ((|#2| |#2| |#2|) 32)) (-3724 ((|#2| |#2| |#2|) 34)) (-2431 (((-112) (-115)) 41)) (-1522 ((|#2| |#2|) 37)) (-1388 ((|#2| |#2|) 36)) (-2388 ((|#2| |#2|) 25)) (-4166 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-4210 ((|#2| |#2| |#2|) 29))) -(((-443 |#1| |#2|) (-10 -7 (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -2388 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4166 (|#2| |#2| |#2|)) (-15 -4210 (|#2| |#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3333 (|#2| |#2| |#2|)) (-15 -4232 (|#2| |#2| |#2|)) (-15 -3121 (|#2| |#2| |#2|)) (-15 -3724 (|#2| |#2| |#2|)) (-15 -2909 (|#2| |#2| |#2|)) (-15 -1388 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -2844 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) -((-2844 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1388 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2909 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3724 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3121 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4232 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3333 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4210 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4166 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -2388 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4166 (|#2| |#2| |#2|)) (-15 -4210 (|#2| |#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3333 (|#2| |#2| |#2|)) (-15 -4232 (|#2| |#2| |#2|)) (-15 -3121 (|#2| |#2| |#2|)) (-15 -3724 (|#2| |#2| |#2|)) (-15 -2909 (|#2| |#2| |#2|)) (-15 -1388 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -2844 (|#2| |#2|))) -((-3933 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|)) 65))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3933 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3933 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) -((-3933 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-444 *4 *5))))) -(-10 -7 (-15 -3933 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3933 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3425 (((-1292)) 18)) (-1935 (((-1192 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) -(((-445 |#1| |#2|) (-10 -7 (-15 -1935 ((-419 (-576)) |#2|)) (-15 -1935 ((-1192 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3425 ((-1292)))) (-13 (-568) (-1058 (-576))) (-442 |#1|)) (T -445)) -((-3425 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *2 (-1292)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-1935 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) -(-10 -7 (-15 -1935 ((-419 (-576)) |#2|)) (-15 -1935 ((-1192 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3425 ((-1292)))) -((-1884 (((-112) $) 33)) (-1732 (((-112) $) 35)) (-2345 (((-112) $) 36)) (-4342 (((-112) $) 39)) (-3930 (((-112) $) 34)) (-3316 (((-112) $) 38)) (-4112 (((-875) $) 20) (($ (-1178)) 32) (($ (-1196)) 30) (((-1196) $) 24) (((-1124) $) 23)) (-1977 (((-112) $) 37)) (-3938 (((-112) $ $) 17))) -(((-446) (-13 (-625 (-875)) (-10 -8 (-15 -4112 ($ (-1178))) (-15 -4112 ($ (-1196))) (-15 -4112 ((-1196) $)) (-15 -4112 ((-1124) $)) (-15 -1884 ((-112) $)) (-15 -3930 ((-112) $)) (-15 -2345 ((-112) $)) (-15 -3316 ((-112) $)) (-15 -4342 ((-112) $)) (-15 -1977 ((-112) $)) (-15 -1732 ((-112) $)) (-15 -3938 ((-112) $ $))))) (T -446)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-446)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3938 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(-13 (-625 (-875)) (-10 -8 (-15 -4112 ($ (-1178))) (-15 -4112 ($ (-1196))) (-15 -4112 ((-1196) $)) (-15 -4112 ((-1124) $)) (-15 -1884 ((-112) $)) (-15 -3930 ((-112) $)) (-15 -2345 ((-112) $)) (-15 -3316 ((-112) $)) (-15 -4342 ((-112) $)) (-15 -1977 ((-112) $)) (-15 -1732 ((-112) $)) (-15 -3938 ((-112) $ $)))) -((-2328 (((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|) 72)) (-3647 (((-430 |#3|) |#3|) 34)) (-4423 (((-3 (-430 (-1192 (-48))) "failed") |#3|) 46 (|has| |#2| (-1058 (-48))))) (-1702 (((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2532 (-112))) |#3|) 37))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -3647 ((-430 |#3|) |#3|)) (-15 -2328 ((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|)) (-15 -1702 ((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2532 (-112))) |#3|)) (IF (|has| |#2| (-1058 (-48))) (-15 -4423 ((-3 (-430 (-1192 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1058 (-576))) (-442 |#1|) (-1263 |#2|)) (T -447)) -((-4423 (*1 *2 *3) (|partial| -12 (-4 *5 (-1058 (-48))) (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-1702 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2532 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2328 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1192 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -3647 ((-430 |#3|) |#3|)) (-15 -2328 ((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|)) (-15 -1702 ((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2532 (-112))) |#3|)) (IF (|has| |#2| (-1058 (-48))) (-15 -4423 ((-3 (-430 (-1192 (-48))) "failed") |#3|)) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-4199 (((-1178) $ (-1178)) NIL)) (-1985 (($ $ (-1178)) NIL)) (-3627 (((-1178) $) NIL)) (-2248 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3822 (($ (-400)) NIL) (($ (-400) (-1178)) NIL)) (-4148 (((-400) $) NIL)) (-2043 (((-1178) $) NIL)) (-1368 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4138 (((-1292) (-1178)) 9)) (-1337 (((-1292) (-1178)) 10)) (-3341 (((-1292)) 11)) (-4112 (((-875) $) NIL)) (-1743 (($ $) 39)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-448) (-13 (-375 (-400) (-1178)) (-10 -7 (-15 -2248 ((-400) (-400) (-400))) (-15 -2248 ((-400) (-400))) (-15 -4138 ((-1292) (-1178))) (-15 -1337 ((-1292) (-1178))) (-15 -3341 ((-1292)))))) (T -448)) -((-2248 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))) (-1337 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))) (-3341 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-448))))) -(-13 (-375 (-400) (-1178)) (-10 -7 (-15 -2248 ((-400) (-400) (-400))) (-15 -2248 ((-400) (-400))) (-15 -4138 ((-1292) (-1178))) (-15 -1337 ((-1292) (-1178))) (-15 -3341 ((-1292))))) -((-1952 (((-112) $ $) NIL)) (-3667 (((-3 (|:| |fst| (-446)) (|:| -2434 "void")) $) 11)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1331 (($) 35)) (-1510 (($) 41)) (-2659 (($) 37)) (-2638 (($) 39)) (-3788 (($) 36)) (-1509 (($) 38)) (-3648 (($) 40)) (-3071 (((-112) $) 8)) (-1810 (((-656 (-970 (-576))) $) 19)) (-4124 (($ (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-1196)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-970 (-576))) (-112)) 30)) (-4112 (((-875) $) 24) (($ (-446)) 32)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-449) (-13 (-1120) (-10 -8 (-15 -4112 ($ (-446))) (-15 -3667 ((-3 (|:| |fst| (-446)) (|:| -2434 "void")) $)) (-15 -1810 ((-656 (-970 (-576))) $)) (-15 -3071 ((-112) $)) (-15 -4124 ($ (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-1196)) (-112))) (-15 -4124 ($ (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-970 (-576))) (-112))) (-15 -1331 ($)) (-15 -3788 ($)) (-15 -2659 ($)) (-15 -1510 ($)) (-15 -1509 ($)) (-15 -2638 ($)) (-15 -3648 ($))))) (T -449)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *1 (-449)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-656 (-970 (-576)))) (-5 *1 (-449)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-4124 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *3 (-656 (-1196))) (-5 *4 (-112)) (-5 *1 (-449)))) (-4124 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-1331 (*1 *1) (-5 *1 (-449))) (-3788 (*1 *1) (-5 *1 (-449))) (-2659 (*1 *1) (-5 *1 (-449))) (-1510 (*1 *1) (-5 *1 (-449))) (-1509 (*1 *1) (-5 *1 (-449))) (-2638 (*1 *1) (-5 *1 (-449))) (-3648 (*1 *1) (-5 *1 (-449)))) -(-13 (-1120) (-10 -8 (-15 -4112 ($ (-446))) (-15 -3667 ((-3 (|:| |fst| (-446)) (|:| -2434 "void")) $)) (-15 -1810 ((-656 (-970 (-576))) $)) (-15 -3071 ((-112) $)) (-15 -4124 ($ (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-1196)) (-112))) (-15 -4124 ($ (-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-656 (-970 (-576))) (-112))) (-15 -1331 ($)) (-15 -3788 ($)) (-15 -2659 ($)) (-15 -1510 ($)) (-15 -1509 ($)) (-15 -2638 ($)) (-15 -3648 ($)))) -((-1952 (((-112) $ $) NIL)) (-4148 (((-1196) $) 8)) (-2043 (((-1178) $) 17)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 11)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 14))) -(((-450 |#1|) (-13 (-1120) (-10 -8 (-15 -4148 ((-1196) $)))) (-1196)) (T -450)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -(-13 (-1120) (-10 -8 (-15 -4148 ((-1196) $)))) -((-1952 (((-112) $ $) NIL)) (-3512 (((-1138) $) 7)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 13)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 9))) -(((-451) (-13 (-1120) (-10 -8 (-15 -3512 ((-1138) $))))) (T -451)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-451))))) -(-13 (-1120) (-10 -8 (-15 -3512 ((-1138) $)))) -((-3972 (((-1292) $) 7)) (-4112 (((-875) $) 8) (($ (-1287 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 11))) +((-3454 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4001 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) (-3818 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-2218 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2624 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-3160 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3712 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3275 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-1968 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-3568 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) +(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -3454 ((-1288 $))) (-15 -1490 ((-1288 |t#1|) $)) (-15 -1490 ((-701 |t#1|) (-1288 $))) (-15 -4001 ((-1288 (-701 |t#1|)))) (-15 -3818 ((-656 (-971 |t#1|)))) (-15 -3208 ($ (-1288 |t#1|))) (-15 -4171 ((-1288 |t#1|) $)) (-15 -4171 ($ (-1288 |t#1|))) (-15 -2218 (|t#1|)) (-15 -2624 (|t#1|)) (-15 -3160 ((-701 |t#1|))) (-15 -3712 ((-701 |t#1|))) (-15 -2888 ((-701 |t#1|) $)) (-15 -2173 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3275 ((-1193 (-971 |t#1|)))) (-15 -1968 ((-1193 (-971 |t#1|))))) |%noBranch|) (-15 -3568 ($ (-701 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 60)) (-1730 (($ $) 78)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 192)) (-2544 (($ $) NIL)) (-1574 (((-112) $) 48)) (-2876 ((|#1| $) 16)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-1242)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-3021 (($ |#1| (-576)) 42)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 74)) (-3451 (((-3 $ "failed") $) 165)) (-3355 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3426 (((-112) $) 81 (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-3439 (($ |#1| (-576)) 44)) (-4169 (((-112) $) 212 (|has| |#1| (-1242)))) (-3215 (((-112) $) 62)) (-1573 (((-783) $) 51)) (-1786 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-3537 ((|#1| $ (-576)) 175)) (-3971 (((-576) $ (-576)) 174)) (-3086 (($ |#1| (-576)) 41)) (-4116 (($ (-1 |#1| |#1|) $) 184)) (-1611 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-3007 (($ |#1| (-576)) 43)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-3497 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1601 (((-656 (-2 (|:| -1828 |#1|) (|:| -4210 (-576)))) $) 73)) (-1869 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1828 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-3475 (((-3 $ "failed") $ $) 177)) (-4210 (((-576) $) 168)) (-1942 ((|#1| $) 75)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) $) NIL (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-1197)) (-656 $)) 108 (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2796 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2773 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4171 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1043))) (((-227) $) 120 (|has| |#1| (-1043)))) (-3569 (((-876) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576)))))) (-1778 (((-783)) 67 T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 53 T CONST)) (-2730 (($) 52 T CONST)) (-2018 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2923 (((-112) $ $) 160)) (-3043 (($ $) 162) (($ $ $) NIL)) (-3029 (($ $ $) 181)) (** (($ $ (-940)) NIL) (($ $ (-783)) 126)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1942 (|#1| $)) (-15 -4210 ((-576) $)) (-15 -1611 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1869 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -3086 ($ |#1| (-576))) (-15 -1601 ((-656 (-2 (|:| -1828 |#1|) (|:| -4210 (-576)))) $)) (-15 -3007 ($ |#1| (-576))) (-15 -3971 ((-576) $ (-576))) (-15 -3537 (|#1| $ (-576))) (-15 -1786 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1573 ((-783) $)) (-15 -3439 ($ |#1| (-576))) (-15 -3021 ($ |#1| (-576))) (-15 -3497 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2876 (|#1| $)) (-15 -1730 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) (-568)) (T -430)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-1942 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -4210 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3007 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3971 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3439 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3021 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3497 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2876 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1730 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) +(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1942 (|#1| $)) (-15 -4210 ((-576) $)) (-15 -1611 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1869 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -3086 ($ |#1| (-576))) (-15 -1601 ((-656 (-2 (|:| -1828 |#1|) (|:| -4210 (-576)))) $)) (-15 -3007 ($ |#1| (-576))) (-15 -3971 ((-576) $ (-576))) (-15 -3537 (|#1| $ (-576))) (-15 -1786 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1573 ((-783) $)) (-15 -3439 ($ |#1| (-576))) (-15 -3021 ($ |#1| (-576))) (-15 -3497 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2876 (|#1| $)) (-15 -1730 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) +((-3301 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2003 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) +(((-431 |#1|) (-10 -7 (-15 -3301 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2003 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) +((-2003 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) +(-10 -7 (-15 -3301 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2003 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) +((-3144 ((|#2| |#2|) 183)) (-1472 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112)) 60))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1472 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -3144 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -432)) +((-3144 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) (-14 *4 (-1197)) (-14 *5 *2))) (-1472 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-14 *6 (-1197)) (-14 *7 *3)))) +(-10 -7 (-15 -1472 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -3144 (|#2| |#2|))) +((-4116 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-442 |#1|) (-1070) (-442 |#3|)) (T -433)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) +((-3144 ((|#2| |#2|) 106)) (-3636 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 52)) (-1647 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 170))) +(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3636 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -1647 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -3144 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|) (-10 -8 (-15 -3569 ($ |#3|)))) (-860) (-13 (-1266 |#2| |#3|) (-374) (-1223) (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $)))) (-1004 |#4|) (-1197)) (T -434)) +((-3144 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -3569 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1266 *2 *4) (-374) (-1223) (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) (-14 *7 (-1197)))) (-1647 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197)))) (-3636 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197))))) +(-10 -7 (-15 -3636 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -1647 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -3144 (|#2| |#2|))) +((-2727 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3685 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4116 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2727 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1121) (-437 |#1|) (-1121) (-437 |#3|)) (T -435)) +((-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2727 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3853 (($) 51)) (-1820 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-4327 (($ $ $) 46)) (-2095 (((-112) $ $) 35)) (-2096 (((-783)) 55)) (-2069 (($ (-656 |#2|)) 23) (($) NIL)) (-1836 (($) 66)) (-3534 (((-112) $ $) 15)) (-3124 ((|#2| $) 77)) (-1951 ((|#2| $) 75)) (-2460 (((-940) $) 70)) (-1834 (($ $ $) 42)) (-3223 (($ (-940)) 60)) (-2587 (($ $ |#2|) NIL) (($ $ $) 45)) (-1460 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-3581 (($ (-656 |#2|)) 27)) (-2737 (($ $) 53)) (-3569 (((-876) $) 40)) (-3469 (((-783) $) 24)) (-1894 (($ (-656 |#2|)) 22) (($) NIL)) (-2923 (((-112) $ $) 19))) +(((-436 |#1| |#2|) (-10 -8 (-15 -2096 ((-783))) (-15 -3223 (|#1| (-940))) (-15 -2460 ((-940) |#1|)) (-15 -1836 (|#1|)) (-15 -3124 (|#2| |#1|)) (-15 -1951 (|#2| |#1|)) (-15 -3853 (|#1|)) (-15 -2737 (|#1| |#1|)) (-15 -3469 ((-783) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3534 ((-112) |#1| |#1|)) (-15 -1894 (|#1|)) (-15 -1894 (|#1| (-656 |#2|))) (-15 -2069 (|#1|)) (-15 -2069 (|#1| (-656 |#2|))) (-15 -1834 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -4327 (|#1| |#1| |#1|)) (-15 -2095 ((-112) |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#2| |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1121)) (T -436)) +((-2096 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) +(-10 -8 (-15 -2096 ((-783))) (-15 -3223 (|#1| (-940))) (-15 -2460 ((-940) |#1|)) (-15 -1836 (|#1|)) (-15 -3124 (|#2| |#1|)) (-15 -1951 (|#2| |#1|)) (-15 -3853 (|#1|)) (-15 -2737 (|#1| |#1|)) (-15 -3469 ((-783) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3534 ((-112) |#1| |#1|)) (-15 -1894 (|#1|)) (-15 -1894 (|#1| (-656 |#2|))) (-15 -2069 (|#1|)) (-15 -2069 (|#1| (-656 |#2|))) (-15 -1834 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -4327 (|#1| |#1| |#1|)) (-15 -2095 ((-112) |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#2| |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|))) +((-3488 (((-112) $ $) 20)) (-3853 (($) 68 (|has| |#1| (-379)))) (-1820 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4327 (($ $ $) 79)) (-2095 (((-112) $ $) 80)) (-2396 (((-112) $ (-783)) 8)) (-2096 (((-783)) 62 (|has| |#1| (-379)))) (-2069 (($ (-656 |#1|)) 75) (($) 74)) (-4355 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2800 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-1836 (($) 65 (|has| |#1| (-379)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) 71)) (-4252 (((-112) $ (-783)) 9)) (-3124 ((|#1| $) 66 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1951 ((|#1| $) 67 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2460 (((-940) $) 64 (|has| |#1| (-379)))) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23)) (-1834 (($ $ $) 76)) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-3223 (($ (-940)) 63 (|has| |#1| (-379)))) (-1450 (((-1141) $) 22)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2587 (($ $ |#1|) 78) (($ $ $) 77)) (-2314 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-2737 (($ $) 69 (|has| |#1| (-379)))) (-3569 (((-876) $) 18)) (-3469 (((-783) $) 70)) (-1894 (($ (-656 |#1|)) 73) (($) 72)) (-2113 (((-112) $ $) 21)) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-437 |#1|) (-141) (-1121)) (T -437)) +((-3469 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-2737 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379)))) (-3853 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121)))) (-1951 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861))))) +(-13 (-231 |t#1|) (-1119 |t#1|) (-10 -8 (-6 -4464) (-15 -3469 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -2737 ($ $)) (-15 -3853 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -1951 (|t#1| $)) (-15 -3124 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-2377 (((-598 |#2|) |#2| (-1197)) 36)) (-1632 (((-598 |#2|) |#2| (-1197)) 21)) (-2012 ((|#2| |#2| (-1197)) 26))) +(((-438 |#1| |#2|) (-10 -7 (-15 -1632 ((-598 |#2|) |#2| (-1197))) (-15 -2377 ((-598 |#2|) |#2| (-1197))) (-15 -2012 (|#2| |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -438)) +((-2012 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) (-2377 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5))))) (-1632 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5)))))) +(-10 -7 (-15 -1632 ((-598 |#2|) |#2| (-1197))) (-15 -2377 ((-598 |#2|) |#2| (-1197))) (-15 -2012 (|#2| |#2| (-1197)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-2368 (($ |#2| |#1|) 37)) (-3969 (($ |#2| |#1|) 35)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 10 T CONST)) (-2730 (($) 16 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 36)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4451)) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (-15 -3569 ($ |#1|)) (-15 -3569 ($ (-341 |#2|))) (-15 -2368 ($ |#2| |#1|)) (-15 -3969 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-861) (-21))) (T -439)) +((-3569 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-861) (-21))))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-2368 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21))))) (-3969 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4451)) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (-15 -3569 ($ |#1|)) (-15 -3569 ($ (-341 |#2|))) (-15 -2368 ($ |#2| |#1|)) (-15 -3969 ($ |#2| |#1|)))) +((-3441 (((-3 |#2| (-656 |#2|)) |#2| (-1197)) 115))) +(((-440 |#1| |#2|) (-10 -7 (-15 -3441 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -440)) +((-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-978) (-29 *5)))))) +(-10 -7 (-15 -3441 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) +((-1966 (((-656 (-1197)) $) 81)) (-1799 (((-419 (-1193 $)) $ (-624 $)) 313)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1197) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-971 |#2|)) "failed") $) 363) (((-3 (-971 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-624 $) $) NIL) (((-1197) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-971 |#2|)) $) 345) (((-971 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1775 (((-115) (-115)) 47)) (-4340 (($ $) 99)) (-1902 (((-3 (-624 $) "failed") $) 268)) (-1763 (((-656 (-624 $)) $) 269)) (-2164 (((-3 (-656 $) "failed") $) 287)) (-3572 (((-3 (-2 (|:| |val| $) (|:| -4210 (-576))) "failed") $) 294)) (-3163 (((-3 (-656 $) "failed") $) 285)) (-2919 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-2292 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-1197)) 257)) (-2058 (((-112) $) 17)) (-2068 ((|#2| $) 19)) (-3283 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) 62) (($ $ (-656 (-1197))) 280) (($ $) 281) (($ $ (-115) $ (-1197)) 65) (($ $ (-656 (-115)) (-656 $) (-1197)) 72) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1197) (-783) (-1 $ (-656 $))) 105) (($ $ (-1197) (-783) (-1 $ $)) 104)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-2773 (($ $ (-1197)) 278) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3708 (($ $) 324)) (-4171 (((-907 (-576)) $) 297) (((-907 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-3569 (((-876) $) 279) (($ (-624 $)) 93) (($ (-1197)) 24) (($ |#2|) NIL) (($ (-1146 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-971 (-419 |#2|))) 368) (($ (-419 (-971 (-419 |#2|)))) 341) (($ (-419 (-971 |#2|))) 335) (($ $) NIL) (($ (-971 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-1778 (((-783)) 88)) (-4062 (((-112) (-115)) 42)) (-2851 (($ (-1197) $) 31) (($ (-1197) $ $) 32) (($ (-1197) $ $ $) 33) (($ (-1197) $ $ $ $) 34) (($ (-1197) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3569 (|#1| (-576))) (-15 -1778 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-971 |#2|))) (-15 -1572 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2859 ((-971 |#2|) |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-971 |#2|)))) (-15 -1572 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2859 ((-419 (-971 |#2|)) |#1|)) (-15 -1799 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -3569 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -3569 (|#1| (-971 (-419 |#2|)))) (-15 -3569 (|#1| (-419 |#2|))) (-15 -3708 (|#1| |#1|)) (-15 -4171 (|#1| (-430 |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3572 ((-3 (-2 (|:| |val| |#1|) (|:| -4210 (-576))) "failed") |#1|)) (-15 -2292 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4210 (-576))) "failed") |#1| (-1197))) (-15 -2292 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4210 (-576))) "failed") |#1| (-115))) (-15 -4340 (|#1| |#1|)) (-15 -3569 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -2919 ((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -3163 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2292 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4210 (-576))) "failed") |#1|)) (-15 -2164 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -3283 (|#1| |#1| (-115) |#1| (-1197))) (-15 -3283 (|#1| |#1|)) (-15 -3283 (|#1| |#1| (-656 (-1197)))) (-15 -3283 (|#1| |#1| (-1197))) (-15 -2851 (|#1| (-1197) (-656 |#1|))) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1|)) (-15 -1966 ((-656 (-1197)) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1763 ((-656 (-624 |#1|)) |#1|)) (-15 -1902 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3283 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3569 (|#1| (-624 |#1|))) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|)) (-15 -3569 ((-876) |#1|))) (-442 |#2|) (-1121)) (T -441)) +((-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-1778 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) +(-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3569 (|#1| (-576))) (-15 -1778 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-971 |#2|))) (-15 -1572 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2859 ((-971 |#2|) |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-971 |#2|)))) (-15 -1572 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2859 ((-419 (-971 |#2|)) |#1|)) (-15 -1799 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -3569 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -3569 (|#1| (-971 (-419 |#2|)))) (-15 -3569 (|#1| (-419 |#2|))) (-15 -3708 (|#1| |#1|)) (-15 -4171 (|#1| (-430 |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3572 ((-3 (-2 (|:| |val| |#1|) (|:| -4210 (-576))) "failed") |#1|)) (-15 -2292 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4210 (-576))) "failed") |#1| (-1197))) (-15 -2292 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4210 (-576))) "failed") |#1| (-115))) (-15 -4340 (|#1| |#1|)) (-15 -3569 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -2919 ((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -3163 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2292 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4210 (-576))) "failed") |#1|)) (-15 -2164 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -3283 (|#1| |#1| (-115) |#1| (-1197))) (-15 -3283 (|#1| |#1|)) (-15 -3283 (|#1| |#1| (-656 (-1197)))) (-15 -3283 (|#1| |#1| (-1197))) (-15 -2851 (|#1| (-1197) (-656 |#1|))) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1|)) (-15 -1966 ((-656 (-1197)) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3283 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3283 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1763 ((-656 (-624 |#1|)) |#1|)) (-15 -1902 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3283 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3283 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3569 (|#1| (-624 |#1|))) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 117 (|has| |#1| (-25)))) (-1966 (((-656 (-1197)) $) 208)) (-1799 (((-419 (-1193 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-2544 (($ $) 149 (|has| |#1| (-568)))) (-1574 (((-112) $) 151 (|has| |#1| (-568)))) (-3987 (((-656 (-624 $)) $) 39)) (-2780 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-3427 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-3420 (($ $) 168 (|has| |#1| (-568)))) (-1770 (((-430 $) $) 169 (|has| |#1| (-568)))) (-2420 (((-112) $ $) 159 (|has| |#1| (-568)))) (-3306 (($) 105 (-2758 (|has| |#1| (-1133)) (|has| |#1| (-25))) CONST)) (-1572 (((-3 (-624 $) "failed") $) 64) (((-3 (-1197) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1059 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-971 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) 124 (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 99 (-2758 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 (((-624 $) $) 65) (((-1197) $) 222) (((-576) $) 214 (|has| |#1| (-1059 (-576)))) ((|#1| $) 213) (((-419 (-971 |#1|)) $) 175 (|has| |#1| (-568))) (((-971 |#1|) $) 125 (|has| |#1| (-1070))) (((-419 (-576)) $) 100 (-2758 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-3428 (($ $ $) 163 (|has| |#1| (-568)))) (-4344 (((-701 (-576)) (-701 $)) 141 (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 140 (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 139 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1070)))) (-3451 (((-3 $ "failed") $) 107 (|has| |#1| (-1133)))) (-3440 (($ $ $) 162 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-4169 (((-112) $) 170 (|has| |#1| (-568)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 217 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 216 (|has| |#1| (-901 (-390))))) (-3716 (($ $) 46) (($ (-656 $)) 45)) (-4221 (((-656 (-115)) $) 38)) (-1775 (((-115) (-115)) 37)) (-3215 (((-112) $) 106 (|has| |#1| (-1133)))) (-2561 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-4340 (($ $) 191 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 192 (|has| |#1| (-1070)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-2103 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 31)) (-1902 (((-3 (-624 $) "failed") $) 41)) (-3626 (((-701 (-576)) (-1288 $)) 143 (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 142 (-2673 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 137 (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) 136 (|has| |#1| (-1070)))) (-3457 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-1413 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 40)) (-1639 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2164 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1133)))) (-3572 (((-3 (-2 (|:| |val| $) (|:| -4210 (-576))) "failed") $) 188 (|has| |#1| (-1070)))) (-3163 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-2919 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-2292 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $) 196 (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-1197)) 189 (|has| |#1| (-1070)))) (-2158 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2048 (($ $) 109 (-2758 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2325 (((-783) $) 42)) (-1450 (((-1141) $) 11)) (-2058 (((-112) $) 210)) (-2068 ((|#1| $) 209)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 156 (|has| |#1| (-568)))) (-3498 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-3470 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-1828 (((-430 $) $) 167 (|has| |#1| (-568)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 164 (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-2975 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-3283 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1197)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) 184 (|has| |#1| (-1070)))) (-2411 (((-783) $) 160 (|has| |#1| (-568)))) (-2796 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 161 (|has| |#1| (-568)))) (-1546 (($ $) 44) (($ $ $) 43)) (-2773 (($ $ (-1197)) 134 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 132 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 131 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 130 (|has| |#1| (-1070)))) (-3708 (($ $) 181 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-1897 (($ $) 19 (|has| $ (-1070)))) (-4171 (((-907 (-576)) $) 219 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 218 (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-2318 (($ $ $) 112 (|has| |#1| (-485)))) (-2604 (($ $ $) 113 (|has| |#1| (-485)))) (-3569 (((-876) $) 12) (($ (-624 $)) 63) (($ (-1197)) 220) (($ |#1|) 211) (($ (-1146 |#1| (-624 $))) 193 (|has| |#1| (-1070))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-971 |#1|)) 123 (|has| |#1| (-1070))) (($ (-419 (-576))) 98 (-2758 (|has| |#1| (-568)) (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576)))))) (($ (-576)) 97 (-2758 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576)))))) (-3230 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-1778 (((-783)) 126 (|has| |#1| (-1070)) CONST)) (-3680 (($ $) 48) (($ (-656 $)) 47)) (-4062 (((-112) (-115)) 36)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 150 (|has| |#1| (-568)))) (-2851 (($ (-1197) $) 207) (($ (-1197) $ $) 206) (($ (-1197) $ $ $) 205) (($ (-1197) $ $ $ $) 204) (($ (-1197) (-656 $)) 203)) (-2719 (($) 116 (|has| |#1| (-25)) CONST)) (-2730 (($) 104 (|has| |#1| (-1133)) CONST)) (-2018 (($ $ (-1197)) 133 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 129 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 128 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 127 (|has| |#1| (-1070)))) (-2923 (((-112) $ $) 8)) (-3056 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-2758 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3043 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3029 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2758 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1133))) (($ $ (-940)) 103 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-940) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1133))))) +(((-442 |#1|) (-141) (-1121)) (T -442)) +((-2058 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-1197))))) (-2851 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-3283 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-626 (-548))))) (-3283 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-626 (-548))))) (-3283 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1197)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-626 (-548))))) (-2164 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-2292 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4210 (-576)))) (-4 *1 (-442 *3)))) (-3163 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-2919 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| -1714 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-1070)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-4340 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) (-2292 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4210 (-576)))) (-4 *1 (-442 *4)))) (-2292 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4210 (-576)))) (-4 *1 (-442 *4)))) (-3572 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |val| *1) (|:| -4210 (-576)))) (-4 *1 (-442 *3)))) (-3283 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3283 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3283 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3283 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3708 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) (-3056 (*1 *1 *2 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1799 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-1133))))) +(-13 (-312) (-1059 (-1197)) (-899 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -2058 ((-112) $)) (-15 -2068 (|t#1| $)) (-15 -1966 ((-656 (-1197)) $)) (-15 -2851 ($ (-1197) $)) (-15 -2851 ($ (-1197) $ $)) (-15 -2851 ($ (-1197) $ $ $)) (-15 -2851 ($ (-1197) $ $ $ $)) (-15 -2851 ($ (-1197) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3283 ($ $ (-1197))) (-15 -3283 ($ $ (-656 (-1197)))) (-15 -3283 ($ $)) (-15 -3283 ($ $ (-115) $ (-1197))) (-15 -3283 ($ $ (-656 (-115)) (-656 $) (-1197)))) |%noBranch|) (IF (|has| |t#1| (-1133)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -2164 ((-3 (-656 $) "failed") $)) (-15 -2292 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3163 ((-3 (-656 $) "failed") $)) (-15 -2919 ((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-1059 (-971 |t#1|))) (-6 (-917 (-1197))) (-6 (-388 |t#1|)) (-15 -3569 ($ (-1146 |t#1| (-624 $)))) (-15 -1570 ((-1146 |t#1| (-624 $)) $)) (-15 -4340 ($ $)) (-15 -2292 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-115))) (-15 -2292 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4210 (-576))) "failed") $ (-1197))) (-15 -3572 ((-3 (-2 (|:| |val| $) (|:| -4210 (-576))) "failed") $)) (-15 -3283 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -3283 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -3283 ($ $ (-1197) (-783) (-1 $ (-656 $)))) (-15 -3283 ($ $ (-1197) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1059 (-419 (-971 |t#1|)))) (-15 -4171 ($ (-430 $))) (-15 -1581 ((-1146 |t#1| (-624 $)) $)) (-15 -3708 ($ $)) (-15 -3056 ($ (-1146 |t#1| (-624 $)) (-1146 |t#1| (-624 $)))) (-15 -3569 ($ (-419 |t#1|))) (-15 -3569 ($ (-971 (-419 |t#1|)))) (-15 -3569 ($ (-419 (-971 (-419 |t#1|))))) (-15 -1799 ((-419 (-1193 $)) $ (-624 $))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-419 (-576)))) |%noBranch|)) |%noBranch|))) +(((-21) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2758 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -2758 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -2758 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -2758 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) |has| |#1| (-568)) ((-1059 (-419 (-576))) -2758 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-568)) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) |has| |#1| (-568)) ((-1077 #0#) |has| |#1| (-568)) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) |has| |#1| (-568)) ((-1070) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1079) -2758 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1133) -2758 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-568))) +((-2977 ((|#2| |#2| |#2|) 31)) (-1775 (((-115) (-115)) 43)) (-3824 ((|#2| |#2|) 63)) (-3784 ((|#2| |#2|) 66)) (-3180 ((|#2| |#2|) 30)) (-1434 ((|#2| |#2| |#2|) 33)) (-3186 ((|#2| |#2| |#2|) 35)) (-3614 ((|#2| |#2| |#2|) 32)) (-2297 ((|#2| |#2| |#2|) 34)) (-4062 (((-112) (-115)) 41)) (-3235 ((|#2| |#2|) 37)) (-3704 ((|#2| |#2|) 36)) (-1665 ((|#2| |#2|) 25)) (-4228 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1475 ((|#2| |#2| |#2|) 29))) +(((-443 |#1| |#2|) (-10 -7 (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1665 (|#2| |#2|)) (-15 -4228 (|#2| |#2|)) (-15 -4228 (|#2| |#2| |#2|)) (-15 -1475 (|#2| |#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -2977 (|#2| |#2| |#2|)) (-15 -3614 (|#2| |#2| |#2|)) (-15 -1434 (|#2| |#2| |#2|)) (-15 -2297 (|#2| |#2| |#2|)) (-15 -3186 (|#2| |#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -3784 (|#2| |#2|)) (-15 -3824 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) +((-3824 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3235 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3186 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2297 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1434 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3614 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2977 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1475 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4228 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4228 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1665 (|#2| |#2|)) (-15 -4228 (|#2| |#2|)) (-15 -4228 (|#2| |#2| |#2|)) (-15 -1475 (|#2| |#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -2977 (|#2| |#2| |#2|)) (-15 -3614 (|#2| |#2| |#2|)) (-15 -1434 (|#2| |#2| |#2|)) (-15 -2297 (|#2| |#2| |#2|)) (-15 -3186 (|#2| |#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -3784 (|#2| |#2|)) (-15 -3824 (|#2| |#2|))) +((-3814 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|)) 65))) +(((-444 |#1| |#2|) (-10 -7 (-15 -3814 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3814 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) +((-3814 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-444 *4 *5))))) +(-10 -7 (-15 -3814 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3814 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2573 (((-1293)) 18)) (-2840 (((-1193 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2840 ((-419 (-576)) |#2|)) (-15 -2840 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2573 ((-1293)))) (-13 (-568) (-1059 (-576))) (-442 |#1|)) (T -445)) +((-2573 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-2840 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) +(-10 -7 (-15 -2840 ((-419 (-576)) |#2|)) (-15 -2840 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2573 ((-1293)))) +((-3679 (((-112) $) 33)) (-1445 (((-112) $) 35)) (-2475 (((-112) $) 36)) (-2130 (((-112) $) 39)) (-3780 (((-112) $) 34)) (-2786 (((-112) $) 38)) (-3569 (((-876) $) 20) (($ (-1179)) 32) (($ (-1197)) 30) (((-1197) $) 24) (((-1125) $) 23)) (-1993 (((-112) $) 37)) (-2923 (((-112) $ $) 17))) +(((-446) (-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1179))) (-15 -3569 ($ (-1197))) (-15 -3569 ((-1197) $)) (-15 -3569 ((-1125) $)) (-15 -3679 ((-112) $)) (-15 -3780 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -2786 ((-112) $)) (-15 -2130 ((-112) $)) (-15 -1993 ((-112) $)) (-15 -1445 ((-112) $)) (-15 -2923 ((-112) $ $))))) (T -446)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-446)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1179))) (-15 -3569 ($ (-1197))) (-15 -3569 ((-1197) $)) (-15 -3569 ((-1125) $)) (-15 -3679 ((-112) $)) (-15 -3780 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -2786 ((-112) $)) (-15 -2130 ((-112) $)) (-15 -1993 ((-112) $)) (-15 -1445 ((-112) $)) (-15 -2923 ((-112) $ $)))) +((-2300 (((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|) 72)) (-2842 (((-430 |#3|) |#3|) 34)) (-1752 (((-3 (-430 (-1193 (-48))) "failed") |#3|) 46 (|has| |#2| (-1059 (-48))))) (-2322 (((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112))) |#3|) 37))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2842 ((-430 |#3|) |#3|)) (-15 -2300 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -2322 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -1752 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|)) (T -447)) +((-1752 (*1 *2 *3) (|partial| -12 (-4 *5 (-1059 (-48))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2322 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2300 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2842 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -2842 ((-430 |#3|) |#3|)) (-15 -2300 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -2322 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -1752 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1394 (((-1179) $ (-1179)) NIL)) (-2062 (($ $ (-1179)) NIL)) (-3940 (((-1179) $) NIL)) (-2799 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3256 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-2627 (((-400) $) NIL)) (-1413 (((-1179) $) NIL)) (-3197 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1975 (((-1293) (-1179)) 9)) (-2974 (((-1293) (-1179)) 10)) (-3080 (((-1293)) 11)) (-3569 (((-876) $) NIL)) (-1540 (($ $) 39)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-448) (-13 (-375 (-400) (-1179)) (-10 -7 (-15 -2799 ((-400) (-400) (-400))) (-15 -2799 ((-400) (-400))) (-15 -1975 ((-1293) (-1179))) (-15 -2974 ((-1293) (-1179))) (-15 -3080 ((-1293)))))) (T -448)) +((-2799 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-3080 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) +(-13 (-375 (-400) (-1179)) (-10 -7 (-15 -2799 ((-400) (-400) (-400))) (-15 -2799 ((-400) (-400))) (-15 -1975 ((-1293) (-1179))) (-15 -2974 ((-1293) (-1179))) (-15 -3080 ((-1293))))) +((-3488 (((-112) $ $) NIL)) (-3037 (((-3 (|:| |fst| (-446)) (|:| -2916 "void")) $) 11)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2895 (($) 35)) (-4354 (($) 41)) (-2558 (($) 37)) (-2378 (($) 39)) (-1660 (($) 36)) (-4343 (($) 38)) (-2856 (($) 40)) (-2162 (((-112) $) 8)) (-4147 (((-656 (-971 (-576))) $) 19)) (-3581 (($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-971 (-576))) (-112)) 30)) (-3569 (((-876) $) 24) (($ (-446)) 32)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-449) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-446))) (-15 -3037 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -4147 ((-656 (-971 (-576))) $)) (-15 -2162 ((-112) $)) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-112))) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-971 (-576))) (-112))) (-15 -2895 ($)) (-15 -1660 ($)) (-15 -2558 ($)) (-15 -4354 ($)) (-15 -4343 ($)) (-15 -2378 ($)) (-15 -2856 ($))))) (T -449)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *1 (-449)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-2895 (*1 *1) (-5 *1 (-449))) (-1660 (*1 *1) (-5 *1 (-449))) (-2558 (*1 *1) (-5 *1 (-449))) (-4354 (*1 *1) (-5 *1 (-449))) (-4343 (*1 *1) (-5 *1 (-449))) (-2378 (*1 *1) (-5 *1 (-449))) (-2856 (*1 *1) (-5 *1 (-449)))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-446))) (-15 -3037 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -4147 ((-656 (-971 (-576))) $)) (-15 -2162 ((-112) $)) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-112))) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-971 (-576))) (-112))) (-15 -2895 ($)) (-15 -1660 ($)) (-15 -2558 ($)) (-15 -4354 ($)) (-15 -4343 ($)) (-15 -2378 ($)) (-15 -2856 ($)))) +((-3488 (((-112) $ $) NIL)) (-2627 (((-1197) $) 8)) (-1413 (((-1179) $) 17)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 14))) +(((-450 |#1|) (-13 (-1121) (-10 -8 (-15 -2627 ((-1197) $)))) (-1197)) (T -450)) +((-2627 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2)))) +(-13 (-1121) (-10 -8 (-15 -2627 ((-1197) $)))) +((-3488 (((-112) $ $) NIL)) (-2703 (((-1139) $) 7)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 13)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-451) (-13 (-1121) (-10 -8 (-15 -2703 ((-1139) $))))) (T -451)) +((-2703 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451))))) +(-13 (-1121) (-10 -8 (-15 -2703 ((-1139) $)))) +((-2621 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-1288 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 11))) (((-452) (-141)) (T -452)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-711))) (-4 *1 (-452)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) (-4 *1 (-452))))) -(-13 (-407) (-10 -8 (-15 -4112 ($ (-1287 (-711)))) (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-340))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))))) -(((-625 (-875)) . T) ((-407) . T) ((-1237) . T)) -((-2980 (((-3 $ "failed") (-1287 (-326 (-390)))) 21) (((-3 $ "failed") (-1287 (-326 (-576)))) 19) (((-3 $ "failed") (-1287 (-970 (-390)))) 17) (((-3 $ "failed") (-1287 (-970 (-576)))) 15) (((-3 $ "failed") (-1287 (-419 (-970 (-390))))) 13) (((-3 $ "failed") (-1287 (-419 (-970 (-576))))) 11)) (-2317 (($ (-1287 (-326 (-390)))) 22) (($ (-1287 (-326 (-576)))) 20) (($ (-1287 (-970 (-390)))) 18) (($ (-1287 (-970 (-576)))) 16) (($ (-1287 (-419 (-970 (-390))))) 14) (($ (-1287 (-419 (-970 (-576))))) 12)) (-3972 (((-1292) $) 7)) (-4112 (((-875) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) 23))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-452))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-1288 (-711)))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))))) +(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 21) (((-3 $ "failed") (-1288 (-326 (-576)))) 19) (((-3 $ "failed") (-1288 (-971 (-390)))) 17) (((-3 $ "failed") (-1288 (-971 (-576)))) 15) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 11)) (-2859 (($ (-1288 (-326 (-390)))) 22) (($ (-1288 (-326 (-576)))) 20) (($ (-1288 (-971 (-390)))) 18) (($ (-1288 (-971 (-576)))) 16) (($ (-1288 (-419 (-971 (-390))))) 14) (($ (-1288 (-419 (-971 (-576))))) 12)) (-2621 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 23))) (((-453) (-141)) (T -453)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1287 (-970 (-390)))) (-4 *1 (-453)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-970 (-390)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1287 (-970 (-576)))) (-4 *1 (-453)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-970 (-576)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-970 (-390))))) (-4 *1 (-453)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-970 (-390))))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-970 (-576))))) (-4 *1 (-453)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-970 (-576))))) (-4 *1 (-453))))) -(-13 (-407) (-10 -8 (-15 -4112 ($ (-656 (-340)))) (-15 -4112 ($ (-340))) (-15 -4112 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340)))))) (-15 -2317 ($ (-1287 (-326 (-390))))) (-15 -2980 ((-3 $ "failed") (-1287 (-326 (-390))))) (-15 -2317 ($ (-1287 (-326 (-576))))) (-15 -2980 ((-3 $ "failed") (-1287 (-326 (-576))))) (-15 -2317 ($ (-1287 (-970 (-390))))) (-15 -2980 ((-3 $ "failed") (-1287 (-970 (-390))))) (-15 -2317 ($ (-1287 (-970 (-576))))) (-15 -2980 ((-3 $ "failed") (-1287 (-970 (-576))))) (-15 -2317 ($ (-1287 (-419 (-970 (-390)))))) (-15 -2980 ((-3 $ "failed") (-1287 (-419 (-970 (-390)))))) (-15 -2317 ($ (-1287 (-419 (-970 (-576)))))) (-15 -2980 ((-3 $ "failed") (-1287 (-419 (-970 (-576)))))))) -(((-625 (-875)) . T) ((-407) . T) ((-1237) . T)) -((-2799 (((-112)) 18)) (-4316 (((-112) (-112)) 19)) (-3789 (((-112)) 14)) (-3625 (((-112) (-112)) 15)) (-1879 (((-112)) 16)) (-1939 (((-112) (-112)) 17)) (-2530 (((-939) (-939)) 22) (((-939)) 21)) (-3445 (((-783) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576))))) 52)) (-3170 (((-939) (-939)) 24) (((-939)) 23)) (-3668 (((-2 (|:| -1345 (-576)) (|:| -1749 (-656 |#1|))) |#1|) 94)) (-1750 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576))))))) 174)) (-4397 (((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112)) 207)) (-2816 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-3586 (((-3 |#1| "failed") (-939) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-939) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-939) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-939) |#1| (-783)) 226) (((-3 |#1| "failed") (-939) |#1|) 228)) (-1450 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-2465 (((-112) |#1|) 44)) (-3662 (((-749 (-783)) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576))))) 99)) (-3328 (((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112) (-1122 (-783)) (-783)) 211))) -(((-454 |#1|) (-10 -7 (-15 -1750 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))))) (-15 -3662 ((-749 (-783)) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))))) (-15 -3170 ((-939))) (-15 -3170 ((-939) (-939))) (-15 -2530 ((-939))) (-15 -2530 ((-939) (-939))) (-15 -3445 ((-783) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))))) (-15 -3668 ((-2 (|:| -1345 (-576)) (|:| -1749 (-656 |#1|))) |#1|)) (-15 -2799 ((-112))) (-15 -4316 ((-112) (-112))) (-15 -3789 ((-112))) (-15 -3625 ((-112) (-112))) (-15 -2465 ((-112) |#1|)) (-15 -1879 ((-112))) (-15 -1939 ((-112) (-112))) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -1450 ((-430 |#1|) |#1| (-783))) (-15 -1450 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1450 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1450 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2816 ((-430 |#1|) |#1|)) (-15 -2816 ((-430 |#1|) |#1| (-783))) (-15 -2816 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2816 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2816 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1|)) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-783))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-656 (-783)))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-656 (-783)) (-783))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-656 (-783)) (-783) (-112))) (-15 -4397 ((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112))) (-15 -3328 ((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112) (-1122 (-783)) (-783)))) (-1263 (-576))) (T -454)) -((-3328 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1122 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4397 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3586 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-939)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-3586 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-939)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-3586 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-939)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-3586 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-939)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-3586 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-939)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2816 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2816 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2816 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2816 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1450 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1450 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1879 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2465 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3789 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4316 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2799 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3668 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1345 (-576)) (|:| -1749 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1450 *4) (|:| -1877 (-576))))) (-4 *4 (-1263 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-2530 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2530 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3170 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1450 *4) (|:| -1877 (-576))))) (-4 *4 (-1263 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| *4) (|:| -2432 (-576))))))) (-4 *4 (-1263 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(-10 -7 (-15 -1750 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))))) (-15 -3662 ((-749 (-783)) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))))) (-15 -3170 ((-939))) (-15 -3170 ((-939) (-939))) (-15 -2530 ((-939))) (-15 -2530 ((-939) (-939))) (-15 -3445 ((-783) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))))) (-15 -3668 ((-2 (|:| -1345 (-576)) (|:| -1749 (-656 |#1|))) |#1|)) (-15 -2799 ((-112))) (-15 -4316 ((-112) (-112))) (-15 -3789 ((-112))) (-15 -3625 ((-112) (-112))) (-15 -2465 ((-112) |#1|)) (-15 -1879 ((-112))) (-15 -1939 ((-112) (-112))) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -1450 ((-430 |#1|) |#1| (-783))) (-15 -1450 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1450 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1450 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2816 ((-430 |#1|) |#1|)) (-15 -2816 ((-430 |#1|) |#1| (-783))) (-15 -2816 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2816 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2816 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1|)) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-783))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-656 (-783)))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-656 (-783)) (-783))) (-15 -3586 ((-3 |#1| "failed") (-939) |#1| (-656 (-783)) (-783) (-112))) (-15 -4397 ((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112))) (-15 -3328 ((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112) (-1122 (-783)) (-783)))) -((-2852 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-4164 (((-576) |#2|) 64)) (-2166 ((|#3| |#2|) 26)) (-2647 ((|#3| |#2| (-939)) 15)) (-3107 ((|#3| |#2|) 16)) (-2959 ((|#3| |#2|) 9)) (-2952 ((|#3| |#2|) 10)) (-3632 ((|#3| |#2| (-939)) 71) ((|#3| |#2|) 34)) (-3515 (((-576) |#2|) 66))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3515 ((-576) |#2|)) (-15 -3632 (|#3| |#2|)) (-15 -3632 (|#3| |#2| (-939))) (-15 -4164 ((-576) |#2|)) (-15 -2852 ((-576) |#2| (-783))) (-15 -2852 ((-576) |#2|)) (-15 -2647 (|#3| |#2| (-939))) (-15 -2166 (|#3| |#2|)) (-15 -2959 (|#3| |#2|)) (-15 -2952 (|#3| |#2|)) (-15 -3107 (|#3| |#2|))) (-1069) (-1263 |#1|) (-13 (-416) (-1058 |#1|) (-374) (-1222) (-294))) (T -455)) -((-3107 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2952 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2959 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2166 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-4 *5 (-1069)) (-4 *2 (-13 (-416) (-1058 *5) (-374) (-1222) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-2852 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))))) (-2852 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5)) (-4 *6 (-13 (-416) (-1058 *5) (-374) (-1222) (-294))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))))) (-3632 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-4 *5 (-1069)) (-4 *2 (-13 (-416) (-1058 *5) (-374) (-1222) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-374) (-1222) (-294)))))) -(-10 -7 (-15 -3515 ((-576) |#2|)) (-15 -3632 (|#3| |#2|)) (-15 -3632 (|#3| |#2| (-939))) (-15 -4164 ((-576) |#2|)) (-15 -2852 ((-576) |#2| (-783))) (-15 -2852 ((-576) |#2|)) (-15 -2647 (|#3| |#2| (-939))) (-15 -2166 (|#3| |#2|)) (-15 -2959 (|#3| |#2|)) (-15 -2952 (|#3| |#2|)) (-15 -3107 (|#3| |#2|))) -((-3613 ((|#2| (-1287 |#1|)) 42)) (-1770 ((|#2| |#2| |#1|) 58)) (-4125 ((|#2| |#2| |#1|) 49)) (-4203 ((|#2| |#2|) 44)) (-1818 (((-112) |#2|) 32)) (-3488 (((-656 |#2|) (-939) (-430 |#2|)) 21)) (-3586 ((|#2| (-939) (-430 |#2|)) 25)) (-3662 (((-749 (-783)) (-430 |#2|)) 29))) -(((-456 |#1| |#2|) (-10 -7 (-15 -1818 ((-112) |#2|)) (-15 -3613 (|#2| (-1287 |#1|))) (-15 -4203 (|#2| |#2|)) (-15 -4125 (|#2| |#2| |#1|)) (-15 -1770 (|#2| |#2| |#1|)) (-15 -3662 ((-749 (-783)) (-430 |#2|))) (-15 -3586 (|#2| (-939) (-430 |#2|))) (-15 -3488 ((-656 |#2|) (-939) (-430 |#2|)))) (-1069) (-1263 |#1|)) (T -456)) -((-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-430 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-1069)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-430 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1069)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1069)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-1770 (*1 *2 *2 *3) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-4125 (*1 *2 *2 *3) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-4203 (*1 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1069)) (-4 *2 (-1263 *4)) (-5 *1 (-456 *4 *2)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -1818 ((-112) |#2|)) (-15 -3613 (|#2| (-1287 |#1|))) (-15 -4203 (|#2| |#2|)) (-15 -4125 (|#2| |#2| |#1|)) (-15 -1770 (|#2| |#2| |#1|)) (-15 -3662 ((-749 (-783)) (-430 |#2|))) (-15 -3586 (|#2| (-939) (-430 |#2|))) (-15 -3488 ((-656 |#2|) (-939) (-430 |#2|)))) -((-3767 (((-783)) 59)) (-3856 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-2074 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-1603 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-1718 (((-783)) 58) (((-783) (-783)) 57)) (-2555 ((|#1| (-783) (-576)) 37)) (-2308 (((-1292)) 61))) -(((-457 |#1|) (-10 -7 (-15 -2555 (|#1| (-783) (-576))) (-15 -1718 ((-783) (-783))) (-15 -1718 ((-783))) (-15 -3767 ((-783))) (-15 -2308 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -1603 ((-576) |#1|)) (-15 -2074 ((-576) |#1|)) (-15 -3856 ((-783) (-783))) (-15 -3856 ((-783)))) |%noBranch|)) (-1069)) (T -457)) -((-3856 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-3856 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-2074 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-1603 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-2308 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-3767 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-1718 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1069))))) -(-10 -7 (-15 -2555 (|#1| (-783) (-576))) (-15 -1718 ((-783) (-783))) (-15 -1718 ((-783))) (-15 -3767 ((-783))) (-15 -2308 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -1603 ((-576) |#1|)) (-15 -2074 ((-576) |#1|)) (-15 -3856 ((-783) (-783))) (-15 -3856 ((-783)))) |%noBranch|)) -((-1696 (((-656 (-576)) (-576)) 76)) (-2443 (((-112) (-171 (-576))) 82)) (-1450 (((-430 (-171 (-576))) (-171 (-576))) 75))) -(((-458) (-10 -7 (-15 -1450 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1696 ((-656 (-576)) (-576))) (-15 -2443 ((-112) (-171 (-576)))))) (T -458)) -((-2443 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-1696 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) -(-10 -7 (-15 -1450 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1696 ((-656 (-576)) (-576))) (-15 -2443 ((-112) (-171 (-576))))) -((-1875 ((|#4| |#4| (-656 |#4|)) 82)) (-1393 (((-656 |#4|) (-656 |#4|) (-1178) (-1178)) 22) (((-656 |#4|) (-656 |#4|) (-1178)) 21) (((-656 |#4|) (-656 |#4|)) 13))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1875 (|#4| |#4| (-656 |#4|))) (-15 -1393 ((-656 |#4|) (-656 |#4|))) (-15 -1393 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -1393 ((-656 |#4|) (-656 |#4|) (-1178) (-1178)))) (-317) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -459)) -((-1393 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1393 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -1875 (|#4| |#4| (-656 |#4|))) (-15 -1393 ((-656 |#4|) (-656 |#4|))) (-15 -1393 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -1393 ((-656 |#4|) (-656 |#4|) (-1178) (-1178)))) -((-3093 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-1873 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1873 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1873 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -460)) -((-3093 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3093 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3093 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(-10 -7 (-15 -1873 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1873 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3093 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) -((-2939 (((-783) |#4|) 12)) (-2781 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|)))) 39)) (-2709 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2300 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1853 ((|#4| |#4| (-656 |#4|)) 54)) (-1815 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-2480 (((-1292) |#4|) 59)) (-2683 (((-1292) (-656 |#4|)) 69)) (-3443 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-2854 (((-1292) (-576)) 110)) (-3644 (((-656 |#4|) (-656 |#4|)) 104)) (-3238 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|)) |#4| (-783)) 31)) (-1781 (((-576) |#4|) 109)) (-3540 ((|#4| |#4|) 37)) (-4189 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-2674 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-2941 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1458 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2630 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1429 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3180 (((-112) |#2| |#2|) 75)) (-2219 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2215 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3046 ((|#4| |#4| (-656 |#4|)) 97))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3046 (|#4| |#4| (-656 |#4|))) (-15 -1853 (|#4| |#4| (-656 |#4|))) (-15 -4189 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -1458 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3180 ((-112) |#2| |#2|)) (-15 -2215 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2219 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1429 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2630 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1815 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3540 (|#4| |#4|)) (-15 -2781 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|))))) (-15 -2300 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2709 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3644 ((-656 |#4|) (-656 |#4|))) (-15 -1781 ((-576) |#4|)) (-15 -2480 ((-1292) |#4|)) (-15 -3443 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2674 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2683 ((-1292) (-656 |#4|))) (-15 -2854 ((-1292) (-576))) (-15 -2941 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3238 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|)) |#4| (-783))) (-15 -2939 ((-783) |#4|))) (-464) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -461)) -((-2939 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-3238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2769 *4))) (-5 *5 (-783)) (-4 *4 (-967 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-2941 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2674 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3443 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2480 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-1781 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-3644 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-967 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-861)))) (-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 *3)))) (-5 *4 (-783)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3)))) (-3540 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2630 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-967 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *4 *3 *5 *6)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2219 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *3)))) (-2215 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5)))) (-3180 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4189 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1853 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(-10 -7 (-15 -3046 (|#4| |#4| (-656 |#4|))) (-15 -1853 (|#4| |#4| (-656 |#4|))) (-15 -4189 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -1458 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3180 ((-112) |#2| |#2|)) (-15 -2215 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2219 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1429 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2630 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1815 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3540 (|#4| |#4|)) (-15 -2781 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|))))) (-15 -2300 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2709 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3644 ((-656 |#4|) (-656 |#4|))) (-15 -1781 ((-576) |#4|)) (-15 -2480 ((-1292) |#4|)) (-15 -3443 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2674 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2683 ((-1292) (-656 |#4|))) (-15 -2854 ((-1292) (-576))) (-15 -2941 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3238 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2769 |#4|)) |#4| (-783))) (-15 -2939 ((-783) |#4|))) -((-3088 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-2393 (((-656 |#4|) (-656 |#4|) (-1178) (-1178)) 46) (((-656 |#4|) (-656 |#4|) (-1178)) 45) (((-656 |#4|) (-656 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2393 ((-656 |#4|) (-656 |#4|))) (-15 -2393 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -2393 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-374)) (-15 -3088 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -462)) -((-3088 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2393 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2393 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2393 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -2393 ((-656 |#4|) (-656 |#4|))) (-15 -2393 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -2393 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-374)) (-15 -3088 (|#4| |#4| (-656 |#4|))) |%noBranch|)) -((-3075 (($ $ $) 14) (($ (-656 $)) 21)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 46)) (-3114 (($ $ $) NIL) (($ (-656 $)) 22))) -(((-463 |#1|) (-10 -8 (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3075 (|#1| (-656 |#1|))) (-15 -3075 (|#1| |#1| |#1|)) (-15 -3114 (|#1| (-656 |#1|))) (-15 -3114 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3075 (|#1| (-656 |#1|))) (-15 -3075 (|#1| |#1| |#1|)) (-15 -3114 (|#1| (-656 |#1|))) (-15 -3114 (|#1| |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1943 (((-3 $ "failed") $ $) 48)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -2859 ($ (-1288 (-326 (-390))))) (-15 -1572 ((-3 $ "failed") (-1288 (-326 (-390))))) (-15 -2859 ($ (-1288 (-326 (-576))))) (-15 -1572 ((-3 $ "failed") (-1288 (-326 (-576))))) (-15 -2859 ($ (-1288 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-1288 (-971 (-390))))) (-15 -2859 ($ (-1288 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-1288 (-971 (-576))))) (-15 -2859 ($ (-1288 (-419 (-971 (-390)))))) (-15 -1572 ((-3 $ "failed") (-1288 (-419 (-971 (-390)))))) (-15 -2859 ($ (-1288 (-419 (-971 (-576)))))) (-15 -1572 ((-3 $ "failed") (-1288 (-419 (-971 (-576)))))))) +(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) +((-1465 (((-112)) 18)) (-3181 (((-112) (-112)) 19)) (-1672 (((-112)) 14)) (-3921 (((-112) (-112)) 15)) (-3621 (((-112)) 16)) (-2893 (((-112) (-112)) 17)) (-3805 (((-940) (-940)) 22) (((-940)) 21)) (-1573 (((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576))))) 52)) (-1843 (((-940) (-940)) 24) (((-940)) 23)) (-3051 (((-2 (|:| -4046 (-576)) (|:| -1601 (-656 |#1|))) |#1|) 94)) (-1611 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576))))))) 174)) (-2684 (((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112)) 207)) (-3550 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-3530 (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-940) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-940) |#1| (-783)) 226) (((-3 |#1| "failed") (-940) |#1|) 228)) (-1828 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-4380 (((-112) |#1|) 44)) (-2996 (((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576))))) 99)) (-2911 (((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)) 211))) +(((-454 |#1|) (-10 -7 (-15 -1611 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))))) (-15 -2996 ((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))))) (-15 -1843 ((-940))) (-15 -1843 ((-940) (-940))) (-15 -3805 ((-940))) (-15 -3805 ((-940) (-940))) (-15 -1573 ((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))))) (-15 -3051 ((-2 (|:| -4046 (-576)) (|:| -1601 (-656 |#1|))) |#1|)) (-15 -1465 ((-112))) (-15 -3181 ((-112) (-112))) (-15 -1672 ((-112))) (-15 -3921 ((-112) (-112))) (-15 -4380 ((-112) |#1|)) (-15 -3621 ((-112))) (-15 -2893 ((-112) (-112))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1| (-783))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1828 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3550 ((-430 |#1|) |#1|)) (-15 -3550 ((-430 |#1|) |#1| (-783))) (-15 -3550 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -3550 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -3550 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1|)) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -2684 ((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112))) (-15 -2911 ((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) (-1264 (-576))) (T -454)) +((-2911 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3530 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3530 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3530 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3530 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3530 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3550 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3550 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3550 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3621 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4380 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1672 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1465 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4046 (-576)) (|:| -1601 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3600 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3805 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1843 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3600 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| *4) (|:| -4073 (-576))))))) (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(-10 -7 (-15 -1611 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))))) (-15 -2996 ((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))))) (-15 -1843 ((-940))) (-15 -1843 ((-940) (-940))) (-15 -3805 ((-940))) (-15 -3805 ((-940) (-940))) (-15 -1573 ((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))))) (-15 -3051 ((-2 (|:| -4046 (-576)) (|:| -1601 (-656 |#1|))) |#1|)) (-15 -1465 ((-112))) (-15 -3181 ((-112) (-112))) (-15 -1672 ((-112))) (-15 -3921 ((-112) (-112))) (-15 -4380 ((-112) |#1|)) (-15 -3621 ((-112))) (-15 -2893 ((-112) (-112))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1| (-783))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1828 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3550 ((-430 |#1|) |#1|)) (-15 -3550 ((-430 |#1|) |#1| (-783))) (-15 -3550 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -3550 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -3550 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1|)) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -3530 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -2684 ((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112))) (-15 -2911 ((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) +((-3898 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-4209 (((-576) |#2|) 64)) (-3308 ((|#3| |#2|) 26)) (-2471 ((|#3| |#2| (-940)) 15)) (-2434 ((|#3| |#2|) 16)) (-3587 ((|#3| |#2|) 9)) (-2325 ((|#3| |#2|) 10)) (-2671 ((|#3| |#2| (-940)) 71) ((|#3| |#2|) 34)) (-4158 (((-576) |#2|) 66))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -4158 ((-576) |#2|)) (-15 -2671 (|#3| |#2|)) (-15 -2671 (|#3| |#2| (-940))) (-15 -4209 ((-576) |#2|)) (-15 -3898 ((-576) |#2| (-783))) (-15 -3898 ((-576) |#2|)) (-15 -2471 (|#3| |#2| (-940))) (-15 -3308 (|#3| |#2|)) (-15 -3587 (|#3| |#2|)) (-15 -2325 (|#3| |#2|)) (-15 -2434 (|#3| |#2|))) (-1070) (-1264 |#1|) (-13 (-416) (-1059 |#1|) (-374) (-1223) (-294))) (T -455)) +((-2434 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3308 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-3898 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-2671 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-4158 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) +(-10 -7 (-15 -4158 ((-576) |#2|)) (-15 -2671 (|#3| |#2|)) (-15 -2671 (|#3| |#2| (-940))) (-15 -4209 ((-576) |#2|)) (-15 -3898 ((-576) |#2| (-783))) (-15 -3898 ((-576) |#2|)) (-15 -2471 (|#3| |#2| (-940))) (-15 -3308 (|#3| |#2|)) (-15 -3587 (|#3| |#2|)) (-15 -2325 (|#3| |#2|)) (-15 -2434 (|#3| |#2|))) +((-3795 ((|#2| (-1288 |#1|)) 42)) (-1797 ((|#2| |#2| |#1|) 58)) (-1862 ((|#2| |#2| |#1|) 49)) (-3834 ((|#2| |#2|) 44)) (-4225 (((-112) |#2|) 32)) (-1925 (((-656 |#2|) (-940) (-430 |#2|)) 21)) (-3530 ((|#2| (-940) (-430 |#2|)) 25)) (-2996 (((-749 (-783)) (-430 |#2|)) 29))) +(((-456 |#1| |#2|) (-10 -7 (-15 -4225 ((-112) |#2|)) (-15 -3795 (|#2| (-1288 |#1|))) (-15 -3834 (|#2| |#2|)) (-15 -1862 (|#2| |#2| |#1|)) (-15 -1797 (|#2| |#2| |#1|)) (-15 -2996 ((-749 (-783)) (-430 |#2|))) (-15 -3530 (|#2| (-940) (-430 |#2|))) (-15 -1925 ((-656 |#2|) (-940) (-430 |#2|)))) (-1070) (-1264 |#1|)) (T -456)) +((-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1070)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-1797 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-1862 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) (-5 *1 (-456 *4 *2)))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -4225 ((-112) |#2|)) (-15 -3795 (|#2| (-1288 |#1|))) (-15 -3834 (|#2| |#2|)) (-15 -1862 (|#2| |#2| |#1|)) (-15 -1797 (|#2| |#2| |#1|)) (-15 -2996 ((-749 (-783)) (-430 |#2|))) (-15 -3530 (|#2| (-940) (-430 |#2|))) (-15 -1925 ((-656 |#2|) (-940) (-430 |#2|)))) +((-1478 (((-783)) 59)) (-4269 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-1690 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-2694 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-2473 (((-783)) 58) (((-783) (-783)) 57)) (-2728 ((|#1| (-783) (-576)) 37)) (-2122 (((-1293)) 61))) +(((-457 |#1|) (-10 -7 (-15 -2728 (|#1| (-783) (-576))) (-15 -2473 ((-783) (-783))) (-15 -2473 ((-783))) (-15 -1478 ((-783))) (-15 -2122 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -2694 ((-576) |#1|)) (-15 -1690 ((-576) |#1|)) (-15 -4269 ((-783) (-783))) (-15 -4269 ((-783)))) |%noBranch|)) (-1070)) (T -457)) +((-4269 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-1690 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2694 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2122 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-1478 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2473 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) +(-10 -7 (-15 -2728 (|#1| (-783) (-576))) (-15 -2473 ((-783) (-783))) (-15 -2473 ((-783))) (-15 -1478 ((-783))) (-15 -2122 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -2694 ((-576) |#1|)) (-15 -1690 ((-576) |#1|)) (-15 -4269 ((-783) (-783))) (-15 -4269 ((-783)))) |%noBranch|)) +((-2268 (((-656 (-576)) (-576)) 76)) (-4169 (((-112) (-171 (-576))) 82)) (-1828 (((-430 (-171 (-576))) (-171 (-576))) 75))) +(((-458) (-10 -7 (-15 -1828 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -2268 ((-656 (-576)) (-576))) (-15 -4169 ((-112) (-171 (-576)))))) (T -458)) +((-4169 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-2268 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) +(-10 -7 (-15 -1828 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -2268 ((-656 (-576)) (-576))) (-15 -4169 ((-112) (-171 (-576))))) +((-3575 ((|#4| |#4| (-656 |#4|)) 82)) (-2999 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 22) (((-656 |#4|) (-656 |#4|) (-1179)) 21) (((-656 |#4|) (-656 |#4|)) 13))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3575 (|#4| |#4| (-656 |#4|))) (-15 -2999 ((-656 |#4|) (-656 |#4|))) (-15 -2999 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -2999 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) (-317) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -459)) +((-2999 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2999 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3575 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) +(-10 -7 (-15 -3575 (|#4| |#4| (-656 |#4|))) (-15 -2999 ((-656 |#4|) (-656 |#4|))) (-15 -2999 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -2999 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) +((-2390 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-3552 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3552 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3552 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -460)) +((-2390 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-2390 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(-10 -7 (-15 -3552 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3552 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -2390 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) +((-3386 (((-783) |#4|) 12)) (-4421 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|)))) 39)) (-1823 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2047 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3345 ((|#4| |#4| (-656 |#4|)) 54)) (-4197 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-1402 (((-1293) |#4|) 59)) (-1597 (((-1293) (-656 |#4|)) 69)) (-1551 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3917 (((-1293) (-576)) 110)) (-2805 (((-656 |#4|) (-656 |#4|)) 104)) (-1384 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|)) |#4| (-783)) 31)) (-1903 (((-576) |#4|) 109)) (-4350 ((|#4| |#4|) 37)) (-4420 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-1514 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-3407 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3883 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2296 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2240 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1948 (((-112) |#2| |#2|) 75)) (-3848 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3813 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3200 ((|#4| |#4| (-656 |#4|)) 97))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3200 (|#4| |#4| (-656 |#4|))) (-15 -3345 (|#4| |#4| (-656 |#4|))) (-15 -4420 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3883 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1948 ((-112) |#2| |#2|)) (-15 -3813 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3848 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2240 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2296 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4197 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -4350 (|#4| |#4|)) (-15 -4421 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|))))) (-15 -2047 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1823 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2805 ((-656 |#4|) (-656 |#4|))) (-15 -1903 ((-576) |#4|)) (-15 -1402 ((-1293) |#4|)) (-15 -1551 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -1514 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -1597 ((-1293) (-656 |#4|))) (-15 -3917 ((-1293) (-576))) (-15 -3407 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1384 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|)) |#4| (-783))) (-15 -3386 ((-783) |#4|))) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -461)) +((-3386 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-1384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -4326 *4))) (-5 *5 (-783)) (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-3407 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1514 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-1551 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-1402 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-1903 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1823 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-861)))) (-4421 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 *3)))) (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3)))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2296 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3848 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *3)))) (-3813 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-1948 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4420 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3345 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-3200 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) +(-10 -7 (-15 -3200 (|#4| |#4| (-656 |#4|))) (-15 -3345 (|#4| |#4| (-656 |#4|))) (-15 -4420 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3883 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1948 ((-112) |#2| |#2|)) (-15 -3813 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3848 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2240 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2296 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4197 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -4350 (|#4| |#4|)) (-15 -4421 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|))))) (-15 -2047 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1823 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2805 ((-656 |#4|) (-656 |#4|))) (-15 -1903 ((-576) |#4|)) (-15 -1402 ((-1293) |#4|)) (-15 -1551 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -1514 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -1597 ((-1293) (-656 |#4|))) (-15 -3917 ((-1293) (-576))) (-15 -3407 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1384 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -4326 |#4|)) |#4| (-783))) (-15 -3386 ((-783) |#4|))) +((-2331 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-1718 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 46) (((-656 |#4|) (-656 |#4|) (-1179)) 45) (((-656 |#4|) (-656 |#4|)) 34))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1718 ((-656 |#4|) (-656 |#4|))) (-15 -1718 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1718 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -2331 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -462)) +((-2331 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2)))) (-1718 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1718 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6))))) +(-10 -7 (-15 -1718 ((-656 |#4|) (-656 |#4|))) (-15 -1718 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1718 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -2331 (|#4| |#4| (-656 |#4|))) |%noBranch|)) +((-3457 (($ $ $) 14) (($ (-656 $)) 21)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 46)) (-3498 (($ $ $) NIL) (($ (-656 $)) 22))) +(((-463 |#1|) (-10 -8 (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3457 (|#1| (-656 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3457 (|#1| (-656 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-464) (-141)) (T -464)) -((-3114 (*1 *1 *1 *1) (-4 *1 (-464))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3075 (*1 *1 *1 *1) (-4 *1 (-464))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3465 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3114 ($ $ $)) (-15 -3114 ($ (-656 $))) (-15 -3075 ($ $ $)) (-15 -3075 ($ (-656 $))) (-15 -3465 ((-1192 $) (-1192 $) (-1192 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-4288 (((-3 $ "failed")) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2108 (((-1287 (-701 (-419 (-970 |#1|)))) (-1287 $)) NIL) (((-1287 (-701 (-419 (-970 |#1|))))) NIL)) (-3791 (((-1287 $)) NIL)) (-4331 (($) NIL T CONST)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL)) (-2426 (((-3 $ "failed")) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-2206 (((-701 (-419 (-970 |#1|))) (-1287 $)) NIL) (((-701 (-419 (-970 |#1|)))) NIL)) (-3500 (((-419 (-970 |#1|)) $) NIL)) (-4032 (((-701 (-419 (-970 |#1|))) $ (-1287 $)) NIL) (((-701 (-419 (-970 |#1|))) $) NIL)) (-2942 (((-3 $ "failed") $) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-4137 (((-1192 (-970 (-419 (-970 |#1|))))) NIL (|has| (-419 (-970 |#1|)) (-374))) (((-1192 (-419 (-970 |#1|)))) 90 (|has| |#1| (-568)))) (-2711 (($ $ (-939)) NIL)) (-2590 (((-419 (-970 |#1|)) $) NIL)) (-3138 (((-1192 (-419 (-970 |#1|))) $) 88 (|has| (-419 (-970 |#1|)) (-568)))) (-4078 (((-419 (-970 |#1|)) (-1287 $)) NIL) (((-419 (-970 |#1|))) NIL)) (-1748 (((-1192 (-419 (-970 |#1|))) $) NIL)) (-2896 (((-112)) NIL)) (-4005 (($ (-1287 (-419 (-970 |#1|))) (-1287 $)) 114) (($ (-1287 (-419 (-970 |#1|)))) NIL)) (-3900 (((-3 $ "failed") $) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-4134 (((-939)) NIL)) (-1670 (((-112)) NIL)) (-4222 (($ $ (-939)) NIL)) (-2582 (((-112)) NIL)) (-2396 (((-112)) NIL)) (-2304 (((-112)) NIL)) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL)) (-3510 (((-3 $ "failed")) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-1647 (((-701 (-419 (-970 |#1|))) (-1287 $)) NIL) (((-701 (-419 (-970 |#1|)))) NIL)) (-1881 (((-419 (-970 |#1|)) $) NIL)) (-2882 (((-701 (-419 (-970 |#1|))) $ (-1287 $)) NIL) (((-701 (-419 (-970 |#1|))) $) NIL)) (-1793 (((-3 $ "failed") $) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-3689 (((-1192 (-970 (-419 (-970 |#1|))))) NIL (|has| (-419 (-970 |#1|)) (-374))) (((-1192 (-419 (-970 |#1|)))) 89 (|has| |#1| (-568)))) (-1604 (($ $ (-939)) NIL)) (-1845 (((-419 (-970 |#1|)) $) NIL)) (-2557 (((-1192 (-419 (-970 |#1|))) $) 85 (|has| (-419 (-970 |#1|)) (-568)))) (-4037 (((-419 (-970 |#1|)) (-1287 $)) NIL) (((-419 (-970 |#1|))) NIL)) (-3491 (((-1192 (-419 (-970 |#1|))) $) NIL)) (-3403 (((-112)) NIL)) (-2043 (((-1178) $) NIL)) (-1658 (((-112)) NIL)) (-1530 (((-112)) NIL)) (-2502 (((-112)) NIL)) (-3115 (((-1140) $) NIL)) (-3239 (((-419 (-970 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-3200 (((-419 (-970 |#1|)) $) 100 (|has| |#1| (-568)))) (-1350 (((-419 (-970 |#1|)) $) 104 (|has| |#1| (-568)))) (-3936 (((-1192 (-419 (-970 |#1|))) $) 94 (|has| |#1| (-568)))) (-3359 (((-419 (-970 |#1|))) 77 (|has| |#1| (-568)))) (-2568 (((-419 (-970 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-1459 (((-419 (-970 |#1|)) $) 99 (|has| |#1| (-568)))) (-2525 (((-419 (-970 |#1|)) $) 103 (|has| |#1| (-568)))) (-2510 (((-1192 (-419 (-970 |#1|))) $) 93 (|has| |#1| (-568)))) (-3606 (((-419 (-970 |#1|))) 73 (|has| |#1| (-568)))) (-1835 (($) 110) (($ (-1196)) 118) (($ (-1287 (-1196))) 117) (($ (-1287 $)) 105) (($ (-1196) (-1287 $)) 116) (($ (-1287 (-1196)) (-1287 $)) 115)) (-2231 (((-112)) NIL)) (-4368 (((-419 (-970 |#1|)) $ (-576)) NIL)) (-3435 (((-1287 (-419 (-970 |#1|))) $ (-1287 $)) 107) (((-701 (-419 (-970 |#1|))) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 (-970 |#1|))) $) 43) (((-701 (-419 (-970 |#1|))) (-1287 $)) NIL)) (-1554 (((-1287 (-419 (-970 |#1|))) $) NIL) (($ (-1287 (-419 (-970 |#1|)))) 40)) (-2531 (((-656 (-970 (-419 (-970 |#1|)))) (-1287 $)) NIL) (((-656 (-970 (-419 (-970 |#1|))))) NIL) (((-656 (-970 |#1|)) (-1287 $)) 108 (|has| |#1| (-568))) (((-656 (-970 |#1|))) 109 (|has| |#1| (-568)))) (-2362 (($ $ $) NIL)) (-2631 (((-112)) NIL)) (-4112 (((-875) $) NIL) (($ (-1287 (-419 (-970 |#1|)))) NIL)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) 65)) (-2341 (((-656 (-1287 (-419 (-970 |#1|))))) NIL (|has| (-419 (-970 |#1|)) (-568)))) (-3240 (($ $ $ $) NIL)) (-1962 (((-112)) NIL)) (-2649 (($ (-701 (-419 (-970 |#1|))) $) NIL)) (-2027 (($ $ $) NIL)) (-1528 (((-112)) NIL)) (-3484 (((-112)) NIL)) (-2289 (((-112)) NIL)) (-4314 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) 106)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-970 |#1|))) NIL) (($ (-419 (-970 |#1|)) $) NIL) (($ (-1162 |#2| (-419 (-970 |#1|))) $) NIL))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-970 |#1|))) (-660 (-1162 |#2| (-419 (-970 |#1|)))) (-10 -8 (-15 -4112 ($ (-1287 (-419 (-970 |#1|))))) (-15 -3913 ((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed"))) (-15 -3427 ((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed"))) (-15 -1835 ($)) (-15 -1835 ($ (-1196))) (-15 -1835 ($ (-1287 (-1196)))) (-15 -1835 ($ (-1287 $))) (-15 -1835 ($ (-1196) (-1287 $))) (-15 -1835 ($ (-1287 (-1196)) (-1287 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3689 ((-1192 (-419 (-970 |#1|))))) (-15 -2510 ((-1192 (-419 (-970 |#1|))) $)) (-15 -1459 ((-419 (-970 |#1|)) $)) (-15 -2525 ((-419 (-970 |#1|)) $)) (-15 -4137 ((-1192 (-419 (-970 |#1|))))) (-15 -3936 ((-1192 (-419 (-970 |#1|))) $)) (-15 -3200 ((-419 (-970 |#1|)) $)) (-15 -1350 ((-419 (-970 |#1|)) $)) (-15 -2568 ((-419 (-970 |#1|)) $ $)) (-15 -3606 ((-419 (-970 |#1|)))) (-15 -3239 ((-419 (-970 |#1|)) $ $)) (-15 -3359 ((-419 (-970 |#1|)))) (-15 -2531 ((-656 (-970 |#1|)) (-1287 $))) (-15 -2531 ((-656 (-970 |#1|))))) |%noBranch|))) (-174) (-939) (-656 (-1196)) (-1287 (-701 |#1|))) (T -465)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-970 *3)))) (-4 *3 (-174)) (-14 *6 (-1287 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))))) (-3913 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -3578 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3427 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -3578 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1835 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-939)) (-14 *4 (-656 (-1196))) (-14 *5 (-1287 (-701 *2))))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 *2)) (-14 *6 (-1287 (-701 *3))))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1287 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-939)) (-14 *6 (-656 *2)) (-14 *7 (-1287 (-701 *4))))) (-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 (-1196))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-939)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) (-3689 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-4137 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2568 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3606 (*1 *2) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3239 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3359 (*1 *2) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-970 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-939)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) (-2531 (*1 *2) (-12 (-5 *2 (-656 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(-13 (-429 (-419 (-970 |#1|))) (-660 (-1162 |#2| (-419 (-970 |#1|)))) (-10 -8 (-15 -4112 ($ (-1287 (-419 (-970 |#1|))))) (-15 -3913 ((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed"))) (-15 -3427 ((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed"))) (-15 -1835 ($)) (-15 -1835 ($ (-1196))) (-15 -1835 ($ (-1287 (-1196)))) (-15 -1835 ($ (-1287 $))) (-15 -1835 ($ (-1196) (-1287 $))) (-15 -1835 ($ (-1287 (-1196)) (-1287 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3689 ((-1192 (-419 (-970 |#1|))))) (-15 -2510 ((-1192 (-419 (-970 |#1|))) $)) (-15 -1459 ((-419 (-970 |#1|)) $)) (-15 -2525 ((-419 (-970 |#1|)) $)) (-15 -4137 ((-1192 (-419 (-970 |#1|))))) (-15 -3936 ((-1192 (-419 (-970 |#1|))) $)) (-15 -3200 ((-419 (-970 |#1|)) $)) (-15 -1350 ((-419 (-970 |#1|)) $)) (-15 -2568 ((-419 (-970 |#1|)) $ $)) (-15 -3606 ((-419 (-970 |#1|)))) (-15 -3239 ((-419 (-970 |#1|)) $ $)) (-15 -3359 ((-419 (-970 |#1|)))) (-15 -2531 ((-656 (-970 |#1|)) (-1287 $))) (-15 -2531 ((-656 (-970 |#1|))))) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 18)) (-1582 (((-656 (-877 |#1|)) $) 87)) (-1420 (((-1192 $) $ (-877 |#1|)) 52) (((-1192 |#2|) $) 138)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4070 (($ $) NIL (|has| |#2| (-568)))) (-2378 (((-112) $) NIL (|has| |#2| (-568)))) (-4230 (((-783) $) 27) (((-783) $ (-656 (-877 |#1|))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-3575 (($ $) NIL (|has| |#2| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-877 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-877 |#1|) $) NIL)) (-3954 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-2342 (($ $ (-656 (-576))) 93)) (-3309 (($ $) 80)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#2| (-927)))) (-3897 (($ $ |#2| |#3| $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) 65)) (-1571 (($ (-1192 |#2|) (-877 |#1|)) 143) (($ (-1192 $) (-877 |#1|)) 58)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) 68)) (-1562 (($ |#2| |#3|) 35) (($ $ (-877 |#1|) (-783)) 37) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-877 |#1|)) NIL)) (-3661 ((|#3| $) NIL) (((-783) $ (-877 |#1|)) 56) (((-656 (-783)) $ (-656 (-877 |#1|))) 63)) (-3820 (($ (-1 |#3| |#3|) $) NIL)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-2653 (((-3 (-877 |#1|) "failed") $) 45)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#2| $) 47)) (-3075 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -1495 (-783))) "failed") $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) 46)) (-1685 ((|#2| $) 136)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#2| (-927)))) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-877 |#1|) |#2|) 100) (($ $ (-656 (-877 |#1|)) (-656 |#2|)) 106) (($ $ (-877 |#1|) $) 98) (($ $ (-656 (-877 |#1|)) (-656 $)) 124)) (-1451 (($ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-4106 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) 59)) (-1877 ((|#3| $) 79) (((-783) $ (-877 |#1|)) 42) (((-656 (-783)) $ (-656 (-877 |#1|))) 62)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-877 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3430 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927))))) (-4112 (((-875) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-877 |#1|)) 39) (($ (-419 (-576))) NIL (-3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ |#3|) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#2| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4314 (($) 22 T CONST)) (-4320 (($) 31 T CONST)) (-3155 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 131)) (** (($ $ (-939)) NIL) (($ $ (-783)) 129)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-466 |#1| |#2| |#3|) (-13 (-967 |#2| |#3| (-877 |#1|)) (-10 -8 (-15 -2342 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1069) (-243 (-1968 |#1|) (-783))) (T -466)) -((-2342 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1196))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-243 (-1968 *3) (-783)))))) -(-13 (-967 |#2| |#3| (-877 |#1|)) (-10 -8 (-15 -2342 ($ $ (-656 (-576)))))) -((-3601 (((-112) |#1| (-656 |#2|)) 91)) (-1518 (((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-1538 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|))) 102)) (-3735 ((|#2| |#2| |#1|) 35)) (-2254 (((-783) |#2| (-656 |#2|)) 26))) -(((-467 |#1| |#2|) (-10 -7 (-15 -3735 (|#2| |#2| |#1|)) (-15 -2254 ((-783) |#2| (-656 |#2|))) (-15 -1518 ((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -1538 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|)))) (-15 -3601 ((-112) |#1| (-656 |#2|)))) (-317) (-1263 |#1|)) (T -467)) -((-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-1538 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1287 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4)))) (-1518 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1263 *4)) (-5 *2 (-1287 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-3735 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -3735 (|#2| |#2| |#1|)) (-15 -2254 ((-783) |#2| (-656 |#2|))) (-15 -1518 ((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -1538 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|)))) (-15 -3601 ((-112) |#1| (-656 |#2|)))) -((-1450 (((-430 |#5|) |#5|) 24))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1450 ((-430 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196))))) (-805) (-568) (-568) (-967 |#4| |#2| |#1|)) (T -468)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-967 *7 *5 *4))))) -(-10 -7 (-15 -1450 ((-430 |#5|) |#5|))) -((-1636 ((|#3|) 38)) (-3465 (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 34))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3465 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -1636 (|#3|))) (-805) (-861) (-927) (-967 |#3| |#1| |#2|)) (T -469)) -((-1636 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-927)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-967 *2 *3 *4)))) (-3465 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-927)) (-5 *1 (-469 *3 *4 *5 *6))))) -(-10 -7 (-15 -3465 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -1636 (|#3|))) -((-1450 (((-430 (-1192 |#1|)) (-1192 |#1|)) 43))) -(((-470 |#1|) (-10 -7 (-15 -1450 ((-430 (-1192 |#1|)) (-1192 |#1|)))) (-317)) (T -470)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1192 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1192 *4))))) -(-10 -7 (-15 -1450 ((-430 (-1192 |#1|)) (-1192 |#1|)))) -((-1627 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783))) 43) (((-52) |#2| (-1196) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-2860 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576))) 85) (((-52) |#2| (-1196) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-1646 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 72)) (-1637 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576))) 50))) -(((-471 |#1| |#2|) (-10 -7 (-15 -1627 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1627 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -1627 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783)))) (-15 -1627 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783)))) (-15 -1637 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -1637 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -1646 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1646 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -2860 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2860 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -2860 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -2860 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -2860 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -2860 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -471)) -((-2860 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) (-4 *8 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2860 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2860 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2860 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2860 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-1646 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) (-4 *8 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-1646 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-1637 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1627 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-783))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1627 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-783))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1627 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) -(-10 -7 (-15 -1627 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1627 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -1627 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783)))) (-15 -1627 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783)))) (-15 -1637 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -1637 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -1646 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1646 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -2860 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2860 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -2860 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -2860 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -2860 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -2860 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))))) -((-3735 ((|#2| |#2| |#1|) 15)) (-2271 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-939)) 82)) (-2857 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-939)) 72))) -(((-472 |#1| |#2|) (-10 -7 (-15 -2857 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-939))) (-15 -2271 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-939))) (-15 -3735 (|#2| |#2| |#1|))) (-317) (-1263 |#1|)) (T -472)) -((-3735 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) (-2271 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-939)) (-4 *3 (-1263 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-2857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-939)) (-4 *5 (-317)) (-4 *3 (-1263 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(-10 -7 (-15 -2857 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-939))) (-15 -2271 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-939))) (-15 -3735 (|#2| |#2| |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 28)) (-2793 (($ |#3|) 25)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) 32)) (-3956 (($ |#2| |#4| $) 33)) (-1562 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-1698 (((-725 |#3| |#4| |#5|) $) 15)) (-4323 ((|#3| $) 19)) (-3476 ((|#4| $) 17)) (-1709 ((|#2| $) 29)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3893 (($ |#2| |#3| |#4|) 26)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 36 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 34)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1709 (|#2| $)) (-15 -1698 ((-725 |#3| |#4| |#5|) $)) (-15 -3476 (|#4| $)) (-15 -4323 (|#3| $)) (-15 -3309 ($ $)) (-15 -1562 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2793 ($ |#3|)) (-15 -3893 ($ |#2| |#3| |#4|)) (-15 -3956 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1196)) (-174) (-861) (-243 (-1968 |#1|) (-783)) (-1 (-112) (-2 (|:| -2409 |#3|) (|:| -1495 |#4|)) (-2 (|:| -2409 |#3|) (|:| -1495 |#4|))) (-967 |#2| |#4| (-877 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *6 (-243 (-1968 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *6)) (-2 (|:| -2409 *5) (|:| -1495 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-967 *4 *6 (-877 *3))))) (-1709 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *5 (-243 (-1968 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2409 *4) (|:| -1495 *5)) (-2 (|:| -2409 *4) (|:| -1495 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-967 *2 *5 (-877 *3))))) (-1698 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *6 (-243 (-1968 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *6)) (-2 (|:| -2409 *5) (|:| -1495 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-967 *4 *6 (-877 *3))))) (-3476 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *2)) (-2 (|:| -2409 *5) (|:| -1495 *2)))) (-4 *2 (-243 (-1968 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-967 *4 *2 (-877 *3))))) (-4323 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *5 (-243 (-1968 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *5)) (-2 (|:| -2409 *2) (|:| -1495 *5)))) (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-967 *4 *5 (-877 *3))))) (-3309 (*1 *1 *1) (-12 (-14 *2 (-656 (-1196))) (-4 *3 (-174)) (-4 *5 (-243 (-1968 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2409 *4) (|:| -1495 *5)) (-2 (|:| -2409 *4) (|:| -1495 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-967 *3 *5 (-877 *2))))) (-1562 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-1968 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *6)) (-2 (|:| -2409 *5) (|:| -1495 *6)))) (-14 *4 (-656 (-1196))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-967 *2 *6 (-877 *4))))) (-2793 (*1 *1 *2) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *5 (-243 (-1968 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *5)) (-2 (|:| -2409 *2) (|:| -1495 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-967 *4 *5 (-877 *3))))) (-3893 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1196))) (-4 *2 (-174)) (-4 *4 (-243 (-1968 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2409 *3) (|:| -1495 *4)) (-2 (|:| -2409 *3) (|:| -1495 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-967 *2 *4 (-877 *5))))) (-3956 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1196))) (-4 *2 (-174)) (-4 *3 (-243 (-1968 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *3)) (-2 (|:| -2409 *5) (|:| -1495 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-967 *2 *3 (-877 *4)))))) -(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1709 (|#2| $)) (-15 -1698 ((-725 |#3| |#4| |#5|) $)) (-15 -3476 (|#4| $)) (-15 -4323 (|#3| $)) (-15 -3309 ($ $)) (-15 -1562 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2793 ($ |#3|)) (-15 -3893 ($ |#2| |#3| |#4|)) (-15 -3956 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3068 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3068 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-861) (-568) (-967 |#3| |#1| |#2|) (-13 (-1058 (-419 (-576))) (-374) (-10 -8 (-15 -4112 ($ |#4|)) (-15 -2686 (|#4| $)) (-15 -2697 (|#4| $))))) (T -474)) -((-3068 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-967 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1058 (-419 (-576))) (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $)))))))) -(-10 -7 (-15 -3068 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-1952 (((-112) $ $) NIL)) (-1582 (((-656 |#3|) $) 41)) (-2397 (((-112) $) NIL)) (-2083 (((-112) $) NIL (|has| |#1| (-568)))) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-4013 (((-112) $) NIL (|has| |#1| (-568)))) (-1938 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3142 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2948 (((-112) $) NIL (|has| |#1| (-568)))) (-3223 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 49)) (-2317 (($ (-656 |#4|)) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-2824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4463)))) (-3721 (((-656 |#4|) $) 18 (|has| $ (-6 -4463)))) (-2232 ((|#3| $) 47)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#4|) $) 14 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-1896 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 21)) (-3055 (((-656 |#3|) $) NIL)) (-2421 (((-112) |#3| $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3115 (((-1140) $) NIL)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3587 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 39)) (-3935 (($) 17)) (-3125 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) 16)) (-1554 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-4124 (($ (-656 |#4|)) 13)) (-3655 (($ $ |#3|) NIL)) (-3837 (($ $ |#3|) NIL)) (-1570 (($ $ |#3|) NIL)) (-4112 (((-875) $) 38) (((-656 |#4|) $) 50)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 30)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1554 ($ (-656 |#4|))) (-6 -4463) (-6 -4464))) (-1069) (-805) (-861) (-1085 |#1| |#2| |#3|)) (T -475)) -((-1554 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6))))) -(-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1554 ($ (-656 |#4|))) (-6 -4463) (-6 -4464))) -((-4314 (($) 11)) (-4320 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -4320 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4314 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) -NIL -(-10 -8 (-15 -4320 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4314 (|#1|))) -((-1952 (((-112) $ $) 7)) (-2980 (((-3 |#1| "failed") $) 27)) (-2317 ((|#1| $) 28)) (-4191 (($ $ $) 24)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1877 ((|#2| $) 20)) (-4112 (((-875) $) 12) (($ |#1|) 26)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 25 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 16) (($ $ $) 14)) (-4026 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-3498 (*1 *1 *1 *1) (-4 *1 (-464))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3457 (*1 *1 *1 *1) (-4 *1 (-464))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-1727 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464))))) +(-13 (-568) (-10 -8 (-15 -3498 ($ $ $)) (-15 -3498 ($ (-656 $))) (-15 -3457 ($ $ $)) (-15 -3457 ($ (-656 $))) (-15 -1727 ((-1193 $) (-1193 $) (-1193 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2876 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-4001 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-1288 (-701 (-419 (-971 |#1|))))) NIL)) (-1692 (((-1288 $)) NIL)) (-3306 (($) NIL T CONST)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL)) (-4008 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3712 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-4016 (((-419 (-971 |#1|)) $) NIL)) (-2173 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-3417 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-1968 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 90 (|has| |#1| (-568)))) (-1845 (($ $ (-940)) NIL)) (-3168 (((-419 (-971 |#1|)) $) NIL)) (-1544 (((-1193 (-419 (-971 |#1|))) $) 88 (|has| (-419 (-971 |#1|)) (-568)))) (-2624 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-1591 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-3070 (((-112)) NIL)) (-3208 (($ (-1288 (-419 (-971 |#1|))) (-1288 $)) 114) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-3451 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3733 (((-940)) NIL)) (-2055 (((-112)) NIL)) (-3507 (($ $ (-940)) NIL)) (-3073 (((-112)) NIL)) (-1744 (((-112)) NIL)) (-2076 (((-112)) NIL)) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL)) (-4114 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3160 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-3643 (((-419 (-971 |#1|)) $) NIL)) (-2888 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3275 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 89 (|has| |#1| (-568)))) (-2707 (($ $ (-940)) NIL)) (-3261 (((-419 (-971 |#1|)) $) NIL)) (-2754 (((-1193 (-419 (-971 |#1|))) $) 85 (|has| (-419 (-971 |#1|)) (-568)))) (-2218 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-1953 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-2384 (((-112)) NIL)) (-1413 (((-1179) $) NIL)) (-1981 (((-112)) NIL)) (-3307 (((-112)) NIL)) (-3505 (((-112)) NIL)) (-1450 (((-1141) $) NIL)) (-1396 (((-419 (-971 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-4130 (((-419 (-971 |#1|)) $) 100 (|has| |#1| (-568)))) (-1355 (((-419 (-971 |#1|)) $) 104 (|has| |#1| (-568)))) (-3850 (((-1193 (-419 (-971 |#1|))) $) 94 (|has| |#1| (-568)))) (-3268 (((-419 (-971 |#1|))) 77 (|has| |#1| (-568)))) (-2896 (((-419 (-971 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3894 (((-419 (-971 |#1|)) $) 99 (|has| |#1| (-568)))) (-3753 (((-419 (-971 |#1|)) $) 103 (|has| |#1| (-568)))) (-3589 (((-1193 (-419 (-971 |#1|))) $) 93 (|has| |#1| (-568)))) (-3730 (((-419 (-971 |#1|))) 73 (|has| |#1| (-568)))) (-4388 (($) 110) (($ (-1197)) 118) (($ (-1288 (-1197))) 117) (($ (-1288 $)) 105) (($ (-1197) (-1288 $)) 116) (($ (-1288 (-1197)) (-1288 $)) 115)) (-2653 (((-112)) NIL)) (-2796 (((-419 (-971 |#1|)) $ (-576)) NIL)) (-1490 (((-1288 (-419 (-971 |#1|))) $ (-1288 $)) 107) (((-701 (-419 (-971 |#1|))) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 (-971 |#1|))) $) 43) (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL)) (-4171 (((-1288 (-419 (-971 |#1|))) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) 40)) (-3818 (((-656 (-971 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-656 (-971 (-419 (-971 |#1|))))) NIL) (((-656 (-971 |#1|)) (-1288 $)) 108 (|has| |#1| (-568))) (((-656 (-971 |#1|))) 109 (|has| |#1| (-568)))) (-2604 (($ $ $) NIL)) (-2306 (((-112)) NIL)) (-3569 (((-876) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) 65)) (-2440 (((-656 (-1288 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3298 (($ $ $ $) NIL)) (-3143 (((-112)) NIL)) (-3568 (($ (-701 (-419 (-971 |#1|))) $) NIL)) (-2424 (($ $ $) NIL)) (-3288 (((-112)) NIL)) (-1892 (((-112)) NIL)) (-3236 (((-112)) NIL)) (-2719 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) 106)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-971 |#1|))) NIL) (($ (-419 (-971 |#1|)) $) NIL) (($ (-1163 |#2| (-419 (-971 |#1|))) $) NIL))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -3569 ($ (-1288 (-419 (-971 |#1|))))) (-15 -3596 ((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed"))) (-15 -2592 ((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed"))) (-15 -4388 ($)) (-15 -4388 ($ (-1197))) (-15 -4388 ($ (-1288 (-1197)))) (-15 -4388 ($ (-1288 $))) (-15 -4388 ($ (-1197) (-1288 $))) (-15 -4388 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3275 ((-1193 (-419 (-971 |#1|))))) (-15 -3589 ((-1193 (-419 (-971 |#1|))) $)) (-15 -3894 ((-419 (-971 |#1|)) $)) (-15 -3753 ((-419 (-971 |#1|)) $)) (-15 -1968 ((-1193 (-419 (-971 |#1|))))) (-15 -3850 ((-1193 (-419 (-971 |#1|))) $)) (-15 -4130 ((-419 (-971 |#1|)) $)) (-15 -1355 ((-419 (-971 |#1|)) $)) (-15 -2896 ((-419 (-971 |#1|)) $ $)) (-15 -3730 ((-419 (-971 |#1|)))) (-15 -1396 ((-419 (-971 |#1|)) $ $)) (-15 -3268 ((-419 (-971 |#1|)))) (-15 -3818 ((-656 (-971 |#1|)) (-1288 $))) (-15 -3818 ((-656 (-971 |#1|))))) |%noBranch|))) (-174) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -465)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 *3)))) (-4 *3 (-174)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) (-3596 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -3454 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2592 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -3454 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4388 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2))))) (-4388 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) (-4388 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4388 (*1 *1 *2) (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4388 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) (-4388 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-3275 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1968 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2896 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3730 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1396 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3268 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-3818 (*1 *2) (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -3569 ($ (-1288 (-419 (-971 |#1|))))) (-15 -3596 ((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed"))) (-15 -2592 ((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed"))) (-15 -4388 ($)) (-15 -4388 ($ (-1197))) (-15 -4388 ($ (-1288 (-1197)))) (-15 -4388 ($ (-1288 $))) (-15 -4388 ($ (-1197) (-1288 $))) (-15 -4388 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3275 ((-1193 (-419 (-971 |#1|))))) (-15 -3589 ((-1193 (-419 (-971 |#1|))) $)) (-15 -3894 ((-419 (-971 |#1|)) $)) (-15 -3753 ((-419 (-971 |#1|)) $)) (-15 -1968 ((-1193 (-419 (-971 |#1|))))) (-15 -3850 ((-1193 (-419 (-971 |#1|))) $)) (-15 -4130 ((-419 (-971 |#1|)) $)) (-15 -1355 ((-419 (-971 |#1|)) $)) (-15 -2896 ((-419 (-971 |#1|)) $ $)) (-15 -3730 ((-419 (-971 |#1|)))) (-15 -1396 ((-419 (-971 |#1|)) $ $)) (-15 -3268 ((-419 (-971 |#1|)))) (-15 -3818 ((-656 (-971 |#1|)) (-1288 $))) (-15 -3818 ((-656 (-971 |#1|))))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 18)) (-1966 (((-656 (-878 |#1|)) $) 87)) (-1799 (((-1193 $) $ (-878 |#1|)) 52) (((-1193 |#2|) $) 138)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2544 (($ $) NIL (|has| |#2| (-568)))) (-1574 (((-112) $) NIL (|has| |#2| (-568)))) (-3591 (((-783) $) 27) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3420 (($ $) NIL (|has| |#2| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4004 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2452 (($ $ (-656 (-576))) 93)) (-2112 (($ $) 80)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#2| (-928)))) (-3415 (($ $ |#2| |#3| $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) 65)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) 143) (($ (-1193 $) (-878 |#1|)) 58)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) 68)) (-1945 (($ |#2| |#3|) 35) (($ $ (-878 |#1|) (-783)) 37) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-878 |#1|)) NIL)) (-2987 ((|#3| $) NIL) (((-783) $ (-878 |#1|)) 56) (((-656 (-783)) $ (-656 (-878 |#1|))) 63)) (-1938 (($ (-1 |#3| |#3|) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2512 (((-3 (-878 |#1|) "failed") $) 45)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#2| $) 47)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4210 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) 46)) (-2068 ((|#2| $) 136)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) 100) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) 106) (($ $ (-878 |#1|) $) 98) (($ $ (-656 (-878 |#1|)) (-656 $)) 124)) (-2455 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2773 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) 59)) (-3600 ((|#3| $) 79) (((-783) $ (-878 |#1|)) 42) (((-656 (-783)) $ (-656 (-878 |#1|))) 62)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1457 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-878 |#1|)) 39) (($ (-419 (-576))) NIL (-2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ |#3|) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2719 (($) 22 T CONST)) (-2730 (($) 31 T CONST)) (-2018 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 131)) (** (($ $ (-940)) NIL) (($ $ (-783)) 129)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-466 |#1| |#2| |#3|) (-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -2452 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070) (-243 (-3502 |#1|) (-783))) (T -466)) +((-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-243 (-3502 *3) (-783)))))) +(-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -2452 ($ $ (-656 (-576)))))) +((-3681 (((-112) |#1| (-656 |#2|)) 91)) (-4422 (((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-3381 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|))) 102)) (-2391 ((|#2| |#2| |#1|) 35)) (-2872 (((-783) |#2| (-656 |#2|)) 26))) +(((-467 |#1| |#2|) (-10 -7 (-15 -2391 (|#2| |#2| |#1|)) (-15 -2872 ((-783) |#2| (-656 |#2|))) (-15 -4422 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -3381 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -3681 ((-112) |#1| (-656 |#2|)))) (-317) (-1264 |#1|)) (T -467)) +((-3681 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-3381 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4)))) (-4422 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-2391 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -2391 (|#2| |#2| |#1|)) (-15 -2872 ((-783) |#2| (-656 |#2|))) (-15 -4422 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -3381 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -3681 ((-112) |#1| (-656 |#2|)))) +((-1828 (((-430 |#5|) |#5|) 24))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1828 ((-430 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197))))) (-805) (-568) (-568) (-968 |#4| |#2| |#1|)) (T -468)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-968 *7 *5 *4))))) +(-10 -7 (-15 -1828 ((-430 |#5|) |#5|))) +((-3067 ((|#3|) 38)) (-1727 (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 34))) +(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3067 (|#3|))) (-805) (-861) (-928) (-968 |#3| |#1| |#2|)) (T -469)) +((-3067 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1727 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6))))) +(-10 -7 (-15 -1727 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3067 (|#3|))) +((-1828 (((-430 (-1193 |#1|)) (-1193 |#1|)) 43))) +(((-470 |#1|) (-10 -7 (-15 -1828 ((-430 (-1193 |#1|)) (-1193 |#1|)))) (-317)) (T -470)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1193 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1193 *4))))) +(-10 -7 (-15 -1828 ((-430 (-1193 |#1|)) (-1193 |#1|)))) +((-2008 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783))) 43) (((-52) |#2| (-1197) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3079 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 85) (((-52) |#2| (-1197) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-2029 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 72)) (-2019 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 50))) +(((-471 |#1| |#2|) (-10 -7 (-15 -2008 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2008 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2008 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -2008 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -2019 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2019 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2029 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2029 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -471)) +((-3079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3079 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3079 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-2029 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2019 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2019 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2008 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-783))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-783))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) +(-10 -7 (-15 -2008 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2008 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2008 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -2008 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -2019 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2019 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2029 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2029 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) +((-2391 ((|#2| |#2| |#1|) 15)) (-3068 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-940)) 82)) (-3935 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940)) 72))) +(((-472 |#1| |#2|) (-10 -7 (-15 -3935 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -3068 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -2391 (|#2| |#2| |#1|))) (-317) (-1264 |#1|)) (T -472)) +((-2391 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) (-3068 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3935 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) +(-10 -7 (-15 -3935 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -3068 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -2391 (|#2| |#2| |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 28)) (-1417 (($ |#3|) 25)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) 32)) (-2711 (($ |#2| |#4| $) 33)) (-1945 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-2079 (((-725 |#3| |#4| |#5|) $) 15)) (-3244 ((|#3| $) 19)) (-1818 ((|#4| $) 17)) (-2089 ((|#2| $) 29)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-3374 (($ |#2| |#3| |#4|) 26)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 36 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2089 (|#2| $)) (-15 -2079 ((-725 |#3| |#4| |#5|) $)) (-15 -1818 (|#4| $)) (-15 -3244 (|#3| $)) (-15 -2112 ($ $)) (-15 -1945 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -1417 ($ |#3|)) (-15 -3374 ($ |#2| |#3| |#4|)) (-15 -2711 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1197)) (-174) (-861) (-243 (-3502 |#1|) (-783)) (-1 (-112) (-2 (|:| -3223 |#3|) (|:| -4210 |#4|)) (-2 (|:| -3223 |#3|) (|:| -4210 |#4|))) (-968 |#2| |#4| (-878 |#1|))) (T -473)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-3502 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *6)) (-2 (|:| -3223 *5) (|:| -4210 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-968 *4 *6 (-878 *3))))) (-2089 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *4) (|:| -4210 *5)) (-2 (|:| -3223 *4) (|:| -4210 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *2 *5 (-878 *3))))) (-2079 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-3502 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *6)) (-2 (|:| -3223 *5) (|:| -4210 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) (-1818 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *2)) (-2 (|:| -3223 *5) (|:| -4210 *2)))) (-4 *2 (-243 (-3502 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3))))) (-3244 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *5)) (-2 (|:| -3223 *2) (|:| -4210 *5)))) (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-2112 (*1 *1 *1) (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) (-4 *5 (-243 (-3502 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *4) (|:| -4210 *5)) (-2 (|:| -3223 *4) (|:| -4210 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *3 *5 (-878 *2))))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-3502 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *6)) (-2 (|:| -3223 *5) (|:| -4210 *6)))) (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) (-1417 (*1 *1 *2) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *5)) (-2 (|:| -3223 *2) (|:| -4210 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-3374 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) (-4 *4 (-243 (-3502 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *3) (|:| -4210 *4)) (-2 (|:| -3223 *3) (|:| -4210 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-968 *2 *4 (-878 *5))))) (-2711 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-4 *3 (-243 (-3502 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *3)) (-2 (|:| -3223 *5) (|:| -4210 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *2 *3 (-878 *4)))))) +(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2089 (|#2| $)) (-15 -2079 ((-725 |#3| |#4| |#5|) $)) (-15 -1818 (|#4| $)) (-15 -3244 (|#3| $)) (-15 -2112 ($ $)) (-15 -1945 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -1417 ($ |#3|)) (-15 -3374 ($ |#2| |#3| |#4|)) (-15 -2711 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2126 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2126 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -3569 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -474)) +((-2126 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(-10 -7 (-15 -2126 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1966 (((-656 |#3|) $) 41)) (-1755 (((-112) $) NIL)) (-1781 (((-112) $) NIL (|has| |#1| (-568)))) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-1971 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-3290 (((-112) $) NIL (|has| |#1| (-568)))) (-2879 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1576 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3489 (((-112) $) NIL (|has| |#1| (-568)))) (-4356 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 49)) (-2859 (($ (-656 |#4|)) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464)))) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-2665 ((|#3| $) 47)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#4|) $) 14 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4322 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 21)) (-1994 (((-656 |#3|) $) NIL)) (-1983 (((-112) |#3| $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1450 (((-1141) $) NIL)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3542 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 39)) (-3839 (($) 17)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 16)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-3581 (($ (-656 |#4|)) 13)) (-2907 (($ $ |#3|) NIL)) (-4080 (($ $ |#3|) NIL)) (-3698 (($ $ |#3|) NIL)) (-3569 (((-876) $) 38) (((-656 |#4|) $) 50)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 30)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4171 ($ (-656 |#4|))) (-6 -4464) (-6 -4465))) (-1070) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -475)) +((-4171 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6))))) +(-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4171 ($ (-656 |#4|))) (-6 -4464) (-6 -4465))) +((-2719 (($) 11)) (-2730 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2730 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2719 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) +NIL +(-10 -8 (-15 -2730 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2719 (|#1|))) +((-3488 (((-112) $ $) 7)) (-1572 (((-3 |#1| "failed") $) 27)) (-2859 ((|#1| $) 28)) (-4442 (($ $ $) 24)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3600 ((|#2| $) 20)) (-3569 (((-876) $) 12) (($ |#1|) 26)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 25 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 16) (($ $ $) 14)) (-3029 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477)) -((-4320 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4191 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1058 |t#1|) (-10 -8 (-15 (-4320) ($) -2665) (-15 -4191 ($ $ $)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-482 |#1| |#2|) . T) ((-1058 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-2326 (((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-939)) 26)) (-2911 (((-1287 (-1287 (-576))) (-939)) 21))) -(((-478) (-10 -7 (-15 -2326 ((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-939))) (-15 -2911 ((-1287 (-1287 (-576))) (-939))))) (T -478)) -((-2911 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1287 (-1287 (-576)))) (-5 *1 (-478)))) (-2326 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 (-1287 (-576)))) (-5 *3 (-939)) (-5 *1 (-478))))) -(-10 -7 (-15 -2326 ((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-939))) (-15 -2911 ((-1287 (-1287 (-576))) (-939)))) -((-4391 (((-576) (-576)) 32) (((-576)) 24)) (-1768 (((-576) (-576)) 28) (((-576)) 20)) (-3896 (((-576) (-576)) 30) (((-576)) 22)) (-4059 (((-112) (-112)) 14) (((-112)) 12)) (-1886 (((-112) (-112)) 13) (((-112)) 11)) (-4089 (((-112) (-112)) 26) (((-112)) 17))) -(((-479) (-10 -7 (-15 -1886 ((-112))) (-15 -4059 ((-112))) (-15 -1886 ((-112) (-112))) (-15 -4059 ((-112) (-112))) (-15 -4089 ((-112))) (-15 -3896 ((-576))) (-15 -1768 ((-576))) (-15 -4391 ((-576))) (-15 -4089 ((-112) (-112))) (-15 -3896 ((-576) (-576))) (-15 -1768 ((-576) (-576))) (-15 -4391 ((-576) (-576))))) (T -479)) -((-4391 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4391 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1768 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3896 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-4089 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4059 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1886 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(-10 -7 (-15 -1886 ((-112))) (-15 -4059 ((-112))) (-15 -1886 ((-112) (-112))) (-15 -4059 ((-112) (-112))) (-15 -4089 ((-112))) (-15 -3896 ((-576))) (-15 -1768 ((-576))) (-15 -4391 ((-576))) (-15 -4089 ((-112) (-112))) (-15 -3896 ((-576) (-576))) (-15 -1768 ((-576) (-576))) (-15 -4391 ((-576) (-576)))) -((-1952 (((-112) $ $) NIL)) (-3479 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-2147 (((-656 (-1114 (-390))) $) 16) (((-656 (-1114 (-390))) $ (-656 (-1114 (-390)))) 142)) (-2348 (((-656 (-656 (-961 (-227)))) (-656 (-656 (-961 (-227)))) (-656 (-887))) 58)) (-3139 (((-656 (-656 (-961 (-227)))) $) 137)) (-2819 (((-1292) $ (-961 (-227)) (-887)) 163)) (-1959 (($ $) 136) (($ (-656 (-656 (-961 (-227))))) 149) (($ (-656 (-656 (-961 (-227)))) (-656 (-887)) (-656 (-887)) (-656 (-939))) 148) (($ (-656 (-656 (-961 (-227)))) (-656 (-887)) (-656 (-887)) (-656 (-939)) (-656 (-270))) 150)) (-2043 (((-1178) $) NIL)) (-2239 (((-576) $) 110)) (-3115 (((-1140) $) NIL)) (-3210 (($) 147)) (-3393 (((-656 (-227)) (-656 (-656 (-961 (-227))))) 89)) (-2561 (((-1292) $ (-656 (-961 (-227))) (-887) (-887) (-939)) 155) (((-1292) $ (-961 (-227))) 157) (((-1292) $ (-961 (-227)) (-887) (-887) (-939)) 156)) (-4112 (((-875) $) 169) (($ (-656 (-656 (-961 (-227))))) 164)) (-1994 (((-112) $ $) NIL)) (-3349 (((-1292) $ (-961 (-227))) 162)) (-3938 (((-112) $ $) NIL))) -(((-480) (-13 (-1120) (-10 -8 (-15 -3210 ($)) (-15 -1959 ($ $)) (-15 -1959 ($ (-656 (-656 (-961 (-227)))))) (-15 -1959 ($ (-656 (-656 (-961 (-227)))) (-656 (-887)) (-656 (-887)) (-656 (-939)))) (-15 -1959 ($ (-656 (-656 (-961 (-227)))) (-656 (-887)) (-656 (-887)) (-656 (-939)) (-656 (-270)))) (-15 -3139 ((-656 (-656 (-961 (-227)))) $)) (-15 -2239 ((-576) $)) (-15 -2147 ((-656 (-1114 (-390))) $)) (-15 -2147 ((-656 (-1114 (-390))) $ (-656 (-1114 (-390))))) (-15 -3479 ((-656 (-390)) $)) (-15 -3479 ((-656 (-390)) $ (-656 (-390)))) (-15 -2561 ((-1292) $ (-656 (-961 (-227))) (-887) (-887) (-939))) (-15 -2561 ((-1292) $ (-961 (-227)))) (-15 -2561 ((-1292) $ (-961 (-227)) (-887) (-887) (-939))) (-15 -3349 ((-1292) $ (-961 (-227)))) (-15 -2819 ((-1292) $ (-961 (-227)) (-887))) (-15 -4112 ($ (-656 (-656 (-961 (-227)))))) (-15 -4112 ((-875) $)) (-15 -2348 ((-656 (-656 (-961 (-227)))) (-656 (-656 (-961 (-227)))) (-656 (-887)))) (-15 -3393 ((-656 (-227)) (-656 (-656 (-961 (-227))))))))) (T -480)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-480)))) (-3210 (*1 *1) (-5 *1 (-480))) (-1959 (*1 *1 *1) (-5 *1 (-480))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-480)))) (-1959 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *3 (-656 (-887))) (-5 *4 (-656 (-939))) (-5 *1 (-480)))) (-1959 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *3 (-656 (-887))) (-5 *4 (-656 (-939))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-480)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-480)))) (-2147 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-480)))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-3479 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2561 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-961 (-227)))) (-5 *4 (-887)) (-5 *5 (-939)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2561 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-961 (-227))) (-5 *4 (-887)) (-5 *5 (-939)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-3349 (*1 *2 *1 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2819 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-961 (-227))) (-5 *4 (-887)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-480)))) (-2348 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *3 (-656 (-887))) (-5 *1 (-480)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) -(-13 (-1120) (-10 -8 (-15 -3210 ($)) (-15 -1959 ($ $)) (-15 -1959 ($ (-656 (-656 (-961 (-227)))))) (-15 -1959 ($ (-656 (-656 (-961 (-227)))) (-656 (-887)) (-656 (-887)) (-656 (-939)))) (-15 -1959 ($ (-656 (-656 (-961 (-227)))) (-656 (-887)) (-656 (-887)) (-656 (-939)) (-656 (-270)))) (-15 -3139 ((-656 (-656 (-961 (-227)))) $)) (-15 -2239 ((-576) $)) (-15 -2147 ((-656 (-1114 (-390))) $)) (-15 -2147 ((-656 (-1114 (-390))) $ (-656 (-1114 (-390))))) (-15 -3479 ((-656 (-390)) $)) (-15 -3479 ((-656 (-390)) $ (-656 (-390)))) (-15 -2561 ((-1292) $ (-656 (-961 (-227))) (-887) (-887) (-939))) (-15 -2561 ((-1292) $ (-961 (-227)))) (-15 -2561 ((-1292) $ (-961 (-227)) (-887) (-887) (-939))) (-15 -3349 ((-1292) $ (-961 (-227)))) (-15 -2819 ((-1292) $ (-961 (-227)) (-887))) (-15 -4112 ($ (-656 (-656 (-961 (-227)))))) (-15 -4112 ((-875) $)) (-15 -2348 ((-656 (-656 (-961 (-227)))) (-656 (-656 (-961 (-227)))) (-656 (-887)))) (-15 -3393 ((-656 (-227)) (-656 (-656 (-961 (-227)))))))) -((-4036 (($ $) NIL) (($ $ $) 11))) -(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) -NIL -(-10 -8 (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1877 ((|#2| $) 20)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 16) (($ $ $) 14)) (-4026 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2730 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4442 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-482 |t#1| |t#2|) (-1059 |t#1|) (-10 -8 (-15 (-2730) ($) -1480) (-15 -4442 ($ $ $)))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-482 |#1| |#2|) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-2281 (((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940)) 26)) (-3209 (((-1288 (-1288 (-576))) (-940)) 21))) +(((-478) (-10 -7 (-15 -2281 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -3209 ((-1288 (-1288 (-576))) (-940))))) (T -478)) +((-3209 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478)))) (-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) +(-10 -7 (-15 -2281 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -3209 ((-1288 (-1288 (-576))) (-940)))) +((-2619 (((-576) (-576)) 32) (((-576)) 24)) (-1774 (((-576) (-576)) 28) (((-576)) 20)) (-3404 (((-576) (-576)) 30) (((-576)) 22)) (-2431 (((-112) (-112)) 14) (((-112)) 12)) (-3706 (((-112) (-112)) 13) (((-112)) 11)) (-1552 (((-112) (-112)) 26) (((-112)) 17))) +(((-479) (-10 -7 (-15 -3706 ((-112))) (-15 -2431 ((-112))) (-15 -3706 ((-112) (-112))) (-15 -2431 ((-112) (-112))) (-15 -1552 ((-112))) (-15 -3404 ((-576))) (-15 -1774 ((-576))) (-15 -2619 ((-576))) (-15 -1552 ((-112) (-112))) (-15 -3404 ((-576) (-576))) (-15 -1774 ((-576) (-576))) (-15 -2619 ((-576) (-576))))) (T -479)) +((-2619 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2619 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1774 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3404 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1552 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2431 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3706 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(-10 -7 (-15 -3706 ((-112))) (-15 -2431 ((-112))) (-15 -3706 ((-112) (-112))) (-15 -2431 ((-112) (-112))) (-15 -1552 ((-112))) (-15 -3404 ((-576))) (-15 -1774 ((-576))) (-15 -2619 ((-576))) (-15 -1552 ((-112) (-112))) (-15 -3404 ((-576) (-576))) (-15 -1774 ((-576) (-576))) (-15 -2619 ((-576) (-576)))) +((-3488 (((-112) $ $) NIL)) (-2326 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-4365 (((-656 (-1115 (-390))) $) 16) (((-656 (-1115 (-390))) $ (-656 (-1115 (-390)))) 142)) (-2506 (((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888))) 58)) (-1554 (((-656 (-656 (-962 (-227)))) $) 137)) (-3042 (((-1293) $ (-962 (-227)) (-888)) 163)) (-3106 (($ $) 136) (($ (-656 (-656 (-962 (-227))))) 149) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940))) 148) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270))) 150)) (-1413 (((-1179) $) NIL)) (-4300 (((-576) $) 110)) (-1450 (((-1141) $) NIL)) (-4231 (($) 147)) (-2301 (((-656 (-227)) (-656 (-656 (-962 (-227))))) 89)) (-2806 (((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940)) 155) (((-1293) $ (-962 (-227))) 157) (((-1293) $ (-962 (-227)) (-888) (-888) (-940)) 156)) (-3569 (((-876) $) 169) (($ (-656 (-656 (-962 (-227))))) 164)) (-2113 (((-112) $ $) NIL)) (-3173 (((-1293) $ (-962 (-227))) 162)) (-2923 (((-112) $ $) NIL))) +(((-480) (-13 (-1121) (-10 -8 (-15 -4231 ($)) (-15 -3106 ($ $)) (-15 -3106 ($ (-656 (-656 (-962 (-227)))))) (-15 -3106 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -3106 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -1554 ((-656 (-656 (-962 (-227)))) $)) (-15 -4300 ((-576) $)) (-15 -4365 ((-656 (-1115 (-390))) $)) (-15 -4365 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -2326 ((-656 (-390)) $)) (-15 -2326 ((-656 (-390)) $ (-656 (-390)))) (-15 -2806 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -2806 ((-1293) $ (-962 (-227)))) (-15 -2806 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -3173 ((-1293) $ (-962 (-227)))) (-15 -3042 ((-1293) $ (-962 (-227)) (-888))) (-15 -3569 ($ (-656 (-656 (-962 (-227)))))) (-15 -3569 ((-876) $)) (-15 -2506 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -2301 ((-656 (-227)) (-656 (-656 (-962 (-227))))))))) (T -480)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) (-4231 (*1 *1) (-5 *1 (-480))) (-3106 (*1 *1 *1) (-5 *1 (-480))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-3106 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *1 (-480)))) (-3106 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-4365 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2326 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2806 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2806 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2806 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3042 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-2506 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *1 (-480)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) +(-13 (-1121) (-10 -8 (-15 -4231 ($)) (-15 -3106 ($ $)) (-15 -3106 ($ (-656 (-656 (-962 (-227)))))) (-15 -3106 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -3106 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -1554 ((-656 (-656 (-962 (-227)))) $)) (-15 -4300 ((-576) $)) (-15 -4365 ((-656 (-1115 (-390))) $)) (-15 -4365 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -2326 ((-656 (-390)) $)) (-15 -2326 ((-656 (-390)) $ (-656 (-390)))) (-15 -2806 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -2806 ((-1293) $ (-962 (-227)))) (-15 -2806 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -3173 ((-1293) $ (-962 (-227)))) (-15 -3042 ((-1293) $ (-962 (-227)) (-888))) (-15 -3569 ($ (-656 (-656 (-962 (-227)))))) (-15 -3569 ((-876) $)) (-15 -2506 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -2301 ((-656 (-227)) (-656 (-656 (-962 (-227)))))))) +((-3043 (($ $) NIL) (($ $ $) 11))) +(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) +NIL +(-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3600 ((|#2| $) 20)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 16) (($ $ $) 14)) (-3029 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482)) -((-1877 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-4314 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4036 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4026 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1120) (-10 -8 (-15 -1877 (|t#2| $)) (-15 (-4314) ($) -2665) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4036 ($ $)) (-15 -4026 ($ $ $)) (-15 -4036 ($ $ $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1940 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-877 |#1|))) 134)) (-2797 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-877 |#1|))) 131)) (-2466 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-877 |#1|))) 86))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-877 |#1|)))) (-15 -1940 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-877 |#1|)))) (-15 -2466 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-877 |#1|))))) (-656 (-1196)) (-464) (-464)) (T -483)) -((-2466 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-877 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-1940 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-877 *4))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-877 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(-10 -7 (-15 -2797 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-877 |#1|)))) (-15 -1940 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-877 |#1|)))) (-15 -2466 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-877 |#1|))))) -((-3900 (((-3 $ "failed") $) 11)) (-2633 (($ $ $) 23)) (-2362 (($ $ $) 24)) (-4046 (($ $ $) 9)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) -(((-484 |#1|) (-10 -8 (-15 -2362 (|#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4046 (|#1| |#1| |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939)))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -2362 (|#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4046 (|#1| |#1| |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-4331 (($) 19 T CONST)) (-3900 (((-3 $ "failed") $) 16)) (-2287 (((-112) $) 18)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 25)) (-3115 (((-1140) $) 11)) (-2633 (($ $ $) 22)) (-2362 (($ $ $) 21)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4320 (($) 20 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 24)) (** (($ $ (-939)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +((-3600 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2719 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1121) (-10 -8 (-15 -3600 (|t#2| $)) (-15 (-2719) ($) -1480) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3043 ($ $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-2904 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|))) 134)) (-1442 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 131)) (-4390 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 86))) +(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -1442 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2904 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -4390 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) (-656 (-1197)) (-464) (-464)) (T -483)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-2904 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(-10 -7 (-15 -1442 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2904 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -4390 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) +((-3451 (((-3 $ "failed") $) 11)) (-2318 (($ $ $) 23)) (-2604 (($ $ $) 24)) (-3056 (($ $ $) 9)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) +(((-484 |#1|) (-10 -8 (-15 -2604 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -2604 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3306 (($) 19 T CONST)) (-3451 (((-3 $ "failed") $) 16)) (-3215 (((-112) $) 18)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 25)) (-1450 (((-1141) $) 11)) (-2318 (($ $ $) 22)) (-2604 (($ $ $) 21)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2730 (($) 20 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) (((-485) (-141)) (T -485)) -((-1667 (*1 *1 *1) (-4 *1 (-485))) (-4046 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-2633 (*1 *1 *1 *1) (-4 *1 (-485))) (-2362 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-738) (-10 -8 (-15 -1667 ($ $)) (-15 -4046 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4460) (-15 -2633 ($ $ $)) (-15 -2362 ($ $ $)))) -(((-102) . T) ((-625 (-875)) . T) ((-738) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 18)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) NIL) (($ $ (-419 (-576))) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-419 (-576))) NIL) (($ $ (-1102) (-419 (-576))) NIL) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) 25)) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2944 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 35 (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) NIL)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 16)) (-1877 (((-419 (-576)) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1283 |#2|)) NIL) (($ (-1272 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 21)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) 27)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-486 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1283 |#2|))) (-15 -4112 ($ (-1272 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -486)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1268 |#1|) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1283 |#2|))) (-15 -4112 ($ (-1272 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#2| $ |#1| |#2|) 18)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) 19)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) 16)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2351 (((-656 |#1|) $) NIL)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3963 (((-656 |#1|) $) NIL)) (-1474 (((-112) |#1| $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-487 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2|) (-1120) (-1120) (-1213 |#1| |#2|) |#2|) (T -487)) -NIL -(-1213 |#1| |#2|) -((-1952 (((-112) $ $) NIL)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2822 (((-656 $) (-656 |#4|)) NIL)) (-1582 (((-656 |#3|) $) NIL)) (-2397 (((-112) $) NIL)) (-2083 (((-112) $) NIL (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4331 (($) NIL T CONST)) (-4013 (((-112) $) 29 (|has| |#1| (-568)))) (-1938 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3142 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2948 (((-112) $) NIL (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3223 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1762 (((-3 $ "failed") $) 45)) (-3182 ((|#4| |#4| $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-2824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3325 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) NIL)) (-3721 (((-656 |#4|) $) 18 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2232 ((|#3| $) 38)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#4|) $) 19 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-1896 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 23)) (-3055 (((-656 |#3|) $) NIL)) (-2421 (((-112) |#3| $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2849 (((-3 |#4| "failed") $) 42)) (-2403 (((-656 |#4|) $) NIL)) (-2498 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1619 ((|#4| |#4| $) NIL)) (-1761 (((-112) $ $) NIL)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3609 ((|#4| |#4| $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-3 |#4| "failed") $) 40)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2917 (((-3 $ "failed") $ |#4|) 58)) (-3679 (($ $ |#4|) NIL)) (-3587 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 17)) (-3935 (($) 14)) (-1877 (((-783) $) NIL)) (-3125 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) 13)) (-1554 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 22)) (-3655 (($ $ |#3|) 52)) (-3837 (($ $ |#3|) 54)) (-1864 (($ $) NIL)) (-1570 (($ $ |#3|) NIL)) (-4112 (((-875) $) 35) (((-656 |#4|) $) 46)) (-2576 (((-783) $) NIL (|has| |#3| (-379)))) (-1994 (((-112) $ $) NIL)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1682 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) NIL)) (-3331 (((-112) |#3| $) NIL)) (-3938 (((-112) $ $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-488 |#1| |#2| |#3| |#4|) (-1230 |#1| |#2| |#3| |#4|) (-568) (-805) (-861) (-1085 |#1| |#2| |#3|)) (T -488)) -NIL -(-1230 |#1| |#2| |#3| |#4|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2722 (($) 17)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-1554 (((-390) $) 21) (((-227) $) 24) (((-419 (-1192 (-576))) $) 18) (((-548) $) 53)) (-4112 (((-875) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 37 T CONST)) (-4320 (($) 8 T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-489) (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))) (-1042) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1192 (-576)))) (-626 (-548)) (-10 -8 (-15 -2722 ($))))) (T -489)) -((-2722 (*1 *1) (-5 *1 (-489)))) -(-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))) (-1042) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1192 (-576)))) (-626 (-548)) (-10 -8 (-15 -2722 ($)))) -((-1952 (((-112) $ $) NIL)) (-1782 (((-1155) $) 11)) (-1774 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-490) (-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $))))) (T -490)) -((-1774 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490))))) -(-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $)))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#2| $ |#1| |#2|) 16)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) 20)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) 18)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2351 (((-656 |#1|) $) 13)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3963 (((-656 |#1|) $) NIL)) (-1474 (((-112) |#1| $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 19)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 11 (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1968 (((-783) $) 15 (|has| $ (-6 -4463))))) -(((-491 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) (-1120) (-1120) (-1178)) (T -491)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) -((-4426 (((-576) (-576) (-576)) 19)) (-4085 (((-112) (-576) (-576) (-576) (-576)) 28)) (-3528 (((-1287 (-656 (-576))) (-783) (-783)) 41))) -(((-492) (-10 -7 (-15 -4426 ((-576) (-576) (-576))) (-15 -4085 ((-112) (-576) (-576) (-576) (-576))) (-15 -3528 ((-1287 (-656 (-576))) (-783) (-783))))) (T -492)) -((-3528 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1287 (-656 (-576)))) (-5 *1 (-492)))) (-4085 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-4426 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(-10 -7 (-15 -4426 ((-576) (-576) (-576))) (-15 -4085 ((-112) (-576) (-576) (-576) (-576))) (-15 -3528 ((-1287 (-656 (-576))) (-783) (-783)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-877 |#1|)) $) NIL)) (-1420 (((-1192 $) $ (-877 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4070 (($ $) NIL (|has| |#2| (-568)))) (-2378 (((-112) $) NIL (|has| |#2| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-877 |#1|))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-3575 (($ $) NIL (|has| |#2| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-877 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-877 |#1|) $) NIL)) (-3954 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-2342 (($ $ (-656 (-576))) NIL)) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#2| (-927)))) (-3897 (($ $ |#2| (-494 (-1968 |#1|) (-783)) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#2|) (-877 |#1|)) NIL) (($ (-1192 $) (-877 |#1|)) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#2| (-494 (-1968 |#1|) (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-877 |#1|)) NIL)) (-3661 (((-494 (-1968 |#1|) (-783)) $) NIL) (((-783) $ (-877 |#1|)) NIL) (((-656 (-783)) $ (-656 (-877 |#1|))) NIL)) (-3820 (($ (-1 (-494 (-1968 |#1|) (-783)) (-494 (-1968 |#1|) (-783))) $) NIL)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-2653 (((-3 (-877 |#1|) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#2| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -1495 (-783))) "failed") $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#2| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#2| (-927)))) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-877 |#1|) |#2|) NIL) (($ $ (-656 (-877 |#1|)) (-656 |#2|)) NIL) (($ $ (-877 |#1|) $) NIL) (($ $ (-656 (-877 |#1|)) (-656 $)) NIL)) (-1451 (($ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-4106 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-1877 (((-494 (-1968 |#1|) (-783)) $) NIL) (((-783) $ (-877 |#1|)) NIL) (((-656 (-783)) $ (-656 (-877 |#1|))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-877 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3430 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-877 |#1|)) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-494 (-1968 |#1|) (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#2| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-493 |#1| |#2|) (-13 (-967 |#2| (-494 (-1968 |#1|) (-783)) (-877 |#1|)) (-10 -8 (-15 -2342 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1069)) (T -493)) -((-2342 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1196))) (-4 *4 (-1069))))) -(-13 (-967 |#2| (-494 (-1968 |#1|) (-783)) (-877 |#1|)) (-10 -8 (-15 -2342 ($ $ (-656 (-576)))))) -((-1952 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3167 (((-112) $) NIL (|has| |#2| (-23)))) (-2793 (($ (-939)) NIL (|has| |#2| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2390 (($ $ $) NIL (|has| |#2| (-805)))) (-2559 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#2| (-379)))) (-4267 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1120)))) (-2317 (((-576) $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) ((|#2| $) NIL (|has| |#2| (-1120)))) (-3222 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1069))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1069)))) (-3900 (((-3 $ "failed") $) NIL (|has| |#2| (-1069)))) (-4369 (($) NIL (|has| |#2| (-379)))) (-1908 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ (-576)) 11)) (-3721 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL (|has| |#2| (-1069)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#2| (-861)))) (-3958 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#2| (-861)))) (-1896 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#2| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1069))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1069)))) (-2043 (((-1178) $) NIL (|has| |#2| (-1120)))) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-2409 (($ (-939)) NIL (|has| |#2| (-379)))) (-3115 (((-1140) $) NIL (|has| |#2| (-1120)))) (-1753 ((|#2| $) NIL (|has| (-576) (-861)))) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4139 ((|#2| $ $) NIL (|has| |#2| (-1069)))) (-1491 (($ (-1287 |#2|)) NIL)) (-1656 (((-135)) NIL (|has| |#2| (-374)))) (-4106 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1069)))) (-3125 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1287 |#2|) $) NIL) (($ (-576)) NIL (-3794 (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (($ |#2|) NIL (|has| |#2| (-1120))) (((-875) $) NIL (|has| |#2| (-625 (-875))))) (-4115 (((-783)) NIL (|has| |#2| (-1069)) CONST)) (-1994 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1682 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4314 (($) NIL (|has| |#2| (-23)) CONST)) (-4320 (($) NIL (|has| |#2| (-1069)) CONST)) (-3155 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1069)))) (-3993 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3962 (((-112) $ $) 17 (|has| |#2| (-861)))) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4026 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1069))) (($ $ (-939)) NIL (|has| |#2| (-1069)))) (* (($ $ $) NIL (|has| |#2| (-1069))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-939) $) NIL (|has| |#2| (-25)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) +((-2048 (*1 *1 *1) (-4 *1 (-485))) (-3056 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-2318 (*1 *1 *1 *1) (-4 *1 (-485))) (-2604 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-738) (-10 -8 (-15 -2048 ($ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4461) (-15 -2318 ($ $ $)) (-15 -2604 ($ $ $)))) +(((-102) . T) ((-625 (-876)) . T) ((-738) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 18)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 25)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3441 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 35 (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 16)) (-3600 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1284 |#2|)) NIL) (($ (-1273 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 21)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 27)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-486 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (-15 -3569 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -486)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (-15 -3569 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) 18)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) 19)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 16)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2764 (((-656 |#1|) $) NIL)) (-4018 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-487 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2|) (-1121) (-1121) (-1214 |#1| |#2|) |#2|) (T -487)) +NIL +(-1214 |#1| |#2|) +((-3488 (((-112) $ $) NIL)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3597 (((-656 $) (-656 |#4|)) NIL)) (-1966 (((-656 |#3|) $) NIL)) (-1755 (((-112) $) NIL)) (-1781 (((-112) $) NIL (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2795 ((|#4| |#4| $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-1971 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3306 (($) NIL T CONST)) (-3290 (((-112) $) 29 (|has| |#1| (-568)))) (-2879 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1576 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3489 (((-112) $) NIL (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4356 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 45)) (-3947 ((|#4| |#4| $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2873 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2665 ((|#3| $) 38)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4322 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 23)) (-1994 (((-656 |#3|) $) NIL)) (-1983 (((-112) |#3| $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-3967 (((-3 |#4| "failed") $) 42)) (-1809 (((-656 |#4|) $) NIL)) (-3455 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2860 ((|#4| |#4| $) NIL)) (-1716 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3764 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 40)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3260 (((-3 $ "failed") $ |#4|) 58)) (-3169 (($ $ |#4|) NIL)) (-3542 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 17)) (-3839 (($) 14)) (-3600 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 22)) (-2907 (($ $ |#3|) 52)) (-4080 (($ $ |#3|) 54)) (-3453 (($ $) NIL)) (-3698 (($ $ |#3|) NIL)) (-3569 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3000 (((-783) $) NIL (|has| |#3| (-379)))) (-2113 (((-112) $ $) NIL)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2170 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) NIL)) (-2951 (((-112) |#3| $) NIL)) (-2923 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-488 |#1| |#2| |#3| |#4|) (-1231 |#1| |#2| |#3| |#4|) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -488)) +NIL +(-1231 |#1| |#2| |#3| |#4|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1600 (($) 17)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-4171 (((-390) $) 21) (((-227) $) 24) (((-419 (-1193 (-576))) $) 18) (((-548) $) 53)) (-3569 (((-876) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 37 T CONST)) (-2730 (($) 8 T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-489) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))) (-1043) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1193 (-576)))) (-626 (-548)) (-10 -8 (-15 -1600 ($))))) (T -489)) +((-1600 (*1 *1) (-5 *1 (-489)))) +(-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))) (-1043) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1193 (-576)))) (-626 (-548)) (-10 -8 (-15 -1600 ($)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-490) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -490)) +((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490))))) +(-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) 16)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) 20)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 18)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) 13)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2764 (((-656 |#1|) $) NIL)) (-4018 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 19)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 11 (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) 15 (|has| $ (-6 -4464))))) +(((-491 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121) (-1179)) (T -491)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-1784 (((-576) (-576) (-576)) 19)) (-1518 (((-112) (-576) (-576) (-576) (-576)) 28)) (-4353 (((-1288 (-656 (-576))) (-783) (-783)) 41))) +(((-492) (-10 -7 (-15 -1784 ((-576) (-576) (-576))) (-15 -1518 ((-112) (-576) (-576) (-576) (-576))) (-15 -4353 ((-1288 (-656 (-576))) (-783) (-783))))) (T -492)) +((-4353 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) (-1518 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-1784 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(-10 -7 (-15 -1784 ((-576) (-576) (-576))) (-15 -1518 ((-112) (-576) (-576) (-576) (-576))) (-15 -4353 ((-1288 (-656 (-576))) (-783) (-783)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-878 |#1|)) $) NIL)) (-1799 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2544 (($ $) NIL (|has| |#2| (-568)))) (-1574 (((-112) $) NIL (|has| |#2| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3420 (($ $) NIL (|has| |#2| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4004 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2452 (($ $ (-656 (-576))) NIL)) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#2| (-928)))) (-3415 (($ $ |#2| (-494 (-3502 |#1|) (-783)) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#2| (-494 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-878 |#1|)) NIL)) (-2987 (((-494 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-1938 (($ (-1 (-494 (-3502 |#1|) (-783)) (-494 (-3502 |#1|) (-783))) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2512 (((-3 (-878 |#1|) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4210 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#2| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-2455 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2773 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3600 (((-494 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-494 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-493 |#1| |#2|) (-13 (-968 |#2| (-494 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2452 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -493)) +((-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) +(-13 (-968 |#2| (-494 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2452 ($ $ (-656 (-576)))))) +((-3488 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1812 (((-112) $) NIL (|has| |#2| (-23)))) (-1417 (($ (-940)) NIL (|has| |#2| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1685 (($ $ $) NIL (|has| |#2| (-805)))) (-2780 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-4344 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-3451 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) 11)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL (|has| |#2| (-1070)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-2735 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#2| (-861)))) (-4322 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#2| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-1413 (((-1179) $) NIL (|has| |#2| (-1121)))) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3580 ((|#2| $) NIL (|has| (-576) (-861)))) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1984 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) NIL)) (-1972 (((-135)) NIL (|has| |#2| (-374)))) (-2773 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-2758 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-1778 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2113 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2170 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2719 (($) NIL (|has| |#2| (-23)) CONST)) (-2730 (($) NIL (|has| |#2| (-1070)) CONST)) (-2018 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2991 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2948 (((-112) $ $) 17 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3029 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-494 |#1| |#2|) (-243 |#1| |#2|) (-783) (-805)) (T -494)) NIL (-243 |#1| |#2|) -((-1952 (((-112) $ $) NIL)) (-2473 (((-656 (-889)) $) 15)) (-4148 (((-518) $) 13)) (-2043 (((-1178) $) NIL)) (-2408 (($ (-518) (-656 (-889))) 11)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 22) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-495) (-13 (-1103) (-10 -8 (-15 -2408 ($ (-518) (-656 (-889)))) (-15 -4148 ((-518) $)) (-15 -2473 ((-656 (-889)) $))))) (T -495)) -((-2408 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-889))) (-5 *1 (-495)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-656 (-889))) (-5 *1 (-495))))) -(-13 (-1103) (-10 -8 (-15 -2408 ($ (-518) (-656 (-889)))) (-15 -4148 ((-518) $)) (-15 -2473 ((-656 (-889)) $)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) NIL)) (-4331 (($) NIL T CONST)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3881 (($ $ $) 48)) (-2144 (($ $ $) 47)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1654 ((|#1| $) 40)) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2976 ((|#1| $) 41)) (-2782 (($ |#1| $) 18)) (-4165 (($ (-656 |#1|)) 19)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1526 ((|#1| $) 34)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 11)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 45)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) 29 (|has| $ (-6 -4463))))) -(((-496 |#1|) (-13 (-988 |#1|) (-10 -8 (-15 -4165 ($ (-656 |#1|))))) (-861)) (T -496)) -((-4165 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(-13 (-988 |#1|) (-10 -8 (-15 -4165 ($ (-656 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2721 (($ $) 71)) (-4061 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-1927 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-3115 (((-1140) $) NIL)) (-2547 (((-3 |#4| "failed") $) 117)) (-1974 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2497 (((-2 (|:| -1683 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4112 (((-875) $) 110)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 32 T CONST)) (-3938 (((-112) $ $) 121)) (-4036 (($ $) 77) (($ $ $) NIL)) (-4026 (($ $ $) 72)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) -(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) +((-3488 (((-112) $ $) NIL)) (-2090 (((-656 (-890)) $) 15)) (-2627 (((-518) $) 13)) (-1413 (((-1179) $) NIL)) (-1858 (($ (-518) (-656 (-890))) 11)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 22) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-495) (-13 (-1104) (-10 -8 (-15 -1858 ($ (-518) (-656 (-890)))) (-15 -2627 ((-518) $)) (-15 -2090 ((-656 (-890)) $))))) (T -495)) +((-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) +(-13 (-1104) (-10 -8 (-15 -1858 ($ (-518) (-656 (-890)))) (-15 -2627 ((-518) $)) (-15 -2090 ((-656 (-890)) $)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) NIL)) (-3306 (($) NIL T CONST)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1367 (($ $ $) 48)) (-4335 (($ $ $) 47)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1951 ((|#1| $) 40)) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3772 ((|#1| $) 41)) (-4436 (($ |#1| $) 18)) (-4218 (($ (-656 |#1|)) 19)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3267 ((|#1| $) 34)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 11)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 45)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) 29 (|has| $ (-6 -4464))))) +(((-496 |#1|) (-13 (-989 |#1|) (-10 -8 (-15 -4218 ($ (-656 |#1|))))) (-861)) (T -496)) +((-4218 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) +(-13 (-989 |#1|) (-10 -8 (-15 -4218 ($ (-656 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3685 (($ $) 71)) (-2454 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-2752 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-1450 (((-1141) $) NIL)) (-4128 (((-3 |#4| "failed") $) 117)) (-1977 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3443 (((-2 (|:| -3098 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3569 (((-876) $) 110)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 32 T CONST)) (-2923 (((-112) $ $) 121)) (-3043 (($ $) 77) (($ $ $) NIL)) (-3029 (($ $ $) 72)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) +(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) NIL (-346 |#1| |#2| |#3| |#4|) -((-1378 (((-576) (-656 (-576))) 53)) (-2436 ((|#1| (-656 |#1|)) 94)) (-1394 (((-656 |#1|) (-656 |#1|)) 95)) (-3282 (((-656 |#1|) (-656 |#1|)) 97)) (-3114 ((|#1| (-656 |#1|)) 96)) (-3430 (((-656 (-576)) (-656 |#1|)) 56))) -(((-498 |#1|) (-10 -7 (-15 -3114 (|#1| (-656 |#1|))) (-15 -2436 (|#1| (-656 |#1|))) (-15 -3282 ((-656 |#1|) (-656 |#1|))) (-15 -1394 ((-656 |#1|) (-656 |#1|))) (-15 -3430 ((-656 (-576)) (-656 |#1|))) (-15 -1378 ((-576) (-656 (-576))))) (-1263 (-576))) (T -498)) -((-1378 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1263 *2)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1263 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576)))))) -(-10 -7 (-15 -3114 (|#1| (-656 |#1|))) (-15 -2436 (|#1| (-656 |#1|))) (-15 -3282 ((-656 |#1|) (-656 |#1|))) (-15 -1394 ((-656 |#1|) (-656 |#1|))) (-15 -3430 ((-656 (-576)) (-656 |#1|))) (-15 -1378 ((-576) (-656 (-576))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-576) $) NIL (|has| (-576) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-576) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1058 (-576))))) (-2317 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1058 (-576)))) (((-576) $) NIL (|has| (-576) (-1058 (-576))))) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-576) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| (-576) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-576) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-576) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-576) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| (-576) (-1172)))) (-3197 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-576) (-861)))) (-2422 (($ (-1 (-576) (-576)) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1172)) CONST)) (-1767 (($ (-419 (-576))) 9)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2804 (((-576) $) NIL (|has| (-576) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-576) $) NIL)) (-1554 (((-906 (-576)) $) NIL (|has| (-576) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-576) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1042))) (((-227) $) NIL (|has| (-576) (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL) (((-1024 16) $) 10)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-576) (-927))) (|has| (-576) (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 (((-576) $) NIL (|has| (-576) (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| (-576) (-832)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-4046 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-499) (-13 (-1012 (-576)) (-625 (-419 (-576))) (-625 (-1024 16)) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -1767 ($ (-419 (-576))))))) (T -499)) -((-1914 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(-13 (-1012 (-576)) (-625 (-419 (-576))) (-625 (-1024 16)) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -1767 ($ (-419 (-576)))))) -((-3958 (((-656 |#2|) $) 31)) (-4217 (((-112) |#2| $) 39)) (-3587 (((-112) (-1 (-112) |#2|) $) 26)) (-2143 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-3125 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 37)) (-4112 (((-875) $) 45)) (-1682 (((-112) (-1 (-112) |#2|) $) 23)) (-3938 (((-112) $ $) 35)) (-1968 (((-783) $) 18))) -(((-500 |#1| |#2|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#2| |#2|)) (-15 -2143 (|#1| |#1| (-304 |#2|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -4217 ((-112) |#2| |#1|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3958 ((-656 |#2|) |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1968 ((-783) |#1|))) (-501 |#2|) (-1237)) (T -500)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#2| |#2|)) (-15 -2143 (|#1| |#1| (-304 |#2|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -4217 ((-112) |#2| |#1|)) (-15 -3125 ((-783) |#2| |#1|)) (-15 -3958 ((-656 |#2|) |#1|)) (-15 -3125 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1968 ((-783) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-501 |#1|) (-141) (-1237)) (T -501)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-1896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-1682 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3587 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3125 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-783)))) (-3721 (*1 *2 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3958 (*1 *2 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3125 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-783)))) (-4217 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-875))) (-6 (-625 (-875))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |t#1| (-1120)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2422 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4464)) (-15 -1896 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -1682 ((-112) (-1 (-112) |t#1|) $)) (-15 -3587 ((-112) (-1 (-112) |t#1|) $)) (-15 -3125 ((-783) (-1 (-112) |t#1|) $)) (-15 -3721 ((-656 |t#1|) $)) (-15 -3958 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -3125 ((-783) |t#1| $)) (-15 -4217 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-4112 ((|#1| $) 6) (($ |#1|) 9))) -(((-502 |#1|) (-141) (-1237)) (T -502)) +((-3832 (((-576) (-656 (-576))) 53)) (-4104 ((|#1| (-656 |#1|)) 94)) (-3009 (((-656 |#1|) (-656 |#1|)) 95)) (-3747 (((-656 |#1|) (-656 |#1|)) 97)) (-3498 ((|#1| (-656 |#1|)) 96)) (-1457 (((-656 (-576)) (-656 |#1|)) 56))) +(((-498 |#1|) (-10 -7 (-15 -3498 (|#1| (-656 |#1|))) (-15 -4104 (|#1| (-656 |#1|))) (-15 -3747 ((-656 |#1|) (-656 |#1|))) (-15 -3009 ((-656 |#1|) (-656 |#1|))) (-15 -1457 ((-656 (-576)) (-656 |#1|))) (-15 -3832 ((-576) (-656 (-576))))) (-1264 (-576))) (T -498)) +((-3832 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1264 *2)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576))))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) +(-10 -7 (-15 -3498 (|#1| (-656 |#1|))) (-15 -4104 (|#1| (-656 |#1|))) (-15 -3747 ((-656 |#1|) (-656 |#1|))) (-15 -3009 ((-656 |#1|) (-656 |#1|))) (-15 -1457 ((-656 (-576)) (-656 |#1|))) (-15 -3832 ((-576) (-656 (-576))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-576) $) NIL (|has| (-576) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-576) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| (-576) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-4099 (((-112) $) NIL (|has| (-576) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1764 (($ (-419 (-576))) 9)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3416 (((-576) $) NIL (|has| (-576) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 16) $) 10)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 (((-576) $) NIL (|has| (-576) (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| (-576) (-832)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3056 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-499) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -1764 ($ (-419 (-576))))))) (T -499)) +((-2638 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -1764 ($ (-419 (-576)))))) +((-2735 (((-656 |#2|) $) 31)) (-3456 (((-112) |#2| $) 39)) (-3542 (((-112) (-1 (-112) |#2|) $) 26)) (-3283 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-1460 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 37)) (-3569 (((-876) $) 45)) (-2170 (((-112) (-1 (-112) |#2|) $) 23)) (-2923 (((-112) $ $) 35)) (-3502 (((-783) $) 18))) +(((-500 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#2| |#2|)) (-15 -3283 (|#1| |#1| (-304 |#2|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3456 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -2735 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) (-501 |#2|) (-1238)) (T -500)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#2| |#2|)) (-15 -3283 (|#1| |#1| (-304 |#2|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3456 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -2735 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-501 |#1|) (-141) (-1238)) (T -501)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-4322 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-2170 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-1460 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-783)))) (-3965 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-2735 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-1460 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-3456 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4465)) (-15 -4322 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2170 ((-112) (-1 (-112) |t#1|) $)) (-15 -3542 ((-112) (-1 (-112) |t#1|) $)) (-15 -1460 ((-783) (-1 (-112) |t#1|) $)) (-15 -3965 ((-656 |t#1|) $)) (-15 -2735 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -1460 ((-783) |t#1| $)) (-15 -3456 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3569 ((|#1| $) 6) (($ |#1|) 9))) +(((-502 |#1|) (-141) (-1238)) (T -502)) NIL (-13 (-625 |t#1|) (-628 |t#1|)) (((-628 |#1|) . T) ((-625 |#1|) . T)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3367 (($ (-1178)) 8)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 15) (((-1178) $) 12)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 11))) -(((-503) (-13 (-1120) (-625 (-1178)) (-10 -8 (-15 -3367 ($ (-1178)))))) (T -503)) -((-3367 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503))))) -(-13 (-1120) (-625 (-1178)) (-10 -8 (-15 -3367 ($ (-1178))))) -((-3585 (($ $) 15)) (-3561 (($ $) 24)) (-3611 (($ $) 12)) (-3622 (($ $) 10)) (-3598 (($ $) 17)) (-3573 (($ $) 22))) -(((-504 |#1|) (-10 -8 (-15 -3573 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3585 (|#1| |#1|))) (-505)) (T -504)) -NIL -(-10 -8 (-15 -3573 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3585 (|#1| |#1|))) -((-3585 (($ $) 11)) (-3561 (($ $) 10)) (-3611 (($ $) 9)) (-3622 (($ $) 8)) (-3598 (($ $) 7)) (-3573 (($ $) 6))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-2056 (($ (-1179)) 8)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (((-1179) $) 12)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11))) +(((-503) (-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -2056 ($ (-1179)))))) (T -503)) +((-2056 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) +(-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -2056 ($ (-1179))))) +((-4024 (($ $) 15)) (-4005 (($ $) 24)) (-4049 (($ $) 12)) (-4060 (($ $) 10)) (-4036 (($ $) 17)) (-4013 (($ $) 22))) +(((-504 |#1|) (-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|))) (-505)) (T -504)) +NIL +(-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|))) +((-4024 (($ $) 11)) (-4005 (($ $) 10)) (-4049 (($ $) 9)) (-4060 (($ $) 8)) (-4036 (($ $) 7)) (-4013 (($ $) 6))) (((-505) (-141)) (T -505)) -((-3585 (*1 *1 *1) (-4 *1 (-505))) (-3561 (*1 *1 *1) (-4 *1 (-505))) (-3611 (*1 *1 *1) (-4 *1 (-505))) (-3622 (*1 *1 *1) (-4 *1 (-505))) (-3598 (*1 *1 *1) (-4 *1 (-505))) (-3573 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -3573 ($ $)) (-15 -3598 ($ $)) (-15 -3622 ($ $)) (-15 -3611 ($ $)) (-15 -3561 ($ $)) (-15 -3585 ($ $)))) -((-1450 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1263 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1263 |#3|)) (T -506)) -((-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7))))) -(-10 -7 (-15 -1450 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) -((-1952 (((-112) $ $) NIL)) (-2518 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-970 $)) NIL)) (-2089 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-970 $)) NIL)) (-3167 (((-112) $) 39)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2128 (((-112) $ $) 73)) (-4442 (((-656 (-624 $)) $) 50)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-1462 (($ $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3468 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-970 $)) NIL)) (-1480 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-970 $)) NIL)) (-2980 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-1893 (($ $ $) NIL)) (-3222 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-701 $) (-1287 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-2721 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-1390 (($ $) NIL) (($ (-656 $)) NIL)) (-3209 (((-656 (-115)) $) NIL)) (-1400 (((-115) (-115)) NIL)) (-2287 (((-112) $) 42)) (-1589 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2686 (((-1145 (-576) (-624 $)) $) 37)) (-2770 (($ $ (-576)) NIL)) (-2647 (((-1192 $) (-1192 $) (-624 $)) 87) (((-1192 $) (-1192 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3066 (((-1192 $) (-624 $)) 74 (|has| $ (-1069)))) (-2422 (($ (-1 $ $) (-624 $)) NIL)) (-2413 (((-3 (-624 $) "failed") $) NIL)) (-2198 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-1287 $) $) NIL) (((-701 (-419 (-576))) (-1287 $)) NIL)) (-3075 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1389 (((-656 (-624 $)) $) NIL)) (-2774 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-1681 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-1667 (($ $) NIL)) (-2952 (((-783) $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1546 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4296 (((-112) $) NIL (|has| $ (-1058 (-576))))) (-2143 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2026 (((-783) $) NIL)) (-4368 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2678 (($ $) NIL) (($ $ $) NIL)) (-4106 (($ $) 36) (($ $ (-783)) NIL)) (-2697 (((-1145 (-576) (-624 $)) $) 20)) (-3175 (($ $) NIL (|has| $ (-1069)))) (-1554 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-4112 (((-875) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1145 (-576) (-624 $))) 21)) (-4115 (((-783)) NIL T CONST)) (-2344 (($ $) NIL) (($ (-656 $)) NIL)) (-2431 (((-112) (-115)) 93)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 10 T CONST)) (-4320 (($) 22 T CONST)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3938 (((-112) $ $) 24)) (-4046 (($ $ $) 44)) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-939)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-939) $) NIL))) -(((-507) (-13 (-312) (-27) (-1058 (-576)) (-1058 (-419 (-576))) (-651 (-576)) (-1042) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4112 ($ (-1145 (-576) (-624 $)))) (-15 -2686 ((-1145 (-576) (-624 $)) $)) (-15 -2697 ((-1145 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -2128 ((-112) $ $)) (-15 -2647 ((-1192 $) (-1192 $) (-624 $))) (-15 -2647 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -2647 ($ $ (-624 $))) (-15 -2647 ($ $ (-656 (-624 $))))))) (T -507)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1145 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2721 (*1 *1 *1) (-5 *1 (-507))) (-2128 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) -(-13 (-312) (-27) (-1058 (-576)) (-1058 (-419 (-576))) (-651 (-576)) (-1042) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4112 ($ (-1145 (-576) (-624 $)))) (-15 -2686 ((-1145 (-576) (-624 $)) $)) (-15 -2697 ((-1145 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -2128 ((-112) $ $)) (-15 -2647 ((-1192 $) (-1192 $) (-624 $))) (-15 -2647 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -2647 ($ $ (-624 $))) (-15 -2647 ($ $ (-656 (-624 $)))))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 38)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 21)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 17 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) 41 (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) 15 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 19)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1254 (-576))) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 24)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) 11 (|has| $ (-6 -4463))))) -(((-508 |#1| |#2|) (-19 |#1|) (-1237) (-576)) (T -508)) +((-4024 (*1 *1 *1) (-4 *1 (-505))) (-4005 (*1 *1 *1) (-4 *1 (-505))) (-4049 (*1 *1 *1) (-4 *1 (-505))) (-4060 (*1 *1 *1) (-4 *1 (-505))) (-4036 (*1 *1 *1) (-4 *1 (-505))) (-4013 (*1 *1 *1) (-4 *1 (-505)))) +(-13 (-10 -8 (-15 -4013 ($ $)) (-15 -4036 ($ $)) (-15 -4060 ($ $)) (-15 -4049 ($ $)) (-15 -4005 ($ $)) (-15 -4024 ($ $)))) +((-1828 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1264 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1264 |#3|)) (T -506)) +((-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7))))) +(-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3668 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-1842 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1812 (((-112) $) 39)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-4183 (((-112) $ $) 73)) (-3987 (((-656 (-624 $)) $) 50)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1839 (($ $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-1754 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-4077 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-3428 (($ $ $) NIL)) (-4344 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-3685 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3716 (($ $) NIL) (($ (-656 $)) NIL)) (-4221 (((-656 (-115)) $) NIL)) (-1775 (((-115) (-115)) NIL)) (-3215 (((-112) $) 42)) (-2561 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1570 (((-1146 (-576) (-624 $)) $) 37)) (-4336 (($ $ (-576)) NIL)) (-2471 (((-1193 $) (-1193 $) (-624 $)) 87) (((-1193 $) (-1193 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2103 (((-1193 $) (-624 $)) 74 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) NIL)) (-1902 (((-3 (-624 $) "failed") $) NIL)) (-3626 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1639 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2158 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2048 (($ $) NIL)) (-2325 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3470 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2975 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3283 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2411 (((-783) $) NIL)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-1546 (($ $) NIL) (($ $ $) NIL)) (-2773 (($ $) 36) (($ $ (-783)) NIL)) (-1581 (((-1146 (-576) (-624 $)) $) 20)) (-1897 (($ $) NIL (|has| $ (-1070)))) (-4171 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-3569 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) 21)) (-1778 (((-783)) NIL T CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-4062 (((-112) (-115)) 93)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 10 T CONST)) (-2730 (($) 22 T CONST)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2923 (((-112) $ $) 24)) (-3056 (($ $ $) 44)) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-507) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -4183 ((-112) $ $)) (-15 -2471 ((-1193 $) (-1193 $) (-624 $))) (-15 -2471 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2471 ($ $ (-624 $))) (-15 -2471 ($ $ (-656 (-624 $))))))) (T -507)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3685 (*1 *1 *1) (-5 *1 (-507))) (-4183 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-2471 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-2471 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) +(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -4183 ((-112) $ $)) (-15 -2471 ((-1193 $) (-1193 $) (-624 $))) (-15 -2471 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2471 ($ $ (-624 $))) (-15 -2471 ($ $ (-656 (-624 $)))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 38)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 21)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 17 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) 41 (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) 15 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 19)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1255 (-576))) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 24)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 11 (|has| $ (-6 -4464))))) +(((-508 |#1| |#2|) (-19 |#1|) (-1238) (-576)) (T -508)) NIL (-19 |#1|) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4110 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-2536 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-4331 (($) NIL T CONST)) (-2216 (((-508 |#1| |#3|) $ (-576)) NIL)) (-1908 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3719 ((|#1| $ (-576) (-576)) NIL)) (-3721 (((-656 |#1|) $) NIL)) (-2758 (((-783) $) NIL)) (-1989 (($ (-783) (-783) |#1|) NIL)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3263 (((-576) $) NIL)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4285 (((-576) $) NIL)) (-2902 (((-576) $) NIL)) (-1896 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-3992 (((-508 |#1| |#2|) $ (-576)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1237) (-576) (-576)) (T -509)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1737 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-3864 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-3306 (($) NIL T CONST)) (-3823 (((-508 |#1| |#3|) $ (-576)) NIL)) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3536 (((-576) $) NIL)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2858 (((-576) $) NIL)) (-3129 (((-576) $) NIL)) (-4322 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3083 (((-508 |#1| |#2|) $ (-576)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1238) (-576) (-576)) (T -509)) NIL (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) -((-3171 (((-656 (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-4435 (((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-3137 (((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -4435 ((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783))) (-15 -3171 ((-656 (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3137 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1263 |#1|) (-1263 |#2|)) (T -510)) -((-3137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -3578 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -3578 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-3171 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -3578 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -3578 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1263 *6)))) (-4435 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1263 *3)) (-5 *2 (-656 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1263 *5))))) -(-10 -7 (-15 -4435 ((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783))) (-15 -3171 ((-656 (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3137 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) -((-2187 (((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-3903 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-2592 (((-783) (-783) (-783)) 34)) (-4069 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-4152 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-3494 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-2572 ((|#1| (-701 |#1|)) 18))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2572 (|#1| (-701 |#1|))) (-15 -3903 (|#1| (-701 |#1|) |#1| (-783))) (-15 -3494 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -2592 ((-783) (-783) (-783))) (-15 -4152 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4152 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4069 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2187 ((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $)))) (-1263 |#1|) (-421 |#1| |#2|)) (T -511)) -((-2187 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4069 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4152 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4152 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2592 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3494 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3903 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1263 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) -(-10 -7 (-15 -2572 (|#1| (-701 |#1|))) (-15 -3903 (|#1| (-701 |#1|) |#1| (-783))) (-15 -3494 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -2592 ((-783) (-783) (-783))) (-15 -4152 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4152 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4069 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2187 ((-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3578 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) -((-1952 (((-112) $ $) NIL)) (-1980 (($ $) NIL)) (-4292 (($ $ $) 40)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1715 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2379 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-4267 (((-112) $ (-1254 (-576)) (-112)) NIL (|has| $ (-6 -4464))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2824 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2721 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-1908 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4464)))) (-3719 (((-112) $ (-576)) NIL)) (-3538 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1120))) (((-576) (-112) $) NIL (|has| (-112) (-1120))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3721 (((-656 (-112)) $) NIL (|has| $ (-6 -4463)))) (-2322 (($ $ $) 38)) (-2298 (($ $) NIL)) (-3562 (($ $ $) NIL)) (-1989 (($ (-783) (-112)) 27)) (-4114 (($ $ $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 8 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL)) (-2144 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3958 (((-656 (-112)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL)) (-1896 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-112) $) NIL (|has| (-576) (-861)))) (-2022 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2556 (($ $ (-112)) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120))))) (-2692 (((-656 (-112)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 28)) (-4368 (($ $ (-1254 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-2334 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3125 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-1120)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) 29)) (-1554 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-4124 (($ (-656 (-112))) NIL)) (-2766 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4112 (((-875) $) 26)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2310 (($ $ $) 36)) (-2031 (($ $ $) NIL)) (-2186 (($ $ $) 45)) (-2196 (($ $) 43)) (-2174 (($ $ $) 44)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 30)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 31)) (-2020 (($ $ $) NIL)) (-1968 (((-783) $) 13 (|has| $ (-6 -4463))))) -(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -2196 ($ $)) (-15 -2186 ($ $ $)) (-15 -2174 ($ $ $)))) (-576)) (T -512)) -((-2196 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2186 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2174 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) -(-13 (-124) (-10 -8 (-15 -2196 ($ $)) (-15 -2186 ($ $ $)) (-15 -2174 ($ $ $)))) -((-2740 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|)) 35)) (-1466 (((-1192 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1192 |#4|)) 22)) (-2006 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|))) 46)) (-3527 (((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1466 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -1466 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2740 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|))) (-15 -2006 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|)))) (-15 -3527 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|))) (-1069) (-1263 |#1|) (-1263 |#2|) (-1069)) (T -513)) -((-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6)))) (-2006 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1192 *8))) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-1263 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1263 *6)))) (-2740 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *4 (-1263 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1263 *4)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2))))) -(-10 -7 (-15 -1466 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -1466 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2740 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|))) (-15 -2006 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|)))) (-15 -3527 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|))) -((-1952 (((-112) $ $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4229 (((-1292) $) 25)) (-4368 (((-1178) $ (-1196)) 30)) (-1612 (((-1292) $) 17)) (-4112 (((-875) $) 27) (($ (-1178)) 26)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 11)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 9))) -(((-514) (-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $)) (-15 -4112 ($ (-1178)))))) (T -514)) -((-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-514))))) -(-13 (-861) (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) (-15 -4229 ((-1292) $)) (-15 -4112 ($ (-1178))))) -((-1361 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4212 ((|#1| |#4|) 10)) (-4415 ((|#3| |#4|) 17))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4212 (|#1| |#4|)) (-15 -4415 (|#3| |#4|)) (-15 -1361 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1012 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) -((-1361 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-4415 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-4212 (*1 *2 *3) (-12 (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -4212 (|#1| |#4|)) (-15 -4415 (|#3| |#4|)) (-15 -1361 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-1952 (((-112) $ $) NIL)) (-3357 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-3167 (((-112) $) 178)) (-3477 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-4121 (((-1185 (-656 (-970 |#1|)) (-656 (-304 (-970 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1196))))) (-4299 (($ $ $) 107) (($ $ |#4|) 105)) (-2287 (((-112) $) 177)) (-2283 (($ $) 131)) (-2043 (((-1178) $) NIL)) (-2710 (($ $ $) 99) (($ (-656 $)) 101)) (-2183 (((-112) |#4| $) 129)) (-1673 (((-112) $ $) 82)) (-1927 (($ (-656 |#4|)) 106)) (-3115 (((-1140) $) NIL)) (-2467 (($ (-656 |#4|)) 175)) (-1408 (((-112) $) 176)) (-2393 (($ $) 85)) (-2768 (((-656 |#4|) $) 73)) (-3417 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-1694 (((-112) |#4| $) 89)) (-1656 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-4112 (((-875) $) 174) (($ (-656 |#4|)) 102)) (-1994 (((-112) $ $) NIL)) (-1544 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-3938 (((-112) $ $) 84)) (-4026 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1120) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4026 ($ $ $)) (-15 -2287 ((-112) $)) (-15 -3167 ((-112) $)) (-15 -1694 ((-112) |#4| $)) (-15 -1673 ((-112) $ $)) (-15 -2183 ((-112) |#4| $)) (-15 -3357 ((-112) $ (-656 |#3|))) (-15 -3357 ((-112) $)) (-15 -2710 ($ $ $)) (-15 -2710 ($ (-656 $))) (-15 -4299 ($ $ $)) (-15 -4299 ($ $ |#4|)) (-15 -2393 ($ $)) (-15 -3417 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -1544 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -1656 ((-576) $ (-656 |#3|))) (-15 -1656 ((-576) $)) (-15 -2283 ($ $)) (-15 -1927 ($ (-656 |#4|))) (-15 -2467 ($ (-656 |#4|))) (-15 -1408 ((-112) $)) (-15 -2768 ((-656 |#4|) $)) (-15 -4112 ($ (-656 |#4|))) (-15 -3477 ($ $ |#4|)) (-15 -3477 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1196))) (-15 -4121 ((-1185 (-656 (-970 |#1|)) (-656 (-304 (-970 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-4026 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-2287 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-3167 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-1694 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-1673 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2183 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-3357 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2710 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-2710 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-4299 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-4299 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) (-2393 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-1656 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2283 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1408 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2768 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3477 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) (-3477 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-967 *4 *5 *6)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *6 (-626 (-1196))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1185 (-656 (-970 *4)) (-656 (-304 (-970 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -(-13 (-1120) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4026 ($ $ $)) (-15 -2287 ((-112) $)) (-15 -3167 ((-112) $)) (-15 -1694 ((-112) |#4| $)) (-15 -1673 ((-112) $ $)) (-15 -2183 ((-112) |#4| $)) (-15 -3357 ((-112) $ (-656 |#3|))) (-15 -3357 ((-112) $)) (-15 -2710 ($ $ $)) (-15 -2710 ($ (-656 $))) (-15 -4299 ($ $ $)) (-15 -4299 ($ $ |#4|)) (-15 -2393 ($ $)) (-15 -3417 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -1544 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -1656 ((-576) $ (-656 |#3|))) (-15 -1656 ((-576) $)) (-15 -2283 ($ $)) (-15 -1927 ($ (-656 |#4|))) (-15 -2467 ($ (-656 |#4|))) (-15 -1408 ((-112) $)) (-15 -2768 ((-656 |#4|) $)) (-15 -4112 ($ (-656 |#4|))) (-15 -3477 ($ $ |#4|)) (-15 -3477 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1196))) (-15 -4121 ((-1185 (-656 (-970 |#1|)) (-656 (-304 (-970 |#1|)))) (-656 |#4|))) |%noBranch|))) -((-1713 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2080 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-3011 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-2443 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-3428 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2705 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-877 |#1|))) 195))) -(((-517 |#1| |#2|) (-10 -7 (-15 -1713 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2080 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2443 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3011 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3428 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2705 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-877 |#1|))))) (-656 (-1196)) (-783)) (T -517)) -((-2705 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-877 *4))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-3428 (*1 *2 *3) (-12 (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) (-253 *4 (-419 (-576))))))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-877 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(-10 -7 (-15 -1713 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2080 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2443 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3011 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3428 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2705 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-877 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-877 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2398 (($) 6)) (-4112 (((-875) $) 12) (((-1196) $) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 8))) -(((-518) (-13 (-1120) (-625 (-1196)) (-10 -8 (-15 -2398 ($))))) (T -518)) -((-2398 (*1 *1) (-5 *1 (-518)))) -(-13 (-1120) (-625 (-1196)) (-10 -8 (-15 -2398 ($)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1560 (((-656 (-886 |#2| |#1|)) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-1562 (($ |#1| |#2|) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1913 ((|#2| $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 12 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) 11) (($ $ $) 35)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21))) +((-1853 (((-656 (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-1869 (((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-1535 (((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -1869 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1853 ((-656 (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -1535 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -510)) +((-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -3454 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -3454 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-1853 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -3454 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -3454 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1264 *6)))) (-1869 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) +(-10 -7 (-15 -1869 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1853 ((-656 (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -1535 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) +((-3510 (((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-3487 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-3190 (((-783) (-783) (-783)) 34)) (-2536 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-4096 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-1982 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-2945 ((|#1| (-701 |#1|)) 18))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2945 (|#1| (-701 |#1|))) (-15 -3487 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1982 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -3190 ((-783) (-783) (-783))) (-15 -4096 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4096 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2536 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3510 ((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -511)) +((-3510 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2536 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4096 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4096 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3190 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1982 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3487 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) +(-10 -7 (-15 -2945 (|#1| (-701 |#1|))) (-15 -3487 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1982 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -3190 ((-783) (-783) (-783))) (-15 -4096 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4096 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2536 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3510 ((-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3454 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) NIL)) (-2693 (($ $ $) 40)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2450 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-3755 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3945 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3685 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4332 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-4272 (((-112) $ (-576)) NIL)) (-3659 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3965 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2683 (($ $ $) 38)) (-2662 (($ $) NIL)) (-1410 (($ $ $) NIL)) (-4140 (($ (-783) (-112)) 27)) (-1767 (($ $ $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 8 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL)) (-4335 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2735 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL)) (-4322 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-2174 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-112) $) NIL (|has| (-576) (-861)))) (-2366 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2740 (($ $ (-112)) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1681 (((-656 (-112)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 28)) (-2796 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3463 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1460 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 29)) (-4171 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3581 (($ (-656 (-112))) NIL)) (-1615 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3569 (((-876) $) 26)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2673 (($ $ $) 36)) (-3562 (($ $ $) NIL)) (-3868 (($ $ $) 45)) (-3881 (($ $) 43)) (-3856 (($ $ $) 44)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 30)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 31)) (-3551 (($ $ $) NIL)) (-3502 (((-783) $) 13 (|has| $ (-6 -4464))))) +(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -3881 ($ $)) (-15 -3868 ($ $ $)) (-15 -3856 ($ $ $)))) (-576)) (T -512)) +((-3881 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3868 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3856 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) +(-13 (-124) (-10 -8 (-15 -3881 ($ $)) (-15 -3868 ($ $ $)) (-15 -3856 ($ $ $)))) +((-4091 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|)) 35)) (-3944 (((-1193 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1193 |#4|)) 22)) (-2230 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|))) 46)) (-4265 (((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3944 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -3944 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4091 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2230 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -4265 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|) (-1070)) (T -513)) +((-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6)))) (-2230 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1264 *6)))) (-4091 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1264 *4)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) +(-10 -7 (-15 -3944 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -3944 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4091 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2230 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -4265 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3579 (((-1293) $) 25)) (-2796 (((-1179) $ (-1197)) 30)) (-1976 (((-1293) $) 17)) (-3569 (((-876) $) 27) (($ (-1179)) 26)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 9))) +(((-514) (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $)) (-15 -3569 ($ (-1179)))))) (T -514)) +((-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514))))) +(-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) (-15 -3579 ((-1293) $)) (-15 -3569 ($ (-1179))))) +((-1455 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1493 ((|#1| |#4|) 10)) (-1674 ((|#3| |#4|) 17))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1493 (|#1| |#4|)) (-15 -1674 (|#3| |#4|)) (-15 -1455 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1013 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) +((-1455 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -1493 (|#1| |#4|)) (-15 -1674 (|#3| |#4|)) (-15 -1455 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3488 (((-112) $ $) NIL)) (-3246 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-1812 (((-112) $) 178)) (-1826 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-1830 (((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1197))))) (-3015 (($ $ $) 107) (($ $ |#4|) 105)) (-3215 (((-112) $) 177)) (-3195 (($ $) 131)) (-1413 (((-1179) $) NIL)) (-1834 (($ $ $) 99) (($ (-656 $)) 101)) (-3471 (((-112) |#4| $) 129)) (-2075 (((-112) $ $) 82)) (-2752 (($ (-656 |#4|)) 106)) (-1450 (((-1141) $) NIL)) (-4399 (($ (-656 |#4|)) 175)) (-2040 (((-112) $) 176)) (-1718 (($ $) 85)) (-4315 (((-656 |#4|) $) 73)) (-2507 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-2258 (((-112) |#4| $) 89)) (-1972 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-3569 (((-876) $) 174) (($ (-656 |#4|)) 102)) (-2113 (((-112) $ $) NIL)) (-3447 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-2923 (((-112) $ $) 84)) (-3029 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) +(((-516 |#1| |#2| |#3| |#4|) (-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3029 ($ $ $)) (-15 -3215 ((-112) $)) (-15 -1812 ((-112) $)) (-15 -2258 ((-112) |#4| $)) (-15 -2075 ((-112) $ $)) (-15 -3471 ((-112) |#4| $)) (-15 -3246 ((-112) $ (-656 |#3|))) (-15 -3246 ((-112) $)) (-15 -1834 ($ $ $)) (-15 -1834 ($ (-656 $))) (-15 -3015 ($ $ $)) (-15 -3015 ($ $ |#4|)) (-15 -1718 ($ $)) (-15 -2507 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -3447 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -1972 ((-576) $ (-656 |#3|))) (-15 -1972 ((-576) $)) (-15 -3195 ($ $)) (-15 -2752 ($ (-656 |#4|))) (-15 -4399 ($ (-656 |#4|))) (-15 -2040 ((-112) $)) (-15 -4315 ((-656 |#4|) $)) (-15 -3569 ($ (-656 |#4|))) (-15 -1826 ($ $ |#4|)) (-15 -1826 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -1830 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -516)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3215 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1812 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2258 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2075 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3471 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-3246 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-3246 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1834 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3015 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3015 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-1718 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2507 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3195 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2040 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4315 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1826 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-1826 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) +(-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3029 ($ $ $)) (-15 -3215 ((-112) $)) (-15 -1812 ((-112) $)) (-15 -2258 ((-112) |#4| $)) (-15 -2075 ((-112) $ $)) (-15 -3471 ((-112) |#4| $)) (-15 -3246 ((-112) $ (-656 |#3|))) (-15 -3246 ((-112) $)) (-15 -1834 ($ $ $)) (-15 -1834 ($ (-656 $))) (-15 -3015 ($ $ $)) (-15 -3015 ($ $ |#4|)) (-15 -1718 ($ $)) (-15 -2507 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -3447 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -1972 ((-576) $ (-656 |#3|))) (-15 -1972 ((-576) $)) (-15 -3195 ($ $)) (-15 -2752 ($ (-656 |#4|))) (-15 -4399 ($ (-656 |#4|))) (-15 -2040 ((-112) $)) (-15 -4315 ((-656 |#4|) $)) (-15 -3569 ($ (-656 |#4|))) (-15 -1826 ($ $ |#4|)) (-15 -1826 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -1830 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) +((-2428 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-1749 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-2559 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-4169 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-2602 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-1803 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))) 195))) +(((-517 |#1| |#2|) (-10 -7 (-15 -2428 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1749 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4169 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2559 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2602 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1803 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) (-656 (-1197)) (-783)) (T -517)) +((-1803 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-2602 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) +(-10 -7 (-15 -2428 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1749 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4169 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2559 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2602 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1803 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1765 (($) 6)) (-3569 (((-876) $) 12) (((-1197) $) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 8))) +(((-518) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -1765 ($))))) (T -518)) +((-1765 (*1 *1) (-5 *1 (-518)))) +(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -1765 ($)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3605 (((-656 (-887 |#2| |#1|)) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2625 ((|#2| $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 12 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) 11) (($ $ $) 35)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21))) (((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-861)) (T -519)) NIL (-13 (-21) (-521 |#1| |#2|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 13)) (-1560 (((-656 (-886 |#2| |#1|)) $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) 41)) (-1562 (($ |#1| |#2|) 38)) (-2422 (($ (-1 |#1| |#1|) $) 40)) (-1913 ((|#2| $) NIL)) (-1709 ((|#1| $) 42)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 10 T CONST)) (-3938 (((-112) $ $) NIL)) (-4026 (($ $ $) 26)) (* (($ (-939) $) NIL) (($ (-783) $) 36))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 13)) (-3605 (((-656 (-887 |#2| |#1|)) $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) 41)) (-1945 (($ |#1| |#2|) 38)) (-4116 (($ (-1 |#1| |#1|) $) 40)) (-2625 ((|#2| $) NIL)) (-2089 ((|#1| $) 42)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 10 T CONST)) (-2923 (((-112) $ $) NIL)) (-3029 (($ $ $) 26)) (* (($ (-940) $) NIL) (($ (-783) $) 36))) (((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-861)) (T -520)) NIL (-13 (-23) (-521 |#1| |#2|)) -((-1952 (((-112) $ $) 7)) (-1560 (((-656 (-886 |#2| |#1|)) $) 14)) (-3309 (($ $) 15)) (-1562 (($ |#1| |#2|) 18)) (-2422 (($ (-1 |#1| |#1|) $) 19)) (-1913 ((|#2| $) 16)) (-1709 ((|#1| $) 17)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-521 |#1| |#2|) (-141) (-1120) (-861)) (T -521)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-861)))) (-1562 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-861)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1120)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-861)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-861)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-861)) (-5 *2 (-656 (-886 *4 *3)))))) -(-13 (-1120) (-10 -8 (-15 -2422 ($ (-1 |t#1| |t#1|) $)) (-15 -1562 ($ |t#1| |t#2|)) (-15 -1709 (|t#1| $)) (-15 -1913 (|t#2| $)) (-15 -3309 ($ $)) (-15 -1560 ((-656 (-886 |t#2| |t#1|)) $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1560 (((-656 (-886 |#2| |#1|)) $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-1562 (($ |#1| |#2|) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1913 ((|#2| $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 22)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL))) +((-3488 (((-112) $ $) 7)) (-3605 (((-656 (-887 |#2| |#1|)) $) 14)) (-2112 (($ $) 15)) (-1945 (($ |#1| |#2|) 18)) (-4116 (($ (-1 |#1| |#1|) $) 19)) (-2625 ((|#2| $) 16)) (-2089 ((|#1| $) 17)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-521 |#1| |#2|) (-141) (-1121) (-861)) (T -521)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)))) (-1945 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1121)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-861)))) (-2112 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)) (-5 *2 (-656 (-887 *4 *3)))))) +(-13 (-1121) (-10 -8 (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -1945 ($ |t#1| |t#2|)) (-15 -2089 (|t#1| $)) (-15 -2625 (|t#2| $)) (-15 -2112 ($ $)) (-15 -3605 ((-656 (-887 |t#2| |t#1|)) $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3605 (((-656 (-887 |#2| |#1|)) $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2625 ((|#2| $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 22)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) (((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-861)) (T -522)) NIL (-13 (-804) (-521 |#1| |#2|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1560 (((-656 (-886 |#2| |#1|)) $) NIL)) (-2390 (($ $ $) 23)) (-2559 (((-3 $ "failed") $ $) 19)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-1562 (($ |#1| |#2|) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1913 ((|#2| $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3605 (((-656 (-887 |#2| |#1|)) $) NIL)) (-1685 (($ $ $) 23)) (-2780 (((-3 $ "failed") $ $) 19)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2625 ((|#2| $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) (((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-861)) (T -523)) NIL (-13 (-805) (-521 |#1| |#2|)) -((-1952 (((-112) $ $) NIL)) (-1560 (((-656 (-886 |#2| |#1|)) $) 39)) (-3309 (($ $) 34)) (-1562 (($ |#1| |#2|) 30)) (-2422 (($ (-1 |#1| |#1|) $) 32)) (-1913 ((|#2| $) 38)) (-1709 ((|#1| $) 37)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 28)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 21))) -(((-524 |#1| |#2|) (-521 |#1| |#2|) (-1120) (-861)) (T -524)) +((-3488 (((-112) $ $) NIL)) (-3605 (((-656 (-887 |#2| |#1|)) $) 39)) (-2112 (($ $) 34)) (-1945 (($ |#1| |#2|) 30)) (-4116 (($ (-1 |#1| |#1|) $) 32)) (-2625 ((|#2| $) 38)) (-2089 ((|#1| $) 37)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 28)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 21))) +(((-524 |#1| |#2|) (-521 |#1| |#2|) (-1121) (-861)) (T -524)) NIL (-521 |#1| |#2|) -((-2143 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -2143 (|#1| |#1| |#2| |#3|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1120) (-1237)) (T -525)) +((-3283 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3283 (|#1| |#1| |#2| |#3|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1121) (-1238)) (T -525)) NIL -(-10 -8 (-15 -2143 (|#1| |#1| |#2| |#3|)) (-15 -2143 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) -((-2143 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-526 |#1| |#2|) (-141) (-1120) (-1237)) (T -526)) -((-2143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1237)))) (-2143 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1237))))) -(-13 (-10 -8 (-15 -2143 ($ $ |t#1| |t#2|)) (-15 -2143 ($ $ (-656 |t#1|) (-656 |t#2|))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 17)) (-1560 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))) $) 19)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2199 (((-783) $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3908 ((|#1| $ (-576)) 24)) (-4386 ((|#2| $ (-576)) 22)) (-3687 (($ (-1 |#1| |#1|) $) 48)) (-1358 (($ (-1 |#2| |#2|) $) 45)) (-2043 (((-1178) $) NIL)) (-2778 (($ $ $) 55 (|has| |#2| (-804)))) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 44) (($ |#1|) NIL)) (-4269 ((|#2| |#1| $) 51)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 11 T CONST)) (-3938 (((-112) $ $) 30)) (-4026 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-939) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) -(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1120) (-132) |#2|) (T -527)) +(-10 -8 (-15 -3283 (|#1| |#1| |#2| |#3|)) (-15 -3283 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) +((-3283 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-526 |#1| |#2|) (-141) (-1121) (-1238)) (T -526)) +((-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1238)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1238))))) +(-13 (-10 -8 (-15 -3283 ($ $ |t#1| |t#2|)) (-15 -3283 ($ $ (-656 |t#1|) (-656 |t#2|))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 17)) (-3605 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $) 19)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2096 (((-783) $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3537 ((|#1| $ (-576)) 24)) (-2570 ((|#2| $ (-576)) 22)) (-3250 (($ (-1 |#1| |#1|) $) 48)) (-1435 (($ (-1 |#2| |#2|) $) 45)) (-1413 (((-1179) $) NIL)) (-4396 (($ $ $) 55 (|has| |#2| (-804)))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 44) (($ |#1|) NIL)) (-3998 ((|#2| |#1| $) 51)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 11 T CONST)) (-2923 (((-112) $ $) 30)) (-3029 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-940) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) +(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1121) (-132) |#2|) (T -527)) NIL (-333 |#1| |#2|) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-3524 (((-112) (-112)) 32)) (-4267 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) |#1|) $) 77)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3308 (($ $) 81 (|has| |#1| (-1120)))) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) NIL (|has| |#1| (-1120))) (($ (-1 (-112) |#1|) $) 64)) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-2562 (($ $ (-576)) 19)) (-4098 (((-783) $) 13)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 31)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 29 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-3881 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) 28 (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2782 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3208 (($ (-656 |#1|)) 43)) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) 24 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 60)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 21)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1254 (-576))) NIL)) (-3571 (($ $ (-1254 (-576))) 71) (($ $ (-576)) 65)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) 61 (|has| $ (-6 -4464)))) (-4286 (($ $) 51)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) NIL)) (-3424 (($ $ $) 62) (($ $ |#1|) 59)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) 22 (|has| $ (-6 -4463))))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3208 ($ (-656 |#1|))) (-15 -4098 ((-783) $)) (-15 -2562 ($ $ (-576))) (-15 -3524 ((-112) (-112))))) (-1237) (-576)) (T -528)) -((-3208 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-576)))) (-2562 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-576))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3208 ($ (-656 |#1|))) (-15 -4098 ((-783) $)) (-15 -2562 ($ $ (-576))) (-15 -3524 ((-112) (-112))))) -((-1952 (((-112) $ $) NIL)) (-4200 (((-1155) $) 11)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2235 (((-1155) $) 13)) (-3270 (((-1155) $) 9)) (-4112 (((-875) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-529) (-13 (-1103) (-10 -8 (-15 -3270 ((-1155) $)) (-15 -4200 ((-1155) $)) (-15 -2235 ((-1155) $))))) (T -529)) -((-3270 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))) -(-13 (-1103) (-10 -8 (-15 -3270 ((-1155) $)) (-15 -4200 ((-1155) $)) (-15 -2235 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 (((-593 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-593 |#1|) (-379)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-593 |#1|) "failed") $) NIL)) (-2317 (((-593 |#1|) $) NIL)) (-4005 (($ (-1287 (-593 |#1|))) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-593 |#1|) (-379)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL (|has| (-593 |#1|) (-379)))) (-2614 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3878 (($ $ (-783)) NIL (-3794 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-3794 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2443 (((-112) $) NIL)) (-3241 (((-939) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-939)) $) NIL (-3794 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| (-593 |#1|) (-379)))) (-2588 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2647 (((-593 |#1|) $) NIL) (($ $ (-939)) NIL (|has| (-593 |#1|) (-379)))) (-1859 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 (-593 |#1|)) $) NIL) (((-1192 $) $ (-939)) NIL (|has| (-593 |#1|) (-379)))) (-4375 (((-939) $) NIL (|has| (-593 |#1|) (-379)))) (-3003 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-2586 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1192 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-1579 (($ $ (-1192 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-2409 (($ (-939)) NIL (|has| (-593 |#1|) (-379)))) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2547 (($) NIL (|has| (-593 |#1|) (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1450 (((-430 $) $) NIL)) (-4416 (((-845 (-939))) NIL) (((-939)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3794 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1656 (((-135)) NIL)) (-4106 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-1877 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-3175 (((-1192 (-593 |#1|))) NIL)) (-1984 (($) NIL (|has| (-593 |#1|) (-379)))) (-2209 (($) NIL (|has| (-593 |#1|) (-379)))) (-3435 (((-1287 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1287 $)) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-1972 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3794 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL) (((-1287 $) (-939)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-3155 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) -(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-939) (-939)) (T -530)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-4236 (((-112) (-112)) 32)) (-3755 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) |#1|) $) 77)) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2696 (($ $) 81 (|has| |#1| (-1121)))) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 64)) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-2818 (($ $ (-576)) 19)) (-1634 (((-783) $) 13)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 31)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 29 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1367 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) 28 (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4436 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4211 (($ (-656 |#1|)) 43)) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) 24 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 60)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 21)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1255 (-576))) NIL)) (-3389 (($ $ (-1255 (-576))) 71) (($ $ (-576)) 65)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) 61 (|has| $ (-6 -4465)))) (-1870 (($ $) 51)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-2563 (($ $ $) 62) (($ $ |#1|) 59)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 22 (|has| $ (-6 -4464))))) +(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -4211 ($ (-656 |#1|))) (-15 -1634 ((-783) $)) (-15 -2818 ($ $ (-576))) (-15 -4236 ((-112) (-112))))) (-1238) (-576)) (T -528)) +((-4211 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -4211 ($ (-656 |#1|))) (-15 -1634 ((-783) $)) (-15 -2818 ($ $ (-576))) (-15 -4236 ((-112) (-112))))) +((-3488 (((-112) $ $) NIL)) (-1405 (((-1156) $) 11)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2686 (((-1156) $) 13)) (-3986 (((-1156) $) 9)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-529) (-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $)) (-15 -1405 ((-1156) $)) (-15 -2686 ((-1156) $))))) (T -529)) +((-3986 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) +(-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $)) (-15 -1405 ((-1156) $)) (-15 -2686 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-593 |#1|) "failed") $) NIL)) (-2859 (((-593 |#1|) $) NIL)) (-3208 (($ (-1288 (-593 |#1|))) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-593 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL (|has| (-593 |#1|) (-379)))) (-2117 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-1332 (($ $ (-783)) NIL (-2758 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2758 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4169 (((-112) $) NIL)) (-3309 (((-940) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-940)) $) NIL (-2758 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| (-593 |#1|) (-379)))) (-3146 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2471 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 (-593 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-2460 (((-940) $) NIL (|has| (-593 |#1|) (-379)))) (-2726 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-3121 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1193 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-3777 (($ $ (-1193 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| (-593 |#1|) (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-1683 (((-845 (-940))) NIL) (((-940)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2758 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1972 (((-135)) NIL)) (-2773 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3600 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1897 (((-1193 (-593 |#1|))) NIL)) (-2051 (($) NIL (|has| (-593 |#1|) (-379)))) (-3746 (($) NIL (|has| (-593 |#1|) (-379)))) (-1490 (((-1288 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1288 $)) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3230 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2758 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-2018 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) +(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-940) (-940)) (T -530)) NIL (-339 (-593 |#1|)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) (-576) |#1|) 51)) (-4110 (($ $ (-576) |#4|) NIL)) (-2536 (($ $ (-576) |#5|) NIL)) (-4331 (($) NIL T CONST)) (-2216 ((|#4| $ (-576)) NIL)) (-1908 ((|#1| $ (-576) (-576) |#1|) 50)) (-3719 ((|#1| $ (-576) (-576)) 45)) (-3721 (((-656 |#1|) $) NIL)) (-2758 (((-783) $) 33)) (-1989 (($ (-783) (-783) |#1|) 30)) (-2772 (((-783) $) 38)) (-2135 (((-112) $ (-783)) NIL)) (-3263 (((-576) $) 31)) (-3455 (((-576) $) 32)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4285 (((-576) $) 37)) (-2902 (((-576) $) 39)) (-1896 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) 55 (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 14)) (-3935 (($) 16)) (-4368 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-3992 ((|#5| $ (-576)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1237) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) 51)) (-1737 (($ $ (-576) |#4|) NIL)) (-3864 (($ $ (-576) |#5|) NIL)) (-3306 (($) NIL T CONST)) (-3823 ((|#4| $ (-576)) NIL)) (-4332 ((|#1| $ (-576) (-576) |#1|) 50)) (-4272 ((|#1| $ (-576) (-576)) 45)) (-3965 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) 33)) (-4140 (($ (-783) (-783) |#1|) 30)) (-1699 (((-783) $) 38)) (-4252 (((-112) $ (-783)) NIL)) (-3536 (((-576) $) 31)) (-1643 (((-576) $) 32)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2858 (((-576) $) 37)) (-3129 (((-576) $) 39)) (-4322 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) 55 (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 14)) (-3839 (($) 16)) (-2796 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3083 ((|#5| $ (-576)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1238) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) NIL (-57 |#1| |#4| |#5|) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) NIL)) (-3456 ((|#1| $) NIL)) (-3094 (($ $) NIL)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) 70 (|has| $ (-6 -4464)))) (-3063 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1715 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4464)))) (-2379 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3134 (($ $ $) 23 (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) 21 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4464))) (($ $ "rest" $) 24 (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3442 ((|#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3432 (($ $) 28 (|has| $ (-6 -4464)))) (-4203 (($ $) 29)) (-1762 (($ $) 18) (($ $ (-783)) 32)) (-3308 (($ $) 62 (|has| |#1| (-1120)))) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) NIL (|has| |#1| (-1120))) (($ (-1 (-112) |#1|) $) NIL)) (-2824 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3588 (((-112) $) NIL)) (-3538 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120))) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3721 (((-656 |#1|) $) 27 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 31 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-3881 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-2144 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2785 (($ |#1|) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) NIL)) (-2043 (((-1178) $) 58 (|has| |#1| (-1120)))) (-2849 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2782 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) 13) (($ $ (-783)) NIL)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3498 (((-112) $) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 12)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) 17)) (-3935 (($) 16)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3183 (((-576) $ $) NIL)) (-3571 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2334 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2003 (((-112) $) 35)) (-4385 (($ $) NIL)) (-1788 (($ $) NIL (|has| $ (-6 -4464)))) (-4093 (((-783) $) NIL)) (-2820 (($ $) 40)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) 36)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 26)) (-3424 (($ $ $) 61) (($ $ |#1|) NIL)) (-2766 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4112 (((-875) $) 50 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) 54 (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) 9 (|has| $ (-6 -4463))))) -(((-532 |#1| |#2|) (-678 |#1|) (-1237) (-576)) (T -532)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2897 ((|#1| $) NIL)) (-4425 (($ $) NIL)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) 70 (|has| $ (-6 -4465)))) (-2071 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2450 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1512 (($ $ $) 23 (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) 21 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4465))) (($ $ "rest" $) 24 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) |#1|) $) NIL)) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2882 ((|#1| $) NIL)) (-3306 (($) NIL T CONST)) (-1474 (($ $) 28 (|has| $ (-6 -4465)))) (-3834 (($ $) 29)) (-3592 (($ $) 18) (($ $ (-783)) 32)) (-2696 (($ $) 62 (|has| |#1| (-1121)))) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3554 (((-112) $) NIL)) (-3659 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3965 (((-656 |#1|) $) 27 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 31 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1367 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4335 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1649 (($ |#1|) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) NIL)) (-1413 (((-1179) $) 58 (|has| |#1| (-1121)))) (-3967 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-4436 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2174 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) 13) (($ $ (-783)) NIL)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3997 (((-112) $) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 12)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) 17)) (-3839 (($) 16)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3957 (((-576) $ $) NIL)) (-3389 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3463 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2199 (((-112) $) 35)) (-2560 (($ $) NIL)) (-3930 (($ $) NIL (|has| $ (-6 -4465)))) (-1594 (((-783) $) NIL)) (-3574 (($ $) 40)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 36)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 26)) (-2563 (($ $ $) 61) (($ $ |#1|) NIL)) (-1615 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3569 (((-876) $) 50 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) 54 (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 9 (|has| $ (-6 -4464))))) +(((-532 |#1| |#2|) (-678 |#1|) (-1238) (-576)) (T -532)) NIL (-678 |#1|) -((-2938 ((|#4| |#4|) 38)) (-4134 (((-783) |#4|) 44)) (-3519 (((-783) |#4|) 45)) (-2175 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4464)))) (-2658 (((-3 |#4| "failed") |#4|) 67)) (-2418 ((|#4| |#4|) 59)) (-1679 ((|#1| |#4|) 58))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2938 (|#4| |#4|)) (-15 -4134 ((-783) |#4|)) (-15 -3519 ((-783) |#4|)) (IF (|has| |#3| (-6 -4464)) (-15 -2175 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -1679 (|#1| |#4|)) (-15 -2418 (|#4| |#4|)) (-15 -2658 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) -((-2658 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2418 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1679 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2175 (*1 *2 *3) (-12 (|has| *6 (-6 -4464)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4134 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -2938 (|#4| |#4|)) (-15 -4134 ((-783) |#4|)) (-15 -3519 ((-783) |#4|)) (IF (|has| |#3| (-6 -4464)) (-15 -2175 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -1679 (|#1| |#4|)) (-15 -2418 (|#4| |#4|)) (-15 -2658 ((-3 |#4| "failed") |#4|))) -((-2938 ((|#8| |#4|) 20)) (-2175 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4464)))) (-2658 (((-3 |#8| "failed") |#4|) 23))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2938 (|#8| |#4|)) (-15 -2658 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4464)) (-15 -2175 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1012 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) -((-2175 (*1 *2 *3) (-12 (|has| *9 (-6 -4464)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1012 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-2658 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1012 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1012 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) -(-10 -7 (-15 -2938 (|#8| |#4|)) (-15 -2658 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4464)) (-15 -2175 ((-656 |#3|) |#4|)) |%noBranch|)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2154 (($ (-783) (-783)) NIL)) (-4123 (($ $ $) NIL)) (-1592 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-1540 (((-112) $) NIL)) (-2008 (($ $ (-576) (-576)) 21)) (-3934 (($ $ (-576) (-576)) NIL)) (-2742 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1613 (($ $) NIL)) (-1796 (((-112) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3225 (($ $ (-576) (-576) $) NIL)) (-4267 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-4110 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-2536 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-1867 (($ (-783) |#1|) NIL)) (-4331 (($) NIL T CONST)) (-2938 (($ $) 30 (|has| |#1| (-317)))) (-2216 (((-614 |#1| |#3|) $ (-576)) NIL)) (-4134 (((-783) $) 33 (|has| |#1| (-568)))) (-1908 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3719 ((|#1| $ (-576) (-576)) NIL)) (-3721 (((-656 |#1|) $) NIL)) (-3519 (((-783) $) 35 (|has| |#1| (-568)))) (-2175 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-2758 (((-783) $) NIL)) (-1989 (($ (-783) (-783) |#1|) NIL)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3996 ((|#1| $) 28 (|has| |#1| (-6 (-4465 "*"))))) (-3263 (((-576) $) 10)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4285 (((-576) $) 13)) (-2902 (((-576) $) NIL)) (-3409 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-1896 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3065 (((-656 (-656 |#1|)) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2658 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-4174 (($ $ $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2762 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-2613 (((-112) $) NIL)) (-1679 ((|#1| $) 26 (|has| |#1| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-3992 (((-614 |#1| |#2|) $ (-576)) NIL)) (-4112 (($ (-614 |#1| |#2|)) NIL) (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-1780 (((-112) $) NIL)) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1069) (-576) (-576)) (T -535)) +((-3377 ((|#4| |#4|) 38)) (-3733 (((-783) |#4|) 44)) (-4198 (((-783) |#4|) 45)) (-3392 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4465)))) (-2549 (((-3 |#4| "failed") |#4|) 67)) (-1954 ((|#4| |#4|) 59)) (-2131 ((|#1| |#4|) 58))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3377 (|#4| |#4|)) (-15 -3733 ((-783) |#4|)) (-15 -4198 ((-783) |#4|)) (IF (|has| |#3| (-6 -4465)) (-15 -3392 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2131 (|#1| |#4|)) (-15 -1954 (|#4| |#4|)) (-15 -2549 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) +((-2549 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1954 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3392 (*1 *2 *3) (-12 (|has| *6 (-6 -4465)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4198 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -3377 (|#4| |#4|)) (-15 -3733 ((-783) |#4|)) (-15 -4198 ((-783) |#4|)) (IF (|has| |#3| (-6 -4465)) (-15 -3392 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2131 (|#1| |#4|)) (-15 -1954 (|#4| |#4|)) (-15 -2549 ((-3 |#4| "failed") |#4|))) +((-3377 ((|#8| |#4|) 20)) (-3392 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4465)))) (-2549 (((-3 |#8| "failed") |#4|) 23))) +(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3377 (|#8| |#4|)) (-15 -2549 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4465)) (-15 -3392 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1013 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) +((-3392 (*1 *2 *3) (-12 (|has| *9 (-6 -4465)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-2549 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-3377 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) +(-10 -7 (-15 -3377 (|#8| |#4|)) (-15 -2549 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4465)) (-15 -3392 ((-656 |#3|) |#4|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) NIL)) (-1852 (($ $ $) NIL)) (-2591 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-3400 (((-112) $) NIL)) (-2253 (($ $ (-576) (-576)) 21)) (-3825 (($ $ (-576) (-576)) NIL)) (-4100 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2809 (($ $) NIL)) (-4006 (((-112) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-4375 (($ $ (-576) (-576) $) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1737 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-3864 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-3477 (($ (-783) |#1|) NIL)) (-3306 (($) NIL T CONST)) (-3377 (($ $) 30 (|has| |#1| (-317)))) (-3823 (((-614 |#1| |#3|) $ (-576)) NIL)) (-3733 (((-783) $) 33 (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-4198 (((-783) $) 35 (|has| |#1| (-568)))) (-3392 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3117 ((|#1| $) 28 (|has| |#1| (-6 (-4466 "*"))))) (-3536 (((-576) $) 10)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2858 (((-576) $) 13)) (-3129 (((-576) $) NIL)) (-2465 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4322 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2093 (((-656 (-656 |#1|)) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2549 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-4288 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4273 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-2106 (((-112) $) NIL)) (-2131 ((|#1| $) 26 (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3083 (((-614 |#1| |#2|) $ (-576)) NIL)) (-3569 (($ (-614 |#1| |#2|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1893 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1070) (-576) (-576)) (T -535)) NIL (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-2818 (((-656 (-1236)) $) 13)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL) (($ (-656 (-1236))) 11)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-536) (-13 (-1103) (-10 -8 (-15 -4112 ($ (-656 (-1236)))) (-15 -2818 ((-656 (-1236)) $))))) (T -536)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536))))) -(-13 (-1103) (-10 -8 (-15 -4112 ($ (-656 (-1236)))) (-15 -2818 ((-656 (-1236)) $)))) -((-1952 (((-112) $ $) NIL)) (-1377 (((-1155) $) 14)) (-2043 (((-1178) $) NIL)) (-3693 (((-518) $) 11)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 21) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-537) (-13 (-1103) (-10 -8 (-15 -3693 ((-518) $)) (-15 -1377 ((-1155) $))))) (T -537)) -((-3693 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-537))))) -(-13 (-1103) (-10 -8 (-15 -3693 ((-518) $)) (-15 -1377 ((-1155) $)))) -((-3009 (((-703 (-1245)) $) 15)) (-3541 (((-703 (-1243)) $) 38)) (-3290 (((-703 (-1242)) $) 29)) (-2610 (((-703 (-561)) $) 12)) (-1924 (((-703 (-559)) $) 42)) (-3946 (((-703 (-558)) $) 33)) (-1369 (((-783) $ (-129)) 54))) -(((-538 |#1|) (-10 -8 (-15 -1369 ((-783) |#1| (-129))) (-15 -3541 ((-703 (-1243)) |#1|)) (-15 -1924 ((-703 (-559)) |#1|)) (-15 -3290 ((-703 (-1242)) |#1|)) (-15 -3946 ((-703 (-558)) |#1|)) (-15 -3009 ((-703 (-1245)) |#1|)) (-15 -2610 ((-703 (-561)) |#1|))) (-539)) (T -538)) -NIL -(-10 -8 (-15 -1369 ((-783) |#1| (-129))) (-15 -3541 ((-703 (-1243)) |#1|)) (-15 -1924 ((-703 (-559)) |#1|)) (-15 -3290 ((-703 (-1242)) |#1|)) (-15 -3946 ((-703 (-558)) |#1|)) (-15 -3009 ((-703 (-1245)) |#1|)) (-15 -2610 ((-703 (-561)) |#1|))) -((-3009 (((-703 (-1245)) $) 12)) (-3541 (((-703 (-1243)) $) 8)) (-3290 (((-703 (-1242)) $) 10)) (-2610 (((-703 (-561)) $) 13)) (-1924 (((-703 (-559)) $) 9)) (-3946 (((-703 (-558)) $) 11)) (-1369 (((-783) $ (-129)) 7)) (-2035 (((-703 (-130)) $) 14)) (-1743 (($ $) 6))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-3560 (((-656 (-1237)) $) 13)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL) (($ (-656 (-1237))) 11)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-536) (-13 (-1104) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -3560 ((-656 (-1237)) $))))) (T -536)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) +(-13 (-1104) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -3560 ((-656 (-1237)) $)))) +((-3488 (((-112) $ $) NIL)) (-2751 (((-1156) $) 14)) (-1413 (((-1179) $) NIL)) (-3304 (((-518) $) 11)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 21) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-537) (-13 (-1104) (-10 -8 (-15 -3304 ((-518) $)) (-15 -2751 ((-1156) $))))) (T -537)) +((-3304 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) +(-13 (-1104) (-10 -8 (-15 -3304 ((-518) $)) (-15 -2751 ((-1156) $)))) +((-2803 (((-703 (-1246)) $) 15)) (-4360 (((-703 (-1244)) $) 38)) (-3837 (((-703 (-1243)) $) 29)) (-2073 (((-703 (-561)) $) 12)) (-2713 (((-703 (-559)) $) 42)) (-3936 (((-703 (-558)) $) 33)) (-2135 (((-783) $ (-129)) 54))) +(((-538 |#1|) (-10 -8 (-15 -2135 ((-783) |#1| (-129))) (-15 -4360 ((-703 (-1244)) |#1|)) (-15 -2713 ((-703 (-559)) |#1|)) (-15 -3837 ((-703 (-1243)) |#1|)) (-15 -3936 ((-703 (-558)) |#1|)) (-15 -2803 ((-703 (-1246)) |#1|)) (-15 -2073 ((-703 (-561)) |#1|))) (-539)) (T -538)) +NIL +(-10 -8 (-15 -2135 ((-783) |#1| (-129))) (-15 -4360 ((-703 (-1244)) |#1|)) (-15 -2713 ((-703 (-559)) |#1|)) (-15 -3837 ((-703 (-1243)) |#1|)) (-15 -3936 ((-703 (-558)) |#1|)) (-15 -2803 ((-703 (-1246)) |#1|)) (-15 -2073 ((-703 (-561)) |#1|))) +((-2803 (((-703 (-1246)) $) 12)) (-4360 (((-703 (-1244)) $) 8)) (-3837 (((-703 (-1243)) $) 10)) (-2073 (((-703 (-561)) $) 13)) (-2713 (((-703 (-559)) $) 9)) (-3936 (((-703 (-558)) $) 11)) (-2135 (((-783) $ (-129)) 7)) (-2499 (((-703 (-130)) $) 14)) (-1540 (($ $) 6))) (((-539) (-141)) (T -539)) -((-2035 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1245))))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-1369 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -2035 ((-703 (-130)) $)) (-15 -2610 ((-703 (-561)) $)) (-15 -3009 ((-703 (-1245)) $)) (-15 -3946 ((-703 (-558)) $)) (-15 -3290 ((-703 (-1242)) $)) (-15 -1924 ((-703 (-559)) $)) (-15 -3541 ((-703 (-1243)) $)) (-15 -1369 ((-783) $ (-129))))) +((-2499 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246))))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-2135 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) +(-13 (-175) (-10 -8 (-15 -2499 ((-703 (-130)) $)) (-15 -2073 ((-703 (-561)) $)) (-15 -2803 ((-703 (-1246)) $)) (-15 -3936 ((-703 (-558)) $)) (-15 -3837 ((-703 (-1243)) $)) (-15 -2713 ((-703 (-559)) $)) (-15 -4360 ((-703 (-1244)) $)) (-15 -2135 ((-783) $ (-129))))) (((-175) . T)) -((-4132 (((-1192 |#1|) (-783)) 115)) (-3832 (((-1287 |#1|) (-1287 |#1|) (-939)) 108)) (-3360 (((-1292) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) |#1|) 123)) (-2478 (((-1287 |#1|) (-1287 |#1|) (-783)) 53)) (-4369 (((-1287 |#1|) (-939)) 110)) (-3874 (((-1287 |#1|) (-1287 |#1|) (-576)) 30)) (-2769 (((-1192 |#1|) (-1287 |#1|)) 116)) (-2558 (((-1287 |#1|) (-939)) 137)) (-2588 (((-112) (-1287 |#1|)) 120)) (-2647 (((-1287 |#1|) (-1287 |#1|) (-939)) 100)) (-2354 (((-1192 |#1|) (-1287 |#1|)) 131)) (-4375 (((-939) (-1287 |#1|)) 96)) (-1667 (((-1287 |#1|) (-1287 |#1|)) 38)) (-2409 (((-1287 |#1|) (-939) (-939)) 140)) (-3260 (((-1287 |#1|) (-1287 |#1|) (-1140) (-1140)) 29)) (-1601 (((-1287 |#1|) (-1287 |#1|) (-783) (-1140)) 54)) (-3578 (((-1287 (-1287 |#1|)) (-939)) 136)) (-4046 (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 121)) (** (((-1287 |#1|) (-1287 |#1|) (-576)) 67)) (* (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 31))) -(((-540 |#1|) (-10 -7 (-15 -3360 ((-1292) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) |#1|)) (-15 -4369 ((-1287 |#1|) (-939))) (-15 -2409 ((-1287 |#1|) (-939) (-939))) (-15 -2769 ((-1192 |#1|) (-1287 |#1|))) (-15 -4132 ((-1192 |#1|) (-783))) (-15 -1601 ((-1287 |#1|) (-1287 |#1|) (-783) (-1140))) (-15 -2478 ((-1287 |#1|) (-1287 |#1|) (-783))) (-15 -3260 ((-1287 |#1|) (-1287 |#1|) (-1140) (-1140))) (-15 -3874 ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4046 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -2647 ((-1287 |#1|) (-1287 |#1|) (-939))) (-15 -3832 ((-1287 |#1|) (-1287 |#1|) (-939))) (-15 -1667 ((-1287 |#1|) (-1287 |#1|))) (-15 -4375 ((-939) (-1287 |#1|))) (-15 -2588 ((-112) (-1287 |#1|))) (-15 -3578 ((-1287 (-1287 |#1|)) (-939))) (-15 -2558 ((-1287 |#1|) (-939))) (-15 -2354 ((-1192 |#1|) (-1287 |#1|)))) (-360)) (T -540)) -((-2354 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-939)) (-5 *1 (-540 *4)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-3832 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-939)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-939)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4046 (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3874 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3260 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1140)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2478 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1601 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1287 *5)) (-5 *3 (-783)) (-5 *4 (-1140)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-2409 (*1 *2 *3 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4369 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3360 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) (-4 *4 (-360)) (-5 *2 (-1292)) (-5 *1 (-540 *4))))) -(-10 -7 (-15 -3360 ((-1292) (-1287 (-656 (-2 (|:| -1688 |#1|) (|:| -2409 (-1140))))) |#1|)) (-15 -4369 ((-1287 |#1|) (-939))) (-15 -2409 ((-1287 |#1|) (-939) (-939))) (-15 -2769 ((-1192 |#1|) (-1287 |#1|))) (-15 -4132 ((-1192 |#1|) (-783))) (-15 -1601 ((-1287 |#1|) (-1287 |#1|) (-783) (-1140))) (-15 -2478 ((-1287 |#1|) (-1287 |#1|) (-783))) (-15 -3260 ((-1287 |#1|) (-1287 |#1|) (-1140) (-1140))) (-15 -3874 ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4046 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -2647 ((-1287 |#1|) (-1287 |#1|) (-939))) (-15 -3832 ((-1287 |#1|) (-1287 |#1|) (-939))) (-15 -1667 ((-1287 |#1|) (-1287 |#1|))) (-15 -4375 ((-939) (-1287 |#1|))) (-15 -2588 ((-112) (-1287 |#1|))) (-15 -3578 ((-1287 (-1287 |#1|)) (-939))) (-15 -2558 ((-1287 |#1|) (-939))) (-15 -2354 ((-1192 |#1|) (-1287 |#1|)))) -((-3009 (((-703 (-1245)) $) NIL)) (-3541 (((-703 (-1243)) $) NIL)) (-3290 (((-703 (-1242)) $) NIL)) (-2610 (((-703 (-561)) $) NIL)) (-1924 (((-703 (-559)) $) NIL)) (-3946 (((-703 (-558)) $) NIL)) (-1369 (((-783) $ (-129)) NIL)) (-2035 (((-703 (-130)) $) 26)) (-2123 (((-1140) $ (-1140)) 31)) (-3538 (((-1140) $) 30)) (-2272 (((-112) $) 20)) (-4198 (($ (-400)) 14) (($ (-1178)) 16)) (-2392 (((-112) $) 27)) (-4112 (((-875) $) 34)) (-1743 (($ $) 28))) -(((-541) (-13 (-539) (-625 (-875)) (-10 -8 (-15 -4198 ($ (-400))) (-15 -4198 ($ (-1178))) (-15 -2392 ((-112) $)) (-15 -2272 ((-112) $)) (-15 -3538 ((-1140) $)) (-15 -2123 ((-1140) $ (-1140)))))) (T -541)) -((-4198 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-541)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-541)))) (-2123 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-541))))) -(-13 (-539) (-625 (-875)) (-10 -8 (-15 -4198 ($ (-400))) (-15 -4198 ($ (-1178))) (-15 -2392 ((-112) $)) (-15 -2272 ((-112) $)) (-15 -3538 ((-1140) $)) (-15 -2123 ((-1140) $ (-1140))))) -((-3550 (((-1 |#1| |#1|) |#1|) 11)) (-2131 (((-1 |#1| |#1|)) 10))) -(((-542 |#1|) (-10 -7 (-15 -2131 ((-1 |#1| |#1|))) (-15 -3550 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) -((-3550 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-2131 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(-10 -7 (-15 -2131 ((-1 |#1| |#1|))) (-15 -3550 ((-1 |#1| |#1|) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1560 (((-656 (-886 |#1| (-783))) $) NIL)) (-2390 (($ $ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-1562 (($ (-783) |#1|) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2422 (($ (-1 (-783) (-783)) $) NIL)) (-1913 ((|#1| $) NIL)) (-1709 (((-783) $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 27)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL))) +((-1926 (((-1193 |#1|) (-783)) 115)) (-2208 (((-1288 |#1|) (-1288 |#1|) (-940)) 108)) (-3279 (((-1293) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) |#1|) 123)) (-1381 (((-1288 |#1|) (-1288 |#1|) (-783)) 53)) (-1836 (((-1288 |#1|) (-940)) 110)) (-4414 (((-1288 |#1|) (-1288 |#1|) (-576)) 30)) (-4326 (((-1193 |#1|) (-1288 |#1|)) 116)) (-2767 (((-1288 |#1|) (-940)) 137)) (-3146 (((-112) (-1288 |#1|)) 120)) (-2471 (((-1288 |#1|) (-1288 |#1|) (-940)) 100)) (-2542 (((-1193 |#1|) (-1288 |#1|)) 131)) (-2460 (((-940) (-1288 |#1|)) 96)) (-2048 (((-1288 |#1|) (-1288 |#1|)) 38)) (-3223 (((-1288 |#1|) (-940) (-940)) 140)) (-3511 (((-1288 |#1|) (-1288 |#1|) (-1141) (-1141)) 29)) (-2674 (((-1288 |#1|) (-1288 |#1|) (-783) (-1141)) 54)) (-3454 (((-1288 (-1288 |#1|)) (-940)) 136)) (-3056 (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 121)) (** (((-1288 |#1|) (-1288 |#1|) (-576)) 67)) (* (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 31))) +(((-540 |#1|) (-10 -7 (-15 -3279 ((-1293) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) |#1|)) (-15 -1836 ((-1288 |#1|) (-940))) (-15 -3223 ((-1288 |#1|) (-940) (-940))) (-15 -4326 ((-1193 |#1|) (-1288 |#1|))) (-15 -1926 ((-1193 |#1|) (-783))) (-15 -2674 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -1381 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -3511 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -4414 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3056 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -2471 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2208 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2048 ((-1288 |#1|) (-1288 |#1|))) (-15 -2460 ((-940) (-1288 |#1|))) (-15 -3146 ((-112) (-1288 |#1|))) (-15 -3454 ((-1288 (-1288 |#1|)) (-940))) (-15 -2767 ((-1288 |#1|) (-940))) (-15 -2542 ((-1193 |#1|) (-1288 |#1|)))) (-360)) (T -540)) +((-2542 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) (-5 *1 (-540 *4)))) (-2048 (*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-2208 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3056 (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4414 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3511 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2674 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) +(-10 -7 (-15 -3279 ((-1293) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) |#1|)) (-15 -1836 ((-1288 |#1|) (-940))) (-15 -3223 ((-1288 |#1|) (-940) (-940))) (-15 -4326 ((-1193 |#1|) (-1288 |#1|))) (-15 -1926 ((-1193 |#1|) (-783))) (-15 -2674 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -1381 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -3511 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -4414 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3056 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -2471 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2208 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2048 ((-1288 |#1|) (-1288 |#1|))) (-15 -2460 ((-940) (-1288 |#1|))) (-15 -3146 ((-112) (-1288 |#1|))) (-15 -3454 ((-1288 (-1288 |#1|)) (-940))) (-15 -2767 ((-1288 |#1|) (-940))) (-15 -2542 ((-1193 |#1|) (-1288 |#1|)))) +((-2803 (((-703 (-1246)) $) NIL)) (-4360 (((-703 (-1244)) $) NIL)) (-3837 (((-703 (-1243)) $) NIL)) (-2073 (((-703 (-561)) $) NIL)) (-2713 (((-703 (-559)) $) NIL)) (-3936 (((-703 (-558)) $) NIL)) (-2135 (((-783) $ (-129)) NIL)) (-2499 (((-703 (-130)) $) 26)) (-4131 (((-1141) $ (-1141)) 31)) (-3659 (((-1141) $) 30)) (-3081 (((-112) $) 20)) (-1383 (($ (-400)) 14) (($ (-1179)) 16)) (-1707 (((-112) $) 27)) (-3569 (((-876) $) 34)) (-1540 (($ $) 28))) +(((-541) (-13 (-539) (-625 (-876)) (-10 -8 (-15 -1383 ($ (-400))) (-15 -1383 ($ (-1179))) (-15 -1707 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -3659 ((-1141) $)) (-15 -4131 ((-1141) $ (-1141)))))) (T -541)) +((-1383 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3659 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) (-4131 (*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) +(-13 (-539) (-625 (-876)) (-10 -8 (-15 -1383 ($ (-400))) (-15 -1383 ($ (-1179))) (-15 -1707 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -3659 ((-1141) $)) (-15 -4131 ((-1141) $ (-1141))))) +((-4372 (((-1 |#1| |#1|) |#1|) 11)) (-4212 (((-1 |#1| |#1|)) 10))) +(((-542 |#1|) (-10 -7 (-15 -4212 ((-1 |#1| |#1|))) (-15 -4372 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) +((-4372 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-4212 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(-10 -7 (-15 -4212 ((-1 |#1| |#1|))) (-15 -4372 ((-1 |#1| |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3605 (((-656 (-887 |#1| (-783))) $) NIL)) (-1685 (($ $ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-1945 (($ (-783) |#1|) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-4116 (($ (-1 (-783) (-783)) $) NIL)) (-2625 ((|#1| $) NIL)) (-2089 (((-783) $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 27)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) (((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-861)) (T -543)) NIL (-13 (-805) (-521 (-783) |#1|)) -((-3194 (((-656 |#2|) (-1192 |#1|) |#3|) 98)) (-2278 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))) 114)) (-2270 (((-1192 |#1|) (-701 |#1|)) 110))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-1192 |#1|) (-701 |#1|))) (-15 -3194 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -2278 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) -((-2278 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1192 *6)) (-1192 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1192 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2270 ((-1192 |#1|) (-701 |#1|))) (-15 -3194 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -2278 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))))) -((-3981 (((-703 (-1245)) $ (-1245)) NIL)) (-2315 (((-703 (-561)) $ (-561)) NIL)) (-2042 (((-783) $ (-129)) 39)) (-3683 (((-703 (-130)) $ (-130)) 40)) (-3009 (((-703 (-1245)) $) NIL)) (-3541 (((-703 (-1243)) $) NIL)) (-3290 (((-703 (-1242)) $) NIL)) (-2610 (((-703 (-561)) $) NIL)) (-1924 (((-703 (-559)) $) NIL)) (-3946 (((-703 (-558)) $) NIL)) (-1369 (((-783) $ (-129)) 35)) (-2035 (((-703 (-130)) $) 37)) (-4009 (((-112) $) 27)) (-2463 (((-703 $) (-591) (-972)) 18) (((-703 $) (-503) (-972)) 24)) (-4112 (((-875) $) 48)) (-1743 (($ $) 42))) -(((-545) (-13 (-779 (-591)) (-625 (-875)) (-10 -8 (-15 -2463 ((-703 $) (-503) (-972)))))) (T -545)) -((-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-972)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) -(-13 (-779 (-591)) (-625 (-875)) (-10 -8 (-15 -2463 ((-703 $) (-503) (-972))))) -((-4355 (((-855 (-576))) 12)) (-4364 (((-855 (-576))) 14)) (-2734 (((-845 (-576))) 9))) -(((-546) (-10 -7 (-15 -2734 ((-845 (-576)))) (-15 -4355 ((-855 (-576)))) (-15 -4364 ((-855 (-576)))))) (T -546)) -((-4364 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-4355 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2734 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) -(-10 -7 (-15 -2734 ((-845 (-576)))) (-15 -4355 ((-855 (-576)))) (-15 -4364 ((-855 (-576))))) -((-2874 (((-548) (-1196)) 15)) (-3939 ((|#1| (-548)) 20))) -(((-547 |#1|) (-10 -7 (-15 -2874 ((-548) (-1196))) (-15 -3939 (|#1| (-548)))) (-1237)) (T -547)) -((-3939 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1237)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1237))))) -(-10 -7 (-15 -2874 ((-548) (-1196))) (-15 -3939 (|#1| (-548)))) -((-1952 (((-112) $ $) NIL)) (-1857 (((-1178) $) 55)) (-4384 (((-112) $) 51)) (-2218 (((-1196) $) 52)) (-3883 (((-112) $) 49)) (-1532 (((-1178) $) 50)) (-2444 (($ (-1178)) 56)) (-2475 (((-112) $) NIL)) (-2320 (((-112) $) NIL)) (-1367 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-2071 (($ $ (-656 (-1196))) 21)) (-3939 (((-52) $) 23)) (-2345 (((-112) $) NIL)) (-2243 (((-576) $) NIL)) (-3115 (((-1140) $) NIL)) (-2951 (($ $ (-656 (-1196)) (-1196)) 73)) (-1357 (((-112) $) NIL)) (-2632 (((-227) $) NIL)) (-1574 (($ $) 44)) (-1615 (((-875) $) NIL)) (-3378 (((-112) $ $) NIL)) (-4368 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1523 (((-656 $) $) 30)) (-3117 (((-1196) (-656 $)) 57)) (-1554 (($ (-1178)) NIL) (($ (-1196)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-875)) NIL) (($ (-656 $)) 65) (((-1124) $) 12) (($ (-1124)) 13)) (-3448 (((-1196) (-1196) (-656 $)) 60)) (-4112 (((-875) $) 54)) (-3918 (($ $) 59)) (-4161 (($ $) 58)) (-2193 (($ $ (-656 $)) 66)) (-1994 (((-112) $ $) NIL)) (-3628 (((-112) $) 29)) (-4314 (($) 9 T CONST)) (-4320 (($) 11 T CONST)) (-3938 (((-112) $ $) 74)) (-4046 (($ $ $) 82)) (-4026 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-1968 (((-576) $) NIL))) -(((-548) (-13 (-1123 (-1178) (-1196) (-576) (-227) (-875)) (-626 (-1124)) (-10 -8 (-15 -3939 ((-52) $)) (-15 -1554 ($ (-1124))) (-15 -2193 ($ $ (-656 $))) (-15 -2951 ($ $ (-656 (-1196)) (-1196))) (-15 -2071 ($ $ (-656 (-1196)))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 -4046 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -2665) (-15 1 ($) -2665) (-15 -1574 ($ $)) (-15 -1857 ((-1178) $)) (-15 -2444 ($ (-1178))) (-15 -3117 ((-1196) (-656 $))) (-15 -3448 ((-1196) (-1196) (-656 $)))))) (T -548)) -((-3939 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-548)))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-2951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1196)) (-5 *1 (-548)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-548)))) (-4026 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-4046 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-4314 (*1 *1) (-5 *1 (-548))) (-4320 (*1 *1) (-5 *1 (-548))) (-1574 (*1 *1 *1) (-5 *1 (-548))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1196)) (-5 *1 (-548)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(-13 (-1123 (-1178) (-1196) (-576) (-227) (-875)) (-626 (-1124)) (-10 -8 (-15 -3939 ((-52) $)) (-15 -1554 ($ (-1124))) (-15 -2193 ($ $ (-656 $))) (-15 -2951 ($ $ (-656 (-1196)) (-1196))) (-15 -2071 ($ $ (-656 (-1196)))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 -4046 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-4314) ($) -2665) (-15 (-4320) ($) -2665) (-15 -1574 ($ $)) (-15 -1857 ((-1178) $)) (-15 -2444 ($ (-1178))) (-15 -3117 ((-1196) (-656 $))) (-15 -3448 ((-1196) (-1196) (-656 $))))) -((-3643 ((|#2| |#2|) 17)) (-1330 ((|#2| |#2|) 13)) (-2323 ((|#2| |#2| (-576) (-576)) 20)) (-1856 ((|#2| |#2|) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -1330 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2323 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1278 |#1|)) (T -549)) -((-2323 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1278 *4)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))) (-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3))))) -(-10 -7 (-15 -1330 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2323 (|#2| |#2| (-576) (-576)))) -((-2996 (((-656 (-304 (-970 |#2|))) (-656 |#2|) (-656 (-1196))) 32)) (-2242 (((-656 |#2|) (-970 |#1|) |#3|) 54) (((-656 |#2|) (-1192 |#1|) |#3|) 53)) (-4353 (((-656 (-656 |#2|)) (-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196)) |#3|) 106))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2242 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -2242 ((-656 |#2|) (-970 |#1|) |#3|)) (-15 -4353 ((-656 (-656 |#2|)) (-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196)) |#3|)) (-15 -2996 ((-656 (-304 (-970 |#2|))) (-656 |#2|) (-656 (-1196))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) -((-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1196))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-970 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-4353 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-970 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-970 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2242 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -2242 ((-656 |#2|) (-970 |#1|) |#3|)) (-15 -4353 ((-656 (-656 |#2|)) (-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196)) |#3|)) (-15 -2996 ((-656 (-304 (-970 |#2|))) (-656 |#2|) (-656 (-1196))))) -((-3735 ((|#2| |#2| |#1|) 17)) (-3623 ((|#2| (-656 |#2|)) 31)) (-4142 ((|#2| (-656 |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3623 (|#2| (-656 |#2|))) (-15 -4142 (|#2| (-656 |#2|))) (-15 -3735 (|#2| |#2| |#1|))) (-317) (-1263 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) -((-3735 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(-10 -7 (-15 -3623 (|#2| (-656 |#2|))) (-15 -4142 (|#2| (-656 |#2|))) (-15 -3735 (|#2| |#2| |#1|))) -((-1450 (((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|))) 210))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))) (-15 -1450 ((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))))) (-861) (-805) (-13 (-317) (-148)) (-967 |#3| |#2| |#1|)) (T -552)) -((-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-967 *7 *6 *5)) (-5 *2 (-430 (-1192 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-967 *7 *6 *5))))) -(-10 -7 (-15 -1450 ((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))) (-15 -1450 ((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))))) -((-3643 ((|#4| |#4|) 74)) (-1330 ((|#4| |#4|) 70)) (-2323 ((|#4| |#4| (-576) (-576)) 76)) (-1856 ((|#4| |#4|) 72))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1330 (|#4| |#4|)) (-15 -1856 (|#4| |#4|)) (-15 -3643 (|#4| |#4|)) (-15 -2323 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1263 |#1|) (-736 |#1| |#2|) (-1278 |#3|)) (T -553)) -((-2323 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1263 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1278 *6)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) (-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5))))) -(-10 -7 (-15 -1330 (|#4| |#4|)) (-15 -1856 (|#4| |#4|)) (-15 -3643 (|#4| |#4|)) (-15 -2323 (|#4| |#4| (-576) (-576)))) -((-3643 ((|#2| |#2|) 27)) (-1330 ((|#2| |#2|) 23)) (-2323 ((|#2| |#2| (-576) (-576)) 29)) (-1856 ((|#2| |#2|) 25))) -(((-554 |#1| |#2|) (-10 -7 (-15 -1330 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2323 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1278 |#1|)) (T -554)) -((-2323 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1278 *4)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))) (-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3))))) -(-10 -7 (-15 -1330 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2323 (|#2| |#2| (-576) (-576)))) -((-3671 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) -(((-555 |#1| |#2|) (-10 -7 (-15 -3671 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3671 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3671 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1069) (-1263 |#1|)) (T -555)) -((-3671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-3671 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-3671 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1069)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -3671 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3671 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3671 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) -((-4258 (($ $ $) 84)) (-3163 (((-430 $) $) 52)) (-2980 (((-3 (-576) "failed") $) 64)) (-2317 (((-576) $) 42)) (-2936 (((-3 (-419 (-576)) "failed") $) 79)) (-3898 (((-112) $) 26)) (-1982 (((-419 (-576)) $) 77)) (-2443 (((-112) $) 55)) (-4270 (($ $ $ $) 92)) (-2690 (((-112) $) 17)) (-3207 (($ $ $) 62)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 74)) (-1859 (((-3 $ "failed") $) 69)) (-2361 (($ $) 24)) (-2038 (($ $ $) 90)) (-3650 (($) 65)) (-2978 (($ $) 58)) (-1450 (((-430 $) $) 50)) (-4296 (((-112) $) 15)) (-2026 (((-783) $) 32)) (-4106 (($ $) 11) (($ $ (-783)) NIL)) (-4286 (($ $) 18)) (-1554 (((-576) $) NIL) (((-548) $) 41) (((-906 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-4115 (((-783)) 9)) (-1460 (((-112) $ $) 21)) (-4410 (($ $ $) 60))) -(((-556 |#1|) (-10 -8 (-15 -2038 (|#1| |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -4258 (|#1| |#1| |#1|)) (-15 -1460 ((-112) |#1| |#1|)) (-15 -4296 ((-112) |#1|)) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -1554 ((-227) |#1|)) (-15 -1554 ((-390) |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -4410 (|#1| |#1| |#1|)) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -1554 ((-576) |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -2026 ((-783) |#1|)) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -2443 ((-112) |#1|)) (-15 -4115 ((-783)))) (-557)) (T -556)) -((-4115 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -(-10 -8 (-15 -2038 (|#1| |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -4258 (|#1| |#1| |#1|)) (-15 -1460 ((-112) |#1| |#1|)) (-15 -4296 ((-112) |#1|)) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -1554 ((-227) |#1|)) (-15 -1554 ((-390) |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -4410 (|#1| |#1| |#1|)) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -1554 ((-576) |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -2026 ((-783) |#1|)) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -2443 ((-112) |#1|)) (-15 -4115 ((-783)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-4258 (($ $ $) 93)) (-2559 (((-3 $ "failed") $ $) 20)) (-1717 (($ $ $ $) 82)) (-3575 (($ $) 57)) (-3163 (((-430 $) $) 58)) (-4057 (((-112) $ $) 136)) (-3773 (((-576) $) 125)) (-3384 (($ $ $) 96)) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 117)) (-2317 (((-576) $) 118)) (-1893 (($ $ $) 140)) (-3222 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 115) (((-701 (-576)) (-701 $)) 114)) (-3900 (((-3 $ "failed") $) 37)) (-2936 (((-3 (-419 (-576)) "failed") $) 90)) (-3898 (((-112) $) 92)) (-1982 (((-419 (-576)) $) 91)) (-4369 (($) 89) (($ $) 88)) (-1903 (($ $ $) 139)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 134)) (-2443 (((-112) $) 59)) (-4270 (($ $ $ $) 80)) (-1724 (($ $ $) 94)) (-2690 (((-112) $) 127)) (-3207 (($ $ $) 105)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 108)) (-2287 (((-112) $) 35)) (-1589 (((-112) $) 100)) (-1859 (((-3 $ "failed") $) 102)) (-3197 (((-112) $) 126)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 143)) (-4120 (($ $ $ $) 81)) (-2905 (($ $ $) 133)) (-1654 (($ $ $) 132)) (-2361 (($ $) 84)) (-3107 (($ $) 97)) (-2198 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 113) (((-701 (-576)) (-1287 $)) 112)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-2038 (($ $ $) 79)) (-3650 (($) 101 T CONST)) (-1920 (($ $) 86)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-2978 (($ $) 106)) (-1450 (((-430 $) $) 56)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 141)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 135)) (-4296 (((-112) $) 99)) (-2026 (((-783) $) 137)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 138)) (-4106 (($ $) 123) (($ $ (-783)) 121)) (-3755 (($ $) 85)) (-4286 (($ $) 87)) (-1554 (((-576) $) 119) (((-548) $) 110) (((-906 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-4115 (((-783)) 32 T CONST)) (-1460 (((-112) $ $) 95)) (-4410 (($ $ $) 107)) (-1994 (((-112) $ $) 6)) (-1865 (($) 98)) (-3111 (((-112) $ $) 45)) (-1411 (($ $ $ $) 83)) (-2388 (($ $) 124)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $) 122) (($ $ (-783)) 120)) (-3993 (((-112) $ $) 131)) (-3974 (((-112) $ $) 129)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 130)) (-3962 (((-112) $ $) 128)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) +((-4066 (((-656 |#2|) (-1193 |#1|) |#3|) 98)) (-3151 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))) 114)) (-3057 (((-1193 |#1|) (-701 |#1|)) 110))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3057 ((-1193 |#1|) (-701 |#1|))) (-15 -4066 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -3151 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) +((-3151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) +(-10 -7 (-15 -3057 ((-1193 |#1|) (-701 |#1|))) (-15 -4066 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -3151 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) +((-2952 (((-703 (-1246)) $ (-1246)) NIL)) (-2193 (((-703 (-561)) $ (-561)) NIL)) (-2566 (((-783) $ (-129)) 39)) (-3213 (((-703 (-130)) $ (-130)) 40)) (-2803 (((-703 (-1246)) $) NIL)) (-4360 (((-703 (-1244)) $) NIL)) (-3837 (((-703 (-1243)) $) NIL)) (-2073 (((-703 (-561)) $) NIL)) (-2713 (((-703 (-559)) $) NIL)) (-3936 (((-703 (-558)) $) NIL)) (-2135 (((-783) $ (-129)) 35)) (-2499 (((-703 (-130)) $) 37)) (-3248 (((-112) $) 27)) (-4361 (((-703 $) (-591) (-973)) 18) (((-703 $) (-503) (-973)) 24)) (-3569 (((-876) $) 48)) (-1540 (($ $) 42))) +(((-545) (-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -4361 ((-703 $) (-503) (-973)))))) (T -545)) +((-4361 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) +(-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -4361 ((-703 $) (-503) (-973))))) +((-2954 (((-855 (-576))) 12)) (-2969 (((-855 (-576))) 14)) (-1610 (((-845 (-576))) 9))) +(((-546) (-10 -7 (-15 -1610 ((-845 (-576)))) (-15 -2954 ((-855 (-576)))) (-15 -2969 ((-855 (-576)))))) (T -546)) +((-2969 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2954 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1610 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) +(-10 -7 (-15 -1610 ((-845 (-576)))) (-15 -2954 ((-855 (-576)))) (-15 -2969 ((-855 (-576))))) +((-2787 (((-548) (-1197)) 15)) (-3310 ((|#1| (-548)) 20))) +(((-547 |#1|) (-10 -7 (-15 -2787 ((-548) (-1197))) (-15 -3310 (|#1| (-548)))) (-1238)) (T -547)) +((-3310 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1238))))) +(-10 -7 (-15 -2787 ((-548) (-1197))) (-15 -3310 (|#1| (-548)))) +((-3488 (((-112) $ $) NIL)) (-3376 (((-1179) $) 55)) (-2550 (((-112) $) 51)) (-3107 (((-1197) $) 52)) (-1388 (((-112) $) 49)) (-1329 (((-1179) $) 50)) (-4179 (($ (-1179)) 56)) (-1350 (((-112) $) NIL)) (-2238 (((-112) $) NIL)) (-3187 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-3727 (($ $ (-656 (-1197))) 21)) (-3310 (((-52) $) 23)) (-2475 (((-112) $) NIL)) (-3133 (((-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3339 (($ $ (-656 (-1197)) (-1197)) 73)) (-1427 (((-112) $) NIL)) (-3044 (((-227) $) NIL)) (-2251 (($ $) 44)) (-3003 (((-876) $) NIL)) (-4026 (((-112) $ $) NIL)) (-2796 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1904 (((-656 $) $) 30)) (-2416 (((-1197) (-656 $)) 57)) (-4171 (($ (-1179)) NIL) (($ (-1197)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-876)) NIL) (($ (-656 $)) 65) (((-1125) $) 12) (($ (-1125)) 13)) (-4148 (((-1197) (-1197) (-656 $)) 60)) (-3569 (((-876) $) 54)) (-3653 (($ $) 59)) (-4181 (($ $) 58)) (-3583 (($ $ (-656 $)) 66)) (-2113 (((-112) $ $) NIL)) (-3952 (((-112) $) 29)) (-2719 (($) 9 T CONST)) (-2730 (($) 11 T CONST)) (-2923 (((-112) $ $) 74)) (-3056 (($ $ $) 82)) (-3029 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-3502 (((-576) $) NIL))) +(((-548) (-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3310 ((-52) $)) (-15 -4171 ($ (-1125))) (-15 -3583 ($ $ (-656 $))) (-15 -3339 ($ $ (-656 (-1197)) (-1197))) (-15 -3727 ($ $ (-656 (-1197)))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -1480) (-15 1 ($) -1480) (-15 -2251 ($ $)) (-15 -3376 ((-1179) $)) (-15 -4179 ($ (-1179))) (-15 -2416 ((-1197) (-656 $))) (-15 -4148 ((-1197) (-1197) (-656 $)))))) (T -548)) +((-3310 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-548)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) (-3727 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548)))) (-3029 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-3056 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2719 (*1 *1) (-5 *1 (-548))) (-2730 (*1 *1) (-5 *1 (-548))) (-2251 (*1 *1 *1) (-5 *1 (-548))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548)))) (-4148 (*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) +(-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3310 ((-52) $)) (-15 -4171 ($ (-1125))) (-15 -3583 ($ $ (-656 $))) (-15 -3339 ($ $ (-656 (-1197)) (-1197))) (-15 -3727 ($ $ (-656 (-1197)))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-2719) ($) -1480) (-15 (-2730) ($) -1480) (-15 -2251 ($ $)) (-15 -3376 ((-1179) $)) (-15 -4179 ($ (-1179))) (-15 -2416 ((-1197) (-656 $))) (-15 -4148 ((-1197) (-1197) (-656 $))))) +((-2793 ((|#2| |#2|) 17)) (-2883 ((|#2| |#2|) 13)) (-2260 ((|#2| |#2| (-576) (-576)) 20)) (-3366 ((|#2| |#2|) 15))) +(((-549 |#1| |#2|) (-10 -7 (-15 -2883 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2260 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1279 |#1|)) (T -549)) +((-2260 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1279 *4)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-2883 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3))))) +(-10 -7 (-15 -2883 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2260 (|#2| |#2| (-576) (-576)))) +((-2657 (((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))) 32)) (-2748 (((-656 |#2|) (-971 |#1|) |#3|) 54) (((-656 |#2|) (-1193 |#1|) |#3|) 53)) (-2257 (((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|) 106))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2748 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -2748 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -2257 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2657 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) +((-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-2257 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -2748 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -2748 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -2257 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2657 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) +((-2391 ((|#2| |#2| |#1|) 17)) (-3901 ((|#2| (-656 |#2|)) 31)) (-2009 ((|#2| (-656 |#2|)) 52))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3901 (|#2| (-656 |#2|))) (-15 -2009 (|#2| (-656 |#2|))) (-15 -2391 (|#2| |#2| |#1|))) (-317) (-1264 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) +((-2391 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(-10 -7 (-15 -3901 (|#2| (-656 |#2|))) (-15 -2009 (|#2| (-656 |#2|))) (-15 -2391 (|#2| |#2| |#1|))) +((-1828 (((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|))) 210))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|)))) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))))) (-861) (-805) (-13 (-317) (-148)) (-968 |#3| |#2| |#1|)) (T -552)) +((-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-968 *7 *6 *5)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1193 *8)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-968 *7 *6 *5))))) +(-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|)))) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))))) +((-2793 ((|#4| |#4|) 74)) (-2883 ((|#4| |#4|) 70)) (-2260 ((|#4| |#4| (-576) (-576)) 76)) (-3366 ((|#4| |#4|) 72))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2883 (|#4| |#4|)) (-15 -3366 (|#4| |#4|)) (-15 -2793 (|#4| |#4|)) (-15 -2260 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1264 |#1|) (-736 |#1| |#2|) (-1279 |#3|)) (T -553)) +((-2260 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1279 *6)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-2883 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5))))) +(-10 -7 (-15 -2883 (|#4| |#4|)) (-15 -3366 (|#4| |#4|)) (-15 -2793 (|#4| |#4|)) (-15 -2260 (|#4| |#4| (-576) (-576)))) +((-2793 ((|#2| |#2|) 27)) (-2883 ((|#2| |#2|) 23)) (-2260 ((|#2| |#2| (-576) (-576)) 29)) (-3366 ((|#2| |#2|) 25))) +(((-554 |#1| |#2|) (-10 -7 (-15 -2883 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2260 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1279 |#1|)) (T -554)) +((-2260 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-2883 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3))))) +(-10 -7 (-15 -2883 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2260 (|#2| |#2| (-576) (-576)))) +((-3087 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3087 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3087 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3087 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1070) (-1264 |#1|)) (T -555)) +((-3087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-3087 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-3087 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -3087 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3087 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3087 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) +((-3893 (($ $ $) 84)) (-1770 (((-430 $) $) 52)) (-1572 (((-3 (-576) "failed") $) 64)) (-2859 (((-576) $) 42)) (-3355 (((-3 (-419 (-576)) "failed") $) 79)) (-3426 (((-112) $) 26)) (-2034 (((-419 (-576)) $) 77)) (-4169 (((-112) $) 55)) (-4009 (($ $ $ $) 92)) (-1661 (((-112) $) 17)) (-4202 (($ $ $) 62)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 74)) (-3396 (((-3 $ "failed") $) 69)) (-2241 (($ $) 24)) (-2527 (($ $ $) 90)) (-3539 (($) 65)) (-3792 (($ $) 58)) (-1828 (((-430 $) $) 50)) (-2975 (((-112) $) 15)) (-2411 (((-783) $) 32)) (-2773 (($ $) 11) (($ $ (-783)) NIL)) (-1870 (($ $) 18)) (-4171 (((-576) $) NIL) (((-548) $) 41) (((-907 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-1778 (((-783)) 9)) (-3904 (((-112) $ $) 21)) (-1621 (($ $ $) 60))) +(((-556 |#1|) (-10 -8 (-15 -2527 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -3904 ((-112) |#1| |#1|)) (-15 -2975 ((-112) |#1|)) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -1621 (|#1| |#1| |#1|)) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -4171 ((-576) |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -1661 ((-112) |#1|)) (-15 -2411 ((-783) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -4169 ((-112) |#1|)) (-15 -1778 ((-783)))) (-557)) (T -556)) +((-1778 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) +(-10 -8 (-15 -2527 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -3904 ((-112) |#1| |#1|)) (-15 -2975 ((-112) |#1|)) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -1621 (|#1| |#1| |#1|)) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -4171 ((-576) |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -1661 ((-112) |#1|)) (-15 -2411 ((-783) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -4169 ((-112) |#1|)) (-15 -1778 ((-783)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-3893 (($ $ $) 93)) (-2780 (((-3 $ "failed") $ $) 20)) (-2462 (($ $ $ $) 82)) (-3420 (($ $) 57)) (-1770 (((-430 $) $) 58)) (-2420 (((-112) $ $) 136)) (-1529 (((-576) $) 125)) (-2742 (($ $ $) 96)) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 117)) (-2859 (((-576) $) 118)) (-3428 (($ $ $) 140)) (-4344 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 115) (((-701 (-576)) (-701 $)) 114)) (-3451 (((-3 $ "failed") $) 37)) (-3355 (((-3 (-419 (-576)) "failed") $) 90)) (-3426 (((-112) $) 92)) (-2034 (((-419 (-576)) $) 91)) (-1836 (($) 89) (($ $) 88)) (-3440 (($ $ $) 139)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 134)) (-4169 (((-112) $) 59)) (-4009 (($ $ $ $) 80)) (-2533 (($ $ $) 94)) (-1661 (((-112) $) 127)) (-4202 (($ $ $) 105)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 108)) (-3215 (((-112) $) 35)) (-2561 (((-112) $) 100)) (-3396 (((-3 $ "failed") $) 102)) (-4099 (((-112) $) 126)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 143)) (-1819 (($ $ $ $) 81)) (-3124 (($ $ $) 133)) (-1951 (($ $ $) 132)) (-2241 (($ $) 84)) (-2434 (($ $) 97)) (-3626 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113) (((-701 (-576)) (-1288 $)) 112)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2527 (($ $ $) 79)) (-3539 (($) 101 T CONST)) (-1373 (($ $) 86)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3792 (($ $) 106)) (-1828 (((-430 $) $) 56)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 141)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 135)) (-2975 (((-112) $) 99)) (-2411 (((-783) $) 137)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 138)) (-2773 (($ $) 123) (($ $ (-783)) 121)) (-1806 (($ $) 85)) (-1870 (($ $) 87)) (-4171 (((-576) $) 119) (((-548) $) 110) (((-907 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-1778 (((-783)) 32 T CONST)) (-3904 (((-112) $ $) 95)) (-1621 (($ $ $) 107)) (-2113 (((-112) $ $) 6)) (-3515 (($) 98)) (-2537 (((-112) $ $) 45)) (-2070 (($ $ $ $) 83)) (-1665 (($ $) 124)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $) 122) (($ $ (-783)) 120)) (-2991 (((-112) $ $) 131)) (-2962 (((-112) $ $) 129)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 130)) (-2948 (((-112) $ $) 128)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) (((-557) (-141)) (T -557)) -((-1589 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1865 (*1 *1) (-4 *1 (-557))) (-3107 (*1 *1 *1) (-4 *1 (-557))) (-3384 (*1 *1 *1 *1) (-4 *1 (-557))) (-1460 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1724 (*1 *1 *1 *1) (-4 *1 (-557))) (-4258 (*1 *1 *1 *1) (-4 *1 (-557))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2936 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-4369 (*1 *1) (-4 *1 (-557))) (-4369 (*1 *1 *1) (-4 *1 (-557))) (-4286 (*1 *1 *1) (-4 *1 (-557))) (-1920 (*1 *1 *1) (-4 *1 (-557))) (-3755 (*1 *1 *1) (-4 *1 (-557))) (-2361 (*1 *1 *1) (-4 *1 (-557))) (-1411 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1717 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4120 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4270 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2038 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1241) (-317) (-832) (-238) (-626 (-576)) (-1058 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-906 (-576))) (-900 (-576)) (-144) (-1042) (-148) (-1172) (-10 -8 (-15 -1589 ((-112) $)) (-15 -4296 ((-112) $)) (-6 -4462) (-15 -1865 ($)) (-15 -3107 ($ $)) (-15 -3384 ($ $ $)) (-15 -1460 ((-112) $ $)) (-15 -1724 ($ $ $)) (-15 -4258 ($ $ $)) (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $)) (-15 -4369 ($)) (-15 -4369 ($ $)) (-15 -4286 ($ $)) (-15 -1920 ($ $)) (-15 -3755 ($ $)) (-15 -2361 ($ $)) (-15 -1411 ($ $ $ $)) (-15 -1717 ($ $ $ $)) (-15 -4120 ($ $ $ $)) (-15 -4270 ($ $ $ $)) (-15 -2038 ($ $ $)) (-6 -4461))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-906 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-861) . T) ((-863) . T) ((-900 (-576)) . T) ((-938) . T) ((-1042) . T) ((-1058 (-576)) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) . T) ((-1237) . T) ((-1241) . T)) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-558) (-13 (-856) (-10 -8 (-15 -4331 ($) -2665)))) (T -558)) -((-4331 (*1 *1) (-5 *1 (-558)))) -(-13 (-856) (-10 -8 (-15 -4331 ($) -2665))) +((-2561 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3515 (*1 *1) (-4 *1 (-557))) (-2434 (*1 *1 *1) (-4 *1 (-557))) (-2742 (*1 *1 *1 *1) (-4 *1 (-557))) (-3904 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2533 (*1 *1 *1 *1) (-4 *1 (-557))) (-3893 (*1 *1 *1 *1) (-4 *1 (-557))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-3355 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1836 (*1 *1) (-4 *1 (-557))) (-1836 (*1 *1 *1) (-4 *1 (-557))) (-1870 (*1 *1 *1) (-4 *1 (-557))) (-1373 (*1 *1 *1) (-4 *1 (-557))) (-1806 (*1 *1 *1) (-4 *1 (-557))) (-2241 (*1 *1 *1) (-4 *1 (-557))) (-2070 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2462 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1819 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4009 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2527 (*1 *1 *1 *1) (-4 *1 (-557)))) +(-13 (-1242) (-317) (-832) (-238) (-626 (-576)) (-1059 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-907 (-576))) (-901 (-576)) (-144) (-1043) (-148) (-1173) (-10 -8 (-15 -2561 ((-112) $)) (-15 -2975 ((-112) $)) (-6 -4463) (-15 -3515 ($)) (-15 -2434 ($ $)) (-15 -2742 ($ $ $)) (-15 -3904 ((-112) $ $)) (-15 -2533 ($ $ $)) (-15 -3893 ($ $ $)) (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $)) (-15 -1836 ($)) (-15 -1836 ($ $)) (-15 -1870 ($ $)) (-15 -1373 ($ $)) (-15 -1806 ($ $)) (-15 -2241 ($ $)) (-15 -2070 ($ $ $ $)) (-15 -2462 ($ $ $ $)) (-15 -1819 ($ $ $ $)) (-15 -4009 ($ $ $ $)) (-15 -2527 ($ $ $)) (-6 -4462))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-907 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-576)) . T) ((-939) . T) ((-1043) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) . T) ((-1238) . T) ((-1242) . T)) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-558) (-13 (-856) (-10 -8 (-15 -3306 ($) -1480)))) (T -558)) +((-3306 (*1 *1) (-5 *1 (-558)))) +(-13 (-856) (-10 -8 (-15 -3306 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-559) (-13 (-856) (-10 -8 (-15 -4331 ($) -2665)))) (T -559)) -((-4331 (*1 *1) (-5 *1 (-559)))) -(-13 (-856) (-10 -8 (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-559) (-13 (-856) (-10 -8 (-15 -3306 ($) -1480)))) (T -559)) +((-3306 (*1 *1) (-5 *1 (-559)))) +(-13 (-856) (-10 -8 (-15 -3306 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-560) (-13 (-856) (-10 -8 (-15 -4331 ($) -2665)))) (T -560)) -((-4331 (*1 *1) (-5 *1 (-560)))) -(-13 (-856) (-10 -8 (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-560) (-13 (-856) (-10 -8 (-15 -3306 ($) -1480)))) (T -560)) +((-3306 (*1 *1) (-5 *1 (-560)))) +(-13 (-856) (-10 -8 (-15 -3306 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-561) (-13 (-856) (-10 -8 (-15 -4331 ($) -2665)))) (T -561)) -((-4331 (*1 *1) (-5 *1 (-561)))) -(-13 (-856) (-10 -8 (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-561) (-13 (-856) (-10 -8 (-15 -3306 ($) -1480)))) (T -561)) +((-3306 (*1 *1) (-5 *1 (-561)))) +(-13 (-856) (-10 -8 (-15 -3306 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#2| $ |#1| |#2|) NIL)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) NIL)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2351 (((-656 |#1|) $) NIL)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3963 (((-656 |#1|) $) NIL)) (-1474 (((-112) |#1| $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-562 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) (-1120) (-1120) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463)))) (T -562)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) -((-2116 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))) 50))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2116 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) -((-2116 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) -(-10 -7 (-15 -2116 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))))) -((-3340 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-1566 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-1721 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1721 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3340 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1566 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1058 (-576))) (-13 (-27) (-442 |#1|)) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) -((-1566 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *7 (-1263 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(-10 -7 (-15 -1721 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3340 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1566 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3058 (((-112) (-576) (-576)) 12)) (-2306 (((-576) (-576)) 7)) (-4183 (((-576) (-576) (-576)) 10))) -(((-565) (-10 -7 (-15 -2306 ((-576) (-576))) (-15 -4183 ((-576) (-576) (-576))) (-15 -3058 ((-112) (-576) (-576))))) (T -565)) -((-3058 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-4183 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(-10 -7 (-15 -2306 ((-576) (-576))) (-15 -4183 ((-576) (-576) (-576))) (-15 -3058 ((-112) (-576) (-576)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1922 ((|#1| $) 68)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-3585 (($ $) 98)) (-3434 (($ $) 81)) (-2390 ((|#1| $) 69)) (-2559 (((-3 $ "failed") $ $) 20)) (-1462 (($ $) 80)) (-3561 (($ $) 97)) (-3411 (($ $) 82)) (-3611 (($ $) 96)) (-3460 (($ $) 83)) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 76)) (-2317 (((-576) $) 77)) (-3900 (((-3 $ "failed") $) 37)) (-4077 (($ |#1| |#1|) 73)) (-2690 (((-112) $) 67)) (-2722 (($) 108)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 79)) (-3197 (((-112) $) 66)) (-2905 (($ $ $) 109)) (-1654 (($ $ $) 110)) (-2607 (($ $) 105)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3230 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-1359 ((|#1| $) 70)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1943 (((-3 $ "failed") $ $) 48)) (-2155 (($ $) 106)) (-3622 (($ $) 95)) (-3473 (($ $) 84)) (-3598 (($ $) 94)) (-3447 (($ $) 85)) (-3573 (($ $) 93)) (-3423 (($ $) 86)) (-3342 (((-112) $ |#1|) 65)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 104)) (-3509 (($ $) 92)) (-3111 (((-112) $ $) 45)) (-3631 (($ $) 103)) (-3486 (($ $) 91)) (-3672 (($ $) 102)) (-3536 (($ $) 90)) (-1970 (($ $) 101)) (-3549 (($ $) 89)) (-3663 (($ $) 100)) (-3522 (($ $) 88)) (-3641 (($ $) 99)) (-3497 (($ $) 87)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 111)) (-3974 (((-112) $ $) 113)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 112)) (-3962 (((-112) $ $) 114)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-566 |#1|) (-141) (-13 (-416) (-1222))) (T -566)) -((-3230 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-4077 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3230 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) (-3342 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112))))) -(-13 (-464) (-861) (-1222) (-1022) (-1058 (-576)) (-10 -8 (-6 -2641) (-15 -3230 ($ |t#1| |t#1|)) (-15 -4077 ($ |t#1| |t#1|)) (-15 -3230 ($ |t#1|)) (-15 -3230 ($ (-419 (-576)))) (-15 -1359 (|t#1| $)) (-15 -2390 (|t#1| $)) (-15 -1922 (|t#1| $)) (-15 -2690 ((-112) $)) (-15 -3197 ((-112) $)) (-15 -3342 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-863) . T) ((-1022) . T) ((-1058 (-576)) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1222) . T) ((-1225) . T) ((-1237) . T)) -((-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 9)) (-4070 (($ $) 11)) (-2378 (((-112) $) 20)) (-3900 (((-3 $ "failed") $) 16)) (-3111 (((-112) $ $) 22))) -(((-567 |#1|) (-10 -8 (-15 -2378 ((-112) |#1|)) (-15 -3111 ((-112) |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -4288 |#1|) (|:| -4450 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) -NIL -(-10 -8 (-15 -2378 ((-112) |#1|)) (-15 -3111 ((-112) |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -4288 |#1|) (|:| -4450 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ $) 48)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2764 (((-656 |#1|) $) NIL)) (-4018 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-562 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464)))) (T -562)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-4078 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))) 50))) +(((-563 |#1| |#2|) (-10 -7 (-15 -4078 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) +((-4078 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) +(-10 -7 (-15 -4078 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) +((-3069 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3660 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2505 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2505 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3069 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3660 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-442 |#1|)) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) +((-3660 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(-10 -7 (-15 -2505 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3069 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3660 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2022 (((-112) (-576) (-576)) 12)) (-2098 (((-576) (-576)) 7)) (-4371 (((-576) (-576) (-576)) 10))) +(((-565) (-10 -7 (-15 -2098 ((-576) (-576))) (-15 -4371 ((-576) (-576) (-576))) (-15 -2022 ((-112) (-576) (-576))))) (T -565)) +((-2022 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-4371 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(-10 -7 (-15 -2098 ((-576) (-576))) (-15 -4371 ((-576) (-576) (-576))) (-15 -2022 ((-112) (-576) (-576)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3359 ((|#1| $) 68)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-4024 (($ $) 98)) (-3900 (($ $) 81)) (-1685 ((|#1| $) 69)) (-2780 (((-3 $ "failed") $ $) 20)) (-1839 (($ $) 80)) (-4005 (($ $) 97)) (-3876 (($ $) 82)) (-4049 (($ $) 96)) (-3919 (($ $) 83)) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 76)) (-2859 (((-576) $) 77)) (-3451 (((-3 $ "failed") $) 37)) (-2614 (($ |#1| |#1|) 73)) (-1661 (((-112) $) 67)) (-1600 (($) 108)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 79)) (-4099 (((-112) $) 66)) (-3124 (($ $ $) 109)) (-1951 (($ $ $) 110)) (-3744 (($ $) 105)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-4423 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-1443 ((|#1| $) 70)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3475 (((-3 $ "failed") $ $) 48)) (-4103 (($ $) 106)) (-4060 (($ $) 95)) (-3929 (($ $) 84)) (-4036 (($ $) 94)) (-3909 (($ $) 85)) (-4013 (($ $) 93)) (-3888 (($ $) 86)) (-3091 (((-112) $ |#1|) 65)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 104)) (-3960 (($ $) 92)) (-2537 (((-112) $ $) 45)) (-4070 (($ $) 103)) (-3937 (($ $) 91)) (-2814 (($ $) 102)) (-3982 (($ $) 90)) (-4387 (($ $) 101)) (-3994 (($ $) 89)) (-2802 (($ $) 100)) (-3973 (($ $) 88)) (-4082 (($ $) 99)) (-3950 (($ $) 87)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 111)) (-2962 (((-112) $ $) 113)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 112)) (-2948 (((-112) $ $) 114)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-566 |#1|) (-141) (-13 (-416) (-1223))) (T -566)) +((-4423 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2614 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-4423 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-4423 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-3091 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) +(-13 (-464) (-861) (-1223) (-1023) (-1059 (-576)) (-10 -8 (-6 -4165) (-15 -4423 ($ |t#1| |t#1|)) (-15 -2614 ($ |t#1| |t#1|)) (-15 -4423 ($ |t#1|)) (-15 -4423 ($ (-419 (-576)))) (-15 -1443 (|t#1| $)) (-15 -1685 (|t#1| $)) (-15 -3359 (|t#1| $)) (-15 -1661 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -3091 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-864) . T) ((-1023) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) . T) ((-1226) . T) ((-1238) . T)) +((-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 9)) (-2544 (($ $) 11)) (-1574 (((-112) $) 20)) (-3451 (((-3 $ "failed") $) 16)) (-2537 (((-112) $ $) 22))) +(((-567 |#1|) (-10 -8 (-15 -1574 ((-112) |#1|)) (-15 -2537 ((-112) |#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3717 ((-2 (|:| -2876 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) +NIL +(-10 -8 (-15 -1574 ((-112) |#1|)) (-15 -2537 ((-112) |#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3717 ((-2 (|:| -2876 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-568) (-141)) (T -568)) -((-1943 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4288 *1) (|:| -4450 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-4070 (*1 *1 *1) (-4 *1 (-568))) (-3111 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -1943 ((-3 $ "failed") $ $)) (-15 -1887 ((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $)) (-15 -4070 ($ $)) (-15 -3111 ((-112) $ $)) (-15 -2378 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1700 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|)) 38)) (-2540 (((-598 |#2|) |#2| (-1196)) 63)) (-3723 (((-3 |#2| "failed") |#2| (-1196)) 156)) (-2841 (((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-3701 (((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|) 41))) -(((-569 |#1| |#2|) (-10 -7 (-15 -3701 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|)) (-15 -1700 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|))) (-15 -3723 ((-3 |#2| "failed") |#2| (-1196))) (-15 -2540 ((-598 |#2|) |#2| (-1196))) (-15 -2841 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -569)) -((-2841 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3723 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-1700 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-3701 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(-10 -7 (-15 -3701 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|)) (-15 -1700 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|))) (-15 -3723 ((-3 |#2| "failed") |#2| (-1196))) (-15 -2540 ((-598 |#2|) |#2| (-1196))) (-15 -2841 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))))) -((-3163 (((-430 |#1|) |#1|) 19)) (-1450 (((-430 |#1|) |#1|) 34)) (-3552 (((-3 |#1| "failed") |#1|) 49)) (-1511 (((-430 |#1|) |#1|) 60))) -(((-570 |#1|) (-10 -7 (-15 -1450 ((-430 |#1|) |#1|)) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -1511 ((-430 |#1|) |#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) -((-3552 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-3163 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -1450 ((-430 |#1|) |#1|)) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -1511 ((-430 |#1|) |#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|))) -((-4249 (($) 9)) (-1703 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2351 (((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2782 (($ (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2863 (($ (-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2904 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2692 (((-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2245 (((-1292)) 11))) -(((-571) (-10 -8 (-15 -4249 ($)) (-15 -2245 ((-1292))) (-15 -2351 ((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2863 ($ (-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2782 ($ (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1703 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2692 ((-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2904 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) -((-2904 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-1703 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-2863 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-2245 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571)))) (-4249 (*1 *1) (-5 *1 (-571)))) -(-10 -8 (-15 -4249 ($)) (-15 -2245 ((-1292))) (-15 -2351 ((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2863 ($ (-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2782 ($ (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1703 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2692 ((-656 (-2 (|:| -2239 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2904 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1177 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2925 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1420 (((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|)) 35)) (-2252 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|)) 115)) (-4430 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|)) 55)) (-2657 (((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|))) 92) (((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|)) 114)) (-4357 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|)) 116)) (-3932 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1571 ((|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|) 53)) (-2708 (((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|)) 34))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -4430 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -4430 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2657 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -2657 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2252 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|))) (-15 -2252 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -4357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|))) (-15 -4357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -1420 ((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|))) (-15 -1571 (|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|)) (-15 -2708 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -3932 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -3932 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|)) (-13 (-464) (-1058 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1222)) (-1120)) (T -572)) -((-3932 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1192 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1120)))) (-3932 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1192 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1120)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1192 *6)) (-4 *7 (-1120)))) (-1571 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1120)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1192 *3)) (-4 *7 (-1120)))) (-4357 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120)))) (-4357 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-1192 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120)))) (-2252 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120)))) (-2252 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1192 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120)))) (-2657 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) (-2657 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) (-4430 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) (-4430 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120))))) -(-10 -7 (-15 -4430 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -4430 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2657 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -2657 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2252 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|))) (-15 -2252 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -4357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|))) (-15 -4357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -1420 ((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|))) (-15 -1571 (|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|)) (-15 -2708 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -3932 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -3932 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|)) -((-4099 (((-576) (-576) (-783)) 85)) (-3332 (((-576) (-576)) 83)) (-3914 (((-576) (-576)) 81)) (-1775 (((-576) (-576)) 87)) (-1948 (((-576) (-576) (-576)) 65)) (-2445 (((-576) (-576) (-576)) 62)) (-2580 (((-419 (-576)) (-576)) 30)) (-3130 (((-576) (-576)) 34)) (-2151 (((-576) (-576)) 74)) (-2255 (((-576) (-576)) 46)) (-1332 (((-656 (-576)) (-576)) 80)) (-3137 (((-576) (-576) (-576) (-576) (-576)) 58)) (-4439 (((-419 (-576)) (-576)) 55))) -(((-573) (-10 -7 (-15 -4439 ((-419 (-576)) (-576))) (-15 -3137 ((-576) (-576) (-576) (-576) (-576))) (-15 -1332 ((-656 (-576)) (-576))) (-15 -2255 ((-576) (-576))) (-15 -2151 ((-576) (-576))) (-15 -3130 ((-576) (-576))) (-15 -2580 ((-419 (-576)) (-576))) (-15 -2445 ((-576) (-576) (-576))) (-15 -1948 ((-576) (-576) (-576))) (-15 -1775 ((-576) (-576))) (-15 -3914 ((-576) (-576))) (-15 -3332 ((-576) (-576))) (-15 -4099 ((-576) (-576) (-783))))) (T -573)) -((-4099 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-3332 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1948 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2445 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2580 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2151 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1332 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3137 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4439 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(-10 -7 (-15 -4439 ((-419 (-576)) (-576))) (-15 -3137 ((-576) (-576) (-576) (-576) (-576))) (-15 -1332 ((-656 (-576)) (-576))) (-15 -2255 ((-576) (-576))) (-15 -2151 ((-576) (-576))) (-15 -3130 ((-576) (-576))) (-15 -2580 ((-419 (-576)) (-576))) (-15 -2445 ((-576) (-576) (-576))) (-15 -1948 ((-576) (-576) (-576))) (-15 -1775 ((-576) (-576))) (-15 -3914 ((-576) (-576))) (-15 -3332 ((-576) (-576))) (-15 -4099 ((-576) (-576) (-783)))) -((-3287 (((-2 (|:| |answer| |#4|) (|:| -2309 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3287 ((-2 (|:| |answer| |#4|) (|:| -2309 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) -((-3287 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2309 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) -(-10 -7 (-15 -3287 ((-2 (|:| |answer| |#4|) (|:| -2309 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3287 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2309 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) -(((-575 |#1| |#2|) (-10 -7 (-15 -3287 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2309 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -575)) -((-3287 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2309 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -3287 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2309 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 30)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 96)) (-4070 (($ $) 97)) (-2378 (((-112) $) NIL)) (-4258 (($ $ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1717 (($ $ $ $) 52)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL)) (-3384 (($ $ $) 91)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL)) (-2317 (((-576) $) NIL)) (-1893 (($ $ $) 53)) (-3222 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 76) (((-701 (-576)) (-701 $)) 72)) (-3900 (((-3 $ "failed") $) 93)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL)) (-3898 (((-112) $) NIL)) (-1982 (((-419 (-576)) $) NIL)) (-4369 (($) 78) (($ $) 79)) (-1903 (($ $ $) 90)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-4270 (($ $ $ $) NIL)) (-1724 (($ $ $) 69)) (-2690 (((-112) $) NIL)) (-3207 (($ $ $) NIL)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL)) (-2287 (((-112) $) 34)) (-1589 (((-112) $) 85)) (-1859 (((-3 $ "failed") $) NIL)) (-3197 (((-112) $) 43)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4120 (($ $ $ $) 54)) (-2905 (($ $ $) 87)) (-1654 (($ $ $) 86)) (-2361 (($ $) NIL)) (-3107 (($ $) 49)) (-2198 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) 68)) (-2038 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-1920 (($ $) 38)) (-3115 (((-1140) $) 42)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 128)) (-3114 (($ $ $) 94) (($ (-656 $)) NIL)) (-2978 (($ $) NIL)) (-1450 (((-430 $) $) 114)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-1943 (((-3 $ "failed") $ $) 112)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4296 (((-112) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 89)) (-4106 (($ $) NIL) (($ $ (-783)) NIL)) (-3755 (($ $) 40)) (-4286 (($ $) 36)) (-1554 (((-576) $) 48) (((-548) $) 63) (((-906 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1178) $) 65)) (-4112 (((-875) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-4115 (((-783)) NIL T CONST)) (-1460 (((-112) $ $) NIL)) (-4410 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-1865 (($) 35)) (-3111 (((-112) $ $) NIL)) (-1411 (($ $ $ $) 51)) (-2388 (($ $) 77)) (-4314 (($) 6 T CONST)) (-4320 (($) 31 T CONST)) (-3678 (((-1178) $) 26) (((-1178) $ (-112)) 27) (((-1292) (-834) $) 28) (((-1292) (-834) $ (-112)) 29)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3993 (((-112) $ $) 50)) (-3974 (((-112) $ $) 80)) (-3938 (((-112) $ $) 33)) (-3983 (((-112) $ $) 81)) (-3962 (((-112) $ $) 10)) (-4036 (($ $) 16) (($ $ $) 39)) (-4026 (($ $ $) 37)) (** (($ $ (-939)) NIL) (($ $ (-783)) 84)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) -(((-576) (-13 (-557) (-626 (-1178)) (-840) (-10 -7 (-6 -4450) (-6 -4455) (-6 -4451) (-6 -4445)))) (T -576)) -NIL -(-13 (-557) (-626 (-1178)) (-840) (-10 -7 (-6 -4450) (-6 -4455) (-6 -4451) (-6 -4445))) -((-2420 (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))) (-781) (-1083)) 116) (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))) (-781)) 118)) (-2944 (((-3 (-1055) "failed") (-326 (-390)) (-1112 (-855 (-390))) (-1196)) 195) (((-3 (-1055) "failed") (-326 (-390)) (-1112 (-855 (-390))) (-1178)) 194) (((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390) (-390) (-1083)) 199) (((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390) (-390)) 200) (((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390)) 201) (((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390))))) 202) (((-1055) (-326 (-390)) (-1114 (-855 (-390)))) 190) (((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390)) 189) (((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390) (-390)) 185) (((-1055) (-781)) 177) (((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390) (-390) (-1083)) 184))) -(((-577) (-10 -7 (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390) (-390) (-1083))) (-15 -2944 ((-1055) (-781))) (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390) (-390) (-1083))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))) (-781))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))) (-781) (-1083))) (-15 -2944 ((-3 (-1055) "failed") (-326 (-390)) (-1112 (-855 (-390))) (-1178))) (-15 -2944 ((-3 (-1055) "failed") (-326 (-390)) (-1112 (-855 (-390))) (-1196))))) (T -577)) -((-2944 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-1196)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-1178)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) (-5 *1 (-577)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-2944 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577))))) -(-10 -7 (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390) (-390) (-1083))) (-15 -2944 ((-1055) (-781))) (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-1114 (-855 (-390))))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390) (-390))) (-15 -2944 ((-1055) (-326 (-390)) (-656 (-1114 (-855 (-390)))) (-390) (-390) (-1083))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))) (-781))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055))) (-781) (-1083))) (-15 -2944 ((-3 (-1055) "failed") (-326 (-390)) (-1112 (-855 (-390))) (-1178))) (-15 -2944 ((-3 (-1055) "failed") (-326 (-390)) (-1112 (-855 (-390))) (-1196)))) -((-1936 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-3219 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-1618 (((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-3728 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196))) 200)) (-3090 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196)) 209 (|has| |#3| (-668 |#2|))))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -3219 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1618 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -1936 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -3728 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3090 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196))) |%noBranch|)) (-13 (-464) (-1058 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1222)) (-1120)) (T -578)) -((-3090 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1196)) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1120)))) (-3728 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-4 *2 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1120)))) (-1936 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1120)))) (-1618 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1120)))) (-3219 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1120))))) -(-10 -7 (-15 -3219 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1618 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -1936 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -3728 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3090 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3578 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196))) |%noBranch|)) -((-4016 (((-2 (|:| -3589 |#2|) (|:| |nconst| |#2|)) |#2| (-1196)) 64)) (-3707 (((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1159)) (|has| |#1| (-626 (-906 (-576)))) (|has| |#1| (-900 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-906 (-576)))) (|has| |#1| (-900 (-576)))))) (-2935 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-906 (-576)))) (|has| |#1| (-900 (-576))))))) -(((-579 |#1| |#2|) (-10 -7 (-15 -4016 ((-2 (|:| -3589 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-626 (-906 (-576)))) (IF (|has| |#1| (-900 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -2935 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) (-15 -3707 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1159)) (-15 -3707 ((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1058 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -579)) -((-3707 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-855 *2)) (-4 *2 (-1159)) (-4 *2 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-626 (-906 (-576)))) (-4 *5 (-900 (-576))) (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-3707 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-906 (-576)))) (-4 *5 (-900 (-576))) (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-2935 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-906 (-576)))) (-4 *5 (-900 (-576))) (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -3589 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(-10 -7 (-15 -4016 ((-2 (|:| -3589 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-626 (-906 (-576)))) (IF (|has| |#1| (-900 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -2935 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) (-15 -3707 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1159)) (-15 -3707 ((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2007 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-2944 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-3399 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-3077 (((-3 (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) -(((-580 |#1| |#2|) (-10 -7 (-15 -2944 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3399 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3077 ((-3 (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2007 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1058 (-576))) (-1263 |#1|)) (T -580)) -((-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-3077 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -4153 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-3399 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148) (-1058 (-576)))) (-5 *1 (-580 *3 *4)))) (-2944 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -2944 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3399 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3077 ((-3 (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2007 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) -((-4235 (((-3 (-576) "failed") |#1|) 14)) (-2345 (((-112) |#1|) 13)) (-2243 (((-576) |#1|) 9))) -(((-581 |#1|) (-10 -7 (-15 -2243 ((-576) |#1|)) (-15 -2345 ((-112) |#1|)) (-15 -4235 ((-3 (-576) "failed") |#1|))) (-1058 (-576))) (T -581)) -((-4235 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2)))) (-2345 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1058 (-576))))) (-2243 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2))))) -(-10 -7 (-15 -2243 ((-576) |#1|)) (-15 -2345 ((-112) |#1|)) (-15 -4235 ((-3 (-576) "failed") |#1|))) -((-3236 (((-3 (-2 (|:| |mainpart| (-419 (-970 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-970 |#1|))) (|:| |logand| (-419 (-970 |#1|))))))) "failed") (-419 (-970 |#1|)) (-1196) (-656 (-419 (-970 |#1|)))) 48)) (-2385 (((-598 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-1196)) 28)) (-3457 (((-3 (-419 (-970 |#1|)) "failed") (-419 (-970 |#1|)) (-1196)) 23)) (-3041 (((-3 (-2 (|:| -4153 (-419 (-970 |#1|))) (|:| |coeff| (-419 (-970 |#1|)))) "failed") (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|))) 35))) -(((-582 |#1|) (-10 -7 (-15 -2385 ((-598 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-1196))) (-15 -3457 ((-3 (-419 (-970 |#1|)) "failed") (-419 (-970 |#1|)) (-1196))) (-15 -3236 ((-3 (-2 (|:| |mainpart| (-419 (-970 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-970 |#1|))) (|:| |logand| (-419 (-970 |#1|))))))) "failed") (-419 (-970 |#1|)) (-1196) (-656 (-419 (-970 |#1|))))) (-15 -3041 ((-3 (-2 (|:| -4153 (-419 (-970 |#1|))) (|:| |coeff| (-419 (-970 |#1|)))) "failed") (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|))))) (-13 (-568) (-1058 (-576)) (-148))) (T -582)) -((-3041 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)) (-148))) (-5 *2 (-2 (|:| -4153 (-419 (-970 *5))) (|:| |coeff| (-419 (-970 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-970 *5))))) (-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 (-419 (-970 *6)))) (-5 *3 (-419 (-970 *6))) (-4 *6 (-13 (-568) (-1058 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-3457 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-970 *4))) (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)) (-148))) (-5 *1 (-582 *4)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)) (-148))) (-5 *2 (-598 (-419 (-970 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-970 *5)))))) -(-10 -7 (-15 -2385 ((-598 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-1196))) (-15 -3457 ((-3 (-419 (-970 |#1|)) "failed") (-419 (-970 |#1|)) (-1196))) (-15 -3236 ((-3 (-2 (|:| |mainpart| (-419 (-970 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-970 |#1|))) (|:| |logand| (-419 (-970 |#1|))))))) "failed") (-419 (-970 |#1|)) (-1196) (-656 (-419 (-970 |#1|))))) (-15 -3041 ((-3 (-2 (|:| -4153 (-419 (-970 |#1|))) (|:| |coeff| (-419 (-970 |#1|)))) "failed") (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|))))) -((-1952 (((-112) $ $) 75)) (-3167 (((-112) $) 48)) (-1922 ((|#1| $) 39)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) 79)) (-3585 (($ $) 139)) (-3434 (($ $) 118)) (-2390 ((|#1| $) 37)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL)) (-3561 (($ $) 141)) (-3411 (($ $) 114)) (-3611 (($ $) 143)) (-3460 (($ $) 122)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) 93)) (-2317 (((-576) $) 95)) (-3900 (((-3 $ "failed") $) 78)) (-4077 (($ |#1| |#1|) 35)) (-2690 (((-112) $) 44)) (-2722 (($) 104)) (-2287 (((-112) $) 55)) (-2770 (($ $ (-576)) NIL)) (-3197 (((-112) $) 45)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2607 (($ $) 106)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-3230 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-1359 ((|#1| $) 36)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) 81) (($ (-656 $)) NIL)) (-1943 (((-3 $ "failed") $ $) 80)) (-2155 (($ $) 108)) (-3622 (($ $) 147)) (-3473 (($ $) 120)) (-3598 (($ $) 149)) (-3447 (($ $) 124)) (-3573 (($ $) 145)) (-3423 (($ $) 116)) (-3342 (((-112) $ |#1|) 42)) (-4112 (((-875) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-4115 (((-783)) 102 T CONST)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) 161)) (-3509 (($ $) 130)) (-3111 (((-112) $ $) NIL)) (-3631 (($ $) 159)) (-3486 (($ $) 126)) (-3672 (($ $) 157)) (-3536 (($ $) 137)) (-1970 (($ $) 155)) (-3549 (($ $) 135)) (-3663 (($ $) 153)) (-3522 (($ $) 132)) (-3641 (($ $) 151)) (-3497 (($ $) 128)) (-4314 (($) 30 T CONST)) (-4320 (($) 10 T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 49)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 47)) (-4036 (($ $) 53) (($ $ $) 54)) (-4026 (($ $ $) 52)) (** (($ $ (-939)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-939) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) -(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1222))) (T -583)) +((-3475 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2876 *1) (|:| -4451 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2544 (*1 *1 *1) (-4 *1 (-568))) (-2537 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -3475 ((-3 $ "failed") $ $)) (-15 -3717 ((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $)) (-15 -2544 ($ $)) (-15 -2537 ((-112) $ $)) (-15 -1574 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2299 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|)) 38)) (-3902 (((-598 |#2|) |#2| (-1197)) 63)) (-2286 (((-3 |#2| "failed") |#2| (-1197)) 156)) (-3801 (((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-2083 (((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|) 41))) +(((-569 |#1| |#2|) (-10 -7 (-15 -2083 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -2299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -2286 ((-3 |#2| "failed") |#2| (-1197))) (-15 -3902 ((-598 |#2|) |#2| (-1197))) (-15 -3801 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -569)) +((-3801 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2286 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2299 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-2083 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(-10 -7 (-15 -2083 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -2299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -2286 ((-3 |#2| "failed") |#2| (-1197))) (-15 -3902 ((-598 |#2|) |#2| (-1197))) (-15 -3801 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) +((-1770 (((-430 |#1|) |#1|) 19)) (-1828 (((-430 |#1|) |#1|) 34)) (-4440 (((-3 |#1| "failed") |#1|) 49)) (-4363 (((-430 |#1|) |#1|) 60))) +(((-570 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -4363 ((-430 |#1|) |#1|)) (-15 -4440 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) +((-4440 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-4363 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1770 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -4363 ((-430 |#1|) |#1|)) (-15 -4440 ((-3 |#1| "failed") |#1|))) +((-3796 (($) 9)) (-2603 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-3203 (((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-4436 (($ (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3980 (($ (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4438 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-1681 (((-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2762 (((-1293)) 11))) +(((-571) (-10 -8 (-15 -3796 ($)) (-15 -2762 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3980 ($ (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4436 ($ (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2603 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1681 ((-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4438 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) +((-4438 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2603 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-4436 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-2762 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571)))) (-3796 (*1 *1) (-5 *1 (-571)))) +(-10 -8 (-15 -3796 ($)) (-15 -2762 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3980 ($ (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4436 ($ (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2603 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1681 ((-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4438 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3343 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-1799 (((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|)) 35)) (-2847 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|)) 115)) (-1825 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 55)) (-2540 (((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|))) 92) (((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|)) 114)) (-2288 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|)) 116)) (-3802 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1955 ((|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|) 53)) (-3671 (((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|)) 34))) +(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -1825 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -1825 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2540 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -2540 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2847 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -2847 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2288 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -2288 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1799 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1955 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -3671 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -3802 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -3802 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -572)) +((-3802 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-3802 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1193 *6)) (-4 *7 (-1121)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1121)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1193 *3)) (-4 *7 (-1121)))) (-2288 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-2288 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-2847 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-2847 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-2540 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-2540 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-1825 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-1825 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) +(-10 -7 (-15 -1825 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -1825 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2540 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -2540 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2847 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -2847 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2288 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -2288 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1799 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1955 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -3671 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -3802 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -3802 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) +((-1644 (((-576) (-576) (-783)) 85)) (-2964 (((-576) (-576)) 83)) (-3608 (((-576) (-576)) 81)) (-1838 (((-576) (-576)) 87)) (-2998 (((-576) (-576) (-576)) 65)) (-4189 (((-576) (-576) (-576)) 62)) (-3052 (((-419 (-576)) (-576)) 30)) (-1486 (((-576) (-576)) 34)) (-4404 (((-576) (-576)) 74)) (-2887 (((-576) (-576)) 46)) (-2909 (((-656 (-576)) (-576)) 80)) (-1535 (((-576) (-576) (-576) (-576) (-576)) 58)) (-1911 (((-419 (-576)) (-576)) 55))) +(((-573) (-10 -7 (-15 -1911 ((-419 (-576)) (-576))) (-15 -1535 ((-576) (-576) (-576) (-576) (-576))) (-15 -2909 ((-656 (-576)) (-576))) (-15 -2887 ((-576) (-576))) (-15 -4404 ((-576) (-576))) (-15 -1486 ((-576) (-576))) (-15 -3052 ((-419 (-576)) (-576))) (-15 -4189 ((-576) (-576) (-576))) (-15 -2998 ((-576) (-576) (-576))) (-15 -1838 ((-576) (-576))) (-15 -3608 ((-576) (-576))) (-15 -2964 ((-576) (-576))) (-15 -1644 ((-576) (-576) (-783))))) (T -573)) +((-1644 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-2964 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3608 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2998 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4189 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4404 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2909 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-1535 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1911 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(-10 -7 (-15 -1911 ((-419 (-576)) (-576))) (-15 -1535 ((-576) (-576) (-576) (-576) (-576))) (-15 -2909 ((-656 (-576)) (-576))) (-15 -2887 ((-576) (-576))) (-15 -4404 ((-576) (-576))) (-15 -1486 ((-576) (-576))) (-15 -3052 ((-419 (-576)) (-576))) (-15 -4189 ((-576) (-576) (-576))) (-15 -2998 ((-576) (-576) (-576))) (-15 -1838 ((-576) (-576))) (-15 -3608 ((-576) (-576))) (-15 -2964 ((-576) (-576))) (-15 -1644 ((-576) (-576) (-783)))) +((-3800 (((-2 (|:| |answer| |#4|) (|:| -2133 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-2 (|:| |answer| |#4|) (|:| -2133 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) +((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2133 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) +(-10 -7 (-15 -3800 ((-2 (|:| |answer| |#4|) (|:| -2133 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3800 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2133 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) +(((-575 |#1| |#2|) (-10 -7 (-15 -3800 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2133 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -575)) +((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2133 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -3800 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2133 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 30)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 96)) (-2544 (($ $) 97)) (-1574 (((-112) $) NIL)) (-3893 (($ $ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2462 (($ $ $ $) 52)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL)) (-2742 (($ $ $) 91)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2859 (((-576) $) NIL)) (-3428 (($ $ $) 53)) (-4344 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 76) (((-701 (-576)) (-701 $)) 72)) (-3451 (((-3 $ "failed") $) 93)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-2034 (((-419 (-576)) $) NIL)) (-1836 (($) 78) (($ $) 79)) (-3440 (($ $ $) 90)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-2533 (($ $ $) 69)) (-1661 (((-112) $) NIL)) (-4202 (($ $ $) NIL)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-3215 (((-112) $) 34)) (-2561 (((-112) $) 85)) (-3396 (((-3 $ "failed") $) NIL)) (-4099 (((-112) $) 43)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1819 (($ $ $ $) 54)) (-3124 (($ $ $) 87)) (-1951 (($ $ $) 86)) (-2241 (($ $) NIL)) (-2434 (($ $) 49)) (-3626 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) 68)) (-2527 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-1373 (($ $) 38)) (-1450 (((-1141) $) 42)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 128)) (-3498 (($ $ $) 94) (($ (-656 $)) NIL)) (-3792 (($ $) NIL)) (-1828 (((-430 $) $) 114)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) 112)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2975 (((-112) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 89)) (-2773 (($ $) NIL) (($ $ (-783)) NIL)) (-1806 (($ $) 40)) (-1870 (($ $) 36)) (-4171 (((-576) $) 48) (((-548) $) 63) (((-907 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1179) $) 65)) (-3569 (((-876) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-1778 (((-783)) NIL T CONST)) (-3904 (((-112) $ $) NIL)) (-1621 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-3515 (($) 35)) (-2537 (((-112) $ $) NIL)) (-2070 (($ $ $ $) 51)) (-1665 (($ $) 77)) (-2719 (($) 6 T CONST)) (-2730 (($) 31 T CONST)) (-3157 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) 50)) (-2962 (((-112) $ $) 80)) (-2923 (((-112) $ $) 33)) (-2978 (((-112) $ $) 81)) (-2948 (((-112) $ $) 10)) (-3043 (($ $) 16) (($ $ $) 39)) (-3029 (($ $ $) 37)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) +(((-576) (-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4451) (-6 -4456) (-6 -4452) (-6 -4446)))) (T -576)) +NIL +(-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4451) (-6 -4456) (-6 -4452) (-6 -4446))) +((-1973 (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084)) 116) (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781)) 118)) (-3441 (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)) 195) (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179)) 194) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084)) 199) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390)) 200) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390)) 201) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390))))) 202) (((-1056) (-326 (-390)) (-1115 (-855 (-390)))) 190) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390)) 189) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390)) 185) (((-1056) (-781)) 177) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084)) 184))) +(((-577) (-10 -7 (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -3441 ((-1056) (-781))) (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -3441 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -3441 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197))))) (T -577)) +((-3441 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3441 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577))))) +(-10 -7 (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -3441 ((-1056) (-781))) (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -3441 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -3441 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -3441 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)))) +((-2854 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-4324 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-2846 (((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-2332 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197))) 200)) (-2352 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197)) 209 (|has| |#3| (-668 |#2|))))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -2846 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2854 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -2332 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -2352 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -578)) +((-2352 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-2332 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121)))) (-2854 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121)))) (-2846 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121)))) (-4324 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) +(-10 -7 (-15 -4324 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -2846 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2854 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -2332 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -2352 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3454 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) +((-3322 (((-2 (|:| -3566 |#2|) (|:| |nconst| |#2|)) |#2| (-1197)) 64)) (-2141 (((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1160)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576)))))) (-3346 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))))) +(((-579 |#1| |#2|) (-10 -7 (-15 -3322 ((-2 (|:| -3566 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3346 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -2141 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -2141 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1059 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -579)) +((-2141 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-2141 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3346 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3322 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -3566 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(-10 -7 (-15 -3322 ((-2 (|:| -3566 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3346 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -2141 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -2141 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2242 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-3441 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-2348 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-2220 (((-3 (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) +(((-580 |#1| |#2|) (-10 -7 (-15 -3441 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2348 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2220 ((-3 (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2242 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -580)) +((-2242 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-2220 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -4106 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2348 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4)))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -3441 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2348 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2220 ((-3 (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2242 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) +((-3647 (((-3 (-576) "failed") |#1|) 14)) (-2475 (((-112) |#1|) 13)) (-3133 (((-576) |#1|) 9))) +(((-581 |#1|) (-10 -7 (-15 -3133 ((-576) |#1|)) (-15 -2475 ((-112) |#1|)) (-15 -3647 ((-3 (-576) "failed") |#1|))) (-1059 (-576))) (T -581)) +((-3647 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) (-3133 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) +(-10 -7 (-15 -3133 ((-576) |#1|)) (-15 -2475 ((-112) |#1|)) (-15 -3647 ((-3 (-576) "failed") |#1|))) +((-1364 (((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|)))) 48)) (-1632 (((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197)) 28)) (-1655 (((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197)) 23)) (-3155 (((-3 (-2 (|:| -4106 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 35))) +(((-582 |#1|) (-10 -7 (-15 -1632 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1655 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -1364 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -3155 ((-3 (-2 (|:| -4106 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) (-13 (-568) (-1059 (-576)) (-148))) (T -582)) +((-3155 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| -4106 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5))))) (-1364 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-1655 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) +(-10 -7 (-15 -1632 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1655 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -1364 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -3155 ((-3 (-2 (|:| -4106 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) +((-3488 (((-112) $ $) 75)) (-1812 (((-112) $) 48)) (-3359 ((|#1| $) 39)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) 79)) (-4024 (($ $) 139)) (-3900 (($ $) 118)) (-1685 ((|#1| $) 37)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL)) (-4005 (($ $) 141)) (-3876 (($ $) 114)) (-4049 (($ $) 143)) (-3919 (($ $) 122)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 93)) (-2859 (((-576) $) 95)) (-3451 (((-3 $ "failed") $) 78)) (-2614 (($ |#1| |#1|) 35)) (-1661 (((-112) $) 44)) (-1600 (($) 104)) (-3215 (((-112) $) 55)) (-4336 (($ $ (-576)) NIL)) (-4099 (((-112) $) 45)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-3744 (($ $) 106)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-4423 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-1443 ((|#1| $) 36)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) 81) (($ (-656 $)) NIL)) (-3475 (((-3 $ "failed") $ $) 80)) (-4103 (($ $) 108)) (-4060 (($ $) 147)) (-3929 (($ $) 120)) (-4036 (($ $) 149)) (-3909 (($ $) 124)) (-4013 (($ $) 145)) (-3888 (($ $) 116)) (-3091 (((-112) $ |#1|) 42)) (-3569 (((-876) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-1778 (((-783)) 102 T CONST)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) 161)) (-3960 (($ $) 130)) (-2537 (((-112) $ $) NIL)) (-4070 (($ $) 159)) (-3937 (($ $) 126)) (-2814 (($ $) 157)) (-3982 (($ $) 137)) (-4387 (($ $) 155)) (-3994 (($ $) 135)) (-2802 (($ $) 153)) (-3973 (($ $) 132)) (-4082 (($ $) 151)) (-3950 (($ $) 128)) (-2719 (($) 30 T CONST)) (-2730 (($) 10 T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 49)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 47)) (-3043 (($ $) 53) (($ $ $) 54)) (-3029 (($ $ $) 52)) (** (($ $ (-940)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-940) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) +(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1223))) (T -583)) NIL (-566 |#1|) -((-4251 (((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576))) 27))) -(((-584) (-10 -7 (-15 -4251 ((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576)))))) (T -584)) -((-4251 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 (-576)))) (-5 *3 (-1192 (-576))) (-5 *1 (-584))))) -(-10 -7 (-15 -4251 ((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576))))) -((-1819 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196)) 19)) (-2811 (((-656 (-624 |#2|)) (-656 |#2|) (-1196)) 23)) (-4025 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-3370 ((|#2| |#2| (-1196)) 59 (|has| |#1| (-568)))) (-3649 ((|#2| |#2| (-1196)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-2682 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196)) 25)) (-1440 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-2296 (((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1058 (-1196))) (|has| |#1| (-626 (-906 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-900 (-576))))))) -(((-585 |#1| |#2|) (-10 -7 (-15 -1819 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196))) (-15 -1440 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2682 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196))) (-15 -4025 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2811 ((-656 (-624 |#2|)) (-656 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -3370 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3649 (|#2| |#2| (-1196))) (IF (|has| |#1| (-626 (-906 (-576)))) (IF (|has| |#1| (-900 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1058 (-1196))) (-15 -2296 ((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1120) (-442 |#1|)) (T -585)) -((-2296 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1196))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1196))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1058 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1196)) (-4 *7 (-626 (-906 (-576)))) (-4 *7 (-464)) (-4 *7 (-900 (-576))) (-4 *7 (-1120)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3649 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1120)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-3370 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1120)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1196)) (-4 *6 (-442 *5)) (-4 *5 (-1120)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-4025 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1120)) (-5 *1 (-585 *3 *4)))) (-2682 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1196)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1120)) (-5 *1 (-585 *5 *6)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1120)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-1819 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1196)) (-4 *5 (-442 *4)) (-4 *4 (-1120)) (-5 *1 (-585 *4 *5))))) -(-10 -7 (-15 -1819 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196))) (-15 -1440 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2682 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196))) (-15 -4025 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2811 ((-656 (-624 |#2|)) (-656 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -3370 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3649 (|#2| |#2| (-1196))) (IF (|has| |#1| (-626 (-906 (-576)))) (IF (|has| |#1| (-900 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1058 (-1196))) (-15 -2296 ((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-4300 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-3464 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-4257 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-2424 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2543 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2918 (((-3 (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-1590 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-4000 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-1493 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-4392 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-3985 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-1632 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-2798 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2543 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1632 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4300 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -1590 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2798 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3464 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -4392 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -2918 ((-3 (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4257 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2424 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3985 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4000 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1493 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -586)) -((-1493 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3985 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2110 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5)))) (-2424 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4153 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4)))) (-4257 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-2918 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4153 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-4392 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2110 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3464 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4153 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2798 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2110 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4153 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-1590 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4153 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4153 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-4300 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2110 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4153 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(-10 -7 (-15 -2543 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1632 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4300 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -1590 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2798 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3464 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -4392 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -2918 ((-3 (-2 (|:| -4153 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4257 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2424 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3985 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2110 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4000 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1493 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1766 (((-3 |#2| "failed") |#2| (-1196) (-1196)) 10))) -(((-587 |#1| |#2|) (-10 -7 (-15 -1766 ((-3 |#2| "failed") |#2| (-1196) (-1196)))) (-13 (-317) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-977) (-1159) (-29 |#1|))) (T -587)) -((-1766 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-1159) (-29 *4)))))) -(-10 -7 (-15 -1766 ((-3 |#2| "failed") |#2| (-1196) (-1196)))) -((-3981 (((-703 (-1245)) $ (-1245)) 26)) (-2315 (((-703 (-561)) $ (-561)) 25)) (-2042 (((-783) $ (-129)) 27)) (-3683 (((-703 (-130)) $ (-130)) 24)) (-3009 (((-703 (-1245)) $) 12)) (-3541 (((-703 (-1243)) $) 8)) (-3290 (((-703 (-1242)) $) 10)) (-2610 (((-703 (-561)) $) 13)) (-1924 (((-703 (-559)) $) 9)) (-3946 (((-703 (-558)) $) 11)) (-1369 (((-783) $ (-129)) 7)) (-2035 (((-703 (-130)) $) 14)) (-1743 (($ $) 6))) +((-3807 (((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))) 27))) +(((-584) (-10 -7 (-15 -3807 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576)))))) (T -584)) +((-3807 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) (-5 *1 (-584))))) +(-10 -7 (-15 -3807 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))))) +((-4235 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197)) 19)) (-3499 (((-656 (-624 |#2|)) (-656 |#2|) (-1197)) 23)) (-1820 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-2086 ((|#2| |#2| (-1197)) 59 (|has| |#1| (-568)))) (-2867 ((|#2| |#2| (-1197)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-1588 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197)) 25)) (-2340 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-2016 (((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1059 (-1197))) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-901 (-576))))))) +(((-585 |#1| |#2|) (-10 -7 (-15 -4235 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -2340 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -1588 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -1820 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -3499 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -2086 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2867 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -2016 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1121) (-442 |#1|)) (T -585)) +((-2016 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1197))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-2867 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-2086 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1820 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) (-1588 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-4235 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) +(-10 -7 (-15 -4235 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -2340 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -1588 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -1820 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -3499 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -2086 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2867 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -2016 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3027 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-1717 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-3882 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-3983 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-3931 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3270 (((-3 (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-2571 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-3165 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-4191 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2631 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-2995 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-3017 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-1453 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) +(((-586 |#1| |#2|) (-10 -7 (-15 -3931 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3017 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3027 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -2571 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -1453 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1717 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2631 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3270 ((-3 (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -3882 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3983 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2995 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3165 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4191 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -586)) +((-4191 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2995 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5)))) (-3983 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4106 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4)))) (-3882 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-3270 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4106 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2631 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4249 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1717 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4106 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1453 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4106 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2571 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4106 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4106 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3027 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3017 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4106 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(-10 -7 (-15 -3931 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3017 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3027 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -2571 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -1453 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1717 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2631 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3270 ((-3 (-2 (|:| -4106 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -3882 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3983 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2995 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3165 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4191 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-1753 (((-3 |#2| "failed") |#2| (-1197) (-1197)) 10))) +(((-587 |#1| |#2|) (-10 -7 (-15 -1753 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-1160) (-29 |#1|))) (T -587)) +((-1753 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) +(-10 -7 (-15 -1753 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) +((-2952 (((-703 (-1246)) $ (-1246)) 26)) (-2193 (((-703 (-561)) $ (-561)) 25)) (-2566 (((-783) $ (-129)) 27)) (-3213 (((-703 (-130)) $ (-130)) 24)) (-2803 (((-703 (-1246)) $) 12)) (-4360 (((-703 (-1244)) $) 8)) (-3837 (((-703 (-1243)) $) 10)) (-2073 (((-703 (-561)) $) 13)) (-2713 (((-703 (-559)) $) 9)) (-3936 (((-703 (-558)) $) 11)) (-2135 (((-783) $ (-129)) 7)) (-2499 (((-703 (-130)) $) 14)) (-1540 (($ $) 6))) (((-588) (-141)) (T -588)) NIL -(-13 (-539) (-873)) -(((-175) . T) ((-539) . T) ((-873) . T)) -((-3981 (((-703 (-1245)) $ (-1245)) NIL)) (-2315 (((-703 (-561)) $ (-561)) NIL)) (-2042 (((-783) $ (-129)) NIL)) (-3683 (((-703 (-130)) $ (-130)) NIL)) (-3009 (((-703 (-1245)) $) NIL)) (-3541 (((-703 (-1243)) $) NIL)) (-3290 (((-703 (-1242)) $) NIL)) (-2610 (((-703 (-561)) $) NIL)) (-1924 (((-703 (-559)) $) NIL)) (-3946 (((-703 (-558)) $) NIL)) (-1369 (((-783) $ (-129)) NIL)) (-2035 (((-703 (-130)) $) NIL)) (-2272 (((-112) $) NIL)) (-2968 (($ (-400)) 14) (($ (-1178)) 16)) (-4112 (((-875) $) NIL)) (-1743 (($ $) NIL))) -(((-589) (-13 (-588) (-625 (-875)) (-10 -8 (-15 -2968 ($ (-400))) (-15 -2968 ($ (-1178))) (-15 -2272 ((-112) $))))) (T -589)) -((-2968 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-589)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) -(-13 (-588) (-625 (-875)) (-10 -8 (-15 -2968 ($ (-400))) (-15 -2968 ($ (-1178))) (-15 -2272 ((-112) $)))) -((-1952 (((-112) $ $) NIL)) (-3401 (($) 7 T CONST)) (-2043 (((-1178) $) NIL)) (-1659 (($) 6 T CONST)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 15)) (-3202 (($) 9 T CONST)) (-2685 (($) 8 T CONST)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 11))) -(((-590) (-13 (-1120) (-10 -8 (-15 -1659 ($) -2665) (-15 -3401 ($) -2665) (-15 -2685 ($) -2665) (-15 -3202 ($) -2665)))) (T -590)) -((-1659 (*1 *1) (-5 *1 (-590))) (-3401 (*1 *1) (-5 *1 (-590))) (-2685 (*1 *1) (-5 *1 (-590))) (-3202 (*1 *1) (-5 *1 (-590)))) -(-13 (-1120) (-10 -8 (-15 -1659 ($) -2665) (-15 -3401 ($) -2665) (-15 -2685 ($) -2665) (-15 -3202 ($) -2665))) -((-1952 (((-112) $ $) NIL)) (-3262 (((-703 $) (-503)) 21)) (-2043 (((-1178) $) NIL)) (-3059 (($ (-1178)) 14)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 33)) (-4047 (((-215 4 (-130)) $) 24)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 26))) -(((-591) (-13 (-1120) (-10 -8 (-15 -3059 ($ (-1178))) (-15 -4047 ((-215 4 (-130)) $)) (-15 -3262 ((-703 $) (-503)))))) (T -591)) -((-3059 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-591)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(-13 (-1120) (-10 -8 (-15 -3059 ($ (-1178))) (-15 -4047 ((-215 4 (-130)) $)) (-15 -3262 ((-703 $) (-503))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $ (-576)) 75)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3133 (($ (-1192 (-576)) (-576)) 81)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) 66)) (-3542 (($ $) 43)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3241 (((-783) $) 16)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2182 (((-576)) 37)) (-4343 (((-576) $) 41)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3679 (($ $ (-576)) 24)) (-1943 (((-3 $ "failed") $ $) 71)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) 17)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 72)) (-2913 (((-1177 (-576)) $) 19)) (-3454 (($ $) 26)) (-4112 (((-875) $) 102) (($ (-576)) 61) (($ $) NIL)) (-4115 (((-783)) 15 T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-576) $ (-576)) 46)) (-4314 (($) 44 T CONST)) (-4320 (($) 21 T CONST)) (-3938 (((-112) $ $) 52)) (-4036 (($ $) 60) (($ $ $) 48)) (-4026 (($ $ $) 59)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) -(((-592 |#1| |#2|) (-882 |#1|) (-576) (-112)) (T -592)) -NIL -(-882 |#1|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 30)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 (($ $ (-939)) NIL (|has| $ (-379))) (($ $) NIL)) (-2053 (((-1209 (-939) (-783)) (-576)) 59)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 $ "failed") $) 95)) (-2317 (($ $) 94)) (-4005 (($ (-1287 $)) 93)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) 44)) (-4369 (($) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) 61)) (-2614 (((-112) $) NIL)) (-3878 (($ $) NIL) (($ $ (-783)) NIL)) (-2443 (((-112) $) NIL)) (-3241 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-2287 (((-112) $) NIL)) (-2558 (($) 49 (|has| $ (-379)))) (-2588 (((-112) $) NIL (|has| $ (-379)))) (-2647 (($ $ (-939)) NIL (|has| $ (-379))) (($ $) NIL)) (-1859 (((-3 $ "failed") $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 $) $ (-939)) NIL (|has| $ (-379))) (((-1192 $) $) 104)) (-4375 (((-939) $) 67)) (-3003 (((-1192 $) $) NIL (|has| $ (-379)))) (-2586 (((-3 (-1192 $) "failed") $ $) NIL (|has| $ (-379))) (((-1192 $) $) NIL (|has| $ (-379)))) (-1579 (($ $ (-1192 $)) NIL (|has| $ (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL T CONST)) (-2409 (($ (-939)) 60)) (-3274 (((-112) $) 87)) (-3115 (((-1140) $) NIL)) (-2547 (($) 28 (|has| $ (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 54)) (-1450 (((-430 $) $) NIL)) (-4416 (((-939)) 86) (((-845 (-939))) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-1656 (((-135)) NIL)) (-4106 (($ $) NIL) (($ $ (-783)) NIL)) (-1877 (((-939) $) 85) (((-845 (-939)) $) NIL)) (-3175 (((-1192 $)) 102)) (-1984 (($) 66)) (-2209 (($) 50 (|has| $ (-379)))) (-3435 (((-701 $) (-1287 $)) NIL) (((-1287 $) $) 91)) (-1554 (((-576) $) 40)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-1972 (((-3 $ "failed") $) NIL) (($ $) 105)) (-4115 (((-783)) 51 T CONST)) (-1994 (((-112) $ $) 107)) (-3578 (((-1287 $) (-939)) 97) (((-1287 $)) 96)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) 31 T CONST)) (-4320 (($) 27 T CONST)) (-2269 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-939)) (T -593)) +(-13 (-539) (-874)) +(((-175) . T) ((-539) . T) ((-874) . T)) +((-2952 (((-703 (-1246)) $ (-1246)) NIL)) (-2193 (((-703 (-561)) $ (-561)) NIL)) (-2566 (((-783) $ (-129)) NIL)) (-3213 (((-703 (-130)) $ (-130)) NIL)) (-2803 (((-703 (-1246)) $) NIL)) (-4360 (((-703 (-1244)) $) NIL)) (-3837 (((-703 (-1243)) $) NIL)) (-2073 (((-703 (-561)) $) NIL)) (-2713 (((-703 (-559)) $) NIL)) (-3936 (((-703 (-558)) $) NIL)) (-2135 (((-783) $ (-129)) NIL)) (-2499 (((-703 (-130)) $) NIL)) (-3081 (((-112) $) NIL)) (-3678 (($ (-400)) 14) (($ (-1179)) 16)) (-3569 (((-876) $) NIL)) (-1540 (($ $) NIL))) +(((-589) (-13 (-588) (-625 (-876)) (-10 -8 (-15 -3678 ($ (-400))) (-15 -3678 ($ (-1179))) (-15 -3081 ((-112) $))))) (T -589)) +((-3678 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) +(-13 (-588) (-625 (-876)) (-10 -8 (-15 -3678 ($ (-400))) (-15 -3678 ($ (-1179))) (-15 -3081 ((-112) $)))) +((-3488 (((-112) $ $) NIL)) (-2750 (($) 7 T CONST)) (-1413 (((-1179) $) NIL)) (-2020 (($) 6 T CONST)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15)) (-4153 (($) 9 T CONST)) (-1619 (($) 8 T CONST)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11))) +(((-590) (-13 (-1121) (-10 -8 (-15 -2020 ($) -1480) (-15 -2750 ($) -1480) (-15 -1619 ($) -1480) (-15 -4153 ($) -1480)))) (T -590)) +((-2020 (*1 *1) (-5 *1 (-590))) (-2750 (*1 *1) (-5 *1 (-590))) (-1619 (*1 *1) (-5 *1 (-590))) (-4153 (*1 *1) (-5 *1 (-590)))) +(-13 (-1121) (-10 -8 (-15 -2020 ($) -1480) (-15 -2750 ($) -1480) (-15 -1619 ($) -1480) (-15 -4153 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2123 (((-703 $) (-503)) 21)) (-1413 (((-1179) $) NIL)) (-2033 (($ (-1179)) 14)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 33)) (-2313 (((-215 4 (-130)) $) 24)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 26))) +(((-591) (-13 (-1121) (-10 -8 (-15 -2033 ($ (-1179))) (-15 -2313 ((-215 4 (-130)) $)) (-15 -2123 ((-703 $) (-503)))))) (T -591)) +((-2033 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) +(-13 (-1121) (-10 -8 (-15 -2033 ($ (-1179))) (-15 -2313 ((-215 4 (-130)) $)) (-15 -2123 ((-703 $) (-503))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $ (-576)) 75)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-1502 (($ (-1193 (-576)) (-576)) 81)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) 66)) (-4369 (($ $) 43)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3309 (((-783) $) 16)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 (((-576)) 37)) (-2144 (((-576) $) 41)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3169 (($ $ (-576)) 24)) (-3475 (((-3 $ "failed") $ $) 71)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) 17)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 72)) (-3229 (((-1178 (-576)) $) 19)) (-1633 (($ $) 26)) (-3569 (((-876) $) 102) (($ (-576)) 61) (($ $) NIL)) (-1778 (((-783)) 15 T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-576) $ (-576)) 46)) (-2719 (($) 44 T CONST)) (-2730 (($) 21 T CONST)) (-2923 (((-112) $ $) 52)) (-3043 (($ $) 60) (($ $ $) 48)) (-3029 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) +(((-592 |#1| |#2|) (-883 |#1|) (-576) (-112)) (T -592)) +NIL +(-883 |#1|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 30)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-1494 (((-1210 (-940) (-783)) (-576)) 59)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 $ "failed") $) 95)) (-2859 (($ $) 94)) (-3208 (($ (-1288 $)) 93)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) 44)) (-1836 (($) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) 61)) (-2117 (((-112) $) NIL)) (-1332 (($ $) NIL) (($ $ (-783)) NIL)) (-4169 (((-112) $) NIL)) (-3309 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3215 (((-112) $) NIL)) (-2767 (($) 49 (|has| $ (-379)))) (-3146 (((-112) $) NIL (|has| $ (-379)))) (-2471 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) 104)) (-2460 (((-940) $) 67)) (-2726 (((-1193 $) $) NIL (|has| $ (-379)))) (-3121 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-3777 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL T CONST)) (-3223 (($ (-940)) 60)) (-3651 (((-112) $) 87)) (-1450 (((-1141) $) NIL)) (-4128 (($) 28 (|has| $ (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 54)) (-1828 (((-430 $) $) NIL)) (-1683 (((-940)) 86) (((-845 (-940))) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-1972 (((-135)) NIL)) (-2773 (($ $) NIL) (($ $ (-783)) NIL)) (-3600 (((-940) $) 85) (((-845 (-940)) $) NIL)) (-1897 (((-1193 $)) 102)) (-2051 (($) 66)) (-3746 (($) 50 (|has| $ (-379)))) (-1490 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) 91)) (-4171 (((-576) $) 40)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3230 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1778 (((-783)) 51 T CONST)) (-2113 (((-112) $ $) 107)) (-3454 (((-1288 $) (-940)) 97) (((-1288 $)) 96)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) 31 T CONST)) (-2730 (($) 27 T CONST)) (-3046 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-940)) (T -593)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-1751 (((-1292) (-1178)) 10))) -(((-594) (-10 -7 (-15 -1751 ((-1292) (-1178))))) (T -594)) -((-1751 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-594))))) -(-10 -7 (-15 -1751 ((-1292) (-1178)))) -((-4149 (((-598 |#2|) (-598 |#2|)) 42)) (-3564 (((-656 |#2|) (-598 |#2|)) 44)) (-2173 ((|#2| (-598 |#2|)) 50))) -(((-595 |#1| |#2|) (-10 -7 (-15 -4149 ((-598 |#2|) (-598 |#2|))) (-15 -3564 ((-656 |#2|) (-598 |#2|))) (-15 -2173 (|#2| (-598 |#2|)))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1222))) (T -595)) -((-2173 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1222))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1222))) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1222))) (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) -(-10 -7 (-15 -4149 ((-598 |#2|) (-598 |#2|))) (-15 -3564 ((-656 |#2|) (-598 |#2|))) (-15 -2173 (|#2| (-598 |#2|)))) -((-2422 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2422 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2422 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2422 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2422 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) -((-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4153 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -4153 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -2422 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2422 ((-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4153 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2422 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2422 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-2025 (($ (-518) (-609)) 14)) (-1686 (($ (-518) (-609) $) 16)) (-3807 (($ (-518) (-609)) 15)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-1201)) 7) (((-1201) $) 6)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-597) (-13 (-1120) (-502 (-1201)) (-10 -8 (-15 -2025 ($ (-518) (-609))) (-15 -3807 ($ (-518) (-609))) (-15 -1686 ($ (-518) (-609) $))))) (T -597)) -((-2025 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3807 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-1686 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(-13 (-1120) (-502 (-1201)) (-10 -8 (-15 -2025 ($ (-518) (-609))) (-15 -3807 ($ (-518) (-609))) (-15 -1686 ($ (-518) (-609) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 76)) (-2317 ((|#1| $) NIL)) (-4153 ((|#1| $) 30)) (-2210 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2091 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2309 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $) 31)) (-2043 (((-1178) $) NIL)) (-3681 (($ |#1| |#1|) 38) (($ |#1| (-1196)) 49 (|has| |#1| (-1058 (-1196))))) (-3115 (((-1140) $) NIL)) (-1441 (((-112) $) 35)) (-4106 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1196)) 89 (|has| |#1| (-916 (-1196))))) (-4112 (((-875) $) 110) (($ |#1|) 29)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 18 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) 17) (($ $ $) NIL)) (-4026 (($ $ $) 85)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) -(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1058 |#1|) (-10 -8 (-15 -2091 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4153 (|#1| $)) (-15 -2309 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -2210 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1441 ((-112) $)) (-15 -3681 ($ |#1| |#1|)) (-15 -4106 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-916 (-1196))) (-15 -4106 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1058 (-1196))) (-15 -3681 ($ |#1| (-1196))) |%noBranch|))) (-374)) (T -598)) -((-2091 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *2)) (|:| |logand| (-1192 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-4153 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *3)) (|:| |logand| (-1192 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3681 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-4106 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-916 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1196)))) (-3681 (*1 *1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *1 (-598 *2)) (-4 *2 (-1058 *3)) (-4 *2 (-374))))) -(-13 (-729 (-419 (-576))) (-1058 |#1|) (-10 -8 (-15 -2091 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4153 (|#1| $)) (-15 -2309 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -2210 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1441 ((-112) $)) (-15 -3681 ($ |#1| |#1|)) (-15 -4106 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-916 (-1196))) (-15 -4106 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1058 (-1196))) (-15 -3681 ($ |#1| (-1196))) |%noBranch|))) -((-1379 (((-112) |#1|) 16)) (-2800 (((-3 |#1| "failed") |#1|) 14)) (-2608 (((-2 (|:| -1865 |#1|) (|:| -1495 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-4008 (((-112) |#1| (-783)) 19)) (-4393 ((|#1| |#1|) 42)) (-3466 ((|#1| |#1| (-783)) 45))) -(((-599 |#1|) (-10 -7 (-15 -4008 ((-112) |#1| (-783))) (-15 -2608 ((-3 |#1| "failed") |#1| (-783))) (-15 -2608 ((-2 (|:| -1865 |#1|) (|:| -1495 (-783))) |#1|)) (-15 -3466 (|#1| |#1| (-783))) (-15 -1379 ((-112) |#1|)) (-15 -2800 ((-3 |#1| "failed") |#1|)) (-15 -4393 (|#1| |#1|))) (-557)) (T -599)) -((-4393 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2800 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1379 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2608 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1865 *3) (|:| -1495 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2608 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4008 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -4008 ((-112) |#1| (-783))) (-15 -2608 ((-3 |#1| "failed") |#1| (-783))) (-15 -2608 ((-2 (|:| -1865 |#1|) (|:| -1495 (-783))) |#1|)) (-15 -3466 (|#1| |#1| (-783))) (-15 -1379 ((-112) |#1|)) (-15 -2800 ((-3 |#1| "failed") |#1|)) (-15 -4393 (|#1| |#1|))) -((-1816 (((-1192 |#1|) (-939)) 44))) -(((-600 |#1|) (-10 -7 (-15 -1816 ((-1192 |#1|) (-939)))) (-360)) (T -600)) -((-1816 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(-10 -7 (-15 -1816 ((-1192 |#1|) (-939)))) -((-4149 (((-598 (-419 (-970 |#1|))) (-598 (-419 (-970 |#1|)))) 27)) (-2944 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-970 |#1|)) (-1196)) 34 (|has| |#1| (-148)))) (-3564 (((-656 (-326 |#1|)) (-598 (-419 (-970 |#1|)))) 19)) (-3829 (((-326 |#1|) (-419 (-970 |#1|)) (-1196)) 32 (|has| |#1| (-148)))) (-2173 (((-326 |#1|) (-598 (-419 (-970 |#1|)))) 21))) -(((-601 |#1|) (-10 -7 (-15 -4149 ((-598 (-419 (-970 |#1|))) (-598 (-419 (-970 |#1|))))) (-15 -3564 ((-656 (-326 |#1|)) (-598 (-419 (-970 |#1|))))) (-15 -2173 ((-326 |#1|) (-598 (-419 (-970 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2944 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-970 |#1|)) (-1196))) (-15 -3829 ((-326 |#1|) (-419 (-970 |#1|)) (-1196)))) |%noBranch|)) (-13 (-464) (-1058 (-576)) (-651 (-576)))) (T -601)) -((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-970 *4)))) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-970 *4)))) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-970 *3)))) (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) -(-10 -7 (-15 -4149 ((-598 (-419 (-970 |#1|))) (-598 (-419 (-970 |#1|))))) (-15 -3564 ((-656 (-326 |#1|)) (-598 (-419 (-970 |#1|))))) (-15 -2173 ((-326 |#1|) (-598 (-419 (-970 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2944 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-970 |#1|)) (-1196))) (-15 -3829 ((-326 |#1|) (-419 (-970 |#1|)) (-1196)))) |%noBranch|)) -((-4310 (((-656 (-701 (-576))) (-656 (-939)) (-656 (-923 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-939))) 79) (((-701 (-576)) (-656 (-939)) (-923 (-576))) 72)) (-2494 (((-783) (-656 (-939))) 69))) -(((-602) (-10 -7 (-15 -2494 ((-783) (-656 (-939)))) (-15 -4310 ((-701 (-576)) (-656 (-939)) (-923 (-576)))) (-15 -4310 ((-656 (-701 (-576))) (-656 (-939)))) (-15 -4310 ((-656 (-701 (-576))) (-656 (-939)) (-656 (-923 (-576))))))) (T -602)) -((-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-939))) (-5 *4 (-656 (-923 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-939))) (-5 *4 (-923 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *2 (-783)) (-5 *1 (-602))))) -(-10 -7 (-15 -2494 ((-783) (-656 (-939)))) (-15 -4310 ((-701 (-576)) (-656 (-939)) (-923 (-576)))) (-15 -4310 ((-656 (-701 (-576))) (-656 (-939)))) (-15 -4310 ((-656 (-701 (-576))) (-656 (-939)) (-656 (-923 (-576)))))) -((-4088 (((-656 |#5|) |#5| (-112)) 100)) (-4035 (((-112) |#5| (-656 |#5|)) 34))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4088 ((-656 |#5|) |#5| (-112))) (-15 -4035 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1129 |#1| |#2| |#3| |#4|)) (T -603)) -((-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1129 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1129 *5 *6 *7 *8))))) -(-10 -7 (-15 -4088 ((-656 |#5|) |#5| (-112))) (-15 -4035 ((-112) |#5| (-656 |#5|)))) -((-1952 (((-112) $ $) NIL)) (-1782 (((-1155) $) 11)) (-1774 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-604) (-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $))))) (T -604)) -((-1774 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604))))) -(-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $)))) -((-1952 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2132 (($ $) 38)) (-1525 (($ $) NIL)) (-3537 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2257 (((-112) $ $) 67)) (-2234 (((-112) $ $ (-576)) 62)) (-4149 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-3063 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-1715 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-861))))) (-2379 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4464))) (((-145) $ (-1254 (-576)) (-145)) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-4434 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3298 (($ $ (-1254 (-576)) $) 57)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-2824 (($ (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4463))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4463)))) (-1908 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4464)))) (-3719 (((-145) $ (-576)) NIL)) (-2280 (((-112) $ $) 88)) (-3538 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1120))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1120))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3721 (((-656 (-145)) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) (-145)) 9)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 32 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| (-145) (-861)))) (-2144 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-3958 (((-656 (-145)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-3501 (((-576) $) 47 (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-145) (-861)))) (-4326 (((-112) $ $ (-145)) 89)) (-1464 (((-783) $ $ (-145)) 86)) (-1896 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3531 (($ $) 41)) (-1736 (($ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-1324 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2043 (((-1178) $) 43 (|has| (-145) (-1120)))) (-3386 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) 85 (|has| (-145) (-1120)))) (-1753 (((-145) $) NIL (|has| (-576) (-861)))) (-2022 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2556 (($ $ (-145)) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-2692 (((-656 (-145)) $) NIL)) (-1937 (((-112) $) 15)) (-3935 (($) 10)) (-4368 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1254 (-576))) 25) (($ $ $) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-3757 (($ $ $ (-576)) 81 (|has| $ (-6 -4464)))) (-4286 (($ $) 20)) (-1554 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-4124 (($ (-656 (-145))) NIL)) (-2766 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-4112 (($ (-145)) NIL) (((-875) $) 31 (|has| (-145) (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1682 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3938 (((-112) $ $) 17 (|has| (-145) (-102)))) (-3983 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3962 (((-112) $ $) 18 (|has| (-145) (-861)))) (-1968 (((-783) $) 16 (|has| $ (-6 -4463))))) -(((-605 |#1|) (-1164) (-576)) (T -605)) -NIL -(-1164) -((-3350 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1114 |#4|)) 32))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3350 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1114 |#4|))) (-15 -3350 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-861) (-568) (-967 |#3| |#1| |#2|)) (T -606)) -((-3350 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) (-3350 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1114 *3)) (-4 *3 (-967 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-861)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) -(-10 -7 (-15 -3350 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1114 |#4|))) (-15 -3350 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 71)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-1560 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-4360 (($ $) 109)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1785 (((-875) (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1046 (-855 (-576))) (-1196) |#1| (-419 (-576))) 241)) (-2860 (($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3365 (((-112) $) NIL)) (-3241 (((-576) $) 63) (((-576) $ (-576)) 64)) (-2287 (((-112) $) NIL)) (-2747 (($ $ (-939)) 83)) (-3235 (($ (-1 |#1| (-576)) $) 80)) (-3146 (((-112) $) 26)) (-1562 (($ |#1| (-576)) 22) (($ $ (-1102) (-576)) NIL) (($ $ (-656 (-1102)) (-656 (-576))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-1734 (($ (-1046 (-855 (-576))) (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-2944 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3957 (((-3 $ "failed") $ $ (-112)) 108)) (-4362 (($ $ $) 116)) (-3115 (((-1140) $) NIL)) (-3646 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-4254 (((-1046 (-855 (-576))) $) 14)) (-3679 (($ $ (-576)) 47)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-4368 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1132)))) (-4106 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-1877 (((-576) $) NIL)) (-3454 (($ $) 48)) (-4112 (((-875) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4269 ((|#1| $ (-576)) 61)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) 39 T CONST)) (-3187 ((|#1| $) NIL)) (-4276 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-1547 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3576 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-1860 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2689 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-1370 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-4160 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4090 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2374 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-4372 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-3261 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-4425 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-2189 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-4329 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3213 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3376 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-3495 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3774 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2845 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3028 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-2152 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-2366 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-3243 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3289 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-3830 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2964 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2211 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2641 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-4314 (($) 30 T CONST)) (-4320 (($) 40 T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3938 (((-112) $ $) 73)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) 91) (($ $ $) 72)) (-4026 (($ $ $) 88)) (** (($ $ (-939)) NIL) (($ $ (-783)) 111)) (* (($ (-939) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-607 |#1|) (-13 (-1265 |#1| (-576)) (-10 -8 (-15 -1734 ($ (-1046 (-855 (-576))) (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4254 ((-1046 (-855 (-576))) $)) (-15 -3646 ((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -2860 ($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3146 ((-112) $)) (-15 -3235 ($ (-1 |#1| (-576)) $)) (-15 -3957 ((-3 $ "failed") $ $ (-112))) (-15 -4360 ($ $)) (-15 -4362 ($ $ $)) (-15 -1785 ((-875) (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1046 (-855 (-576))) (-1196) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $)) (-15 -4160 ($ $ |#1|)) (-15 -2335 ($ $ (-419 (-576)))) (-15 -2374 ($ $)) (-15 -4090 ($ $)) (-15 -1860 ($ $)) (-15 -3213 ($ $)) (-15 -1547 ($ $)) (-15 -2189 ($ $)) (-15 -1370 ($ $)) (-15 -3261 ($ $)) (-15 -2845 ($ $)) (-15 -2211 ($ $)) (-15 -3495 ($ $)) (-15 -3830 ($ $)) (-15 -2152 ($ $)) (-15 -3243 ($ $)) (-15 -3576 ($ $)) (-15 -4329 ($ $)) (-15 -4276 ($ $)) (-15 -4425 ($ $)) (-15 -2689 ($ $)) (-15 -4372 ($ $)) (-15 -3774 ($ $)) (-15 -2964 ($ $)) (-15 -3376 ($ $)) (-15 -3289 ($ $)) (-15 -3028 ($ $)) (-15 -2366 ($ $))) |%noBranch|))) (-1069)) (T -607)) -((-3146 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-1734 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-855 (-576)))) (-5 *3 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1069)) (-5 *1 (-607 *4)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-1046 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1069)) (-5 *1 (-607 *3)))) (-3235 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1069)) (-5 *1 (-607 *3)))) (-3957 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-4360 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1069)))) (-4362 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1069)))) (-1785 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1046 (-855 (-576)))) (-5 *5 (-1196)) (-5 *7 (-419 (-576))) (-4 *6 (-1069)) (-5 *2 (-875)) (-5 *1 (-607 *6)))) (-2944 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1069)))) (-2374 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-4090 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-1860 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2189 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-1370 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3261 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2845 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3495 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3830 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3243 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3576 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-4329 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-4425 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2689 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-4372 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3774 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2964 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3376 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3289 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-3028 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(-13 (-1265 |#1| (-576)) (-10 -8 (-15 -1734 ($ (-1046 (-855 (-576))) (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4254 ((-1046 (-855 (-576))) $)) (-15 -3646 ((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -2860 ($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3146 ((-112) $)) (-15 -3235 ($ (-1 |#1| (-576)) $)) (-15 -3957 ((-3 $ "failed") $ $ (-112))) (-15 -4360 ($ $)) (-15 -4362 ($ $ $)) (-15 -1785 ((-875) (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1046 (-855 (-576))) (-1196) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $)) (-15 -4160 ($ $ |#1|)) (-15 -2335 ($ $ (-419 (-576)))) (-15 -2374 ($ $)) (-15 -4090 ($ $)) (-15 -1860 ($ $)) (-15 -3213 ($ $)) (-15 -1547 ($ $)) (-15 -2189 ($ $)) (-15 -1370 ($ $)) (-15 -3261 ($ $)) (-15 -2845 ($ $)) (-15 -2211 ($ $)) (-15 -3495 ($ $)) (-15 -3830 ($ $)) (-15 -2152 ($ $)) (-15 -3243 ($ $)) (-15 -3576 ($ $)) (-15 -4329 ($ $)) (-15 -4276 ($ $)) (-15 -4425 ($ $)) (-15 -2689 ($ $)) (-15 -4372 ($ $)) (-15 -3774 ($ $)) (-15 -2964 ($ $)) (-15 -3376 ($ $)) (-15 -3289 ($ $)) (-15 -3028 ($ $)) (-15 -2366 ($ $))) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 63)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2860 (($ (-1177 |#1|)) 9)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) 44)) (-3365 (((-112) $) 56)) (-3241 (((-783) $) 61) (((-783) $ (-783)) 60)) (-2287 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-1177 |#1|) $) 25)) (-4115 (((-783)) 55 T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) 10 T CONST)) (-4320 (($) 14 T CONST)) (-3938 (((-112) $ $) 24)) (-4036 (($ $) 32) (($ $ $) 16)) (-4026 (($ $ $) 27)) (** (($ $ (-939)) NIL) (($ $ (-783)) 53)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) -(((-608 |#1|) (-13 (-1069) (-111 |#1| |#1|) (-10 -8 (-15 -1410 ((-1177 |#1|) $)) (-15 -2860 ($ (-1177 |#1|))) (-15 -3365 ((-112) $)) (-15 -3241 ((-783) $)) (-15 -3241 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1069)) (T -608)) -((-1410 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-608 *3)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) (-3241 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1069))))) -(-13 (-1069) (-111 |#1| |#1|) (-10 -8 (-15 -1410 ((-1177 |#1|) $)) (-15 -2860 ($ (-1177 |#1|))) (-15 -3365 ((-112) $)) (-15 -3241 ((-783) $)) (-15 -3241 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-3803 (($) 8 T CONST)) (-3850 (($) 7 T CONST)) (-4387 (($ $ (-656 $)) 16)) (-2043 (((-1178) $) NIL)) (-3438 (($) 6 T CONST)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-1201)) 15) (((-1201) $) 10)) (-3271 (($) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-609) (-13 (-1120) (-502 (-1201)) (-10 -8 (-15 -3438 ($) -2665) (-15 -3850 ($) -2665) (-15 -3803 ($) -2665) (-15 -3271 ($) -2665) (-15 -4387 ($ $ (-656 $)))))) (T -609)) -((-3438 (*1 *1) (-5 *1 (-609))) (-3850 (*1 *1) (-5 *1 (-609))) (-3803 (*1 *1) (-5 *1 (-609))) (-3271 (*1 *1) (-5 *1 (-609))) (-4387 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(-13 (-1120) (-502 (-1201)) (-10 -8 (-15 -3438 ($) -2665) (-15 -3850 ($) -2665) (-15 -3803 ($) -2665) (-15 -3271 ($) -2665) (-15 -4387 ($ $ (-656 $))))) -((-2422 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) -(((-610 |#1| |#2|) (-10 -7 (-15 -2422 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1237) (-1237)) (T -610)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -(-10 -7 (-15 -2422 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) -((-2422 (((-1177 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1177 |#2|)) 20) (((-1177 |#3|) (-1 |#3| |#1| |#2|) (-1177 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2422 ((-1177 |#3|) (-1 |#3| |#1| |#2|) (-1177 |#1|) (-613 |#2|))) (-15 -2422 ((-1177 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1177 |#2|)))) (-1237) (-1237) (-1237)) (T -611)) -((-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1177 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1177 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1177 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1177 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -(-10 -7 (-15 -2422 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2422 ((-1177 |#3|) (-1 |#3| |#1| |#2|) (-1177 |#1|) (-613 |#2|))) (-15 -2422 ((-1177 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1177 |#2|)))) -((-3322 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))) 57)) (-1506 (((-171 |#2|) |#3|) 122)) (-1740 ((|#3| (-171 |#2|)) 46)) (-2093 ((|#2| |#3|) 21)) (-2453 ((|#3| |#2|) 35))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -1740 (|#3| (-171 |#2|))) (-15 -2093 (|#2| |#3|)) (-15 -2453 (|#3| |#2|)) (-15 -1506 ((-171 |#2|) |#3|)) (-15 -3322 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))))) (-568) (-13 (-442 |#1|) (-1022) (-1222)) (-13 (-442 (-171 |#1|)) (-1022) (-1222))) (T -612)) -((-3322 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1196))) (-4 *2 (-13 (-442 (-171 *5)) (-1022) (-1222))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1022) (-1222))))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1022) (-1222))) (-4 *3 (-13 (-442 (-171 *4)) (-1022) (-1222))))) (-2453 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1022) (-1222))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1022) (-1222))))) (-2093 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1022) (-1222))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1022) (-1222))))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1022) (-1222))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1022) (-1222))) (-5 *1 (-612 *4 *5 *2))))) -(-10 -7 (-15 -1740 (|#3| (-171 |#2|))) (-15 -2093 (|#2| |#3|)) (-15 -2453 (|#3| |#2|)) (-15 -1506 ((-171 |#2|) |#3|)) (-15 -3322 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))))) -((-3603 (($ (-1 (-112) |#1|) $) 17)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3528 (($ (-1 |#1| |#1|) |#1|) 9)) (-3579 (($ (-1 (-112) |#1|) $) 13)) (-3590 (($ (-1 (-112) |#1|) $) 15)) (-4124 (((-1177 |#1|) $) 18)) (-4112 (((-875) $) NIL))) -(((-613 |#1|) (-13 (-625 (-875)) (-10 -8 (-15 -2422 ($ (-1 |#1| |#1|) $)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)) (-15 -3603 ($ (-1 (-112) |#1|) $)) (-15 -3528 ($ (-1 |#1| |#1|) |#1|)) (-15 -4124 ((-1177 |#1|) $)))) (-1237)) (T -613)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3579 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3590 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3528 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1237))))) -(-13 (-625 (-875)) (-10 -8 (-15 -2422 ($ (-1 |#1| |#1|) $)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)) (-15 -3603 ($ (-1 (-112) |#1|) $)) (-15 -3528 ($ (-1 |#1| |#1|) |#1|)) (-15 -4124 ((-1177 |#1|) $)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2154 (($ (-783)) NIL (|has| |#1| (-23)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-1662 (((-701 |#1|) $ $) NIL (|has| |#1| (-1069)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1347 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))))) (-1556 (((-112) $ (-783)) NIL)) (-3107 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))))) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-4139 ((|#1| $ $) NIL (|has| |#1| (-1069)))) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-1776 (($ $ $) NIL (|has| |#1| (-1069)))) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) NIL)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4036 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4026 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-614 |#1| |#2|) (-1285 |#1|) (-1237) (-576)) (T -614)) -NIL -(-1285 |#1|) -((-4100 (((-1292) $ |#2| |#2|) 35)) (-2066 ((|#2| $) 23)) (-3501 ((|#2| $) 21)) (-1896 (($ (-1 |#3| |#3|) $) 32)) (-2422 (($ (-1 |#3| |#3|) $) 30)) (-1753 ((|#3| $) 26)) (-2556 (($ $ |#3|) 33)) (-2790 (((-112) |#3| $) 17)) (-2692 (((-656 |#3|) $) 15)) (-4368 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -4100 ((-1292) |#1| |#2| |#2|)) (-15 -2556 (|#1| |#1| |#3|)) (-15 -1753 (|#3| |#1|)) (-15 -2066 (|#2| |#1|)) (-15 -3501 (|#2| |#1|)) (-15 -2790 ((-112) |#3| |#1|)) (-15 -2692 ((-656 |#3|) |#1|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -1896 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2422 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1120) (-1237)) (T -615)) -NIL -(-10 -8 (-15 -4100 ((-1292) |#1| |#2| |#2|)) (-15 -2556 (|#1| |#1| |#3|)) (-15 -1753 (|#3| |#1|)) (-15 -2066 (|#2| |#1|)) (-15 -3501 (|#2| |#1|)) (-15 -2790 ((-112) |#3| |#1|)) (-15 -2692 ((-656 |#3|) |#1|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -1896 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2422 (|#1| (-1 |#3| |#3|) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#2| (-102)))) (-4100 (((-1292) $ |#1| |#1|) 41 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4464)))) (-4331 (($) 7 T CONST)) (-1908 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) 52)) (-3721 (((-656 |#2|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-2066 ((|#1| $) 44 (|has| |#1| (-861)))) (-3958 (((-656 |#2|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-3501 ((|#1| $) 45 (|has| |#1| (-861)))) (-1896 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#2| (-1120)))) (-3963 (((-656 |#1|) $) 47)) (-1474 (((-112) |#1| $) 48)) (-3115 (((-1140) $) 22 (|has| |#2| (-1120)))) (-1753 ((|#2| $) 43 (|has| |#1| (-861)))) (-2556 (($ $ |#2|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3125 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4463))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#2| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#2| (-102)))) (-1682 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#2| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-616 |#1| |#2|) (-141) (-1120) (-1237)) (T -616)) -((-2692 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) (-5 *2 (-656 *4)))) (-1474 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) (-5 *2 (-656 *3)))) (-2790 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1120)) (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-112)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1120)) (-4 *2 (-861)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1120)) (-4 *2 (-861)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1120)) (-4 *3 (-861)) (-4 *2 (-1237)))) (-2556 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237)))) (-4100 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) (-5 *2 (-1292))))) -(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -2692 ((-656 |t#2|) $)) (-15 -1474 ((-112) |t#1| $)) (-15 -3963 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1120)) (IF (|has| $ (-6 -4463)) (-15 -2790 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -3501 (|t#1| $)) (-15 -2066 (|t#1| $)) (-15 -1753 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2556 ($ $ |t#2|)) (-15 -4100 ((-1292) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#2| (-1120)) (|has| |#2| (-102))) ((-625 (-875)) -3794 (|has| |#2| (-1120)) (|has| |#2| (-625 (-875)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-1120) |has| |#2| (-1120)) ((-1237) . T)) -((-4112 (((-875) $) 19) (($ (-130)) 13) (((-130) $) 14))) -(((-617) (-13 (-625 (-875)) (-502 (-130)))) (T -617)) -NIL -(-13 (-625 (-875)) (-502 (-130))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-1201)) NIL) (((-1201) $) NIL) (((-1236) $) 14) (($ (-656 (-1236))) 13)) (-4024 (((-656 (-1236)) $) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-618) (-13 (-1103) (-625 (-1236)) (-10 -8 (-15 -4112 ($ (-656 (-1236)))) (-15 -4024 ((-656 (-1236)) $))))) (T -618)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618))))) -(-13 (-1103) (-625 (-1236)) (-10 -8 (-15 -4112 ($ (-656 (-1236)))) (-15 -4024 ((-656 (-1236)) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-4288 (((-3 $ "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2108 (((-1287 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1287 (-701 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3791 (((-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4331 (($) NIL T CONST)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2426 (((-3 $ "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2206 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3500 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4032 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2942 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4137 (((-1192 (-970 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2711 (($ $ (-939)) NIL)) (-2590 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3138 (((-1192 |#1|) $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4078 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1748 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2896 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4005 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3900 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4134 (((-939)) NIL (|has| |#2| (-378 |#1|)))) (-1670 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4222 (($ $ (-939)) NIL)) (-2582 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2396 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2304 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3510 (((-3 $ "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1647 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1881 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2882 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1793 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3689 (((-1192 (-970 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1604 (($ $ (-939)) NIL)) (-1845 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2557 (((-1192 |#1|) $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4037 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3491 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3403 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2043 (((-1178) $) NIL)) (-1658 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1530 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2502 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3115 (((-1140) $) NIL)) (-2231 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4368 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3435 (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-378 |#1|))) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1554 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2531 (((-656 (-970 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-970 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2362 (($ $ $) NIL)) (-2631 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4112 (((-875) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL (|has| |#2| (-429 |#1|)))) (-2341 (((-656 (-1287 |#1|))) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3240 (($ $ $ $) NIL)) (-1962 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2649 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2027 (($ $ $) NIL)) (-1528 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3484 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2289 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4314 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) 24)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4112 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) -((-4112 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4112 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-4199 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) 39)) (-1976 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL) (($) NIL)) (-4100 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-1178) |#1|) 49)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#1| "failed") (-1178) $) 52)) (-4331 (($) NIL T CONST)) (-1985 (($ $ (-1178)) 25)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120))))) (-1672 (((-3 |#1| "failed") (-1178) $) 53) (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (($ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (|has| $ (-6 -4463)))) (-2824 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (($ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120))))) (-2721 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120))))) (-3627 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) 38)) (-1908 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-1178)) NIL)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463))) (((-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2102 (($ $) 54)) (-3822 (($ (-400)) 23) (($ (-400) (-1178)) 22)) (-4148 (((-400) $) 40)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-1178) $) NIL (|has| (-1178) (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463))) (((-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (((-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120))))) (-3501 (((-1178) $) NIL (|has| (-1178) (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2351 (((-656 (-1178)) $) 45)) (-3406 (((-112) (-1178) $) NIL)) (-1368 (((-1178) $) 41)) (-2976 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL)) (-3963 (((-656 (-1178)) $) NIL)) (-1474 (((-112) (-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 ((|#1| $) NIL (|has| (-1178) (-861)))) (-2022 (((-3 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) "failed") (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-656 (-304 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 43)) (-4368 ((|#1| $ (-1178) |#1|) NIL) ((|#1| $ (-1178)) 48)) (-1437 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL) (($) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (((-783) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (((-783) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL)) (-4112 (((-875) $) 21)) (-1743 (($ $) 26)) (-1994 (((-112) $ $) NIL)) (-2050 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 20)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4463) (-15 -2102 ($ $)))) (-1120)) (T -620)) -((-2102 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1120))))) -(-13 (-375 (-400) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4463) (-15 -2102 ($ $)))) -((-4217 (((-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) $) 16)) (-2351 (((-656 |#2|) $) 20)) (-3406 (((-112) |#2| $) 12))) -(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -2351 ((-656 |#2|) |#1|)) (-15 -3406 ((-112) |#2| |#1|)) (-15 -4217 ((-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|))) (-622 |#2| |#3|) (-1120) (-1120)) (T -621)) -NIL -(-10 -8 (-15 -2351 ((-656 |#2|) |#1|)) (-15 -3406 ((-112) |#2| |#1|)) (-15 -4217 ((-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|))) -((-1952 (((-112) $ $) 20 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)))) (-2337 (((-112) $ (-783)) 8)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 56 (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) 62)) (-4331 (($) 7 T CONST)) (-3966 (($ $) 59 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 47 (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) 63)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 55 (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 57 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 54 (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 53 (|has| $ (-6 -4463)))) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-2351 (((-656 |#1|) $) 64)) (-3406 (((-112) |#1| $) 65)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 40)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 41)) (-3115 (((-1140) $) 22 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 52)) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 42)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) 27 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 26 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 25 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 24 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-1437 (($) 50) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 49)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 32 (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 51)) (-4112 (((-875) $) 18 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 43)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-622 |#1| |#2|) (-141) (-1120) (-1120)) (T -622)) -((-3406 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-112)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-656 *3)))) (-1672 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-2049 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(-13 (-231 (-2 (|:| -2239 |t#1|) (|:| -2904 |t#2|))) (-10 -8 (-15 -3406 ((-112) |t#1| $)) (-15 -2351 ((-656 |t#1|) $)) (-15 -1672 ((-3 |t#2| "failed") |t#1| $)) (-15 -2049 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((-102) -3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))) ((-625 (-875)) -3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-1120) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) ((-1237) . T)) -((-4145 (((-624 |#2|) |#1|) 17)) (-1621 (((-3 |#1| "failed") (-624 |#2|)) 21))) -(((-623 |#1| |#2|) (-10 -7 (-15 -4145 ((-624 |#2|) |#1|)) (-15 -1621 ((-3 |#1| "failed") (-624 |#2|)))) (-1120) (-1120)) (T -623)) -((-1621 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) (-5 *1 (-623 *2 *4)))) (-4145 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(-10 -7 (-15 -4145 ((-624 |#2|) |#1|)) (-15 -1621 ((-3 |#1| "failed") (-624 |#2|)))) -((-1952 (((-112) $ $) NIL)) (-1498 (((-3 (-1196) "failed") $) 46)) (-4245 (((-1292) $ (-783)) 22)) (-3538 (((-783) $) 20)) (-1400 (((-115) $) 9)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-2774 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1196)) 33)) (-1681 (((-112) $ (-115)) 15) (((-112) $ (-1196)) 13)) (-2952 (((-783) $) 17)) (-3115 (((-1140) $) NIL)) (-1554 (((-906 (-576)) $) 95 (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) 102 (|has| |#1| (-626 (-906 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-4112 (((-875) $) 72)) (-1994 (((-112) $ $) NIL)) (-3840 (((-656 |#1|) $) 19)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 51)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 53))) -(((-624 |#1|) (-13 (-133) (-861) (-898 |#1|) (-10 -8 (-15 -1400 ((-115) $)) (-15 -3840 ((-656 |#1|) $)) (-15 -2952 ((-783) $)) (-15 -2774 ($ (-115) (-656 |#1|) (-783))) (-15 -2774 ($ (-1196))) (-15 -1498 ((-3 (-1196) "failed") $)) (-15 -1681 ((-112) $ (-115))) (-15 -1681 ((-112) $ (-1196))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1120)) (T -624)) -((-1400 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) (-2774 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1120)) (-5 *1 (-624 *5)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) (-1498 (*1 *2 *1) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) (-1681 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1120)))) (-1681 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1120))))) -(-13 (-133) (-861) (-898 |#1|) (-10 -8 (-15 -1400 ((-115) $)) (-15 -3840 ((-656 |#1|) $)) (-15 -2952 ((-783) $)) (-15 -2774 ($ (-115) (-656 |#1|) (-783))) (-15 -2774 ($ (-1196))) (-15 -1498 ((-3 (-1196) "failed") $)) (-15 -1681 ((-112) $ (-115))) (-15 -1681 ((-112) $ (-1196))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-4112 ((|#1| $) 6))) -(((-625 |#1|) (-141) (-1237)) (T -625)) -((-4112 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -4112 (|t#1| $)))) -((-1554 ((|#1| $) 6))) -(((-626 |#1|) (-141) (-1237)) (T -626)) -((-1554 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -1554 (|t#1| $)))) -((-3732 (((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -3732 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3732 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1058 (-576)) (-1058 (-419 (-576)))) (-1263 |#1|)) (T -627)) -((-3732 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-148) (-27) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-1192 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-3732 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -3732 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3732 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) -((-4112 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1237)) (T -628)) -((-4112 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -4112 ($ |t#1|)))) -((-1952 (((-112) $ $) NIL)) (-3048 (($) 14 T CONST)) (-4325 (($) 15 T CONST)) (-2322 (($ $ $) 29)) (-2298 (($ $) 27)) (-2043 (((-1178) $) NIL)) (-3746 (($ $ $) 30)) (-3115 (((-1140) $) NIL)) (-3129 (($) 11 T CONST)) (-2829 (($ $ $) 31)) (-4112 (((-875) $) 35)) (-4304 (((-112) $ (|[\|\|]| -3129)) 24) (((-112) $ (|[\|\|]| -3048)) 26) (((-112) $ (|[\|\|]| -4325)) 21)) (-1994 (((-112) $ $) NIL)) (-2310 (($ $ $) 28)) (-3938 (((-112) $ $) 18))) -(((-629) (-13 (-987) (-10 -8 (-15 -3048 ($) -2665) (-15 -4304 ((-112) $ (|[\|\|]| -3129))) (-15 -4304 ((-112) $ (|[\|\|]| -3048))) (-15 -4304 ((-112) $ (|[\|\|]| -4325)))))) (T -629)) -((-3048 (*1 *1) (-5 *1 (-629))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3129)) (-5 *2 (-112)) (-5 *1 (-629)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3048)) (-5 *2 (-112)) (-5 *1 (-629)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4325)) (-5 *2 (-112)) (-5 *1 (-629))))) -(-13 (-987) (-10 -8 (-15 -3048 ($) -2665) (-15 -4304 ((-112) $ (|[\|\|]| -3129))) (-15 -4304 ((-112) $ (|[\|\|]| -3048))) (-15 -4304 ((-112) $ (|[\|\|]| -4325))))) -((-1554 (($ |#1|) 6))) -(((-630 |#1|) (-141) (-1237)) (T -630)) -((-1554 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -1554 ($ |t#1|)))) -((-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-632 |#2|) (-1069)) (T -631)) -NIL -(-10 -8 (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-632 |#1|) (-141) (-1069)) (T -632)) -((-4112 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1069))))) -(-13 (-1069) (-660 |t#1|) (-10 -8 (-15 -4112 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3773 (((-576) $) NIL (|has| |#1| (-860)))) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2690 (((-112) $) NIL (|has| |#1| (-860)))) (-2287 (((-112) $) NIL)) (-2686 ((|#1| $) 13)) (-3197 (((-112) $) NIL (|has| |#1| (-860)))) (-2905 (($ $ $) NIL (|has| |#1| (-860)))) (-1654 (($ $ $) NIL (|has| |#1| (-860)))) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2697 ((|#3| $) 15)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-4115 (((-783)) 20 T CONST)) (-1994 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| |#1| (-860)))) (-4314 (($) NIL T CONST)) (-4320 (($) 12 T CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-4046 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4046 ($ $ |#3|)) (-15 -4046 ($ |#1| |#3|)) (-15 -2686 (|#1| $)) (-15 -2697 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) -((-4046 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4046 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-2686 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-2697 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4046 ($ $ |#3|)) (-15 -4046 ($ |#1| |#3|)) (-15 -2686 (|#1| $)) (-15 -2697 (|#3| $)))) -((-3752 ((|#2| |#2| (-1196) (-1196)) 16))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3752 (|#2| |#2| (-1196) (-1196)))) (-13 (-317) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-977) (-29 |#1|))) (T -634)) -((-3752 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-29 *4)))))) -(-10 -7 (-15 -3752 (|#2| |#2| (-1196) (-1196)))) -((-1952 (((-112) $ $) 64)) (-3167 (((-112) $) 58)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-3054 ((|#1| $) 55)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2137 (((-2 (|:| -3747 $) (|:| -1676 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) 27)) (-3900 (((-3 $ "failed") $) 88)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3241 (((-576) $) 22)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) 40)) (-1562 (($ |#1| (-576)) 24)) (-1709 ((|#1| $) 57)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ $) 93)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2026 (((-783) $) 115 (|has| |#1| (-374)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 114 (|has| |#1| (-374)))) (-4106 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-1877 (((-576) $) 38)) (-1554 (((-419 |#2|) $) 47)) (-4112 (((-875) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-4269 ((|#1| $ (-576)) 72)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 9 T CONST)) (-4320 (($) 14 T CONST)) (-3155 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-3938 (((-112) $ $) 21)) (-4036 (($ $) 51) (($ $ $) NIL)) (-4026 (($ $ $) 90)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) -(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1058 |#2|) (-10 -8 (-15 -3146 ((-112) $)) (-15 -1877 ((-576) $)) (-15 -3241 ((-576) $)) (-15 -3309 ($ $)) (-15 -1709 (|#1| $)) (-15 -3054 (|#1| $)) (-15 -4269 (|#1| $ (-576))) (-15 -1562 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2137 ((-2 (|:| -3747 $) (|:| -1676 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1263 |#1|)) (T -635)) -((-3146 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-1877 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-3241 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-3309 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-1709 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-3054 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1263 *2)))) (-1562 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1263 *2)))) (-2137 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -3747 (-635 *4 *5)) (|:| -1676 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) -(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1058 |#2|) (-10 -8 (-15 -3146 ((-112) $)) (-15 -1877 ((-576) $)) (-15 -3241 ((-576) $)) (-15 -3309 ($ $)) (-15 -1709 (|#1| $)) (-15 -3054 (|#1| $)) (-15 -4269 (|#1| $ (-576))) (-15 -1562 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2137 ((-2 (|:| -3747 $) (|:| -1676 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) -((-2822 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-4330 ((|#6| |#6|) 48))) -(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4330 (|#6| |#6|)) (-15 -2822 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|) (-1129 |#1| |#2| |#3| |#4|)) (T -636)) -((-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *10 (-1129 *5 *6 *7 *8)))) (-4330 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *2 (-1129 *3 *4 *5 *6))))) -(-10 -7 (-15 -4330 (|#6| |#6|)) (-15 -2822 ((-656 |#6|) (-656 |#4|) (-112)))) -((-2429 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-2597 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1749 (-656 (-2 (|:| |irr| |#4|) (|:| -2432 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2429 ((-112) |#3| (-783) (-656 |#3|))) (-15 -2597 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1749 (-656 (-2 (|:| |irr| |#4|) (|:| -2432 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-861) (-805) (-317) (-967 |#3| |#2| |#1|)) (T -637)) -((-2597 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1749 (-656 (-2 (|:| |irr| *10) (|:| -2432 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) (-4 *10 (-967 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1192 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1192 *3))))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-967 *3 *7 *6))))) -(-10 -7 (-15 -2429 ((-112) |#3| (-783) (-656 |#3|))) (-15 -2597 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1749 (-656 (-2 (|:| |irr| |#4|) (|:| -2432 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) -((-1952 (((-112) $ $) NIL)) (-1782 (((-1155) $) 11)) (-1774 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-638) (-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $))))) (T -638)) -((-1774 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-638)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-638))))) -(-13 (-1103) (-10 -8 (-15 -1774 ((-1155) $)) (-15 -1782 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-1417 (((-656 |#1|) $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-3848 (($ $) 77)) (-2607 (((-676 |#1| |#2|) $) 60)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 81)) (-1575 (((-656 (-304 |#2|)) $ $) 42)) (-3115 (((-1140) $) NIL)) (-2155 (($ (-676 |#1| |#2|)) 56)) (-2633 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-4112 (((-875) $) 66) (((-1302 |#1| |#2|) $) NIL) (((-1307 |#1| |#2|) $) 74)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 61 T CONST)) (-2456 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-1807 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-2883 (((-656 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $) 46)) (-3938 (((-112) $ $) 62)) (-4046 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) -(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -2155 ($ (-676 |#1| |#2|))) (-15 -2607 ((-676 |#1| |#2|) $)) (-15 -2883 ((-656 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $)) (-15 -4112 ((-1302 |#1| |#2|) $)) (-15 -4112 ((-1307 |#1| |#2|) $)) (-15 -3848 ($ $)) (-15 -1417 ((-656 |#1|) $)) (-15 -1807 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2456 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -1575 ((-656 (-304 |#2|)) $ $)))) (-861) (-13 (-174) (-729 (-419 (-576)))) (-939)) (T -639)) -((-2155 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-939)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-907 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-939)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-939)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) (-1575 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939))))) -(-13 (-485) (-10 -8 (-15 -2155 ($ (-676 |#1| |#2|))) (-15 -2607 ((-676 |#1| |#2|) $)) (-15 -2883 ((-656 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $)) (-15 -4112 ((-1302 |#1| |#2|) $)) (-15 -4112 ((-1307 |#1| |#2|) $)) (-15 -3848 ($ $)) (-15 -1417 ((-656 |#1|) $)) (-15 -1807 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2456 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -1575 ((-656 (-304 |#2|)) $ $)))) -((-2822 (((-656 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|)))) (-656 (-792 |#1| (-877 |#2|))) (-112)) 103) (((-656 (-1066 |#1| |#2|)) (-656 (-792 |#1| (-877 |#2|))) (-112)) 77)) (-2569 (((-112) (-656 (-792 |#1| (-877 |#2|)))) 26)) (-3292 (((-656 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|)))) (-656 (-792 |#1| (-877 |#2|))) (-112)) 102)) (-3283 (((-656 (-1066 |#1| |#2|)) (-656 (-792 |#1| (-877 |#2|))) (-112)) 76)) (-2393 (((-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|)))) 30)) (-2784 (((-3 (-656 (-792 |#1| (-877 |#2|))) "failed") (-656 (-792 |#1| (-877 |#2|)))) 29))) -(((-640 |#1| |#2|) (-10 -7 (-15 -2569 ((-112) (-656 (-792 |#1| (-877 |#2|))))) (-15 -2784 ((-3 (-656 (-792 |#1| (-877 |#2|))) "failed") (-656 (-792 |#1| (-877 |#2|))))) (-15 -2393 ((-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|))))) (-15 -3283 ((-656 (-1066 |#1| |#2|)) (-656 (-792 |#1| (-877 |#2|))) (-112))) (-15 -3292 ((-656 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|)))) (-656 (-792 |#1| (-877 |#2|))) (-112))) (-15 -2822 ((-656 (-1066 |#1| |#2|)) (-656 (-792 |#1| (-877 |#2|))) (-112))) (-15 -2822 ((-656 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|)))) (-656 (-792 |#1| (-877 |#2|))) (-112)))) (-464) (-656 (-1196))) (T -640)) -((-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-792 *5 (-877 *6))))) (-5 *1 (-640 *5 *6)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-792 *5 (-877 *6))))) (-5 *1 (-640 *5 *6)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2393 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-877 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))) (-2784 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-877 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-877 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1196))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -2569 ((-112) (-656 (-792 |#1| (-877 |#2|))))) (-15 -2784 ((-3 (-656 (-792 |#1| (-877 |#2|))) "failed") (-656 (-792 |#1| (-877 |#2|))))) (-15 -2393 ((-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|))))) (-15 -3283 ((-656 (-1066 |#1| |#2|)) (-656 (-792 |#1| (-877 |#2|))) (-112))) (-15 -3292 ((-656 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|)))) (-656 (-792 |#1| (-877 |#2|))) (-112))) (-15 -2822 ((-656 (-1066 |#1| |#2|)) (-656 (-792 |#1| (-877 |#2|))) (-112))) (-15 -2822 ((-656 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|)))) (-656 (-792 |#1| (-877 |#2|))) (-112)))) -((-3585 (($ $) 38)) (-3434 (($ $) 21)) (-3561 (($ $) 37)) (-3411 (($ $) 22)) (-3611 (($ $) 36)) (-3460 (($ $) 23)) (-2722 (($) 48)) (-2607 (($ $) 45)) (-1825 (($ $) 17)) (-3681 (($ $ (-1112 $)) 7) (($ $ (-1196)) 6)) (-2155 (($ $) 46)) (-3362 (($ $) 15)) (-3398 (($ $) 16)) (-3622 (($ $) 35)) (-3473 (($ $) 24)) (-3598 (($ $) 34)) (-3447 (($ $) 25)) (-3573 (($ $) 33)) (-3423 (($ $) 26)) (-3652 (($ $) 44)) (-3509 (($ $) 32)) (-3631 (($ $) 43)) (-3486 (($ $) 31)) (-3672 (($ $) 42)) (-3536 (($ $) 30)) (-1970 (($ $) 41)) (-3549 (($ $) 29)) (-3663 (($ $) 40)) (-3522 (($ $) 28)) (-3641 (($ $) 39)) (-3497 (($ $) 27)) (-3812 (($ $) 19)) (-3819 (($ $) 20)) (-1917 (($ $) 18)) (** (($ $ $) 47))) +((-1622 (((-1293) (-1179)) 10))) +(((-594) (-10 -7 (-15 -1622 ((-1293) (-1179))))) (T -594)) +((-1622 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) +(-10 -7 (-15 -1622 ((-1293) (-1179)))) +((-4064 (((-598 |#2|) (-598 |#2|)) 42)) (-1942 (((-656 |#2|) (-598 |#2|)) 44)) (-3383 ((|#2| (-598 |#2|)) 50))) +(((-595 |#1| |#2|) (-10 -7 (-15 -4064 ((-598 |#2|) (-598 |#2|))) (-15 -1942 ((-656 |#2|) (-598 |#2|))) (-15 -3383 (|#2| (-598 |#2|)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1223))) (T -595)) +((-3383 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1223))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) +(-10 -7 (-15 -4064 ((-598 |#2|) (-598 |#2|))) (-15 -1942 ((-656 |#2|) (-598 |#2|))) (-15 -3383 (|#2| (-598 |#2|)))) +((-4116 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) +(((-596 |#1| |#2|) (-10 -7 (-15 -4116 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4116 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4116 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4116 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) +((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4106 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -4106 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -4116 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4116 ((-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4106 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4116 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4116 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-2400 (($ (-518) (-609)) 14)) (-2192 (($ (-518) (-609) $) 16)) (-1824 (($ (-518) (-609)) 15)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) 7) (((-1202) $) 6)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-597) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -2400 ($ (-518) (-609))) (-15 -1824 ($ (-518) (-609))) (-15 -2192 ($ (-518) (-609) $))))) (T -597)) +((-2400 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-1824 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-2192 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -2400 ($ (-518) (-609))) (-15 -1824 ($ (-518) (-609))) (-15 -2192 ($ (-518) (-609) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 76)) (-2859 ((|#1| $) NIL)) (-4106 ((|#1| $) 30)) (-3757 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1865 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2133 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $) 31)) (-1413 (((-1179) $) NIL)) (-3191 (($ |#1| |#1|) 38) (($ |#1| (-1197)) 49 (|has| |#1| (-1059 (-1197))))) (-1450 (((-1141) $) NIL)) (-2354 (((-112) $) 35)) (-2773 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1197)) 89 (|has| |#1| (-917 (-1197))))) (-3569 (((-876) $) 110) (($ |#1|) 29)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 18 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) 17) (($ $ $) NIL)) (-3029 (($ $ $) 85)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) +(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -1865 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4106 (|#1| $)) (-15 -2133 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -3757 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2354 ((-112) $)) (-15 -3191 ($ |#1| |#1|)) (-15 -2773 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -2773 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -3191 ($ |#1| (-1197))) |%noBranch|))) (-374)) (T -598)) +((-1865 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) (|:| |logand| (-1193 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-4106 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) (|:| |logand| (-1193 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3191 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2773 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2773 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-917 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1197)))) (-3191 (*1 *1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) (-4 *2 (-374))))) +(-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -1865 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4106 (|#1| $)) (-15 -2133 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -3757 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2354 ((-112) $)) (-15 -3191 ($ |#1| |#1|)) (-15 -2773 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -2773 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -3191 ($ |#1| (-1197))) |%noBranch|))) +((-3844 (((-112) |#1|) 16)) (-3375 (((-3 |#1| "failed") |#1|) 14)) (-2053 (((-2 (|:| -3515 |#1|) (|:| -4210 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-3238 (((-112) |#1| (-783)) 19)) (-2642 ((|#1| |#1|) 42)) (-1735 ((|#1| |#1| (-783)) 45))) +(((-599 |#1|) (-10 -7 (-15 -3238 ((-112) |#1| (-783))) (-15 -2053 ((-3 |#1| "failed") |#1| (-783))) (-15 -2053 ((-2 (|:| -3515 |#1|) (|:| -4210 (-783))) |#1|)) (-15 -1735 (|#1| |#1| (-783))) (-15 -3844 ((-112) |#1|)) (-15 -3375 ((-3 |#1| "failed") |#1|)) (-15 -2642 (|#1| |#1|))) (-557)) (T -599)) +((-2642 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3375 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3844 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-1735 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2053 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3515 *3) (|:| -4210 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2053 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3238 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -3238 ((-112) |#1| (-783))) (-15 -2053 ((-3 |#1| "failed") |#1| (-783))) (-15 -2053 ((-2 (|:| -3515 |#1|) (|:| -4210 (-783))) |#1|)) (-15 -1735 (|#1| |#1| (-783))) (-15 -3844 ((-112) |#1|)) (-15 -3375 ((-3 |#1| "failed") |#1|)) (-15 -2642 (|#1| |#1|))) +((-4206 (((-1193 |#1|) (-940)) 44))) +(((-600 |#1|) (-10 -7 (-15 -4206 ((-1193 |#1|) (-940)))) (-360)) (T -600)) +((-4206 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) +(-10 -7 (-15 -4206 ((-1193 |#1|) (-940)))) +((-4064 (((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|)))) 27)) (-3441 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 34 (|has| |#1| (-148)))) (-1942 (((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|)))) 19)) (-2012 (((-326 |#1|) (-419 (-971 |#1|)) (-1197)) 32 (|has| |#1| (-148)))) (-3383 (((-326 |#1|) (-598 (-419 (-971 |#1|)))) 21))) +(((-601 |#1|) (-10 -7 (-15 -4064 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -1942 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -3383 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3441 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2012 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-651 (-576)))) (T -601)) +((-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-971 *3)))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) +(-10 -7 (-15 -4064 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -1942 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -3383 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3441 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2012 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) +((-3123 (((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-940))) 79) (((-701 (-576)) (-656 (-940)) (-924 (-576))) 72)) (-3419 (((-783) (-656 (-940))) 69))) +(((-602) (-10 -7 (-15 -3419 ((-783) (-656 (-940)))) (-15 -3123 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -3123 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -3123 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576))))))) (T -602)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) +(-10 -7 (-15 -3419 ((-783) (-656 (-940)))) (-15 -3123 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -3123 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -3123 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))))) +((-1543 (((-656 |#5|) |#5| (-112)) 100)) (-2207 (((-112) |#5| (-656 |#5|)) 34))) +(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1543 ((-656 |#5|) |#5| (-112))) (-15 -2207 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -603)) +((-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8))))) +(-10 -7 (-15 -1543 ((-656 |#5|) |#5| (-112))) (-15 -2207 ((-112) |#5| (-656 |#5|)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-604) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -604)) +((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604))))) +(-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) +((-3488 (((-112) $ $) NIL (|has| (-145) (-102)))) (-4222 (($ $) 38)) (-3254 (($ $) NIL)) (-4330 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2139 (((-112) $ $) 67)) (-2115 (((-112) $ $ (-576)) 62)) (-4064 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-2071 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-2450 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-861))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-2636 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-3916 (($ $ (-1255 (-576)) $) 57)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3945 (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465)))) (-4272 (((-145) $ (-576)) NIL)) (-2165 (((-112) $ $) 88)) (-3659 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3965 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-145)) 9)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 32 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-145) (-861)))) (-4335 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2735 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-4027 (((-576) $) 47 (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) 89)) (-1358 (((-783) $ $ (-145)) 86)) (-4322 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-4287 (($ $) 41)) (-1481 (($ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2647 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-1413 (((-1179) $) 43 (|has| (-145) (-1121)))) (-2174 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) 85 (|has| (-145) (-1121)))) (-3580 (((-145) $) NIL (|has| (-576) (-861)))) (-2366 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2740 (($ $ (-145)) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1681 (((-656 (-145)) $) NIL)) (-2866 (((-112) $) 15)) (-3839 (($) 10)) (-2796 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1255 (-576))) 25) (($ $ $) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2568 (($ $ $ (-576)) 81 (|has| $ (-6 -4465)))) (-1870 (($ $) 20)) (-4171 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3581 (($ (-656 (-145))) NIL)) (-1615 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-3569 (($ (-145)) NIL) (((-876) $) 31 (|has| (-145) (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2170 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2923 (((-112) $ $) 17 (|has| (-145) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2948 (((-112) $ $) 18 (|has| (-145) (-861)))) (-3502 (((-783) $) 16 (|has| $ (-6 -4464))))) +(((-605 |#1|) (-1165) (-576)) (T -605)) +NIL +(-1165) +((-1369 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|)) 32))) +(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|))) (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|)) (T -606)) +((-1369 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-1369 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1115 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-861)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) +(-10 -7 (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|))) (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 71)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-3605 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-2320 (($ $) 109)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1923 (((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576))) 241)) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-2037 (((-112) $) NIL)) (-3309 (((-576) $) 63) (((-576) $ (-576)) 64)) (-3215 (((-112) $) NIL)) (-4154 (($ $ (-940)) 83)) (-1354 (($ (-1 |#1| (-576)) $) 80)) (-1606 (((-112) $) 26)) (-1945 (($ |#1| (-576)) 22) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-1466 (($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-3441 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2725 (((-3 $ "failed") $ $ (-112)) 108)) (-2346 (($ $ $) 116)) (-1450 (((-1141) $) NIL)) (-2830 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-3845 (((-1047 (-855 (-576))) $) 14)) (-3169 (($ $ (-576)) 47)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2796 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1133)))) (-2773 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3600 (((-576) $) NIL)) (-1633 (($ $) 48)) (-3569 (((-876) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3998 ((|#1| $ (-576)) 61)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) 39 T CONST)) (-2394 ((|#1| $) NIL)) (-2769 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3483 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3431 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3408 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1648 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-2148 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2372 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-4170 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1562 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-1533 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2427 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1773 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-3535 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3287 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-4260 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2159 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-1991 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-1537 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3838 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-2997 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-4413 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-1473 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-3328 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3822 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-2024 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3630 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4165 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-2719 (($) 30 T CONST)) (-2730 (($) 40 T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2923 (((-112) $ $) 73)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) 91) (($ $ $) 72)) (-3029 (($ $ $) 88)) (** (($ $ (-940)) NIL) (($ $ (-783)) 111)) (* (($ (-940) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-607 |#1|) (-13 (-1266 |#1| (-576)) (-10 -8 (-15 -1466 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3845 ((-1047 (-855 (-576))) $)) (-15 -2830 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3079 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -1606 ((-112) $)) (-15 -1354 ($ (-1 |#1| (-576)) $)) (-15 -2725 ((-3 $ "failed") $ $ (-112))) (-15 -2320 ($ $)) (-15 -2346 ($ $ $)) (-15 -1923 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $)) (-15 -4170 ($ $ |#1|)) (-15 -2372 ($ $ (-419 (-576)))) (-15 -1533 ($ $)) (-15 -1562 ($ $)) (-15 -3408 ($ $)) (-15 -4260 ($ $)) (-15 -3483 ($ $)) (-15 -3535 ($ $)) (-15 -2148 ($ $)) (-15 -3523 ($ $)) (-15 -3838 ($ $)) (-15 -3768 ($ $)) (-15 -1991 ($ $)) (-15 -2024 ($ $)) (-15 -4413 ($ $)) (-15 -3328 ($ $)) (-15 -3431 ($ $)) (-15 -3287 ($ $)) (-15 -2769 ($ $)) (-15 -1773 ($ $)) (-15 -1648 ($ $)) (-15 -2427 ($ $)) (-15 -1537 ($ $)) (-15 -3630 ($ $)) (-15 -2159 ($ $)) (-15 -3822 ($ $)) (-15 -2997 ($ $)) (-15 -1473 ($ $))) |%noBranch|))) (-1070)) (T -607)) +((-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-1466 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) (-5 *1 (-607 *4)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-1354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-2725 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2346 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-1923 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6)))) (-3441 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2372 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1070)))) (-1533 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1562 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4260 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3483 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3535 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2148 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2024 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4413 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3328 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3431 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1773 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1537 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2997 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1473 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(-13 (-1266 |#1| (-576)) (-10 -8 (-15 -1466 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3845 ((-1047 (-855 (-576))) $)) (-15 -2830 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3079 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -1606 ((-112) $)) (-15 -1354 ($ (-1 |#1| (-576)) $)) (-15 -2725 ((-3 $ "failed") $ $ (-112))) (-15 -2320 ($ $)) (-15 -2346 ($ $ $)) (-15 -1923 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $)) (-15 -4170 ($ $ |#1|)) (-15 -2372 ($ $ (-419 (-576)))) (-15 -1533 ($ $)) (-15 -1562 ($ $)) (-15 -3408 ($ $)) (-15 -4260 ($ $)) (-15 -3483 ($ $)) (-15 -3535 ($ $)) (-15 -2148 ($ $)) (-15 -3523 ($ $)) (-15 -3838 ($ $)) (-15 -3768 ($ $)) (-15 -1991 ($ $)) (-15 -2024 ($ $)) (-15 -4413 ($ $)) (-15 -3328 ($ $)) (-15 -3431 ($ $)) (-15 -3287 ($ $)) (-15 -2769 ($ $)) (-15 -1773 ($ $)) (-15 -1648 ($ $)) (-15 -2427 ($ $)) (-15 -1537 ($ $)) (-15 -3630 ($ $)) (-15 -2159 ($ $)) (-15 -3822 ($ $)) (-15 -2997 ($ $)) (-15 -1473 ($ $))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 63)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3079 (($ (-1178 |#1|)) 9)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) 44)) (-2037 (((-112) $) 56)) (-3309 (((-783) $) 61) (((-783) $ (-783)) 60)) (-3215 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-1178 |#1|) $) 25)) (-1778 (((-783)) 55 T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) 10 T CONST)) (-2730 (($) 14 T CONST)) (-2923 (((-112) $ $) 24)) (-3043 (($ $) 32) (($ $ $) 16)) (-3029 (($ $ $) 27)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) +(((-608 |#1|) (-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -2060 ((-1178 |#1|) $)) (-15 -3079 ($ (-1178 |#1|))) (-15 -2037 ((-112) $)) (-15 -3309 ((-783) $)) (-15 -3309 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1070)) (T -608)) +((-2060 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3309 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1070))))) +(-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -2060 ((-1178 |#1|) $)) (-15 -3079 ($ (-1178 |#1|))) (-15 -2037 ((-112) $)) (-15 -3309 ((-783) $)) (-15 -3309 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1804 (($) 8 T CONST)) (-4213 (($) 7 T CONST)) (-2579 (($ $ (-656 $)) 16)) (-1413 (((-1179) $) NIL)) (-1516 (($) 6 T CONST)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) 15) (((-1202) $) 10)) (-3617 (($) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-609) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1516 ($) -1480) (-15 -4213 ($) -1480) (-15 -1804 ($) -1480) (-15 -3617 ($) -1480) (-15 -2579 ($ $ (-656 $)))))) (T -609)) +((-1516 (*1 *1) (-5 *1 (-609))) (-4213 (*1 *1) (-5 *1 (-609))) (-1804 (*1 *1) (-5 *1 (-609))) (-3617 (*1 *1) (-5 *1 (-609))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) +(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1516 ($) -1480) (-15 -4213 ($) -1480) (-15 -1804 ($) -1480) (-15 -3617 ($) -1480) (-15 -2579 ($ $ (-656 $))))) +((-4116 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) +(((-610 |#1| |#2|) (-10 -7 (-15 -4116 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1238) (-1238)) (T -610)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) +(-10 -7 (-15 -4116 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) +((-4116 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)) 20) (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -611)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) +(-10 -7 (-15 -4116 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) +((-2848 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))) 57)) (-4311 (((-171 |#2|) |#3|) 122)) (-1515 ((|#3| (-171 |#2|)) 46)) (-1886 ((|#2| |#3|) 21)) (-4256 ((|#3| |#2|) 35))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -1515 (|#3| (-171 |#2|))) (-15 -1886 (|#2| |#3|)) (-15 -4256 (|#3| |#2|)) (-15 -4311 ((-171 |#2|) |#3|)) (-15 -2848 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) (-568) (-13 (-442 |#1|) (-1023) (-1223)) (-13 (-442 (-171 |#1|)) (-1023) (-1223))) (T -612)) +((-2848 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223))))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223))))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *5 *2))))) +(-10 -7 (-15 -1515 (|#3| (-171 |#2|))) (-15 -1886 (|#2| |#3|)) (-15 -4256 (|#3| |#2|)) (-15 -4311 ((-171 |#2|) |#3|)) (-15 -2848 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) +((-1971 (($ (-1 (-112) |#1|) $) 17)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-4353 (($ (-1 |#1| |#1|) |#1|) 9)) (-1952 (($ (-1 (-112) |#1|) $) 13)) (-1963 (($ (-1 (-112) |#1|) $) 15)) (-3581 (((-1178 |#1|) $) 18)) (-3569 (((-876) $) NIL))) +(((-613 |#1|) (-13 (-625 (-876)) (-10 -8 (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1963 ($ (-1 (-112) |#1|) $)) (-15 -1971 ($ (-1 (-112) |#1|) $)) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -3581 ((-1178 |#1|) $)))) (-1238)) (T -613)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1963 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1971 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238))))) +(-13 (-625 (-876)) (-10 -8 (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1963 ($ (-1 (-112) |#1|) $)) (-15 -1971 ($ (-1 (-112) |#1|) $)) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -3581 ((-1178 |#1|) $)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783)) NIL (|has| |#1| (-23)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2353 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-3557 (((-112) $ (-783)) NIL)) (-2434 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1984 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1849 (($ $ $) NIL (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3029 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-614 |#1| |#2|) (-1286 |#1|) (-1238) (-576)) (T -614)) +NIL +(-1286 |#1|) +((-1656 (((-1293) $ |#2| |#2|) 35)) (-1617 ((|#2| $) 23)) (-4027 ((|#2| $) 21)) (-4322 (($ (-1 |#3| |#3|) $) 32)) (-4116 (($ (-1 |#3| |#3|) $) 30)) (-3580 ((|#3| $) 26)) (-2740 (($ $ |#3|) 33)) (-1385 (((-112) |#3| $) 17)) (-1681 (((-656 |#3|) $) 15)) (-2796 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -1656 ((-1293) |#1| |#2| |#2|)) (-15 -2740 (|#1| |#1| |#3|)) (-15 -3580 (|#3| |#1|)) (-15 -1617 (|#2| |#1|)) (-15 -4027 (|#2| |#1|)) (-15 -1385 ((-112) |#3| |#1|)) (-15 -1681 ((-656 |#3|) |#1|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -4322 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1121) (-1238)) (T -615)) +NIL +(-10 -8 (-15 -1656 ((-1293) |#1| |#2| |#2|)) (-15 -2740 (|#1| |#1| |#3|)) (-15 -3580 (|#3| |#1|)) (-15 -1617 (|#2| |#1|)) (-15 -4027 (|#2| |#1|)) (-15 -1385 ((-112) |#3| |#1|)) (-15 -1681 ((-656 |#3|) |#1|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -4322 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#2| (-102)))) (-1656 (((-1293) $ |#1| |#1|) 41 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4465)))) (-3306 (($) 7 T CONST)) (-4332 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 52)) (-3965 (((-656 |#2|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-1617 ((|#1| $) 44 (|has| |#1| (-861)))) (-2735 (((-656 |#2|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4027 ((|#1| $) 45 (|has| |#1| (-861)))) (-4322 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#2| (-1121)))) (-2764 (((-656 |#1|) $) 47)) (-4018 (((-112) |#1| $) 48)) (-1450 (((-1141) $) 22 (|has| |#2| (-1121)))) (-3580 ((|#2| $) 43 (|has| |#1| (-861)))) (-2740 (($ $ |#2|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1460 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4464))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2170 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-616 |#1| |#2|) (-141) (-1121) (-1238)) (T -616)) +((-1681 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *4)))) (-4018 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *3)))) (-1385 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-861)) (-4 *2 (-1238)))) (-2740 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-1656 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-1293))))) +(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -1681 ((-656 |t#2|) $)) (-15 -4018 ((-112) |t#1| $)) (-15 -2764 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1121)) (IF (|has| $ (-6 -4464)) (-15 -1385 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -4027 (|t#1| $)) (-15 -1617 (|t#1| $)) (-15 -3580 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2740 ($ $ |t#2|)) (-15 -1656 ((-1293) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-625 (-876)) -2758 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-1121) |has| |#2| (-1121)) ((-1238) . T)) +((-3569 (((-876) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-617) (-13 (-625 (-876)) (-502 (-130)))) (T -617)) +NIL +(-13 (-625 (-876)) (-502 (-130))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 14) (($ (-656 (-1237))) 13)) (-1564 (((-656 (-1237)) $) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-618) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -1564 ((-656 (-1237)) $))))) (T -618)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) +(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -1564 ((-656 (-1237)) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2876 (((-3 $ "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-4001 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1692 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3306 (($) NIL T CONST)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4008 (((-3 $ "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3712 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4016 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2173 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3417 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1968 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1845 (($ $ (-940)) NIL)) (-3168 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1544 (((-1193 |#1|) $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2624 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1591 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3070 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3208 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3451 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3733 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-2055 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3507 (($ $ (-940)) NIL)) (-3073 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1744 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2076 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4114 (((-3 $ "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3160 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3643 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2888 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3974 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3275 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2707 (($ $ (-940)) NIL)) (-3261 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2754 (((-1193 |#1|) $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2218 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1953 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2384 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1413 (((-1179) $) NIL)) (-1981 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3307 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3505 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-1141) $) NIL)) (-2653 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2796 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-1490 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4171 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3818 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2604 (($ $ $) NIL)) (-2306 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3569 (((-876) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-2440 (((-656 (-1288 |#1|))) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3298 (($ $ $ $) NIL)) (-3143 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3568 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2424 (($ $ $) NIL)) (-3288 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1892 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3236 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2719 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) +((-3569 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) +(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1394 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) 39)) (-4127 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL) (($) NIL)) (-1656 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-1179) |#1|) 49)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#1| "failed") (-1179) $) 52)) (-3306 (($) NIL T CONST)) (-2062 (($ $ (-1179)) 25)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121))))) (-2065 (((-3 |#1| "failed") (-1179) $) 53) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (|has| $ (-6 -4464)))) (-3945 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121))))) (-3685 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121))))) (-3940 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) 38)) (-4332 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-1179)) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3946 (($ $) 54)) (-3256 (($ (-400)) 23) (($ (-400) (-1179)) 22)) (-2627 (((-400) $) 40)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121))))) (-4027 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-3203 (((-656 (-1179)) $) 45)) (-2419 (((-112) (-1179) $) NIL)) (-3197 (((-1179) $) 41)) (-3772 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL)) (-2764 (((-656 (-1179)) $) NIL)) (-4018 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 ((|#1| $) NIL (|has| (-1179) (-861)))) (-2366 (((-3 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) "failed") (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 43)) (-2796 ((|#1| $ (-1179) |#1|) NIL) ((|#1| $ (-1179)) 48)) (-2314 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL) (($) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-783) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL)) (-3569 (((-876) $) 21)) (-1540 (($ $) 26)) (-2113 (((-112) $ $) NIL)) (-1470 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 20)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4464) (-15 -3946 ($ $)))) (-1121)) (T -620)) +((-3946 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121))))) +(-13 (-375 (-400) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4464) (-15 -3946 ($ $)))) +((-3456 (((-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) $) 16)) (-3203 (((-656 |#2|) $) 20)) (-2419 (((-112) |#2| $) 12))) +(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -3203 ((-656 |#2|) |#1|)) (-15 -2419 ((-112) |#2| |#1|)) (-15 -3456 ((-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|))) (-622 |#2| |#3|) (-1121) (-1121)) (T -621)) +NIL +(-10 -8 (-15 -3203 ((-656 |#2|) |#1|)) (-15 -2419 ((-112) |#2| |#1|)) (-15 -3456 ((-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|))) +((-3488 (((-112) $ $) 20 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)))) (-2396 (((-112) $ (-783)) 8)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 56 (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) 62)) (-3306 (($) 7 T CONST)) (-2800 (($ $) 59 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 55 (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 57 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-3203 (((-656 |#1|) $) 64)) (-2419 (((-112) |#1| $) 65)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 40)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 41)) (-1450 (((-1141) $) 22 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 52)) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 42)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) 27 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 26 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 25 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 24 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2314 (($) 50) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 49)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 51)) (-3569 (((-876) $) 18 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 43)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-622 |#1| |#2|) (-141) (-1121) (-1121)) (T -622)) +((-2419 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-2065 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-2195 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(-13 (-231 (-2 (|:| -4300 |t#1|) (|:| -4438 |t#2|))) (-10 -8 (-15 -2419 ((-112) |t#1| $)) (-15 -3203 ((-656 |t#1|) $)) (-15 -2065 ((-3 |t#2| "failed") |t#1| $)) (-15 -2195 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((-102) -2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))) ((-625 (-876)) -2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-1121) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) ((-1238) . T)) +((-2039 (((-624 |#2|) |#1|) 17)) (-2885 (((-3 |#1| "failed") (-624 |#2|)) 21))) +(((-623 |#1| |#2|) (-10 -7 (-15 -2039 ((-624 |#2|) |#1|)) (-15 -2885 ((-3 |#1| "failed") (-624 |#2|)))) (-1121) (-1121)) (T -623)) +((-2885 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-623 *2 *4)))) (-2039 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-10 -7 (-15 -2039 ((-624 |#2|) |#1|)) (-15 -2885 ((-3 |#1| "failed") (-624 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-4240 (((-3 (-1197) "failed") $) 46)) (-3754 (((-1293) $ (-783)) 22)) (-3659 (((-783) $) 20)) (-1775 (((-115) $) 9)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1639 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1197)) 33)) (-2158 (((-112) $ (-115)) 15) (((-112) $ (-1197)) 13)) (-2325 (((-783) $) 17)) (-1450 (((-1141) $) NIL)) (-4171 (((-907 (-576)) $) 95 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 102 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-3569 (((-876) $) 72)) (-2113 (((-112) $ $) NIL)) (-4110 (((-656 |#1|) $) 19)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 51)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 53))) +(((-624 |#1|) (-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1775 ((-115) $)) (-15 -4110 ((-656 |#1|) $)) (-15 -2325 ((-783) $)) (-15 -1639 ($ (-115) (-656 |#1|) (-783))) (-15 -1639 ($ (-1197))) (-15 -4240 ((-3 (-1197) "failed") $)) (-15 -2158 ((-112) $ (-115))) (-15 -2158 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1121)) (T -624)) +((-1775 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1639 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) (-5 *1 (-624 *5)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-4240 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2158 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) (-2158 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121))))) +(-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1775 ((-115) $)) (-15 -4110 ((-656 |#1|) $)) (-15 -2325 ((-783) $)) (-15 -1639 ($ (-115) (-656 |#1|) (-783))) (-15 -1639 ($ (-1197))) (-15 -4240 ((-3 (-1197) "failed") $)) (-15 -2158 ((-112) $ (-115))) (-15 -2158 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-3569 ((|#1| $) 6))) +(((-625 |#1|) (-141) (-1238)) (T -625)) +((-3569 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -3569 (|t#1| $)))) +((-4171 ((|#1| $) 6))) +(((-626 |#1|) (-141) (-1238)) (T -626)) +((-4171 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -4171 (|t#1| $)))) +((-2369 (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) +(((-627 |#1| |#2|) (-10 -7 (-15 -2369 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2369 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -627)) +((-2369 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-2369 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -2369 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2369 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) +((-3569 (($ |#1|) 6))) +(((-628 |#1|) (-141) (-1238)) (T -628)) +((-3569 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -3569 ($ |t#1|)))) +((-3488 (((-112) $ $) NIL)) (-3858 (($) 14 T CONST)) (-2140 (($) 15 T CONST)) (-2683 (($ $ $) 29)) (-2662 (($ $) 27)) (-1413 (((-1179) $) NIL)) (-2502 (($ $ $) 30)) (-1450 (((-1141) $) NIL)) (-3512 (($) 11 T CONST)) (-3664 (($ $ $) 31)) (-3569 (((-876) $) 35)) (-2705 (((-112) $ (|[\|\|]| -3512)) 24) (((-112) $ (|[\|\|]| -3858)) 26) (((-112) $ (|[\|\|]| -2140)) 21)) (-2113 (((-112) $ $) NIL)) (-2673 (($ $ $) 28)) (-2923 (((-112) $ $) 18))) +(((-629) (-13 (-988) (-10 -8 (-15 -3858 ($) -1480) (-15 -2705 ((-112) $ (|[\|\|]| -3512))) (-15 -2705 ((-112) $ (|[\|\|]| -3858))) (-15 -2705 ((-112) $ (|[\|\|]| -2140)))))) (T -629)) +((-3858 (*1 *1) (-5 *1 (-629))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3512)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3858)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2140)) (-5 *2 (-112)) (-5 *1 (-629))))) +(-13 (-988) (-10 -8 (-15 -3858 ($) -1480) (-15 -2705 ((-112) $ (|[\|\|]| -3512))) (-15 -2705 ((-112) $ (|[\|\|]| -3858))) (-15 -2705 ((-112) $ (|[\|\|]| -2140))))) +((-4171 (($ |#1|) 6))) +(((-630 |#1|) (-141) (-1238)) (T -630)) +((-4171 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -4171 ($ |t#1|)))) +((-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-631 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-632 |#2|) (-1070)) (T -631)) +NIL +(-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-632 |#1|) (-141) (-1070)) (T -632)) +((-3569 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1070))))) +(-13 (-1070) (-660 |t#1|) (-10 -8 (-15 -3569 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1529 (((-576) $) NIL (|has| |#1| (-860)))) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-1661 (((-112) $) NIL (|has| |#1| (-860)))) (-3215 (((-112) $) NIL)) (-1570 ((|#1| $) 13)) (-4099 (((-112) $) NIL (|has| |#1| (-860)))) (-3124 (($ $ $) NIL (|has| |#1| (-860)))) (-1951 (($ $ $) NIL (|has| |#1| (-860)))) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1581 ((|#3| $) 15)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-1778 (((-783)) 20 T CONST)) (-2113 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-860)))) (-2719 (($) NIL T CONST)) (-2730 (($) 12 T CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3056 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) +((-3056 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3056 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1581 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) +((-2545 ((|#2| |#2| (-1197) (-1197)) 16))) +(((-634 |#1| |#2|) (-10 -7 (-15 -2545 (|#2| |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -634)) +((-2545 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) +(-10 -7 (-15 -2545 (|#2| |#2| (-1197) (-1197)))) +((-3488 (((-112) $ $) 64)) (-1812 (((-112) $) 58)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1985 ((|#1| $) 55)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4271 (((-2 (|:| -2511 $) (|:| -2108 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) 27)) (-3451 (((-3 $ "failed") $) 88)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3309 (((-576) $) 22)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) 40)) (-1945 (($ |#1| (-576)) 24)) (-2089 ((|#1| $) 57)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ $) 93)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2411 (((-783) $) 115 (|has| |#1| (-374)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 114 (|has| |#1| (-374)))) (-2773 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3600 (((-576) $) 38)) (-4171 (((-419 |#2|) $) 47)) (-3569 (((-876) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-3998 ((|#1| $ (-576)) 72)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 9 T CONST)) (-2730 (($) 14 T CONST)) (-2018 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2923 (((-112) $ $) 21)) (-3043 (($ $) 51) (($ $ $) NIL)) (-3029 (($ $ $) 90)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) +(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -1606 ((-112) $)) (-15 -3600 ((-576) $)) (-15 -3309 ((-576) $)) (-15 -2112 ($ $)) (-15 -2089 (|#1| $)) (-15 -1985 (|#1| $)) (-15 -3998 (|#1| $ (-576))) (-15 -1945 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -4271 ((-2 (|:| -2511 $) (|:| -2108 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1264 |#1|)) (T -635)) +((-1606 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3600 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3309 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-2112 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-2089 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-1985 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-4271 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2511 (-635 *4 *5)) (|:| -2108 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) +(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -1606 ((-112) $)) (-15 -3600 ((-576) $)) (-15 -3309 ((-576) $)) (-15 -2112 ($ $)) (-15 -2089 (|#1| $)) (-15 -1985 (|#1| $)) (-15 -3998 (|#1| $ (-576))) (-15 -1945 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -4271 ((-2 (|:| -2511 $) (|:| -2108 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) +((-3597 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-3295 ((|#6| |#6|) 48))) +(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3295 (|#6| |#6|)) (-15 -3597 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2| |#3| |#4|)) (T -636)) +((-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *10 (-1130 *5 *6 *7 *8)))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) +(-10 -7 (-15 -3295 (|#6| |#6|)) (-15 -3597 ((-656 |#6|) (-656 |#4|) (-112)))) +((-4039 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-3242 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1601 (-656 (-2 (|:| |irr| |#4|) (|:| -4073 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4039 ((-112) |#3| (-783) (-656 |#3|))) (-15 -3242 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1601 (-656 (-2 (|:| |irr| |#4|) (|:| -4073 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-861) (-805) (-317) (-968 |#3| |#2| |#1|)) (T -637)) +((-3242 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1601 (-656 (-2 (|:| |irr| *10) (|:| -4073 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1193 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3))))) (-4039 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-968 *3 *7 *6))))) +(-10 -7 (-15 -4039 ((-112) |#3| (-783) (-656 |#3|))) (-15 -3242 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1601 (-656 (-2 (|:| |irr| |#4|) (|:| -4073 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-638) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -638)) +((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638))))) +(-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-4195 (($ $) 77)) (-3744 (((-676 |#1| |#2|) $) 60)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 81)) (-3734 (((-656 (-304 |#2|)) $ $) 42)) (-1450 (((-1141) $) NIL)) (-4103 (($ (-676 |#1| |#2|)) 56)) (-2318 (($ $ $) NIL)) (-2604 (($ $ $) NIL)) (-3569 (((-876) $) 66) (((-1303 |#1| |#2|) $) NIL) (((-1308 |#1| |#2|) $) 74)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 61 T CONST)) (-4286 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-4112 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-2903 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) 46)) (-2923 (((-112) $ $) 62)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) +(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4103 ($ (-676 |#1| |#2|))) (-15 -3744 ((-676 |#1| |#2|) $)) (-15 -2903 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1308 |#1| |#2|) $)) (-15 -4195 ($ $)) (-15 -3446 ((-656 |#1|) $)) (-15 -4112 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4286 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3734 ((-656 (-304 |#2|)) $ $)))) (-861) (-13 (-174) (-729 (-419 (-576)))) (-940)) (T -639)) +((-4103 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-940)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-4195 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-940)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3734 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) +(-13 (-485) (-10 -8 (-15 -4103 ($ (-676 |#1| |#2|))) (-15 -3744 ((-676 |#1| |#2|) $)) (-15 -2903 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1308 |#1| |#2|) $)) (-15 -4195 ($ $)) (-15 -3446 ((-656 |#1|) $)) (-15 -4112 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4286 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3734 ((-656 (-304 |#2|)) $ $)))) +((-3597 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 103) (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 77)) (-2906 (((-112) (-656 (-792 |#1| (-878 |#2|)))) 26)) (-3859 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 102)) (-3758 (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 76)) (-1718 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) 30)) (-1335 (((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|)))) 29))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2906 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -1335 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -1718 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -3758 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3859 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3597 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3597 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) (-464) (-656 (-1197))) (T -640)) +((-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-1335 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(-10 -7 (-15 -2906 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -1335 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -1718 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -3758 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3859 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3597 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3597 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) +((-4024 (($ $) 38)) (-3900 (($ $) 21)) (-4005 (($ $) 37)) (-3876 (($ $) 22)) (-4049 (($ $) 36)) (-3919 (($ $) 23)) (-1600 (($) 48)) (-3744 (($ $) 45)) (-3851 (($ $) 17)) (-3191 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6)) (-4103 (($ $) 46)) (-3826 (($ $) 15)) (-3863 (($ $) 16)) (-4060 (($ $) 35)) (-3929 (($ $) 24)) (-4036 (($ $) 34)) (-3909 (($ $) 25)) (-4013 (($ $) 33)) (-3888 (($ $) 26)) (-2789 (($ $) 44)) (-3960 (($ $) 32)) (-4070 (($ $) 43)) (-3937 (($ $) 31)) (-2814 (($ $) 42)) (-3982 (($ $) 30)) (-4387 (($ $) 41)) (-3994 (($ $) 29)) (-2802 (($ $) 40)) (-3973 (($ $) 28)) (-4082 (($ $) 39)) (-3950 (($ $) 27)) (-1868 (($ $) 19)) (-1930 (($ $) 20)) (-2668 (($ $) 18)) (** (($ $ $) 47))) (((-641) (-141)) (T -641)) -((-3819 (*1 *1 *1) (-4 *1 (-641))) (-3812 (*1 *1 *1) (-4 *1 (-641))) (-1917 (*1 *1 *1) (-4 *1 (-641))) (-1825 (*1 *1 *1) (-4 *1 (-641))) (-3398 (*1 *1 *1) (-4 *1 (-641))) (-3362 (*1 *1 *1) (-4 *1 (-641)))) -(-13 (-977) (-1222) (-10 -8 (-15 -3819 ($ $)) (-15 -3812 ($ $)) (-15 -1917 ($ $)) (-15 -1825 ($ $)) (-15 -3398 ($ $)) (-15 -3362 ($ $)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-977) . T) ((-1222) . T) ((-1225) . T)) -((-1400 (((-115) (-115)) 88)) (-1825 ((|#2| |#2|) 28)) (-3681 ((|#2| |#2| (-1112 |#2|)) 84) ((|#2| |#2| (-1196)) 50)) (-3362 ((|#2| |#2|) 27)) (-3398 ((|#2| |#2|) 29)) (-2431 (((-112) (-115)) 33)) (-3812 ((|#2| |#2|) 24)) (-3819 ((|#2| |#2|) 26)) (-1917 ((|#2| |#2|) 25))) -(((-642 |#1| |#2|) (-10 -7 (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -3819 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -3398 (|#2| |#2|)) (-15 -3681 (|#2| |#2| (-1196))) (-15 -3681 (|#2| |#2| (-1112 |#2|)))) (-568) (-13 (-442 |#1|) (-1022) (-1222))) (T -642)) -((-3681 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-442 *4) (-1022) (-1222))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-3681 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1022) (-1222))))) (-3398 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022) (-1222))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022) (-1222))))) (-1825 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022) (-1222))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022) (-1222))))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022) (-1222))))) (-3819 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1022) (-1222))))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1022) (-1222))))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1022) (-1222)))))) -(-10 -7 (-15 -2431 ((-112) (-115))) (-15 -1400 ((-115) (-115))) (-15 -3819 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -3398 (|#2| |#2|)) (-15 -3681 (|#2| |#2| (-1196))) (-15 -3681 (|#2| |#2| (-1112 |#2|)))) -((-2087 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-4277 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-3276 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-877 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-877 |#1|)) 90)) (-1577 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-3841 (((-656 (-493 |#1| |#2|)) (-877 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-4280 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-3758 (((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-1797 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-2538 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-2213 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) -(((-643 |#1| |#2|) (-10 -7 (-15 -1577 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -4280 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4277 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3276 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-877 |#1|))) (-15 -3276 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-877 |#1|))) (-15 -1797 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3758 ((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -2213 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3841 ((-656 (-493 |#1| |#2|)) (-877 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2538 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2087 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1196)) (-464)) (T -643)) -((-2087 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-2538 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3841 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-877 *4)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-2213 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1196))) (-5 *1 (-643 *5 *6)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-1287 *6)) (-5 *1 (-643 *5 *6)))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-877 *5)) (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3276 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-877 *5)) (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-4280 (*1 *2 *3) (-12 (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -1577 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -4280 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4277 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3276 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-877 |#1|))) (-15 -3276 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-877 |#1|))) (-15 -1797 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3758 ((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -2213 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3841 ((-656 (-493 |#1| |#2|)) (-877 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2538 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2087 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) NIL)) (-4100 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 (((-52) $ (-1178) (-52)) 16) (((-52) $ (-1196) (-52)) 17)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 (-52) "failed") (-1178) $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120))))) (-1672 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-3 (-52) "failed") (-1178) $) NIL)) (-2824 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $ (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (((-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $ (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-1908 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4464)))) (-3719 (((-52) $ (-1178)) NIL)) (-3721 (((-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-656 (-52)) $) NIL (|has| $ (-6 -4463)))) (-2102 (($ $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-1178) $) NIL (|has| (-1178) (-861)))) (-3958 (((-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-656 (-52)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120))))) (-3501 (((-1178) $) NIL (|has| (-1178) (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1671 (($ (-400)) 9)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-52) (-1120)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120))))) (-2351 (((-656 (-1178)) $) NIL)) (-3406 (((-112) (-1178) $) NIL)) (-2976 (((-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL)) (-2782 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL)) (-3963 (((-656 (-1178)) $) NIL)) (-1474 (((-112) (-1178) $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-52) (-1120)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120))))) (-1753 (((-52) $) NIL (|has| (-1178) (-861)))) (-2022 (((-3 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) "failed") (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL)) (-2556 (($ $ (-52)) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (($ $ (-304 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (($ $ (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (($ $ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120))))) (-2692 (((-656 (-52)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 (((-52) $ (-1178)) 14) (((-52) $ (-1178) (-52)) NIL) (((-52) $ (-1196)) 15)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-1120)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-52) (-625 (-875))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 (-52))) (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-644) (-13 (-1213 (-1178) (-52)) (-296 (-1196) (-52)) (-10 -8 (-15 -1671 ($ (-400))) (-15 -2102 ($ $)) (-15 -4267 ((-52) $ (-1196) (-52)))))) (T -644)) -((-1671 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-2102 (*1 *1 *1) (-5 *1 (-644))) (-4267 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1196)) (-5 *1 (-644))))) -(-13 (-1213 (-1178) (-52)) (-296 (-1196) (-52)) (-10 -8 (-15 -1671 ($ (-400))) (-15 -2102 ($ $)) (-15 -4267 ((-52) $ (-1196) (-52))))) -((-4046 (($ $ |#2|) 10))) -(((-645 |#1| |#2|) (-10 -8 (-15 -4046 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) -NIL -(-10 -8 (-15 -4046 (|#1| |#1| |#2|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4124 (($ $ $) 34)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-1930 (*1 *1 *1) (-4 *1 (-641))) (-1868 (*1 *1 *1) (-4 *1 (-641))) (-2668 (*1 *1 *1) (-4 *1 (-641))) (-3851 (*1 *1 *1) (-4 *1 (-641))) (-3863 (*1 *1 *1) (-4 *1 (-641))) (-3826 (*1 *1 *1) (-4 *1 (-641)))) +(-13 (-978) (-1223) (-10 -8 (-15 -1930 ($ $)) (-15 -1868 ($ $)) (-15 -2668 ($ $)) (-15 -3851 ($ $)) (-15 -3863 ($ $)) (-15 -3826 ($ $)))) +(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-978) . T) ((-1223) . T) ((-1226) . T)) +((-1775 (((-115) (-115)) 88)) (-3851 ((|#2| |#2|) 28)) (-3191 ((|#2| |#2| (-1113 |#2|)) 84) ((|#2| |#2| (-1197)) 50)) (-3826 ((|#2| |#2|) 27)) (-3863 ((|#2| |#2|) 29)) (-4062 (((-112) (-115)) 33)) (-1868 ((|#2| |#2|) 24)) (-1930 ((|#2| |#2|) 26)) (-2668 ((|#2| |#2|) 25))) +(((-642 |#1| |#2|) (-10 -7 (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1930 (|#2| |#2|)) (-15 -1868 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3191 (|#2| |#2| (-1197))) (-15 -3191 (|#2| |#2| (-1113 |#2|)))) (-568) (-13 (-442 |#1|) (-1023) (-1223))) (T -642)) +((-3191 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-3191 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1868 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1930 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) +(-10 -7 (-15 -4062 ((-112) (-115))) (-15 -1775 ((-115) (-115))) (-15 -1930 (|#2| |#2|)) (-15 -1868 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3191 (|#2| |#2| (-1197))) (-15 -3191 (|#2| |#2| (-1113 |#2|)))) +((-1822 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2782 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-3674 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 90)) (-3756 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-4121 (((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-2808 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-2578 (((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-4014 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-3878 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-3788 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) +(((-643 |#1| |#2|) (-10 -7 (-15 -3756 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2808 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -2782 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3674 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3674 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -4014 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2578 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -3788 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4121 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3878 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1822 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1197)) (-464)) (T -643)) +((-1822 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-3878 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-4121 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3788 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) (-5 *1 (-643 *5 *6)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3674 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) +(-10 -7 (-15 -3756 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2808 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -2782 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3674 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3674 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -4014 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2578 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -3788 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4121 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3878 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1822 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) NIL)) (-1656 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 (((-52) $ (-1179) (-52)) 16) (((-52) $ (-1197) (-52)) 17)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 (-52) "failed") (-1179) $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121))))) (-2065 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1179) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $ (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (((-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $ (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4465)))) (-4272 (((-52) $ (-1179)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3946 (($ $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2735 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-4027 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2030 (($ (-400)) 9)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121))))) (-3203 (((-656 (-1179)) $) NIL)) (-2419 (((-112) (-1179) $) NIL)) (-3772 (((-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL)) (-4436 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL)) (-2764 (((-656 (-1179)) $) NIL)) (-4018 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121))))) (-3580 (((-52) $) NIL (|has| (-1179) (-861)))) (-2366 (((-3 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) "failed") (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL)) (-2740 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (($ $ (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-1681 (((-656 (-52)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 (((-52) $ (-1179)) 14) (((-52) $ (-1179) (-52)) NIL) (((-52) $ (-1197)) 15)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 (-52))) (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-644) (-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -2030 ($ (-400))) (-15 -3946 ($ $)) (-15 -3755 ((-52) $ (-1197) (-52)))))) (T -644)) +((-2030 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-3946 (*1 *1 *1) (-5 *1 (-644))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644))))) +(-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -2030 ($ (-400))) (-15 -3946 ($ $)) (-15 -3755 ((-52) $ (-1197) (-52))))) +((-3056 (($ $ |#2|) 10))) +(((-645 |#1| |#2|) (-10 -8 (-15 -3056 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) +NIL +(-10 -8 (-15 -3056 (|#1| |#1| |#2|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3581 (($ $ $) 34)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-646 |#1|) (-141) (-174)) (T -646)) -((-4124 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4124 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -4046 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-4288 (((-3 $ "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-2108 (((-1287 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1287 (-701 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3791 (((-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4331 (($) NIL T CONST)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2426 (((-3 $ "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2206 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3500 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4032 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2942 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4137 (((-1192 (-970 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2711 (($ $ (-939)) NIL)) (-2590 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3138 (((-1192 |#1|) $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4078 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1748 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2896 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4005 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3900 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4134 (((-939)) NIL (|has| |#2| (-378 |#1|)))) (-1670 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4222 (($ $ (-939)) NIL)) (-2582 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2396 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2304 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3510 (((-3 $ "failed")) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1647 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1881 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2882 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1793 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3689 (((-1192 (-970 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1604 (($ $ (-939)) NIL)) (-1845 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2557 (((-1192 |#1|) $) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4037 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3491 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3403 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2043 (((-1178) $) NIL)) (-1658 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1530 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2502 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3115 (((-1140) $) NIL)) (-2231 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4368 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3435 (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-378 |#1|))) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1554 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2531 (((-656 (-970 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-970 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2362 (($ $ $) NIL)) (-2631 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4112 (((-875) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL (|has| |#2| (-429 |#1|)))) (-2341 (((-656 (-1287 |#1|))) NIL (-3794 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3240 (($ $ $ $) NIL)) (-1962 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2649 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2027 (($ $ $) NIL)) (-1528 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3484 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2289 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) 20)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4112 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) -((-4112 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4112 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-2460 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2017 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) -(((-648 |#1| |#2|) (-10 -7 (-15 -2460 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2017 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2460 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -648)) -((-2460 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1178)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2017 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) -(-10 -7 (-15 -2460 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2017 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2460 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)))) -((-2460 (((-3 (-855 (-419 (-970 |#1|))) "failed") (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))) (-1178)) 86) (((-3 (-855 (-419 (-970 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed"))) "failed") (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|)))) 20) (((-3 (-855 (-419 (-970 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed"))) "failed") (-419 (-970 |#1|)) (-304 (-855 (-970 |#1|)))) 35)) (-2017 (((-845 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|)))) 23) (((-845 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-304 (-845 (-970 |#1|)))) 43))) -(((-649 |#1|) (-10 -7 (-15 -2460 ((-3 (-855 (-419 (-970 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed"))) "failed") (-419 (-970 |#1|)) (-304 (-855 (-970 |#1|))))) (-15 -2460 ((-3 (-855 (-419 (-970 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed"))) "failed") (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))))) (-15 -2017 ((-845 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-304 (-845 (-970 |#1|))))) (-15 -2017 ((-845 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))))) (-15 -2460 ((-3 (-855 (-419 (-970 |#1|))) "failed") (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))) (-1178)))) (-464)) (T -649)) -((-2460 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-970 *6)))) (-5 *5 (-1178)) (-5 *3 (-419 (-970 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-970 *5)))) (-5 *3 (-419 (-970 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-970 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-970 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-970 *5))))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-970 *5)))) (-5 *3 (-419 (-970 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-970 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-970 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-970 *5)))))) -(-10 -7 (-15 -2460 ((-3 (-855 (-419 (-970 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed"))) "failed") (-419 (-970 |#1|)) (-304 (-855 (-970 |#1|))))) (-15 -2460 ((-3 (-855 (-419 (-970 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-970 |#1|))) "failed"))) "failed") (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))))) (-15 -2017 ((-845 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-304 (-845 (-970 |#1|))))) (-15 -2017 ((-845 (-419 (-970 |#1|))) (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))))) (-15 -2460 ((-3 (-855 (-419 (-970 |#1|))) "failed") (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))) (-1178)))) -((-2979 (((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|) 64 (-2298 (|has| |#1| (-374)))) (((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-2381 (((-112) (-1287 |#2|)) 33)) (-1327 (((-3 (-1287 |#1|) "failed") (-1287 |#2|)) 40))) -(((-650 |#1| |#2|) (-10 -7 (-15 -2381 ((-112) (-1287 |#2|))) (-15 -1327 ((-3 (-1287 |#1|) "failed") (-1287 |#2|))) (IF (|has| |#1| (-374)) (-15 -2979 ((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|)) (-15 -2979 ((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|)))) (-568) (-13 (-1069) (-651 |#1|))) (T -650)) -((-2979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 *5))) (-2298 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1287 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-2979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1287 *5)) (-5 *1 (-650 *5 *4)))) (-1327 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1287 *4)) (-5 *1 (-650 *4 *5)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -2381 ((-112) (-1287 |#2|))) (-15 -1327 ((-3 (-1287 |#1|) "failed") (-1287 |#2|))) (IF (|has| |#1| (-374)) (-15 -2979 ((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|)) (-15 -2979 ((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3222 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 29)) (-2198 (((-701 |#1|) (-1287 $)) 32) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 31)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-651 |#1|) (-141) (-1069)) (T -651)) -((-2198 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1069)) (-5 *2 (-701 *4)))) (-2198 (*1 *2 *3 *1) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| -3608 (-701 *4)) (|:| |vec| (-1287 *4)))))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1069)) (-5 *2 (-701 *4)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -3608 (-701 *5)) (|:| |vec| (-1287 *5))))))) -(-13 (-660 |t#1|) (-10 -8 (-15 -2198 ((-701 |t#1|) (-1287 $))) (-15 -2198 ((-2 (|:| -3608 (-701 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-1287 $) $)) (-15 -3222 ((-701 |t#1|) (-701 $))) (-15 -3222 ((-2 (|:| -3608 (-701 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-701 $) (-1287 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) -(((-652 |#1|) (-141) (-1132)) (T -652)) -NIL -(-13 (-658 |t#1|) (-1071 |t#1|)) -(((-102) . T) ((-625 (-875)) . T) ((-658 |#1|) . T) ((-1071 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1464 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12))) -(((-653 |#1| |#2|) (-10 -7 (-15 -1464 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1464 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1464 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1464 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1464 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1464 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1120) (-1237)) (T -653)) -((-1464 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1120)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1464 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1120)) (-4 *6 (-1237)) (-5 *1 (-653 *5 *6)))) (-1464 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1120)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1120)) (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1120)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1120)) (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) -(-10 -7 (-15 -1464 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1464 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1464 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1464 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1464 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1464 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) -((-1925 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-2422 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) -(((-654 |#1| |#2|) (-10 -7 (-15 -1925 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2422 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1237) (-1237)) (T -654)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-654 *5 *2)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) -(-10 -7 (-15 -1925 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2422 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) -((-2422 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1237) (-1237) (-1237)) (T -655)) -((-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) -(-10 -7 (-15 -2422 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) NIL)) (-3456 ((|#1| $) NIL)) (-3094 (($ $) NIL)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1715 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2379 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3134 (($ $ $) NIL (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "rest" $) NIL (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-2566 (($ $ $) 37 (|has| |#1| (-1120)))) (-2626 (($ $ $) 41 (|has| |#1| (-1120)))) (-1844 (($ $ $) 44 (|has| |#1| (-1120)))) (-2146 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3442 ((|#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-1762 (($ $) 23) (($ $ (-783)) NIL)) (-3308 (($ $) NIL (|has| |#1| (-1120)))) (-3966 (($ $) 36 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) NIL (|has| |#1| (-1120))) (($ (-1 (-112) |#1|) $) NIL)) (-2824 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3588 (((-112) $) NIL)) (-3538 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120))) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2285 (((-112) $) 11)) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2601 (($) 9 T CONST)) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-3881 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2144 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2785 (($ |#1|) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2849 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2782 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) 20) (($ $ (-783)) NIL)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3498 (((-112) $) NIL)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) 39)) (-3935 (($) 38)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3183 (((-576) $ $) NIL)) (-3571 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2334 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2003 (((-112) $) NIL)) (-4385 (($ $) NIL)) (-1788 (($ $) NIL (|has| $ (-6 -4464)))) (-4093 (((-783) $) NIL)) (-2820 (($ $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) NIL)) (-4058 (($ |#1| $) 12)) (-3424 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2766 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3098 (($ $ $) 13)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3678 (((-1178) $) 31 (|has| |#1| (-840))) (((-1178) $ (-112)) 32 (|has| |#1| (-840))) (((-1292) (-834) $) 33 (|has| |#1| (-840))) (((-1292) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -2601 ($) -2665) (-15 -2285 ((-112) $)) (-15 -4058 ($ |#1| $)) (-15 -3098 ($ $ $)) (IF (|has| |#1| (-1120)) (PROGN (-15 -2566 ($ $ $)) (-15 -2626 ($ $ $)) (-15 -1844 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1237)) (T -656)) -((-2601 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1237)))) (-4058 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-3098 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-2566 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-1237)))) (-2626 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-1237)))) (-1844 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-1237))))) -(-13 (-678 |#1|) (-10 -8 (-15 -2601 ($) -2665) (-15 -2285 ((-112) $)) (-15 -4058 ($ |#1| $)) (-15 -3098 ($ $ $)) (IF (|has| |#1| (-1120)) (PROGN (-15 -2566 ($ $ $)) (-15 -2626 ($ $ $)) (-15 -1844 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 11) (($ (-1201)) NIL) (((-1201) $) NIL) ((|#1| $) 8)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-657 |#1|) (-13 (-1103) (-625 |#1|)) (-1120)) (T -657)) -NIL -(-13 (-1103) (-625 |#1|)) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8)) (* (($ |#1| $) 14))) -(((-658 |#1|) (-141) (-1132)) (T -658)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1132))))) -(-13 (-1120) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4087 (($ |#1| |#1| $) 43)) (-2337 (((-112) $ (-783)) NIL)) (-2146 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3308 (($ $) 45)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) 56 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 9 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 37)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2976 ((|#1| $) 47)) (-2782 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1526 ((|#1| $) 50)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 23)) (-3935 (($) 28)) (-2266 (((-112) $) 54)) (-2779 (((-656 (-2 (|:| -2904 |#1|) (|:| -3125 (-783)))) $) 67)) (-1437 (($) 26) (($ (-656 |#1|)) 19)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 20)) (-1554 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) NIL)) (-4112 (((-875) $) 14 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 24)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 69 (|has| |#1| (-102)))) (-1968 (((-783) $) 17 (|has| $ (-6 -4463))))) -(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4463) (-15 -2266 ((-112) $)) (-15 -4087 ($ |#1| |#1| $)))) (-1120)) (T -659)) -((-2266 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1120)))) (-4087 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120))))) -(-13 (-707 |#1|) (-10 -8 (-6 -4463) (-15 -2266 ((-112) $)) (-15 -4087 ($ |#1| |#1| $)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-660 |#1|) (-141) (-1078)) (T -660)) +((-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3581 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -3056 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2876 (((-3 $ "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-4001 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1692 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3306 (($) NIL T CONST)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4008 (((-3 $ "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3712 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4016 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2173 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3417 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1968 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1845 (($ $ (-940)) NIL)) (-3168 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1544 (((-1193 |#1|) $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2624 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1591 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3070 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3208 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3451 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3733 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-2055 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3507 (($ $ (-940)) NIL)) (-3073 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1744 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2076 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4114 (((-3 $ "failed")) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3160 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3643 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2888 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3974 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3275 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2707 (($ $ (-940)) NIL)) (-3261 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2754 (((-1193 |#1|) $) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2218 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1953 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2384 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1413 (((-1179) $) NIL)) (-1981 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3307 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3505 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-1141) $) NIL)) (-2653 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2796 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-1490 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4171 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3818 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2604 (($ $ $) NIL)) (-2306 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3569 (((-876) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-2440 (((-656 (-1288 |#1|))) NIL (-2758 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3298 (($ $ $ $) NIL)) (-3143 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3568 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2424 (($ $ $) NIL)) (-3288 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1892 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3236 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) +((-3569 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) +(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-4329 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2315 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) +(((-648 |#1| |#2|) (-10 -7 (-15 -4329 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2315 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -4329 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -648)) +((-4329 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2315 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-4329 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) +(-10 -7 (-15 -4329 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2315 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -4329 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) +((-4329 (((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)) 86) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 20) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|)))) 35)) (-2315 (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 23) (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|)))) 43))) +(((-649 |#1|) (-10 -7 (-15 -4329 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -4329 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2315 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -2315 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -4329 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) (-464)) (T -649)) +((-4329 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) (-4329 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-971 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5)))))) +(-10 -7 (-15 -4329 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -4329 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2315 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -2315 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -4329 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) +((-3804 (((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|) 64 (-2662 (|has| |#1| (-374)))) (((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-1593 (((-112) (-1288 |#2|)) 33)) (-2844 (((-3 (-1288 |#1|) "failed") (-1288 |#2|)) 40))) +(((-650 |#1| |#2|) (-10 -7 (-15 -1593 ((-112) (-1288 |#2|))) (-15 -2844 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -3804 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -3804 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) (-568) (-13 (-1070) (-651 |#1|))) (T -650)) +((-3804 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-2662 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-3804 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) (-5 *1 (-650 *5 *4)))) (-2844 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(-10 -7 (-15 -1593 ((-112) (-1288 |#2|))) (-15 -2844 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -3804 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -3804 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-4344 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29)) (-3626 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +(((-651 |#1|) (-141) (-1070)) (T -651)) +((-3626 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-3626 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -3752 (-701 *4)) (|:| |vec| (-1288 *4)))))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3752 (-701 *5)) (|:| |vec| (-1288 *5))))))) +(-13 (-660 |t#1|) (-10 -8 (-15 -3626 ((-701 |t#1|) (-1288 $))) (-15 -3626 ((-2 (|:| -3752 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-1288 $) $)) (-15 -4344 ((-701 |t#1|) (-701 $))) (-15 -4344 ((-2 (|:| -3752 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-701 $) (-1288 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) +(((-652 |#1|) (-141) (-1133)) (T -652)) +NIL +(-13 (-658 |t#1|) (-1072 |t#1|)) +(((-102) . T) ((-625 (-876)) . T) ((-658 |#1|) . T) ((-1072 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-1358 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12))) +(((-653 |#1| |#2|) (-10 -7 (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1121) (-1238)) (T -653)) +((-1358 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1358 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-653 *5 *6)))) (-1358 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1121)) (-4 *5 (-1238)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1358 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) +(-10 -7 (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) +((-2727 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-4116 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) +(((-654 |#1| |#2|) (-10 -7 (-15 -2727 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1238) (-1238)) (T -654)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-654 *5 *2)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) +(-10 -7 (-15 -2727 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) +((-4116 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) +(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1238) (-1238) (-1238)) (T -655)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) +(-10 -7 (-15 -4116 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2897 ((|#1| $) NIL)) (-4425 (($ $) NIL)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2450 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1512 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-2868 (($ $ $) 37 (|has| |#1| (-1121)))) (-2255 (($ $ $) 41 (|has| |#1| (-1121)))) (-1360 (($ $ $) 44 (|has| |#1| (-1121)))) (-4355 (($ (-1 (-112) |#1|) $) NIL)) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2882 ((|#1| $) NIL)) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-3592 (($ $) 23) (($ $ (-783)) NIL)) (-2696 (($ $) NIL (|has| |#1| (-1121)))) (-2800 (($ $) 36 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3554 (((-112) $) NIL)) (-3659 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2650 (((-112) $) 11)) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4134 (($) 9 T CONST)) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1367 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4335 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1649 (($ |#1|) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3967 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-4436 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2174 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) 20) (($ $ (-783)) NIL)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3997 (((-112) $) NIL)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) 39)) (-3839 (($) 38)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3957 (((-576) $ $) NIL)) (-3389 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3463 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2199 (((-112) $) NIL)) (-2560 (($ $) NIL)) (-3930 (($ $) NIL (|has| $ (-6 -4465)))) (-1594 (((-783) $) NIL)) (-3574 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-2839 (($ |#1| $) 12)) (-2563 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (($ $ $) 13)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3157 (((-1179) $) 31 (|has| |#1| (-840))) (((-1179) $ (-112)) 32 (|has| |#1| (-840))) (((-1293) (-834) $) 33 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -4134 ($) -1480) (-15 -2650 ((-112) $)) (-15 -2839 ($ |#1| $)) (-15 -3484 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2868 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -1360 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1238)) (T -656)) +((-4134 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3484 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-2868 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-2255 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-1360 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(-13 (-678 |#1|) (-10 -8 (-15 -4134 ($) -1480) (-15 -2650 ((-112) $)) (-15 -2839 ($ |#1| $)) (-15 -3484 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2868 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -1360 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11) (($ (-1202)) NIL) (((-1202) $) NIL) ((|#1| $) 8)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-657 |#1|) (-13 (-1104) (-625 |#1|)) (-1121)) (T -657)) +NIL +(-13 (-1104) (-625 |#1|)) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8)) (* (($ |#1| $) 14))) +(((-658 |#1|) (-141) (-1133)) (T -658)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1133))))) +(-13 (-1121) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1534 (($ |#1| |#1| $) 43)) (-2396 (((-112) $ (-783)) NIL)) (-4355 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-2696 (($ $) 45)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) 56 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 9 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 37)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3772 ((|#1| $) 47)) (-4436 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3267 ((|#1| $) 50)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 23)) (-3839 (($) 28)) (-3005 (((-112) $) 54)) (-4406 (((-656 (-2 (|:| -4438 |#1|) (|:| -1460 (-783)))) $) 67)) (-2314 (($) 26) (($ (-656 |#1|)) 19)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 20)) (-4171 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-3569 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 24)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 69 (|has| |#1| (-102)))) (-3502 (((-783) $) 17 (|has| $ (-6 -4464))))) +(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4464) (-15 -3005 ((-112) $)) (-15 -1534 ($ |#1| |#1| $)))) (-1121)) (T -659)) +((-3005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121)))) (-1534 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) +(-13 (-707 |#1|) (-10 -8 (-6 -4464) (-15 -3005 ((-112) $)) (-15 -1534 ($ |#1| |#1| $)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +(((-660 |#1|) (-141) (-1079)) (T -660)) NIL (-13 (-21) (-658 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783) $) 17)) (-2920 (($ $ |#1|) 69)) (-3432 (($ $) 39)) (-4203 (($ $) 37)) (-2980 (((-3 |#1| "failed") $) 61)) (-2317 ((|#1| $) NIL)) (-1550 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2204 (((-875) $ (-1 (-875) (-875) (-875)) (-1 (-875) (-875) (-875)) (-576)) 56)) (-3908 ((|#1| $ (-576)) 35)) (-2731 ((|#2| $ (-576)) 34)) (-3687 (($ (-1 |#1| |#1|) $) 41)) (-1402 (($ (-1 |#2| |#2|) $) 47)) (-2910 (($) 11)) (-3126 (($ |#1| |#2|) 24)) (-1910 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|)))) 25)) (-3449 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))) $) 14)) (-2932 (($ |#1| $) 71)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4339 (((-112) $ $) 76)) (-4112 (((-875) $) 21) (($ |#1|) 18)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 27))) -(((-661 |#1| |#2| |#3|) (-13 (-1120) (-1058 |#1|) (-10 -8 (-15 -2204 ((-875) $ (-1 (-875) (-875) (-875)) (-1 (-875) (-875) (-875)) (-576))) (-15 -3449 ((-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))) $)) (-15 -3126 ($ |#1| |#2|)) (-15 -1910 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))))) (-15 -2731 (|#2| $ (-576))) (-15 -3908 (|#1| $ (-576))) (-15 -4203 ($ $)) (-15 -3432 ($ $)) (-15 -2199 ((-783) $)) (-15 -2910 ($)) (-15 -2920 ($ $ |#1|)) (-15 -2932 ($ |#1| $)) (-15 -1550 ($ |#1| |#2| $)) (-15 -1550 ($ $ $)) (-15 -4339 ((-112) $ $)) (-15 -1402 ($ (-1 |#2| |#2|) $)) (-15 -3687 ($ (-1 |#1| |#1|) $)))) (-1120) (-23) |#2|) (T -661)) -((-2204 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-875) (-875) (-875))) (-5 *4 (-576)) (-5 *2 (-875)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1120)) (-4 *6 (-23)) (-14 *7 *6))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4))) (-3126 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 *4)))) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1120)) (-14 *5 *2))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1120)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4203 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-3432 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4))) (-2910 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2920 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2932 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-1550 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-1550 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-4339 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4))) (-1402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)))) (-3687 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1120) (-1058 |#1|) (-10 -8 (-15 -2204 ((-875) $ (-1 (-875) (-875) (-875)) (-1 (-875) (-875) (-875)) (-576))) (-15 -3449 ((-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))) $)) (-15 -3126 ($ |#1| |#2|)) (-15 -1910 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2155 |#2|))))) (-15 -2731 (|#2| $ (-576))) (-15 -3908 (|#1| $ (-576))) (-15 -4203 ($ $)) (-15 -3432 ($ $)) (-15 -2199 ((-783) $)) (-15 -2910 ($)) (-15 -2920 ($ $ |#1|)) (-15 -2932 ($ |#1| $)) (-15 -1550 ($ |#1| |#2| $)) (-15 -1550 ($ $ $)) (-15 -4339 ((-112) $ $)) (-15 -1402 ($ (-1 |#2| |#2|) $)) (-15 -3687 ($ (-1 |#1| |#1|) $)))) -((-3501 (((-576) $) 31)) (-3386 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) 12)) (-1474 (((-112) (-576) $) 18)) (-2766 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) -(((-662 |#1| |#2|) (-10 -8 (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2766 (|#1| (-656 |#1|))) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -3501 ((-576) |#1|)) (-15 -3963 ((-656 (-576)) |#1|)) (-15 -1474 ((-112) (-576) |#1|))) (-663 |#2|) (-1237)) (T -662)) -NIL -(-10 -8 (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2766 (|#1| (-656 |#1|))) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -3501 ((-576) |#1|)) (-15 -3963 ((-656 (-576)) |#1|)) (-15 -1474 ((-112) (-576) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3966 (($ $) 80 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 79 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 52)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 43 (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2556 (($ $ |#1|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 72)) (-2766 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-663 |#1|) (-141) (-1237)) (T -663)) -((-1989 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2766 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2766 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2766 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2766 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2422 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2334 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2334 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-3386 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-3386 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-4267 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1254 (-576))) (|has| *1 (-6 -4464)) (-4 *1 (-663 *2)) (-4 *2 (-1237))))) -(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1254 (-576)) $) (-10 -8 (-15 -1989 ($ (-783) |t#1|)) (-15 -2766 ($ $ |t#1|)) (-15 -2766 ($ |t#1| $)) (-15 -2766 ($ $ $)) (-15 -2766 ($ (-656 $))) (-15 -2422 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2334 ($ $ (-576))) (-15 -2334 ($ $ (-1254 (-576)))) (-15 -3386 ($ |t#1| $ (-576))) (-15 -3386 ($ $ $ (-576))) (IF (|has| $ (-6 -4464)) (-15 -4267 (|t#1| $ (-1254 (-576)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-3177 (((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) "failed") |#3| |#2| (-1196)) 44))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -3177 ((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) "failed") |#3| |#2| (-1196))) (-15 -3177 ((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)))) (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-977)) (-668 |#2|)) (T -664)) -((-3177 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-3177 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1222) (-977))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3578 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -3177 ((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) "failed") |#3| |#2| (-1196))) (-15 -3177 ((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1471 (($ $) NIL (|has| |#1| (-374)))) (-4147 (($ $ $) NIL (|has| |#1| (-374)))) (-4096 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3943 (($ $ $) NIL (|has| |#1| (-374)))) (-2767 (($ $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ $) NIL (|has| |#1| (-374)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-2966 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464)))) (-2287 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) NIL)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3661 (((-783) $) NIL)) (-2700 (($ $ $) NIL (|has| |#1| (-374)))) (-4040 (($ $ $) NIL (|has| |#1| (-374)))) (-1978 (($ $ $) NIL (|has| |#1| (-374)))) (-1519 (($ $ $) NIL (|has| |#1| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4368 ((|#1| $ |#1|) NIL)) (-3267 (($ $ $) NIL (|has| |#1| (-374)))) (-1877 (((-783) $) NIL)) (-3430 ((|#1| $) NIL (|has| |#1| (-464)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) NIL)) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2649 ((|#1| $ |#1| |#1|) NIL)) (-3016 (($ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($) NIL)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783) $) 17)) (-3289 (($ $ |#1|) 69)) (-1474 (($ $) 39)) (-3834 (($ $) 37)) (-1572 (((-3 |#1| "failed") $) 61)) (-2859 ((|#1| $) NIL)) (-3601 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3689 (((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576)) 56)) (-3537 ((|#1| $ (-576)) 35)) (-2013 ((|#2| $ (-576)) 34)) (-3250 (($ (-1 |#1| |#1|) $) 41)) (-3075 (($ (-1 |#2| |#2|) $) 47)) (-3198 (($) 11)) (-1461 (($ |#1| |#2|) 24)) (-2606 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|)))) 25)) (-1584 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $) 14)) (-3314 (($ |#1| $) 71)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3380 (((-112) $ $) 76)) (-3569 (((-876) $) 21) (($ |#1|) 18)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 27))) +(((-661 |#1| |#2| |#3|) (-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -3689 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -1584 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $)) (-15 -1461 ($ |#1| |#2|)) (-15 -2606 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))))) (-15 -2013 (|#2| $ (-576))) (-15 -3537 (|#1| $ (-576))) (-15 -3834 ($ $)) (-15 -1474 ($ $)) (-15 -2096 ((-783) $)) (-15 -3198 ($)) (-15 -3289 ($ $ |#1|)) (-15 -3314 ($ |#1| $)) (-15 -3601 ($ |#1| |#2| $)) (-15 -3601 ($ $ $)) (-15 -3380 ((-112) $ $)) (-15 -3075 ($ (-1 |#2| |#2|) $)) (-15 -3250 ($ (-1 |#1| |#1|) $)))) (-1121) (-23) |#2|) (T -661)) +((-3689 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-1461 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1121)) (-14 *5 *2))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-1474 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-3198 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3314 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3601 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3601 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3380 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-3075 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)))) (-3250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -3689 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -1584 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $)) (-15 -1461 ($ |#1| |#2|)) (-15 -2606 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))))) (-15 -2013 (|#2| $ (-576))) (-15 -3537 (|#1| $ (-576))) (-15 -3834 ($ $)) (-15 -1474 ($ $)) (-15 -2096 ((-783) $)) (-15 -3198 ($)) (-15 -3289 ($ $ |#1|)) (-15 -3314 ($ |#1| $)) (-15 -3601 ($ |#1| |#2| $)) (-15 -3601 ($ $ $)) (-15 -3380 ((-112) $ $)) (-15 -3075 ($ (-1 |#2| |#2|) $)) (-15 -3250 ($ (-1 |#1| |#1|) $)))) +((-4027 (((-576) $) 31)) (-2174 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) 12)) (-4018 (((-112) (-576) $) 18)) (-1615 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) +(((-662 |#1| |#2|) (-10 -8 (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -4027 ((-576) |#1|)) (-15 -2764 ((-656 (-576)) |#1|)) (-15 -4018 ((-112) (-576) |#1|))) (-663 |#2|) (-1238)) (T -662)) +NIL +(-10 -8 (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -4027 ((-576) |#1|)) (-15 -2764 ((-656 (-576)) |#1|)) (-15 -4018 ((-112) (-576) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2800 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-663 |#1|) (-141) (-1238)) (T -663)) +((-4140 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-1615 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2174 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-2174 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4465)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) +(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1255 (-576)) $) (-10 -8 (-15 -4140 ($ (-783) |t#1|)) (-15 -1615 ($ $ |t#1|)) (-15 -1615 ($ |t#1| $)) (-15 -1615 ($ $ $)) (-15 -1615 ($ (-656 $))) (-15 -4116 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3463 ($ $ (-576))) (-15 -3463 ($ $ (-1255 (-576)))) (-15 -2174 ($ |t#1| $ (-576))) (-15 -2174 ($ $ $ (-576))) (IF (|has| $ (-6 -4465)) (-15 -3755 (|t#1| $ (-1255 (-576)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-1918 (((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) "failed") |#3| |#2| (-1197)) 44))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -1918 ((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -1918 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -664)) +((-1918 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3454 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -1918 ((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -1918 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3999 (($ $) NIL (|has| |#1| (-374)))) (-2059 (($ $ $) NIL (|has| |#1| (-374)))) (-1614 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3907 (($ $ $) NIL (|has| |#1| (-374)))) (-4304 (($ $ $) NIL (|has| |#1| (-374)))) (-4033 (($ $ $) NIL (|has| |#1| (-374)))) (-1447 (($ $ $) NIL (|has| |#1| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464)))) (-3215 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-2987 (((-783) $) NIL)) (-1751 (($ $ $) NIL (|has| |#1| (-374)))) (-2250 (($ $ $) NIL (|has| |#1| (-374)))) (-2001 (($ $ $) NIL (|has| |#1| (-374)))) (-4432 (($ $ $) NIL (|has| |#1| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) NIL)) (-3584 (($ $ $) NIL (|has| |#1| (-374)))) (-3600 (((-783) $) NIL)) (-1457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) NIL)) (-2865 (($ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($) NIL)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-665 |#1|) (-668 |#1|) (-238)) (T -665)) NIL (-668 |#1|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1471 (($ $) NIL (|has| |#1| (-374)))) (-4147 (($ $ $) NIL (|has| |#1| (-374)))) (-4096 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3943 (($ $ $) NIL (|has| |#1| (-374)))) (-2767 (($ $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ $) NIL (|has| |#1| (-374)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-2966 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464)))) (-2287 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) NIL)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3661 (((-783) $) NIL)) (-2700 (($ $ $) NIL (|has| |#1| (-374)))) (-4040 (($ $ $) NIL (|has| |#1| (-374)))) (-1978 (($ $ $) NIL (|has| |#1| (-374)))) (-1519 (($ $ $) NIL (|has| |#1| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4368 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3267 (($ $ $) NIL (|has| |#1| (-374)))) (-1877 (((-783) $) NIL)) (-3430 ((|#1| $) NIL (|has| |#1| (-464)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) NIL)) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2649 ((|#1| $ |#1| |#1|) NIL)) (-3016 (($ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($) NIL)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -4106 ($ $))))) (T -666)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3999 (($ $) NIL (|has| |#1| (-374)))) (-2059 (($ $ $) NIL (|has| |#1| (-374)))) (-1614 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3907 (($ $ $) NIL (|has| |#1| (-374)))) (-4304 (($ $ $) NIL (|has| |#1| (-374)))) (-4033 (($ $ $) NIL (|has| |#1| (-374)))) (-1447 (($ $ $) NIL (|has| |#1| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464)))) (-3215 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-2987 (((-783) $) NIL)) (-1751 (($ $ $) NIL (|has| |#1| (-374)))) (-2250 (($ $ $) NIL (|has| |#1| (-374)))) (-2001 (($ $ $) NIL (|has| |#1| (-374)))) (-4432 (($ $ $) NIL (|has| |#1| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3584 (($ $ $) NIL (|has| |#1| (-374)))) (-3600 (((-783) $) NIL)) (-1457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) NIL)) (-2865 (($ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($) NIL)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -2773 ($ $))))) (T -666)) NIL (-13 (-668 |#1|) (-296 |#2| |#2|)) -((-1471 (($ $) 29)) (-3016 (($ $) 27)) (-3155 (($) 13))) -(((-667 |#1| |#2|) (-10 -8 (-15 -1471 (|#1| |#1|)) (-15 -3016 (|#1| |#1|)) (-15 -3155 (|#1|))) (-668 |#2|) (-1069)) (T -667)) -NIL -(-10 -8 (-15 -1471 (|#1| |#1|)) (-15 -3016 (|#1| |#1|)) (-15 -3155 (|#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1471 (($ $) 87 (|has| |#1| (-374)))) (-4147 (($ $ $) 89 (|has| |#1| (-374)))) (-4096 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3943 (($ $ $) 50 (|has| |#1| (-374)))) (-2767 (($ $ $) 51 (|has| |#1| (-374)))) (-2735 (($ $ $) 53 (|has| |#1| (-374)))) (-3429 (($ $ $) 48 (|has| |#1| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 47 (|has| |#1| (-374)))) (-2966 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 52 (|has| |#1| (-374)))) (-2980 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2317 (((-576) $) 79 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 75)) (-3309 (($ $) 69)) (-3900 (((-3 $ "failed") $) 37)) (-3557 (($ $) 60 (|has| |#1| (-464)))) (-2287 (((-112) $) 35)) (-1562 (($ |#1| (-783)) 67)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 62 (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63 (|has| |#1| (-568)))) (-3661 (((-783) $) 71)) (-2700 (($ $ $) 57 (|has| |#1| (-374)))) (-4040 (($ $ $) 58 (|has| |#1| (-374)))) (-1978 (($ $ $) 46 (|has| |#1| (-374)))) (-1519 (($ $ $) 55 (|has| |#1| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 54 (|has| |#1| (-374)))) (-3862 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 59 (|has| |#1| (-374)))) (-1709 ((|#1| $) 70)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-4368 ((|#1| $ |#1|) 92)) (-3267 (($ $ $) 86 (|has| |#1| (-374)))) (-1877 (((-783) $) 72)) (-3430 ((|#1| $) 61 (|has| |#1| (-464)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) 73)) (-1410 (((-656 |#1|) $) 66)) (-4269 ((|#1| $ (-783)) 68)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-2649 ((|#1| $ |#1| |#1|) 65)) (-3016 (($ $) 90)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($) 91)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-668 |#1|) (-141) (-1069)) (T -668)) -((-3155 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)))) (-3016 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)))) (-4147 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-4096 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1069)) (-4 *3 (-374)))) (-1471 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-3267 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(-13 (-865 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -3155 ($)) (-15 -3016 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -4147 ($ $ $)) (-15 -4096 ($ $ (-783))) (-15 -1471 ($ $)) (-15 -3267 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1058 #0#) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-865 |#1|) . T)) -((-4130 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1450 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) -(((-669 |#1| |#2|) (-10 -7 (-15 -1450 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1450 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -4130 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576)))) (-1263 |#1|)) (T -669)) -((-4130 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) -(-10 -7 (-15 -1450 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1450 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -4130 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1471 (($ $) NIL (|has| |#1| (-374)))) (-4147 (($ $ $) 28 (|has| |#1| (-374)))) (-4096 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3943 (($ $ $) NIL (|has| |#1| (-374)))) (-2767 (($ $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ $) NIL (|has| |#1| (-374)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-2966 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464)))) (-2287 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) NIL)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3661 (((-783) $) NIL)) (-2700 (($ $ $) NIL (|has| |#1| (-374)))) (-4040 (($ $ $) NIL (|has| |#1| (-374)))) (-1978 (($ $ $) NIL (|has| |#1| (-374)))) (-1519 (($ $ $) NIL (|has| |#1| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4368 ((|#1| $ |#1|) 24)) (-3267 (($ $ $) 33 (|has| |#1| (-374)))) (-1877 (((-783) $) NIL)) (-3430 ((|#1| $) NIL (|has| |#1| (-464)))) (-4112 (((-875) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) NIL)) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2649 ((|#1| $ |#1| |#1|) 23)) (-3016 (($ $) NIL)) (-4314 (($) 21 T CONST)) (-4320 (($) 8 T CONST)) (-3155 (($) NIL)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-670 |#1| |#2|) (-668 |#1|) (-1069) (-1 |#1| |#1|)) (T -670)) +((-3999 (($ $) 29)) (-2865 (($ $) 27)) (-2018 (($) 13))) +(((-667 |#1| |#2|) (-10 -8 (-15 -3999 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2018 (|#1|))) (-668 |#2|) (-1070)) (T -667)) +NIL +(-10 -8 (-15 -3999 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2018 (|#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3999 (($ $) 87 (|has| |#1| (-374)))) (-2059 (($ $ $) 89 (|has| |#1| (-374)))) (-1614 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3907 (($ $ $) 50 (|has| |#1| (-374)))) (-4304 (($ $ $) 51 (|has| |#1| (-374)))) (-4033 (($ $ $) 53 (|has| |#1| (-374)))) (-1447 (($ $ $) 48 (|has| |#1| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 47 (|has| |#1| (-374)))) (-3654 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 52 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2859 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-2112 (($ $) 69)) (-3451 (((-3 $ "failed") $) 37)) (-1371 (($ $) 60 (|has| |#1| (-464)))) (-3215 (((-112) $) 35)) (-1945 (($ |#1| (-783)) 67)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 62 (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63 (|has| |#1| (-568)))) (-2987 (((-783) $) 71)) (-1751 (($ $ $) 57 (|has| |#1| (-374)))) (-2250 (($ $ $) 58 (|has| |#1| (-374)))) (-2001 (($ $ $) 46 (|has| |#1| (-374)))) (-4432 (($ $ $) 55 (|has| |#1| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 54 (|has| |#1| (-374)))) (-4314 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 59 (|has| |#1| (-374)))) (-2089 ((|#1| $) 70)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) 92)) (-3584 (($ $ $) 86 (|has| |#1| (-374)))) (-3600 (((-783) $) 72)) (-1457 ((|#1| $) 61 (|has| |#1| (-464)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-2060 (((-656 |#1|) $) 66)) (-3998 ((|#1| $ (-783)) 68)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-3568 ((|#1| $ |#1| |#1|) 65)) (-2865 (($ $) 90)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($) 91)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-668 |#1|) (-141) (-1070)) (T -668)) +((-2018 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-2865 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-2059 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) (-3999 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(-13 (-866 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -2018 ($)) (-15 -2865 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2059 ($ $ $)) (-15 -1614 ($ $ (-783))) (-15 -3999 ($ $)) (-15 -3584 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-866 |#1|) . T)) +((-1915 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1828 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) +(((-669 |#1| |#2|) (-10 -7 (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -1915 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -669)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) +(-10 -7 (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -1915 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3999 (($ $) NIL (|has| |#1| (-374)))) (-2059 (($ $ $) 28 (|has| |#1| (-374)))) (-1614 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3907 (($ $ $) NIL (|has| |#1| (-374)))) (-4304 (($ $ $) NIL (|has| |#1| (-374)))) (-4033 (($ $ $) NIL (|has| |#1| (-374)))) (-1447 (($ $ $) NIL (|has| |#1| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464)))) (-3215 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-2987 (((-783) $) NIL)) (-1751 (($ $ $) NIL (|has| |#1| (-374)))) (-2250 (($ $ $) NIL (|has| |#1| (-374)))) (-2001 (($ $ $) NIL (|has| |#1| (-374)))) (-4432 (($ $ $) NIL (|has| |#1| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) 24)) (-3584 (($ $ $) 33 (|has| |#1| (-374)))) (-3600 (((-783) $) NIL)) (-1457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) 23)) (-2865 (($ $) NIL)) (-2719 (($) 21 T CONST)) (-2730 (($) 8 T CONST)) (-2018 (($) NIL)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-670 |#1| |#2|) (-668 |#1|) (-1070) (-1 |#1| |#1|)) (T -670)) NIL (-668 |#1|) -((-4147 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-4096 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-3267 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-671 |#1| |#2|) (-10 -7 (-15 -4147 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4096 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3267 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) -((-3267 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-4096 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-4147 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) -(-10 -7 (-15 -4147 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4096 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3267 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2031 (($ $ $) 9))) -(((-672 |#1|) (-10 -8 (-15 -2031 (|#1| |#1| |#1|))) (-673)) (T -672)) -NIL -(-10 -8 (-15 -2031 (|#1| |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-1980 (($ $) 11)) (-1994 (((-112) $ $) 6)) (-2031 (($ $ $) 9)) (-3938 (((-112) $ $) 8)) (-2020 (($ $ $) 10))) +((-2059 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-1614 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-3584 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-671 |#1| |#2|) (-10 -7 (-15 -2059 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1614 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3584 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) +((-3584 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-1614 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-2059 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) +(-10 -7 (-15 -2059 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1614 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3584 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3562 (($ $ $) 9))) +(((-672 |#1|) (-10 -8 (-15 -3562 (|#1| |#1| |#1|))) (-673)) (T -672)) +NIL +(-10 -8 (-15 -3562 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3516 (($ $) 11)) (-2113 (((-112) $ $) 6)) (-3562 (($ $ $) 9)) (-2923 (((-112) $ $) 8)) (-3551 (($ $ $) 10))) (((-673) (-141)) (T -673)) -((-1980 (*1 *1 *1) (-4 *1 (-673))) (-2020 (*1 *1 *1 *1) (-4 *1 (-673))) (-2031 (*1 *1 *1 *1) (-4 *1 (-673)))) -(-13 (-102) (-10 -8 (-15 -1980 ($ $)) (-15 -2020 ($ $ $)) (-15 -2031 ($ $ $)))) -(((-102) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 15)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2686 ((|#1| $) 23)) (-2905 (($ $ $) NIL (|has| |#1| (-803)))) (-1654 (($ $ $) NIL (|has| |#1| (-803)))) (-2043 (((-1178) $) 48)) (-3115 (((-1140) $) NIL)) (-2697 ((|#3| $) 24)) (-4112 (((-875) $) 43)) (-1994 (((-112) $ $) 22)) (-4314 (($) 10 T CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3938 (((-112) $ $) 20)) (-3983 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3962 (((-112) $ $) 26 (|has| |#1| (-803)))) (-4046 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4036 (($ $) 17) (($ $ $) NIL)) (-4026 (($ $ $) 29)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4046 ($ $ |#3|)) (-15 -4046 ($ |#1| |#3|)) (-15 -2686 (|#1| $)) (-15 -2697 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) -((-4046 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4046 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-2686 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-2697 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) -(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4046 ($ $ |#3|)) (-15 -4046 ($ |#1| |#3|)) (-15 -2686 (|#1| $)) (-15 -2697 (|#3| $)))) -((-3191 (((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)) 33))) -(((-675 |#1|) (-10 -7 (-15 -3191 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)))) (-927)) (T -675)) -((-3191 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *4))) (-5 *3 (-1192 *4)) (-4 *4 (-927)) (-5 *1 (-675 *4))))) -(-10 -7 (-15 -3191 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1417 (((-656 |#1|) $) 84)) (-2725 (($ $ (-783)) 94)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-4226 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 50)) (-2980 (((-3 (-684 |#1|) "failed") $) NIL)) (-2317 (((-684 |#1|) $) NIL)) (-3309 (($ $) 93)) (-1757 (((-783) $) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1617 (($ (-684 |#1|) |#2|) 70)) (-3848 (($ $) 89)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-3052 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 49)) (-3544 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1698 (((-684 |#1|) $) NIL)) (-1709 ((|#2| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2143 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-1877 (((-783) $) 91)) (-4124 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-4112 (((-875) $) NIL) (($ |#1|) 76) (((-1302 |#1| |#2|) $) 60) (((-1311 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-684 |#1|)) NIL)) (-2861 ((|#2| (-1311 |#1| |#2|) $) 45)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 23 T CONST)) (-2883 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1427 (((-3 $ "failed") (-1302 |#1| |#2|)) 62)) (-3320 (($ (-684 |#1|)) 14)) (-3938 (((-112) $ $) 46)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) 68) (($ $ $) NIL)) (-4026 (($ $ $) 31)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) -(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -1427 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -4124 ($ (-684 |#1|) (-684 |#1|))) (-15 -4124 ($ (-684 |#1|) $)) (-15 -4124 ($ $ (-684 |#1|))))) (-861) (-174)) (T -676)) -((-1427 (*1 *1 *2) (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-4124 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-4124 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-4124 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) -(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -1427 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -4124 ($ (-684 |#1|) (-684 |#1|))) (-15 -4124 ($ (-684 |#1|) $)) (-15 -4124 ($ $ (-684 |#1|))))) -((-3063 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-1715 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2146 (($ (-1 (-112) |#2|) $) 29)) (-3432 (($ $) 65)) (-3308 (($ $) 74)) (-1672 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2721 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3538 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-1989 (($ (-783) |#2|) 63)) (-3881 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2144 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2422 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-2785 (($ |#2|) 15)) (-2782 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-2022 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3571 (($ $ (-1254 (-576))) 51) (($ $ (-576)) 44)) (-3757 (($ $ $ (-576)) 70)) (-4286 (($ $) 68)) (-3962 (((-112) $ $) 76))) -(((-677 |#1| |#2|) (-10 -8 (-15 -2785 (|#1| |#2|)) (-15 -3571 (|#1| |#1| (-576))) (-15 -3571 (|#1| |#1| (-1254 (-576)))) (-15 -1672 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2782 (|#1| |#2| |#1| (-576))) (-15 -2782 (|#1| |#1| |#1| (-576))) (-15 -3881 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1672 (|#1| |#2| |#1|)) (-15 -3308 (|#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -2144 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3063 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3538 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3538 ((-576) |#2| |#1|)) (-15 -3538 ((-576) |#2| |#1| (-576))) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -3757 (|#1| |#1| |#1| (-576))) (-15 -3432 (|#1| |#1|)) (-15 -1715 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -3962 ((-112) |#1| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2022 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1989 (|#1| (-783) |#2|)) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4286 (|#1| |#1|))) (-678 |#2|) (-1237)) (T -677)) -NIL -(-10 -8 (-15 -2785 (|#1| |#2|)) (-15 -3571 (|#1| |#1| (-576))) (-15 -3571 (|#1| |#1| (-1254 (-576)))) (-15 -1672 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2782 (|#1| |#2| |#1| (-576))) (-15 -2782 (|#1| |#1| |#1| (-576))) (-15 -3881 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1672 (|#1| |#2| |#1|)) (-15 -3308 (|#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -2144 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3063 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3538 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3538 ((-576) |#2| |#1|)) (-15 -3538 ((-576) |#2| |#1| (-576))) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -3757 (|#1| |#1| |#1| (-576))) (-15 -3432 (|#1| |#1|)) (-15 -1715 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -3962 ((-112) |#1| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2022 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1989 (|#1| (-783) |#2|)) (-15 -2422 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4286 (|#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-3456 ((|#1| $) 66)) (-3094 (($ $) 68)) (-4100 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) 53 (|has| $ (-6 -4464)))) (-3063 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-1715 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4464)))) (-2379 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-3134 (($ $ $) 57 (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) 55 (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4464))) (($ $ "rest" $) 56 (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-2146 (($ (-1 (-112) |#1|) $) 131)) (-3603 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4463)))) (-3442 ((|#1| $) 67)) (-4331 (($) 7 T CONST)) (-3432 (($ $) 146 (|has| $ (-6 -4464)))) (-4203 (($ $) 136)) (-1762 (($ $) 74) (($ $ (-783)) 72)) (-3308 (($ $) 133 (|has| |#1| (-1120)))) (-3966 (($ $) 101 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 132 (|has| |#1| (-1120))) (($ (-1 (-112) |#1|) $) 127)) (-2824 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4463))) (($ |#1| $) 102 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1908 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 89)) (-3588 (((-112) $) 85)) (-3538 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1120))) (((-576) |#1| $) 140 (|has| |#1| (-1120))) (((-576) (-1 (-112) |#1|) $) 139)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-1989 (($ (-783) |#1|) 111)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 97 (|has| (-576) (-861)))) (-2905 (($ $ $) 154 (|has| |#1| (-861)))) (-3881 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-2144 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 96 (|has| (-576) (-861)))) (-1654 (($ $ $) 153 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2785 (($ |#1|) 124)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2849 ((|#1| $) 71) (($ $ (-783)) 69)) (-2782 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-3386 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3963 (((-656 (-576)) $) 94)) (-1474 (((-112) (-576) $) 93)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 77) (($ $ (-783)) 75)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2556 (($ $ |#1|) 98 (|has| $ (-6 -4464)))) (-3498 (((-112) $) 86)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 92)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3183 (((-576) $ $) 45)) (-3571 (($ $ (-1254 (-576))) 126) (($ $ (-576)) 125)) (-2334 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2003 (((-112) $) 47)) (-4385 (($ $) 63)) (-1788 (($ $) 60 (|has| $ (-6 -4464)))) (-4093 (((-783) $) 64)) (-2820 (($ $) 65)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3757 (($ $ $ (-576)) 145 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 109)) (-3424 (($ $ $) 62) (($ $ |#1|) 61)) (-2766 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 152 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 150 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3983 (((-112) $ $) 151 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 149 (|has| |#1| (-861)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-678 |#1|) (-141) (-1237)) (T -678)) -((-2785 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1237))))) -(-13 (-1169 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -2785 ($ |t#1|)))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1030 |#1|) . T) ((-1120) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861))) ((-1169 |#1|) . T) ((-1237) . T) ((-1275 |#1|) . T)) -((-3177 (((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)) 14)) (-4134 (((-783) (-701 |#1|) (-1287 |#1|)) 30)) (-2636 (((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|)) 24)) (-1805 (((-112) (-701 |#1|) (-1287 |#1|)) 27))) -(((-679 |#1|) (-10 -7 (-15 -3177 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))) (-15 -3177 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|))) (-15 -3177 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|)))) (-15 -3177 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|)))) (-15 -2636 ((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|))) (-15 -1805 ((-112) (-701 |#1|) (-1287 |#1|))) (-15 -4134 ((-783) (-701 |#1|) (-1287 |#1|)))) (-374)) (T -679)) -((-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-2636 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -3578 (-656 (-1287 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -3578 (-656 (-1287 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -3578 (-656 (-1287 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -3578 (-656 (-1287 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1287 *5))))) -(-10 -7 (-15 -3177 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))) (-15 -3177 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|))) (-15 -3177 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|)))) (-15 -3177 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|)))) (-15 -2636 ((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|))) (-15 -1805 ((-112) (-701 |#1|) (-1287 |#1|))) (-15 -4134 ((-783) (-701 |#1|) (-1287 |#1|)))) -((-3177 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|))) |#4| |#3|) 60)) (-4134 (((-783) |#4| |#3|) 18)) (-2636 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1805 (((-112) |#4| |#3|) 14))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3177 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|))) |#4| |#3|)) (-15 -3177 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2636 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1805 ((-112) |#4| |#3|)) (-15 -4134 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4464))) (-13 (-384 |#1|) (-10 -7 (-6 -4464))) (-699 |#1| |#2| |#3|)) (T -680)) -((-4134 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-1805 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2636 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4464)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-3177 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3578 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-3177 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(-10 -7 (-15 -3177 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|))) |#4| |#3|)) (-15 -3177 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2636 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1805 ((-112) |#4| |#3|)) (-15 -4134 ((-783) |#4| |#3|))) -((-1598 (((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -3578 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1598 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -3578 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -681)) -((-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) (|:| -3578 (-656 (-1287 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) -(-10 -7 (-15 -1598 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -3578 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-4288 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3832 ((|#2| $) NIL)) (-1540 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2108 (((-1287 (-701 |#2|))) NIL) (((-1287 (-701 |#2|)) (-1287 $)) NIL)) (-1796 (((-112) $) NIL)) (-3791 (((-1287 $)) 42)) (-2337 (((-112) $ (-783)) NIL)) (-1867 (($ |#2|) NIL)) (-4331 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| |#2| (-317)))) (-2216 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3427 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-2426 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2206 (((-701 |#2|)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3500 ((|#2| $) NIL)) (-4032 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1287 $)) NIL)) (-2942 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-4137 (((-1192 (-970 |#2|))) NIL (|has| |#2| (-374)))) (-2711 (($ $ (-939)) NIL)) (-2590 ((|#2| $) NIL)) (-3138 (((-1192 |#2|) $) NIL (|has| |#2| (-568)))) (-4078 ((|#2|) NIL) ((|#2| (-1287 $)) NIL)) (-1748 (((-1192 |#2|) $) NIL)) (-2896 (((-112)) NIL)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) ((|#2| $) NIL)) (-4005 (($ (-1287 |#2|)) NIL) (($ (-1287 |#2|) (-1287 $)) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4134 (((-783) $) NIL (|has| |#2| (-568))) (((-939)) 43)) (-3719 ((|#2| $ (-576) (-576)) NIL)) (-1670 (((-112)) NIL)) (-4222 (($ $ (-939)) NIL)) (-3721 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL)) (-3519 (((-783) $) NIL (|has| |#2| (-568)))) (-2175 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-2758 (((-783) $) NIL)) (-2582 (((-112)) NIL)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3996 ((|#2| $) NIL (|has| |#2| (-6 (-4465 "*"))))) (-3263 (((-576) $) NIL)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4285 (((-576) $) NIL)) (-2902 (((-576) $) NIL)) (-3409 (($ (-656 (-656 |#2|))) NIL)) (-1896 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3065 (((-656 (-656 |#2|)) $) NIL)) (-2396 (((-112)) NIL)) (-2304 (((-112)) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-3913 (((-3 (-2 (|:| |particular| $) (|:| -3578 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3510 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1647 (((-701 |#2|)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1881 ((|#2| $) NIL)) (-2882 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1287 $)) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1793 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3689 (((-1192 (-970 |#2|))) NIL (|has| |#2| (-374)))) (-1604 (($ $ (-939)) NIL)) (-1845 ((|#2| $) NIL)) (-2557 (((-1192 |#2|) $) NIL (|has| |#2| (-568)))) (-4037 ((|#2|) NIL) ((|#2| (-1287 $)) NIL)) (-3491 (((-1192 |#2|) $) NIL)) (-3403 (((-112)) NIL)) (-2043 (((-1178) $) NIL)) (-1658 (((-112)) NIL)) (-1530 (((-112)) NIL)) (-2502 (((-112)) NIL)) (-2658 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-3115 (((-1140) $) NIL)) (-2231 (((-112)) NIL)) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3587 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-4106 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-2572 ((|#2| $) NIL)) (-2762 (($ (-656 |#2|)) NIL)) (-2613 (((-112) $) NIL)) (-4015 (((-245 |#1| |#2|) $) NIL)) (-1679 ((|#2| $) NIL (|has| |#2| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4286 (($ $) NIL)) (-3435 (((-701 |#2|) (-1287 $)) NIL) (((-1287 |#2|) $) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $ (-1287 $)) 31)) (-1554 (($ (-1287 |#2|)) NIL) (((-1287 |#2|) $) NIL)) (-2531 (((-656 (-970 |#2|))) NIL) (((-656 (-970 |#2|)) (-1287 $)) NIL)) (-2362 (($ $ $) NIL)) (-2631 (((-112)) NIL)) (-3992 (((-245 |#1| |#2|) $ (-576)) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1058 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) 41)) (-2341 (((-656 (-1287 |#2|))) NIL (|has| |#2| (-568)))) (-3240 (($ $ $ $) NIL)) (-1962 (((-112)) NIL)) (-2649 (($ (-701 |#2|) $) NIL)) (-1682 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-1780 (((-112) $) NIL)) (-2027 (($ $ $) NIL)) (-1528 (((-112)) NIL)) (-3484 (((-112)) NIL)) (-2289 (((-112)) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-682 |#1| |#2|) (-13 (-1143 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-939) (-174)) (T -682)) -NIL -(-13 (-1143 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2815 (((-656 (-1155)) $) 10)) (-4112 (((-875) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-683) (-13 (-1103) (-10 -8 (-15 -2815 ((-656 (-1155)) $))))) (T -683)) -((-2815 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-683))))) -(-13 (-1103) (-10 -8 (-15 -2815 ((-656 (-1155)) $)))) -((-1952 (((-112) $ $) NIL)) (-1417 (((-656 |#1|) $) NIL)) (-2110 (($ $) 62)) (-3633 (((-112) $) NIL)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2004 (((-3 $ "failed") (-831 |#1|)) 27)) (-2577 (((-112) (-831 |#1|)) 17)) (-2085 (($ (-831 |#1|)) 28)) (-3355 (((-112) $ $) 36)) (-3107 (((-939) $) 43)) (-2100 (($ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1450 (((-656 $) (-831 |#1|)) 19)) (-4112 (((-875) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-1994 (((-112) $ $) NIL)) (-3204 (((-59 (-656 $)) (-656 |#1|) (-939)) 67)) (-3076 (((-656 $) (-656 |#1|) (-939)) 70)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 63)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 46))) -(((-684 |#1|) (-13 (-861) (-1058 |#1|) (-10 -8 (-15 -3633 ((-112) $)) (-15 -2100 ($ $)) (-15 -2110 ($ $)) (-15 -3107 ((-939) $)) (-15 -3355 ((-112) $ $)) (-15 -4112 ((-831 |#1|) $)) (-15 -4112 ((-689 |#1|) $)) (-15 -1450 ((-656 $) (-831 |#1|))) (-15 -2577 ((-112) (-831 |#1|))) (-15 -2085 ($ (-831 |#1|))) (-15 -2004 ((-3 $ "failed") (-831 |#1|))) (-15 -1417 ((-656 |#1|) $)) (-15 -3204 ((-59 (-656 $)) (-656 |#1|) (-939))) (-15 -3076 ((-656 $) (-656 |#1|) (-939))))) (-861)) (T -684)) -((-3633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-2110 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3355 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-2004 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-939)) (-4 *5 (-861)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-939)) (-4 *5 (-861)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(-13 (-861) (-1058 |#1|) (-10 -8 (-15 -3633 ((-112) $)) (-15 -2100 ($ $)) (-15 -2110 ($ $)) (-15 -3107 ((-939) $)) (-15 -3355 ((-112) $ $)) (-15 -4112 ((-831 |#1|) $)) (-15 -4112 ((-689 |#1|) $)) (-15 -1450 ((-656 $) (-831 |#1|))) (-15 -2577 ((-112) (-831 |#1|))) (-15 -2085 ($ (-831 |#1|))) (-15 -2004 ((-3 $ "failed") (-831 |#1|))) (-15 -1417 ((-656 |#1|) $)) (-15 -3204 ((-59 (-656 $)) (-656 |#1|) (-939))) (-15 -3076 ((-656 $) (-656 |#1|) (-939))))) -((-1688 ((|#2| $) 100)) (-3094 (($ $) 121)) (-2337 (((-112) $ (-783)) 35)) (-1762 (($ $) 109) (($ $ (-783)) 112)) (-3588 (((-112) $) 122)) (-3395 (((-656 $) $) 96)) (-2520 (((-112) $ $) 92)) (-2135 (((-112) $ (-783)) 33)) (-2066 (((-576) $) 66)) (-3501 (((-576) $) 65)) (-1556 (((-112) $ (-783)) 31)) (-2887 (((-112) $) 98)) (-2849 ((|#2| $) 113) (($ $ (-783)) 117)) (-3386 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-3963 (((-656 (-576)) $) 64)) (-1474 (((-112) (-576) $) 59)) (-1753 ((|#2| $) NIL) (($ $ (-783)) 108)) (-3679 (($ $ (-576)) 125)) (-3498 (((-112) $) 124)) (-3587 (((-112) (-1 (-112) |#2|) $) 42)) (-2692 (((-656 |#2|) $) 46)) (-4368 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1254 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3183 (((-576) $ $) 91)) (-2334 (($ $ (-1254 (-576))) 78) (($ $ (-576)) 72)) (-2003 (((-112) $) 87)) (-4385 (($ $) 105)) (-4093 (((-783) $) 104)) (-2820 (($ $) 103)) (-4124 (($ (-656 |#2|)) 53)) (-3454 (($ $) 126)) (-4335 (((-656 $) $) 90)) (-2777 (((-112) $ $) 89)) (-1682 (((-112) (-1 (-112) |#2|) $) 41)) (-3938 (((-112) $ $) 20)) (-1968 (((-783) $) 39))) -(((-685 |#1| |#2|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -3679 (|#1| |#1| (-576))) (-15 -3588 ((-112) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -4368 (|#2| |#1| (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576))) (-15 -2692 ((-656 |#2|) |#1|)) (-15 -1474 ((-112) (-576) |#1|)) (-15 -3963 ((-656 (-576)) |#1|)) (-15 -3501 ((-576) |#1|)) (-15 -2066 ((-576) |#1|)) (-15 -4124 (|#1| (-656 |#2|))) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -2334 (|#1| |#1| (-576))) (-15 -2334 (|#1| |#1| (-1254 (-576)))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -4385 (|#1| |#1|)) (-15 -4093 ((-783) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2849 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "last")) (-15 -2849 (|#2| |#1|)) (-15 -1762 (|#1| |#1| (-783))) (-15 -4368 (|#1| |#1| "rest")) (-15 -1762 (|#1| |#1|)) (-15 -1753 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "first")) (-15 -1753 (|#2| |#1|)) (-15 -2520 ((-112) |#1| |#1|)) (-15 -2777 ((-112) |#1| |#1|)) (-15 -3183 ((-576) |#1| |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -1688 (|#2| |#1|)) (-15 -2887 ((-112) |#1|)) (-15 -3395 ((-656 |#1|) |#1|)) (-15 -4335 ((-656 |#1|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783)))) (-686 |#2|) (-1237)) (T -685)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -3679 (|#1| |#1| (-576))) (-15 -3588 ((-112) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -4368 (|#2| |#1| (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576))) (-15 -2692 ((-656 |#2|) |#1|)) (-15 -1474 ((-112) (-576) |#1|)) (-15 -3963 ((-656 (-576)) |#1|)) (-15 -3501 ((-576) |#1|)) (-15 -2066 ((-576) |#1|)) (-15 -4124 (|#1| (-656 |#2|))) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -2334 (|#1| |#1| (-576))) (-15 -2334 (|#1| |#1| (-1254 (-576)))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -4385 (|#1| |#1|)) (-15 -4093 ((-783) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2849 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "last")) (-15 -2849 (|#2| |#1|)) (-15 -1762 (|#1| |#1| (-783))) (-15 -4368 (|#1| |#1| "rest")) (-15 -1762 (|#1| |#1|)) (-15 -1753 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "first")) (-15 -1753 (|#2| |#1|)) (-15 -2520 ((-112) |#1| |#1|)) (-15 -2777 ((-112) |#1| |#1|)) (-15 -3183 ((-576) |#1| |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -1688 (|#2| |#1|)) (-15 -2887 ((-112) |#1|)) (-15 -3395 ((-656 |#1|) |#1|)) (-15 -4335 ((-656 |#1|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783)))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-3456 ((|#1| $) 66)) (-3094 (($ $) 68)) (-4100 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) 53 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-3134 (($ $ $) 57 (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) 55 (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4464))) (($ $ "rest" $) 56 (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 104)) (-3442 ((|#1| $) 67)) (-4331 (($) 7 T CONST)) (-3824 (($ $) 126)) (-1762 (($ $) 74) (($ $ (-783)) 72)) (-3966 (($ $) 101 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 102 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 105)) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1908 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 89)) (-3588 (((-112) $) 85)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3505 (((-783) $) 125)) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-1989 (($ (-783) |#1|) 111)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 97 (|has| (-576) (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 96 (|has| (-576) (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-3073 (($ $) 128)) (-4027 (((-112) $) 129)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2849 ((|#1| $) 71) (($ $ (-783)) 69)) (-3386 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3963 (((-656 (-576)) $) 94)) (-1474 (((-112) (-576) $) 93)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-4034 ((|#1| $) 127)) (-1753 ((|#1| $) 77) (($ $ (-783)) 75)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2556 (($ $ |#1|) 98 (|has| $ (-6 -4464)))) (-3679 (($ $ (-576)) 124)) (-3498 (((-112) $) 86)) (-4351 (((-112) $) 130)) (-1543 (((-112) $) 131)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 92)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3183 (((-576) $ $) 45)) (-2334 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2003 (((-112) $) 47)) (-4385 (($ $) 63)) (-1788 (($ $) 60 (|has| $ (-6 -4464)))) (-4093 (((-783) $) 64)) (-2820 (($ $) 65)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 109)) (-3424 (($ $ $) 62 (|has| $ (-6 -4464))) (($ $ |#1|) 61 (|has| $ (-6 -4464)))) (-2766 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3454 (($ $) 123)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-686 |#1|) (-141) (-1237)) (T -686)) -((-2824 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-4351 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-3073 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-3824 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-3679 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-3454 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(-13 (-1169 |t#1|) (-10 -8 (-15 -2824 ($ (-1 (-112) |t#1|) $)) (-15 -3603 ($ (-1 (-112) |t#1|) $)) (-15 -1543 ((-112) $)) (-15 -4351 ((-112) $)) (-15 -4027 ((-112) $)) (-15 -3073 ($ $)) (-15 -4034 (|t#1| $)) (-15 -3824 ($ $)) (-15 -3505 ((-783) $)) (-15 -3679 ($ $ (-576))) (-15 -3454 ($ $)))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-1030 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1169 |#1|) . T) ((-1237) . T) ((-1275 |#1|) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4083 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1069)))) (-2337 (((-112) $ (-783)) NIL)) (-4171 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-4331 (($) NIL T CONST)) (-1550 (($ $ $) 57 (|has| |#1| (-1069)))) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3057 (((-1287 (-783)) $) 12)) (-2098 (($ (-1196) $ $) 34)) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-1568 (($ (-783)) 55 (|has| |#1| (-1069)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-783) (-783) (-783)) 44)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4124 (($ (-656 (-656 (-656 |#1|)))) 67)) (-4112 (($ (-976 (-976 (-976 |#1|)))) 23) (((-976 (-976 (-976 |#1|))) $) 19) (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1069)) (PROGN (-15 -4083 ($ (-783) (-783) (-783))) (-15 -1568 ($ (-783))) (-15 -1550 ($ $ $))) |%noBranch|) (-15 -4124 ($ (-656 (-656 (-656 |#1|))))) (-15 -4368 (|#1| $ (-783) (-783) (-783))) (-15 -4171 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -4112 ($ (-976 (-976 (-976 |#1|))))) (-15 -4112 ((-976 (-976 (-976 |#1|))) $)) (-15 -2098 ($ (-1196) $ $)) (-15 -3057 ((-1287 (-783)) $)))) (-1120)) (T -687)) -((-4083 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1069)) (-4 *3 (-1120)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1069)) (-4 *3 (-1120)))) (-1550 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1069)) (-4 *2 (-1120)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1120)) (-5 *1 (-687 *3)))) (-4368 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1120)))) (-4171 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1120)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-4 *3 (-1120)) (-5 *1 (-687 *3)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1120)))) (-2098 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-687 *3)) (-4 *3 (-1120)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-1287 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1120))))) -(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1069)) (PROGN (-15 -4083 ($ (-783) (-783) (-783))) (-15 -1568 ($ (-783))) (-15 -1550 ($ $ $))) |%noBranch|) (-15 -4124 ($ (-656 (-656 (-656 |#1|))))) (-15 -4368 (|#1| $ (-783) (-783) (-783))) (-15 -4171 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -4112 ($ (-976 (-976 (-976 |#1|))))) (-15 -4112 ((-976 (-976 (-976 |#1|))) $)) (-15 -2098 ($ (-1196) $ $)) (-15 -3057 ((-1287 (-783)) $)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3882 (((-495) $) 10)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-1155) $) 12)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-688) (-13 (-1103) (-10 -8 (-15 -3882 ((-495) $)) (-15 -4158 ((-1155) $))))) (T -688)) -((-3882 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-688))))) -(-13 (-1103) (-10 -8 (-15 -3882 ((-495) $)) (-15 -4158 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-1417 (((-656 |#1|) $) 15)) (-2110 (($ $) 19)) (-3633 (((-112) $) 20)) (-2980 (((-3 |#1| "failed") $) 23)) (-2317 ((|#1| $) 21)) (-1762 (($ $) 37)) (-3848 (($ $) 25)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-3355 (((-112) $ $) 47)) (-3107 (((-939) $) 40)) (-2100 (($ $) 18)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 ((|#1| $) 36)) (-4112 (((-875) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 13)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-689 |#1|) (-13 (-861) (-1058 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4112 ((-831 |#1|) $)) (-15 -1753 (|#1| $)) (-15 -2100 ($ $)) (-15 -3107 ((-939) $)) (-15 -3355 ((-112) $ $)) (-15 -3848 ($ $)) (-15 -1762 ($ $)) (-15 -3633 ((-112) $)) (-15 -2110 ($ $)) (-15 -1417 ((-656 |#1|) $)))) (-861)) (T -689)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-1753 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3355 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-1762 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-2110 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861))))) -(-13 (-861) (-1058 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4112 ((-831 |#1|) $)) (-15 -1753 (|#1| $)) (-15 -2100 ($ $)) (-15 -3107 ((-939) $)) (-15 -3355 ((-112) $ $)) (-15 -3848 ($ $)) (-15 -1762 ($ $)) (-15 -3633 ((-112) $)) (-15 -2110 ($ $)) (-15 -1417 ((-656 |#1|) $)))) -((-2508 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-3391 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) -(((-690 |#1|) (-10 -7 (-15 -3391 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -2508 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1120)) (T -690)) -((-2508 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1120)) (-5 *1 (-690 *2)))) (-3391 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1120)) (-5 *1 (-690 *2))))) -(-10 -7 (-15 -3391 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -2508 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) -((-1431 ((|#2| |#1| |#2|) 9)) (-1421 ((|#1| |#1| |#2|) 8))) -(((-691 |#1| |#2|) (-10 -7 (-15 -1421 (|#1| |#1| |#2|)) (-15 -1431 (|#2| |#1| |#2|))) (-1120) (-1120)) (T -691)) -((-1431 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-1421 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(-10 -7 (-15 -1421 (|#1| |#1| |#2|)) (-15 -1431 (|#2| |#1| |#2|))) -((-4104 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4104 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1120) (-1120) (-1120)) (T -692)) -((-4104 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-692 *5 *6 *2))))) -(-10 -7 (-15 -4104 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1952 (((-112) $ $) NIL)) (-4169 (((-1236) $) 21)) (-4118 (((-656 (-1236)) $) 19)) (-3496 (($ (-656 (-1236)) (-1236)) 14)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 29) (($ (-1201)) NIL) (((-1201) $) NIL) (((-1236) $) 22) (($ (-1138)) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-693) (-13 (-1103) (-625 (-1236)) (-10 -8 (-15 -4112 ($ (-1138))) (-15 -3496 ($ (-656 (-1236)) (-1236))) (-15 -4118 ((-656 (-1236)) $)) (-15 -4169 ((-1236) $))))) (T -693)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-693)))) (-3496 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1236))) (-5 *3 (-1236)) (-5 *1 (-693)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-693)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-693))))) -(-13 (-1103) (-625 (-1236)) (-10 -8 (-15 -4112 ($ (-1138))) (-15 -3496 ($ (-656 (-1236)) (-1236))) (-15 -4118 ((-656 (-1236)) $)) (-15 -4169 ((-1236) $)))) -((-2508 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-1755 (((-1 |#1|) |#1|) 8)) (-1683 ((|#1| |#1|) 19)) (-2865 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-4112 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) -(((-694 |#1|) (-10 -7 (-15 -1755 ((-1 |#1|) |#1|)) (-15 -4112 ((-1 |#1|) |#1|)) (-15 -2865 (|#1| (-1 |#1| |#1|))) (-15 -2865 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -1683 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -2508 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1120)) (T -694)) -((-2508 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1120)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1120)) (-5 *1 (-694 *4)))) (-1683 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1120)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1120)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1120)))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1120)))) (-1755 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1120))))) -(-10 -7 (-15 -1755 ((-1 |#1|) |#1|)) (-15 -4112 ((-1 |#1|) |#1|)) (-15 -2865 (|#1| (-1 |#1| |#1|))) (-15 -2865 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -1683 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -2508 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) -((-4094 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2875 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2665 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3589 (((-1 |#2| |#1|) |#2|) 11))) -(((-695 |#1| |#2|) (-10 -7 (-15 -3589 ((-1 |#2| |#1|) |#2|)) (-15 -2875 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2665 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4094 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1120) (-1120)) (T -695)) -((-4094 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1120)))) (-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-3589 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1120)) (-4 *3 (-1120))))) -(-10 -7 (-15 -3589 ((-1 |#2| |#1|) |#2|)) (-15 -2875 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2665 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4094 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3101 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3980 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3211 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4340 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3616 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -3980 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3211 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4340 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3616 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3101 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1120) (-1120) (-1120)) (T -696)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1120)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1120)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1120)) (-4 *4 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(-10 -7 (-15 -3980 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3211 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4340 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3616 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3101 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2721 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2422 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2422 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2422 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2721 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1069) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1069) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) -((-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1069)) (-4 *2 (-1069)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) -(-10 -7 (-15 -2422 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2422 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2721 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2154 (($ (-783) (-783)) 42)) (-4123 (($ $ $) 73)) (-1592 (($ |#3|) 68) (($ $) 69)) (-1540 (((-112) $) 36)) (-2008 (($ $ (-576) (-576)) 84)) (-3934 (($ $ (-576) (-576)) 85)) (-2742 (($ $ (-576) (-576) (-576) (-576)) 90)) (-1613 (($ $) 71)) (-1796 (((-112) $) 15)) (-3225 (($ $ (-576) (-576) $) 91)) (-4267 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 89)) (-1867 (($ (-783) |#2|) 55)) (-3409 (($ (-656 (-656 |#2|))) 51) (($ (-783) (-783) (-1 |#2| (-576) (-576))) 53)) (-3065 (((-656 (-656 |#2|)) $) 80)) (-4174 (($ $ $) 72)) (-1943 (((-3 $ "failed") $ |#2|) 122)) (-4368 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 88)) (-2762 (($ (-656 |#2|)) 56) (($ (-656 $)) 58)) (-2613 (((-112) $) 28)) (-4112 (($ |#4|) 63) (((-875) $) NIL)) (-1780 (((-112) $) 38)) (-4046 (($ $ |#2|) 124)) (-4036 (($ $ $) 95) (($ $) 98)) (-4026 (($ $ $) 93)) (** (($ $ (-783)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4112 ((-875) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4046 (|#1| |#1| |#2|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -3225 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2742 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3934 (|#1| |#1| (-576) (-576))) (-15 -2008 (|#1| |#1| (-576) (-576))) (-15 -4267 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -4368 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -3065 ((-656 (-656 |#2|)) |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1592 (|#1| |#3|)) (-15 -4112 (|#1| |#4|)) (-15 -2762 (|#1| (-656 |#1|))) (-15 -2762 (|#1| (-656 |#2|))) (-15 -1867 (|#1| (-783) |#2|)) (-15 -3409 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -3409 (|#1| (-656 (-656 |#2|)))) (-15 -2154 (|#1| (-783) (-783))) (-15 -1780 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -2613 ((-112) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -4267 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1069) (-384 |#2|) (-384 |#2|)) (T -698)) -NIL -(-10 -8 (-15 -4112 ((-875) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4046 (|#1| |#1| |#2|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -3225 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2742 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3934 (|#1| |#1| (-576) (-576))) (-15 -2008 (|#1| |#1| (-576) (-576))) (-15 -4267 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -4368 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -3065 ((-656 (-656 |#2|)) |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1592 (|#1| |#3|)) (-15 -4112 (|#1| |#4|)) (-15 -2762 (|#1| (-656 |#1|))) (-15 -2762 (|#1| (-656 |#2|))) (-15 -1867 (|#1| (-783) |#2|)) (-15 -3409 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -3409 (|#1| (-656 (-656 |#2|)))) (-15 -2154 (|#1| (-783) (-783))) (-15 -1780 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -2613 ((-112) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -4267 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) (-576)))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2154 (($ (-783) (-783)) 99)) (-4123 (($ $ $) 88)) (-1592 (($ |#2|) 92) (($ $) 91)) (-1540 (((-112) $) 101)) (-2008 (($ $ (-576) (-576)) 84)) (-3934 (($ $ (-576) (-576)) 83)) (-2742 (($ $ (-576) (-576) (-576) (-576)) 82)) (-1613 (($ $) 90)) (-1796 (((-112) $) 103)) (-2337 (((-112) $ (-783)) 8)) (-3225 (($ $ (-576) (-576) $) 81)) (-4267 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-4110 (($ $ (-576) |#2|) 43)) (-2536 (($ $ (-576) |#3|) 42)) (-1867 (($ (-783) |#1|) 96)) (-4331 (($) 7 T CONST)) (-2938 (($ $) 68 (|has| |#1| (-317)))) (-2216 ((|#2| $ (-576)) 47)) (-4134 (((-783) $) 67 (|has| |#1| (-568)))) (-1908 ((|#1| $ (-576) (-576) |#1|) 44)) (-3719 ((|#1| $ (-576) (-576)) 49)) (-3721 (((-656 |#1|) $) 31)) (-3519 (((-783) $) 66 (|has| |#1| (-568)))) (-2175 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-2758 (((-783) $) 52)) (-1989 (($ (-783) (-783) |#1|) 58)) (-2772 (((-783) $) 51)) (-2135 (((-112) $ (-783)) 9)) (-3996 ((|#1| $) 63 (|has| |#1| (-6 (-4465 "*"))))) (-3263 (((-576) $) 56)) (-3455 (((-576) $) 54)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4285 (((-576) $) 55)) (-2902 (((-576) $) 53)) (-3409 (($ (-656 (-656 |#1|))) 98) (($ (-783) (-783) (-1 |#1| (-576) (-576))) 97)) (-1896 (($ (-1 |#1| |#1|) $) 35)) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3065 (((-656 (-656 |#1|)) $) 87)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2658 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-4174 (($ $ $) 89)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) 57)) (-1943 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-2762 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-2613 (((-112) $) 102)) (-1679 ((|#1| $) 64 (|has| |#1| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-3992 ((|#3| $ (-576)) 46)) (-4112 (($ |#3|) 93) (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-1780 (((-112) $) 100)) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-4046 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-4036 (($ $ $) 79) (($ $) 78)) (-4026 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-699 |#1| |#2| |#3|) (-141) (-1069) (-384 |t#1|) (-384 |t#1|)) (T -699)) -((-1796 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2154 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3409 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1069)) (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-1867 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4112 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-1592 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-1592 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1613 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4123 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-4368 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4267 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2008 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3934 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2742 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3225 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4026 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4036 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1069)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1943 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-2938 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069)))) (-2658 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4464) (-6 -4463) (-15 -1796 ((-112) $)) (-15 -2613 ((-112) $)) (-15 -1540 ((-112) $)) (-15 -1780 ((-112) $)) (-15 -2154 ($ (-783) (-783))) (-15 -3409 ($ (-656 (-656 |t#1|)))) (-15 -3409 ($ (-783) (-783) (-1 |t#1| (-576) (-576)))) (-15 -1867 ($ (-783) |t#1|)) (-15 -2762 ($ (-656 |t#1|))) (-15 -2762 ($ (-656 $))) (-15 -4112 ($ |t#3|)) (-15 -1592 ($ |t#2|)) (-15 -1592 ($ $)) (-15 -1613 ($ $)) (-15 -4174 ($ $ $)) (-15 -4123 ($ $ $)) (-15 -3065 ((-656 (-656 |t#1|)) $)) (-15 -4368 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -4267 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2008 ($ $ (-576) (-576))) (-15 -3934 ($ $ (-576) (-576))) (-15 -2742 ($ $ (-576) (-576) (-576) (-576))) (-15 -3225 ($ $ (-576) (-576) $)) (-15 -4026 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -4036 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -1943 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4046 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -2938 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4134 ((-783) $)) (-15 -3519 ((-783) $)) (-15 -2175 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4465 "*"))) (PROGN (-15 -1679 (|t#1| $)) (-15 -3996 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2658 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-57 |#1| |#2| |#3|) . T) ((-1237) . T)) -((-2938 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-4134 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-3519 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-2175 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-3151 (((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-3996 ((|#1| |#4|) 52)) (-1485 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-2658 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-3775 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-3640 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2249 ((|#4| |#4| (-576) (-576)) 55)) (-4133 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-1679 ((|#1| |#4|) 98)) (-3016 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1679 (|#1| |#4|)) (-15 -3996 (|#1| |#4|)) (-15 -2249 (|#4| |#4| (-576) (-576))) (-15 -3640 (|#4| |#4| |#1| (-576) (-576))) (-15 -4133 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4134 ((-783) |#4|)) (-15 -3519 ((-783) |#4|)) (-15 -2175 ((-656 |#3|) |#4|)) (-15 -3775 (|#4| |#4|)) (-15 -1485 ((-3 |#4| "failed") |#4|)) (-15 -3016 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2938 (|#4| |#4|)) (-15 -3151 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2658 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) -((-2658 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3151 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3016 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1485 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2175 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4134 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4133 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-3640 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2249 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-3996 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-1679 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) -(-10 -7 (-15 -1679 (|#1| |#4|)) (-15 -3996 (|#1| |#4|)) (-15 -2249 (|#4| |#4| (-576) (-576))) (-15 -3640 (|#4| |#4| |#1| (-576) (-576))) (-15 -4133 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4134 ((-783) |#4|)) (-15 -3519 ((-783) |#4|)) (-15 -2175 ((-656 |#3|) |#4|)) (-15 -3775 (|#4| |#4|)) (-15 -1485 ((-3 |#4| "failed") |#4|)) (-15 -3016 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2938 (|#4| |#4|)) (-15 -3151 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2658 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2154 (($ (-783) (-783)) 64)) (-4123 (($ $ $) NIL)) (-1592 (($ (-1287 |#1|)) NIL) (($ $) NIL)) (-1540 (((-112) $) NIL)) (-2008 (($ $ (-576) (-576)) 22)) (-3934 (($ $ (-576) (-576)) NIL)) (-2742 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1613 (($ $) NIL)) (-1796 (((-112) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3225 (($ $ (-576) (-576) $) NIL)) (-4267 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-4110 (($ $ (-576) (-1287 |#1|)) NIL)) (-2536 (($ $ (-576) (-1287 |#1|)) NIL)) (-1867 (($ (-783) |#1|) 37)) (-4331 (($) NIL T CONST)) (-2938 (($ $) 46 (|has| |#1| (-317)))) (-2216 (((-1287 |#1|) $ (-576)) NIL)) (-4134 (((-783) $) 48 (|has| |#1| (-568)))) (-1908 ((|#1| $ (-576) (-576) |#1|) 69)) (-3719 ((|#1| $ (-576) (-576)) NIL)) (-3721 (((-656 |#1|) $) NIL)) (-3519 (((-783) $) 50 (|has| |#1| (-568)))) (-2175 (((-656 (-1287 |#1|)) $) 53 (|has| |#1| (-568)))) (-2758 (((-783) $) 32)) (-1989 (($ (-783) (-783) |#1|) 28)) (-2772 (((-783) $) 33)) (-2135 (((-112) $ (-783)) NIL)) (-3996 ((|#1| $) 44 (|has| |#1| (-6 (-4465 "*"))))) (-3263 (((-576) $) 10)) (-3455 (((-576) $) 11)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4285 (((-576) $) 14)) (-2902 (((-576) $) 65)) (-3409 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-1896 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3065 (((-656 (-656 |#1|)) $) 76)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2658 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-4174 (($ $ $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2556 (($ $ |#1|) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2762 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1287 |#1|)) 70)) (-2613 (((-112) $) NIL)) (-1679 ((|#1| $) 42 (|has| |#1| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-1554 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-3992 (((-1287 |#1|) $ (-576)) NIL)) (-4112 (($ (-1287 |#1|)) NIL) (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-1780 (((-112) $) NIL)) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1287 |#1|) $ (-1287 |#1|)) NIL) (((-1287 |#1|) (-1287 |#1|) $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-701 |#1|) (-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -2762 ($ (-1287 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2658 ((-3 $ "failed") $)) |%noBranch|))) (-1069)) (T -701)) -((-2658 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1069)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-701 *3))))) -(-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -2762 ($ (-1287 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2658 ((-3 $ "failed") $)) |%noBranch|))) -((-2672 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-2039 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-1382 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-1895 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-3857 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-1839 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-1533 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) -(((-702 |#1|) (-10 -7 (-15 -1533 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1895 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3857 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3857 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1839 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2039 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2672 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1382 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1069)) (T -702)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1069)) (-5 *1 (-702 *4)))) (-1382 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1069)) (-5 *1 (-702 *4)))) (-2672 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) (-2039 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) (-1839 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) (-3857 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) (-3857 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) (-1895 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) (-1533 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) -(-10 -7 (-15 -1533 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1895 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3857 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3857 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1839 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2039 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2672 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1382 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) -((-2980 (((-3 |#1| "failed") $) 18)) (-2317 ((|#1| $) NIL)) (-3725 (($) 7 T CONST)) (-4033 (($ |#1|) 8)) (-4112 (($ |#1|) 16) (((-875) $) 23)) (-4304 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3725)) 11)) (-4332 ((|#1| $) 15))) -(((-703 |#1|) (-13 (-1282) (-1058 |#1|) (-625 (-875)) (-10 -8 (-15 -4033 ($ |#1|)) (-15 -4304 ((-112) $ (|[\|\|]| |#1|))) (-15 -4304 ((-112) $ (|[\|\|]| -3725))) (-15 -4332 (|#1| $)) (-15 -3725 ($) -2665))) (-625 (-875))) (T -703)) -((-4033 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-875))))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-875))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3725)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-875))))) (-4332 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-875))))) (-3725 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-875)))))) -(-13 (-1282) (-1058 |#1|) (-625 (-875)) (-10 -8 (-15 -4033 ($ |#1|)) (-15 -4304 ((-112) $ (|[\|\|]| |#1|))) (-15 -4304 ((-112) $ (|[\|\|]| -3725))) (-15 -4332 (|#1| $)) (-15 -3725 ($) -2665))) -((-3551 ((|#2| |#2| |#4|) 29)) (-3480 (((-701 |#2|) |#3| |#4|) 35)) (-1349 (((-701 |#2|) |#2| |#4|) 34)) (-1606 (((-1287 |#2|) |#2| |#4|) 16)) (-1329 ((|#2| |#3| |#4|) 28)) (-1541 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-3469 (((-701 |#2|) |#2| |#4| (-783)) 46))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1606 ((-1287 |#2|) |#2| |#4|)) (-15 -1329 (|#2| |#3| |#4|)) (-15 -3551 (|#2| |#2| |#4|)) (-15 -1349 ((-701 |#2|) |#2| |#4|)) (-15 -3469 ((-701 |#2|) |#2| |#4| (-783))) (-15 -3480 ((-701 |#2|) |#3| |#4|)) (-15 -1541 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1120) (-916 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4463)))) (T -704)) -((-1541 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1120)) (-4 *7 (-916 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4463)))))) (-3480 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *6 (-916 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1120)) (-4 *3 (-916 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4463)))))) (-1349 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *3 (-916 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))))) (-3551 (*1 *2 *2 *3) (-12 (-4 *4 (-1120)) (-4 *2 (-916 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4463)))))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *2 (-916 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))))) (-1606 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *3 (-916 *5)) (-5 *2 (-1287 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463))))))) -(-10 -7 (-15 -1606 ((-1287 |#2|) |#2| |#4|)) (-15 -1329 (|#2| |#3| |#4|)) (-15 -3551 (|#2| |#2| |#4|)) (-15 -1349 ((-701 |#2|) |#2| |#4|)) (-15 -3469 ((-701 |#2|) |#2| |#4| (-783))) (-15 -3480 ((-701 |#2|) |#3| |#4|)) (-15 -1541 ((-701 |#2|) |#3| |#4| (-783) (-783)))) -((-1361 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-4212 ((|#1| (-701 |#2|)) 9)) (-4415 (((-701 |#1|) (-701 |#2|)) 18))) -(((-705 |#1| |#2|) (-10 -7 (-15 -4212 (|#1| (-701 |#2|))) (-15 -4415 ((-701 |#1|) (-701 |#2|))) (-15 -1361 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1012 |#1|)) (T -705)) -((-1361 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-4415 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) -(-10 -7 (-15 -4212 (|#1| (-701 |#2|))) (-15 -4415 ((-701 |#1|) (-701 |#2|))) (-15 -1361 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-3313 (((-701 (-711))) NIL) (((-701 (-711)) (-1287 $)) NIL)) (-3832 (((-711) $) NIL)) (-3585 (($ $) NIL (|has| (-711) (-1222)))) (-3434 (($ $) NIL (|has| (-711) (-1222)))) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-927))))) (-3575 (($ $) NIL (-3794 (-12 (|has| (-711) (-317)) (|has| (-711) (-927))) (|has| (-711) (-374))))) (-3163 (((-430 $) $) NIL (-3794 (-12 (|has| (-711) (-317)) (|has| (-711) (-927))) (|has| (-711) (-374))))) (-1462 (($ $) NIL (-12 (|has| (-711) (-1022)) (|has| (-711) (-1222))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-927))))) (-4057 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2199 (((-783)) NIL (|has| (-711) (-379)))) (-3561 (($ $) NIL (|has| (-711) (-1222)))) (-3411 (($ $) NIL (|has| (-711) (-1222)))) (-3611 (($ $) NIL (|has| (-711) (-1222)))) (-3460 (($ $) NIL (|has| (-711) (-1222)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1058 (-419 (-576)))))) (-2317 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1058 (-419 (-576)))))) (-4005 (($ (-1287 (-711))) NIL) (($ (-1287 (-711)) (-1287 $)) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-1893 (($ $ $) NIL (|has| (-711) (-317)))) (-4228 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1287 $)) NIL)) (-3222 (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-711))) (|:| |vec| (-1287 (-711)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576))))) (-2721 (((-3 $ "failed") (-419 (-1192 (-711)))) NIL (|has| (-711) (-374))) (($ (-1192 (-711))) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1473 (((-711) $) 29)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-3898 (((-112) $) NIL (|has| (-711) (-557)))) (-1982 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-4134 (((-939)) NIL)) (-4369 (($) NIL (|has| (-711) (-379)))) (-1903 (($ $ $) NIL (|has| (-711) (-317)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-3933 (($) NIL (|has| (-711) (-360)))) (-2614 (((-112) $) NIL (|has| (-711) (-360)))) (-3878 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-2443 (((-112) $) NIL (-3794 (-12 (|has| (-711) (-317)) (|has| (-711) (-927))) (|has| (-711) (-374))))) (-1557 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1080)) (|has| (-711) (-1222))))) (-2722 (($) NIL (|has| (-711) (-1222)))) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-711) (-900 (-390)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-711) (-900 (-576))))) (-3241 (((-845 (-939)) $) NIL (|has| (-711) (-360))) (((-939) $) NIL (|has| (-711) (-360)))) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (-12 (|has| (-711) (-1022)) (|has| (-711) (-1222))))) (-2647 (((-711) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2354 (((-1192 (-711)) $) NIL (|has| (-711) (-374)))) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2422 (($ (-1 (-711) (-711)) $) NIL)) (-4375 (((-939) $) NIL (|has| (-711) (-379)))) (-2607 (($ $) NIL (|has| (-711) (-1222)))) (-2708 (((-1192 (-711)) $) NIL)) (-2198 (((-701 (-711)) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 (-711))) (|:| |vec| (-1287 (-711)))) (-1287 $) $) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1287 $)) NIL (|has| (-711) (-651 (-576))))) (-3075 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| (-711) (-374)))) (-3650 (($) NIL (|has| (-711) (-360)) CONST)) (-2409 (($ (-939)) NIL (|has| (-711) (-379)))) (-3868 (($) NIL)) (-1483 (((-711) $) 31)) (-3115 (((-1140) $) NIL)) (-2547 (($) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-711) (-317)))) (-3114 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-711) (-360)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-927))))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-927))))) (-1450 (((-430 $) $) NIL (-3794 (-12 (|has| (-711) (-317)) (|has| (-711) (-927))) (|has| (-711) (-374))))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| (-711) (-317)))) (-1943 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2155 (($ $) NIL (|has| (-711) (-1222)))) (-2143 (($ $ (-1196) (-711)) NIL (|has| (-711) (-526 (-1196) (-711)))) (($ $ (-656 (-1196)) (-656 (-711))) NIL (|has| (-711) (-526 (-1196) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-2026 (((-783) $) NIL (|has| (-711) (-317)))) (-4368 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| (-711) (-317)))) (-1451 (((-711)) NIL) (((-711) (-1287 $)) NIL)) (-3334 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-4106 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3794 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-3835 (((-701 (-711)) (-1287 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-3175 (((-1192 (-711))) NIL)) (-3622 (($ $) NIL (|has| (-711) (-1222)))) (-3473 (($ $) NIL (|has| (-711) (-1222)))) (-1984 (($) NIL (|has| (-711) (-360)))) (-3598 (($ $) NIL (|has| (-711) (-1222)))) (-3447 (($ $) NIL (|has| (-711) (-1222)))) (-3573 (($ $) NIL (|has| (-711) (-1222)))) (-3423 (($ $) NIL (|has| (-711) (-1222)))) (-3435 (((-701 (-711)) (-1287 $)) NIL) (((-1287 (-711)) $) NIL) (((-701 (-711)) (-1287 $) (-1287 $)) NIL) (((-1287 (-711)) $ (-1287 $)) NIL)) (-1554 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1042))) (((-171 (-390)) $) NIL (|has| (-711) (-1042))) (((-906 (-390)) $) NIL (|has| (-711) (-626 (-906 (-390))))) (((-906 (-576)) $) NIL (|has| (-711) (-626 (-906 (-576))))) (($ (-1192 (-711))) NIL) (((-1192 (-711)) $) NIL) (($ (-1287 (-711))) NIL) (((-1287 (-711)) $) NIL)) (-2633 (($ $) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-3794 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-927))) (|has| (-711) (-360))))) (-2648 (($ (-711) (-711)) 12)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-3794 (|has| (-711) (-1058 (-419 (-576)))) (|has| (-711) (-374))))) (-1972 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-3794 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-927))) (|has| (-711) (-146))))) (-3069 (((-1192 (-711)) $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL)) (-3652 (($ $) NIL (|has| (-711) (-1222)))) (-3509 (($ $) NIL (|has| (-711) (-1222)))) (-3111 (((-112) $ $) NIL)) (-3631 (($ $) NIL (|has| (-711) (-1222)))) (-3486 (($ $) NIL (|has| (-711) (-1222)))) (-3672 (($ $) NIL (|has| (-711) (-1222)))) (-3536 (($ $) NIL (|has| (-711) (-1222)))) (-3840 (((-711) $) NIL (|has| (-711) (-1222)))) (-1970 (($ $) NIL (|has| (-711) (-1222)))) (-3549 (($ $) NIL (|has| (-711) (-1222)))) (-3663 (($ $) NIL (|has| (-711) (-1222)))) (-3522 (($ $) NIL (|has| (-711) (-1222)))) (-3641 (($ $) NIL (|has| (-711) (-1222)))) (-3497 (($ $) NIL (|has| (-711) (-1222)))) (-2388 (($ $) NIL (|has| (-711) (-1080)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-711) (-374)) (|has| (-711) (-916 (-1196)))) (|has| (-711) (-918 (-1196))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3794 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL (|has| (-711) (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1222))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1022)) (|has| (-711) (-1222)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) -(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -4112 ($ (-171 (-390)))) (-15 -4112 ($ (-171 (-576)))) (-15 -4112 ($ (-171 (-711)))) (-15 -4112 ($ (-171 (-713)))) (-15 -4112 ((-171 (-390)) $))))) (T -706)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) -(-13 (-399) (-167 (-711)) (-10 -8 (-15 -4112 ($ (-171 (-390)))) (-15 -4112 ($ (-171 (-576)))) (-15 -4112 ($ (-171 (-711)))) (-15 -4112 ($ (-171 (-713)))) (-15 -4112 ((-171 (-390)) $)))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-2146 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3308 (($ $) 63)) (-3966 (($ $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-2779 (((-656 (-2 (|:| -2904 |#1|) (|:| -3125 (-783)))) $) 62)) (-1437 (($) 50) (($ (-656 |#1|)) 49)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 51)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-707 |#1|) (-141) (-1120)) (T -707)) -((-2782 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1120)))) (-3308 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1120)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1120)) (-5 *2 (-656 (-2 (|:| -2904 *3) (|:| -3125 (-783)))))))) -(-13 (-240 |t#1|) (-10 -8 (-15 -2782 ($ |t#1| $ (-783))) (-15 -3308 ($ $)) (-15 -2779 ((-656 (-2 (|:| -2904 |t#1|) (|:| -3125 (-783)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-3281 (((-656 |#1|) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))) (-576)) 65)) (-3798 ((|#1| |#1| (-576)) 62)) (-3114 ((|#1| |#1| |#1| (-576)) 46)) (-1450 (((-656 |#1|) |#1| (-576)) 49)) (-1777 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-2021 (((-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))) |#1| (-576)) 61))) -(((-708 |#1|) (-10 -7 (-15 -3114 (|#1| |#1| |#1| (-576))) (-15 -3798 (|#1| |#1| (-576))) (-15 -1450 ((-656 |#1|) |#1| (-576))) (-15 -2021 ((-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))) |#1| (-576))) (-15 -3281 ((-656 |#1|) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))) (-576))) (-15 -1777 (|#1| |#1| (-576) |#1| (-576)))) (-1263 (-576))) (T -708)) -((-1777 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1450 *5) (|:| -1877 (-576))))) (-5 *4 (-576)) (-4 *5 (-1263 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1450 *3) (|:| -1877 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))) (-3798 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) (-3114 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -3114 (|#1| |#1| |#1| (-576))) (-15 -3798 (|#1| |#1| (-576))) (-15 -1450 ((-656 |#1|) |#1| (-576))) (-15 -2021 ((-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))) |#1| (-576))) (-15 -3281 ((-656 |#1|) (-656 (-2 (|:| -1450 |#1|) (|:| -1877 (-576)))) (-576))) (-15 -1777 (|#1| |#1| (-576) |#1| (-576)))) -((-3319 (((-1 (-961 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-4151 (((-1153 (-227)) (-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-656 (-270))) 53) (((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-656 (-270))) 55) (((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1114 (-227)) (-1114 (-227)) (-656 (-270))) 57)) (-2990 (((-1153 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-656 (-270))) NIL)) (-3326 (((-1153 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1114 (-227)) (-1114 (-227)) (-656 (-270))) 58))) -(((-709) (-10 -7 (-15 -4151 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -4151 ((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -4151 ((-1153 (-227)) (-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -3326 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -2990 ((-1153 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -3319 ((-1 (-961 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) -((-3319 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-961 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-2990 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1114 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-709)))) (-3326 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1114 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-709)))) (-4151 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1153 (-227))) (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-4151 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-709)))) (-4151 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1114 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-709))))) -(-10 -7 (-15 -4151 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -4151 ((-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -4151 ((-1153 (-227)) (-1153 (-227)) (-1 (-961 (-227)) (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -3326 ((-1153 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1114 (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -2990 ((-1153 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1114 (-227)) (-656 (-270)))) (-15 -3319 ((-1 (-961 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1450 (((-430 (-1192 |#4|)) (-1192 |#4|)) 86) (((-430 |#4|) |#4|) 266))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 |#4|) |#4|)) (-15 -1450 ((-430 (-1192 |#4|)) (-1192 |#4|)))) (-861) (-805) (-360) (-967 |#3| |#2| |#1|)) (T -710)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -(-10 -7 (-15 -1450 ((-430 |#4|) |#4|)) (-15 -1450 ((-430 (-1192 |#4|)) (-1192 |#4|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 97)) (-1705 (((-576) $) 34)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2736 (($ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-1462 (($ $) NIL)) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL)) (-4331 (($) NIL T CONST)) (-3846 (($ $) NIL)) (-2980 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2317 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-1893 (($ $ $) 109)) (-3900 (((-3 $ "failed") $) 100)) (-1903 (($ $ $) 108)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2757 (((-939)) 89) (((-939) (-939)) 88)) (-2690 (((-112) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL)) (-3241 (((-576) $) NIL)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL)) (-2647 (($ $) NIL)) (-3197 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2639 (((-576) (-576)) 94) (((-576)) 95)) (-2905 (($ $ $) NIL) (($) NIL (-12 (-2298 (|has| $ (-6 -4446))) (-2298 (|has| $ (-6 -4454)))))) (-3091 (((-576) (-576)) 92) (((-576)) 93)) (-1654 (($ $ $) NIL) (($) NIL (-12 (-2298 (|has| $ (-6 -4446))) (-2298 (|has| $ (-6 -4454)))))) (-1360 (((-576) $) 17)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 104)) (-3072 (((-939) (-576)) NIL (|has| $ (-6 -4454)))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL)) (-2804 (($ $) NIL)) (-2632 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-939)) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) 105)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1495 (((-576) $) 24)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 107)) (-2913 (((-939)) NIL) (((-939) (-939)) NIL (|has| $ (-6 -4454)))) (-3206 (((-939) (-576)) NIL (|has| $ (-6 -4454)))) (-1554 (((-390) $) NIL) (((-227) $) NIL) (((-906 (-390)) $) NIL)) (-4112 (((-875) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-4115 (((-783)) 119 T CONST)) (-2104 (($ (-576) (-576) (-939)) 54)) (-2671 (($ $) NIL)) (-4097 (((-939)) NIL) (((-939) (-939)) NIL (|has| $ (-6 -4454)))) (-1994 (((-112) $ $) NIL)) (-1865 (((-939)) 91) (((-939) (-939)) 90)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL)) (-4314 (($) 37 T CONST)) (-4320 (($) 18 T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 96)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 118)) (-4046 (($ $ $) 77)) (-4036 (($ $) 115) (($ $ $) 116)) (-4026 (($ $ $) 114)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-711) (-13 (-416) (-399) (-374) (-1058 (-390)) (-1058 (-419 (-576))) (-148) (-10 -8 (-15 -2757 ((-939) (-939))) (-15 -2757 ((-939))) (-15 -1865 ((-939) (-939))) (-15 -3091 ((-576) (-576))) (-15 -3091 ((-576))) (-15 -2639 ((-576) (-576))) (-15 -2639 ((-576))) (-15 -4112 ((-390) $)) (-15 -4112 ($ (-713))) (-15 -1360 ((-576) $)) (-15 -1495 ((-576) $)) (-15 -2104 ($ (-576) (-576) (-939)))))) (T -711)) -((-1495 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2757 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-711)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-711)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-711)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3091 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2639 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2639 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-2104 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-939)) (-5 *1 (-711))))) -(-13 (-416) (-399) (-374) (-1058 (-390)) (-1058 (-419 (-576))) (-148) (-10 -8 (-15 -2757 ((-939) (-939))) (-15 -2757 ((-939))) (-15 -1865 ((-939) (-939))) (-15 -3091 ((-576) (-576))) (-15 -3091 ((-576))) (-15 -2639 ((-576) (-576))) (-15 -2639 ((-576))) (-15 -4112 ((-390) $)) (-15 -4112 ($ (-713))) (-15 -1360 ((-576) $)) (-15 -1495 ((-576) $)) (-15 -2104 ($ (-576) (-576) (-939))))) -((-3879 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-2938 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-2754 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-4395 (((-701 |#1|) (-701 |#1|)) 67)) (-3151 (((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|) 84))) -(((-712 |#1|) (-10 -7 (-15 -4395 ((-701 |#1|) (-701 |#1|))) (-15 -2938 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -2754 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3879 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -3151 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|))) (-317)) (T -712)) -((-3151 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-3879 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2938 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-4395 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(-10 -7 (-15 -4395 ((-701 |#1|) (-701 |#1|))) (-15 -2938 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -2754 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3879 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -3151 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-4258 (($ $ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1717 (($ $ $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL)) (-3384 (($ $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) 31)) (-2317 (((-576) $) 29)) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL)) (-3898 (((-112) $) NIL)) (-1982 (((-419 (-576)) $) NIL)) (-4369 (($ $) NIL) (($) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-4270 (($ $ $ $) NIL)) (-1724 (($ $ $) NIL)) (-2690 (((-112) $) NIL)) (-3207 (($ $ $) NIL)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL)) (-2287 (((-112) $) NIL)) (-1589 (((-112) $) NIL)) (-1859 (((-3 $ "failed") $) NIL)) (-3197 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4120 (($ $ $ $) NIL)) (-2905 (($ $ $) NIL)) (-2224 (((-939) (-939)) 10) (((-939)) 9)) (-1654 (($ $ $) NIL)) (-2361 (($ $) NIL)) (-3107 (($ $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL)) (-3075 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-2038 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-1920 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2978 (($ $) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4296 (((-112) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-783)) NIL) (($ $) NIL)) (-3755 (($ $) NIL)) (-4286 (($ $) NIL)) (-1554 (((-227) $) NIL) (((-390) $) NIL) (((-906 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-4115 (((-783)) NIL T CONST)) (-1460 (((-112) $ $) NIL)) (-4410 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-1865 (($) NIL)) (-3111 (((-112) $ $) NIL)) (-1411 (($ $ $ $) NIL)) (-2388 (($ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-783)) NIL) (($ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-713) (-13 (-399) (-557) (-10 -8 (-15 -2224 ((-939) (-939))) (-15 -2224 ((-939))) (-15 -4112 ((-326 $) (-326 (-576))))))) (T -713)) -((-2224 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-713)))) (-2224 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-713)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) -(-13 (-399) (-557) (-10 -8 (-15 -2224 ((-939) (-939))) (-15 -2224 ((-939))) (-15 -4112 ((-326 $) (-326 (-576)))))) -((-3763 (((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)) 19)) (-1928 (((-1 |#4| |#2| |#3|) (-1196)) 12))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1928 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -3763 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)))) (-626 (-548)) (-1237) (-1237) (-1237)) (T -714)) -((-3763 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237))))) -(-10 -7 (-15 -1928 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -3763 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)))) -((-3722 (((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)) 43) (((-1 (-227) (-227)) |#1| (-1196)) 48))) -(((-715 |#1|) (-10 -7 (-15 -3722 ((-1 (-227) (-227)) |#1| (-1196))) (-15 -3722 ((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)))) (-626 (-548))) (T -715)) -((-3722 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3722 ((-1 (-227) (-227)) |#1| (-1196))) (-15 -3722 ((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)))) -((-2951 (((-1196) |#1| (-1196) (-656 (-1196))) 10) (((-1196) |#1| (-1196) (-1196) (-1196)) 13) (((-1196) |#1| (-1196) (-1196)) 12) (((-1196) |#1| (-1196)) 11))) -(((-716 |#1|) (-10 -7 (-15 -2951 ((-1196) |#1| (-1196))) (-15 -2951 ((-1196) |#1| (-1196) (-1196))) (-15 -2951 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -2951 ((-1196) |#1| (-1196) (-656 (-1196))))) (-626 (-548))) (T -716)) -((-2951 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2951 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2951 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2951 (*1 *2 *3 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -2951 ((-1196) |#1| (-1196))) (-15 -2951 ((-1196) |#1| (-1196) (-1196))) (-15 -2951 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -2951 ((-1196) |#1| (-1196) (-656 (-1196))))) -((-3664 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-717 |#1| |#2|) (-10 -7 (-15 -3664 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1237) (-1237)) (T -717)) -((-3664 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237))))) -(-10 -7 (-15 -3664 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3917 (((-1 |#3| |#2|) (-1196)) 11)) (-3763 (((-1 |#3| |#2|) |#1| (-1196)) 21))) -(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-1 |#3| |#2|) (-1196))) (-15 -3763 ((-1 |#3| |#2|) |#1| (-1196)))) (-626 (-548)) (-1237) (-1237)) (T -718)) -((-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))))) -(-10 -7 (-15 -3917 ((-1 |#3| |#2|) (-1196))) (-15 -3763 ((-1 |#3| |#2|) |#1| (-1196)))) -((-1714 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|) 92)) (-1849 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-2044 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|) 47))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2044 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|)) (-15 -1849 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1714 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|))) (-805) (-861) (-317) (-967 |#3| |#1| |#2|)) (T -719)) -((-1714 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1192 *13))) (-5 *3 (-1192 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1287 (-656 (-1192 *10)))) (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-967 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-1849 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1192 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-967 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1192 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1192 *12)))) (-2044 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1192 *11))) (-5 *3 (-1192 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1287 (-656 (-1192 *8)))) (-4 *10 (-861)) (-4 *8 (-317)) (-4 *11 (-967 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) -(-10 -7 (-15 -2044 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|)) (-15 -1849 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1714 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3309 (($ $) 48)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-1562 (($ |#1| (-783)) 46)) (-3661 (((-783) $) 50)) (-1709 ((|#1| $) 49)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1877 (((-783) $) 51)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4269 ((|#1| $ (-783)) 47)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-720 |#1|) (-141) (-1069)) (T -720)) -((-1877 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1069)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1069)))) (-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1069)))) (-1562 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1069))))) -(-13 (-1069) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1877 ((-783) $)) (-15 -3661 ((-783) $)) (-15 -1709 (|t#1| $)) (-15 -3309 ($ $)) (-15 -4269 (|t#1| $ (-783))) (-15 -1562 ($ |t#1| (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2422 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2422 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1263 |#1|) (-1263 (-419 |#2|)) (-568) (-1263 |#4|) (-1263 (-419 |#5|))) (T -721)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6))) (-4 *8 (-1263 *7))))) -(-10 -7 (-15 -2422 (|#6| (-1 |#4| |#1|) |#3|))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2573 (((-1178) (-875)) 38)) (-1612 (((-1292) (-1178)) 31)) (-3688 (((-1178) (-875)) 28)) (-3924 (((-1178) (-875)) 29)) (-4112 (((-875) $) NIL) (((-1178) (-875)) 27)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-722) (-13 (-1120) (-10 -7 (-15 -4112 ((-1178) (-875))) (-15 -3688 ((-1178) (-875))) (-15 -3924 ((-1178) (-875))) (-15 -2573 ((-1178) (-875))) (-15 -1612 ((-1292) (-1178)))))) (T -722)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-722))))) -(-13 (-1120) (-10 -7 (-15 -4112 ((-1178) (-875))) (-15 -3688 ((-1178) (-875))) (-15 -3924 ((-1178) (-875))) (-15 -2573 ((-1178) (-875))) (-15 -1612 ((-1292) (-1178))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL)) (-2721 (($ |#1| |#2|) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2182 ((|#2| $) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2720 (((-3 $ "failed") $ $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -2182 (|#2| $)) (-15 -4112 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -2720 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) -((-2182 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4112 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2721 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2720 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-374) (-10 -8 (-15 -2182 (|#2| $)) (-15 -4112 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -2720 ((-3 $ "failed") $ $)))) -((-1952 (((-112) $ $) 87)) (-3167 (((-112) $) 36)) (-1760 (((-1287 |#1|) $ (-783)) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-3105 (($ (-1192 |#1|)) NIL)) (-1420 (((-1192 $) $ (-1102)) NIL) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1102))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2256 (($ $ $) NIL (|has| |#1| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2199 (((-783)) 54 (|has| |#1| (-379)))) (-1442 (($ $ (-783)) NIL)) (-3036 (($ $ (-783)) NIL)) (-3410 ((|#2| |#2|) 50)) (-2137 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-1102) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-1102) $) NIL)) (-3954 (($ $ $ (-1102)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) 40)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2721 (($ |#2|) 48)) (-3900 (((-3 $ "failed") $) 97)) (-4369 (($) 58 (|has| |#1| (-379)))) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3351 (($ $ $) NIL)) (-3310 (($ $ $) NIL (|has| |#1| (-568)))) (-4265 (((-2 (|:| -2861 |#1|) (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1102)) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-2432 (((-976 $)) 89)) (-3897 (($ $ |#1| (-783) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1102) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1102) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-3241 (((-783) $ $) NIL (|has| |#1| (-568)))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-1172)))) (-1571 (($ (-1192 |#1|) (-1102)) NIL) (($ (-1192 $) (-1102)) NIL)) (-2747 (($ $ (-783)) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) 85) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1102)) NIL) (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2182 ((|#2|) 51)) (-3661 (((-783) $) NIL) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-3820 (($ (-1 (-783) (-783)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2528 (((-1192 |#1|) $) NIL)) (-2653 (((-3 (-1102) "failed") $) NIL)) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-2708 ((|#2| $) 47)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) 34)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-2842 (((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783)) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-1102)) (|:| -1495 (-783))) "failed") $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#1| (-1172)) CONST)) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1555 (($ $) 88 (|has| |#1| (-360)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1102) |#1|) NIL) (($ $ (-656 (-1102)) (-656 |#1|)) NIL) (($ $ (-1102) $) NIL) (($ $ (-656 (-1102)) (-656 $)) NIL)) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3639 (((-3 $ "failed") $ (-783)) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 98 (|has| |#1| (-374)))) (-1451 (($ $ (-1102)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-1877 (((-783) $) 38) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-1102) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1102)) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-1423 (((-976 $)) 42)) (-4418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4112 (((-875) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1102)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) 70) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) 25 T CONST)) (-3214 (((-1287 |#1|) $) 83)) (-3064 (($ (-1287 |#1|)) 57)) (-4320 (($) 8 T CONST)) (-3155 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-4253 (((-1287 |#1|) $) NIL)) (-3938 (((-112) $ $) 76)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) 79) (($ $ $) NIL)) (-4026 (($ $ $) 39)) (** (($ $ (-939)) NIL) (($ $ (-783)) 92)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-724 |#1| |#2|) (-13 (-1263 |#1|) (-628 |#2|) (-10 -8 (-15 -3410 (|#2| |#2|)) (-15 -2182 (|#2|)) (-15 -2721 ($ |#2|)) (-15 -2708 (|#2| $)) (-15 -3214 ((-1287 |#1|) $)) (-15 -3064 ($ (-1287 |#1|))) (-15 -4253 ((-1287 |#1|) $)) (-15 -2432 ((-976 $))) (-15 -1423 ((-976 $))) (IF (|has| |#1| (-360)) (-15 -1555 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1069) (-1263 |#1|)) (T -724)) -((-3410 (*1 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) (-2182 (*1 *2) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1069)))) (-2721 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) (-2708 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1069)))) (-3214 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-3064 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-4253 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-2432 (*1 *2) (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-1423 (*1 *2) (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-1555 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1069)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1263 *2))))) -(-13 (-1263 |#1|) (-628 |#2|) (-10 -8 (-15 -3410 (|#2| |#2|)) (-15 -2182 (|#2|)) (-15 -2721 ($ |#2|)) (-15 -2708 (|#2| $)) (-15 -3214 ((-1287 |#1|) $)) (-15 -3064 ($ (-1287 |#1|))) (-15 -4253 ((-1287 |#1|) $)) (-15 -2432 ((-976 $))) (-15 -1423 ((-976 $))) (IF (|has| |#1| (-360)) (-15 -1555 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 ((|#1| $) 13)) (-3115 (((-1140) $) NIL)) (-1495 ((|#2| $) 12)) (-4124 (($ |#1| |#2|) 16)) (-4112 (((-875) $) NIL) (($ (-2 (|:| -2409 |#1|) (|:| -1495 |#2|))) 15) (((-2 (|:| -2409 |#1|) (|:| -1495 |#2|)) $) 14)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 11))) -(((-725 |#1| |#2| |#3|) (-13 (-861) (-502 (-2 (|:| -2409 |#1|) (|:| -1495 |#2|))) (-10 -8 (-15 -1495 (|#2| $)) (-15 -2409 (|#1| $)) (-15 -4124 ($ |#1| |#2|)))) (-861) (-1120) (-1 (-112) (-2 (|:| -2409 |#1|) (|:| -1495 |#2|)) (-2 (|:| -2409 |#1|) (|:| -1495 |#2|)))) (T -725)) -((-1495 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -2409 *3) (|:| -1495 *2)) (-2 (|:| -2409 *3) (|:| -1495 *2)))))) (-2409 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *3)) (-2 (|:| -2409 *2) (|:| -1495 *3)))))) (-4124 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1120)) (-14 *4 (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *3)) (-2 (|:| -2409 *2) (|:| -1495 *3))))))) -(-13 (-861) (-502 (-2 (|:| -2409 |#1|) (|:| -1495 |#2|))) (-10 -8 (-15 -1495 (|#2| $)) (-15 -2409 (|#1| $)) (-15 -4124 ($ |#1| |#2|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 66)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2317 ((|#1| $) NIL) (((-115) $) 39)) (-3900 (((-3 $ "failed") $) 103)) (-1585 ((|#2| (-115) |#2|) 93)) (-2287 (((-112) $) NIL)) (-2991 (($ |#1| (-372 (-115))) 14)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2704 (($ $ (-1 |#2| |#2|)) 65)) (-3303 (($ $ (-1 |#2| |#2|)) 44)) (-4368 ((|#2| $ |#2|) 33)) (-1403 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-4112 (((-875) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) 37 T CONST)) (-1994 (((-112) $ $) NIL)) (-3016 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-4314 (($) 21 T CONST)) (-4320 (($) 9 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) 48) (($ $ $) NIL)) (-4026 (($ $ $) 83)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-726 |#1| |#2|) (-13 (-1069) (-1058 |#1|) (-1058 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3016 ($ $)) (-15 -3016 ($ $ $)) (-15 -1403 (|#1| |#1|))) |%noBranch|) (-15 -3303 ($ $ (-1 |#2| |#2|))) (-15 -2704 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1585 (|#2| (-115) |#2|)) (-15 -2991 ($ |#1| (-372 (-115)))))) (-1069) (-660 |#1|)) (T -726)) -((-3016 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1069)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3016 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1069)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-1403 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1069)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1069)) (-5 *1 (-726 *3 *4)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1069)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1069)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1069)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-1585 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1069)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-2991 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1069)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) -(-13 (-1069) (-1058 |#1|) (-1058 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3016 ($ $)) (-15 -3016 ($ $ $)) (-15 -1403 (|#1| |#1|))) |%noBranch|) (-15 -3303 ($ $ (-1 |#2| |#2|))) (-15 -2704 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1585 (|#2| (-115) |#2|)) (-15 -2991 ($ |#1| (-372 (-115)))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 33)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2721 (($ |#1| |#2|) 25)) (-3900 (((-3 $ "failed") $) 51)) (-2287 (((-112) $) 35)) (-2182 ((|#2| $) 12)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 52)) (-3115 (((-1140) $) NIL)) (-2720 (((-3 $ "failed") $ $) 50)) (-4112 (((-875) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-4115 (((-783)) 28 T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 16 T CONST)) (-4320 (($) 30 T CONST)) (-3938 (((-112) $ $) 41)) (-4036 (($ $) 46) (($ $ $) 40)) (-4026 (($ $ $) 43)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1069) (-10 -8 (-15 -2182 (|#2| $)) (-15 -4112 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -2720 ((-3 $ "failed") $ $)) (-15 -3900 ((-3 $ "failed") $)) (-15 -1667 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) -((-3900 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2182 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4112 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2721 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2720 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1667 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1069) (-10 -8 (-15 -2182 (|#2| $)) (-15 -4112 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -2720 ((-3 $ "failed") $ $)) (-15 -3900 ((-3 $ "failed") $)) (-15 -1667 ($ $)))) -((* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) (-729 |#2|) (-174)) (T -728)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3516 (*1 *1 *1) (-4 *1 (-673))) (-3551 (*1 *1 *1 *1) (-4 *1 (-673))) (-3562 (*1 *1 *1 *1) (-4 *1 (-673)))) +(-13 (-102) (-10 -8 (-15 -3516 ($ $)) (-15 -3551 ($ $ $)) (-15 -3562 ($ $ $)))) +(((-102) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 15)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1570 ((|#1| $) 23)) (-3124 (($ $ $) NIL (|has| |#1| (-803)))) (-1951 (($ $ $) NIL (|has| |#1| (-803)))) (-1413 (((-1179) $) 48)) (-1450 (((-1141) $) NIL)) (-1581 ((|#3| $) 24)) (-3569 (((-876) $) 43)) (-2113 (((-112) $ $) 22)) (-2719 (($) 10 T CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2923 (((-112) $ $) 20)) (-2978 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2948 (((-112) $ $) 26 (|has| |#1| (-803)))) (-3056 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3043 (($ $) 17) (($ $ $) NIL)) (-3029 (($ $ $) 29)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) +((-3056 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3056 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1581 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) +(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) +((-4031 (((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)) 33))) +(((-675 |#1|) (-10 -7 (-15 -4031 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) (-928)) (T -675)) +((-4031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) (-4 *4 (-928)) (-5 *1 (-675 *4))))) +(-10 -7 (-15 -4031 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 84)) (-1970 (($ $ (-783)) 94)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3556 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 50)) (-1572 (((-3 (-684 |#1|) "failed") $) NIL)) (-2859 (((-684 |#1|) $) NIL)) (-2112 (($ $) 93)) (-1675 (((-783) $) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-3684 (($ (-684 |#1|) |#2|) 70)) (-4195 (($ $) 89)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1978 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 49)) (-4389 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2079 (((-684 |#1|) $) NIL)) (-2089 ((|#2| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3283 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-3600 (((-783) $) 91)) (-3581 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-3569 (((-876) $) NIL) (($ |#1|) 76) (((-1303 |#1| |#2|) $) 60) (((-1312 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-684 |#1|)) NIL)) (-1714 ((|#2| (-1312 |#1| |#2|) $) 45)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 23 T CONST)) (-2903 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2219 (((-3 $ "failed") (-1303 |#1| |#2|)) 62)) (-2824 (($ (-684 |#1|)) 14)) (-2923 (((-112) $ $) 46)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) 68) (($ $ $) NIL)) (-3029 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) +(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2219 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3581 ($ (-684 |#1|) (-684 |#1|))) (-15 -3581 ($ (-684 |#1|) $)) (-15 -3581 ($ $ (-684 |#1|))))) (-861) (-174)) (T -676)) +((-2219 (*1 *1 *2) (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-3581 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3581 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3581 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) +(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2219 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3581 ($ (-684 |#1|) (-684 |#1|))) (-15 -3581 ($ (-684 |#1|) $)) (-15 -3581 ($ $ (-684 |#1|))))) +((-2071 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2450 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4355 (($ (-1 (-112) |#2|) $) 29)) (-1474 (($ $) 65)) (-2696 (($ $) 74)) (-2065 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3659 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-4140 (($ (-783) |#2|) 63)) (-1367 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4335 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4116 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1649 (($ |#2|) 15)) (-4436 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-2366 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3389 (($ $ (-1255 (-576))) 51) (($ $ (-576)) 44)) (-2568 (($ $ $ (-576)) 70)) (-1870 (($ $) 68)) (-2948 (((-112) $ $) 76))) +(((-677 |#1| |#2|) (-10 -8 (-15 -1649 (|#1| |#2|)) (-15 -3389 (|#1| |#1| (-576))) (-15 -3389 (|#1| |#1| (-1255 (-576)))) (-15 -2065 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4436 (|#1| |#2| |#1| (-576))) (-15 -4436 (|#1| |#1| |#1| (-576))) (-15 -1367 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4355 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| |#2| |#1|)) (-15 -2696 (|#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -4335 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -4335 (|#1| |#1| |#1|)) (-15 -2071 ((-112) |#1|)) (-15 -2568 (|#1| |#1| |#1| (-576))) (-15 -1474 (|#1| |#1|)) (-15 -2450 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2366 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4140 (|#1| (-783) |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-678 |#2|) (-1238)) (T -677)) +NIL +(-10 -8 (-15 -1649 (|#1| |#2|)) (-15 -3389 (|#1| |#1| (-576))) (-15 -3389 (|#1| |#1| (-1255 (-576)))) (-15 -2065 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4436 (|#1| |#2| |#1| (-576))) (-15 -4436 (|#1| |#1| |#1| (-576))) (-15 -1367 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4355 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| |#2| |#1|)) (-15 -2696 (|#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -4335 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -4335 (|#1| |#1| |#1|)) (-15 -2071 ((-112) |#1|)) (-15 -2568 (|#1| |#1| |#1| (-576))) (-15 -1474 (|#1| |#1|)) (-15 -2450 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2366 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4140 (|#1| (-783) |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2897 ((|#1| $) 66)) (-4425 (($ $) 68)) (-1656 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-2071 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2450 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4465)))) (-1795 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1512 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-4355 (($ (-1 (-112) |#1|) $) 131)) (-1971 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4464)))) (-2882 ((|#1| $) 67)) (-3306 (($) 7 T CONST)) (-1474 (($ $) 146 (|has| $ (-6 -4465)))) (-3834 (($ $) 136)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-2696 (($ $) 133 (|has| |#1| (-1121)))) (-2800 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 132 (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 127)) (-3945 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4464))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4332 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 89)) (-3554 (((-112) $) 85)) (-3659 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1121))) (((-576) |#1| $) 140 (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) 139)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) 111)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 97 (|has| (-576) (-861)))) (-3124 (($ $ $) 154 (|has| |#1| (-861)))) (-1367 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4335 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 96 (|has| (-576) (-861)))) (-1951 (($ $ $) 153 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1649 (($ |#1|) 124)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3967 ((|#1| $) 71) (($ $ (-783)) 69)) (-4436 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2174 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2764 (((-656 (-576)) $) 94)) (-4018 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2740 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-3997 (((-112) $) 86)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 92)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3957 (((-576) $ $) 45)) (-3389 (($ $ (-1255 (-576))) 126) (($ $ (-576)) 125)) (-3463 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-2199 (((-112) $) 47)) (-2560 (($ $) 63)) (-3930 (($ $) 60 (|has| $ (-6 -4465)))) (-1594 (((-783) $) 64)) (-3574 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2568 (($ $ $ (-576)) 145 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 109)) (-2563 (($ $ $) 62) (($ $ |#1|) 61)) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 152 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 150 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 151 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 149 (|has| |#1| (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-678 |#1|) (-141) (-1238)) (T -678)) +((-1649 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238))))) +(-13 (-1170 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1649 ($ |t#1|)))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1031 |#1|) . T) ((-1121) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) +((-1918 (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 14)) (-3733 (((-783) (-701 |#1|) (-1288 |#1|)) 30)) (-2358 (((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|)) 24)) (-4093 (((-112) (-701 |#1|) (-1288 |#1|)) 27))) +(((-679 |#1|) (-10 -7 (-15 -1918 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -1918 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -1918 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -1918 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -2358 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -4093 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -3733 ((-783) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -679)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-2358 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -3454 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -3454 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -3454 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -3454 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5))))) +(-10 -7 (-15 -1918 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -1918 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -1918 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -1918 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -2358 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -4093 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -3733 ((-783) (-701 |#1|) (-1288 |#1|)))) +((-1918 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|))) |#4| |#3|) 60)) (-3733 (((-783) |#4| |#3|) 18)) (-2358 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4093 (((-112) |#4| |#3|) 14))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1918 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|))) |#4| |#3|)) (-15 -1918 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2358 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4093 ((-112) |#4| |#3|)) (-15 -3733 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4465))) (-13 (-384 |#1|) (-10 -7 (-6 -4465))) (-699 |#1| |#2| |#3|)) (T -680)) +((-3733 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4093 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2358 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4465)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3454 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) +(-10 -7 (-15 -1918 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|))) |#4| |#3|)) (-15 -1918 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2358 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4093 ((-112) |#4| |#3|)) (-15 -3733 ((-783) |#4| |#3|))) +((-2643 (((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -3454 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2643 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -3454 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -681)) +((-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) (|:| -3454 (-656 (-1288 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) +(-10 -7 (-15 -2643 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -3454 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2876 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2208 ((|#2| $) NIL)) (-3400 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-4001 (((-1288 (-701 |#2|))) NIL) (((-1288 (-701 |#2|)) (-1288 $)) NIL)) (-4006 (((-112) $) NIL)) (-1692 (((-1288 $)) 42)) (-2396 (((-112) $ (-783)) NIL)) (-3477 (($ |#2|) NIL)) (-3306 (($) NIL T CONST)) (-3377 (($ $) NIL (|has| |#2| (-317)))) (-3823 (((-245 |#1| |#2|) $ (-576)) NIL)) (-2592 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-4008 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3712 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-4016 ((|#2| $) NIL)) (-2173 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-3417 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-1968 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-1845 (($ $ (-940)) NIL)) (-3168 ((|#2| $) NIL)) (-1544 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-2624 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-1591 (((-1193 |#2|) $) NIL)) (-3070 (((-112)) NIL)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-3208 (($ (-1288 |#2|)) NIL) (($ (-1288 |#2|) (-1288 $)) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3733 (((-783) $) NIL (|has| |#2| (-568))) (((-940)) 43)) (-4272 ((|#2| $ (-576) (-576)) NIL)) (-2055 (((-112)) NIL)) (-3507 (($ $ (-940)) NIL)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL)) (-4198 (((-783) $) NIL (|has| |#2| (-568)))) (-3392 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-1689 (((-783) $) NIL)) (-3073 (((-112)) NIL)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3117 ((|#2| $) NIL (|has| |#2| (-6 (-4466 "*"))))) (-3536 (((-576) $) NIL)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2858 (((-576) $) NIL)) (-3129 (((-576) $) NIL)) (-2465 (($ (-656 (-656 |#2|))) NIL)) (-4322 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2093 (((-656 (-656 |#2|)) $) NIL)) (-1744 (((-112)) NIL)) (-2076 (((-112)) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-3596 (((-3 (-2 (|:| |particular| $) (|:| -3454 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-4114 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3160 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3643 ((|#2| $) NIL)) (-2888 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3275 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-2707 (($ $ (-940)) NIL)) (-3261 ((|#2| $) NIL)) (-2754 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-2218 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-1953 (((-1193 |#2|) $) NIL)) (-2384 (((-112)) NIL)) (-1413 (((-1179) $) NIL)) (-1981 (((-112)) NIL)) (-3307 (((-112)) NIL)) (-3505 (((-112)) NIL)) (-2549 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-2653 (((-112)) NIL)) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3542 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2773 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2945 ((|#2| $) NIL)) (-4273 (($ (-656 |#2|)) NIL)) (-2106 (((-112) $) NIL)) (-3312 (((-245 |#1| |#2|) $) NIL)) (-2131 ((|#2| $) NIL (|has| |#2| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-1490 (((-701 |#2|) (-1288 $)) NIL) (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $ (-1288 $)) 31)) (-4171 (($ (-1288 |#2|)) NIL) (((-1288 |#2|) $) NIL)) (-3818 (((-656 (-971 |#2|))) NIL) (((-656 (-971 |#2|)) (-1288 $)) NIL)) (-2604 (($ $ $) NIL)) (-2306 (((-112)) NIL)) (-3083 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) 41)) (-2440 (((-656 (-1288 |#2|))) NIL (|has| |#2| (-568)))) (-3298 (($ $ $ $) NIL)) (-3143 (((-112)) NIL)) (-3568 (($ (-701 |#2|) $) NIL)) (-2170 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1893 (((-112) $) NIL)) (-2424 (($ $ $) NIL)) (-3288 (((-112)) NIL)) (-1892 (((-112)) NIL)) (-3236 (((-112)) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-682 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-940) (-174)) (T -682)) +NIL +(-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3538 (((-656 (-1156)) $) 10)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-683) (-13 (-1104) (-10 -8 (-15 -3538 ((-656 (-1156)) $))))) (T -683)) +((-3538 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683))))) +(-13 (-1104) (-10 -8 (-15 -3538 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) NIL)) (-4249 (($ $) 62)) (-2682 (((-112) $) NIL)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-2211 (((-3 $ "failed") (-831 |#1|)) 27)) (-3010 (((-112) (-831 |#1|)) 17)) (-1802 (($ (-831 |#1|)) 28)) (-3226 (((-112) $ $) 36)) (-2434 (((-940) $) 43)) (-4239 (($ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1828 (((-656 $) (-831 |#1|)) 19)) (-3569 (((-876) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-2113 (((-112) $ $) NIL)) (-4173 (((-59 (-656 $)) (-656 |#1|) (-940)) 67)) (-2210 (((-656 $) (-656 |#1|) (-940)) 70)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 63)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 46))) +(((-684 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 -2682 ((-112) $)) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2434 ((-940) $)) (-15 -3226 ((-112) $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ((-689 |#1|) $)) (-15 -1828 ((-656 $) (-831 |#1|))) (-15 -3010 ((-112) (-831 |#1|))) (-15 -1802 ($ (-831 |#1|))) (-15 -2211 ((-3 $ "failed") (-831 |#1|))) (-15 -3446 ((-656 |#1|) $)) (-15 -4173 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -2210 ((-656 $) (-656 |#1|) (-940))))) (-861)) (T -684)) +((-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-4249 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3226 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-2211 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) +(-13 (-861) (-1059 |#1|) (-10 -8 (-15 -2682 ((-112) $)) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2434 ((-940) $)) (-15 -3226 ((-112) $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ((-689 |#1|) $)) (-15 -1828 ((-656 $) (-831 |#1|))) (-15 -3010 ((-112) (-831 |#1|))) (-15 -1802 ($ (-831 |#1|))) (-15 -2211 ((-3 $ "failed") (-831 |#1|))) (-15 -3446 ((-656 |#1|) $)) (-15 -4173 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -2210 ((-656 $) (-656 |#1|) (-940))))) +((-3104 ((|#2| $) 100)) (-4425 (($ $) 121)) (-2396 (((-112) $ (-783)) 35)) (-3592 (($ $) 109) (($ $ (-783)) 112)) (-3554 (((-112) $) 122)) (-2324 (((-656 $) $) 96)) (-3695 (((-112) $ $) 92)) (-4252 (((-112) $ (-783)) 33)) (-1617 (((-576) $) 66)) (-4027 (((-576) $) 65)) (-3557 (((-112) $ (-783)) 31)) (-2953 (((-112) $) 98)) (-3967 ((|#2| $) 113) (($ $ (-783)) 117)) (-2174 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-2764 (((-656 (-576)) $) 64)) (-4018 (((-112) (-576) $) 59)) (-3580 ((|#2| $) NIL) (($ $ (-783)) 108)) (-3169 (($ $ (-576)) 125)) (-3997 (((-112) $) 124)) (-3542 (((-112) (-1 (-112) |#2|) $) 42)) (-1681 (((-656 |#2|) $) 46)) (-2796 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1255 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3957 (((-576) $ $) 91)) (-3463 (($ $ (-1255 (-576))) 78) (($ $ (-576)) 72)) (-2199 (((-112) $) 87)) (-2560 (($ $) 105)) (-1594 (((-783) $) 104)) (-3574 (($ $) 103)) (-3581 (($ (-656 |#2|)) 53)) (-1633 (($ $) 126)) (-3338 (((-656 $) $) 90)) (-4386 (((-112) $ $) 89)) (-2170 (((-112) (-1 (-112) |#2|) $) 41)) (-2923 (((-112) $ $) 20)) (-3502 (((-783) $) 39))) +(((-685 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -1633 (|#1| |#1|)) (-15 -3169 (|#1| |#1| (-576))) (-15 -3554 ((-112) |#1|)) (-15 -3997 ((-112) |#1|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -1681 ((-656 |#2|) |#1|)) (-15 -4018 ((-112) (-576) |#1|)) (-15 -2764 ((-656 (-576)) |#1|)) (-15 -4027 ((-576) |#1|)) (-15 -1617 ((-576) |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3463 (|#1| |#1| (-576))) (-15 -3463 (|#1| |#1| (-1255 (-576)))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2560 (|#1| |#1|)) (-15 -1594 ((-783) |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3967 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3967 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -3695 ((-112) |#1| |#1|)) (-15 -4386 ((-112) |#1| |#1|)) (-15 -3957 ((-576) |#1| |#1|)) (-15 -2199 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -2953 ((-112) |#1|)) (-15 -2324 ((-656 |#1|) |#1|)) (-15 -3338 ((-656 |#1|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783)))) (-686 |#2|) (-1238)) (T -685)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -1633 (|#1| |#1|)) (-15 -3169 (|#1| |#1| (-576))) (-15 -3554 ((-112) |#1|)) (-15 -3997 ((-112) |#1|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -1681 ((-656 |#2|) |#1|)) (-15 -4018 ((-112) (-576) |#1|)) (-15 -2764 ((-656 (-576)) |#1|)) (-15 -4027 ((-576) |#1|)) (-15 -1617 ((-576) |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3463 (|#1| |#1| (-576))) (-15 -3463 (|#1| |#1| (-1255 (-576)))) (-15 -2174 (|#1| |#2| |#1| (-576))) (-15 -2174 (|#1| |#1| |#1| (-576))) (-15 -2560 (|#1| |#1|)) (-15 -1594 ((-783) |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3967 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3967 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -3695 ((-112) |#1| |#1|)) (-15 -4386 ((-112) |#1| |#1|)) (-15 -3957 ((-576) |#1| |#1|)) (-15 -2199 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -2953 ((-112) |#1|)) (-15 -2324 ((-656 |#1|) |#1|)) (-15 -3338 ((-656 |#1|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2897 ((|#1| $) 66)) (-4425 (($ $) 68)) (-1656 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1512 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 104)) (-2882 ((|#1| $) 67)) (-3306 (($) 7 T CONST)) (-1969 (($ $) 126)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-2800 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 105)) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4332 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 89)) (-3554 (((-112) $) 85)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4072 (((-783) $) 125)) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) 111)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 97 (|has| (-576) (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 96 (|has| (-576) (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-2187 (($ $) 128)) (-2110 (((-112) $) 129)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3967 ((|#1| $) 71) (($ $ (-783)) 69)) (-2174 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2764 (((-656 (-576)) $) 94)) (-4018 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2196 ((|#1| $) 127)) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2740 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-3169 (($ $ (-576)) 124)) (-3997 (((-112) $) 86)) (-2235 (((-112) $) 130)) (-3434 (((-112) $) 131)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 92)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3957 (((-576) $ $) 45)) (-3463 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-2199 (((-112) $) 47)) (-2560 (($ $) 63)) (-3930 (($ $) 60 (|has| $ (-6 -4465)))) (-1594 (((-783) $) 64)) (-3574 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 109)) (-2563 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-1633 (($ $) 123)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-686 |#1|) (-141) (-1238)) (T -686)) +((-3945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-1971 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2187 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-3169 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-1633 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) +(-13 (-1170 |t#1|) (-10 -8 (-15 -3945 ($ (-1 (-112) |t#1|) $)) (-15 -1971 ($ (-1 (-112) |t#1|) $)) (-15 -3434 ((-112) $)) (-15 -2235 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -2187 ($ $)) (-15 -2196 (|t#1| $)) (-15 -1969 ($ $)) (-15 -4072 ((-783) $)) (-15 -3169 ($ $ (-576))) (-15 -1633 ($ $)))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2677 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1070)))) (-2396 (((-112) $ (-783)) NIL)) (-4258 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-3306 (($) NIL T CONST)) (-3601 (($ $ $) 57 (|has| |#1| (-1070)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2010 (((-1288 (-783)) $) 12)) (-1937 (($ (-1197) $ $) 34)) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3687 (($ (-783)) 55 (|has| |#1| (-1070)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-783) (-783) (-783)) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3581 (($ (-656 (-656 (-656 |#1|)))) 67)) (-3569 (($ (-977 (-977 (-977 |#1|)))) 23) (((-977 (-977 (-977 |#1|))) $) 19) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -2677 ($ (-783) (-783) (-783))) (-15 -3687 ($ (-783))) (-15 -3601 ($ $ $))) |%noBranch|) (-15 -3581 ($ (-656 (-656 (-656 |#1|))))) (-15 -2796 (|#1| $ (-783) (-783) (-783))) (-15 -4258 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3569 ($ (-977 (-977 (-977 |#1|))))) (-15 -3569 ((-977 (-977 (-977 |#1|))) $)) (-15 -1937 ($ (-1197) $ $)) (-15 -2010 ((-1288 (-783)) $)))) (-1121)) (T -687)) +((-2677 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-3601 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-2796 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-4258 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-1937 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) +(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -2677 ($ (-783) (-783) (-783))) (-15 -3687 ($ (-783))) (-15 -3601 ($ $ $))) |%noBranch|) (-15 -3581 ($ (-656 (-656 (-656 |#1|))))) (-15 -2796 (|#1| $ (-783) (-783) (-783))) (-15 -4258 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3569 ($ (-977 (-977 (-977 |#1|))))) (-15 -3569 ((-977 (-977 (-977 |#1|))) $)) (-15 -1937 ($ (-1197) $ $)) (-15 -2010 ((-1288 (-783)) $)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1378 (((-495) $) 10)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-1156) $) 12)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-688) (-13 (-1104) (-10 -8 (-15 -1378 ((-495) $)) (-15 -2639 ((-1156) $))))) (T -688)) +((-1378 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-688))))) +(-13 (-1104) (-10 -8 (-15 -1378 ((-495) $)) (-15 -2639 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) 15)) (-4249 (($ $) 19)) (-2682 (((-112) $) 20)) (-1572 (((-3 |#1| "failed") $) 23)) (-2859 ((|#1| $) 21)) (-3592 (($ $) 37)) (-4195 (($ $) 25)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-3226 (((-112) $ $) 47)) (-2434 (((-940) $) 40)) (-4239 (($ $) 18)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 ((|#1| $) 36)) (-3569 (((-876) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 13)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-689 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3580 (|#1| $)) (-15 -4239 ($ $)) (-15 -2434 ((-940) $)) (-15 -3226 ((-112) $ $)) (-15 -4195 ($ $)) (-15 -3592 ($ $)) (-15 -2682 ((-112) $)) (-15 -4249 ($ $)) (-15 -3446 ((-656 |#1|) $)))) (-861)) (T -689)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3580 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3226 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-4195 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-4249 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861))))) +(-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3580 (|#1| $)) (-15 -4239 ($ $)) (-15 -2434 ((-940) $)) (-15 -3226 ((-112) $ $)) (-15 -4195 ($ $)) (-15 -3592 ($ $)) (-15 -2682 ((-112) $)) (-15 -4249 ($ $)) (-15 -3446 ((-656 |#1|) $)))) +((-3565 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-4037 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) +(((-690 |#1|) (-10 -7 (-15 -4037 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -3565 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1121)) (T -690)) +((-3565 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2)))) (-4037 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2))))) +(-10 -7 (-15 -4037 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -3565 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) +((-1326 ((|#2| |#1| |#2|) 9)) (-4437 ((|#1| |#1| |#2|) 8))) +(((-691 |#1| |#2|) (-10 -7 (-15 -4437 (|#1| |#1| |#2|)) (-15 -1326 (|#2| |#1| |#2|))) (-1121) (-1121)) (T -691)) +((-1326 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4437 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(-10 -7 (-15 -4437 (|#1| |#1| |#2|)) (-15 -1326 (|#2| |#1| |#2|))) +((-1847 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -1847 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1121) (-1121) (-1121)) (T -692)) +((-1847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) +(-10 -7 (-15 -1847 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 21)) (-2915 (((-656 (-1237)) $) 19)) (-3985 (($ (-656 (-1237)) (-1237)) 14)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 29) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 22) (($ (-1139)) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-693) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-1139))) (-15 -3985 ($ (-656 (-1237)) (-1237))) (-15 -2915 ((-656 (-1237)) $)) (-15 -2983 ((-1237) $))))) (T -693)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-693)))) (-3985 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693))))) +(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-1139))) (-15 -3985 ($ (-656 (-1237)) (-1237))) (-15 -2915 ((-656 (-1237)) $)) (-15 -2983 ((-1237) $)))) +((-3565 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-1653 (((-1 |#1|) |#1|) 8)) (-3098 ((|#1| |#1|) 19)) (-3992 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3569 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) +(((-694 |#1|) (-10 -7 (-15 -1653 ((-1 |#1|) |#1|)) (-15 -3569 ((-1 |#1|) |#1|)) (-15 -3992 (|#1| (-1 |#1| |#1|))) (-15 -3992 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3098 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -3565 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1121)) (T -694)) +((-3565 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1121)) (-5 *1 (-694 *4)))) (-3098 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-3992 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) (-1653 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(-10 -7 (-15 -1653 ((-1 |#1|) |#1|)) (-15 -3569 ((-1 |#1|) |#1|)) (-15 -3992 (|#1| (-1 |#1| |#1|))) (-15 -3992 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3098 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -3565 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) +((-1604 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2801 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1480 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3566 (((-1 |#2| |#1|) |#2|) 11))) +(((-695 |#1| |#2|) (-10 -7 (-15 -3566 ((-1 |#2| |#1|) |#2|)) (-15 -2801 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1480 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1604 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1121) (-1121)) (T -695)) +((-1604 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-3566 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1121))))) +(-10 -7 (-15 -3566 ((-1 |#2| |#1|) |#2|)) (-15 -2801 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1480 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1604 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2456 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2940 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4241 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3390 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3830 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -2940 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4241 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3390 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3830 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2456 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1121) (-1121) (-1121)) (T -696)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) +(-10 -7 (-15 -2940 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4241 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3390 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3830 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2456 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3685 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4116 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4116 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3685 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1070) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1070) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) +((-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) +(-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4116 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3685 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3831 (($ (-783) (-783)) 42)) (-1852 (($ $ $) 73)) (-2591 (($ |#3|) 68) (($ $) 69)) (-3400 (((-112) $) 36)) (-2253 (($ $ (-576) (-576)) 84)) (-3825 (($ $ (-576) (-576)) 85)) (-4100 (($ $ (-576) (-576) (-576) (-576)) 90)) (-2809 (($ $) 71)) (-4006 (((-112) $) 15)) (-4375 (($ $ (-576) (-576) $) 91)) (-3755 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 89)) (-3477 (($ (-783) |#2|) 55)) (-2465 (($ (-656 (-656 |#2|))) 51) (($ (-783) (-783) (-1 |#2| (-576) (-576))) 53)) (-2093 (((-656 (-656 |#2|)) $) 80)) (-4288 (($ $ $) 72)) (-3475 (((-3 $ "failed") $ |#2|) 122)) (-2796 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 88)) (-4273 (($ (-656 |#2|)) 56) (($ (-656 $)) 58)) (-2106 (((-112) $) 28)) (-3569 (($ |#4|) 63) (((-876) $) NIL)) (-1893 (((-112) $) 38)) (-3056 (($ $ |#2|) 124)) (-3043 (($ $ $) 95) (($ $) 98)) (-3029 (($ $ $) 93)) (** (($ $ (-783)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3569 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#2|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -4375 (|#1| |#1| (-576) (-576) |#1|)) (-15 -4100 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3825 (|#1| |#1| (-576) (-576))) (-15 -2253 (|#1| |#1| (-576) (-576))) (-15 -3755 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2796 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2093 ((-656 (-656 |#2|)) |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -4288 (|#1| |#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2591 (|#1| |#1|)) (-15 -2591 (|#1| |#3|)) (-15 -3569 (|#1| |#4|)) (-15 -4273 (|#1| (-656 |#1|))) (-15 -4273 (|#1| (-656 |#2|))) (-15 -3477 (|#1| (-783) |#2|)) (-15 -2465 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -2465 (|#1| (-656 (-656 |#2|)))) (-15 -3831 (|#1| (-783) (-783))) (-15 -1893 ((-112) |#1|)) (-15 -3400 ((-112) |#1|)) (-15 -2106 ((-112) |#1|)) (-15 -4006 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1070) (-384 |#2|) (-384 |#2|)) (T -698)) +NIL +(-10 -8 (-15 -3569 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#2|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -4375 (|#1| |#1| (-576) (-576) |#1|)) (-15 -4100 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3825 (|#1| |#1| (-576) (-576))) (-15 -2253 (|#1| |#1| (-576) (-576))) (-15 -3755 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2796 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2093 ((-656 (-656 |#2|)) |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -4288 (|#1| |#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2591 (|#1| |#1|)) (-15 -2591 (|#1| |#3|)) (-15 -3569 (|#1| |#4|)) (-15 -4273 (|#1| (-656 |#1|))) (-15 -4273 (|#1| (-656 |#2|))) (-15 -3477 (|#1| (-783) |#2|)) (-15 -2465 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -2465 (|#1| (-656 (-656 |#2|)))) (-15 -3831 (|#1| (-783) (-783))) (-15 -1893 ((-112) |#1|)) (-15 -3400 ((-112) |#1|)) (-15 -2106 ((-112) |#1|)) (-15 -4006 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) 99)) (-1852 (($ $ $) 88)) (-2591 (($ |#2|) 92) (($ $) 91)) (-3400 (((-112) $) 101)) (-2253 (($ $ (-576) (-576)) 84)) (-3825 (($ $ (-576) (-576)) 83)) (-4100 (($ $ (-576) (-576) (-576) (-576)) 82)) (-2809 (($ $) 90)) (-4006 (((-112) $) 103)) (-2396 (((-112) $ (-783)) 8)) (-4375 (($ $ (-576) (-576) $) 81)) (-3755 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-1737 (($ $ (-576) |#2|) 43)) (-3864 (($ $ (-576) |#3|) 42)) (-3477 (($ (-783) |#1|) 96)) (-3306 (($) 7 T CONST)) (-3377 (($ $) 68 (|has| |#1| (-317)))) (-3823 ((|#2| $ (-576)) 47)) (-3733 (((-783) $) 67 (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) 44)) (-4272 ((|#1| $ (-576) (-576)) 49)) (-3965 (((-656 |#1|) $) 31)) (-4198 (((-783) $) 66 (|has| |#1| (-568)))) (-3392 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-1689 (((-783) $) 52)) (-4140 (($ (-783) (-783) |#1|) 58)) (-1699 (((-783) $) 51)) (-4252 (((-112) $ (-783)) 9)) (-3117 ((|#1| $) 63 (|has| |#1| (-6 (-4466 "*"))))) (-3536 (((-576) $) 56)) (-1643 (((-576) $) 54)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2858 (((-576) $) 55)) (-3129 (((-576) $) 53)) (-2465 (($ (-656 (-656 |#1|))) 98) (($ (-783) (-783) (-1 |#1| (-576) (-576))) 97)) (-4322 (($ (-1 |#1| |#1|) $) 35)) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2093 (((-656 (-656 |#1|)) $) 87)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2549 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-4288 (($ $ $) 89)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) 57)) (-3475 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-4273 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-2106 (((-112) $) 102)) (-2131 ((|#1| $) 64 (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3083 ((|#3| $ (-576)) 46)) (-3569 (($ |#3|) 93) (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-1893 (((-112) $) 100)) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3056 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-3043 (($ $ $) 79) (($ $) 78)) (-3029 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-699 |#1| |#2| |#3|) (-141) (-1070) (-384 |t#1|) (-384 |t#1|)) (T -699)) +((-4006 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3831 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2465 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4273 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4273 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-2591 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-2591 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2809 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4288 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1852 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2796 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3755 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2253 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3825 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4100 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4375 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-2549 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -4006 ((-112) $)) (-15 -2106 ((-112) $)) (-15 -3400 ((-112) $)) (-15 -1893 ((-112) $)) (-15 -3831 ($ (-783) (-783))) (-15 -2465 ($ (-656 (-656 |t#1|)))) (-15 -2465 ($ (-783) (-783) (-1 |t#1| (-576) (-576)))) (-15 -3477 ($ (-783) |t#1|)) (-15 -4273 ($ (-656 |t#1|))) (-15 -4273 ($ (-656 $))) (-15 -3569 ($ |t#3|)) (-15 -2591 ($ |t#2|)) (-15 -2591 ($ $)) (-15 -2809 ($ $)) (-15 -4288 ($ $ $)) (-15 -1852 ($ $ $)) (-15 -2093 ((-656 (-656 |t#1|)) $)) (-15 -2796 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3755 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2253 ($ $ (-576) (-576))) (-15 -3825 ($ $ (-576) (-576))) (-15 -4100 ($ $ (-576) (-576) (-576) (-576))) (-15 -4375 ($ $ (-576) (-576) $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -3475 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -3056 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -3377 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3733 ((-783) $)) (-15 -4198 ((-783) $)) (-15 -3392 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4466 "*"))) (PROGN (-15 -2131 (|t#1| $)) (-15 -3117 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2549 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-57 |#1| |#2| |#3|) . T) ((-1238) . T)) +((-3377 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-3733 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-4198 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-3392 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-1658 (((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-3117 ((|#1| |#4|) 52)) (-4117 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-2549 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-1547 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2768 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2810 ((|#4| |#4| (-576) (-576)) 55)) (-1935 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-2131 ((|#1| |#4|) 98)) (-2865 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2131 (|#1| |#4|)) (-15 -3117 (|#1| |#4|)) (-15 -2810 (|#4| |#4| (-576) (-576))) (-15 -2768 (|#4| |#4| |#1| (-576) (-576))) (-15 -1935 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3733 ((-783) |#4|)) (-15 -4198 ((-783) |#4|)) (-15 -3392 ((-656 |#3|) |#4|)) (-15 -1547 (|#4| |#4|)) (-15 -4117 ((-3 |#4| "failed") |#4|)) (-15 -2865 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3377 (|#4| |#4|)) (-15 -1658 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2549 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) +((-2549 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1658 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2865 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4117 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3392 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4198 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1935 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2768 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2810 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-3117 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) +(-10 -7 (-15 -2131 (|#1| |#4|)) (-15 -3117 (|#1| |#4|)) (-15 -2810 (|#4| |#4| (-576) (-576))) (-15 -2768 (|#4| |#4| |#1| (-576) (-576))) (-15 -1935 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3733 ((-783) |#4|)) (-15 -4198 ((-783) |#4|)) (-15 -3392 ((-656 |#3|) |#4|)) (-15 -1547 (|#4| |#4|)) (-15 -4117 ((-3 |#4| "failed") |#4|)) (-15 -2865 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3377 (|#4| |#4|)) (-15 -1658 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2549 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) 64)) (-1852 (($ $ $) NIL)) (-2591 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-3400 (((-112) $) NIL)) (-2253 (($ $ (-576) (-576)) 22)) (-3825 (($ $ (-576) (-576)) NIL)) (-4100 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2809 (($ $) NIL)) (-4006 (((-112) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-4375 (($ $ (-576) (-576) $) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1737 (($ $ (-576) (-1288 |#1|)) NIL)) (-3864 (($ $ (-576) (-1288 |#1|)) NIL)) (-3477 (($ (-783) |#1|) 37)) (-3306 (($) NIL T CONST)) (-3377 (($ $) 46 (|has| |#1| (-317)))) (-3823 (((-1288 |#1|) $ (-576)) NIL)) (-3733 (((-783) $) 48 (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) 69)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-4198 (((-783) $) 50 (|has| |#1| (-568)))) (-3392 (((-656 (-1288 |#1|)) $) 53 (|has| |#1| (-568)))) (-1689 (((-783) $) 32)) (-4140 (($ (-783) (-783) |#1|) 28)) (-1699 (((-783) $) 33)) (-4252 (((-112) $ (-783)) NIL)) (-3117 ((|#1| $) 44 (|has| |#1| (-6 (-4466 "*"))))) (-3536 (((-576) $) 10)) (-1643 (((-576) $) 11)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2858 (((-576) $) 14)) (-3129 (((-576) $) 65)) (-2465 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4322 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2093 (((-656 (-656 |#1|)) $) 76)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2549 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-4288 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2740 (($ $ |#1|) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4273 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1288 |#1|)) 70)) (-2106 (((-112) $) NIL)) (-2131 ((|#1| $) 42 (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-3083 (((-1288 |#1|) $ (-576)) NIL)) (-3569 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1893 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) NIL) (((-1288 |#1|) (-1288 |#1|) $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-701 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -4273 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2549 ((-3 $ "failed") $)) |%noBranch|))) (-1070)) (T -701)) +((-2549 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) (-4273 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3))))) +(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -4273 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2549 ((-3 $ "failed") $)) |%noBranch|))) +((-1496 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-2538 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-1501 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-3782 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-4282 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-4428 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-3327 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) +(((-702 |#1|) (-10 -7 (-15 -3327 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3782 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4282 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4282 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4428 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2538 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1496 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1501 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1070)) (T -702)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-1501 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-1496 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2538 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-4428 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-4282 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-4282 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-3782 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-3327 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(-10 -7 (-15 -3327 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3782 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4282 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4282 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4428 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2538 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1496 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1501 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) +((-1572 (((-3 |#1| "failed") $) 18)) (-2859 ((|#1| $) NIL)) (-1403 (($) 7 T CONST)) (-2184 (($ |#1|) 8)) (-3569 (($ |#1|) 16) (((-876) $) 23)) (-2705 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1403)) 11)) (-1922 ((|#1| $) 15))) +(((-703 |#1|) (-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -2184 ($ |#1|)) (-15 -2705 ((-112) $ (|[\|\|]| |#1|))) (-15 -2705 ((-112) $ (|[\|\|]| -1403))) (-15 -1922 (|#1| $)) (-15 -1403 ($) -1480))) (-625 (-876))) (T -703)) +((-2184 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1403)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-876))))) (-1922 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-1403 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) +(-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -2184 ($ |#1|)) (-15 -2705 ((-112) $ (|[\|\|]| |#1|))) (-15 -2705 ((-112) $ (|[\|\|]| -1403))) (-15 -1922 (|#1| $)) (-15 -1403 ($) -1480))) +((-4429 ((|#2| |#2| |#4|) 29)) (-1850 (((-701 |#2|) |#3| |#4|) 35)) (-1342 (((-701 |#2|) |#2| |#4|) 34)) (-2731 (((-1288 |#2|) |#2| |#4|) 16)) (-2869 ((|#2| |#3| |#4|) 28)) (-3412 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-1766 (((-701 |#2|) |#2| |#4| (-783)) 46))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2731 ((-1288 |#2|) |#2| |#4|)) (-15 -2869 (|#2| |#3| |#4|)) (-15 -4429 (|#2| |#2| |#4|)) (-15 -1342 ((-701 |#2|) |#2| |#4|)) (-15 -1766 ((-701 |#2|) |#2| |#4| (-783))) (-15 -1850 ((-701 |#2|) |#3| |#4|)) (-15 -3412 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1121) (-917 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4464)))) (T -704)) +((-3412 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464)))))) (-1850 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-1766 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464)))))) (-1342 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-4429 (*1 *2 *2 *3) (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4464)))))) (-2869 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-2731 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(-10 -7 (-15 -2731 ((-1288 |#2|) |#2| |#4|)) (-15 -2869 (|#2| |#3| |#4|)) (-15 -4429 (|#2| |#2| |#4|)) (-15 -1342 ((-701 |#2|) |#2| |#4|)) (-15 -1766 ((-701 |#2|) |#2| |#4| (-783))) (-15 -1850 ((-701 |#2|) |#3| |#4|)) (-15 -3412 ((-701 |#2|) |#3| |#4| (-783) (-783)))) +((-1455 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-1493 ((|#1| (-701 |#2|)) 9)) (-1674 (((-701 |#1|) (-701 |#2|)) 18))) +(((-705 |#1| |#2|) (-10 -7 (-15 -1493 (|#1| (-701 |#2|))) (-15 -1674 ((-701 |#1|) (-701 |#2|))) (-15 -1455 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1013 |#1|)) (T -705)) +((-1455 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) +(-10 -7 (-15 -1493 (|#1| (-701 |#2|))) (-15 -1674 ((-701 |#1|) (-701 |#2|))) (-15 -1455 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2747 (((-701 (-711))) NIL) (((-701 (-711)) (-1288 $)) NIL)) (-2208 (((-711) $) NIL)) (-4024 (($ $) NIL (|has| (-711) (-1223)))) (-3900 (($ $) NIL (|has| (-711) (-1223)))) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-3420 (($ $) NIL (-2758 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-1770 (((-430 $) $) NIL (-2758 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-1839 (($ $) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-2420 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2096 (((-783)) NIL (|has| (-711) (-379)))) (-4005 (($ $) NIL (|has| (-711) (-1223)))) (-3876 (($ $) NIL (|has| (-711) (-1223)))) (-4049 (($ $) NIL (|has| (-711) (-1223)))) (-3919 (($ $) NIL (|has| (-711) (-1223)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-2859 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-3208 (($ (-1288 (-711))) NIL) (($ (-1288 (-711)) (-1288 $)) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-3428 (($ $ $) NIL (|has| (-711) (-317)))) (-3567 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1288 $)) NIL)) (-4344 (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576))))) (-3685 (((-3 $ "failed") (-419 (-1193 (-711)))) NIL (|has| (-711) (-374))) (($ (-1193 (-711))) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1851 (((-711) $) 29)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-3426 (((-112) $) NIL (|has| (-711) (-557)))) (-2034 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| (-711) (-379)))) (-3440 (($ $ $) NIL (|has| (-711) (-317)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-3814 (($) NIL (|has| (-711) (-360)))) (-2117 (((-112) $) NIL (|has| (-711) (-360)))) (-1332 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-4169 (((-112) $) NIL (-2758 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-3570 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1081)) (|has| (-711) (-1223))))) (-1600 (($) NIL (|has| (-711) (-1223)))) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-711) (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-711) (-901 (-576))))) (-3309 (((-845 (-940)) $) NIL (|has| (-711) (-360))) (((-940) $) NIL (|has| (-711) (-360)))) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-2471 (((-711) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2542 (((-1193 (-711)) $) NIL (|has| (-711) (-374)))) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-4116 (($ (-1 (-711) (-711)) $) NIL)) (-2460 (((-940) $) NIL (|has| (-711) (-379)))) (-3744 (($ $) NIL (|has| (-711) (-1223)))) (-3671 (((-1193 (-711)) $) NIL)) (-3626 (((-701 (-711)) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-1288 $) $) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1288 $)) NIL (|has| (-711) (-651 (-576))))) (-3457 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| (-711) (-374)))) (-3539 (($) NIL (|has| (-711) (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| (-711) (-379)))) (-4366 (($) NIL)) (-1861 (((-711) $) 31)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-711) (-317)))) (-3498 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-711) (-360)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-1828 (((-430 $) $) NIL (-2758 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| (-711) (-317)))) (-3475 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-4103 (($ $) NIL (|has| (-711) (-1223)))) (-3283 (($ $ (-1197) (-711)) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-1197)) (-656 (-711))) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-2411 (((-783) $) NIL (|has| (-711) (-317)))) (-2796 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| (-711) (-317)))) (-2455 (((-711)) NIL) (((-711) (-1288 $)) NIL)) (-2992 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-2773 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2758 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-4058 (((-701 (-711)) (-1288 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-1897 (((-1193 (-711))) NIL)) (-4060 (($ $) NIL (|has| (-711) (-1223)))) (-3929 (($ $) NIL (|has| (-711) (-1223)))) (-2051 (($) NIL (|has| (-711) (-360)))) (-4036 (($ $) NIL (|has| (-711) (-1223)))) (-3909 (($ $) NIL (|has| (-711) (-1223)))) (-4013 (($ $) NIL (|has| (-711) (-1223)))) (-3888 (($ $) NIL (|has| (-711) (-1223)))) (-1490 (((-701 (-711)) (-1288 $)) NIL) (((-1288 (-711)) $) NIL) (((-701 (-711)) (-1288 $) (-1288 $)) NIL) (((-1288 (-711)) $ (-1288 $)) NIL)) (-4171 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1043))) (((-171 (-390)) $) NIL (|has| (-711) (-1043))) (((-907 (-390)) $) NIL (|has| (-711) (-626 (-907 (-390))))) (((-907 (-576)) $) NIL (|has| (-711) (-626 (-907 (-576))))) (($ (-1193 (-711))) NIL) (((-1193 (-711)) $) NIL) (($ (-1288 (-711))) NIL) (((-1288 (-711)) $) NIL)) (-2318 (($ $) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-2758 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-360))))) (-4177 (($ (-711) (-711)) 12)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2758 (|has| (-711) (-1059 (-419 (-576)))) (|has| (-711) (-374))))) (-3230 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-2758 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-146))))) (-2137 (((-1193 (-711)) $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL)) (-2789 (($ $) NIL (|has| (-711) (-1223)))) (-3960 (($ $) NIL (|has| (-711) (-1223)))) (-2537 (((-112) $ $) NIL)) (-4070 (($ $) NIL (|has| (-711) (-1223)))) (-3937 (($ $) NIL (|has| (-711) (-1223)))) (-2814 (($ $) NIL (|has| (-711) (-1223)))) (-3982 (($ $) NIL (|has| (-711) (-1223)))) (-4110 (((-711) $) NIL (|has| (-711) (-1223)))) (-4387 (($ $) NIL (|has| (-711) (-1223)))) (-3994 (($ $) NIL (|has| (-711) (-1223)))) (-2802 (($ $) NIL (|has| (-711) (-1223)))) (-3973 (($ $) NIL (|has| (-711) (-1223)))) (-4082 (($ $) NIL (|has| (-711) (-1223)))) (-3950 (($ $) NIL (|has| (-711) (-1223)))) (-1665 (($ $) NIL (|has| (-711) (-1081)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2758 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| (-711) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1223))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) +(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -3569 ($ (-171 (-390)))) (-15 -3569 ($ (-171 (-576)))) (-15 -3569 ($ (-171 (-711)))) (-15 -3569 ($ (-171 (-713)))) (-15 -3569 ((-171 (-390)) $))))) (T -706)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) +(-13 (-399) (-167 (-711)) (-10 -8 (-15 -3569 ($ (-171 (-390)))) (-15 -3569 ($ (-171 (-576)))) (-15 -3569 ($ (-171 (-711)))) (-15 -3569 ($ (-171 (-713)))) (-15 -3569 ((-171 (-390)) $)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-4355 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2696 (($ $) 63)) (-2800 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-4406 (((-656 (-2 (|:| -4438 |#1|) (|:| -1460 (-783)))) $) 62)) (-2314 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-707 |#1|) (-141) (-1121)) (T -707)) +((-4436 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-2696 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-4406 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| -4438 *3) (|:| -1460 (-783)))))))) +(-13 (-240 |t#1|) (-10 -8 (-15 -4436 ($ |t#1| $ (-783))) (-15 -2696 ($ $)) (-15 -4406 ((-656 (-2 (|:| -4438 |t#1|) (|:| -1460 (-783)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3736 (((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))) (-576)) 65)) (-1750 ((|#1| |#1| (-576)) 62)) (-3498 ((|#1| |#1| |#1| (-576)) 46)) (-1828 (((-656 |#1|) |#1| (-576)) 49)) (-1859 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-2356 (((-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))) |#1| (-576)) 61))) +(((-708 |#1|) (-10 -7 (-15 -3498 (|#1| |#1| |#1| (-576))) (-15 -1750 (|#1| |#1| (-576))) (-15 -1828 ((-656 |#1|) |#1| (-576))) (-15 -2356 ((-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))) |#1| (-576))) (-15 -3736 ((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))) (-576))) (-15 -1859 (|#1| |#1| (-576) |#1| (-576)))) (-1264 (-576))) (T -708)) +((-1859 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-3736 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1828 *5) (|:| -3600 (-576))))) (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -3600 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1750 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-3498 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -3498 (|#1| |#1| |#1| (-576))) (-15 -1750 (|#1| |#1| (-576))) (-15 -1828 ((-656 |#1|) |#1| (-576))) (-15 -2356 ((-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))) |#1| (-576))) (-15 -3736 ((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -3600 (-576)))) (-576))) (-15 -1859 (|#1| |#1| (-576) |#1| (-576)))) +((-2811 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-4087 (((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 53) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 55) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 57)) (-2596 (((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270))) NIL)) (-2886 (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 58))) +(((-709) (-10 -7 (-15 -4087 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4087 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4087 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2886 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2596 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2811 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) +((-2811 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-2596 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-2886 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-4087 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-4087 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-4087 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709))))) +(-10 -7 (-15 -4087 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4087 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4087 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2886 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2596 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2811 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1828 (((-430 (-1193 |#4|)) (-1193 |#4|)) 86) (((-430 |#4|) |#4|) 266))) +(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) (-861) (-805) (-360) (-968 |#3| |#2| |#1|)) (T -710)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +(-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 97)) (-2347 (((-576) $) 34)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-4048 (($ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1839 (($ $) NIL)) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL)) (-3306 (($) NIL T CONST)) (-4175 (($ $) NIL)) (-1572 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2859 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-3428 (($ $ $) 109)) (-3451 (((-3 $ "failed") $) 100)) (-3440 (($ $ $) 108)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3337 (((-940)) 89) (((-940) (-940)) 88)) (-1661 (((-112) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3309 (((-576) $) NIL)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL)) (-2471 (($ $) NIL)) (-4099 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2392 (((-576) (-576)) 94) (((-576)) 95)) (-3124 (($ $ $) NIL) (($) NIL (-12 (-2662 (|has| $ (-6 -4447))) (-2662 (|has| $ (-6 -4455)))))) (-2367 (((-576) (-576)) 92) (((-576)) 93)) (-1951 (($ $ $) NIL) (($) NIL (-12 (-2662 (|has| $ (-6 -4447))) (-2662 (|has| $ (-6 -4455)))))) (-1492 (((-576) $) 17)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 104)) (-2176 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL)) (-3416 (($ $) NIL)) (-3044 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) 105)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4210 (((-576) $) 24)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 107)) (-3229 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-4193 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-4171 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) NIL)) (-3569 (((-876) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-1778 (((-783)) 119 T CONST)) (-3970 (($ (-576) (-576) (-940)) 54)) (-1487 (($ $) NIL)) (-1625 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2113 (((-112) $ $) NIL)) (-3515 (((-940)) 91) (((-940) (-940)) 90)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL)) (-2719 (($) 37 T CONST)) (-2730 (($) 18 T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 96)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 118)) (-3056 (($ $ $) 77)) (-3043 (($ $) 115) (($ $ $) 116)) (-3029 (($ $ $) 114)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-711) (-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -3337 ((-940) (-940))) (-15 -3337 ((-940))) (-15 -3515 ((-940) (-940))) (-15 -2367 ((-576) (-576))) (-15 -2367 ((-576))) (-15 -2392 ((-576) (-576))) (-15 -2392 ((-576))) (-15 -3569 ((-390) $)) (-15 -3569 ($ (-713))) (-15 -1492 ((-576) $)) (-15 -4210 ((-576) $)) (-15 -3970 ($ (-576) (-576) (-940)))))) (T -711)) +((-4210 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3337 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2367 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2392 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-3970 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711))))) +(-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -3337 ((-940) (-940))) (-15 -3337 ((-940))) (-15 -3515 ((-940) (-940))) (-15 -2367 ((-576) (-576))) (-15 -2367 ((-576))) (-15 -2392 ((-576) (-576))) (-15 -2392 ((-576))) (-15 -3569 ((-390) $)) (-15 -3569 ($ (-713))) (-15 -1492 ((-576) $)) (-15 -4210 ((-576) $)) (-15 -3970 ($ (-576) (-576) (-940))))) +((-1345 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-3377 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-4214 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-2661 (((-701 |#1|) (-701 |#1|)) 67)) (-1658 (((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|) 84))) +(((-712 |#1|) (-10 -7 (-15 -2661 ((-701 |#1|) (-701 |#1|))) (-15 -3377 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -4214 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1345 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -1658 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|))) (-317)) (T -712)) +((-1658 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-1345 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-4214 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3377 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(-10 -7 (-15 -2661 ((-701 |#1|) (-701 |#1|))) (-15 -3377 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -4214 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1345 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -1658 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-3893 (($ $ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2462 (($ $ $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL)) (-2742 (($ $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 31)) (-2859 (((-576) $) 29)) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-2034 (((-419 (-576)) $) NIL)) (-1836 (($ $) NIL) (($) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-2533 (($ $ $) NIL)) (-1661 (((-112) $) NIL)) (-4202 (($ $ $) NIL)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-3215 (((-112) $) NIL)) (-2561 (((-112) $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-4099 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1819 (($ $ $ $) NIL)) (-3124 (($ $ $) NIL)) (-3906 (((-940) (-940)) 10) (((-940)) 9)) (-1951 (($ $ $) NIL)) (-2241 (($ $) NIL)) (-2434 (($ $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-2527 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-1373 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3792 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2975 (((-112) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-783)) NIL) (($ $) NIL)) (-1806 (($ $) NIL)) (-1870 (($ $) NIL)) (-4171 (((-227) $) NIL) (((-390) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-1778 (((-783)) NIL T CONST)) (-3904 (((-112) $ $) NIL)) (-1621 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-3515 (($) NIL)) (-2537 (((-112) $ $) NIL)) (-2070 (($ $ $ $) NIL)) (-1665 (($ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-783)) NIL) (($ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-713) (-13 (-399) (-557) (-10 -8 (-15 -3906 ((-940) (-940))) (-15 -3906 ((-940))) (-15 -3569 ((-326 $) (-326 (-576))))))) (T -713)) +((-3906 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-3906 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) +(-13 (-399) (-557) (-10 -8 (-15 -3906 ((-940) (-940))) (-15 -3906 ((-940))) (-15 -3569 ((-326 $) (-326 (-576)))))) +((-2630 (((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)) 19)) (-2765 (((-1 |#4| |#2| |#3|) (-1197)) 12))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2765 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2630 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) (-626 (-548)) (-1238) (-1238) (-1238)) (T -714)) +((-2630 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238))))) +(-10 -7 (-15 -2765 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2630 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) +((-2276 (((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)) 43) (((-1 (-227) (-227)) |#1| (-1197)) 48))) +(((-715 |#1|) (-10 -7 (-15 -2276 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -2276 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) (-626 (-548))) (T -715)) +((-2276 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -2276 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -2276 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) +((-3339 (((-1197) |#1| (-1197) (-656 (-1197))) 10) (((-1197) |#1| (-1197) (-1197) (-1197)) 13) (((-1197) |#1| (-1197) (-1197)) 12) (((-1197) |#1| (-1197)) 11))) +(((-716 |#1|) (-10 -7 (-15 -3339 ((-1197) |#1| (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-656 (-1197))))) (-626 (-548))) (T -716)) +((-3339 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3339 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3339 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3339 (*1 *2 *3 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3339 ((-1197) |#1| (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-656 (-1197))))) +((-2609 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-717 |#1| |#2|) (-10 -7 (-15 -2609 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1238) (-1238)) (T -717)) +((-2609 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) +(-10 -7 (-15 -2609 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3640 (((-1 |#3| |#2|) (-1197)) 11)) (-2630 (((-1 |#3| |#2|) |#1| (-1197)) 21))) +(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -3640 ((-1 |#3| |#2|) (-1197))) (-15 -2630 ((-1 |#3| |#2|) |#1| (-1197)))) (-626 (-548)) (-1238) (-1238)) (T -718)) +((-2630 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) +(-10 -7 (-15 -3640 ((-1 |#3| |#2|) (-1197))) (-15 -2630 ((-1 |#3| |#2|) |#1| (-1197)))) +((-2439 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|) 92)) (-3303 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-1424 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|) 47))) +(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1424 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -3303 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -2439 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -719)) +((-2439 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-3303 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12)))) (-1424 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) +(-10 -7 (-15 -1424 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -3303 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -2439 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-2112 (($ $) 48)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1945 (($ |#1| (-783)) 46)) (-2987 (((-783) $) 50)) (-2089 ((|#1| $) 49)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3600 (((-783) $) 51)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3998 ((|#1| $ (-783)) 47)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-720 |#1|) (-141) (-1070)) (T -720)) +((-3600 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-2112 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070))))) +(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3600 ((-783) $)) (-15 -2987 ((-783) $)) (-15 -2089 (|t#1| $)) (-15 -2112 ($ $)) (-15 -3998 (|t#1| $ (-783))) (-15 -1945 ($ |t#1| (-783))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4116 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4116 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1264 |#1|) (-1264 (-419 |#2|)) (-568) (-1264 |#4|) (-1264 (-419 |#5|))) (T -721)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) (-4 *8 (-1264 *7))))) +(-10 -7 (-15 -4116 (|#6| (-1 |#4| |#1|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2958 (((-1179) (-876)) 38)) (-1976 (((-1293) (-1179)) 31)) (-3265 (((-1179) (-876)) 28)) (-3726 (((-1179) (-876)) 29)) (-3569 (((-876) $) NIL) (((-1179) (-876)) 27)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-722) (-13 (-1121) (-10 -7 (-15 -3569 ((-1179) (-876))) (-15 -3265 ((-1179) (-876))) (-15 -3726 ((-1179) (-876))) (-15 -2958 ((-1179) (-876))) (-15 -1976 ((-1293) (-1179)))))) (T -722)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722))))) +(-13 (-1121) (-10 -7 (-15 -3569 ((-1179) (-876))) (-15 -3265 ((-1179) (-876))) (-15 -3726 ((-1179) (-876))) (-15 -2958 ((-1179) (-876))) (-15 -1976 ((-1293) (-1179))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3685 (($ |#1| |#2|) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 ((|#2| $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1939 (((-3 $ "failed") $ $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -3459 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -1939 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) +((-3459 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3569 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3685 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1939 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-374) (-10 -8 (-15 -3459 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -1939 ((-3 $ "failed") $ $)))) +((-3488 (((-112) $ $) 87)) (-1812 (((-112) $) 36)) (-1706 (((-1288 |#1|) $ (-783)) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-2500 (($ (-1193 |#1|)) NIL)) (-1799 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2901 (($ $ $) NIL (|has| |#1| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2096 (((-783)) 54 (|has| |#1| (-379)))) (-2365 (($ $ (-783)) NIL)) (-3095 (($ $ (-783)) NIL)) (-2453 ((|#2| |#2|) 50)) (-4271 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-4004 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) 40)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3685 (($ |#2|) 48)) (-3451 (((-3 $ "failed") $) 97)) (-1836 (($) 58 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3184 (($ $ $) NIL)) (-2709 (($ $ $) NIL (|has| |#1| (-568)))) (-3966 (((-2 (|:| -1714 |#1|) (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-4073 (((-977 $)) 89)) (-3415 (($ $ |#1| (-783) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3309 (((-783) $ $) NIL (|has| |#1| (-568)))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4154 (($ $ (-783)) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 85) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1103)) NIL) (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3459 ((|#2|) 51)) (-2987 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1938 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3785 (((-1193 |#1|) $) NIL)) (-2512 (((-3 (-1103) "failed") $) NIL)) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-3671 ((|#2| $) 47)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) 34)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-3815 (((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783)) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-1103)) (|:| -4210 (-783))) "failed") $) NIL)) (-3441 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3546 (($ $) 88 (|has| |#1| (-360)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2755 (((-3 $ "failed") $ (-783)) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 98 (|has| |#1| (-374)))) (-2455 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3600 (((-783) $) 38) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-2175 (((-977 $)) 42)) (-1705 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3569 (((-876) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1103)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) 70) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) 25 T CONST)) (-4270 (((-1288 |#1|) $) 83)) (-2081 (($ (-1288 |#1|)) 57)) (-2730 (($) 8 T CONST)) (-2018 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3833 (((-1288 |#1|) $) NIL)) (-2923 (((-112) $ $) 76)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) 79) (($ $ $) NIL)) (-3029 (($ $ $) 39)) (** (($ $ (-940)) NIL) (($ $ (-783)) 92)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-724 |#1| |#2|) (-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -2453 (|#2| |#2|)) (-15 -3459 (|#2|)) (-15 -3685 ($ |#2|)) (-15 -3671 (|#2| $)) (-15 -4270 ((-1288 |#1|) $)) (-15 -2081 ($ (-1288 |#1|))) (-15 -3833 ((-1288 |#1|) $)) (-15 -4073 ((-977 $))) (-15 -2175 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -3546 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1070) (-1264 |#1|)) (T -724)) +((-2453 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-3459 (*1 *2) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-3685 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-3671 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-4270 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3833 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-4073 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-2175 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3546 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1264 *2))))) +(-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -2453 (|#2| |#2|)) (-15 -3459 (|#2|)) (-15 -3685 ($ |#2|)) (-15 -3671 (|#2| $)) (-15 -4270 ((-1288 |#1|) $)) (-15 -2081 ($ (-1288 |#1|))) (-15 -3833 ((-1288 |#1|) $)) (-15 -4073 ((-977 $))) (-15 -2175 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -3546 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 ((|#1| $) 13)) (-1450 (((-1141) $) NIL)) (-4210 ((|#2| $) 12)) (-3581 (($ |#1| |#2|) 16)) (-3569 (((-876) $) NIL) (($ (-2 (|:| -3223 |#1|) (|:| -4210 |#2|))) 15) (((-2 (|:| -3223 |#1|) (|:| -4210 |#2|)) $) 14)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 11))) +(((-725 |#1| |#2| |#3|) (-13 (-861) (-502 (-2 (|:| -3223 |#1|) (|:| -4210 |#2|))) (-10 -8 (-15 -4210 (|#2| $)) (-15 -3223 (|#1| $)) (-15 -3581 ($ |#1| |#2|)))) (-861) (-1121) (-1 (-112) (-2 (|:| -3223 |#1|) (|:| -4210 |#2|)) (-2 (|:| -3223 |#1|) (|:| -4210 |#2|)))) (T -725)) +((-4210 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -3223 *3) (|:| -4210 *2)) (-2 (|:| -3223 *3) (|:| -4210 *2)))))) (-3223 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *3)) (-2 (|:| -3223 *2) (|:| -4210 *3)))))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *3)) (-2 (|:| -3223 *2) (|:| -4210 *3))))))) +(-13 (-861) (-502 (-2 (|:| -3223 |#1|) (|:| -4210 |#2|))) (-10 -8 (-15 -4210 (|#2| $)) (-15 -3223 (|#1| $)) (-15 -3581 ($ |#1| |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 66)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2859 ((|#1| $) NIL) (((-115) $) 39)) (-3451 (((-3 $ "failed") $) 103)) (-3821 ((|#2| (-115) |#2|) 93)) (-3215 (((-112) $) NIL)) (-2607 (($ |#1| (-372 (-115))) 14)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1792 (($ $ (-1 |#2| |#2|)) 65)) (-2654 (($ $ (-1 |#2| |#2|)) 44)) (-2796 ((|#2| $ |#2|) 33)) (-3673 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3569 (((-876) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) 37 T CONST)) (-2113 (((-112) $ $) NIL)) (-2865 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2719 (($) 21 T CONST)) (-2730 (($) 9 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) 48) (($ $ $) NIL)) (-3029 (($ $ $) 83)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-726 |#1| |#2|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2865 ($ $)) (-15 -2865 ($ $ $)) (-15 -3673 (|#1| |#1|))) |%noBranch|) (-15 -2654 ($ $ (-1 |#2| |#2|))) (-15 -1792 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3821 (|#2| (-115) |#2|)) (-15 -2607 ($ |#1| (-372 (-115)))))) (-1070) (-660 |#1|)) (T -726)) +((-2865 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2865 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3673 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (-1792 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-3821 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) +(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2865 ($ $)) (-15 -2865 ($ $ $)) (-15 -3673 (|#1| |#1|))) |%noBranch|) (-15 -2654 ($ $ (-1 |#2| |#2|))) (-15 -1792 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3821 (|#2| (-115) |#2|)) (-15 -2607 ($ |#1| (-372 (-115)))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 33)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3685 (($ |#1| |#2|) 25)) (-3451 (((-3 $ "failed") $) 51)) (-3215 (((-112) $) 35)) (-3459 ((|#2| $) 12)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 52)) (-1450 (((-1141) $) NIL)) (-1939 (((-3 $ "failed") $ $) 50)) (-3569 (((-876) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-1778 (((-783)) 28 T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 16 T CONST)) (-2730 (($) 30 T CONST)) (-2923 (((-112) $ $) 41)) (-3043 (($ $) 46) (($ $ $) 40)) (-3029 (($ $ $) 43)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) +(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1070) (-10 -8 (-15 -3459 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -1939 ((-3 $ "failed") $ $)) (-15 -3451 ((-3 $ "failed") $)) (-15 -2048 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) +((-3451 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3459 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3569 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3685 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1939 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1070) (-10 -8 (-15 -3459 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -1939 ((-3 $ "failed") $ $)) (-15 -3451 ((-3 $ "failed") $)) (-15 -2048 ($ $)))) +((* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-729 |#2|) (-174)) (T -728)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-729 |#1|) (-141) (-174)) (T -729)) NIL (-13 (-111 |t#1| |t#1|) (-652 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3384 (($ |#1|) 17) (($ $ |#1|) 20)) (-2664 (($ |#1|) 18) (($ $ |#1|) 21)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2287 (((-112) $) NIL)) (-1333 (($ |#1| |#1| |#1| |#1|) 8)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 16)) (-3115 (((-1140) $) NIL)) (-2143 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-2633 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-4112 (((-875) $) 39)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 9 T CONST)) (-3938 (((-112) $ $) 48)) (-4046 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) -(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -1333 ($ |#1| |#1| |#1| |#1|)) (-15 -3384 ($ |#1|)) (-15 -2664 ($ |#1|)) (-15 -3900 ($)) (-15 -3384 ($ $ |#1|)) (-15 -2664 ($ $ |#1|)) (-15 -3900 ($ $)) (-15 -2143 (|#1| $ |#1|)) (-15 -2143 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) -((-1333 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3384 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2664 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3900 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3900 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2143 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2143 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) -(-13 (-485) (-10 -8 (-15 -1333 ($ |#1| |#1| |#1| |#1|)) (-15 -3384 ($ |#1|)) (-15 -2664 ($ |#1|)) (-15 -3900 ($)) (-15 -3384 ($ $ |#1|)) (-15 -2664 ($ $ |#1|)) (-15 -3900 ($ $)) (-15 -2143 (|#1| $ |#1|)) (-15 -2143 ((-845 |#1|) $ (-845 |#1|))))) -((-2711 (($ $ (-939)) 19)) (-1604 (($ $ (-939)) 20)) (** (($ $ (-939)) 10))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-939))) (-15 -1604 (|#1| |#1| (-939))) (-15 -2711 (|#1| |#1| (-939)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-939))) (-15 -1604 (|#1| |#1| (-939))) (-15 -2711 (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-2711 (($ $ (-939)) 16)) (-1604 (($ $ (-939)) 15)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8)) (** (($ $ (-939)) 14)) (* (($ $ $) 17))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2742 (($ |#1|) 17) (($ $ |#1|) 20)) (-2610 (($ |#1|) 18) (($ $ |#1|) 21)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3215 (((-112) $) NIL)) (-2921 (($ |#1| |#1| |#1| |#1|) 8)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 16)) (-1450 (((-1141) $) NIL)) (-3283 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-2318 (($ $ $) NIL)) (-2604 (($ $ $) NIL)) (-3569 (((-876) $) 39)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 9 T CONST)) (-2923 (((-112) $ $) 48)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) +(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -2921 ($ |#1| |#1| |#1| |#1|)) (-15 -2742 ($ |#1|)) (-15 -2610 ($ |#1|)) (-15 -3451 ($)) (-15 -2742 ($ $ |#1|)) (-15 -2610 ($ $ |#1|)) (-15 -3451 ($ $)) (-15 -3283 (|#1| $ |#1|)) (-15 -3283 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) +((-2921 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2742 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2610 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3451 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2742 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2610 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3451 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3283 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3283 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) +(-13 (-485) (-10 -8 (-15 -2921 ($ |#1| |#1| |#1| |#1|)) (-15 -2742 ($ |#1|)) (-15 -2610 ($ |#1|)) (-15 -3451 ($)) (-15 -2742 ($ $ |#1|)) (-15 -2610 ($ $ |#1|)) (-15 -3451 ($ $)) (-15 -3283 (|#1| $ |#1|)) (-15 -3283 ((-845 |#1|) $ (-845 |#1|))))) +((-1845 (($ $ (-940)) 19)) (-2707 (($ $ (-940)) 20)) (** (($ $ (-940)) 10))) +(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -2707 (|#1| |#1| (-940))) (-15 -1845 (|#1| |#1| (-940)))) (-732)) (T -731)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -2707 (|#1| |#1| (-940))) (-15 -1845 (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-1845 (($ $ (-940)) 16)) (-2707 (($ $ (-940)) 15)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 17))) (((-732) (-141)) (T -732)) -((* (*1 *1 *1 *1) (-4 *1 (-732))) (-2711 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-939)))) (-1604 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-939)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-939))))) -(-13 (-1120) (-10 -8 (-15 * ($ $ $)) (-15 -2711 ($ $ (-939))) (-15 -1604 ($ $ (-939))) (-15 ** ($ $ (-939))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-2711 (($ $ (-939)) NIL) (($ $ (-783)) 18)) (-2287 (((-112) $) 10)) (-1604 (($ $ (-939)) NIL) (($ $ (-783)) 19)) (** (($ $ (-939)) NIL) (($ $ (-783)) 16))) -(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1604 (|#1| |#1| (-783))) (-15 -2711 (|#1| |#1| (-783))) (-15 -2287 ((-112) |#1|)) (-15 ** (|#1| |#1| (-939))) (-15 -1604 (|#1| |#1| (-939))) (-15 -2711 (|#1| |#1| (-939)))) (-734)) (T -733)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1604 (|#1| |#1| (-783))) (-15 -2711 (|#1| |#1| (-783))) (-15 -2287 ((-112) |#1|)) (-15 ** (|#1| |#1| (-939))) (-15 -1604 (|#1| |#1| (-939))) (-15 -2711 (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-2942 (((-3 $ "failed") $) 18)) (-2711 (($ $ (-939)) 16) (($ $ (-783)) 23)) (-3900 (((-3 $ "failed") $) 20)) (-2287 (((-112) $) 24)) (-1793 (((-3 $ "failed") $) 19)) (-1604 (($ $ (-939)) 15) (($ $ (-783)) 22)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4320 (($) 25 T CONST)) (-3938 (((-112) $ $) 8)) (** (($ $ (-939)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) +((* (*1 *1 *1 *1) (-4 *1 (-732))) (-1845 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (-2707 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 -1845 ($ $ (-940))) (-15 -2707 ($ $ (-940))) (-15 ** ($ $ (-940))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-1845 (($ $ (-940)) NIL) (($ $ (-783)) 18)) (-3215 (((-112) $) 10)) (-2707 (($ $ (-940)) NIL) (($ $ (-783)) 19)) (** (($ $ (-940)) NIL) (($ $ (-783)) 16))) +(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -2707 (|#1| |#1| (-783))) (-15 -1845 (|#1| |#1| (-783))) (-15 -3215 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -2707 (|#1| |#1| (-940))) (-15 -1845 (|#1| |#1| (-940)))) (-734)) (T -733)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -2707 (|#1| |#1| (-783))) (-15 -1845 (|#1| |#1| (-783))) (-15 -3215 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -2707 (|#1| |#1| (-940))) (-15 -1845 (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3417 (((-3 $ "failed") $) 18)) (-1845 (($ $ (-940)) 16) (($ $ (-783)) 23)) (-3451 (((-3 $ "failed") $) 20)) (-3215 (((-112) $) 24)) (-3974 (((-3 $ "failed") $) 19)) (-2707 (($ $ (-940)) 15) (($ $ (-783)) 22)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2730 (($) 25 T CONST)) (-2923 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) (((-734) (-141)) (T -734)) -((-4320 (*1 *1) (-4 *1 (-734))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-2711 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1604 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-3900 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1793 (*1 *1 *1) (|partial| -4 *1 (-734))) (-2942 (*1 *1 *1) (|partial| -4 *1 (-734)))) -(-13 (-732) (-10 -8 (-15 (-4320) ($) -2665) (-15 -2287 ((-112) $)) (-15 -2711 ($ $ (-783))) (-15 -1604 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -3900 ((-3 $ "failed") $)) (-15 -1793 ((-3 $ "failed") $)) (-15 -2942 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-875)) . T) ((-732) . T) ((-1120) . T) ((-1237) . T)) -((-2199 (((-783)) 39)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2721 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-3900 (((-3 $ "failed") $) 69)) (-4369 (($) 43)) (-2647 ((|#2| $) 21)) (-2547 (($) 18)) (-4106 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3835 (((-701 |#2|) (-1287 $) (-1 |#2| |#2|)) 64)) (-1554 (((-1287 |#2|) $) NIL) (($ (-1287 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3069 ((|#3| $) 36)) (-3578 (((-1287 $)) 33))) -(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4369 (|#1|)) (-15 -2199 ((-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3835 ((-701 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1554 (|#1| |#3|)) (-15 -2721 (|#1| |#3|)) (-15 -2547 (|#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -1554 (|#3| |#1|)) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -3578 ((-1287 |#1|))) (-15 -3069 (|#3| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1263 |#2|)) (T -735)) -((-2199 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) -(-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4369 (|#1|)) (-15 -2199 ((-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3835 ((-701 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1554 (|#1| |#3|)) (-15 -2721 (|#1| |#3|)) (-15 -2547 (|#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -1554 (|#3| |#1|)) (-15 -1554 (|#1| (-1287 |#2|))) (-15 -1554 ((-1287 |#2|) |#1|)) (-15 -3578 ((-1287 |#1|))) (-15 -3069 (|#3| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -3900 ((-3 |#1| "failed") |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-4070 (($ $) 106 (|has| |#1| (-374)))) (-2378 (((-112) $) 108 (|has| |#1| (-374)))) (-3313 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-3832 ((|#1| $) 59)) (-2053 (((-1209 (-939) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 125 (|has| |#1| (-374)))) (-3163 (((-430 $) $) 126 (|has| |#1| (-374)))) (-4057 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2199 (((-783)) 99 (|has| |#1| (-379)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2317 (((-576) $) 184 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 181)) (-4005 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-1893 (($ $ $) 120 (|has| |#1| (-374)))) (-4228 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-3222 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-2721 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-3900 (((-3 $ "failed") $) 37)) (-4134 (((-939)) 61)) (-4369 (($) 102 (|has| |#1| (-379)))) (-1903 (($ $ $) 119 (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-3933 (($) 160 (|has| |#1| (-360)))) (-2614 (((-112) $) 161 (|has| |#1| (-360)))) (-3878 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-2443 (((-112) $) 127 (|has| |#1| (-374)))) (-3241 (((-939) $) 163 (|has| |#1| (-360))) (((-845 (-939)) $) 149 (|has| |#1| (-360)))) (-2287 (((-112) $) 35)) (-2647 ((|#1| $) 58)) (-1859 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-2354 ((|#2| $) 51 (|has| |#1| (-374)))) (-4375 (((-939) $) 101 (|has| |#1| (-379)))) (-2708 ((|#2| $) 167)) (-2198 (((-701 (-576)) (-1287 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 173) (((-701 |#1|) (-1287 $)) 172)) (-3075 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-2043 (((-1178) $) 10)) (-1667 (($ $) 128 (|has| |#1| (-374)))) (-3650 (($) 154 (|has| |#1| (-360)) CONST)) (-2409 (($ (-939)) 100 (|has| |#1| (-379)))) (-3115 (((-1140) $) 11)) (-2547 (($) 171)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 113 (|has| |#1| (-374)))) (-3114 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) 157 (|has| |#1| (-360)))) (-1450 (((-430 $) $) 124 (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 121 (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-2026 (((-783) $) 117 (|has| |#1| (-374)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 118 (|has| |#1| (-374)))) (-1451 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3334 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-4106 (($ $ (-783)) 147 (-3794 (-2310 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-3794 (-2310 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196) (-783)) 140 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-656 (-1196))) 139 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196)) 137 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-3835 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3175 ((|#2|) 170)) (-1984 (($) 159 (|has| |#1| (-360)))) (-3435 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-1554 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576))))))) (-1972 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3069 ((|#2| $) 52)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3578 (((-1287 $)) 74)) (-3111 (((-112) $ $) 107 (|has| |#1| (-374)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-783)) 148 (-3794 (-2310 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-3794 (-2310 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196) (-783)) 143 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-656 (-1196))) 142 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196)) 138 (-2310 (|has| |#1| (-918 (-1196))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 132 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) -(((-736 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -736)) -((-2547 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1263 *2)))) (-3175 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2721 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) (-1554 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2721 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1263 *5)) (-5 *2 (-701 *5))))) -(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2547 ($)) (-15 -3175 (|t#2|)) (-15 -2721 ($ |t#2|)) (-15 -1554 ($ |t#2|)) (-15 -2708 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -2721 ((-3 $ "failed") (-419 |t#2|))) (-15 -3835 ((-701 |t#1|) (-1287 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3794 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-875)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -3794 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -3794 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -3794 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3794 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-910 $ #2=(-1196)) -3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))))) ((-916 (-1196)) -12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196)))) ((-918 #2#) -3794 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-916 (-1196))))) ((-938) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 #0#) -3794 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) |has| |#1| (-360)) ((-1237) . T) ((-1241) -3794 (|has| |#1| (-360)) (|has| |#1| (-374)))) -((-4331 (($) 11)) (-3900 (((-3 $ "failed") $) 14)) (-2287 (((-112) $) 10)) (** (($ $ (-939)) NIL) (($ $ (-783)) 20))) -(((-737 |#1|) (-10 -8 (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -2287 ((-112) |#1|)) (-15 -4331 (|#1|)) (-15 ** (|#1| |#1| (-939)))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -3900 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -2287 ((-112) |#1|)) (-15 -4331 (|#1|)) (-15 ** (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-4331 (($) 19 T CONST)) (-3900 (((-3 $ "failed") $) 16)) (-2287 (((-112) $) 18)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4320 (($) 20 T CONST)) (-3938 (((-112) $ $) 8)) (** (($ $ (-939)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) +((-2730 (*1 *1) (-4 *1 (-734))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-1845 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-2707 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-3451 (*1 *1 *1) (|partial| -4 *1 (-734))) (-3974 (*1 *1 *1) (|partial| -4 *1 (-734))) (-3417 (*1 *1 *1) (|partial| -4 *1 (-734)))) +(-13 (-732) (-10 -8 (-15 (-2730) ($) -1480) (-15 -3215 ((-112) $)) (-15 -1845 ($ $ (-783))) (-15 -2707 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -3451 ((-3 $ "failed") $)) (-15 -3974 ((-3 $ "failed") $)) (-15 -3417 ((-3 $ "failed") $)))) +(((-102) . T) ((-625 (-876)) . T) ((-732) . T) ((-1121) . T) ((-1238) . T)) +((-2096 (((-783)) 39)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-3685 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-3451 (((-3 $ "failed") $) 69)) (-1836 (($) 43)) (-2471 ((|#2| $) 21)) (-4128 (($) 18)) (-2773 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4058 (((-701 |#2|) (-1288 $) (-1 |#2| |#2|)) 64)) (-4171 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2137 ((|#3| $) 36)) (-3454 (((-1288 $)) 33))) +(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -1836 (|#1|)) (-15 -2096 ((-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4058 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4171 (|#1| |#3|)) (-15 -3685 (|#1| |#3|)) (-15 -4128 (|#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 (|#3| |#1|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -3454 ((-1288 |#1|))) (-15 -2137 (|#3| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1264 |#2|)) (T -735)) +((-2096 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) +(-10 -8 (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -1836 (|#1|)) (-15 -2096 ((-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4058 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4171 (|#1| |#3|)) (-15 -3685 (|#1| |#3|)) (-15 -4128 (|#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 (|#3| |#1|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -3454 ((-1288 |#1|))) (-15 -2137 (|#3| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-2544 (($ $) 106 (|has| |#1| (-374)))) (-1574 (((-112) $) 108 (|has| |#1| (-374)))) (-2747 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2208 ((|#1| $) 59)) (-1494 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 125 (|has| |#1| (-374)))) (-1770 (((-430 $) $) 126 (|has| |#1| (-374)))) (-2420 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2096 (((-783)) 99 (|has| |#1| (-379)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2859 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-3208 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3428 (($ $ $) 120 (|has| |#1| (-374)))) (-3567 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-4344 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-3685 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-3451 (((-3 $ "failed") $) 37)) (-3733 (((-940)) 61)) (-1836 (($) 102 (|has| |#1| (-379)))) (-3440 (($ $ $) 119 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-3814 (($) 160 (|has| |#1| (-360)))) (-2117 (((-112) $) 161 (|has| |#1| (-360)))) (-1332 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4169 (((-112) $) 127 (|has| |#1| (-374)))) (-3309 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-3215 (((-112) $) 35)) (-2471 ((|#1| $) 58)) (-3396 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-2542 ((|#2| $) 51 (|has| |#1| (-374)))) (-2460 (((-940) $) 101 (|has| |#1| (-379)))) (-3671 ((|#2| $) 167)) (-3626 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3457 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-1413 (((-1179) $) 10)) (-2048 (($ $) 128 (|has| |#1| (-374)))) (-3539 (($) 154 (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) 100 (|has| |#1| (-379)))) (-1450 (((-1141) $) 11)) (-4128 (($) 171)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) 157 (|has| |#1| (-360)))) (-1828 (((-430 $) $) 124 (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 121 (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-2411 (((-783) $) 117 (|has| |#1| (-374)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 118 (|has| |#1| (-374)))) (-2455 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-2992 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2773 (($ $ (-783)) 147 (-2758 (-2673 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2758 (-2673 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 140 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 139 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 137 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-4058 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1897 ((|#2|) 170)) (-2051 (($) 159 (|has| |#1| (-360)))) (-1490 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4171 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3230 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2137 ((|#2| $) 52)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-3454 (((-1288 $)) 74)) (-2537 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-783)) 148 (-2758 (-2673 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-2758 (-2673 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 143 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 142 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 138 (-2673 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 132 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +(((-736 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -736)) +((-4128 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2)))) (-1897 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-3685 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-4171 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-3685 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-4058 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *5))))) +(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -4128 ($)) (-15 -1897 (|t#2|)) (-15 -3685 ($ |t#2|)) (-15 -4171 ($ |t#2|)) (-15 -3671 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -3685 ((-3 $ "failed") (-419 |t#2|))) (-15 -4058 ((-701 |t#1|) (-1288 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2758 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -2758 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -2758 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -2758 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2758 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -2758 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-939) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -2758 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1238) . T) ((-1242) -2758 (|has| |#1| (-360)) (|has| |#1| (-374)))) +((-3306 (($) 11)) (-3451 (((-3 $ "failed") $) 14)) (-3215 (((-112) $) 10)) (** (($ $ (-940)) NIL) (($ $ (-783)) 20))) +(((-737 |#1|) (-10 -8 (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -3215 ((-112) |#1|)) (-15 -3306 (|#1|)) (-15 ** (|#1| |#1| (-940)))) (-738)) (T -737)) +NIL +(-10 -8 (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -3215 ((-112) |#1|)) (-15 -3306 (|#1|)) (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3306 (($) 19 T CONST)) (-3451 (((-3 $ "failed") $) 16)) (-3215 (((-112) $) 18)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2730 (($) 20 T CONST)) (-2923 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) (((-738) (-141)) (T -738)) -((-4320 (*1 *1) (-4 *1 (-738))) (-4331 (*1 *1) (-4 *1 (-738))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-3900 (*1 *1 *1) (|partial| -4 *1 (-738)))) -(-13 (-1132) (-10 -8 (-15 (-4320) ($) -2665) (-15 -4331 ($) -2665) (-15 -2287 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -3900 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3215 (((-2 (|:| -4250 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4149 (((-2 (|:| -4250 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2331 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-2497 (((-2 (|:| |poly| |#2|) (|:| -4250 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) -(((-739 |#1| |#2|) (-10 -7 (-15 -4149 ((-2 (|:| -4250 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3215 ((-2 (|:| -4250 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2331 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -2497 ((-2 (|:| |poly| |#2|) (|:| -4250 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -739)) -((-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4250 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4250 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4250 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) -(-10 -7 (-15 -4149 ((-2 (|:| -4250 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3215 ((-2 (|:| -4250 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2331 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -2497 ((-2 (|:| |poly| |#2|) (|:| -4250 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) -((-3413 ((|#7| (-656 |#5|) |#6|) NIL)) (-2422 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2422 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3413 (|#7| (-656 |#5|) |#6|))) (-861) (-805) (-805) (-1069) (-1069) (-967 |#4| |#2| |#1|) (-967 |#5| |#3| |#1|)) (T -740)) -((-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1069)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-1069)) (-4 *2 (-967 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-967 *8 *6 *5)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1069)) (-4 *9 (-1069)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-967 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-967 *8 *6 *5))))) -(-10 -7 (-15 -2422 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3413 (|#7| (-656 |#5|) |#6|))) -((-2422 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2422 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-805) (-805) (-1069) (-967 |#5| |#3| |#1|) (-967 |#5| |#4| |#2|)) (T -741)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) (-4 *9 (-1069)) (-4 *2 (-967 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-967 *9 *7 *5))))) -(-10 -7 (-15 -2422 (|#7| (-1 |#2| |#1|) |#6|))) -((-1450 (((-430 |#4|) |#4|) 42))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196))))) (-317) (-967 (-970 |#3|) |#1| |#2|)) (T -742)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-967 (-970 *6) *4 *5))))) -(-10 -7 (-15 -1450 ((-430 |#4|) |#4|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-877 |#1|)) $) NIL)) (-1420 (((-1192 $) $ (-877 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4070 (($ $) NIL (|has| |#2| (-568)))) (-2378 (((-112) $) NIL (|has| |#2| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-877 |#1|))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-3575 (($ $) NIL (|has| |#2| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-877 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-877 |#1|) $) NIL)) (-3954 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#2| (-927)))) (-3897 (($ $ |#2| (-543 (-877 |#1|)) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#2|) (-877 |#1|)) NIL) (($ (-1192 $) (-877 |#1|)) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#2| (-543 (-877 |#1|))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-877 |#1|)) NIL)) (-3661 (((-543 (-877 |#1|)) $) NIL) (((-783) $ (-877 |#1|)) NIL) (((-656 (-783)) $ (-656 (-877 |#1|))) NIL)) (-3820 (($ (-1 (-543 (-877 |#1|)) (-543 (-877 |#1|))) $) NIL)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-2653 (((-3 (-877 |#1|) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#2| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -1495 (-783))) "failed") $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#2| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#2| (-927)))) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-877 |#1|) |#2|) NIL) (($ $ (-656 (-877 |#1|)) (-656 |#2|)) NIL) (($ $ (-877 |#1|) $) NIL) (($ $ (-656 (-877 |#1|)) (-656 $)) NIL)) (-1451 (($ $ (-877 |#1|)) NIL (|has| |#2| (-174)))) (-4106 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-1877 (((-543 (-877 |#1|)) $) NIL) (((-783) $ (-877 |#1|)) NIL) (((-656 (-783)) $ (-656 (-877 |#1|))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-877 |#1|) (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-877 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3430 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-877 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576))))))) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-543 (-877 |#1|))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#2| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-877 |#1|)) (-656 (-783))) NIL) (($ $ (-877 |#1|) (-783)) NIL) (($ $ (-656 (-877 |#1|))) NIL) (($ $ (-877 |#1|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-743 |#1| |#2|) (-967 |#2| (-543 (-877 |#1|)) (-877 |#1|)) (-656 (-1196)) (-1069)) (T -743)) -NIL -(-967 |#2| (-543 (-877 |#1|)) (-877 |#1|)) -((-4373 (((-2 (|:| -2390 (-970 |#3|)) (|:| -1359 (-970 |#3|))) |#4|) 14)) (-2663 ((|#4| |#4| |#2|) 33)) (-4394 ((|#4| (-419 (-970 |#3|)) |#2|) 64)) (-3821 ((|#4| (-1192 (-970 |#3|)) |#2|) 77)) (-2761 ((|#4| (-1192 |#4|) |#2|) 51)) (-3470 ((|#4| |#4| |#2|) 54)) (-1450 (((-430 |#4|) |#4|) 40))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 ((-2 (|:| -2390 (-970 |#3|)) (|:| -1359 (-970 |#3|))) |#4|)) (-15 -3470 (|#4| |#4| |#2|)) (-15 -2761 (|#4| (-1192 |#4|) |#2|)) (-15 -2663 (|#4| |#4| |#2|)) (-15 -3821 (|#4| (-1192 (-970 |#3|)) |#2|)) (-15 -4394 (|#4| (-419 (-970 |#3|)) |#2|)) (-15 -1450 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)))) (-568) (-967 (-419 (-970 |#3|)) |#1| |#2|)) (T -744)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-967 (-419 (-970 *6)) *4 *5)))) (-4394 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-970 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 (-970 *6))) (-4 *6 (-568)) (-4 *2 (-967 (-419 (-970 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))))) (-2663 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-967 (-419 (-970 *5)) *4 *3)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-967 (-419 (-970 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *6 (-568)))) (-3470 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-967 (-419 (-970 *5)) *4 *3)))) (-4373 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2390 (-970 *6)) (|:| -1359 (-970 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-967 (-419 (-970 *6)) *4 *5))))) -(-10 -7 (-15 -4373 ((-2 (|:| -2390 (-970 |#3|)) (|:| -1359 (-970 |#3|))) |#4|)) (-15 -3470 (|#4| |#4| |#2|)) (-15 -2761 (|#4| (-1192 |#4|) |#2|)) (-15 -2663 (|#4| |#4| |#2|)) (-15 -3821 (|#4| (-1192 (-970 |#3|)) |#2|)) (-15 -4394 (|#4| (-419 (-970 |#3|)) |#2|)) (-15 -1450 ((-430 |#4|) |#4|))) -((-1450 (((-430 |#4|) |#4|) 54))) -(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 |#4|) |#4|))) (-805) (-861) (-13 (-317) (-148)) (-967 (-419 |#3|) |#1| |#2|)) (T -745)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-967 (-419 *6) *4 *5))))) -(-10 -7 (-15 -1450 ((-430 |#4|) |#4|))) -((-2422 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) -(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1069) (-1069) (-738)) (T -746)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) -(-10 -7 (-15 -2422 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 36)) (-1560 (((-656 (-2 (|:| -2861 |#1|) (|:| -1617 |#2|))) $) 37)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2199 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2317 ((|#2| $) NIL) ((|#1| $) NIL)) (-3309 (($ $) 102 (|has| |#2| (-861)))) (-3900 (((-3 $ "failed") $) 85)) (-4369 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) 70)) (-1894 (((-656 $) $) 52)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| |#2|) 17)) (-2422 (($ (-1 |#1| |#1|) $) 68)) (-4375 (((-939) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1698 ((|#2| $) 101 (|has| |#2| (-861)))) (-1709 ((|#1| $) 100 (|has| |#2| (-861)))) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -2861 |#1|) (|:| -1617 |#2|)))) 11)) (-1410 (((-656 |#1|) $) 54)) (-4269 ((|#1| $ |#2|) 115)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 12 T CONST)) (-4320 (($) 44 T CONST)) (-3938 (((-112) $ $) 105)) (-4036 (($ $) 61) (($ $ $) NIL)) (-4026 (($ $ $) 33)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-747 |#1| |#2|) (-13 (-1069) (-1058 |#2|) (-1058 |#1|) (-10 -8 (-15 -1562 ($ |#1| |#2|)) (-15 -4269 (|#1| $ |#2|)) (-15 -4112 ($ (-656 (-2 (|:| -2861 |#1|) (|:| -1617 |#2|))))) (-15 -1560 ((-656 (-2 (|:| -2861 |#1|) (|:| -1617 |#2|))) $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (-15 -3146 ((-112) $)) (-15 -1410 ((-656 |#1|) $)) (-15 -1894 ((-656 $) $)) (-15 -1757 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -1698 (|#2| $)) (-15 -1709 (|#1| $)) (-15 -3309 ($ $))) |%noBranch|))) (-1069) (-738)) (T -747)) -((-1562 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-738)))) (-4269 (*1 *2 *1 *3) (-12 (-4 *2 (-1069)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2861 *3) (|:| -1617 *4)))) (-4 *3 (-1069)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2861 *3) (|:| -1617 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-738)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-738)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-738)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-738)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-738)))) (-1698 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1069)))) (-1709 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *3 (-738)))) (-3309 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1069)) (-4 *3 (-738))))) -(-13 (-1069) (-1058 |#2|) (-1058 |#1|) (-10 -8 (-15 -1562 ($ |#1| |#2|)) (-15 -4269 (|#1| $ |#2|)) (-15 -4112 ($ (-656 (-2 (|:| -2861 |#1|) (|:| -1617 |#2|))))) (-15 -1560 ((-656 (-2 (|:| -2861 |#1|) (|:| -1617 |#2|))) $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (-15 -3146 ((-112) $)) (-15 -1410 ((-656 |#1|) $)) (-15 -1894 ((-656 $) $)) (-15 -1757 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -1698 (|#2| $)) (-15 -1709 (|#1| $)) (-15 -3309 ($ $))) |%noBranch|))) -((-1952 (((-112) $ $) 20)) (-4025 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3863 (($ $ $) 73)) (-3702 (((-112) $ $) 74)) (-2337 (((-112) $ (-783)) 8)) (-3703 (($ (-656 |#1|)) 69) (($) 68)) (-2146 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3308 (($ $) 63)) (-3966 (($ $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) 65)) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23)) (-2710 (($ $ $) 70)) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3115 (((-1140) $) 22)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-2779 (((-656 (-2 (|:| -2904 |#1|) (|:| -3125 (-783)))) $) 62)) (-1907 (($ $ |#1|) 72) (($ $ $) 71)) (-1437 (($) 50) (($ (-656 |#1|)) 49)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 51)) (-4112 (((-875) $) 18)) (-1514 (($ (-656 |#1|)) 67) (($) 66)) (-1994 (((-112) $ $) 21)) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19)) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-748 |#1|) (-141) (-1120)) (T -748)) -NIL -(-13 (-707 |t#1|) (-1118 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-875)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-707 |#1|) . T) ((-1118 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-4025 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3863 (($ $ $) 96)) (-3702 (((-112) $ $) 104)) (-2337 (((-112) $ (-783)) NIL)) (-3703 (($ (-656 |#1|)) 26) (($) 17)) (-2146 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3308 (($ $) 85)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) 70 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 32 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) 103)) (-1902 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) 38)) (-4217 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 89)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2710 (($ $ $) 94)) (-2976 ((|#1| $) 62)) (-2782 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-3115 (((-1140) $) NIL)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1526 ((|#1| $) 61)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 56)) (-3935 (($) 14)) (-2779 (((-656 (-2 (|:| -2904 |#1|) (|:| -3125 (-783)))) $) 55)) (-1907 (($ $ |#1|) NIL) (($ $ $) 95)) (-1437 (($) 16) (($ (-656 |#1|)) 25)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 79)) (-1554 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 22)) (-4112 (((-875) $) 49)) (-1514 (($ (-656 |#1|)) 27) (($) 18)) (-1994 (((-112) $ $) NIL)) (-2050 (($ (-656 |#1|)) 24)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 100)) (-1968 (((-783) $) 67 (|has| $ (-6 -4463))))) -(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -1902 ($)) (-15 -1902 ($ |#1|)) (-15 -1902 ($ (-656 |#1|))) (-15 -3958 ((-656 |#1|) $)) (-15 -2824 ($ |#1| $ (-576))) (-15 -2824 ($ (-1 (-112) |#1|) $ (-576))) (-15 -1672 ($ |#1| $ (-576))) (-15 -1672 ($ (-1 (-112) |#1|) $ (-576))))) (-1120)) (T -749)) -((-1902 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1120)))) (-1902 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1120)))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-749 *3)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1120)))) (-2824 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1120)))) (-2824 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1120)) (-5 *1 (-749 *4)))) (-1672 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1120)))) (-1672 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1120)) (-5 *1 (-749 *4))))) -(-13 (-748 |#1|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -1902 ($)) (-15 -1902 ($ |#1|)) (-15 -1902 ($ (-656 |#1|))) (-15 -3958 ((-656 |#1|) $)) (-15 -2824 ($ |#1| $ (-576))) (-15 -2824 ($ (-1 (-112) |#1|) $ (-576))) (-15 -1672 ($ |#1| $ (-576))) (-15 -1672 ($ (-1 (-112) |#1|) $ (-576))))) -((-2238 (((-1292) (-1178)) 8))) -(((-750) (-10 -7 (-15 -2238 ((-1292) (-1178))))) (T -750)) -((-2238 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-750))))) -(-10 -7 (-15 -2238 ((-1292) (-1178)))) -((-3335 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) -(((-751 |#1|) (-10 -7 (-15 -3335 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-861)) (T -751)) -((-3335 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) -(-10 -7 (-15 -3335 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 |#2|) $) 149)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-4070 (($ $) 141 (|has| |#1| (-568)))) (-2378 (((-112) $) 139 (|has| |#1| (-568)))) (-3585 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) 20)) (-1462 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3561 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3611 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) 18 T CONST)) (-3309 (($ $) 133)) (-3900 (((-3 $ "failed") $) 37)) (-2817 (((-970 |#1|) $ (-783)) 111) (((-970 |#1|) $ (-783) (-783)) 110)) (-3365 (((-112) $) 150)) (-2722 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-3146 (((-112) $) 131)) (-1562 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-2422 (($ (-1 |#1| |#1|) $) 130)) (-2607 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) 128)) (-1709 ((|#1| $) 127)) (-2043 (((-1178) $) 10)) (-2944 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) 11)) (-3679 (($ $ (-783)) 116)) (-1943 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-2155 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-4106 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-1877 (((-543 |#2|) $) 129)) (-3622 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 151)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4269 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-1972 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) 140 (|has| |#1| (-568)))) (-3631 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1970 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) -(((-752 |#1| |#2|) (-141) (-1069) (-861)) (T -752)) -((-4269 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-861)))) (-4269 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-861)))) (-3679 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-861)))) (-1562 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-861)))) (-1562 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-861)))) (-3241 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3241 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-861)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-861)) (-5 *2 (-970 *4)))) (-2817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-861)) (-5 *2 (-970 *4)))) (-2944 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-576))))))) -(-13 (-916 |t#2|) (-993 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -4269 ($ $ |t#2| (-783))) (-15 -4269 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3679 ($ $ (-783))) (-15 -1562 ($ $ |t#2| (-783))) (-15 -1562 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3241 ((-783) $ |t#2|)) (-15 -3241 ((-783) $ |t#2| (-783))) (-15 -2817 ((-970 |t#1|) $ (-783))) (-15 -2817 ((-970 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $ |t#2|)) (-6 (-1022)) (-6 (-1222))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-910 $ |#2|) . T) ((-916 |#2|) . T) ((-918 |#2|) . T) ((-993 |#1| #0# |#2|) . T) ((-1022) |has| |#1| (-38 (-419 (-576)))) ((-1071 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1076 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T)) -((-1450 (((-430 (-1192 |#4|)) (-1192 |#4|)) 30) (((-430 |#4|) |#4|) 26))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 |#4|) |#4|)) (-15 -1450 ((-430 (-1192 |#4|)) (-1192 |#4|)))) (-861) (-805) (-13 (-317) (-148)) (-967 |#3| |#2| |#1|)) (T -753)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -(-10 -7 (-15 -1450 ((-430 |#4|) |#4|)) (-15 -1450 ((-430 (-1192 |#4|)) (-1192 |#4|)))) -((-4068 (((-430 |#4|) |#4| |#2|) 140)) (-2375 (((-430 |#4|) |#4|) NIL)) (-3163 (((-430 (-1192 |#4|)) (-1192 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-3786 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1450 (-1192 |#4|)) (|:| -1495 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-1929 (((-1192 |#3|) (-1192 |#3|) (-576)) 166)) (-4073 (((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783)) 75)) (-2708 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-1918 (((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-1846 (((-2 (|:| -2769 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576)) 72)) (-3364 (((-576) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576))))) 162)) (-4107 ((|#4| (-576) (-430 |#4|)) 73)) (-3739 (((-112) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576))))) NIL))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3163 ((-430 |#4|) |#4|)) (-15 -3163 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -2375 ((-430 |#4|) |#4|)) (-15 -3364 ((-576) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))))) (-15 -4068 ((-430 |#4|) |#4| |#2|)) (-15 -1846 ((-2 (|:| -2769 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576))) (-15 -3786 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1450 (-1192 |#4|)) (|:| -1495 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1918 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -4107 (|#4| (-576) (-430 |#4|))) (-15 -3739 ((-112) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))))) (-15 -2708 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -4073 ((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783))) (-15 -1929 ((-1192 |#3|) (-1192 |#3|) (-576)))) (-805) (-861) (-317) (-967 |#3| |#1| |#2|)) (T -754)) -((-1929 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-4073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2708 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-967 *11 *9 *10)) (-5 *2 (-656 (-1192 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1192 *5)))) (-3739 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1450 (-1192 *6)) (|:| -1495 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-967 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-317)))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1450 (-1192 *8)) (|:| -1495 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-3786 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-967 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1450 (-1192 *9)) (|:| -1495 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)))) (-1846 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-967 *8 *6 *7)) (-5 *2 (-2 (|:| -2769 (-1192 *9)) (|:| |polval| (-1192 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8)))) (-4068 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1450 (-1192 *6)) (|:| -1495 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5)))) (-3163 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-3163 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5))))) -(-10 -7 (-15 -3163 ((-430 |#4|) |#4|)) (-15 -3163 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -2375 ((-430 |#4|) |#4|)) (-15 -3364 ((-576) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))))) (-15 -4068 ((-430 |#4|) |#4| |#2|)) (-15 -1846 ((-2 (|:| -2769 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576))) (-15 -3786 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1450 (-1192 |#4|)) (|:| -1495 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1918 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -4107 (|#4| (-576) (-430 |#4|))) (-15 -3739 ((-112) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))) (-656 (-2 (|:| -1450 (-1192 |#3|)) (|:| -1495 (-576)))))) (-15 -2708 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -4073 ((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783))) (-15 -1929 ((-1192 |#3|) (-1192 |#3|) (-576)))) -((-4222 (($ $ (-939)) 17))) -(((-755 |#1| |#2|) (-10 -8 (-15 -4222 (|#1| |#1| (-939)))) (-756 |#2|) (-174)) (T -755)) -NIL -(-10 -8 (-15 -4222 (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2711 (($ $ (-939)) 31)) (-4222 (($ $ (-939)) 38)) (-1604 (($ $ (-939)) 32)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2362 (($ $ $) 28)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3240 (($ $ $ $) 29)) (-2027 (($ $ $) 27)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 33)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2730 (*1 *1) (-4 *1 (-738))) (-3306 (*1 *1) (-4 *1 (-738))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-3451 (*1 *1 *1) (|partial| -4 *1 (-738)))) +(-13 (-1133) (-10 -8 (-15 (-2730) ($) -1480) (-15 -3306 ($) -1480) (-15 -3215 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -3451 ((-3 $ "failed") $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4280 (((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4064 (((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2338 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-3443 (((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) +(((-739 |#1| |#2|) (-10 -7 (-15 -4064 ((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4280 ((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2338 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3443 ((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -739)) +((-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3014 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3014 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3014 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) +(-10 -7 (-15 -4064 ((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4280 ((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2338 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3443 ((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) +((-3544 ((|#7| (-656 |#5|) |#6|) NIL)) (-4116 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4116 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3544 (|#7| (-656 |#5|) |#6|))) (-861) (-805) (-805) (-1070) (-1070) (-968 |#4| |#2| |#1|) (-968 |#5| |#3| |#1|)) (T -740)) +((-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5))))) +(-10 -7 (-15 -4116 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3544 (|#7| (-656 |#5|) |#6|))) +((-4116 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4116 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-805) (-805) (-1070) (-968 |#5| |#3| |#1|) (-968 |#5| |#4| |#2|)) (T -741)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) (-4 *9 (-1070)) (-4 *2 (-968 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-968 *9 *7 *5))))) +(-10 -7 (-15 -4116 (|#7| (-1 |#2| |#1|) |#6|))) +((-1828 (((-430 |#4|) |#4|) 42))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197))))) (-317) (-968 (-971 |#3|) |#1| |#2|)) (T -742)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-968 (-971 *6) *4 *5))))) +(-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-878 |#1|)) $) NIL)) (-1799 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2544 (($ $) NIL (|has| |#2| (-568)))) (-1574 (((-112) $) NIL (|has| |#2| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3420 (($ $) NIL (|has| |#2| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4004 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#2| (-928)))) (-3415 (($ $ |#2| (-543 (-878 |#1|)) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#2| (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-878 |#1|)) NIL)) (-2987 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-1938 (($ (-1 (-543 (-878 |#1|)) (-543 (-878 |#1|))) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2512 (((-3 (-878 |#1|) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4210 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#2| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-2455 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2773 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3600 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))))) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-743 |#1| |#2|) (-968 |#2| (-543 (-878 |#1|)) (-878 |#1|)) (-656 (-1197)) (-1070)) (T -743)) +NIL +(-968 |#2| (-543 (-878 |#1|)) (-878 |#1|)) +((-2438 (((-2 (|:| -1685 (-971 |#3|)) (|:| -1443 (-971 |#3|))) |#4|) 14)) (-2597 ((|#4| |#4| |#2|) 33)) (-2651 ((|#4| (-419 (-971 |#3|)) |#2|) 64)) (-1949 ((|#4| (-1193 (-971 |#3|)) |#2|) 77)) (-4263 ((|#4| (-1193 |#4|) |#2|) 51)) (-1776 ((|#4| |#4| |#2|) 54)) (-1828 (((-430 |#4|) |#4|) 40))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 ((-2 (|:| -1685 (-971 |#3|)) (|:| -1443 (-971 |#3|))) |#4|)) (-15 -1776 (|#4| |#4| |#2|)) (-15 -4263 (|#4| (-1193 |#4|) |#2|)) (-15 -2597 (|#4| |#4| |#2|)) (-15 -1949 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -2651 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)))) (-568) (-968 (-419 (-971 |#3|)) |#1| |#2|)) (T -744)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) (-2651 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))))) (-2597 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)))) (-1776 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-2438 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -1685 (-971 *6)) (|:| -1443 (-971 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) +(-10 -7 (-15 -2438 ((-2 (|:| -1685 (-971 |#3|)) (|:| -1443 (-971 |#3|))) |#4|)) (-15 -1776 (|#4| |#4| |#2|)) (-15 -4263 (|#4| (-1193 |#4|) |#2|)) (-15 -2597 (|#4| |#4| |#2|)) (-15 -1949 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -2651 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1828 ((-430 |#4|) |#4|))) +((-1828 (((-430 |#4|) |#4|) 54))) +(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-861) (-13 (-317) (-148)) (-968 (-419 |#3|) |#1| |#2|)) (T -745)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-968 (-419 *6) *4 *5))))) +(-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) +((-4116 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) +(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1070) (-1070) (-738)) (T -746)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) +(-10 -7 (-15 -4116 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 36)) (-3605 (((-656 (-2 (|:| -1714 |#1|) (|:| -3684 |#2|))) $) 37)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2096 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2859 ((|#2| $) NIL) ((|#1| $) NIL)) (-2112 (($ $) 102 (|has| |#2| (-861)))) (-3451 (((-3 $ "failed") $) 85)) (-1836 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) 70)) (-3773 (((-656 $) $) 52)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| |#2|) 17)) (-4116 (($ (-1 |#1| |#1|) $) 68)) (-2460 (((-940) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2079 ((|#2| $) 101 (|has| |#2| (-861)))) (-2089 ((|#1| $) 100 (|has| |#2| (-861)))) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1714 |#1|) (|:| -3684 |#2|)))) 11)) (-2060 (((-656 |#1|) $) 54)) (-3998 ((|#1| $ |#2|) 115)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 12 T CONST)) (-2730 (($) 44 T CONST)) (-2923 (((-112) $ $) 105)) (-3043 (($ $) 61) (($ $ $) NIL)) (-3029 (($ $ $) 33)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-747 |#1| |#2|) (-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1945 ($ |#1| |#2|)) (-15 -3998 (|#1| $ |#2|)) (-15 -3569 ($ (-656 (-2 (|:| -1714 |#1|) (|:| -3684 |#2|))))) (-15 -3605 ((-656 (-2 (|:| -1714 |#1|) (|:| -3684 |#2|))) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -1606 ((-112) $)) (-15 -2060 ((-656 |#1|) $)) (-15 -3773 ((-656 $) $)) (-15 -1675 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -2079 (|#2| $)) (-15 -2089 (|#1| $)) (-15 -2112 ($ $))) |%noBranch|))) (-1070) (-738)) (T -747)) +((-1945 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-738)))) (-3998 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3684 *4)))) (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3684 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2079 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1070)))) (-2089 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *3 (-738)))) (-2112 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) (-4 *3 (-738))))) +(-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1945 ($ |#1| |#2|)) (-15 -3998 (|#1| $ |#2|)) (-15 -3569 ($ (-656 (-2 (|:| -1714 |#1|) (|:| -3684 |#2|))))) (-15 -3605 ((-656 (-2 (|:| -1714 |#1|) (|:| -3684 |#2|))) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -1606 ((-112) $)) (-15 -2060 ((-656 |#1|) $)) (-15 -3773 ((-656 $) $)) (-15 -1675 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -2079 (|#2| $)) (-15 -2089 (|#1| $)) (-15 -2112 ($ $))) |%noBranch|))) +((-3488 (((-112) $ $) 20)) (-1820 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4327 (($ $ $) 73)) (-2095 (((-112) $ $) 74)) (-2396 (((-112) $ (-783)) 8)) (-2069 (($ (-656 |#1|)) 69) (($) 68)) (-4355 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2696 (($ $) 63)) (-2800 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) 65)) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23)) (-1834 (($ $ $) 70)) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-4406 (((-656 (-2 (|:| -4438 |#1|) (|:| -1460 (-783)))) $) 62)) (-2587 (($ $ |#1|) 72) (($ $ $) 71)) (-2314 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18)) (-1894 (($ (-656 |#1|)) 67) (($) 66)) (-2113 (((-112) $ $) 21)) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-748 |#1|) (-141) (-1121)) (T -748)) +NIL +(-13 (-707 |t#1|) (-1119 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-707 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1820 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-4327 (($ $ $) 96)) (-2095 (((-112) $ $) 104)) (-2396 (((-112) $ (-783)) NIL)) (-2069 (($ (-656 |#1|)) 26) (($) 17)) (-4355 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-2696 (($ $) 85)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) 70 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 32 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) 103)) (-3854 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) 38)) (-3456 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 89)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1834 (($ $ $) 94)) (-3772 ((|#1| $) 62)) (-4436 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-1450 (((-1141) $) NIL)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3267 ((|#1| $) 61)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 56)) (-3839 (($) 14)) (-4406 (((-656 (-2 (|:| -4438 |#1|) (|:| -1460 (-783)))) $) 55)) (-2587 (($ $ |#1|) NIL) (($ $ $) 95)) (-2314 (($) 16) (($ (-656 |#1|)) 25)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 79)) (-4171 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 22)) (-3569 (((-876) $) 49)) (-1894 (($ (-656 |#1|)) 27) (($) 18)) (-2113 (((-112) $ $) NIL)) (-1470 (($ (-656 |#1|)) 24)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 100)) (-3502 (((-783) $) 67 (|has| $ (-6 -4464))))) +(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3854 ($)) (-15 -3854 ($ |#1|)) (-15 -3854 ($ (-656 |#1|))) (-15 -2735 ((-656 |#1|) $)) (-15 -3945 ($ |#1| $ (-576))) (-15 -3945 ($ (-1 (-112) |#1|) $ (-576))) (-15 -2065 ($ |#1| $ (-576))) (-15 -2065 ($ (-1 (-112) |#1|) $ (-576))))) (-1121)) (T -749)) +((-3854 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-3854 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) (-3945 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-3945 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4)))) (-2065 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-2065 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4))))) +(-13 (-748 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3854 ($)) (-15 -3854 ($ |#1|)) (-15 -3854 ($ (-656 |#1|))) (-15 -2735 ((-656 |#1|) $)) (-15 -3945 ($ |#1| $ (-576))) (-15 -3945 ($ (-1 (-112) |#1|) $ (-576))) (-15 -2065 ($ |#1| $ (-576))) (-15 -2065 ($ (-1 (-112) |#1|) $ (-576))))) +((-2968 (((-1293) (-1179)) 8))) +(((-750) (-10 -7 (-15 -2968 ((-1293) (-1179))))) (T -750)) +((-2968 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) +(-10 -7 (-15 -2968 ((-1293) (-1179)))) +((-3006 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) +(((-751 |#1|) (-10 -7 (-15 -3006 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-861)) (T -751)) +((-3006 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) +(-10 -7 (-15 -3006 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 |#2|) $) 149)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-2544 (($ $) 141 (|has| |#1| (-568)))) (-1574 (((-112) $) 139 (|has| |#1| (-568)))) (-4024 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) 20)) (-1839 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) 18 T CONST)) (-2112 (($ $) 133)) (-3451 (((-3 $ "failed") $) 37)) (-2381 (((-971 |#1|) $ (-783)) 111) (((-971 |#1|) $ (-783) (-783)) 110)) (-2037 (((-112) $) 150)) (-1600 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-112) $) 131)) (-1945 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-4116 (($ (-1 |#1| |#1|) $) 130)) (-3744 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) 128)) (-2089 ((|#1| $) 127)) (-1413 (((-1179) $) 10)) (-3441 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) 11)) (-3169 (($ $ (-783)) 116)) (-3475 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-4103 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-2773 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-3600 (((-543 |#2|) $) 129)) (-4060 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 151)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3998 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-3230 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) 140 (|has| |#1| (-568)))) (-4070 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4387 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +(((-752 |#1| |#2|) (-141) (-1070) (-861)) (T -752)) +((-3998 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-3998 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3169 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3309 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3309 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)))) (-2381 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-2381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-3441 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-576))))))) +(-13 (-917 |t#2|) (-994 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -3998 ($ $ |t#2| (-783))) (-15 -3998 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3169 ($ $ (-783))) (-15 -1945 ($ $ |t#2| (-783))) (-15 -1945 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3309 ((-783) $ |t#2|)) (-15 -3309 ((-783) $ |t#2| (-783))) (-15 -2381 ((-971 |t#1|) $ (-783))) (-15 -2381 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $ |t#2|)) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ |#2|) . T) ((-917 |#2|) . T) ((-919 |#2|) . T) ((-994 |#1| #0# |#2|) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T)) +((-1828 (((-430 (-1193 |#4|)) (-1193 |#4|)) 30) (((-430 |#4|) |#4|) 26))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) (-861) (-805) (-13 (-317) (-148)) (-968 |#3| |#2| |#1|)) (T -753)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +(-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) +((-2526 (((-430 |#4|) |#4| |#2|) 140)) (-1541 (((-430 |#4|) |#4|) NIL)) (-1770 (((-430 (-1193 |#4|)) (-1193 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-1638 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -4210 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-2778 (((-1193 |#3|) (-1193 |#3|) (-576)) 166)) (-2574 (((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783)) 75)) (-3671 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-2679 (((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-3272 (((-2 (|:| -4326 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576)) 72)) (-2028 (((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576))))) 162)) (-1709 ((|#4| (-576) (-430 |#4|)) 73)) (-2437 (((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576))))) NIL))) +(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1770 ((-430 |#4|) |#4|)) (-15 -1770 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1541 ((-430 |#4|) |#4|)) (-15 -2028 ((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))))) (-15 -2526 ((-430 |#4|) |#4| |#2|)) (-15 -3272 ((-2 (|:| -4326 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -1638 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -4210 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2679 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1709 (|#4| (-576) (-430 |#4|))) (-15 -2437 ((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))))) (-15 -3671 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -2574 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -2778 ((-1193 |#3|) (-1193 |#3|) (-576)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -754)) +((-2778 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-3671 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1193 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-968 *11 *9 *10)) (-5 *2 (-656 (-1193 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1193 *5)))) (-2437 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -4210 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-317)))) (-2679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 *8)) (|:| -4210 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-1638 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 *9)) (|:| -4210 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| -4326 (-1193 *9)) (|:| |polval| (-1193 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8)))) (-2526 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -4210 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-1541 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) +(-10 -7 (-15 -1770 ((-430 |#4|) |#4|)) (-15 -1770 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1541 ((-430 |#4|) |#4|)) (-15 -2028 ((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))))) (-15 -2526 ((-430 |#4|) |#4| |#2|)) (-15 -3272 ((-2 (|:| -4326 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -1638 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -4210 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2679 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1709 (|#4| (-576) (-430 |#4|))) (-15 -2437 ((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -4210 (-576)))))) (-15 -3671 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -2574 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -2778 ((-1193 |#3|) (-1193 |#3|) (-576)))) +((-3507 (($ $ (-940)) 17))) +(((-755 |#1| |#2|) (-10 -8 (-15 -3507 (|#1| |#1| (-940)))) (-756 |#2|) (-174)) (T -755)) +NIL +(-10 -8 (-15 -3507 (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1845 (($ $ (-940)) 31)) (-3507 (($ $ (-940)) 38)) (-2707 (($ $ (-940)) 32)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2604 (($ $ $) 28)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-3298 (($ $ $ $) 29)) (-2424 (($ $ $) 27)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-756 |#1|) (-141) (-174)) (T -756)) -((-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -4222 ($ $ (-939))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1515 (((-1055) (-701 (-227)) (-576) (-112) (-576)) 25)) (-2103 (((-1055) (-701 (-227)) (-576) (-112) (-576)) 24))) -(((-757) (-10 -7 (-15 -2103 ((-1055) (-701 (-227)) (-576) (-112) (-576))) (-15 -1515 ((-1055) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) -((-1515 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1055)) (-5 *1 (-757)))) (-2103 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1055)) (-5 *1 (-757))))) -(-10 -7 (-15 -2103 ((-1055) (-701 (-227)) (-576) (-112) (-576))) (-15 -1515 ((-1055) (-701 (-227)) (-576) (-112) (-576)))) -((-1353 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-2112 (((-1055) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-3400 (((-1055) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) 32))) -(((-758) (-10 -7 (-15 -3400 ((-1055) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -2112 ((-1055) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1353 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) -((-1353 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1055)) (-5 *1 (-758)))) (-2112 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1055)) (-5 *1 (-758)))) (-3400 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) (-5 *2 (-1055)) (-5 *1 (-758))))) -(-10 -7 (-15 -3400 ((-1055) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -2112 ((-1055) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1353 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) -((-2696 (((-1055) (-576) (-576) (-701 (-227)) (-576)) 34)) (-3237 (((-1055) (-576) (-576) (-701 (-227)) (-576)) 33)) (-1413 (((-1055) (-576) (-701 (-227)) (-576)) 32)) (-1890 (((-1055) (-576) (-701 (-227)) (-576)) 31)) (-2897 (((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-2625 (((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1899 (((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-2207 (((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2338 (((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2512 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3776 (((-1055) (-576) (-701 (-227)) (-576)) 22)) (-3074 (((-1055) (-576) (-701 (-227)) (-576)) 21))) -(((-759) (-10 -7 (-15 -3074 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -3776 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -2512 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2338 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2207 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1899 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2625 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2897 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1890 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -1413 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -3237 ((-1055) (-576) (-576) (-701 (-227)) (-576))) (-15 -2696 ((-1055) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) -((-2696 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-3237 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-1413 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-1890 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-2897 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-2625 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-1899 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-2207 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-2338 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-2512 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-3776 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759)))) (-3074 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-759))))) -(-10 -7 (-15 -3074 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -3776 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -2512 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2338 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2207 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1899 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2625 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2897 ((-1055) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1890 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -1413 ((-1055) (-576) (-701 (-227)) (-576))) (-15 -3237 ((-1055) (-576) (-576) (-701 (-227)) (-576))) (-15 -2696 ((-1055) (-576) (-576) (-701 (-227)) (-576)))) -((-4066 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1529 (((-1055) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-3740 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2618 (((-1055) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3188 (((-1055) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-2377 (((-1055) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-3568 (((-1055) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3629 (((-1055) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-2786 (((-1055) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) 38)) (-2743 (((-1055) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) 37)) (-3482 (((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) 33)) (-2389 (((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) 32))) -(((-760) (-10 -7 (-15 -2389 ((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -3482 ((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -2743 ((-1055) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -2786 ((-1055) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -3629 ((-1055) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3568 ((-1055) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2377 ((-1055) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3188 ((-1055) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2618 ((-1055) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3740 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -1529 ((-1055) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -4066 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) -((-4066 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-1529 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-760)))) (-3740 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-2618 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-760)))) (-3188 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-2377 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-3568 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-3629 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-2786 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-2743 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-760)))) (-3482 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) (-5 *2 (-1055)) (-5 *1 (-760)))) (-2389 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) (-5 *2 (-1055)) (-5 *1 (-760))))) -(-10 -7 (-15 -2389 ((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -3482 ((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -2743 ((-1055) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -2786 ((-1055) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117))))) (-15 -3629 ((-1055) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3568 ((-1055) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2377 ((-1055) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3188 ((-1055) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2618 ((-1055) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3740 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -1529 ((-1055) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -4066 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) -((-3043 (((-1055) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3695 (((-1055) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1055) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3127 (((-1055) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-3024 (((-1055) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-4271 (((-1055) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2382 (((-1055) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2495 (((-1055) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-3694 (((-1055) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-761) (-10 -7 (-15 -3694 ((-1055) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2495 ((-1055) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2382 ((-1055) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -4271 ((-1055) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3024 ((-1055) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3127 ((-1055) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3695 ((-1055) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3695 ((-1055) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3043 ((-1055) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) -((-3043 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-761)))) (-3695 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1055)) (-5 *1 (-761)))) (-3695 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1055)) (-5 *1 (-761)))) (-3127 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761)))) (-3024 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1055)) (-5 *1 (-761)))) (-4271 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761)))) (-2382 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761)))) (-2495 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761)))) (-3694 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761))))) -(-10 -7 (-15 -3694 ((-1055) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2495 ((-1055) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2382 ((-1055) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -4271 ((-1055) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3024 ((-1055) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3127 ((-1055) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3695 ((-1055) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3695 ((-1055) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3043 ((-1055) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2594 (((-1055) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-1346 (((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-2516 (((-1055) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) -(((-762) (-10 -7 (-15 -2516 ((-1055) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1346 ((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -2594 ((-1055) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) -((-2594 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-762)))) (-1346 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1055)) (-5 *1 (-762)))) (-2516 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-762))))) -(-10 -7 (-15 -2516 ((-1055) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1346 ((-1055) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -2594 ((-1055) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) -((-4092 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-3594 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-2499 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-4389 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1641 (((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-4190 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-2060 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-3436 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-4242 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-2776 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) -(((-763) (-10 -7 (-15 -2776 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4242 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3436 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2060 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4190 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1641 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4389 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2499 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3594 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -4092 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) -((-4092 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1055)) (-5 *1 (-763)))) (-3594 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1055)) (-5 *1 (-763)))) (-2499 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-763)))) (-4389 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-763)))) (-1641 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-763)))) (-4190 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1055)) (-5 *1 (-763)))) (-2060 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-763)))) (-3436 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-763)))) (-4242 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-763)))) (-2776 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-763))))) -(-10 -7 (-15 -2776 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4242 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3436 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2060 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4190 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1641 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4389 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2499 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3594 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -4092 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) -((-2194 (((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-4179 (((-1055) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-3415 (((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-4031 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-3383 (((-1055) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-1828 (((-1055) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-4042 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-4167 (((-1055) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-3595 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-3636 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-3462 (((-1055) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-2503 (((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-2584 (((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-1416 (((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-4275 (((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-4144 (((-1055) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-3941 (((-1055) (-576) (-701 (-227)) (-227) (-576)) 24)) (-3569 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) -(((-764) (-10 -7 (-15 -3569 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3941 ((-1055) (-576) (-701 (-227)) (-227) (-576))) (-15 -4144 ((-1055) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -4275 ((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1416 ((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2584 ((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -2503 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3462 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3636 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3595 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4167 ((-1055) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -4042 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -1828 ((-1055) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3383 ((-1055) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4031 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3415 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4179 ((-1055) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2194 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) -((-2194 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-764)))) (-4179 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3415 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-764)))) (-4031 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3383 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-1828 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-4042 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-4167 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3595 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3636 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3462 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-2503 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-764)))) (-2584 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-1416 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-4275 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-4144 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3941 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-3569 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-764))))) -(-10 -7 (-15 -3569 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3941 ((-1055) (-576) (-701 (-227)) (-227) (-576))) (-15 -4144 ((-1055) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -4275 ((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1416 ((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2584 ((-1055) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -2503 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3462 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3636 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3595 ((-1055) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4167 ((-1055) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -4042 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -1828 ((-1055) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3383 ((-1055) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4031 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3415 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4179 ((-1055) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2194 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) -((-2972 (((-1055) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-2359 (((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1412 (((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-2163 (((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-1838 (((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2291 (((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3008 (((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2090 (((-1055) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-765) (-10 -7 (-15 -2090 ((-1055) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3008 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2291 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1838 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2163 ((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -1412 ((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -2359 ((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2972 ((-1055) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) -((-2972 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-765)))) (-2359 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-765)))) (-1412 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-765)))) (-2163 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1055)) (-5 *1 (-765)))) (-1838 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1055)) (-5 *1 (-765)))) (-2291 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1055)) (-5 *1 (-765)))) (-3008 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1055)) (-5 *1 (-765)))) (-2090 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-765))))) -(-10 -7 (-15 -2090 ((-1055) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3008 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2291 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1838 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2163 ((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -1412 ((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -2359 ((-1055) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2972 ((-1055) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) -((-1841 (((-1055) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-3525 (((-1055) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-1967 (((-1055) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-2059 (((-1055) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-2058 (((-1055) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-4177 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-3709 (((-1055) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-3997 (((-1055) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-4193 (((-1055) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-1414 (((-1055) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) -(((-766) (-10 -7 (-15 -1414 ((-1055) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -4193 ((-1055) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3997 ((-1055) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3709 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -4177 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2058 ((-1055) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -2059 ((-1055) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1967 ((-1055) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3525 ((-1055) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1841 ((-1055) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) -((-1841 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-3525 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-1967 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2059 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2058 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-4177 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-3709 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-766)))) (-3997 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-766)))) (-4193 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1055)) (-5 *1 (-766)))) (-1414 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1055)) (-5 *1 (-766))))) -(-10 -7 (-15 -1414 ((-1055) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -4193 ((-1055) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3997 ((-1055) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3709 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -4177 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2058 ((-1055) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -2059 ((-1055) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1967 ((-1055) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3525 ((-1055) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1841 ((-1055) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-4255 (((-1055) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-3140 (((-1055) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-2228 (((-1055) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1055) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-3201 (((-1055) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-1711 (((-1055) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3942 (((-1055) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-3517 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3293 (((-1055) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3045 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2635 (((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-4020 (((-1055) (-576) (-576) (-701 (-227)) (-576)) 25)) (-3665 (((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2114 (((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-2927 (((-1055) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-2750 (((-1055) (-576) (-576) (-701 (-227)) (-576)) 21))) -(((-767) (-10 -7 (-15 -2750 ((-1055) (-576) (-576) (-701 (-227)) (-576))) (-15 -2927 ((-1055) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2114 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3665 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4020 ((-1055) (-576) (-576) (-701 (-227)) (-576))) (-15 -2635 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3045 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3293 ((-1055) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3517 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3942 ((-1055) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1711 ((-1055) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3201 ((-1055) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2228 ((-1055) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2228 ((-1055) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3140 ((-1055) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4255 ((-1055) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) -((-4255 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3140 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2228 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2228 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3201 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-1711 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3942 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3517 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3293 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3045 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2635 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-4020 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-3665 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2114 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2927 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2750 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-767))))) -(-10 -7 (-15 -2750 ((-1055) (-576) (-576) (-701 (-227)) (-576))) (-15 -2927 ((-1055) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2114 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3665 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4020 ((-1055) (-576) (-576) (-701 (-227)) (-576))) (-15 -2635 ((-1055) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3045 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3293 ((-1055) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3517 ((-1055) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3942 ((-1055) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1711 ((-1055) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3201 ((-1055) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2228 ((-1055) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2228 ((-1055) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3140 ((-1055) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4255 ((-1055) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-2642 (((-1055) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-2220 (((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-1407 (((-1055) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1355 (((-1055) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-2802 (((-1055) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-3216 (((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-3783 (((-1055) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-1801 (((-1055) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-4064 (((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-4272 (((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-4043 (((-1055) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) -(((-768) (-10 -7 (-15 -4043 ((-1055) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4272 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4064 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1801 ((-1055) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -3783 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3216 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2802 ((-1055) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1355 ((-1055) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -1407 ((-1055) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2220 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2642 ((-1055) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) -((-2642 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2220 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-1407 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1055)) (-5 *1 (-768)))) (-1355 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2802 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-3216 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-768)))) (-3783 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-1801 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-4064 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-768)))) (-4272 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-768)))) (-4043 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1055)) (-5 *1 (-768))))) -(-10 -7 (-15 -4043 ((-1055) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4272 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4064 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1801 ((-1055) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -3783 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3216 ((-1055) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2802 ((-1055) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1355 ((-1055) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -1407 ((-1055) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2220 ((-1055) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2642 ((-1055) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) -((-1778 (((-1055) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-1771 (((-1055) (-1178) (-576) (-576) (-701 (-227))) 28)) (-3487 (((-1055) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-2077 (((-1055) (-576) (-576) (-576) (-701 (-227))) 21))) -(((-769) (-10 -7 (-15 -2077 ((-1055) (-576) (-576) (-576) (-701 (-227)))) (-15 -3487 ((-1055) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -1771 ((-1055) (-1178) (-576) (-576) (-701 (-227)))) (-15 -1778 ((-1055) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) -((-1778 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-769)))) (-1771 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-769)))) (-3487 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-769)))) (-2077 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) (-5 *1 (-769))))) -(-10 -7 (-15 -2077 ((-1055) (-576) (-576) (-576) (-701 (-227)))) (-15 -3487 ((-1055) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -1771 ((-1055) (-1178) (-576) (-576) (-701 (-227)))) (-15 -1778 ((-1055) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) -((-1869 (((-1055) (-227) (-227) (-227) (-227) (-576)) 62)) (-3103 (((-1055) (-227) (-227) (-227) (-576)) 61)) (-2958 (((-1055) (-227) (-227) (-227) (-576)) 60)) (-2414 (((-1055) (-227) (-227) (-576)) 59)) (-1539 (((-1055) (-227) (-576)) 58)) (-2046 (((-1055) (-227) (-576)) 57)) (-3842 (((-1055) (-227) (-576)) 56)) (-2847 (((-1055) (-227) (-576)) 55)) (-3377 (((-1055) (-227) (-576)) 54)) (-2673 (((-1055) (-227) (-576)) 53)) (-4327 (((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576)) 52)) (-2056 (((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576)) 51)) (-3195 (((-1055) (-227) (-576)) 50)) (-3838 (((-1055) (-227) (-576)) 49)) (-1488 (((-1055) (-227) (-576)) 48)) (-3193 (((-1055) (-227) (-576)) 47)) (-3645 (((-1055) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576)) 46)) (-3729 (((-1055) (-1178) (-171 (-227)) (-1178) (-576)) 45)) (-3277 (((-1055) (-1178) (-171 (-227)) (-1178) (-576)) 44)) (-3885 (((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576)) 43)) (-3329 (((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576)) 42)) (-4146 (((-1055) (-227) (-576)) 39)) (-3272 (((-1055) (-227) (-576)) 38)) (-4408 (((-1055) (-227) (-576)) 37)) (-1469 (((-1055) (-227) (-576)) 36)) (-4236 (((-1055) (-227) (-576)) 35)) (-2284 (((-1055) (-227) (-576)) 34)) (-3422 (((-1055) (-227) (-576)) 33)) (-4048 (((-1055) (-227) (-576)) 32)) (-2002 (((-1055) (-227) (-576)) 31)) (-2305 (((-1055) (-227) (-576)) 30)) (-2715 (((-1055) (-227) (-227) (-227) (-576)) 29)) (-4396 (((-1055) (-227) (-576)) 28)) (-1719 (((-1055) (-227) (-576)) 27)) (-3082 (((-1055) (-227) (-576)) 26)) (-3890 (((-1055) (-227) (-576)) 25)) (-1798 (((-1055) (-227) (-576)) 24)) (-2703 (((-1055) (-171 (-227)) (-576)) 21))) -(((-770) (-10 -7 (-15 -2703 ((-1055) (-171 (-227)) (-576))) (-15 -1798 ((-1055) (-227) (-576))) (-15 -3890 ((-1055) (-227) (-576))) (-15 -3082 ((-1055) (-227) (-576))) (-15 -1719 ((-1055) (-227) (-576))) (-15 -4396 ((-1055) (-227) (-576))) (-15 -2715 ((-1055) (-227) (-227) (-227) (-576))) (-15 -2305 ((-1055) (-227) (-576))) (-15 -2002 ((-1055) (-227) (-576))) (-15 -4048 ((-1055) (-227) (-576))) (-15 -3422 ((-1055) (-227) (-576))) (-15 -2284 ((-1055) (-227) (-576))) (-15 -4236 ((-1055) (-227) (-576))) (-15 -1469 ((-1055) (-227) (-576))) (-15 -4408 ((-1055) (-227) (-576))) (-15 -3272 ((-1055) (-227) (-576))) (-15 -4146 ((-1055) (-227) (-576))) (-15 -3329 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3885 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3277 ((-1055) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -3729 ((-1055) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -3645 ((-1055) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3193 ((-1055) (-227) (-576))) (-15 -1488 ((-1055) (-227) (-576))) (-15 -3838 ((-1055) (-227) (-576))) (-15 -3195 ((-1055) (-227) (-576))) (-15 -2056 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -4327 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -2673 ((-1055) (-227) (-576))) (-15 -3377 ((-1055) (-227) (-576))) (-15 -2847 ((-1055) (-227) (-576))) (-15 -3842 ((-1055) (-227) (-576))) (-15 -2046 ((-1055) (-227) (-576))) (-15 -1539 ((-1055) (-227) (-576))) (-15 -2414 ((-1055) (-227) (-227) (-576))) (-15 -2958 ((-1055) (-227) (-227) (-227) (-576))) (-15 -3103 ((-1055) (-227) (-227) (-227) (-576))) (-15 -1869 ((-1055) (-227) (-227) (-227) (-227) (-576))))) (T -770)) -((-1869 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3103 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2958 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2414 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-4327 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2056 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3645 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1178)) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3729 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3277 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3885 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3329 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2715 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(-10 -7 (-15 -2703 ((-1055) (-171 (-227)) (-576))) (-15 -1798 ((-1055) (-227) (-576))) (-15 -3890 ((-1055) (-227) (-576))) (-15 -3082 ((-1055) (-227) (-576))) (-15 -1719 ((-1055) (-227) (-576))) (-15 -4396 ((-1055) (-227) (-576))) (-15 -2715 ((-1055) (-227) (-227) (-227) (-576))) (-15 -2305 ((-1055) (-227) (-576))) (-15 -2002 ((-1055) (-227) (-576))) (-15 -4048 ((-1055) (-227) (-576))) (-15 -3422 ((-1055) (-227) (-576))) (-15 -2284 ((-1055) (-227) (-576))) (-15 -4236 ((-1055) (-227) (-576))) (-15 -1469 ((-1055) (-227) (-576))) (-15 -4408 ((-1055) (-227) (-576))) (-15 -3272 ((-1055) (-227) (-576))) (-15 -4146 ((-1055) (-227) (-576))) (-15 -3329 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3885 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3277 ((-1055) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -3729 ((-1055) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -3645 ((-1055) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3193 ((-1055) (-227) (-576))) (-15 -1488 ((-1055) (-227) (-576))) (-15 -3838 ((-1055) (-227) (-576))) (-15 -3195 ((-1055) (-227) (-576))) (-15 -2056 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -4327 ((-1055) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -2673 ((-1055) (-227) (-576))) (-15 -3377 ((-1055) (-227) (-576))) (-15 -2847 ((-1055) (-227) (-576))) (-15 -3842 ((-1055) (-227) (-576))) (-15 -2046 ((-1055) (-227) (-576))) (-15 -1539 ((-1055) (-227) (-576))) (-15 -2414 ((-1055) (-227) (-227) (-576))) (-15 -2958 ((-1055) (-227) (-227) (-227) (-576))) (-15 -3103 ((-1055) (-227) (-227) (-227) (-576))) (-15 -1869 ((-1055) (-227) (-227) (-227) (-227) (-576)))) -((-1741 (((-1292)) 20)) (-2858 (((-1178)) 34)) (-2988 (((-1178)) 33)) (-1810 (((-1124) (-1196) (-701 (-576))) 47) (((-1124) (-1196) (-701 (-227))) 43)) (-4218 (((-112)) 19)) (-2448 (((-1178) (-1178)) 37))) -(((-771) (-10 -7 (-15 -2988 ((-1178))) (-15 -2858 ((-1178))) (-15 -2448 ((-1178) (-1178))) (-15 -1810 ((-1124) (-1196) (-701 (-227)))) (-15 -1810 ((-1124) (-1196) (-701 (-576)))) (-15 -4218 ((-112))) (-15 -1741 ((-1292))))) (T -771)) -((-1741 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-771)))) (-4218 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-576))) (-5 *2 (-1124)) (-5 *1 (-771)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-227))) (-5 *2 (-1124)) (-5 *1 (-771)))) (-2448 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))) (-2858 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))) (-2988 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(-10 -7 (-15 -2988 ((-1178))) (-15 -2858 ((-1178))) (-15 -2448 ((-1178) (-1178))) (-15 -1810 ((-1124) (-1196) (-701 (-227)))) (-15 -1810 ((-1124) (-1196) (-701 (-576)))) (-15 -4218 ((-112))) (-15 -1741 ((-1292)))) -((-2362 (($ $ $) 10)) (-3240 (($ $ $ $) 9)) (-2027 (($ $ $) 12))) -(((-772 |#1|) (-10 -8 (-15 -2027 (|#1| |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -2027 (|#1| |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2711 (($ $ (-939)) 31)) (-1604 (($ $ (-939)) 32)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2362 (($ $ $) 28)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3240 (($ $ $ $) 29)) (-2027 (($ $ $) 27)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 33)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +((-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) +(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -3507 ($ $ (-940))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-4393 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 25)) (-3956 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 24))) +(((-757) (-10 -7 (-15 -3956 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -4393 ((-1056) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) +((-4393 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757)))) (-3956 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757))))) +(-10 -7 (-15 -3956 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -4393 ((-1056) (-701 (-227)) (-576) (-112) (-576)))) +((-1387 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-4032 (((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-2362 (((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) 32))) +(((-758) (-10 -7 (-15 -2362 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -4032 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1387 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) +((-1387 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-4032 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-2362 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) (-5 *2 (-1056)) (-5 *1 (-758))))) +(-10 -7 (-15 -2362 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -4032 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1387 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) +((-1723 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 34)) (-1376 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 33)) (-2091 (((-1056) (-576) (-701 (-227)) (-576)) 32)) (-3739 (((-1056) (-576) (-701 (-227)) (-576)) 31)) (-3082 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-2244 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3816 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3723 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2407 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-3612 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-1557 (((-1056) (-576) (-701 (-227)) (-576)) 22)) (-2198 (((-1056) (-576) (-701 (-227)) (-576)) 21))) +(((-759) (-10 -7 (-15 -2198 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -1557 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3612 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2407 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3723 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3816 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2244 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3082 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3739 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2091 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -1376 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -1723 ((-1056) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) +((-1723 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-1376 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2091 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3739 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3082 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2244 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3816 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3723 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2407 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3612 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-1557 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2198 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759))))) +(-10 -7 (-15 -2198 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -1557 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3612 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2407 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3723 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3816 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2244 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3082 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3739 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2091 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -1376 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -1723 ((-1056) (-576) (-576) (-701 (-227)) (-576)))) +((-2508 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3297 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-2447 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2166 (((-1056) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-4000 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-1560 (((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-3357 (((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3963 (((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-1346 (((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) 38)) (-4111 (((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) 37)) (-1873 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) 33)) (-1676 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) 32))) +(((-760) (-10 -7 (-15 -1676 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -1873 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -4111 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -1346 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -3963 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3357 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1560 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4000 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2166 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -2447 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3297 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -2508 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) +((-2508 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3297 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2447 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2166 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4000 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1560 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3357 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3963 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1346 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4111 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1873 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1676 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) (-5 *2 (-1056)) (-5 *1 (-760))))) +(-10 -7 (-15 -1676 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -1873 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -4111 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -1346 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959))))) (-15 -3963 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3357 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1560 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4000 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2166 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -2447 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3297 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -2508 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) +((-3167 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2043 (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1471 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-2955 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-4017 (((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1602 (((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3432 (((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-3316 (((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-761) (-10 -7 (-15 -3316 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3432 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1602 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -4017 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2955 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1471 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2043 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2043 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3167 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) +((-3167 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2043 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2043 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-1471 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2955 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-4017 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-1602 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3432 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3316 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(-10 -7 (-15 -3316 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3432 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1602 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -4017 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2955 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1471 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2043 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2043 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3167 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3212 (((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-4059 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-3645 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) +(((-762) (-10 -7 (-15 -3645 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4059 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -3212 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) +((-3212 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762)))) (-4059 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) (-5 *1 (-762)))) (-3645 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) +(-10 -7 (-15 -3645 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4059 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -3212 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) +((-1585 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-3613 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-3467 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-2599 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3113 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-4431 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-1555 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-1500 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-3732 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-4376 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) +(((-763) (-10 -7 (-15 -4376 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3732 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1500 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1555 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4431 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3113 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2599 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3467 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3613 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -1585 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) +((-1585 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3613 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3467 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2599 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3113 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-4431 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1555 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1500 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3732 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-4376 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763))))) +(-10 -7 (-15 -4376 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3732 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1500 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1555 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4431 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3113 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2599 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3467 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3613 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -1585 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) +((-3594 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-4331 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-2485 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-2161 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-2227 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-4317 (((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-2271 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-4238 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-3622 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-2716 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-1696 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-3519 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-3097 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-2125 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-2756 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-2031 (((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-3886 (((-1056) (-576) (-701 (-227)) (-227) (-576)) 24)) (-3364 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) +(((-764) (-10 -7 (-15 -3364 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3886 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -2031 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -2756 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2125 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -3097 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3519 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1696 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -2716 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3622 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4238 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2271 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4317 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2227 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2161 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2485 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4331 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3594 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) +((-3594 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4331 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2485 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2161 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2227 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4317 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2271 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4238 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3622 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2716 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1696 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3519 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3097 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2125 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2756 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2031 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3886 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3364 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764))))) +(-10 -7 (-15 -3364 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3886 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -2031 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -2756 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2125 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -3097 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3519 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1696 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -2716 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3622 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4238 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2271 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4317 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2227 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2161 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2485 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4331 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3594 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) +((-3728 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-2583 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2080 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-1386 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-4416 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3257 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2790 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1854 (((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-765) (-10 -7 (-15 -1854 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2790 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3257 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4416 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -1386 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2080 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -2583 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3728 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) +((-3728 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2583 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2080 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1386 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-4416 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3257 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2790 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1854 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(-10 -7 (-15 -1854 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2790 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3257 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4416 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -1386 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2080 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -2583 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3728 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) +((-1328 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-4247 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-3201 (((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-1545 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-1536 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-4310 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-2167 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-3128 (((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-1341 (((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-2102 (((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) +(((-766) (-10 -7 (-15 -2102 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -1341 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3128 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2167 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -4310 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -1536 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -1545 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3201 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4247 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1328 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) +((-1328 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-4247 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3201 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1545 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1536 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-4310 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2167 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3128 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1341 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2102 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-766))))) +(-10 -7 (-15 -2102 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -1341 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3128 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2167 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -4310 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -1536 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -1545 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3201 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4247 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1328 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) +((-3857 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-1565 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-2634 (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-4142 (((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-2405 (((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3899 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-4180 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3873 (((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3188 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2344 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-3353 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 25)) (-3013 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-4056 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3262 (((-1056) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-4185 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 21))) +(((-767) (-10 -7 (-15 -4185 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -3262 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -4056 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3013 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3353 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2344 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3188 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3873 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4180 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3899 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2405 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -4142 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2634 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2634 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -1565 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3857 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) +((-3857 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1565 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2634 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2634 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4142 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2405 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3899 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4180 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3873 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3188 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2344 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3353 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3013 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4056 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3262 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4185 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767))))) +(-10 -7 (-15 -4185 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -3262 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -4056 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3013 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3353 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2344 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3188 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3873 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4180 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3899 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2405 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -4142 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2634 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2634 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -1565 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3857 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) +((-2412 (((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-3860 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-2032 (((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1407 (((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-3395 (((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-4292 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-1620 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-4050 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-2486 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-4029 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-2282 (((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) +(((-768) (-10 -7 (-15 -2282 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4029 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2486 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4050 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -1620 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -4292 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3395 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1407 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2032 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3860 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2412 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) +((-2412 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3860 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2032 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1407 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3395 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4292 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1620 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4050 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2486 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4029 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2282 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-768))))) +(-10 -7 (-15 -2282 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4029 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2486 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4050 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -1620 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -4292 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3395 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1407 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2032 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3860 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2412 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) +((-1872 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-1807 (((-1056) (-1179) (-576) (-576) (-701 (-227))) 28)) (-1913 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-1720 (((-1056) (-576) (-576) (-576) (-701 (-227))) 21))) +(((-769) (-10 -7 (-15 -1720 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -1913 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -1807 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -1872 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) +((-1872 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-1807 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-1913 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-1720 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769))))) +(-10 -7 (-15 -1720 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -1913 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -1807 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -1872 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) +((-3504 (((-1056) (-227) (-227) (-227) (-227) (-576)) 62)) (-2478 (((-1056) (-227) (-227) (-227) (-576)) 61)) (-3576 (((-1056) (-227) (-227) (-227) (-576)) 60)) (-1914 (((-1056) (-227) (-227) (-576)) 59)) (-3391 (((-1056) (-227) (-576)) 58)) (-1440 (((-1056) (-227) (-576)) 57)) (-4132 (((-1056) (-227) (-576)) 56)) (-3861 (((-1056) (-227) (-576)) 55)) (-2172 (((-1056) (-227) (-576)) 54)) (-1504 (((-1056) (-227) (-576)) 53)) (-3266 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 52)) (-1520 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 51)) (-4079 (((-1056) (-227) (-576)) 50)) (-4092 (((-1056) (-227) (-576)) 49)) (-4151 (((-1056) (-227) (-576)) 48)) (-4057 (((-1056) (-227) (-576)) 47)) (-2819 (((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576)) 46)) (-2345 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 45)) (-3688 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 44)) (-1397 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 43)) (-2925 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 42)) (-2049 (((-1056) (-227) (-576)) 39)) (-3627 (((-1056) (-227) (-576)) 38)) (-1599 (((-1056) (-227) (-576)) 37)) (-3977 (((-1056) (-227) (-576)) 36)) (-3658 (((-1056) (-227) (-576)) 35)) (-3206 (((-1056) (-227) (-576)) 34)) (-2552 (((-1056) (-227) (-576)) 33)) (-2323 (((-1056) (-227) (-576)) 32)) (-2188 (((-1056) (-227) (-576)) 31)) (-2087 (((-1056) (-227) (-576)) 30)) (-1889 (((-1056) (-227) (-227) (-227) (-576)) 29)) (-2672 (((-1056) (-227) (-576)) 28)) (-2483 (((-1056) (-227) (-576)) 27)) (-2274 (((-1056) (-227) (-576)) 26)) (-1444 (((-1056) (-227) (-576)) 25)) (-4025 (((-1056) (-227) (-576)) 24)) (-1782 (((-1056) (-171 (-227)) (-576)) 21))) +(((-770) (-10 -7 (-15 -1782 ((-1056) (-171 (-227)) (-576))) (-15 -4025 ((-1056) (-227) (-576))) (-15 -1444 ((-1056) (-227) (-576))) (-15 -2274 ((-1056) (-227) (-576))) (-15 -2483 ((-1056) (-227) (-576))) (-15 -2672 ((-1056) (-227) (-576))) (-15 -1889 ((-1056) (-227) (-227) (-227) (-576))) (-15 -2087 ((-1056) (-227) (-576))) (-15 -2188 ((-1056) (-227) (-576))) (-15 -2323 ((-1056) (-227) (-576))) (-15 -2552 ((-1056) (-227) (-576))) (-15 -3206 ((-1056) (-227) (-576))) (-15 -3658 ((-1056) (-227) (-576))) (-15 -3977 ((-1056) (-227) (-576))) (-15 -1599 ((-1056) (-227) (-576))) (-15 -3627 ((-1056) (-227) (-576))) (-15 -2049 ((-1056) (-227) (-576))) (-15 -2925 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1397 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3688 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2345 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2819 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4057 ((-1056) (-227) (-576))) (-15 -4151 ((-1056) (-227) (-576))) (-15 -4092 ((-1056) (-227) (-576))) (-15 -4079 ((-1056) (-227) (-576))) (-15 -1520 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3266 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1504 ((-1056) (-227) (-576))) (-15 -2172 ((-1056) (-227) (-576))) (-15 -3861 ((-1056) (-227) (-576))) (-15 -4132 ((-1056) (-227) (-576))) (-15 -1440 ((-1056) (-227) (-576))) (-15 -3391 ((-1056) (-227) (-576))) (-15 -1914 ((-1056) (-227) (-227) (-576))) (-15 -3576 ((-1056) (-227) (-227) (-227) (-576))) (-15 -2478 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3504 ((-1056) (-227) (-227) (-227) (-227) (-576))))) (T -770)) +((-3504 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2478 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3576 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1914 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3266 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1520 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4079 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2819 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2345 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3688 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1397 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2925 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3627 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3977 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1889 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(-10 -7 (-15 -1782 ((-1056) (-171 (-227)) (-576))) (-15 -4025 ((-1056) (-227) (-576))) (-15 -1444 ((-1056) (-227) (-576))) (-15 -2274 ((-1056) (-227) (-576))) (-15 -2483 ((-1056) (-227) (-576))) (-15 -2672 ((-1056) (-227) (-576))) (-15 -1889 ((-1056) (-227) (-227) (-227) (-576))) (-15 -2087 ((-1056) (-227) (-576))) (-15 -2188 ((-1056) (-227) (-576))) (-15 -2323 ((-1056) (-227) (-576))) (-15 -2552 ((-1056) (-227) (-576))) (-15 -3206 ((-1056) (-227) (-576))) (-15 -3658 ((-1056) (-227) (-576))) (-15 -3977 ((-1056) (-227) (-576))) (-15 -1599 ((-1056) (-227) (-576))) (-15 -3627 ((-1056) (-227) (-576))) (-15 -2049 ((-1056) (-227) (-576))) (-15 -2925 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1397 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3688 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2345 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2819 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4057 ((-1056) (-227) (-576))) (-15 -4151 ((-1056) (-227) (-576))) (-15 -4092 ((-1056) (-227) (-576))) (-15 -4079 ((-1056) (-227) (-576))) (-15 -1520 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3266 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1504 ((-1056) (-227) (-576))) (-15 -2172 ((-1056) (-227) (-576))) (-15 -3861 ((-1056) (-227) (-576))) (-15 -4132 ((-1056) (-227) (-576))) (-15 -1440 ((-1056) (-227) (-576))) (-15 -3391 ((-1056) (-227) (-576))) (-15 -1914 ((-1056) (-227) (-227) (-576))) (-15 -3576 ((-1056) (-227) (-227) (-227) (-576))) (-15 -2478 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3504 ((-1056) (-227) (-227) (-227) (-227) (-576)))) +((-1523 (((-1293)) 20)) (-3948 (((-1179)) 34)) (-2586 (((-1179)) 33)) (-4147 (((-1125) (-1197) (-701 (-576))) 47) (((-1125) (-1197) (-701 (-227))) 43)) (-3405 (((-112)) 19)) (-4208 (((-1179) (-1179)) 37))) +(((-771) (-10 -7 (-15 -2586 ((-1179))) (-15 -3948 ((-1179))) (-15 -4208 ((-1179) (-1179))) (-15 -4147 ((-1125) (-1197) (-701 (-227)))) (-15 -4147 ((-1125) (-1197) (-701 (-576)))) (-15 -3405 ((-112))) (-15 -1523 ((-1293))))) (T -771)) +((-1523 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771)))) (-3405 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-4208 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-3948 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-2586 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) +(-10 -7 (-15 -2586 ((-1179))) (-15 -3948 ((-1179))) (-15 -4208 ((-1179) (-1179))) (-15 -4147 ((-1125) (-1197) (-701 (-227)))) (-15 -4147 ((-1125) (-1197) (-701 (-576)))) (-15 -3405 ((-112))) (-15 -1523 ((-1293)))) +((-2604 (($ $ $) 10)) (-3298 (($ $ $ $) 9)) (-2424 (($ $ $) 12))) +(((-772 |#1|) (-10 -8 (-15 -2424 (|#1| |#1| |#1|)) (-15 -2604 (|#1| |#1| |#1|)) (-15 -3298 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) +NIL +(-10 -8 (-15 -2424 (|#1| |#1| |#1|)) (-15 -2604 (|#1| |#1| |#1|)) (-15 -3298 (|#1| |#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1845 (($ $ (-940)) 31)) (-2707 (($ $ (-940)) 32)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2604 (($ $ $) 28)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-3298 (($ $ $ $) 29)) (-2424 (($ $ $) 27)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) (((-773) (-141)) (T -773)) -((-3240 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-2362 (*1 *1 *1 *1) (-4 *1 (-773))) (-2027 (*1 *1 *1 *1) (-4 *1 (-773)))) -(-13 (-21) (-732) (-10 -8 (-15 -3240 ($ $ $ $)) (-15 -2362 ($ $ $)) (-15 -2027 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1120) . T) ((-1237) . T)) -((-4112 (((-875) $) NIL) (($ (-576)) 10))) -(((-774 |#1|) (-10 -8 (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-775)) (T -774)) -NIL -(-10 -8 (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2942 (((-3 $ "failed") $) 43)) (-2711 (($ $ (-939)) 31) (($ $ (-783)) 38)) (-3900 (((-3 $ "failed") $) 41)) (-2287 (((-112) $) 37)) (-1793 (((-3 $ "failed") $) 42)) (-1604 (($ $ (-939)) 32) (($ $ (-783)) 39)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2362 (($ $ $) 28)) (-4112 (((-875) $) 12) (($ (-576)) 34)) (-4115 (((-783)) 35 T CONST)) (-1994 (((-112) $ $) 6)) (-3240 (($ $ $ $) 29)) (-2027 (($ $ $) 27)) (-4314 (($) 19 T CONST)) (-4320 (($) 36 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 33) (($ $ (-783)) 40)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +((-3298 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-2604 (*1 *1 *1 *1) (-4 *1 (-773))) (-2424 (*1 *1 *1 *1) (-4 *1 (-773)))) +(-13 (-21) (-732) (-10 -8 (-15 -3298 ($ $ $ $)) (-15 -2604 ($ $ $)) (-15 -2424 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1121) . T) ((-1238) . T)) +((-3569 (((-876) $) NIL) (($ (-576)) 10))) +(((-774 |#1|) (-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-775)) (T -774)) +NIL +(-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3417 (((-3 $ "failed") $) 43)) (-1845 (($ $ (-940)) 31) (($ $ (-783)) 38)) (-3451 (((-3 $ "failed") $) 41)) (-3215 (((-112) $) 37)) (-3974 (((-3 $ "failed") $) 42)) (-2707 (($ $ (-940)) 32) (($ $ (-783)) 39)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2604 (($ $ $) 28)) (-3569 (((-876) $) 12) (($ (-576)) 34)) (-1778 (((-783)) 35 T CONST)) (-2113 (((-112) $ $) 6)) (-3298 (($ $ $ $) 29)) (-2424 (($ $ $) 27)) (-2719 (($) 19 T CONST)) (-2730 (($) 36 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33) (($ $ (-783)) 40)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) (((-775) (-141)) (T -775)) -((-4115 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) -(-13 (-773) (-734) (-10 -8 (-15 -4115 ((-783)) -2665) (-15 -4112 ($ (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1120) . T) ((-1237) . T)) -((-2075 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-2095 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-3069 (((-970 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196)) 20) (((-970 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) -(((-776 |#1|) (-10 -7 (-15 -3069 ((-970 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -3069 ((-970 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196))) (-15 -2095 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2075 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) -((-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2095 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1196)) (-5 *2 (-970 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-970 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3069 ((-970 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -3069 ((-970 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196))) (-15 -2095 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2075 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) -((-2324 (((-176 (-576)) |#1|) 27))) -(((-777 |#1|) (-10 -7 (-15 -2324 ((-176 (-576)) |#1|))) (-416)) (T -777)) -((-2324 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) -(-10 -7 (-15 -2324 ((-176 (-576)) |#1|))) -((-2700 ((|#1| |#1| |#1|) 28)) (-4040 ((|#1| |#1| |#1|) 27)) (-1978 ((|#1| |#1| |#1|) 38)) (-1519 ((|#1| |#1| |#1|) 34)) (-3862 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2029 (((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|) 26))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2029 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -4040 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -3862 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -1978 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) -((-1978 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1519 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3862 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2700 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4040 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2029 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) -(-10 -7 (-15 -2029 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -4040 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -3862 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -1978 (|#1| |#1| |#1|))) -((-3981 (((-703 (-1245)) $ (-1245)) 26)) (-2315 (((-703 (-561)) $ (-561)) 25)) (-2042 (((-783) $ (-129)) 27)) (-3683 (((-703 (-130)) $ (-130)) 24)) (-3009 (((-703 (-1245)) $) 12)) (-3541 (((-703 (-1243)) $) 8)) (-3290 (((-703 (-1242)) $) 10)) (-2610 (((-703 (-561)) $) 13)) (-1924 (((-703 (-559)) $) 9)) (-3946 (((-703 (-558)) $) 11)) (-1369 (((-783) $ (-129)) 7)) (-2035 (((-703 (-130)) $) 14)) (-4009 (((-112) $) 31)) (-2463 (((-703 $) |#1| (-972)) 32)) (-1743 (($ $) 6))) -(((-779 |#1|) (-141) (-1120)) (T -779)) -((-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-972)) (-4 *3 (-1120)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(-13 (-588) (-10 -8 (-15 -2463 ((-703 $) |t#1| (-972))) (-15 -4009 ((-112) $)))) -(((-175) . T) ((-539) . T) ((-588) . T) ((-873) . T)) -((-2282 (((-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-1527 (((-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-1451 (((-576)) 85))) -(((-780 |#1| |#2|) (-10 -7 (-15 -1451 ((-576))) (-15 -1527 ((-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2282 ((-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1263 (-576)) (-421 (-576) |#1|)) (T -780)) -((-2282 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1527 (*1 *2) (-12 (-4 *3 (-1263 (-576))) (-5 *2 (-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-1451 (*1 *2) (-12 (-4 *3 (-1263 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) -(-10 -7 (-15 -1451 ((-576))) (-15 -1527 ((-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2282 ((-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) -((-1952 (((-112) $ $) NIL)) (-2317 (((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 20) (($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-781) (-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4112 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4112 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2317 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) -(-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4112 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4112 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2317 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-3733 (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|))) 18) (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)) (-656 (-1196))) 17)) (-3177 (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|))) 20) (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)) (-656 (-1196))) 19))) -(((-782 |#1|) (-10 -7 (-15 -3733 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3733 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|))))) (-568)) (T -782)) -((-3177 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-782 *4)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-782 *5)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-782 *4)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-782 *5))))) -(-10 -7 (-15 -3733 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3733 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-970 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2390 (($ $ $) 10)) (-2559 (((-3 $ "failed") $ $) 15)) (-3384 (($ $ (-576)) 11)) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($ $) NIL)) (-1903 (($ $ $) NIL)) (-2287 (((-112) $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3114 (($ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 6 T CONST)) (-4320 (($) NIL T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-939)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) -(((-783) (-13 (-805) (-738) (-10 -8 (-15 -1903 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -3114 ($ $ $)) (-15 -4293 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -1943 ((-3 $ "failed") $ $)) (-15 -3384 ($ $ (-576))) (-15 -4369 ($ $)) (-6 (-4465 "*"))))) (T -783)) -((-1903 (*1 *1 *1 *1) (-5 *1 (-783))) (-1893 (*1 *1 *1 *1) (-5 *1 (-783))) (-3114 (*1 *1 *1 *1) (-5 *1 (-783))) (-4293 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4299 (-783)) (|:| -2960 (-783)))) (-5 *1 (-783)))) (-1943 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-4369 (*1 *1 *1) (-5 *1 (-783)))) -(-13 (-805) (-738) (-10 -8 (-15 -1903 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -3114 ($ $ $)) (-15 -4293 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -1943 ((-3 $ "failed") $ $)) (-15 -3384 ($ $ (-576))) (-15 -4369 ($ $)) (-6 (-4465 "*")))) +((-1778 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) +(-13 (-773) (-734) (-10 -8 (-15 -1778 ((-783)) -1480) (-15 -3569 ($ (-576))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1121) . T) ((-1238) . T)) +((-1700 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-1907 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-2137 (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197)) 20) (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) +(((-776 |#1|) (-10 -7 (-15 -2137 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -2137 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -1907 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -1700 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) +((-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -2137 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -2137 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -1907 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -1700 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) +((-2270 (((-176 (-576)) |#1|) 27))) +(((-777 |#1|) (-10 -7 (-15 -2270 ((-176 (-576)) |#1|))) (-416)) (T -777)) +((-2270 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) +(-10 -7 (-15 -2270 ((-176 (-576)) |#1|))) +((-1751 ((|#1| |#1| |#1|) 28)) (-2250 ((|#1| |#1| |#1|) 27)) (-2001 ((|#1| |#1| |#1|) 38)) (-4432 ((|#1| |#1| |#1|) 34)) (-4314 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2446 (((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|) 26))) +(((-778 |#1| |#2|) (-10 -7 (-15 -2446 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -1751 (|#1| |#1| |#1|)) (-15 -4314 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4432 (|#1| |#1| |#1|)) (-15 -2001 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) +((-2001 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4432 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4314 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1751 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2250 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2446 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) +(-10 -7 (-15 -2446 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -1751 (|#1| |#1| |#1|)) (-15 -4314 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4432 (|#1| |#1| |#1|)) (-15 -2001 (|#1| |#1| |#1|))) +((-2952 (((-703 (-1246)) $ (-1246)) 26)) (-2193 (((-703 (-561)) $ (-561)) 25)) (-2566 (((-783) $ (-129)) 27)) (-3213 (((-703 (-130)) $ (-130)) 24)) (-2803 (((-703 (-1246)) $) 12)) (-4360 (((-703 (-1244)) $) 8)) (-3837 (((-703 (-1243)) $) 10)) (-2073 (((-703 (-561)) $) 13)) (-2713 (((-703 (-559)) $) 9)) (-3936 (((-703 (-558)) $) 11)) (-2135 (((-783) $ (-129)) 7)) (-2499 (((-703 (-130)) $) 14)) (-3248 (((-112) $) 31)) (-4361 (((-703 $) |#1| (-973)) 32)) (-1540 (($ $) 6))) +(((-779 |#1|) (-141) (-1121)) (T -779)) +((-4361 (*1 *2 *3 *4) (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-588) (-10 -8 (-15 -4361 ((-703 $) |t#1| (-973))) (-15 -3248 ((-112) $)))) +(((-175) . T) ((-539) . T) ((-588) . T) ((-874) . T)) +((-3185 (((-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-3277 (((-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-2455 (((-576)) 85))) +(((-780 |#1| |#2|) (-10 -7 (-15 -2455 ((-576))) (-15 -3277 ((-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -3185 ((-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1264 (-576)) (-421 (-576) |#1|)) (T -780)) +((-3185 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3277 (*1 *2) (-12 (-4 *3 (-1264 (-576))) (-5 *2 (-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-2455 (*1 *2) (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) +(-10 -7 (-15 -2455 ((-576))) (-15 -3277 ((-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -3185 ((-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-781) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2859 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2859 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-2380 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 18) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 17)) (-1918 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 20) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 19))) +(((-782 |#1|) (-10 -7 (-15 -2380 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2380 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) (-568)) (T -782)) +((-1918 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5))))) +(-10 -7 (-15 -2380 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2380 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1685 (($ $ $) 10)) (-2780 (((-3 $ "failed") $ $) 15)) (-2742 (($ $ (-576)) 11)) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($ $) NIL)) (-3440 (($ $ $) NIL)) (-3215 (((-112) $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3498 (($ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 6 T CONST)) (-2730 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) +(((-783) (-13 (-805) (-738) (-10 -8 (-15 -3440 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -2935 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -3475 ((-3 $ "failed") $ $)) (-15 -2742 ($ $ (-576))) (-15 -1836 ($ $)) (-6 (-4466 "*"))))) (T -783)) +((-3440 (*1 *1 *1 *1) (-5 *1 (-783))) (-3428 (*1 *1 *1 *1) (-5 *1 (-783))) (-3498 (*1 *1 *1 *1) (-5 *1 (-783))) (-2935 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3015 (-783)) (|:| -3599 (-783)))) (-5 *1 (-783)))) (-3475 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-2742 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-1836 (*1 *1 *1) (-5 *1 (-783)))) +(-13 (-805) (-738) (-10 -8 (-15 -3440 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -2935 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -3475 ((-3 $ "failed") $ $)) (-15 -2742 ($ $ (-576))) (-15 -1836 ($ $)) (-6 (-4466 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-3177 (((-3 |#2| "failed") |#2| |#2| (-115) (-1196)) 37))) -(((-784 |#1| |#2|) (-10 -7 (-15 -3177 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196)))) (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-977))) (T -784)) -((-3177 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-977)))))) -(-10 -7 (-15 -3177 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196)))) -((-4112 (((-786) |#1|) 8))) -(((-785 |#1|) (-10 -7 (-15 -4112 ((-786) |#1|))) (-1237)) (T -785)) -((-4112 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1237))))) -(-10 -7 (-15 -4112 ((-786) |#1|))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 7)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 9))) -(((-786) (-1120)) (T -786)) -NIL -(-1120) -((-2647 ((|#2| |#4|) 35))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2647 (|#2| |#4|))) (-464) (-1263 |#1|) (-736 |#1| |#2|) (-1263 |#3|)) (T -787)) -((-2647 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -2647 (|#2| |#4|))) -((-3900 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2158 (((-1292) (-1178) (-1178) |#4| |#5|) 33)) (-1343 ((|#4| |#4| |#5|) 74)) (-3233 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|) 79)) (-2812 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 16))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3900 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1343 (|#4| |#4| |#5|)) (-15 -3233 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -2158 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -2812 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -788)) -((-2812 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2158 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *4 (-1085 *6 *7 *8)) (-5 *2 (-1292)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1091 *6 *7 *8 *4)))) (-3233 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1343 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *2 (-1085 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1091 *4 *5 *6 *2)))) (-3900 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(-10 -7 (-15 -3900 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1343 (|#4| |#4| |#5|)) (-15 -3233 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -2158 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -2812 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|))) -((-2980 (((-3 (-1192 (-1192 |#1|)) "failed") |#4|) 51)) (-4065 (((-656 |#4|) |#4|) 22)) (-2269 ((|#4| |#4|) 17))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4065 ((-656 |#4|) |#4|)) (-15 -2980 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -2269 (|#4| |#4|))) (-360) (-339 |#1|) (-1263 |#2|) (-1263 |#3|) (-939)) (T -789)) -((-2269 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1263 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-939)))) (-2980 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-939)))) (-4065 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-939))))) -(-10 -7 (-15 -4065 ((-656 |#4|) |#4|)) (-15 -2980 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -2269 (|#4| |#4|))) -((-4208 (((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-2830 (((-656 (-783)) |#1|) 20))) -(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4208 ((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -2830 ((-656 (-783)) |#1|))) (-1263 |#4|) (-805) (-861) (-317) (-967 |#4| |#2| |#3|)) (T -790)) -((-2830 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *6)) (-4 *7 (-967 *6 *4 *5)))) (-4208 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1263 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) (-4 *10 (-967 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1192 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) -(-10 -7 (-15 -4208 ((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -2830 ((-656 (-783)) |#1|))) -((-1563 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-2789 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-3069 (((-970 (-419 (-576))) (-701 (-419 (-576))) (-1196)) 18) (((-970 (-419 (-576))) (-701 (-419 (-576)))) 17))) -(((-791 |#1|) (-10 -7 (-15 -3069 ((-970 (-419 (-576))) (-701 (-419 (-576))))) (-15 -3069 ((-970 (-419 (-576))) (-701 (-419 (-576))) (-1196))) (-15 -2789 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -1563 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) -((-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1196)) (-5 *2 (-970 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-970 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3069 ((-970 (-419 (-576))) (-701 (-419 (-576))))) (-15 -3069 ((-970 (-419 (-576))) (-701 (-419 (-576))) (-1196))) (-15 -2789 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -1563 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 36)) (-1582 (((-656 |#2|) $) NIL)) (-1420 (((-1192 $) $ |#2|) NIL) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-3094 (($ $) 30)) (-1794 (((-112) $ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2256 (($ $ $) 110 (|has| |#1| (-568)))) (-3781 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-970 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (((-3 $ "failed") (-970 (-576))) NIL (-3794 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (((-3 $ "failed") (-970 |#1|)) NIL (-3794 (-12 (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576))))) (-2298 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576))))) (-2298 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-1012 (-576))))))) (((-3 (-1145 |#1| |#2|) "failed") $) 21)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) ((|#2| $) NIL) (($ (-970 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (($ (-970 (-576))) NIL (-3794 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (($ (-970 |#1|)) NIL (-3794 (-12 (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576))))) (-2298 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576))))) (-2298 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-1012 (-576))))))) (((-1145 |#1| |#2|) $) NIL)) (-3954 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-3309 (($ $) NIL) (($ $ |#2|) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2876 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4429 (((-112) $) NIL)) (-4265 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 81)) (-1398 (($ $) 136 (|has| |#1| (-464)))) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3521 (($ $) NIL (|has| |#1| (-568)))) (-4012 (($ $) NIL (|has| |#1| (-568)))) (-1858 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4333 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3897 (($ $ |#1| (-543 |#2|) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| |#1| (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| |#1| (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-2287 (((-112) $) 57)) (-1757 (((-783) $) NIL)) (-2171 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3181 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-2232 ((|#2| $) 22)) (-1571 (($ (-1192 |#1|) |#2|) NIL) (($ (-1192 $) |#2|) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3815 (($ $ $) 63)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#2|) NIL)) (-1818 (((-112) $) NIL)) (-3661 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-2462 (((-783) $) 23)) (-3820 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2653 (((-3 |#2| "failed") $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-464)))) (-2669 (($ $) NIL (|has| |#1| (-464)))) (-3769 (((-656 $) $) NIL)) (-3742 (($ $) 39)) (-1415 (($ $) NIL (|has| |#1| (-464)))) (-2492 (((-656 $) $) 43)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3196 (($ $) 41)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3861 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3278 (-783))) $ $) 96)) (-4433 (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $) 78) (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $ |#2|) NIL)) (-3834 (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $) NIL) (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $ |#2|) NIL)) (-2836 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2130 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2043 (((-1178) $) NIL)) (-4109 (($ $ $) 125 (|has| |#1| (-568)))) (-2301 (((-656 $) $) 32)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| |#2|) (|:| -1495 (-783))) "failed") $) NIL)) (-2498 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1619 (($ $ $) NIL)) (-3650 (($ $) 24)) (-1761 (((-112) $ $) NIL)) (-3268 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3609 (($ $ $) NIL)) (-3882 (($ $) 26)) (-3115 (((-1140) $) NIL)) (-1476 (((-2 (|:| -3114 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-1811 (((-2 (|:| -3114 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-1677 (((-112) $) 56)) (-1685 ((|#1| $) 58)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-4202 (((-2 (|:| -3114 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-4400 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3685 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-1451 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-1877 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-3864 (($ $) NIL)) (-1648 (($ $) 35)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-970 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (($ (-970 (-576))) NIL (-3794 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2298 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (($ (-970 |#1|)) NIL (|has| |#2| (-626 (-1196)))) (((-1178) $) NIL (-12 (|has| |#1| (-1058 (-576))) (|has| |#2| (-626 (-1196))))) (((-970 |#1|) $) NIL (|has| |#2| (-626 (-1196))))) (-3430 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-970 |#1|) $) NIL (|has| |#2| (-626 (-1196)))) (((-1145 |#1| |#2|) $) 18) (($ (-1145 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) 13 T CONST)) (-2275 (((-3 (-112) "failed") $ $) NIL)) (-4320 (($) 37 T CONST)) (-2983 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-2367 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-3155 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) 75)) (-4026 (($ $ $) 85)) (** (($ $ (-939)) NIL) (($ $ (-783)) 70)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-792 |#1| |#2|) (-13 (-1085 |#1| (-543 |#2|) |#2|) (-625 (-1145 |#1| |#2|)) (-1058 (-1145 |#1| |#2|))) (-1069) (-861)) (T -792)) -NIL -(-13 (-1085 |#1| (-543 |#2|) |#2|) (-625 (-1145 |#1| |#2|)) (-1058 (-1145 |#1| |#2|))) -((-2422 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) -(((-793 |#1| |#2|) (-10 -7 (-15 -2422 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1069) (-1069)) (T -793)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) -(-10 -7 (-15 -2422 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 12)) (-1760 (((-1287 |#1|) $ (-783)) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-3105 (($ (-1192 |#1|)) NIL)) (-1420 (((-1192 $) $ (-1102)) NIL) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1102))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2609 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2256 (($ $ $) 50 (|has| |#1| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1442 (($ $ (-783)) NIL)) (-3036 (($ $ (-783)) NIL)) (-2137 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-1102) "failed") $) NIL) (((-3 (-1192 |#1|) "failed") $) 10)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-1102) $) NIL) (((-1192 |#1|) $) NIL)) (-3954 (($ $ $ (-1102)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3351 (($ $ $) NIL)) (-3310 (($ $ $) 87 (|has| |#1| (-568)))) (-4265 (((-2 (|:| -2861 |#1|) (|:| -4299 $) (|:| -2960 $)) $ $) 86 (|has| |#1| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1102)) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-783) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1102) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1102) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-3241 (((-783) $ $) NIL (|has| |#1| (-568)))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-1172)))) (-1571 (($ (-1192 |#1|) (-1102)) NIL) (($ (-1192 $) (-1102)) NIL)) (-2747 (($ $ (-783)) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-3815 (($ $ $) 27)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1102)) NIL) (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3661 (((-783) $) NIL) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-3820 (($ (-1 (-783) (-783)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2528 (((-1192 |#1|) $) NIL)) (-2653 (((-3 (-1102) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3861 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3278 (-783))) $ $) 37)) (-2153 (($ $ $) 41)) (-3583 (($ $ $) 47)) (-4433 (((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $) 46)) (-2043 (((-1178) $) NIL)) (-4109 (($ $ $) 56 (|has| |#1| (-568)))) (-2842 (((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783)) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-1102)) (|:| -1495 (-783))) "failed") $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#1| (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-1476 (((-2 (|:| -3114 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-1811 (((-2 (|:| -3114 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-3492 (((-2 (|:| -3954 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3025 (((-2 (|:| -3954 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-1677 (((-112) $) 13)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4438 (($ $ (-783) |#1| $) 26)) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-4202 (((-2 (|:| -3114 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-2167 (((-2 (|:| -3954 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1102) |#1|) NIL) (($ $ (-656 (-1102)) (-656 |#1|)) NIL) (($ $ (-1102) $) NIL) (($ $ (-656 (-1102)) (-656 $)) NIL)) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3639 (((-3 $ "failed") $ (-783)) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-1451 (($ $ (-1102)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-1877 (((-783) $) NIL) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-1102) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1102)) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1102)) NIL) (((-1192 |#1|) $) 7) (($ (-1192 |#1|)) 8) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) 28 T CONST)) (-4320 (($) 32 T CONST)) (-3155 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) 40) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-1263 |#1|) (-625 (-1192 |#1|)) (-1058 (-1192 |#1|)) (-10 -8 (-15 -4438 ($ $ (-783) |#1| $)) (-15 -3815 ($ $ $)) (-15 -3861 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3278 (-783))) $ $)) (-15 -2153 ($ $ $)) (-15 -4433 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -3583 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2609 ((-656 $) $ $)) (-15 -4109 ($ $ $)) (-15 -4202 ((-2 (|:| -3114 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1811 ((-2 (|:| -3114 $) (|:| |coef1| $)) $ $)) (-15 -1476 ((-2 (|:| -3114 $) (|:| |coef2| $)) $ $)) (-15 -2167 ((-2 (|:| -3954 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3025 ((-2 (|:| -3954 |#1|) (|:| |coef1| $)) $ $)) (-15 -3492 ((-2 (|:| -3954 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1069)) (T -794)) -((-4438 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1069)))) (-3815 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1069)))) (-3861 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -3278 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1069)))) (-2153 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1069)))) (-4433 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2861 *3) (|:| |gap| (-783)) (|:| -4299 (-794 *3)) (|:| -2960 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1069)))) (-3583 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1069)))) (-2609 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) (-4109 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1069)))) (-4202 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3114 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) (-1811 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3114 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) (-1476 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3114 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) (-2167 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) (-3025 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) (-3492 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069))))) -(-13 (-1263 |#1|) (-625 (-1192 |#1|)) (-1058 (-1192 |#1|)) (-10 -8 (-15 -4438 ($ $ (-783) |#1| $)) (-15 -3815 ($ $ $)) (-15 -3861 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3278 (-783))) $ $)) (-15 -2153 ($ $ $)) (-15 -4433 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -3583 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2609 ((-656 $) $ $)) (-15 -4109 ($ $ $)) (-15 -4202 ((-2 (|:| -3114 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1811 ((-2 (|:| -3114 $) (|:| |coef1| $)) $ $)) (-15 -1476 ((-2 (|:| -3114 $) (|:| |coef2| $)) $ $)) (-15 -2167 ((-2 (|:| -3954 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3025 ((-2 (|:| -3954 |#1|) (|:| |coef1| $)) $ $)) (-15 -3492 ((-2 (|:| -3954 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1580 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-3799 ((|#1| (-783) |#1|) 23)) (-2912 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) -(((-795 |#1|) (-10 -7 (-15 -3799 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2912 (|#1| (-783) |#1|)) (-15 -1580 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) -((-1580 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2912 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3799 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -3799 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2912 (|#1| (-783) |#1|)) (-15 -1580 (|#1| (-783) |#1|))) |%noBranch|)) -((-1952 (((-112) $ $) 7)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) 86)) (-2822 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1582 (((-656 |#3|) $) 34)) (-2397 (((-112) $) 27)) (-2083 (((-112) $) 18 (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-3575 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) 28)) (-2337 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 80)) (-4331 (($) 46 T CONST)) (-4013 (((-112) $) 23 (|has| |#1| (-568)))) (-1938 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3142 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2948 (((-112) $) 26 (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3223 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1762 (((-3 $ "failed") $) 83)) (-3182 ((|#4| |#4| $) 90)) (-3966 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3325 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) 106)) (-3802 (((-112) |#4| $) 137)) (-1338 (((-112) |#4| $) 134)) (-2343 (((-112) |#4| $) 138) (((-112) $) 135)) (-3721 (((-656 |#4|) $) 53 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) 105) (((-112) $) 104)) (-2232 ((|#3| $) 35)) (-2135 (((-112) $ (-783)) 44)) (-3958 (((-656 |#4|) $) 54 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 48)) (-3055 (((-656 |#3|) $) 33)) (-2421 (((-112) |#3| $) 32)) (-1556 (((-112) $ (-783)) 43)) (-2043 (((-1178) $) 10)) (-2727 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4109 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2849 (((-3 |#4| "failed") $) 84)) (-3060 (((-656 $) |#4| $) 130)) (-3990 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2710 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1699 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2403 (((-656 |#4|) $) 108)) (-2498 (((-112) |#4| $) 100) (((-112) $) 96)) (-1619 ((|#4| |#4| $) 91)) (-1761 (((-112) $ $) 111)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) 101) (((-112) $) 97)) (-3609 ((|#4| |#4| $) 92)) (-3115 (((-1140) $) 11)) (-1753 (((-3 |#4| "failed") $) 85)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2917 (((-3 $ "failed") $ |#4|) 79)) (-3679 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3587 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) 39)) (-1937 (((-112) $) 42)) (-3935 (($) 41)) (-1877 (((-783) $) 107)) (-3125 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4463)))) (-4286 (($ $) 40)) (-1554 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 61)) (-3655 (($ $ |#3|) 29)) (-3837 (($ $ |#3|) 31)) (-1864 (($ $) 89)) (-1570 (($ $ |#3|) 30)) (-4112 (((-875) $) 12) (((-656 |#4|) $) 38)) (-2576 (((-783) $) 77 (|has| |#3| (-379)))) (-1994 (((-112) $ $) 6)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2057 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-1682 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) 82)) (-1979 (((-112) |#4| $) 136)) (-3331 (((-112) |#3| $) 81)) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1085 |t#1| |t#2| |t#3|)) (T -796)) -NIL -(-13 (-1091 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-875)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-1374 (((-3 (-390) "failed") (-326 |#1|) (-939)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-419 (-970 |#1|)) (-939)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-970 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-970 |#1|) (-939)) 31 (|has| |#1| (-1069))) (((-3 (-390) "failed") (-970 |#1|)) 30 (|has| |#1| (-1069)))) (-3001 (((-390) (-326 |#1|) (-939)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-419 (-970 |#1|)) (-939)) 91 (|has| |#1| (-568))) (((-390) (-419 (-970 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-970 |#1|) (-939)) 86 (|has| |#1| (-1069))) (((-390) (-970 |#1|)) 85 (|has| |#1| (-1069))) (((-390) |#1| (-939)) 76) (((-390) |#1|) 22)) (-3545 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-939)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-939)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-419 (-970 (-171 |#1|))) (-939)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-970 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-970 |#1|)) (-939)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-970 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-970 |#1|) (-939)) 28 (|has| |#1| (-1069))) (((-3 (-171 (-390)) "failed") (-970 |#1|)) 26 (|has| |#1| (-1069))) (((-3 (-171 (-390)) "failed") (-970 (-171 |#1|)) (-939)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-970 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1371 (((-171 (-390)) (-326 (-171 |#1|)) (-939)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|) (-939)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-419 (-970 (-171 |#1|))) (-939)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-970 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-970 |#1|)) (-939)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-970 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-970 |#1|) (-939)) 84 (|has| |#1| (-1069))) (((-171 (-390)) (-970 |#1|)) 83 (|has| |#1| (-1069))) (((-171 (-390)) (-970 (-171 |#1|)) (-939)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-970 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-939)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-939)) 27) (((-171 (-390)) |#1|) 25))) -(((-797 |#1|) (-10 -7 (-15 -3001 ((-390) |#1|)) (-15 -3001 ((-390) |#1| (-939))) (-15 -1371 ((-171 (-390)) |#1|)) (-15 -1371 ((-171 (-390)) |#1| (-939))) (IF (|has| |#1| (-174)) (PROGN (-15 -1371 ((-171 (-390)) (-171 |#1|))) (-15 -1371 ((-171 (-390)) (-171 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-970 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-970 (-171 |#1|)) (-939)))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-15 -3001 ((-390) (-970 |#1|))) (-15 -3001 ((-390) (-970 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-970 |#1|))) (-15 -1371 ((-171 (-390)) (-970 |#1|) (-939)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3001 ((-390) (-419 (-970 |#1|)))) (-15 -3001 ((-390) (-419 (-970 |#1|)) (-939))) (-15 -1371 ((-171 (-390)) (-419 (-970 |#1|)))) (-15 -1371 ((-171 (-390)) (-419 (-970 |#1|)) (-939))) (-15 -1371 ((-171 (-390)) (-419 (-970 (-171 |#1|))))) (-15 -1371 ((-171 (-390)) (-419 (-970 (-171 |#1|))) (-939))) (IF (|has| |#1| (-861)) (PROGN (-15 -3001 ((-390) (-326 |#1|))) (-15 -3001 ((-390) (-326 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-326 |#1|))) (-15 -1371 ((-171 (-390)) (-326 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)) (-939)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 (-171 |#1|)))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 (-171 |#1|)) (-939)))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-15 -1374 ((-3 (-390) "failed") (-970 |#1|))) (-15 -1374 ((-3 (-390) "failed") (-970 |#1|) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 |#1|))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 |#1|) (-939)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1374 ((-3 (-390) "failed") (-419 (-970 |#1|)))) (-15 -1374 ((-3 (-390) "failed") (-419 (-970 |#1|)) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 |#1|)))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 |#1|)) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 (-171 |#1|))))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 (-171 |#1|))) (-939))) (IF (|has| |#1| (-861)) (PROGN (-15 -1374 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1374 ((-3 (-390) "failed") (-326 |#1|) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-939)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) -((-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1374 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1374 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-970 (-171 *5)))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-970 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1374 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1374 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1374 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1374 (*1 *2 *3) (|partial| -12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-970 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-970 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 (-171 *5)))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-970 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-970 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-939)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-1371 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-3001 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-3001 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) -(-10 -7 (-15 -3001 ((-390) |#1|)) (-15 -3001 ((-390) |#1| (-939))) (-15 -1371 ((-171 (-390)) |#1|)) (-15 -1371 ((-171 (-390)) |#1| (-939))) (IF (|has| |#1| (-174)) (PROGN (-15 -1371 ((-171 (-390)) (-171 |#1|))) (-15 -1371 ((-171 (-390)) (-171 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-970 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-970 (-171 |#1|)) (-939)))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-15 -3001 ((-390) (-970 |#1|))) (-15 -3001 ((-390) (-970 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-970 |#1|))) (-15 -1371 ((-171 (-390)) (-970 |#1|) (-939)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3001 ((-390) (-419 (-970 |#1|)))) (-15 -3001 ((-390) (-419 (-970 |#1|)) (-939))) (-15 -1371 ((-171 (-390)) (-419 (-970 |#1|)))) (-15 -1371 ((-171 (-390)) (-419 (-970 |#1|)) (-939))) (-15 -1371 ((-171 (-390)) (-419 (-970 (-171 |#1|))))) (-15 -1371 ((-171 (-390)) (-419 (-970 (-171 |#1|))) (-939))) (IF (|has| |#1| (-861)) (PROGN (-15 -3001 ((-390) (-326 |#1|))) (-15 -3001 ((-390) (-326 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-326 |#1|))) (-15 -1371 ((-171 (-390)) (-326 |#1|) (-939))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)) (-939)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 (-171 |#1|)))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 (-171 |#1|)) (-939)))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-15 -1374 ((-3 (-390) "failed") (-970 |#1|))) (-15 -1374 ((-3 (-390) "failed") (-970 |#1|) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 |#1|))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-970 |#1|) (-939)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1374 ((-3 (-390) "failed") (-419 (-970 |#1|)))) (-15 -1374 ((-3 (-390) "failed") (-419 (-970 |#1|)) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 |#1|)))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 |#1|)) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 (-171 |#1|))))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-419 (-970 (-171 |#1|))) (-939))) (IF (|has| |#1| (-861)) (PROGN (-15 -1374 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1374 ((-3 (-390) "failed") (-326 |#1|) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-939))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3545 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-939)))) |%noBranch|)) |%noBranch|)) -((-2386 (((-939) (-1178)) 89)) (-3602 (((-3 (-390) "failed") (-1178)) 36)) (-3463 (((-390) (-1178)) 34)) (-4019 (((-939) (-1178)) 63)) (-2591 (((-1178) (-939)) 73)) (-1633 (((-1178) (-939)) 62))) -(((-798) (-10 -7 (-15 -1633 ((-1178) (-939))) (-15 -4019 ((-939) (-1178))) (-15 -2591 ((-1178) (-939))) (-15 -2386 ((-939) (-1178))) (-15 -3463 ((-390) (-1178))) (-15 -3602 ((-3 (-390) "failed") (-1178))))) (T -798)) -((-3602 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-939)) (-5 *1 (-798)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1178)) (-5 *1 (-798)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-939)) (-5 *1 (-798)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1178)) (-5 *1 (-798))))) -(-10 -7 (-15 -1633 ((-1178) (-939))) (-15 -4019 ((-939) (-1178))) (-15 -2591 ((-1178) (-939))) (-15 -2386 ((-939) (-1178))) (-15 -3463 ((-390) (-1178))) (-15 -3602 ((-3 (-390) "failed") (-1178)))) -((-1952 (((-112) $ $) 7)) (-1436 (((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 16) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055)) 14)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +((-1918 (((-3 |#2| "failed") |#2| |#2| (-115) (-1197)) 37))) +(((-784 |#1| |#2|) (-10 -7 (-15 -1918 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -784)) +((-1918 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978)))))) +(-10 -7 (-15 -1918 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) +((-3569 (((-786) |#1|) 8))) +(((-785 |#1|) (-10 -7 (-15 -3569 ((-786) |#1|))) (-1238)) (T -785)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238))))) +(-10 -7 (-15 -3569 ((-786) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 7)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-786) (-1121)) (T -786)) +NIL +(-1121) +((-2471 ((|#2| |#4|) 35))) +(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2471 (|#2| |#4|))) (-464) (-1264 |#1|) (-736 |#1| |#2|) (-1264 |#3|)) (T -787)) +((-2471 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -2471 (|#2| |#4|))) +((-3451 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1334 (((-1293) (-1179) (-1179) |#4| |#5|) 33)) (-3136 ((|#4| |#4| |#5|) 74)) (-1333 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|) 79)) (-3514 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 16))) +(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3451 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3136 (|#4| |#4| |#5|)) (-15 -1333 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1334 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -3514 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -788)) +((-3514 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1334 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4)))) (-1333 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3136 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1092 *4 *5 *6 *2)))) (-3451 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(-10 -7 (-15 -3451 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3136 (|#4| |#4| |#5|)) (-15 -1333 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1334 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -3514 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|))) +((-1572 (((-3 (-1193 (-1193 |#1|)) "failed") |#4|) 51)) (-2497 (((-656 |#4|) |#4|) 22)) (-3046 ((|#4| |#4|) 17))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2497 ((-656 |#4|) |#4|)) (-15 -1572 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -3046 (|#4| |#4|))) (-360) (-339 |#1|) (-1264 |#2|) (-1264 |#3|) (-940)) (T -789)) +((-3046 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) (-1572 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940)))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940))))) +(-10 -7 (-15 -2497 ((-656 |#4|) |#4|)) (-15 -1572 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -3046 (|#4| |#4|))) +((-1459 (((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-3677 (((-656 (-783)) |#1|) 20))) +(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1459 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -3677 ((-656 (-783)) |#1|))) (-1264 |#4|) (-805) (-861) (-317) (-968 |#4| |#2| |#3|)) (T -790)) +((-3677 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5)))) (-1459 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) (-4 *10 (-968 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1193 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) +(-10 -7 (-15 -1459 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -3677 ((-656 (-783)) |#1|))) +((-3625 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-1377 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-2137 (((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197)) 18) (((-971 (-419 (-576))) (-701 (-419 (-576)))) 17))) +(((-791 |#1|) (-10 -7 (-15 -2137 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -2137 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -1377 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3625 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) +((-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1377 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -2137 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -2137 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -1377 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3625 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 36)) (-1966 (((-656 |#2|) $) NIL)) (-1799 (((-1193 $) $ |#2|) NIL) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-4425 (($ $) 30)) (-3984 (((-112) $ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2901 (($ $ $) 110 (|has| |#1| (-568)))) (-1598 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) NIL (-2758 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) NIL (-2758 (-12 (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576))))) (-2662 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576))))) (-2662 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-1013 (-576))))))) (((-3 (-1146 |#1| |#2|) "failed") $) 21)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-2758 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (-2758 (-12 (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576))))) (-2662 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576))))) (-2662 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-1013 (-576))))))) (((-1146 |#1| |#2|) $) NIL)) (-4004 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-2112 (($ $) NIL) (($ $ |#2|) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2813 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1815 (((-112) $) NIL)) (-3966 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 81)) (-3494 (($ $) 136 (|has| |#1| (-464)))) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-4217 (($ $) NIL (|has| |#1| (-568)))) (-3280 (($ $) NIL (|has| |#1| (-568)))) (-3387 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3318 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3415 (($ $ |#1| (-543 |#2|) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3215 (((-112) $) 57)) (-1675 (((-783) $) NIL)) (-3363 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1960 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-2665 ((|#2| $) 22)) (-1955 (($ (-1193 |#1|) |#2|) NIL) (($ (-1193 $) |#2|) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1900 (($ $ $) 63)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#2|) NIL)) (-4225 (((-112) $) NIL)) (-2987 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-4351 (((-783) $) 23)) (-1938 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2512 (((-3 |#2| "failed") $) NIL)) (-2914 (($ $) NIL (|has| |#1| (-464)))) (-2641 (($ $) NIL (|has| |#1| (-464)))) (-1497 (((-656 $) $) NIL)) (-2459 (($ $) 39)) (-2114 (($ $) NIL (|has| |#1| (-464)))) (-3399 (((-656 $) $) 43)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4090 (($ $) 41)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4306 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3701 (-783))) $ $) 96)) (-1857 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $) 78) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $ |#2|) NIL)) (-4047 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $) NIL) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $ |#2|) NIL)) (-3749 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-4203 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1413 (((-1179) $) NIL)) (-1728 (($ $ $) 125 (|has| |#1| (-568)))) (-2057 (((-656 $) $) 32)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| |#2|) (|:| -4210 (-783))) "failed") $) NIL)) (-3455 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2860 (($ $ $) NIL)) (-3539 (($ $) 24)) (-1716 (((-112) $ $) NIL)) (-3595 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3764 (($ $ $) NIL)) (-1378 (($ $) 26)) (-1450 (((-1141) $) NIL)) (-4044 (((-2 (|:| -3498 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-4156 (((-2 (|:| -3498 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-2058 (((-112) $) 56)) (-2068 ((|#1| $) 58)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1422 (((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-2720 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3232 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-2455 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3600 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-4337 (($ $) NIL)) (-3171 (($ $) 35)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-2758 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2662 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (|has| |#2| (-626 (-1197)))) (((-1179) $) NIL (-12 (|has| |#1| (-1059 (-576))) (|has| |#2| (-626 (-1197))))) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197))))) (-1457 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197)))) (((-1146 |#1| |#2|) $) 18) (($ (-1146 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) 13 T CONST)) (-3115 (((-3 (-112) "failed") $ $) NIL)) (-2730 (($) 37 T CONST)) (-3840 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-1483 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-2018 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 75)) (-3029 (($ $ $) 85)) (** (($ $ (-940)) NIL) (($ $ (-783)) 70)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-792 |#1| |#2|) (-13 (-1086 |#1| (-543 |#2|) |#2|) (-625 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861)) (T -792)) +NIL +(-13 (-1086 |#1| (-543 |#2|) |#2|) (-625 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) +((-4116 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) +(((-793 |#1| |#2|) (-10 -7 (-15 -4116 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1070) (-1070)) (T -793)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) +(-10 -7 (-15 -4116 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 12)) (-1706 (((-1288 |#1|) $ (-783)) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-2500 (($ (-1193 |#1|)) NIL)) (-1799 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2064 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2901 (($ $ $) 50 (|has| |#1| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2365 (($ $ (-783)) NIL)) (-3095 (($ $ (-783)) NIL)) (-4271 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL) (((-3 (-1193 |#1|) "failed") $) 10)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL) (((-1193 |#1|) $) NIL)) (-4004 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3184 (($ $ $) NIL)) (-2709 (($ $ $) 87 (|has| |#1| (-568)))) (-3966 (((-2 (|:| -1714 |#1|) (|:| -3015 $) (|:| -3599 $)) $ $) 86 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-783) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3309 (((-783) $ $) NIL (|has| |#1| (-568)))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4154 (($ $ (-783)) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1900 (($ $ $) 27)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1103)) NIL) (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2987 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1938 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3785 (((-1193 |#1|) $) NIL)) (-2512 (((-3 (-1103) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4306 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3701 (-783))) $ $) 37)) (-4424 (($ $ $) 41)) (-3506 (($ $ $) 47)) (-1857 (((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $) 46)) (-1413 (((-1179) $) NIL)) (-1728 (($ $ $) 56 (|has| |#1| (-568)))) (-3815 (((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783)) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-1103)) (|:| -4210 (-783))) "failed") $) NIL)) (-3441 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-4044 (((-2 (|:| -3498 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-4156 (((-2 (|:| -3498 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-1965 (((-2 (|:| -4004 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-2970 (((-2 (|:| -4004 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-2058 (((-112) $) 13)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1901 (($ $ (-783) |#1| $) 26)) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1422 (((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-3321 (((-2 (|:| -4004 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2755 (((-3 $ "failed") $ (-783)) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2455 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3600 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-1705 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1103)) NIL) (((-1193 |#1|) $) 7) (($ (-1193 |#1|)) 8) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) 28 T CONST)) (-2730 (($) 32 T CONST)) (-2018 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) 40) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-794 |#1|) (-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -1901 ($ $ (-783) |#1| $)) (-15 -1900 ($ $ $)) (-15 -4306 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3701 (-783))) $ $)) (-15 -4424 ($ $ $)) (-15 -1857 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -3506 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2064 ((-656 $) $ $)) (-15 -1728 ($ $ $)) (-15 -1422 ((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4156 ((-2 (|:| -3498 $) (|:| |coef1| $)) $ $)) (-15 -4044 ((-2 (|:| -3498 $) (|:| |coef2| $)) $ $)) (-15 -3321 ((-2 (|:| -4004 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2970 ((-2 (|:| -4004 |#1|) (|:| |coef1| $)) $ $)) (-15 -1965 ((-2 (|:| -4004 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1070)) (T -794)) +((-1901 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-1900 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-4306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -3701 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-4424 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-1857 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1714 *3) (|:| |gap| (-783)) (|:| -3015 (-794 *3)) (|:| -3599 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-3506 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-2064 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-1728 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) (-1422 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-4156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-4044 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-3321 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4004 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-2970 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4004 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-1965 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4004 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -1901 ($ $ (-783) |#1| $)) (-15 -1900 ($ $ $)) (-15 -4306 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3701 (-783))) $ $)) (-15 -4424 ($ $ $)) (-15 -1857 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -3506 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2064 ((-656 $) $ $)) (-15 -1728 ($ $ $)) (-15 -1422 ((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4156 ((-2 (|:| -3498 $) (|:| |coef1| $)) $ $)) (-15 -4044 ((-2 (|:| -3498 $) (|:| |coef2| $)) $ $)) (-15 -3321 ((-2 (|:| -4004 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2970 ((-2 (|:| -4004 |#1|) (|:| |coef1| $)) $ $)) (-15 -1965 ((-2 (|:| -4004 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3787 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-1760 ((|#1| (-783) |#1|) 23)) (-3217 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) +(((-795 |#1|) (-10 -7 (-15 -1760 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3217 (|#1| (-783) |#1|)) (-15 -3787 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) +((-3787 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3217 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1760 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -1760 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3217 (|#1| (-783) |#1|)) (-15 -3787 (|#1| (-783) |#1|))) |%noBranch|)) +((-3488 (((-112) $ $) 7)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3597 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1966 (((-656 |#3|) $) 34)) (-1755 (((-112) $) 27)) (-1781 (((-112) $) 18 (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) 102) (((-112) $) 98)) (-2795 ((|#4| |#4| $) 93)) (-3420 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) 28)) (-2396 (((-112) $ (-783)) 45)) (-1971 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3306 (($) 46 T CONST)) (-3290 (((-112) $) 23 (|has| |#1| (-568)))) (-2879 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1576 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3489 (((-112) $) 26 (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4356 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3947 ((|#4| |#4| $) 90)) (-2800 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2873 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-1793 (((-112) |#4| $) 137)) (-2989 (((-112) |#4| $) 134)) (-2464 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) 105) (((-112) $) 104)) (-2665 ((|#3| $) 35)) (-4252 (((-112) $ (-783)) 44)) (-2735 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-1994 (((-656 |#3|) $) 33)) (-1983 (((-112) |#3| $) 32)) (-3557 (((-112) $ (-783)) 43)) (-1413 (((-1179) $) 10)) (-1988 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1728 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3967 (((-3 |#4| "failed") $) 84)) (-2042 (((-656 $) |#4| $) 130)) (-3059 (((-3 (-112) (-656 $)) |#4| $) 133)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1834 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2289 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-1809 (((-656 |#4|) $) 108)) (-3455 (((-112) |#4| $) 100) (((-112) $) 96)) (-2860 ((|#4| |#4| $) 91)) (-1716 (((-112) $ $) 111)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) 101) (((-112) $) 97)) (-3764 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3260 (((-3 $ "failed") $ |#4|) 79)) (-3169 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3542 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) 39)) (-2866 (((-112) $) 42)) (-3839 (($) 41)) (-3600 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2907 (($ $ |#3|) 29)) (-4080 (($ $ |#3|) 31)) (-3453 (($ $) 89)) (-3698 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3000 (((-783) $) 77 (|has| |#3| (-379)))) (-2113 (((-112) $ $) 6)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1528 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2170 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) 82)) (-2011 (((-112) |#4| $) 136)) (-2951 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -796)) +NIL +(-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) +((-4122 (((-3 (-390) "failed") (-326 |#1|) (-940)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-419 (-971 |#1|)) (-940)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-971 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-971 |#1|) (-940)) 31 (|has| |#1| (-1070))) (((-3 (-390) "failed") (-971 |#1|)) 30 (|has| |#1| (-1070)))) (-2548 (((-390) (-326 |#1|) (-940)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-419 (-971 |#1|)) (-940)) 91 (|has| |#1| (-568))) (((-390) (-419 (-971 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-971 |#1|) (-940)) 86 (|has| |#1| (-1070))) (((-390) (-971 |#1|)) 85 (|has| |#1| (-1070))) (((-390) |#1| (-940)) 76) (((-390) |#1|) 22)) (-4400 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-940)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)) 28 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 |#1|)) 26 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4042 (((-171 (-390)) (-326 (-171 |#1|)) (-940)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|) (-940)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|)) (-940)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-971 |#1|) (-940)) 84 (|has| |#1| (-1070))) (((-171 (-390)) (-971 |#1|)) 83 (|has| |#1| (-1070))) (((-171 (-390)) (-971 (-171 |#1|)) (-940)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-971 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-940)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-940)) 27) (((-171 (-390)) |#1|) 25))) +(((-797 |#1|) (-10 -7 (-15 -2548 ((-390) |#1|)) (-15 -2548 ((-390) |#1| (-940))) (-15 -4042 ((-171 (-390)) |#1|)) (-15 -4042 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -4042 ((-171 (-390)) (-171 |#1|))) (-15 -4042 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2548 ((-390) (-971 |#1|))) (-15 -2548 ((-390) (-971 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 |#1|))) (-15 -4042 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2548 ((-390) (-419 (-971 |#1|)))) (-15 -2548 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -2548 ((-390) (-326 |#1|))) (-15 -2548 ((-390) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 |#1|))) (-15 -4042 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -4122 ((-3 (-390) "failed") (-971 |#1|))) (-15 -4122 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -4122 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -4122 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -4122 ((-3 (-390) "failed") (-326 |#1|))) (-15 -4122 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) +((-4400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4400 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4400 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4400 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4400 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4400 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4400 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-4042 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-2548 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-2548 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) +(-10 -7 (-15 -2548 ((-390) |#1|)) (-15 -2548 ((-390) |#1| (-940))) (-15 -4042 ((-171 (-390)) |#1|)) (-15 -4042 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -4042 ((-171 (-390)) (-171 |#1|))) (-15 -4042 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2548 ((-390) (-971 |#1|))) (-15 -2548 ((-390) (-971 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 |#1|))) (-15 -4042 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2548 ((-390) (-419 (-971 |#1|)))) (-15 -2548 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -2548 ((-390) (-326 |#1|))) (-15 -2548 ((-390) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 |#1|))) (-15 -4042 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -4122 ((-3 (-390) "failed") (-971 |#1|))) (-15 -4122 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -4122 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -4122 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -4122 ((-3 (-390) "failed") (-326 |#1|))) (-15 -4122 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -4400 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) +((-1642 (((-940) (-1179)) 89)) (-3694 (((-3 (-390) "failed") (-1179)) 36)) (-1708 (((-390) (-1179)) 34)) (-3344 (((-940) (-1179)) 63)) (-3179 (((-1179) (-940)) 73)) (-3028 (((-1179) (-940)) 62))) +(((-798) (-10 -7 (-15 -3028 ((-1179) (-940))) (-15 -3344 ((-940) (-1179))) (-15 -3179 ((-1179) (-940))) (-15 -1642 ((-940) (-1179))) (-15 -1708 ((-390) (-1179))) (-15 -3694 ((-3 (-390) "failed") (-1179))))) (T -798)) +((-3694 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) +(-10 -7 (-15 -3028 ((-1179) (-940))) (-15 -3344 ((-940) (-1179))) (-15 -3179 ((-1179) (-940))) (-15 -1642 ((-940) (-1179))) (-15 -1708 ((-390) (-1179))) (-15 -3694 ((-3 (-390) "failed") (-1179)))) +((-3488 (((-112) $ $) 7)) (-2303 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 16) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 14)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-799) (-141)) (T -799)) -((-2420 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055)))))) (-1436 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1055)) (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2420 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055)))))) (-1436 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1055)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1120) (-10 -7 (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1436 ((-1055) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1436 ((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1055))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1567 (((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390))) 55) (((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 52)) (-3481 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 61)) (-1765 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 50)) (-4082 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390))) 63) (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 62))) -(((-800) (-10 -7 (-15 -4082 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -4082 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -1765 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -1567 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -1567 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -3481 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))))) (T -800)) -((-3481 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-1567 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390)))) (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-1567 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390)))) (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-1765 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-4082 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-4082 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800))))) -(-10 -7 (-15 -4082 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -4082 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -1765 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -1567 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -1567 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -3481 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))))) -((-1594 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-1880 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-2723 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-3203 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-4006 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-3973 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-1975 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-1712 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-1847 (((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) -(((-801) (-10 -7 (-15 -1847 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1712 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1975 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3973 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3203 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1880 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4006 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2723 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1594 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) -((-1594 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2723 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4006 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1880 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3203 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3973 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1975 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1712 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1847 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(-10 -7 (-15 -1847 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1712 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1975 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3973 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3203 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1880 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4006 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2723 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1594 ((-2 (|:| -1688 (-390)) (|:| -2176 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) -((-4180 (((-1232 |#1|) |#1| (-227) (-576)) 69))) -(((-802 |#1|) (-10 -7 (-15 -4180 ((-1232 |#1|) |#1| (-227) (-576)))) (-994)) (T -802)) -((-4180 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1232 *3)) (-5 *1 (-802 *3)) (-4 *3 (-994))))) -(-10 -7 (-15 -4180 ((-1232 |#1|) |#1| (-227) (-576)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 26)) (-2559 (((-3 $ "failed") $ $) 28)) (-4331 (($) 25 T CONST)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 24 T CONST)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-4036 (($ $ $) 32) (($ $) 31)) (-4026 (($ $ $) 22)) (* (($ (-939) $) 23) (($ (-783) $) 27) (($ (-576) $) 30))) +((-1973 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-2303 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-1973 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-2303 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1121) (-10 -7 (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2303 ((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2303 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3672 (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 55) (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 52)) (-1860 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 61)) (-1743 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 50)) (-2666 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 63) (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 62))) +(((-800) (-10 -7 (-15 -2666 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2666 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -1743 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3672 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3672 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -1860 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))))) (T -800)) +((-1860 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-3672 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-3672 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-1743 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2666 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2666 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800))))) +(-10 -7 (-15 -2666 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2666 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -1743 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3672 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3672 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -1860 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))))) +((-2613 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-3631 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-1950 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-4161 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-3218 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-2863 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-1986 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-2417 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-3282 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) +(((-801) (-10 -7 (-15 -3282 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2417 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1986 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2863 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4161 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3631 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3218 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1950 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2613 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) +((-2613 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1950 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3218 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3631 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4161 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2863 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1986 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2417 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3282 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) +(-10 -7 (-15 -3282 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2417 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1986 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2863 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4161 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3631 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3218 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1950 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2613 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) +((-4341 (((-1233 |#1|) |#1| (-227) (-576)) 69))) +(((-802 |#1|) (-10 -7 (-15 -4341 ((-1233 |#1|) |#1| (-227) (-576)))) (-995)) (T -802)) +((-4341 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) (-5 *1 (-802 *3)) (-4 *3 (-995))))) +(-10 -7 (-15 -4341 ((-1233 |#1|) |#1| (-227) (-576)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 26)) (-2780 (((-3 $ "failed") $ $) 28)) (-3306 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 24 T CONST)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3043 (($ $ $) 32) (($ $) 31)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30))) (((-803) (-141)) (T -803)) NIL (-13 (-807) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 26)) (-4331 (($) 25 T CONST)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 24 T CONST)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-939) $) 23) (($ (-783) $) 27))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 26)) (-3306 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 24 T CONST)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) (((-804) (-141)) (T -804)) NIL (-13 (-806) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-875)) . T) ((-806) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 26)) (-2390 (($ $ $) 29)) (-2559 (((-3 $ "failed") $ $) 28)) (-4331 (($) 25 T CONST)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 24 T CONST)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-939) $) 23) (($ (-783) $) 27))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-806) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 26)) (-1685 (($ $ $) 29)) (-2780 (((-3 $ "failed") $ $) 28)) (-3306 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 24 T CONST)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) (((-805) (-141)) (T -805)) -((-2390 (*1 *1 *1 *1) (-4 *1 (-805)))) -(-13 (-807) (-10 -8 (-15 -2390 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-939) $) 23))) +((-1685 (*1 *1 *1 *1) (-4 *1 (-805)))) +(-13 (-807) (-10 -8 (-15 -1685 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23))) (((-806) (-141)) (T -806)) NIL (-13 (-861) (-25)) -(((-25) . T) ((-102) . T) ((-625 (-875)) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 26)) (-2559 (((-3 $ "failed") $ $) 28)) (-4331 (($) 25 T CONST)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 24 T CONST)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-939) $) 23) (($ (-783) $) 27))) +(((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 26)) (-2780 (((-3 $ "failed") $ $) 28)) (-3306 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 24 T CONST)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) (((-807) (-141)) (T -807)) NIL (-13 (-804) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-804) . T) ((-806) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-3167 (((-112) $) 42)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-2936 (((-3 (-419 (-576)) "failed") $) 78)) (-3898 (((-112) $) 72)) (-1982 (((-419 (-576)) $) 76)) (-2647 ((|#2| $) 26)) (-2422 (($ (-1 |#2| |#2|) $) 23)) (-1667 (($ $) 58)) (-1554 (((-548) $) 67)) (-2633 (($ $) 21)) (-4112 (((-875) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-4115 (((-783)) 10)) (-2388 ((|#2| $) 71)) (-3938 (((-112) $ $) 30)) (-3962 (((-112) $ $) 69)) (-4036 (($ $) 32) (($ $ $) NIL)) (-4026 (($ $ $) 31)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-808 |#1| |#2|) (-10 -8 (-15 -3962 ((-112) |#1| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -2388 (|#2| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3167 ((-112) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) -((-4115 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) -(-10 -8 (-15 -3962 ((-112) |#1| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -2388 (|#2| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3167 ((-112) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-2199 (((-783)) 59 (|has| |#1| (-379)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2317 (((-576) $) 100 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 96)) (-3900 (((-3 $ "failed") $) 37)) (-1473 ((|#1| $) 85)) (-2936 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-3898 (((-112) $) 74 (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-4369 (($) 62 (|has| |#1| (-379)))) (-2287 (((-112) $) 35)) (-3095 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-2647 ((|#1| $) 77)) (-2905 (($ $ $) 63 (|has| |#1| (-861)))) (-1654 (($ $ $) 64 (|has| |#1| (-861)))) (-2422 (($ (-1 |#1| |#1|) $) 87)) (-4375 (((-939) $) 61 (|has| |#1| (-379)))) (-2043 (((-1178) $) 10)) (-1667 (($ $) 71 (|has| |#1| (-374)))) (-2409 (($ (-939)) 60 (|has| |#1| (-379)))) (-4143 ((|#1| $) 82)) (-1942 ((|#1| $) 83)) (-2191 ((|#1| $) 84)) (-3257 ((|#1| $) 78)) (-3737 ((|#1| $) 79)) (-2652 ((|#1| $) 80)) (-2796 ((|#1| $) 81)) (-3115 (((-1140) $) 11)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 89 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 88 (|has| |#1| (-526 (-1196) |#1|)))) (-4368 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-1554 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-2633 (($ $) 86)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1058 (-419 (-576)))))) (-1972 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-2388 ((|#1| $) 75 (|has| |#1| (-1080)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 65 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 67 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 66 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 68 (|has| |#1| (-861)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-804) . T) ((-806) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-1812 (((-112) $) 42)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-3355 (((-3 (-419 (-576)) "failed") $) 78)) (-3426 (((-112) $) 72)) (-2034 (((-419 (-576)) $) 76)) (-2471 ((|#2| $) 26)) (-4116 (($ (-1 |#2| |#2|) $) 23)) (-2048 (($ $) 58)) (-4171 (((-548) $) 67)) (-2318 (($ $) 21)) (-3569 (((-876) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-1778 (((-783)) 10)) (-1665 ((|#2| $) 71)) (-2923 (((-112) $ $) 30)) (-2948 (((-112) $ $) 69)) (-3043 (($ $) 32) (($ $ $) NIL)) (-3029 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-808 |#1| |#2|) (-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -1665 (|#2| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1812 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) +((-1778 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) +(-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -1665 (|#2| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1812 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-2096 (((-783)) 59 (|has| |#1| (-379)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2859 (((-576) $) 100 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-3451 (((-3 $ "failed") $) 37)) (-1851 ((|#1| $) 85)) (-3355 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-3426 (((-112) $) 74 (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-1836 (($) 62 (|has| |#1| (-379)))) (-3215 (((-112) $) 35)) (-2401 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-2471 ((|#1| $) 77)) (-3124 (($ $ $) 63 (|has| |#1| (-861)))) (-1951 (($ $ $) 64 (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) 87)) (-2460 (((-940) $) 61 (|has| |#1| (-379)))) (-1413 (((-1179) $) 10)) (-2048 (($ $) 71 (|has| |#1| (-374)))) (-3223 (($ (-940)) 60 (|has| |#1| (-379)))) (-2021 ((|#1| $) 82)) (-2931 ((|#1| $) 83)) (-3558 ((|#1| $) 84)) (-3472 ((|#1| $) 78)) (-2413 ((|#1| $) 79)) (-2503 ((|#1| $) 80)) (-1436 ((|#1| $) 81)) (-1450 (((-1141) $) 11)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 89 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 88 (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-4171 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-2318 (($ $) 86)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1059 (-419 (-576)))))) (-3230 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-1665 ((|#1| $) 75 (|has| |#1| (-1081)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 65 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 67 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 66 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 68 (|has| |#1| (-861)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-809 |#1|) (-141) (-174)) (T -809)) -((-2633 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3095 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1080)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2936 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1667 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -2633 ($ $)) (-15 -1473 (|t#1| $)) (-15 -2191 (|t#1| $)) (-15 -1942 (|t#1| $)) (-15 -4143 (|t#1| $)) (-15 -2796 (|t#1| $)) (-15 -2652 (|t#1| $)) (-15 -3737 (|t#1| $)) (-15 -3257 (|t#1| $)) (-15 -2647 (|t#1| $)) (-15 -3095 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -2388 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -1667 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1058 #0#) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2422 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) -(-10 -7 (-15 -2422 (|#3| (-1 |#4| |#2|) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-1019 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-3794 (|has| (-1019 |#1|) (-1058 (-576))) (|has| |#1| (-1058 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-3794 (|has| (-1019 |#1|) (-1058 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-2317 ((|#1| $) NIL) (((-1019 |#1|) $) 33) (((-576) $) NIL (-3794 (|has| (-1019 |#1|) (-1058 (-576))) (|has| |#1| (-1058 (-576))))) (((-419 (-576)) $) NIL (-3794 (|has| (-1019 |#1|) (-1058 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-3900 (((-3 $ "failed") $) NIL)) (-1473 ((|#1| $) 16)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3898 (((-112) $) NIL (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4369 (($) NIL (|has| |#1| (-379)))) (-2287 (((-112) $) NIL)) (-3095 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1019 |#1|) (-1019 |#1|)) 29)) (-2647 ((|#1| $) NIL)) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-4143 ((|#1| $) 22)) (-1942 ((|#1| $) 20)) (-2191 ((|#1| $) 18)) (-3257 ((|#1| $) 26)) (-3737 ((|#1| $) 25)) (-2652 ((|#1| $) 24)) (-2796 ((|#1| $) 23)) (-3115 (((-1140) $) NIL)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-4368 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2633 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1019 |#1|)) 30) (($ (-419 (-576))) NIL (-3794 (|has| (-1019 |#1|) (-1058 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2388 ((|#1| $) NIL (|has| |#1| (-1080)))) (-4314 (($) 8 T CONST)) (-4320 (($) 12 T CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1019 |#1|)) (-10 -8 (-15 -3095 ($ (-1019 |#1|) (-1019 |#1|))))) (-174)) (T -811)) -((-3095 (*1 *1 *2 *2) (-12 (-5 *2 (-1019 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(-13 (-809 |#1|) (-423 (-1019 |#1|)) (-10 -8 (-15 -3095 ($ (-1019 |#1|) (-1019 |#1|))))) -((-1952 (((-112) $ $) 7)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-1733 (((-1055) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3938 (((-112) $ $) 8))) +((-2318 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3472 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2401 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3355 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -2318 ($ $)) (-15 -1851 (|t#1| $)) (-15 -3558 (|t#1| $)) (-15 -2931 (|t#1| $)) (-15 -2021 (|t#1| $)) (-15 -1436 (|t#1| $)) (-15 -2503 (|t#1| $)) (-15 -2413 (|t#1| $)) (-15 -3472 (|t#1| $)) (-15 -2471 (|t#1| $)) (-15 -2401 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -1665 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2048 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4116 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) +(-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-1020 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2758 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2758 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 ((|#1| $) NIL) (((-1020 |#1|) $) 33) (((-576) $) NIL (-2758 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-419 (-576)) $) NIL (-2758 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3451 (((-3 $ "failed") $) NIL)) (-1851 ((|#1| $) 16)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3426 (((-112) $) NIL (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1836 (($) NIL (|has| |#1| (-379)))) (-3215 (((-112) $) NIL)) (-2401 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1020 |#1|) (-1020 |#1|)) 29)) (-2471 ((|#1| $) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-2021 ((|#1| $) 22)) (-2931 ((|#1| $) 20)) (-3558 ((|#1| $) 18)) (-3472 ((|#1| $) 26)) (-2413 ((|#1| $) 25)) (-2503 ((|#1| $) 24)) (-1436 ((|#1| $) 23)) (-1450 (((-1141) $) NIL)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2318 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1020 |#1|)) 30) (($ (-419 (-576))) NIL (-2758 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-1665 ((|#1| $) NIL (|has| |#1| (-1081)))) (-2719 (($) 8 T CONST)) (-2730 (($) 12 T CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -2401 ($ (-1020 |#1|) (-1020 |#1|))))) (-174)) (T -811)) +((-2401 (*1 *1 *2 *2) (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) +(-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -2401 ($ (-1020 |#1|) (-1020 |#1|))))) +((-3488 (((-112) $ $) 7)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-1456 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2923 (((-112) $ $) 8))) (((-812) (-141)) (T -812)) -((-2420 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) (-1733 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1055))))) -(-13 (-1120) (-10 -7 (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1733 ((-1055) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-2063 (((-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#3| |#2| (-1196)) 19))) -(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2063 ((-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#3| |#2| (-1196)))) (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-977)) (-668 |#2|)) (T -813)) -((-2063 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1222) (-977))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3578 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2063 ((-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#3| |#2| (-1196)))) -((-3177 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196)) 18) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196)) 24) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196)) 26) (((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196)) 37) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196)) 35))) -(((-814 |#1| |#2|) (-10 -7 (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196))) (-15 -3177 ((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196))) (-15 -3177 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3177 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-977))) (T -814)) -((-3177 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-3177 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3578 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-977))))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3578 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-3177 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -3578 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)))) (-3177 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -3578 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)))) (-3177 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1196)) (-4 *6 (-13 (-29 *5) (-1222) (-977))) (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1287 *6))) (-5 *1 (-814 *5 *6)))) (-3177 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -3578 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1287 *7))))) -(-10 -7 (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196))) (-15 -3177 ((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -3578 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196))) (-15 -3177 ((-3 (-2 (|:| |particular| |#2|) (|:| -3578 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196))) (-15 -3177 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3177 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-2718 (($) 9)) (-1578 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2351 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2782 (($ (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-1422 (($ (-656 (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-2702 (((-1292)) 11))) -(((-815) (-10 -8 (-15 -2718 ($)) (-15 -2702 ((-1292))) (-15 -2351 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1422 ($ (-656 (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2782 ($ (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -1578 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) -((-1578 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-1422 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-2702 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-815)))) (-2718 (*1 *1) (-5 *1 (-815)))) -(-10 -8 (-15 -2718 ($)) (-15 -2702 ((-1292))) (-15 -2351 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1422 ($ (-656 (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2782 ($ (-2 (|:| -2239 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2904 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -1578 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-4405 ((|#2| |#2| (-1196)) 17)) (-3017 ((|#2| |#2| (-1196)) 56)) (-2005 (((-1 |#2| |#2|) (-1196)) 11))) -(((-816 |#1| |#2|) (-10 -7 (-15 -4405 (|#2| |#2| (-1196))) (-15 -3017 (|#2| |#2| (-1196))) (-15 -2005 ((-1 |#2| |#2|) (-1196)))) (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-977))) (T -816)) -((-2005 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1222) (-977))))) (-3017 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977))))) (-4405 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977)))))) -(-10 -7 (-15 -4405 (|#2| |#2| (-1196))) (-15 -3017 (|#2| |#2| (-1196))) (-15 -2005 ((-1 |#2| |#2|) (-1196)))) -((-3177 (((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1055) (-820) (-1083)) 120) (((-1055) (-820)) 121)) (-2420 (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1083)) 80) (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820)) 82))) -(((-817) (-10 -7 (-15 -3177 ((-1055) (-820))) (-15 -3177 ((-1055) (-820) (-1083))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1083))))) (T -817)) -((-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-817)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-817)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1055)) (-5 *1 (-817))))) -(-10 -7 (-15 -3177 ((-1055) (-820))) (-15 -3177 ((-1055) (-820) (-1083))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -3177 ((-1055) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1083)))) -((-1697 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3578 (-656 |#4|))) (-665 |#4|) |#4|) 33))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1697 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3578 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576)))) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) -((-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) -(-10 -7 (-15 -1697 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3578 (-656 |#4|))) (-665 |#4|) |#4|))) -((-1361 (((-2 (|:| -3378 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-1820 (((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#4|) 61) (((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#3|) 21)) (-3565 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3444 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3444 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3444 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#3|)) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#3| |#2|)) (-15 -3565 (|#2| |#3| |#1|)) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#4|)) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#4| |#2|)) (-15 -3565 (|#2| |#4| |#1|)) (-15 -1361 ((-2 (|:| -3378 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1058 (-419 (-576)))) (-1263 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) -((-1361 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -3378 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-3565 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-1820 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -3187 *4) (|:| -2440 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -3187 *5) (|:| -2440 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-3565 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-1820 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -3187 *4) (|:| -2440 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -3187 *5) (|:| -2440 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3444 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-3444 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) -(-10 -7 (-15 -3444 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3444 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#3|)) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#3| |#2|)) (-15 -3565 (|#2| |#3| |#1|)) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#4|)) (-15 -1820 ((-656 (-2 (|:| -3187 |#2|) (|:| -2440 |#2|))) |#4| |#2|)) (-15 -3565 (|#2| |#4| |#1|)) (-15 -1361 ((-2 (|:| -3378 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) -((-1952 (((-112) $ $) NIL)) (-2317 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-820) (-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2317 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) -(-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2317 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-1986 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3378 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-2894 (((-656 (-2 (|:| |poly| |#2|) (|:| -3378 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-2615 (((-656 (-2 (|:| |deg| (-783)) (|:| -3378 |#2|))) |#3|) 122)) (-3164 ((|#2| |#3|) 42)) (-3869 (((-656 (-2 (|:| -2665 |#1|) (|:| -3378 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-2640 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3164 (|#2| |#3|)) (-15 -2615 ((-656 (-2 (|:| |deg| (-783)) (|:| -3378 |#2|))) |#3|)) (-15 -3869 ((-656 (-2 (|:| -2665 |#1|) (|:| -3378 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2894 ((-656 (-2 (|:| |poly| |#2|) (|:| -3378 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1986 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3378 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2640 (|#3| |#3| |#2|)) (-15 -2640 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1058 (-419 (-576)))) (-1263 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) -((-2640 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-2640 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-1263 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-1986 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1192 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3378 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3378 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -2665 *5) (|:| -3378 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2615 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3378 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3164 (*1 *2 *3) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) -(-10 -7 (-15 -3164 (|#2| |#3|)) (-15 -2615 ((-656 (-2 (|:| |deg| (-783)) (|:| -3378 |#2|))) |#3|)) (-15 -3869 ((-656 (-2 (|:| -2665 |#1|) (|:| -3378 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2894 ((-656 (-2 (|:| |poly| |#2|) (|:| -3378 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1986 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3378 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2640 (|#3| |#3| |#2|)) (-15 -2640 (|#3| |#3| (-419 |#2|)))) -((-2363 (((-2 (|:| -3578 (-656 (-419 |#2|))) (|:| -3608 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3578 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -3578 (-656 (-419 |#2|))) (|:| -3608 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3578 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 138)) (-2809 ((|#2| (-666 |#2| (-419 |#2|))) 87) ((|#2| (-665 (-419 |#2|))) 90))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2363 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3578 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2363 ((-2 (|:| -3578 (-656 (-419 |#2|))) (|:| -3608 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2363 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3578 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2363 ((-2 (|:| -3578 (-656 (-419 |#2|))) (|:| -3608 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2809 (|#2| (-665 (-419 |#2|)))) (-15 -2809 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576)))) (-1263 |#1|)) (T -822)) -((-2809 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-2 (|:| -3578 (-656 (-419 *6))) (|:| -3608 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-2 (|:| -3578 (-656 (-419 *6))) (|:| -3608 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -2363 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3578 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2363 ((-2 (|:| -3578 (-656 (-419 |#2|))) (|:| -3608 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2363 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3578 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2363 ((-2 (|:| -3578 (-656 (-419 |#2|))) (|:| -3608 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2809 (|#2| (-665 (-419 |#2|)))) (-15 -2809 (|#2| (-666 |#2| (-419 |#2|))))) -((-1737 (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|) 49))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1737 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1263 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) -((-1737 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1263 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -3608 (-701 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -1737 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|))) -((-1986 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3378 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-2850 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-2894 (((-656 (-2 (|:| |poly| |#2|) (|:| -3378 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) -(((-824 |#1| |#2|) (-10 -7 (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1986 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3378 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2894 ((-656 (-2 (|:| |poly| |#2|) (|:| -3378 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576)))) (-1263 |#1|)) (T -824)) -((-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3378 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-1986 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3378 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-2850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1986 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3378 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2894 ((-656 (-2 (|:| |poly| |#2|) (|:| -3378 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -2850 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -2850 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) -((-2598 (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3378 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|)) 15)) (-3733 (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3578 (-656 |#1|))) |#2| |#1|)) 116)) (-3177 (((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -3578 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed") |#2| |#1|)) 54))) -(((-825 |#1| |#2|) (-10 -7 (-15 -2598 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3378 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|))) (-15 -2598 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|))) (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -3578 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -3733 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3578 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) -((-3733 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3578 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *6) "failed")) (|:| -3578 (-656 (-1287 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1287 *6)))) (-3177 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3578 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -3578 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *6)))) (-2598 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -3608 (-701 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *5)))) (-2598 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)) (|:| -3378 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *6 (-668 *5))))) -(-10 -7 (-15 -2598 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3378 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|))) (-15 -2598 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|))) (-15 -3177 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -3578 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3578 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -3733 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -3578 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3578 (-656 |#1|))) |#2| |#1|)))) -((-3651 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-4079 (((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-2636 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) -(((-826 |#1| |#2|) (-10 -7 (-15 -3651 ((-701 |#1|) (-656 |#1|))) (-15 -3651 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -4079 ((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2636 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) -((-2636 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-4079 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1287 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) -(-10 -7 (-15 -3651 ((-701 |#1|) (-656 |#1|))) (-15 -3651 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -4079 ((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2636 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3167 (((-112) $) NIL (|has| |#2| (-23)))) (-2793 (($ (-939)) NIL (|has| |#2| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2390 (($ $ $) NIL (|has| |#2| (-805)))) (-2559 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#2| (-379)))) (-4267 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1120)))) (-2317 (((-576) $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) ((|#2| $) NIL (|has| |#2| (-1120)))) (-3222 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1069))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1069)))) (-3900 (((-3 $ "failed") $) NIL (|has| |#2| (-1069)))) (-4369 (($) NIL (|has| |#2| (-379)))) (-1908 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ (-576)) NIL)) (-3721 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL (|has| |#2| (-1069)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#2| (-861)))) (-3958 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#2| (-861)))) (-1896 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#2| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1069)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1069))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1069)))) (-2043 (((-1178) $) NIL (|has| |#2| (-1120)))) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-2409 (($ (-939)) NIL (|has| |#2| (-379)))) (-3115 (((-1140) $) NIL (|has| |#2| (-1120)))) (-1753 ((|#2| $) NIL (|has| (-576) (-861)))) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4139 ((|#2| $ $) NIL (|has| |#2| (-1069)))) (-1491 (($ (-1287 |#2|)) NIL)) (-1656 (((-135)) NIL (|has| |#2| (-374)))) (-4106 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1069)))) (-3125 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1287 |#2|) $) NIL) (($ (-576)) NIL (-3794 (-12 (|has| |#2| (-1058 (-576))) (|has| |#2| (-1120))) (|has| |#2| (-1069)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1058 (-419 (-576)))) (|has| |#2| (-1120)))) (($ |#2|) NIL (|has| |#2| (-1120))) (((-875) $) NIL (|has| |#2| (-625 (-875))))) (-4115 (((-783)) NIL (|has| |#2| (-1069)) CONST)) (-1994 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1682 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4314 (($) NIL (|has| |#2| (-23)) CONST)) (-4320 (($) NIL (|has| |#2| (-1069)) CONST)) (-3155 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-918 (-1196))) (|has| |#2| (-1069)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1069)))) (-3993 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3962 (((-112) $ $) 11 (|has| |#2| (-861)))) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4026 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1069))) (($ $ (-939)) NIL (|has| |#2| (-1069)))) (* (($ $ $) NIL (|has| |#2| (-1069))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-939) $) NIL (|has| |#2| (-25)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1287 |#2|) (-1287 |#2|))) (T -827)) +((-1973 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) (-1456 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1056))))) +(-13 (-1121) (-10 -7 (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1456 ((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-1586 (((-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#3| |#2| (-1197)) 19))) +(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -1586 ((-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#3| |#2| (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -813)) +((-1586 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3454 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -1586 ((-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#3| |#2| (-1197)))) +((-1918 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197)) 18) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197)) 24) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197)) 26) (((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197)) 37) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197)) 35))) +(((-814 |#1| |#2|) (-10 -7 (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -1918 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -1918 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1918 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -814)) +((-1918 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-1918 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3454 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3454 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -3454 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -3454 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-1918 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) (-4 *6 (-13 (-29 *5) (-1223) (-978))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -3454 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7))))) +(-10 -7 (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -1918 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -3454 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -1918 ((-3 (-2 (|:| |particular| |#2|) (|:| -3454 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -1918 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1918 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) +((-1920 (($) 9)) (-3767 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-3203 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-4436 (($ (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-2163 (($ (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-1771 (((-1293)) 11))) +(((-815) (-10 -8 (-15 -1920 ($)) (-15 -1771 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2163 ($ (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -4436 ($ (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3767 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) +((-3767 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-4436 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-2163 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-1771 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815)))) (-1920 (*1 *1) (-5 *1 (-815)))) +(-10 -8 (-15 -1920 ($)) (-15 -1771 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2163 ($ (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -4436 ($ (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4438 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3767 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3895 ((|#2| |#2| (-1197)) 17)) (-2878 ((|#2| |#2| (-1197)) 56)) (-2221 (((-1 |#2| |#2|) (-1197)) 11))) +(((-816 |#1| |#2|) (-10 -7 (-15 -3895 (|#2| |#2| (-1197))) (-15 -2878 (|#2| |#2| (-1197))) (-15 -2221 ((-1 |#2| |#2|) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -816)) +((-2221 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1223) (-978))))) (-2878 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) (-3895 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) +(-10 -7 (-15 -3895 (|#2| |#2| (-1197))) (-15 -2878 (|#2| |#2| (-1197))) (-15 -2221 ((-1 |#2| |#2|) (-1197)))) +((-1918 (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1056) (-820) (-1084)) 120) (((-1056) (-820)) 121)) (-1973 (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)) 80) (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820)) 82))) +(((-817) (-10 -7 (-15 -1918 ((-1056) (-820))) (-15 -1918 ((-1056) (-820) (-1084))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084))))) (T -817)) +((-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817))))) +(-10 -7 (-15 -1918 ((-1056) (-820))) (-15 -1918 ((-1056) (-820) (-1084))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -1918 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)))) +((-2279 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3454 (-656 |#4|))) (-665 |#4|) |#4|) 33))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2279 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3454 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) +((-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) +(-10 -7 (-15 -2279 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3454 (-656 |#4|))) (-665 |#4|) |#4|))) +((-1455 (((-2 (|:| -4026 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-4245 (((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#4|) 61) (((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#3|) 21)) (-1430 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1561 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1561 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -1561 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#3|)) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#3| |#2|)) (-15 -1430 (|#2| |#3| |#1|)) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#4|)) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#4| |#2|)) (-15 -1430 (|#2| |#4| |#1|)) (-15 -1455 ((-2 (|:| -4026 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) +((-1455 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -4026 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-1430 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-4245 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2394 *4) (|:| -2335 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2394 *5) (|:| -2335 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-1430 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-4245 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2394 *4) (|:| -2335 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2394 *5) (|:| -2335 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-1561 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-1561 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) +(-10 -7 (-15 -1561 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -1561 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#3|)) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#3| |#2|)) (-15 -1430 (|#2| |#3| |#1|)) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#4|)) (-15 -4245 ((-656 (-2 (|:| -2394 |#2|) (|:| -2335 |#2|))) |#4| |#2|)) (-15 -1430 (|#2| |#4| |#1|)) (-15 -1455 ((-2 (|:| -4026 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-820) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2859 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2859 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-2072 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-3048 (((-656 (-2 (|:| |poly| |#2|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-2128 (((-656 (-2 (|:| |deg| (-783)) (|:| -4026 |#2|))) |#3|) 122)) (-1780 ((|#2| |#3|) 42)) (-4377 (((-656 (-2 (|:| -1480 |#1|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-2402 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1780 (|#2| |#3|)) (-15 -2128 ((-656 (-2 (|:| |deg| (-783)) (|:| -4026 |#2|))) |#3|)) (-15 -4377 ((-656 (-2 (|:| -1480 |#1|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3048 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2072 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2402 (|#3| |#3| |#2|)) (-15 -2402 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) +((-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-2402 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-2072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4026 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -1480 *5) (|:| -4026 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4026 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-1780 (*1 *2 *3) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) +(-10 -7 (-15 -1780 (|#2| |#3|)) (-15 -2128 ((-656 (-2 (|:| |deg| (-783)) (|:| -4026 |#2|))) |#3|)) (-15 -4377 ((-656 (-2 (|:| -1480 |#1|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3048 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2072 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2402 (|#3| |#3| |#2|)) (-15 -2402 (|#3| |#3| (-419 |#2|)))) +((-1446 (((-2 (|:| -3454 (-656 (-419 |#2|))) (|:| -3752 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3454 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -3454 (-656 (-419 |#2|))) (|:| -3752 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3454 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 138)) (-3474 ((|#2| (-666 |#2| (-419 |#2|))) 87) ((|#2| (-665 (-419 |#2|))) 90))) +(((-822 |#1| |#2|) (-10 -7 (-15 -1446 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3454 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -1446 ((-2 (|:| -3454 (-656 (-419 |#2|))) (|:| -3752 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1446 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3454 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -1446 ((-2 (|:| -3454 (-656 (-419 |#2|))) (|:| -3752 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -3474 (|#2| (-665 (-419 |#2|)))) (-15 -3474 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -822)) +((-3474 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-1446 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -3454 (-656 (-419 *6))) (|:| -3752 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-1446 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -3454 (-656 (-419 *6))) (|:| -3752 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-1446 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -1446 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3454 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -1446 ((-2 (|:| -3454 (-656 (-419 |#2|))) (|:| -3752 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1446 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3454 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -1446 ((-2 (|:| -3454 (-656 (-419 |#2|))) (|:| -3752 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -3474 (|#2| (-665 (-419 |#2|)))) (-15 -3474 (|#2| (-666 |#2| (-419 |#2|))))) +((-1489 (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|) 49))) +(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1489 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1264 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) +((-1489 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -3752 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -1489 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) +((-2072 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-3887 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-3048 (((-656 (-2 (|:| |poly| |#2|) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) +(((-824 |#1| |#2|) (-10 -7 (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2072 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3048 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -824)) +((-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3887 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3887 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-2072 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4026 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) +(-10 -7 (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2072 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3048 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3887 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3887 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) +((-3251 (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4026 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|)) 15)) (-2380 (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3454 (-656 |#1|))) |#2| |#1|)) 116)) (-1918 (((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -3454 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed") |#2| |#1|)) 54))) +(((-825 |#1| |#2|) (-10 -7 (-15 -3251 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4026 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -3251 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -3454 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2380 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3454 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) +((-2380 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3454 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *6) "failed")) (|:| -3454 (-656 (-1288 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6)))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3454 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -3454 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) (-3251 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -3752 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5)))) (-3251 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -4026 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *6 (-668 *5))))) +(-10 -7 (-15 -3251 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4026 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -3251 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -1918 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -3454 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3454 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2380 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -3454 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3454 (-656 |#1|))) |#2| |#1|)))) +((-2877 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-2635 (((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-2358 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) +(((-826 |#1| |#2|) (-10 -7 (-15 -2877 ((-701 |#1|) (-656 |#1|))) (-15 -2877 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2635 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2358 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) +((-2358 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-2635 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) +(-10 -7 (-15 -2877 ((-701 |#1|) (-656 |#1|))) (-15 -2877 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2635 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2358 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1812 (((-112) $) NIL (|has| |#2| (-23)))) (-1417 (($ (-940)) NIL (|has| |#2| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1685 (($ $ $) NIL (|has| |#2| (-805)))) (-2780 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-4344 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-3451 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) NIL)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL (|has| |#2| (-1070)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-2735 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#2| (-861)))) (-4322 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#2| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-1413 (((-1179) $) NIL (|has| |#2| (-1121)))) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3580 ((|#2| $) NIL (|has| (-576) (-861)))) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1984 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) NIL)) (-1972 (((-135)) NIL (|has| |#2| (-374)))) (-2773 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-2758 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-1778 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2113 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2170 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2719 (($) NIL (|has| |#2| (-23)) CONST)) (-2730 (($) NIL (|has| |#2| (-1070)) CONST)) (-2018 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2991 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2948 (((-112) $ $) 11 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3029 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1288 |#2|) (-1288 |#2|))) (T -827)) NIL (-243 |#1| |#2|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-3135 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1196)) NIL)) (-2869 (((-783) $) NIL) (((-783) $ (-1196)) NIL)) (-1582 (((-656 (-830 (-1196))) $) NIL)) (-1420 (((-1192 $) $ (-830 (-1196))) NIL) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1196)))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3120 (($ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-830 (-1196)) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL) (((-3 (-1145 |#1| (-1196)) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-830 (-1196)) $) NIL) (((-1196) $) NIL) (((-1145 |#1| (-1196)) $) NIL)) (-3954 (($ $ $ (-830 (-1196))) NIL (|has| |#1| (-174)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1196))) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-543 (-830 (-1196))) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-830 (-1196)) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-830 (-1196)) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-3241 (((-783) $ (-1196)) NIL) (((-783) $) NIL)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#1|) (-830 (-1196))) NIL) (($ (-1192 $) (-830 (-1196))) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-543 (-830 (-1196)))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-830 (-1196))) NIL)) (-3661 (((-543 (-830 (-1196))) $) NIL) (((-783) $ (-830 (-1196))) NIL) (((-656 (-783)) $ (-656 (-830 (-1196)))) NIL)) (-3820 (($ (-1 (-543 (-830 (-1196))) (-543 (-830 (-1196)))) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3738 (((-1 $ (-783)) (-1196)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2653 (((-3 (-830 (-1196)) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-4194 (((-830 (-1196)) $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-3558 (((-112) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-830 (-1196))) (|:| -1495 (-783))) "failed") $) NIL)) (-2295 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1196)) |#1|) NIL) (($ $ (-656 (-830 (-1196))) (-656 |#1|)) NIL) (($ $ (-830 (-1196)) $) NIL) (($ $ (-656 (-830 (-1196))) (-656 $)) NIL) (($ $ (-1196) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1451 (($ $ (-830 (-1196))) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196)))) NIL) (($ $ (-830 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3630 (((-656 (-1196)) $) NIL)) (-1877 (((-543 (-830 (-1196))) $) NIL) (((-783) $ (-830 (-1196))) NIL) (((-656 (-783)) $ (-656 (-830 (-1196)))) NIL) (((-783) $ (-1196)) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1196))) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1196))) NIL) (($ (-1196)) NIL) (($ (-1145 |#1| (-1196))) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-543 (-830 (-1196)))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196)))) NIL) (($ $ (-830 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-828 |#1|) (-13 (-260 |#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) (-1058 (-1145 |#1| (-1196)))) (-1069)) (T -828)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1519 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-2724 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1966 (((-656 (-830 (-1197))) $) NIL)) (-1799 (((-1193 $) $ (-830 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1197)))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1423 (($ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-830 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-830 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-4004 (($ $ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-543 (-830 (-1197))) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3309 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) (-830 (-1197))) NIL) (($ (-1193 $) (-830 (-1197))) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-830 (-1197))) NIL)) (-2987 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL)) (-1938 (($ (-1 (-543 (-830 (-1197))) (-543 (-830 (-1197)))) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2421 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2512 (((-3 (-830 (-1197)) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-2763 (((-830 (-1197)) $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-1380 (((-112) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-830 (-1197))) (|:| -4210 (-783))) "failed") $) NIL)) (-4284 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1197)) |#1|) NIL) (($ $ (-656 (-830 (-1197))) (-656 |#1|)) NIL) (($ $ (-830 (-1197)) $) NIL) (($ $ (-656 (-830 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-2455 (($ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2659 (((-656 (-1197)) $) NIL)) (-3600 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-828 |#1|) (-13 (-260 |#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) (-1059 (-1146 |#1| (-1197)))) (-1070)) (T -828)) NIL -(-13 (-260 |#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) (-1058 (-1145 |#1| (-1196)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-4070 (($ $) NIL (|has| |#2| (-374)))) (-2378 (((-112) $) NIL (|has| |#2| (-374)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#2| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#2| (-374)))) (-4057 (((-112) $ $) NIL (|has| |#2| (-374)))) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL (|has| |#2| (-374)))) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL (|has| |#2| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-2443 (((-112) $) NIL (|has| |#2| (-374)))) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3075 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 20 (|has| |#2| (-374)))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1450 (((-430 $) $) NIL (|has| |#2| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#2| (-374)))) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2026 (((-783) $) NIL (|has| |#2| (-374)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-374)))) (-4106 (($ $) 13) (($ $ (-783)) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#2| (-374)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) 15 (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-939)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) -(((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1120) (-916 |#1|) |#1|) (T -829)) +(-13 (-260 |#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) (-1059 (-1146 |#1| (-1197)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-2544 (($ $) NIL (|has| |#2| (-374)))) (-1574 (((-112) $) NIL (|has| |#2| (-374)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#2| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2420 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL (|has| |#2| (-374)))) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#2| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-4169 (((-112) $) NIL (|has| |#2| (-374)))) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3457 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 20 (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2411 (((-783) $) NIL (|has| |#2| (-374)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-374)))) (-2773 (($ $) 13) (($ $ (-783)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) 15 (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) +(((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1121) (-917 |#1|) |#1|) (T -829)) NIL (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-2869 (((-783) $) NIL)) (-1652 ((|#1| $) 10)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3241 (((-783) $) 11)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-3738 (($ |#1| (-783)) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4106 (($ $ (-783)) NIL) (($ $) NIL)) (-4112 (((-875) $) NIL) (($ |#1|) NIL)) (-1994 (((-112) $ $) NIL)) (-3155 (($ $ (-783)) NIL) (($ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2724 (((-783) $) NIL)) (-3054 ((|#1| $) 10)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3309 (((-783) $) 11)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-2421 (($ |#1| (-783)) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2773 (($ $ (-783)) NIL) (($ $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-2113 (((-112) $ $) NIL)) (-2018 (($ $ (-783)) NIL) (($ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) (((-830 |#1|) (-275 |#1|) (-861)) (T -830)) NIL (-275 |#1|) -((-1952 (((-112) $ $) NIL)) (-1417 (((-656 |#1|) $) 38)) (-2199 (((-783) $) NIL)) (-4331 (($) NIL T CONST)) (-4226 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-1762 (($ $) 42)) (-3900 (((-3 $ "failed") $) NIL)) (-2666 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2287 (((-112) $) NIL)) (-3908 ((|#1| $ (-576)) NIL)) (-2731 (((-783) $ (-576)) NIL)) (-3848 (($ $) 54)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-3687 (($ (-1 |#1| |#1|) $) NIL)) (-1402 (($ (-1 (-783) (-783)) $) NIL)) (-3052 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3355 (((-112) $ $) 51)) (-3107 (((-783) $) 34)) (-2043 (((-1178) $) NIL)) (-3867 (($ $ $) NIL)) (-1827 (($ $ $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 ((|#1| $) 41)) (-1749 (((-656 (-2 (|:| |gen| |#1|) (|:| -2155 (-783)))) $) NIL)) (-4293 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1931 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4112 (((-875) $) NIL) (($ |#1|) NIL)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 20 T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 53)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -1753 (|#1| $)) (-15 -1762 ($ $)) (-15 -3848 ($ $)) (-15 -3355 ((-112) $ $)) (-15 -3052 ((-3 $ "failed") $ |#1|)) (-15 -4226 ((-3 $ "failed") $ |#1|)) (-15 -1931 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3107 ((-783) $)) (-15 -1417 ((-656 |#1|) $)))) (-861)) (T -831)) -((-1753 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-1762 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3355 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3052 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-4226 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-1931 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) -(-13 (-397 |#1|) (-858) (-10 -8 (-15 -1753 (|#1| $)) (-15 -1762 ($ $)) (-15 -3848 ($ $)) (-15 -3355 ((-112) $ $)) (-15 -3052 ((-3 $ "failed") $ |#1|)) (-15 -4226 ((-3 $ "failed") $ |#1|)) (-15 -1931 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3107 ((-783) $)) (-15 -1417 ((-656 |#1|) $)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-3773 (((-576) $) 60)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2690 (((-112) $) 58)) (-2287 (((-112) $) 35)) (-3197 (((-112) $) 59)) (-2905 (($ $ $) 52)) (-1654 (($ $ $) 53)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ $) 48)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-2388 (($ $) 61)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 54)) (-3974 (((-112) $ $) 56)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 55)) (-3962 (((-112) $ $) 57)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) 38)) (-2096 (((-783) $) NIL)) (-3306 (($) NIL T CONST)) (-3556 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3592 (($ $) 42)) (-3451 (((-3 $ "failed") $) NIL)) (-2617 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3215 (((-112) $) NIL)) (-3537 ((|#1| $ (-576)) NIL)) (-2013 (((-783) $ (-576)) NIL)) (-4195 (($ $) 54)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-3250 (($ (-1 |#1| |#1|) $) NIL)) (-3075 (($ (-1 (-783) (-783)) $) NIL)) (-1978 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3226 (((-112) $ $) 51)) (-2434 (((-783) $) 34)) (-1413 (((-1179) $) NIL)) (-4358 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 ((|#1| $) 41)) (-1601 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) NIL)) (-2935 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3464 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 20 T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 53)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -3580 (|#1| $)) (-15 -3592 ($ $)) (-15 -4195 ($ $)) (-15 -3226 ((-112) $ $)) (-15 -1978 ((-3 $ "failed") $ |#1|)) (-15 -3556 ((-3 $ "failed") $ |#1|)) (-15 -3464 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2434 ((-783) $)) (-15 -3446 ((-656 |#1|) $)))) (-861)) (T -831)) +((-3580 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-4195 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3226 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-1978 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3556 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3464 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) +(-13 (-397 |#1|) (-858) (-10 -8 (-15 -3580 (|#1| $)) (-15 -3592 ($ $)) (-15 -4195 ($ $)) (-15 -3226 ((-112) $ $)) (-15 -1978 ((-3 $ "failed") $ |#1|)) (-15 -3556 ((-3 $ "failed") $ |#1|)) (-15 -3464 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2434 ((-783) $)) (-15 -3446 ((-656 |#1|) $)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-1529 (((-576) $) 60)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-1661 (((-112) $) 58)) (-3215 (((-112) $) 35)) (-4099 (((-112) $) 59)) (-3124 (($ $ $) 52)) (-1951 (($ $ $) 53)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-1665 (($ $) 61)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 54)) (-2962 (((-112) $ $) 56)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 55)) (-2948 (((-112) $ $) 57)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-832) (-141)) (T -832)) NIL (-13 (-568) (-860)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-863) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2908 (($ (-1140)) 7)) (-3921 (((-112) $ (-1178) (-1140)) 15)) (-4412 (((-834) $) 12)) (-4243 (((-834) $) 11)) (-2923 (((-1292) $) 9)) (-2487 (((-112) $ (-1140)) 16))) -(((-833) (-10 -8 (-15 -2908 ($ (-1140))) (-15 -2923 ((-1292) $)) (-15 -4243 ((-834) $)) (-15 -4412 ((-834) $)) (-15 -3921 ((-112) $ (-1178) (-1140))) (-15 -2487 ((-112) $ (-1140))))) (T -833)) -((-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3921 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1140)) (-5 *2 (-112)) (-5 *1 (-833)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-833)))) (-2908 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-833))))) -(-10 -8 (-15 -2908 ($ (-1140))) (-15 -2923 ((-1292) $)) (-15 -4243 ((-834) $)) (-15 -4412 ((-834) $)) (-15 -3921 ((-112) $ (-1178) (-1140))) (-15 -2487 ((-112) $ (-1140)))) -((-1772 (((-1292) $ (-835)) 12)) (-4318 (((-1292) $ (-1196)) 32)) (-2578 (((-1292) $ (-1178) (-1178)) 34)) (-1862 (((-1292) $ (-1178)) 33)) (-1545 (((-1292) $) 19)) (-2835 (((-1292) $ (-576)) 28)) (-3977 (((-1292) $ (-227)) 30)) (-4039 (((-1292) $) 18)) (-1534 (((-1292) $) 26)) (-3801 (((-1292) $) 25)) (-3563 (((-1292) $) 23)) (-2930 (((-1292) $) 24)) (-2233 (((-1292) $) 22)) (-4238 (((-1292) $) 21)) (-1552 (((-1292) $) 20)) (-1689 (((-1292) $) 16)) (-4319 (((-1292) $) 17)) (-2916 (((-1292) $) 15)) (-1354 (((-1292) $) 14)) (-4122 (((-1292) $) 13)) (-4312 (($ (-1178) (-835)) 9)) (-1840 (($ (-1178) (-1178) (-835)) 8)) (-4346 (((-1196) $) 51)) (-2474 (((-1196) $) 55)) (-2092 (((-2 (|:| |cd| (-1178)) (|:| -4148 (-1178))) $) 54)) (-1409 (((-1178) $) 52)) (-3038 (((-1292) $) 41)) (-3696 (((-576) $) 49)) (-1499 (((-227) $) 50)) (-4247 (((-1292) $) 40)) (-2993 (((-1292) $) 48)) (-1966 (((-1292) $) 47)) (-3951 (((-1292) $) 45)) (-3619 (((-1292) $) 46)) (-2312 (((-1292) $) 44)) (-3147 (((-1292) $) 43)) (-2260 (((-1292) $) 42)) (-2807 (((-1292) $) 38)) (-2268 (((-1292) $) 39)) (-2011 (((-1292) $) 37)) (-3971 (((-1292) $) 36)) (-1826 (((-1292) $) 35)) (-4216 (((-1292) $) 11))) -(((-834) (-10 -8 (-15 -1840 ($ (-1178) (-1178) (-835))) (-15 -4312 ($ (-1178) (-835))) (-15 -4216 ((-1292) $)) (-15 -1772 ((-1292) $ (-835))) (-15 -4122 ((-1292) $)) (-15 -1354 ((-1292) $)) (-15 -2916 ((-1292) $)) (-15 -1689 ((-1292) $)) (-15 -4319 ((-1292) $)) (-15 -4039 ((-1292) $)) (-15 -1545 ((-1292) $)) (-15 -1552 ((-1292) $)) (-15 -4238 ((-1292) $)) (-15 -2233 ((-1292) $)) (-15 -3563 ((-1292) $)) (-15 -2930 ((-1292) $)) (-15 -3801 ((-1292) $)) (-15 -1534 ((-1292) $)) (-15 -2835 ((-1292) $ (-576))) (-15 -3977 ((-1292) $ (-227))) (-15 -4318 ((-1292) $ (-1196))) (-15 -1862 ((-1292) $ (-1178))) (-15 -2578 ((-1292) $ (-1178) (-1178))) (-15 -1826 ((-1292) $)) (-15 -3971 ((-1292) $)) (-15 -2011 ((-1292) $)) (-15 -2807 ((-1292) $)) (-15 -2268 ((-1292) $)) (-15 -4247 ((-1292) $)) (-15 -3038 ((-1292) $)) (-15 -2260 ((-1292) $)) (-15 -3147 ((-1292) $)) (-15 -2312 ((-1292) $)) (-15 -3951 ((-1292) $)) (-15 -3619 ((-1292) $)) (-15 -1966 ((-1292) $)) (-15 -2993 ((-1292) $)) (-15 -3696 ((-576) $)) (-15 -1499 ((-227) $)) (-15 -4346 ((-1196) $)) (-15 -1409 ((-1178) $)) (-15 -2092 ((-2 (|:| |cd| (-1178)) (|:| -4148 (-1178))) $)) (-15 -2474 ((-1196) $)))) (T -834)) -((-2474 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1178)) (|:| -4148 (-1178)))) (-5 *1 (-834)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-834)))) (-4346 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2578 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-1862 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-4318 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-3977 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1772 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4312 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834)))) (-1840 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834))))) -(-10 -8 (-15 -1840 ($ (-1178) (-1178) (-835))) (-15 -4312 ($ (-1178) (-835))) (-15 -4216 ((-1292) $)) (-15 -1772 ((-1292) $ (-835))) (-15 -4122 ((-1292) $)) (-15 -1354 ((-1292) $)) (-15 -2916 ((-1292) $)) (-15 -1689 ((-1292) $)) (-15 -4319 ((-1292) $)) (-15 -4039 ((-1292) $)) (-15 -1545 ((-1292) $)) (-15 -1552 ((-1292) $)) (-15 -4238 ((-1292) $)) (-15 -2233 ((-1292) $)) (-15 -3563 ((-1292) $)) (-15 -2930 ((-1292) $)) (-15 -3801 ((-1292) $)) (-15 -1534 ((-1292) $)) (-15 -2835 ((-1292) $ (-576))) (-15 -3977 ((-1292) $ (-227))) (-15 -4318 ((-1292) $ (-1196))) (-15 -1862 ((-1292) $ (-1178))) (-15 -2578 ((-1292) $ (-1178) (-1178))) (-15 -1826 ((-1292) $)) (-15 -3971 ((-1292) $)) (-15 -2011 ((-1292) $)) (-15 -2807 ((-1292) $)) (-15 -2268 ((-1292) $)) (-15 -4247 ((-1292) $)) (-15 -3038 ((-1292) $)) (-15 -2260 ((-1292) $)) (-15 -3147 ((-1292) $)) (-15 -2312 ((-1292) $)) (-15 -3951 ((-1292) $)) (-15 -3619 ((-1292) $)) (-15 -1966 ((-1292) $)) (-15 -2993 ((-1292) $)) (-15 -3696 ((-576) $)) (-15 -1499 ((-227) $)) (-15 -4346 ((-1196) $)) (-15 -1409 ((-1178) $)) (-15 -2092 ((-2 (|:| |cd| (-1178)) (|:| -4148 (-1178))) $)) (-15 -2474 ((-1196) $))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 13)) (-1994 (((-112) $ $) NIL)) (-2410 (($) 16)) (-2288 (($) 14)) (-2411 (($) 17)) (-1558 (($) 15)) (-3938 (((-112) $ $) 9))) -(((-835) (-13 (-1120) (-10 -8 (-15 -2288 ($)) (-15 -2410 ($)) (-15 -2411 ($)) (-15 -1558 ($))))) (T -835)) -((-2288 (*1 *1) (-5 *1 (-835))) (-2410 (*1 *1) (-5 *1 (-835))) (-2411 (*1 *1) (-5 *1 (-835))) (-1558 (*1 *1) (-5 *1 (-835)))) -(-13 (-1120) (-10 -8 (-15 -2288 ($)) (-15 -2410 ($)) (-15 -2411 ($)) (-15 -1558 ($)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 23) (($ (-1196)) 19)) (-1994 (((-112) $ $) NIL)) (-2981 (((-112) $) 10)) (-3019 (((-112) $) 9)) (-2240 (((-112) $) 11)) (-3356 (((-112) $) 8)) (-3938 (((-112) $ $) 21))) -(((-836) (-13 (-1120) (-10 -8 (-15 -4112 ($ (-1196))) (-15 -3356 ((-112) $)) (-15 -3019 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -2240 ((-112) $))))) (T -836)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-836)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(-13 (-1120) (-10 -8 (-15 -4112 ($ (-1196))) (-15 -3356 ((-112) $)) (-15 -3019 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -2240 ((-112) $)))) -((-1952 (((-112) $ $) NIL)) (-4315 (($ (-836) (-656 (-1196))) 32)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1790 (((-836) $) 33)) (-1729 (((-656 (-1196)) $) 34)) (-4112 (((-875) $) 31)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-837) (-13 (-1120) (-10 -8 (-15 -1790 ((-836) $)) (-15 -1729 ((-656 (-1196)) $)) (-15 -4315 ($ (-836) (-656 (-1196))))))) (T -837)) -((-1790 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-837)))) (-4315 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1196))) (-5 *1 (-837))))) -(-13 (-1120) (-10 -8 (-15 -1790 ((-836) $)) (-15 -1729 ((-656 (-1196)) $)) (-15 -4315 ($ (-836) (-656 (-1196)))))) -((-3678 (((-1292) (-834) (-326 |#1|) (-112)) 23) (((-1292) (-834) (-326 |#1|)) 89) (((-1178) (-326 |#1|) (-112)) 88) (((-1178) (-326 |#1|)) 87))) -(((-838 |#1|) (-10 -7 (-15 -3678 ((-1178) (-326 |#1|))) (-15 -3678 ((-1178) (-326 |#1|) (-112))) (-15 -3678 ((-1292) (-834) (-326 |#1|))) (-15 -3678 ((-1292) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1069))) (T -838)) -((-3678 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1069))) (-5 *2 (-1292)) (-5 *1 (-838 *6)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1069))) (-5 *2 (-1292)) (-5 *1 (-838 *5)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1069))) (-5 *2 (-1178)) (-5 *1 (-838 *5)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1069))) (-5 *2 (-1178)) (-5 *1 (-838 *4))))) -(-10 -7 (-15 -3678 ((-1178) (-326 |#1|))) (-15 -3678 ((-1178) (-326 |#1|) (-112))) (-15 -3678 ((-1292) (-834) (-326 |#1|))) (-15 -3678 ((-1292) (-834) (-326 |#1|) (-112)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2716 ((|#1| $) 10)) (-3961 (($ |#1|) 9)) (-2287 (((-112) $) NIL)) (-1562 (($ |#2| (-783)) NIL)) (-3661 (((-783) $) NIL)) (-1709 ((|#2| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4106 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-1877 (((-783) $) NIL)) (-4112 (((-875) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4269 ((|#2| $ (-783)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -3961 ($ |#1|)) (-15 -2716 (|#1| $)))) (-720 |#2|) (-1069)) (T -839)) -((-3961 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-2716 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1069))))) -(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -3961 ($ |#1|)) (-15 -2716 (|#1| $)))) -((-3678 (((-1292) (-834) $ (-112)) 9) (((-1292) (-834) $) 8) (((-1178) $ (-112)) 7) (((-1178) $) 6))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3175 (($ (-1141)) 7)) (-3690 (((-112) $ (-1179) (-1141)) 15)) (-1640 (((-834) $) 12)) (-3743 (((-834) $) 11)) (-3323 (((-1293) $) 9)) (-3358 (((-112) $ (-1141)) 16))) +(((-833) (-10 -8 (-15 -3175 ($ (-1141))) (-15 -3323 ((-1293) $)) (-15 -3743 ((-834) $)) (-15 -1640 ((-834) $)) (-15 -3690 ((-112) $ (-1179) (-1141))) (-15 -3358 ((-112) $ (-1141))))) (T -833)) +((-3358 (*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3690 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833)))) (-3175 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) +(-10 -8 (-15 -3175 ($ (-1141))) (-15 -3323 ((-1293) $)) (-15 -3743 ((-834) $)) (-15 -1640 ((-834) $)) (-15 -3690 ((-112) $ (-1179) (-1141))) (-15 -3358 ((-112) $ (-1141)))) +((-1816 (((-1293) $ (-835)) 12)) (-3204 (((-1293) $ (-1197)) 32)) (-3024 (((-1293) $ (-1179) (-1179)) 34)) (-3430 (((-1293) $ (-1179)) 33)) (-3458 (((-1293) $) 19)) (-3737 (((-1293) $ (-576)) 28)) (-2902 (((-1293) $ (-227)) 30)) (-2239 (((-1293) $) 18)) (-3340 (((-1293) $) 26)) (-1783 (((-1293) $) 25)) (-1421 (((-1293) $) 23)) (-3292 (((-1293) $) 24)) (-2675 (((-1293) $) 22)) (-3683 (((-1293) $) 21)) (-3522 (((-1293) $) 20)) (-2215 (((-1293) $) 16)) (-3214 (((-1293) $) 17)) (-3249 (((-1293) $) 15)) (-1399 (((-1293) $) 14)) (-1841 (((-1293) $) 13)) (-3148 (($ (-1179) (-835)) 9)) (-4439 (($ (-1179) (-1179) (-835)) 8)) (-2180 (((-1197) $) 51)) (-1338 (((-1197) $) 55)) (-1877 (((-2 (|:| |cd| (-1179)) (|:| -2627 (-1179))) $) 54)) (-2050 (((-1179) $) 52)) (-3120 (((-1293) $) 41)) (-2054 (((-576) $) 49)) (-4250 (((-227) $) 50)) (-3776 (((-1293) $) 40)) (-2626 (((-1293) $) 48)) (-3189 (((-1293) $) 47)) (-3972 (((-1293) $) 45)) (-3867 (((-1293) $) 46)) (-2160 (((-1293) $) 44)) (-1618 (((-1293) $) 43)) (-2938 (((-1293) $) 42)) (-3450 (((-1293) $) 38)) (-3030 (((-1293) $) 39)) (-2264 (((-1293) $) 37)) (-2849 (((-1293) $) 36)) (-4296 (((-1293) $) 35)) (-3442 (((-1293) $) 11))) +(((-834) (-10 -8 (-15 -4439 ($ (-1179) (-1179) (-835))) (-15 -3148 ($ (-1179) (-835))) (-15 -3442 ((-1293) $)) (-15 -1816 ((-1293) $ (-835))) (-15 -1841 ((-1293) $)) (-15 -1399 ((-1293) $)) (-15 -3249 ((-1293) $)) (-15 -2215 ((-1293) $)) (-15 -3214 ((-1293) $)) (-15 -2239 ((-1293) $)) (-15 -3458 ((-1293) $)) (-15 -3522 ((-1293) $)) (-15 -3683 ((-1293) $)) (-15 -2675 ((-1293) $)) (-15 -1421 ((-1293) $)) (-15 -3292 ((-1293) $)) (-15 -1783 ((-1293) $)) (-15 -3340 ((-1293) $)) (-15 -3737 ((-1293) $ (-576))) (-15 -2902 ((-1293) $ (-227))) (-15 -3204 ((-1293) $ (-1197))) (-15 -3430 ((-1293) $ (-1179))) (-15 -3024 ((-1293) $ (-1179) (-1179))) (-15 -4296 ((-1293) $)) (-15 -2849 ((-1293) $)) (-15 -2264 ((-1293) $)) (-15 -3450 ((-1293) $)) (-15 -3030 ((-1293) $)) (-15 -3776 ((-1293) $)) (-15 -3120 ((-1293) $)) (-15 -2938 ((-1293) $)) (-15 -1618 ((-1293) $)) (-15 -2160 ((-1293) $)) (-15 -3972 ((-1293) $)) (-15 -3867 ((-1293) $)) (-15 -3189 ((-1293) $)) (-15 -2626 ((-1293) $)) (-15 -2054 ((-576) $)) (-15 -4250 ((-227) $)) (-15 -2180 ((-1197) $)) (-15 -2050 ((-1179) $)) (-15 -1877 ((-2 (|:| |cd| (-1179)) (|:| -2627 (-1179))) $)) (-15 -1338 ((-1197) $)))) (T -834)) +((-1338 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -2627 (-1179)))) (-5 *1 (-834)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3024 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3204 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3737 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3148 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834)))) (-4439 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) +(-10 -8 (-15 -4439 ($ (-1179) (-1179) (-835))) (-15 -3148 ($ (-1179) (-835))) (-15 -3442 ((-1293) $)) (-15 -1816 ((-1293) $ (-835))) (-15 -1841 ((-1293) $)) (-15 -1399 ((-1293) $)) (-15 -3249 ((-1293) $)) (-15 -2215 ((-1293) $)) (-15 -3214 ((-1293) $)) (-15 -2239 ((-1293) $)) (-15 -3458 ((-1293) $)) (-15 -3522 ((-1293) $)) (-15 -3683 ((-1293) $)) (-15 -2675 ((-1293) $)) (-15 -1421 ((-1293) $)) (-15 -3292 ((-1293) $)) (-15 -1783 ((-1293) $)) (-15 -3340 ((-1293) $)) (-15 -3737 ((-1293) $ (-576))) (-15 -2902 ((-1293) $ (-227))) (-15 -3204 ((-1293) $ (-1197))) (-15 -3430 ((-1293) $ (-1179))) (-15 -3024 ((-1293) $ (-1179) (-1179))) (-15 -4296 ((-1293) $)) (-15 -2849 ((-1293) $)) (-15 -2264 ((-1293) $)) (-15 -3450 ((-1293) $)) (-15 -3030 ((-1293) $)) (-15 -3776 ((-1293) $)) (-15 -3120 ((-1293) $)) (-15 -2938 ((-1293) $)) (-15 -1618 ((-1293) $)) (-15 -2160 ((-1293) $)) (-15 -3972 ((-1293) $)) (-15 -3867 ((-1293) $)) (-15 -3189 ((-1293) $)) (-15 -2626 ((-1293) $)) (-15 -2054 ((-576) $)) (-15 -4250 ((-227) $)) (-15 -2180 ((-1197) $)) (-15 -2050 ((-1179) $)) (-15 -1877 ((-2 (|:| |cd| (-1179)) (|:| -2627 (-1179))) $)) (-15 -1338 ((-1197) $))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 13)) (-2113 (((-112) $ $) NIL)) (-1874 (($) 16)) (-3227 (($) 14)) (-1883 (($) 17)) (-3582 (($) 15)) (-2923 (((-112) $ $) 9))) +(((-835) (-13 (-1121) (-10 -8 (-15 -3227 ($)) (-15 -1874 ($)) (-15 -1883 ($)) (-15 -3582 ($))))) (T -835)) +((-3227 (*1 *1) (-5 *1 (-835))) (-1874 (*1 *1) (-5 *1 (-835))) (-1883 (*1 *1) (-5 *1 (-835))) (-3582 (*1 *1) (-5 *1 (-835)))) +(-13 (-1121) (-10 -8 (-15 -3227 ($)) (-15 -1874 ($)) (-15 -1883 ($)) (-15 -3582 ($)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 23) (($ (-1197)) 19)) (-2113 (((-112) $ $) NIL)) (-3817 (((-112) $) 10)) (-2905 (((-112) $) 9)) (-2722 (((-112) $) 11)) (-3237 (((-112) $) 8)) (-2923 (((-112) $ $) 21))) +(((-836) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -3237 ((-112) $)) (-15 -2905 ((-112) $)) (-15 -3817 ((-112) $)) (-15 -2722 ((-112) $))))) (T -836)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-836)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -3237 ((-112) $)) (-15 -2905 ((-112) $)) (-15 -3817 ((-112) $)) (-15 -2722 ((-112) $)))) +((-3488 (((-112) $ $) NIL)) (-3170 (($ (-836) (-656 (-1197))) 32)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3951 (((-836) $) 33)) (-1418 (((-656 (-1197)) $) 34)) (-3569 (((-876) $) 31)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-837) (-13 (-1121) (-10 -8 (-15 -3951 ((-836) $)) (-15 -1418 ((-656 (-1197)) $)) (-15 -3170 ($ (-836) (-656 (-1197))))))) (T -837)) +((-3951 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) +(-13 (-1121) (-10 -8 (-15 -3951 ((-836) $)) (-15 -1418 ((-656 (-1197)) $)) (-15 -3170 ($ (-836) (-656 (-1197)))))) +((-3157 (((-1293) (-834) (-326 |#1|) (-112)) 23) (((-1293) (-834) (-326 |#1|)) 89) (((-1179) (-326 |#1|) (-112)) 88) (((-1179) (-326 |#1|)) 87))) +(((-838 |#1|) (-10 -7 (-15 -3157 ((-1179) (-326 |#1|))) (-15 -3157 ((-1179) (-326 |#1|) (-112))) (-15 -3157 ((-1293) (-834) (-326 |#1|))) (-15 -3157 ((-1293) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1070))) (T -838)) +((-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *5)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *5)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *4))))) +(-10 -7 (-15 -3157 ((-1179) (-326 |#1|))) (-15 -3157 ((-1179) (-326 |#1|) (-112))) (-15 -3157 ((-1293) (-834) (-326 |#1|))) (-15 -3157 ((-1293) (-834) (-326 |#1|) (-112)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1899 ((|#1| $) 10)) (-1757 (($ |#1|) 9)) (-3215 (((-112) $) NIL)) (-1945 (($ |#2| (-783)) NIL)) (-2987 (((-783) $) NIL)) (-2089 ((|#2| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2773 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-3600 (((-783) $) NIL)) (-3569 (((-876) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3998 ((|#2| $ (-783)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1757 ($ |#1|)) (-15 -1899 (|#1| $)))) (-720 |#2|) (-1070)) (T -839)) +((-1757 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-1899 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) +(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1757 ($ |#1|)) (-15 -1899 (|#1| $)))) +((-3157 (((-1293) (-834) $ (-112)) 9) (((-1293) (-834) $) 8) (((-1179) $ (-112)) 7) (((-1179) $) 6))) (((-840) (-141)) (T -840)) -((-3678 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1292)))) (-3678 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1292)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1178)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1178))))) -(-13 (-10 -8 (-15 -3678 ((-1178) $)) (-15 -3678 ((-1178) $ (-112))) (-15 -3678 ((-1292) (-834) $)) (-15 -3678 ((-1292) (-834) $ (-112))))) -((-2458 (((-322) (-1178) (-1178)) 12)) (-3814 (((-112) (-1178) (-1178)) 34)) (-2745 (((-112) (-1178)) 33)) (-3346 (((-52) (-1178)) 25)) (-4188 (((-52) (-1178)) 23)) (-4224 (((-52) (-834)) 17)) (-3851 (((-656 (-1178)) (-1178)) 28)) (-2159 (((-656 (-1178))) 27))) -(((-841) (-10 -7 (-15 -4224 ((-52) (-834))) (-15 -4188 ((-52) (-1178))) (-15 -3346 ((-52) (-1178))) (-15 -2159 ((-656 (-1178)))) (-15 -3851 ((-656 (-1178)) (-1178))) (-15 -2745 ((-112) (-1178))) (-15 -3814 ((-112) (-1178) (-1178))) (-15 -2458 ((-322) (-1178) (-1178))))) (T -841)) -((-2458 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-841)))) (-3814 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))) (-3851 (*1 *2 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)) (-5 *3 (-1178)))) (-2159 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -4224 ((-52) (-834))) (-15 -4188 ((-52) (-1178))) (-15 -3346 ((-52) (-1178))) (-15 -2159 ((-656 (-1178)))) (-15 -3851 ((-656 (-1178)) (-1178))) (-15 -2745 ((-112) (-1178))) (-15 -3814 ((-112) (-1178) (-1178))) (-15 -2458 ((-322) (-1178) (-1178)))) -((-1952 (((-112) $ $) 20)) (-4025 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3863 (($ $ $) 73)) (-3702 (((-112) $ $) 74)) (-2337 (((-112) $ (-783)) 8)) (-3703 (($ (-656 |#1|)) 69) (($) 68)) (-2146 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3308 (($ $) 63)) (-3966 (($ $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ |#1| $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) 65)) (-2135 (((-112) $ (-783)) 9)) (-2905 ((|#1| $) 79)) (-3881 (($ $ $) 82)) (-2144 (($ $ $) 81)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1654 ((|#1| $) 80)) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23)) (-2710 (($ $ $) 70)) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3115 (((-1140) $) 22)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-2779 (((-656 (-2 (|:| -2904 |#1|) (|:| -3125 (-783)))) $) 62)) (-1907 (($ $ |#1|) 72) (($ $ $) 71)) (-1437 (($) 50) (($ (-656 |#1|)) 49)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 51)) (-4112 (((-875) $) 18)) (-1514 (($ (-656 |#1|)) 67) (($) 66)) (-1994 (((-112) $ $) 21)) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19)) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) +((-3157 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293)))) (-3157 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) (-3157 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179))))) +(-13 (-10 -8 (-15 -3157 ((-1179) $)) (-15 -3157 ((-1179) $ (-112))) (-15 -3157 ((-1293) (-834) $)) (-15 -3157 ((-1293) (-834) $ (-112))))) +((-4309 (((-322) (-1179) (-1179)) 12)) (-1890 (((-112) (-1179) (-1179)) 34)) (-4133 (((-112) (-1179)) 33)) (-3140 (((-52) (-1179)) 25)) (-4410 (((-52) (-1179)) 23)) (-3532 (((-52) (-834)) 17)) (-4224 (((-656 (-1179)) (-1179)) 28)) (-1343 (((-656 (-1179))) 27))) +(((-841) (-10 -7 (-15 -3532 ((-52) (-834))) (-15 -4410 ((-52) (-1179))) (-15 -3140 ((-52) (-1179))) (-15 -1343 ((-656 (-1179)))) (-15 -4224 ((-656 (-1179)) (-1179))) (-15 -4133 ((-112) (-1179))) (-15 -1890 ((-112) (-1179) (-1179))) (-15 -4309 ((-322) (-1179) (-1179))))) (T -841)) +((-4309 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841)))) (-1890 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-4224 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179)))) (-1343 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4410 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) +(-10 -7 (-15 -3532 ((-52) (-834))) (-15 -4410 ((-52) (-1179))) (-15 -3140 ((-52) (-1179))) (-15 -1343 ((-656 (-1179)))) (-15 -4224 ((-656 (-1179)) (-1179))) (-15 -4133 ((-112) (-1179))) (-15 -1890 ((-112) (-1179) (-1179))) (-15 -4309 ((-322) (-1179) (-1179)))) +((-3488 (((-112) $ $) 20)) (-1820 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4327 (($ $ $) 73)) (-2095 (((-112) $ $) 74)) (-2396 (((-112) $ (-783)) 8)) (-2069 (($ (-656 |#1|)) 69) (($) 68)) (-4355 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2696 (($ $) 63)) (-2800 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) 65)) (-4252 (((-112) $ (-783)) 9)) (-3124 ((|#1| $) 79)) (-1367 (($ $ $) 82)) (-4335 (($ $ $) 81)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1951 ((|#1| $) 80)) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23)) (-1834 (($ $ $) 70)) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-4406 (((-656 (-2 (|:| -4438 |#1|) (|:| -1460 (-783)))) $) 62)) (-2587 (($ $ |#1|) 72) (($ $ $) 71)) (-2314 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18)) (-1894 (($ (-656 |#1|)) 67) (($) 66)) (-2113 (((-112) $ $) 21)) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-842 |#1|) (-141) (-861)) (T -842)) -((-2905 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861))))) -(-13 (-748 |t#1|) (-988 |t#1|) (-10 -8 (-15 -2905 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-875)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-988 |#1|) . T) ((-1118 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-2511 (((-1292) (-1140) (-1140)) 48)) (-3887 (((-1292) (-833) (-52)) 45)) (-3152 (((-52) (-833)) 16))) -(((-843) (-10 -7 (-15 -3152 ((-52) (-833))) (-15 -3887 ((-1292) (-833) (-52))) (-15 -2511 ((-1292) (-1140) (-1140))))) (T -843)) -((-2511 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1292)) (-5 *1 (-843)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1292)) (-5 *1 (-843)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(-10 -7 (-15 -3152 ((-52) (-833))) (-15 -3887 ((-1292) (-833) (-52))) (-15 -2511 ((-1292) (-1140) (-1140)))) -((-2422 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) -(((-844 |#1| |#2|) (-10 -7 (-15 -2422 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2422 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1120) (-1120)) (T -844)) -((-2422 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *1 (-844 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) -(-10 -7 (-15 -2422 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2422 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL (|has| |#1| (-21)))) (-2559 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3773 (((-576) $) NIL (|has| |#1| (-860)))) (-4331 (($) NIL (|has| |#1| (-21)) CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 9)) (-3900 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-2936 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3898 (((-112) $) 46 (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-2690 (((-112) $) NIL (|has| |#1| (-860)))) (-2287 (((-112) $) NIL (|has| |#1| (-860)))) (-3197 (((-112) $) NIL (|has| |#1| (-860)))) (-2905 (($ $ $) NIL (|has| |#1| (-860)))) (-1654 (($ $ $) NIL (|has| |#1| (-860)))) (-2043 (((-1178) $) NIL)) (-2734 (($) 13)) (-1950 (((-112) $) 12)) (-3115 (((-1140) $) NIL)) (-1949 (((-112) $) 11)) (-4112 (((-875) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3794 (|has| |#1| (-860)) (|has| |#1| (-1058 (-576)))))) (-4115 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-1994 (((-112) $ $) 54)) (-2388 (($ $) NIL (|has| |#1| (-860)))) (-4314 (($) 23 (|has| |#1| (-21)) CONST)) (-4320 (($) 33 (|has| |#1| (-860)) CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3938 (((-112) $ $) 21)) (-3983 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3962 (((-112) $ $) 45 (|has| |#1| (-860)))) (-4036 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4026 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-939)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-939) $) NIL (|has| |#1| (-21))))) -(((-845 |#1|) (-13 (-1120) (-423 |#1|) (-10 -8 (-15 -2734 ($)) (-15 -1949 ((-112) $)) (-15 -1950 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1120)) (T -845)) -((-2734 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1120)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1120)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1120)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1120)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1120)))) (-2936 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1120))))) -(-13 (-1120) (-423 |#1|) (-10 -8 (-15 -2734 ($)) (-15 -1949 ((-112) $)) (-15 -1950 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-1681 (((-112) $ |#2|) 14)) (-4112 (((-875) $) 11))) -(((-846 |#1| |#2|) (-10 -8 (-15 -1681 ((-112) |#1| |#2|)) (-15 -4112 ((-875) |#1|))) (-847 |#2|) (-1120)) (T -846)) -NIL -(-10 -8 (-15 -1681 ((-112) |#1| |#2|)) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-4148 ((|#1| $) 16)) (-2043 (((-1178) $) 10)) (-1681 (((-112) $ |#1|) 14)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-2670 (((-55) $) 15)) (-3938 (((-112) $ $) 8))) -(((-847 |#1|) (-141) (-1120)) (T -847)) -((-4148 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1120)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-55)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(-13 (-1120) (-10 -8 (-15 -4148 (|t#1| $)) (-15 -2670 ((-55) $)) (-15 -1681 ((-112) $ |t#1|)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-115) $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1585 ((|#1| (-115) |#1|) NIL)) (-2287 (((-112) $) NIL)) (-2991 (($ |#1| (-372 (-115))) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2704 (($ $ (-1 |#1| |#1|)) NIL)) (-3303 (($ $ (-1 |#1| |#1|)) NIL)) (-4368 ((|#1| $ |#1|) NIL)) (-1403 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3016 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-848 |#1|) (-13 (-1069) (-1058 |#1|) (-1058 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3016 ($ $)) (-15 -3016 ($ $ $)) (-15 -1403 (|#1| |#1|))) |%noBranch|) (-15 -3303 ($ $ (-1 |#1| |#1|))) (-15 -2704 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1585 (|#1| (-115) |#1|)) (-15 -2991 ($ |#1| (-372 (-115)))))) (-1069)) (T -848)) -((-3016 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-3016 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-1403 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-848 *3)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1069)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1069)))) (-1585 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1069)))) (-2991 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1069))))) -(-13 (-1069) (-1058 |#1|) (-1058 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3016 ($ $)) (-15 -3016 ($ $ $)) (-15 -1403 (|#1| |#1|))) |%noBranch|) (-15 -3303 ($ $ (-1 |#1| |#1|))) (-15 -2704 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1585 (|#1| (-115) |#1|)) (-15 -2991 ($ |#1| (-372 (-115)))))) -((-3777 (((-216 (-514)) (-1178)) 9))) -(((-849) (-10 -7 (-15 -3777 ((-216 (-514)) (-1178))))) (T -849)) -((-3777 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(-10 -7 (-15 -3777 ((-216 (-514)) (-1178)))) -((-1952 (((-112) $ $) NIL)) (-3512 (((-1138) $) 10)) (-4148 (((-518) $) 9)) (-2043 (((-1178) $) NIL)) (-1681 (((-112) $ (-518)) NIL)) (-3115 (((-1140) $) NIL)) (-4124 (($ (-518) (-1138)) 8)) (-4112 (((-875) $) 25)) (-1994 (((-112) $ $) NIL)) (-2670 (((-55) $) 20)) (-3938 (((-112) $ $) 12))) -(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -3512 ((-1138) $)) (-15 -4124 ($ (-518) (-1138)))))) (T -850)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-850)))) (-4124 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1138)) (-5 *1 (-850))))) -(-13 (-847 (-518)) (-10 -8 (-15 -3512 ((-1138) $)) (-15 -4124 ($ (-518) (-1138))))) -((-1952 (((-112) $ $) 7)) (-3244 (((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 15) (((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 16)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) +((-3124 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861))))) +(-13 (-748 |t#1|) (-989 |t#1|) (-10 -8 (-15 -3124 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-989 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3602 (((-1293) (-1141) (-1141)) 48)) (-1415 (((-1293) (-833) (-52)) 45)) (-1670 (((-52) (-833)) 16))) +(((-843) (-10 -7 (-15 -1670 ((-52) (-833))) (-15 -1415 ((-1293) (-833) (-52))) (-15 -3602 ((-1293) (-1141) (-1141))))) (T -843)) +((-3602 (*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) +(-10 -7 (-15 -1670 ((-52) (-833))) (-15 -1415 ((-1293) (-833) (-52))) (-15 -3602 ((-1293) (-1141) (-1141)))) +((-4116 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) +(((-844 |#1| |#2|) (-10 -7 (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1121) (-1121)) (T -844)) +((-4116 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-844 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) +(-10 -7 (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL (|has| |#1| (-21)))) (-2780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1529 (((-576) $) NIL (|has| |#1| (-860)))) (-3306 (($) NIL (|has| |#1| (-21)) CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-3451 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-3355 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3426 (((-112) $) 46 (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-1661 (((-112) $) NIL (|has| |#1| (-860)))) (-3215 (((-112) $) NIL (|has| |#1| (-860)))) (-4099 (((-112) $) NIL (|has| |#1| (-860)))) (-3124 (($ $ $) NIL (|has| |#1| (-860)))) (-1951 (($ $ $) NIL (|has| |#1| (-860)))) (-1413 (((-1179) $) NIL)) (-1610 (($) 13)) (-3022 (((-112) $) 12)) (-1450 (((-1141) $) NIL)) (-3011 (((-112) $) 11)) (-3569 (((-876) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2758 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-1778 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-2113 (((-112) $ $) 54)) (-1665 (($ $) NIL (|has| |#1| (-860)))) (-2719 (($) 23 (|has| |#1| (-21)) CONST)) (-2730 (($) 33 (|has| |#1| (-860)) CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2923 (((-112) $ $) 21)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2948 (((-112) $ $) 45 (|has| |#1| (-860)))) (-3043 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3029 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) +(((-845 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -1610 ($)) (-15 -3011 ((-112) $)) (-15 -3022 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -845)) +((-1610 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) +(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -1610 ($)) (-15 -3011 ((-112) $)) (-15 -3022 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-2158 (((-112) $ |#2|) 14)) (-3569 (((-876) $) 11))) +(((-846 |#1| |#2|) (-10 -8 (-15 -2158 ((-112) |#1| |#2|)) (-15 -3569 ((-876) |#1|))) (-847 |#2|) (-1121)) (T -846)) +NIL +(-10 -8 (-15 -2158 ((-112) |#1| |#2|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-2627 ((|#1| $) 16)) (-1413 (((-1179) $) 10)) (-2158 (((-112) $ |#1|) 14)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-1479 (((-55) $) 15)) (-2923 (((-112) $ $) 8))) +(((-847 |#1|) (-141) (-1121)) (T -847)) +((-2627 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1121)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-1121) (-10 -8 (-15 -2627 (|t#1| $)) (-15 -1479 ((-55) $)) (-15 -2158 ((-112) $ |t#1|)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-115) $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3821 ((|#1| (-115) |#1|) NIL)) (-3215 (((-112) $) NIL)) (-2607 (($ |#1| (-372 (-115))) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1792 (($ $ (-1 |#1| |#1|)) NIL)) (-2654 (($ $ (-1 |#1| |#1|)) NIL)) (-2796 ((|#1| $ |#1|) NIL)) (-3673 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2865 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-848 |#1|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2865 ($ $)) (-15 -2865 ($ $ $)) (-15 -3673 (|#1| |#1|))) |%noBranch|) (-15 -2654 ($ $ (-1 |#1| |#1|))) (-15 -1792 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3821 (|#1| (-115) |#1|)) (-15 -2607 ($ |#1| (-372 (-115)))))) (-1070)) (T -848)) +((-2865 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-2865 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-3673 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (-1792 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1070)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1070)))) (-3821 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) +(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2865 ($ $)) (-15 -2865 ($ $ $)) (-15 -3673 (|#1| |#1|))) |%noBranch|) (-15 -2654 ($ $ (-1 |#1| |#1|))) (-15 -1792 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3821 (|#1| (-115) |#1|)) (-15 -2607 ($ |#1| (-372 (-115)))))) +((-1568 (((-216 (-514)) (-1179)) 9))) +(((-849) (-10 -7 (-15 -1568 ((-216 (-514)) (-1179))))) (T -849)) +((-1568 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) +(-10 -7 (-15 -1568 ((-216 (-514)) (-1179)))) +((-3488 (((-112) $ $) NIL)) (-2703 (((-1139) $) 10)) (-2627 (((-518) $) 9)) (-1413 (((-1179) $) NIL)) (-2158 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (($ (-518) (-1139)) 8)) (-3569 (((-876) $) 25)) (-2113 (((-112) $ $) NIL)) (-1479 (((-55) $) 20)) (-2923 (((-112) $ $) 12))) +(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -2703 ((-1139) $)) (-15 -3581 ($ (-518) (-1139)))))) (T -850)) +((-2703 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-850)))) (-3581 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850))))) +(-13 (-847 (-518)) (-10 -8 (-15 -2703 ((-1139) $)) (-15 -3581 ($ (-518) (-1139))))) +((-3488 (((-112) $ $) 7)) (-3341 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 15) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 16)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) (((-851) (-141)) (T -851)) -((-2420 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) (-2420 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) (-3244 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-1055)))) (-3244 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1055))))) -(-13 (-1120) (-10 -7 (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -3244 ((-1055) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -3244 ((-1055) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1690 (((-1055) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1055) (-326 (-390)) (-656 (-390))) 164) (((-1055) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1055) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1055) (-853)) 125) (((-1055) (-853) (-1083)) 124)) (-2420 (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1083)) 85) (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853)) 87)) (-3986 (((-1055) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1055) (-853)) 150))) -(((-852) (-10 -7 (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1083))) (-15 -1690 ((-1055) (-853) (-1083))) (-15 -1690 ((-1055) (-853))) (-15 -3986 ((-1055) (-853))) (-15 -1690 ((-1055) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -1690 ((-1055) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -1690 ((-1055) (-326 (-390)) (-656 (-390)))) (-15 -1690 ((-1055) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3986 ((-1055) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) -((-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-1690 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-1690 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-852)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-852))))) -(-10 -7 (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1083))) (-15 -1690 ((-1055) (-853) (-1083))) (-15 -1690 ((-1055) (-853))) (-15 -3986 ((-1055) (-853))) (-15 -1690 ((-1055) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -1690 ((-1055) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -1690 ((-1055) (-326 (-390)) (-656 (-390)))) (-15 -1690 ((-1055) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3986 ((-1055) (-656 (-326 (-390))) (-656 (-390))))) -((-1952 (((-112) $ $) NIL)) (-2317 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) $) 21)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) 18)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-853) (-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4112 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -4112 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))))) (-15 -2317 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) $))))) (T -853)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *1 (-853)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) (-5 *1 (-853)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) (-5 *1 (-853))))) -(-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4112 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -4112 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))))) (-15 -2317 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) $)))) -((-2422 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) -(((-854 |#1| |#2|) (-10 -7 (-15 -2422 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2422 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1120) (-1120)) (T -854)) -((-2422 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *1 (-854 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -2422 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2422 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL (|has| |#1| (-21)))) (-2501 (((-1140) $) 31)) (-2559 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3773 (((-576) $) NIL (|has| |#1| (-860)))) (-4331 (($) NIL (|has| |#1| (-21)) CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 9)) (-3900 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-2936 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3898 (((-112) $) 60 (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-2690 (((-112) $) NIL (|has| |#1| (-860)))) (-4355 (($) 14)) (-2287 (((-112) $) NIL (|has| |#1| (-860)))) (-3197 (((-112) $) NIL (|has| |#1| (-860)))) (-4364 (($) 16)) (-2905 (($ $ $) NIL (|has| |#1| (-860)))) (-1654 (($ $ $) NIL (|has| |#1| (-860)))) (-2043 (((-1178) $) NIL)) (-1950 (((-112) $) 12)) (-3115 (((-1140) $) NIL)) (-1949 (((-112) $) 11)) (-4112 (((-875) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3794 (|has| |#1| (-860)) (|has| |#1| (-1058 (-576)))))) (-4115 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-1994 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| |#1| (-860)))) (-4314 (($) 37 (|has| |#1| (-21)) CONST)) (-4320 (($) 48 (|has| |#1| (-860)) CONST)) (-3993 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3938 (((-112) $ $) 35)) (-3983 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3962 (((-112) $ $) 59 (|has| |#1| (-860)))) (-4036 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4026 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-939)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-939) $) NIL (|has| |#1| (-21))))) -(((-855 |#1|) (-13 (-1120) (-423 |#1|) (-10 -8 (-15 -4355 ($)) (-15 -4364 ($)) (-15 -1949 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2501 ((-1140) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1120)) (T -855)) -((-4355 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1120)))) (-4364 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1120)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1120)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1120)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-855 *3)) (-4 *3 (-1120)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1120)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1120)))) (-2936 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1120))))) -(-13 (-1120) (-423 |#1|) (-10 -8 (-15 -4355 ($)) (-15 -4364 ($)) (-15 -1949 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2501 ((-1140) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-1952 (((-112) $ $) 7)) (-2199 (((-783)) 24)) (-4369 (($) 27)) (-2905 (($ $ $) 20) (($) 23 T CONST)) (-1654 (($ $ $) 19) (($) 22 T CONST)) (-4375 (((-939) $) 26)) (-2043 (((-1178) $) 10)) (-2409 (($ (-939)) 25)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15))) +((-1973 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) (-1973 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) (-3341 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-1056)))) (-3341 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1056))))) +(-13 (-1121) (-10 -7 (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3341 ((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3341 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3332 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1056) (-326 (-390)) (-656 (-390))) 164) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1056) (-853)) 125) (((-1056) (-853) (-1084)) 124)) (-1973 (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084)) 85) (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853)) 87)) (-3008 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1056) (-853)) 150))) +(((-852) (-10 -7 (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -3332 ((-1056) (-853) (-1084))) (-15 -3332 ((-1056) (-853))) (-15 -3008 ((-1056) (-853))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -3332 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3008 ((-1056) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) +((-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852))))) +(-10 -7 (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -3332 ((-1056) (-853) (-1084))) (-15 -3332 ((-1056) (-853))) (-15 -3008 ((-1056) (-853))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -3332 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3008 ((-1056) (-656 (-326 (-390))) (-656 (-390))))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) $) 21)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) 18)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-853) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3569 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3569 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))))) (-15 -2859 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) $))))) (T -853)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *1 (-853)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) (-5 *1 (-853)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) (-5 *1 (-853))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3569 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3569 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))))) (-15 -2859 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) $)))) +((-4116 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) +(((-854 |#1| |#2|) (-10 -7 (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1121) (-1121)) (T -854)) +((-4116 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-854 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) +(-10 -7 (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL (|has| |#1| (-21)))) (-3492 (((-1141) $) 31)) (-2780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1529 (((-576) $) NIL (|has| |#1| (-860)))) (-3306 (($) NIL (|has| |#1| (-21)) CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-3451 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-3355 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3426 (((-112) $) 60 (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-1661 (((-112) $) NIL (|has| |#1| (-860)))) (-2954 (($) 14)) (-3215 (((-112) $) NIL (|has| |#1| (-860)))) (-4099 (((-112) $) NIL (|has| |#1| (-860)))) (-2969 (($) 16)) (-3124 (($ $ $) NIL (|has| |#1| (-860)))) (-1951 (($ $ $) NIL (|has| |#1| (-860)))) (-1413 (((-1179) $) NIL)) (-3022 (((-112) $) 12)) (-1450 (((-1141) $) NIL)) (-3011 (((-112) $) 11)) (-3569 (((-876) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2758 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-1778 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-2113 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-860)))) (-2719 (($) 37 (|has| |#1| (-21)) CONST)) (-2730 (($) 48 (|has| |#1| (-860)) CONST)) (-2991 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2923 (((-112) $ $) 35)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2948 (((-112) $ $) 59 (|has| |#1| (-860)))) (-3043 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3029 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) +(((-855 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2954 ($)) (-15 -2969 ($)) (-15 -3011 ((-112) $)) (-15 -3022 ((-112) $)) (-15 -3492 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -855)) +((-2954 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-2969 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) +(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2954 ($)) (-15 -2969 ($)) (-15 -3011 ((-112) $)) (-15 -3022 ((-112) $)) (-15 -3492 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-2096 (((-783)) 24)) (-1836 (($) 27)) (-3124 (($ $ $) 20) (($) 23 T CONST)) (-1951 (($ $ $) 19) (($) 22 T CONST)) (-2460 (((-940) $) 26)) (-1413 (((-1179) $) 10)) (-3223 (($ (-940)) 25)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15))) (((-856) (-141)) (T -856)) -((-2905 (*1 *1) (-4 *1 (-856))) (-1654 (*1 *1) (-4 *1 (-856)))) -(-13 (-861) (-379) (-10 -8 (-15 -2905 ($) -2665) (-15 -1654 ($) -2665))) -(((-102) . T) ((-625 (-875)) . T) ((-379) . T) ((-861) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-1622 (((-112) (-1287 |#2|) (-1287 |#2|)) 19)) (-1340 (((-112) (-1287 |#2|) (-1287 |#2|)) 20)) (-2805 (((-112) (-1287 |#2|) (-1287 |#2|)) 16))) -(((-857 |#1| |#2|) (-10 -7 (-15 -2805 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -1622 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -1340 ((-112) (-1287 |#2|) (-1287 |#2|)))) (-783) (-804)) (T -857)) -((-1340 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-1622 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2805 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(-10 -7 (-15 -2805 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -1622 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -1340 ((-112) (-1287 |#2|) (-1287 |#2|)))) -((-1952 (((-112) $ $) 7)) (-4331 (($) 25 T CONST)) (-3900 (((-3 $ "failed") $) 28)) (-2287 (((-112) $) 26)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4320 (($) 24 T CONST)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (** (($ $ (-939)) 23) (($ $ (-783)) 27)) (* (($ $ $) 22))) +((-3124 (*1 *1) (-4 *1 (-856))) (-1951 (*1 *1) (-4 *1 (-856)))) +(-13 (-861) (-379) (-10 -8 (-15 -3124 ($) -1480) (-15 -1951 ($) -1480))) +(((-102) . T) ((-625 (-876)) . T) ((-379) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-2899 (((-112) (-1288 |#2|) (-1288 |#2|)) 19)) (-3016 (((-112) (-1288 |#2|) (-1288 |#2|)) 20)) (-3425 (((-112) (-1288 |#2|) (-1288 |#2|)) 16))) +(((-857 |#1| |#2|) (-10 -7 (-15 -3425 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2899 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -3016 ((-112) (-1288 |#2|) (-1288 |#2|)))) (-783) (-804)) (T -857)) +((-3016 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2899 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-3425 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(-10 -7 (-15 -3425 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2899 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -3016 ((-112) (-1288 |#2|) (-1288 |#2|)))) +((-3488 (((-112) $ $) 7)) (-3306 (($) 25 T CONST)) (-3451 (((-3 $ "failed") $) 28)) (-3215 (((-112) $) 26)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2730 (($) 24 T CONST)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (** (($ $ (-940)) 23) (($ $ (-783)) 27)) (* (($ $ $) 22))) (((-858) (-141)) (T -858)) NIL -(-13 (-870) (-738)) -(((-102) . T) ((-625 (-875)) . T) ((-738) . T) ((-870) . T) ((-861) . T) ((-863) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3773 (((-576) $) 21)) (-2690 (((-112) $) 10)) (-3197 (((-112) $) 12)) (-2388 (($ $) 23))) -(((-859 |#1|) (-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -3773 ((-576) |#1|)) (-15 -3197 ((-112) |#1|)) (-15 -2690 ((-112) |#1|))) (-860)) (T -859)) +(-13 (-871) (-738)) +(((-102) . T) ((-625 (-876)) . T) ((-738) . T) ((-871) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-1529 (((-576) $) 21)) (-1661 (((-112) $) 10)) (-4099 (((-112) $) 12)) (-1665 (($ $) 23))) +(((-859 |#1|) (-10 -8 (-15 -1665 (|#1| |#1|)) (-15 -1529 ((-576) |#1|)) (-15 -4099 ((-112) |#1|)) (-15 -1661 ((-112) |#1|))) (-860)) (T -859)) NIL -(-10 -8 (-15 -2388 (|#1| |#1|)) (-15 -3773 ((-576) |#1|)) (-15 -3197 ((-112) |#1|)) (-15 -2690 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 26)) (-2559 (((-3 $ "failed") $ $) 28)) (-3773 (((-576) $) 38)) (-4331 (($) 25 T CONST)) (-3900 (((-3 $ "failed") $) 43)) (-2690 (((-112) $) 40)) (-2287 (((-112) $) 45)) (-3197 (((-112) $) 39)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 47)) (-4115 (((-783)) 48 T CONST)) (-1994 (((-112) $ $) 6)) (-2388 (($ $) 37)) (-4314 (($) 24 T CONST)) (-4320 (($) 46 T CONST)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (-4036 (($ $ $) 32) (($ $) 31)) (-4026 (($ $ $) 22)) (** (($ $ (-783)) 44) (($ $ (-939)) 41)) (* (($ (-939) $) 23) (($ (-783) $) 27) (($ (-576) $) 30) (($ $ $) 42))) +(-10 -8 (-15 -1665 (|#1| |#1|)) (-15 -1529 ((-576) |#1|)) (-15 -4099 ((-112) |#1|)) (-15 -1661 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 26)) (-2780 (((-3 $ "failed") $ $) 28)) (-1529 (((-576) $) 38)) (-3306 (($) 25 T CONST)) (-3451 (((-3 $ "failed") $) 43)) (-1661 (((-112) $) 40)) (-3215 (((-112) $) 45)) (-4099 (((-112) $) 39)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 47)) (-1778 (((-783)) 48 T CONST)) (-2113 (((-112) $ $) 6)) (-1665 (($ $) 37)) (-2719 (($) 24 T CONST)) (-2730 (($) 46 T CONST)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (-3043 (($ $ $) 32) (($ $) 31)) (-3029 (($ $ $) 22)) (** (($ $ (-783)) 44) (($ $ (-940)) 41)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30) (($ $ $) 42))) (((-860) (-141)) (T -860)) -((-2690 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-2388 (*1 *1 *1) (-4 *1 (-860)))) -(-13 (-803) (-1069) (-738) (-10 -8 (-15 -2690 ((-112) $)) (-15 -3197 ((-112) $)) (-15 -3773 ((-576) $)) (-15 -2388 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-863) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15))) +((-1661 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-1665 (*1 *1 *1) (-4 *1 (-860)))) +(-13 (-803) (-1070) (-738) (-10 -8 (-15 -1661 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -1529 ((-576) $)) (-15 -1665 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15))) (((-861) (-141)) (T -861)) NIL -(-13 (-1120) (-863)) -(((-102) . T) ((-625 (-875)) . T) ((-863) . T) ((-1120) . T) ((-1237) . T)) -((-2905 (($ $ $) 16)) (-1654 (($ $ $) 15)) (-1994 (((-112) $ $) 17)) (-3993 (((-112) $ $) 12)) (-3974 (((-112) $ $) 9)) (-3938 (((-112) $ $) 14)) (-3983 (((-112) $ $) 11))) -(((-862 |#1|) (-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -3993 ((-112) |#1| |#1|)) (-15 -3983 ((-112) |#1| |#1|)) (-15 -3974 ((-112) |#1| |#1|)) (-15 -1994 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-863)) (T -862)) -NIL -(-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -3993 ((-112) |#1| |#1|)) (-15 -3983 ((-112) |#1| |#1|)) (-15 -3974 ((-112) |#1| |#1|)) (-15 -1994 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-2905 (($ $ $) 9)) (-1654 (($ $ $) 10)) (-1994 (((-112) $ $) 6)) (-3993 (((-112) $ $) 11)) (-3974 (((-112) $ $) 13)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 12)) (-3962 (((-112) $ $) 14))) -(((-863) (-141)) (T -863)) -((-3962 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) (-3974 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) (-3993 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) (-1654 (*1 *1 *1 *1) (-4 *1 (-863))) (-2905 (*1 *1 *1 *1) (-4 *1 (-863)))) -(-13 (-102) (-10 -8 (-15 -3962 ((-112) $ $)) (-15 -3974 ((-112) $ $)) (-15 -3983 ((-112) $ $)) (-15 -3993 ((-112) $ $)) (-15 -1654 ($ $ $)) (-15 -2905 ($ $ $)))) -(((-102) . T) ((-1237) . T)) -((-3943 (($ $ $) 49)) (-2767 (($ $ $) 48)) (-2735 (($ $ $) 46)) (-3429 (($ $ $) 55)) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 50)) (-2966 (((-3 $ "failed") $ $) 53)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3557 (($ $) 39)) (-2700 (($ $ $) 43)) (-4040 (($ $ $) 42)) (-1978 (($ $ $) 51)) (-1519 (($ $ $) 57)) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 45)) (-3862 (((-3 $ "failed") $ $) 52)) (-1943 (((-3 $ "failed") $ |#2|) 32)) (-3430 ((|#2| $) 36)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-1410 (((-656 |#2|) $) 21)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-864 |#1| |#2|) (-10 -8 (-15 -1978 (|#1| |#1| |#1|)) (-15 -2225 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2547 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -2966 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -1645 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2547 |#1|)) |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -3862 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -4040 (|#1| |#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1410 ((-656 |#2|) |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4112 ((-875) |#1|))) (-865 |#2|) (-1069)) (T -864)) -NIL -(-10 -8 (-15 -1978 (|#1| |#1| |#1|)) (-15 -2225 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2547 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -2966 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -1645 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2547 |#1|)) |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -3862 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -4040 (|#1| |#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -1943 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1410 ((-656 |#2|) |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3943 (($ $ $) 50 (|has| |#1| (-374)))) (-2767 (($ $ $) 51 (|has| |#1| (-374)))) (-2735 (($ $ $) 53 (|has| |#1| (-374)))) (-3429 (($ $ $) 48 (|has| |#1| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 47 (|has| |#1| (-374)))) (-2966 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 52 (|has| |#1| (-374)))) (-2980 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2317 (((-576) $) 79 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 75)) (-3309 (($ $) 69)) (-3900 (((-3 $ "failed") $) 37)) (-3557 (($ $) 60 (|has| |#1| (-464)))) (-2287 (((-112) $) 35)) (-1562 (($ |#1| (-783)) 67)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 62 (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63 (|has| |#1| (-568)))) (-3661 (((-783) $) 71)) (-2700 (($ $ $) 57 (|has| |#1| (-374)))) (-4040 (($ $ $) 58 (|has| |#1| (-374)))) (-1978 (($ $ $) 46 (|has| |#1| (-374)))) (-1519 (($ $ $) 55 (|has| |#1| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 54 (|has| |#1| (-374)))) (-3862 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 59 (|has| |#1| (-374)))) (-1709 ((|#1| $) 70)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-1877 (((-783) $) 72)) (-3430 ((|#1| $) 61 (|has| |#1| (-464)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) 73)) (-1410 (((-656 |#1|) $) 66)) (-4269 ((|#1| $ (-783)) 68)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-2649 ((|#1| $ |#1| |#1|) 65)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-865 |#1|) (-141) (-1069)) (T -865)) -((-1877 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-1562 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-656 *3)))) (-2649 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-1943 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-568)))) (-3911 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) (-2029 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) (-4040 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-2700 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-3862 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-1519 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-1645 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2547 *1))) (-4 *1 (-865 *3)))) (-2735 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-2457 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-3429 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-2225 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2547 *1))) (-4 *1 (-865 *3)))) (-1978 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(-13 (-1069) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -1877 ((-783) $)) (-15 -3661 ((-783) $)) (-15 -1709 (|t#1| $)) (-15 -3309 ($ $)) (-15 -4269 (|t#1| $ (-783))) (-15 -1562 ($ |t#1| (-783))) (-15 -1410 ((-656 |t#1|) $)) (-15 -2649 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -1943 ((-3 $ "failed") $ |t#1|)) (-15 -3911 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -3852 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3430 (|t#1| $)) (-15 -3557 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2029 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -4040 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -3862 ((-3 $ "failed") $ $)) (-15 -1519 ($ $ $)) (-15 -1645 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $)) (-15 -2735 ($ $ $)) (-15 -2457 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -2767 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3429 ($ $ $)) (-15 -2225 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $)) (-15 -1978 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1058 #0#) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1581 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2457 (((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-3852 (((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2029 (((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-2649 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-866 |#1| |#2|) (-10 -7 (-15 -1581 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2649 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3911 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3852 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2029 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2457 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1069) (-865 |#1|)) (T -866)) -((-2457 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-2029 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-3852 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-3911 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-2649 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1069)) (-5 *1 (-866 *2 *3)) (-4 *3 (-865 *2)))) (-1581 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1069)) (-5 *1 (-866 *5 *2)) (-4 *2 (-865 *5))))) -(-10 -7 (-15 -1581 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2649 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3911 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3852 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2029 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2457 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3943 (($ $ $) NIL (|has| |#1| (-374)))) (-2767 (($ $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ $) NIL (|has| |#1| (-374)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-2966 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 34 (|has| |#1| (-374)))) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464)))) (-2204 (((-875) $ (-875)) NIL)) (-2287 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) NIL)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 30 (|has| |#1| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 28 (|has| |#1| (-568)))) (-3661 (((-783) $) NIL)) (-2700 (($ $ $) NIL (|has| |#1| (-374)))) (-4040 (($ $ $) NIL (|has| |#1| (-374)))) (-1978 (($ $ $) NIL (|has| |#1| (-374)))) (-1519 (($ $ $) NIL (|has| |#1| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 32 (|has| |#1| (-374)))) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1877 (((-783) $) NIL)) (-3430 ((|#1| $) NIL (|has| |#1| (-464)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1058 (-419 (-576))))) (($ |#1|) NIL)) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2649 ((|#1| $ |#1| |#1|) 15)) (-4314 (($) NIL T CONST)) (-4320 (($) 23 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) 19) (($ $ (-783)) 24)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-867 |#1| |#2| |#3|) (-13 (-865 |#1|) (-10 -8 (-15 -2204 ((-875) $ (-875))))) (-1069) (-99 |#1|) (-1 |#1| |#1|)) (T -867)) -((-2204 (*1 *2 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-865 |#1|) (-10 -8 (-15 -2204 ((-875) $ (-875))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3943 (($ $ $) NIL (|has| |#2| (-374)))) (-2767 (($ $ $) NIL (|has| |#2| (-374)))) (-2735 (($ $ $) NIL (|has| |#2| (-374)))) (-3429 (($ $ $) NIL (|has| |#2| (-374)))) (-2225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#2| (-374)))) (-2966 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2457 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-374)))) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) ((|#2| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#2| (-464)))) (-2287 (((-112) $) NIL)) (-1562 (($ |#2| (-783)) 17)) (-3852 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-568)))) (-3911 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-568)))) (-3661 (((-783) $) NIL)) (-2700 (($ $ $) NIL (|has| |#2| (-374)))) (-4040 (($ $ $) NIL (|has| |#2| (-374)))) (-1978 (($ $ $) NIL (|has| |#2| (-374)))) (-1519 (($ $ $) NIL (|has| |#2| (-374)))) (-1645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#2| (-374)))) (-3862 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2029 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-374)))) (-1709 ((|#2| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1877 (((-783) $) NIL)) (-3430 ((|#2| $) NIL (|has| |#2| (-464)))) (-4112 (((-875) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1058 (-419 (-576))))) (($ |#2|) NIL) (($ (-1283 |#1|)) 19)) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-783)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2649 ((|#2| $ |#2| |#2|) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) 13 T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-868 |#1| |#2| |#3| |#4|) (-13 (-865 |#2|) (-628 (-1283 |#1|))) (-1196) (-1069) (-99 |#2|) (-1 |#2| |#2|)) (T -868)) -NIL -(-13 (-865 |#2|) (-628 (-1283 |#1|))) -((-4421 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-1708 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-1365 ((|#1| (-783) |#1|) 40)) (-3269 ((|#1| (-783) |#1|) 38)) (-3280 ((|#1| (-783) |#1|) 37))) -(((-869 |#1|) (-10 -7 (-15 -3280 (|#1| (-783) |#1|)) (-15 -3269 (|#1| (-783) |#1|)) (-15 -1365 (|#1| (-783) |#1|)) (-15 -1708 (|#1| (-783) |#1|)) (-15 -1708 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4421 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -869)) -((-4421 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1708 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) (-1708 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) (-1365 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) (-3269 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) (-3280 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -3280 (|#1| (-783) |#1|)) (-15 -3269 (|#1| (-783) |#1|)) (-15 -1365 (|#1| (-783) |#1|)) (-15 -1708 (|#1| (-783) |#1|)) (-15 -1708 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4421 (|#1| (-783) |#1|)) |%noBranch|)) -((-1952 (((-112) $ $) 7)) (-2905 (($ $ $) 20)) (-1654 (($ $ $) 19)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3993 (((-112) $ $) 18)) (-3974 (((-112) $ $) 16)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 17)) (-3962 (((-112) $ $) 15)) (** (($ $ (-939)) 23)) (* (($ $ $) 22))) -(((-870) (-141)) (T -870)) -NIL -(-13 (-861) (-1132)) -(((-102) . T) ((-625 (-875)) . T) ((-861) . T) ((-863) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-1688 (((-576) $) 14)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 20) (($ (-576)) 13)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 9)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 11))) -(((-871) (-13 (-861) (-10 -8 (-15 -4112 ($ (-576))) (-15 -1688 ((-576) $))))) (T -871)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-871)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-871))))) -(-13 (-861) (-10 -8 (-15 -4112 ($ (-576))) (-15 -1688 ((-576) $)))) -((-3981 (((-703 (-1245)) $ (-1245)) 15)) (-2315 (((-703 (-561)) $ (-561)) 12)) (-2042 (((-783) $ (-129)) 30))) -(((-872 |#1|) (-10 -8 (-15 -2042 ((-783) |#1| (-129))) (-15 -3981 ((-703 (-1245)) |#1| (-1245))) (-15 -2315 ((-703 (-561)) |#1| (-561)))) (-873)) (T -872)) -NIL -(-10 -8 (-15 -2042 ((-783) |#1| (-129))) (-15 -3981 ((-703 (-1245)) |#1| (-1245))) (-15 -2315 ((-703 (-561)) |#1| (-561)))) -((-3981 (((-703 (-1245)) $ (-1245)) 8)) (-2315 (((-703 (-561)) $ (-561)) 9)) (-2042 (((-783) $ (-129)) 7)) (-3683 (((-703 (-130)) $ (-130)) 10)) (-1743 (($ $) 6))) -(((-873) (-141)) (T -873)) -((-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-2315 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-3981 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-703 (-1245))) (-5 *3 (-1245)))) (-2042 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -3683 ((-703 (-130)) $ (-130))) (-15 -2315 ((-703 (-561)) $ (-561))) (-15 -3981 ((-703 (-1245)) $ (-1245))) (-15 -2042 ((-783) $ (-129))))) +(-13 (-1121) (-864)) +(((-102) . T) ((-625 (-876)) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-3569 (($ |#1|) 9) ((|#1| $) 8)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 11))) +(((-862 |#1| |#2|) (-13 (-864) (-502 |#1|)) (-1238) (-1 (-112) |#1| |#1|)) (T -862)) +NIL +(-13 (-864) (-502 |#1|)) +((-3124 (($ $ $) 16)) (-1951 (($ $ $) 15)) (-2113 (((-112) $ $) 17)) (-2991 (((-112) $ $) 12)) (-2962 (((-112) $ $) 9)) (-2923 (((-112) $ $) 14)) (-2978 (((-112) $ $) 11))) +(((-863 |#1|) (-10 -8 (-15 -3124 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -2113 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-864)) (T -863)) +NIL +(-10 -8 (-15 -3124 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -2113 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 9)) (-1951 (($ $ $) 10)) (-2113 (((-112) $ $) 6)) (-2991 (((-112) $ $) 11)) (-2962 (((-112) $ $) 13)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 12)) (-2948 (((-112) $ $) 14))) +(((-864) (-141)) (T -864)) +((-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2991 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-1951 (*1 *1 *1 *1) (-4 *1 (-864))) (-3124 (*1 *1 *1 *1) (-4 *1 (-864)))) +(-13 (-102) (-10 -8 (-15 -2948 ((-112) $ $)) (-15 -2962 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2991 ((-112) $ $)) (-15 -1951 ($ $ $)) (-15 -3124 ($ $ $)))) +(((-102) . T) ((-1238) . T)) +((-3907 (($ $ $) 49)) (-4304 (($ $ $) 48)) (-4033 (($ $ $) 46)) (-1447 (($ $ $) 55)) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 50)) (-3654 (((-3 $ "failed") $ $) 53)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1371 (($ $) 39)) (-1751 (($ $ $) 43)) (-2250 (($ $ $) 42)) (-2001 (($ $ $) 51)) (-4432 (($ $ $) 57)) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 45)) (-4314 (((-3 $ "failed") $ $) 52)) (-3475 (((-3 $ "failed") $ |#2|) 32)) (-1457 ((|#2| $) 36)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-2060 (((-656 |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-865 |#1| |#2|) (-10 -8 (-15 -2001 (|#1| |#1| |#1|)) (-15 -3915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -1447 (|#1| |#1| |#1|)) (-15 -3654 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -4304 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3149 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -4432 (|#1| |#1| |#1|)) (-15 -4314 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1751 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2060 ((-656 |#2|) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3569 ((-876) |#1|))) (-866 |#2|) (-1070)) (T -865)) +NIL +(-10 -8 (-15 -2001 (|#1| |#1| |#1|)) (-15 -3915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -1447 (|#1| |#1| |#1|)) (-15 -3654 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -4304 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3149 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -4432 (|#1| |#1| |#1|)) (-15 -4314 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1751 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2060 ((-656 |#2|) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3907 (($ $ $) 50 (|has| |#1| (-374)))) (-4304 (($ $ $) 51 (|has| |#1| (-374)))) (-4033 (($ $ $) 53 (|has| |#1| (-374)))) (-1447 (($ $ $) 48 (|has| |#1| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 47 (|has| |#1| (-374)))) (-3654 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 52 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2859 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-2112 (($ $) 69)) (-3451 (((-3 $ "failed") $) 37)) (-1371 (($ $) 60 (|has| |#1| (-464)))) (-3215 (((-112) $) 35)) (-1945 (($ |#1| (-783)) 67)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 62 (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63 (|has| |#1| (-568)))) (-2987 (((-783) $) 71)) (-1751 (($ $ $) 57 (|has| |#1| (-374)))) (-2250 (($ $ $) 58 (|has| |#1| (-374)))) (-2001 (($ $ $) 46 (|has| |#1| (-374)))) (-4432 (($ $ $) 55 (|has| |#1| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 54 (|has| |#1| (-374)))) (-4314 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 59 (|has| |#1| (-374)))) (-2089 ((|#1| $) 70)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-3600 (((-783) $) 72)) (-1457 ((|#1| $) 61 (|has| |#1| (-464)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-2060 (((-656 |#1|) $) 66)) (-3998 ((|#1| $ (-783)) 68)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-3568 ((|#1| $ |#1| |#1|) 65)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-866 |#1|) (-141) (-1070)) (T -866)) +((-3600 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-2112 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) (-3568 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3573 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) (-4234 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-1371 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-2446 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1751 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4314 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4432 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) (-4 *1 (-866 *3)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4298 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) (-4304 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3907 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3654 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1447 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3915 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) (-4 *1 (-866 *3)))) (-2001 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(-13 (-1070) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -3600 ((-783) $)) (-15 -2987 ((-783) $)) (-15 -2089 (|t#1| $)) (-15 -2112 ($ $)) (-15 -3998 (|t#1| $ (-783))) (-15 -1945 ($ |t#1| (-783))) (-15 -2060 ((-656 |t#1|) $)) (-15 -3568 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3475 ((-3 $ "failed") $ |t#1|)) (-15 -3573 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -4234 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1457 (|t#1| $)) (-15 -1371 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2446 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -2250 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -4314 ((-3 $ "failed") $ $)) (-15 -4432 ($ $ $)) (-15 -3149 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $)) (-15 -4033 ($ $ $)) (-15 -4298 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -4304 ($ $ $)) (-15 -3907 ($ $ $)) (-15 -3654 ((-3 $ "failed") $ $)) (-15 -1447 ($ $ $)) (-15 -3915 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $)) (-15 -2001 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3635 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4298 (((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-4234 (((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2446 (((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-3568 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-867 |#1| |#2|) (-10 -7 (-15 -3635 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3568 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3573 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4234 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2446 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4298 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1070) (-866 |#1|)) (T -867)) +((-4298 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2446 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-4234 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3573 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3568 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2)))) (-3635 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) +(-10 -7 (-15 -3635 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3568 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3573 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4234 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2446 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4298 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3907 (($ $ $) NIL (|has| |#1| (-374)))) (-4304 (($ $ $) NIL (|has| |#1| (-374)))) (-4033 (($ $ $) NIL (|has| |#1| (-374)))) (-1447 (($ $ $) NIL (|has| |#1| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 34 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464)))) (-3689 (((-876) $ (-876)) NIL)) (-3215 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 30 (|has| |#1| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 28 (|has| |#1| (-568)))) (-2987 (((-783) $) NIL)) (-1751 (($ $ $) NIL (|has| |#1| (-374)))) (-2250 (($ $ $) NIL (|has| |#1| (-374)))) (-2001 (($ $ $) NIL (|has| |#1| (-374)))) (-4432 (($ $ $) NIL (|has| |#1| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 32 (|has| |#1| (-374)))) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3600 (((-783) $) NIL)) (-1457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) 15)) (-2719 (($) NIL T CONST)) (-2730 (($) 23 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 19) (($ $ (-783)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-868 |#1| |#2| |#3|) (-13 (-866 |#1|) (-10 -8 (-15 -3689 ((-876) $ (-876))))) (-1070) (-99 |#1|) (-1 |#1| |#1|)) (T -868)) +((-3689 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-866 |#1|) (-10 -8 (-15 -3689 ((-876) $ (-876))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3907 (($ $ $) NIL (|has| |#2| (-374)))) (-4304 (($ $ $) NIL (|has| |#2| (-374)))) (-4033 (($ $ $) NIL (|has| |#2| (-374)))) (-1447 (($ $ $) NIL (|has| |#2| (-374)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-3654 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-4298 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#2| (-464)))) (-3215 (((-112) $) NIL)) (-1945 (($ |#2| (-783)) 17)) (-4234 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-568)))) (-3573 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-568)))) (-2987 (((-783) $) NIL)) (-1751 (($ $ $) NIL (|has| |#2| (-374)))) (-2250 (($ $ $) NIL (|has| |#2| (-374)))) (-2001 (($ $ $) NIL (|has| |#2| (-374)))) (-4432 (($ $ $) NIL (|has| |#2| (-374)))) (-3149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-4314 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2446 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-374)))) (-2089 ((|#2| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3600 (((-783) $) NIL)) (-1457 ((|#2| $) NIL (|has| |#2| (-464)))) (-3569 (((-876) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (($ (-1284 |#1|)) 19)) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-783)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3568 ((|#2| $ |#2| |#2|) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) 13 T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-869 |#1| |#2| |#3| |#4|) (-13 (-866 |#2|) (-628 (-1284 |#1|))) (-1197) (-1070) (-99 |#2|) (-1 |#2| |#2|)) (T -869)) +NIL +(-13 (-866 |#2|) (-628 (-1284 |#1|))) +((-1733 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-2383 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-3870 ((|#1| (-783) |#1|) 40)) (-3607 ((|#1| (-783) |#1|) 38)) (-3724 ((|#1| (-783) |#1|) 37))) +(((-870 |#1|) (-10 -7 (-15 -3724 (|#1| (-783) |#1|)) (-15 -3607 (|#1| (-783) |#1|)) (-15 -3870 (|#1| (-783) |#1|)) (-15 -2383 (|#1| (-783) |#1|)) (-15 -2383 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1733 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -870)) +((-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2383 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-2383 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-3870 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-3607 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-3724 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3724 (|#1| (-783) |#1|)) (-15 -3607 (|#1| (-783) |#1|)) (-15 -3870 (|#1| (-783) |#1|)) (-15 -2383 (|#1| (-783) |#1|)) (-15 -2383 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1733 (|#1| (-783) |#1|)) |%noBranch|)) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 20)) (-1951 (($ $ $) 19)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2991 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2948 (((-112) $ $) 15)) (** (($ $ (-940)) 23)) (* (($ $ $) 22))) +(((-871) (-141)) (T -871)) +NIL +(-13 (-861) (-1133)) +(((-102) . T) ((-625 (-876)) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3104 (((-576) $) 14)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-576)) 13)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 11))) +(((-872) (-13 (-861) (-10 -8 (-15 -3569 ($ (-576))) (-15 -3104 ((-576) $))))) (T -872)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872))))) +(-13 (-861) (-10 -8 (-15 -3569 ($ (-576))) (-15 -3104 ((-576) $)))) +((-2952 (((-703 (-1246)) $ (-1246)) 15)) (-2193 (((-703 (-561)) $ (-561)) 12)) (-2566 (((-783) $ (-129)) 30))) +(((-873 |#1|) (-10 -8 (-15 -2566 ((-783) |#1| (-129))) (-15 -2952 ((-703 (-1246)) |#1| (-1246))) (-15 -2193 ((-703 (-561)) |#1| (-561)))) (-874)) (T -873)) +NIL +(-10 -8 (-15 -2566 ((-783) |#1| (-129))) (-15 -2952 ((-703 (-1246)) |#1| (-1246))) (-15 -2193 ((-703 (-561)) |#1| (-561)))) +((-2952 (((-703 (-1246)) $ (-1246)) 8)) (-2193 (((-703 (-561)) $ (-561)) 9)) (-2566 (((-783) $ (-129)) 7)) (-3213 (((-703 (-130)) $ (-130)) 10)) (-1540 (($ $) 6))) +(((-874) (-141)) (T -874)) +((-3213 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-2193 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246)))) (-2566 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) +(-13 (-175) (-10 -8 (-15 -3213 ((-703 (-130)) $ (-130))) (-15 -2193 ((-703 (-561)) $ (-561))) (-15 -2952 ((-703 (-1246)) $ (-1246))) (-15 -2566 ((-783) $ (-129))))) (((-175) . T)) -((-3981 (((-703 (-1245)) $ (-1245)) NIL)) (-2315 (((-703 (-561)) $ (-561)) NIL)) (-2042 (((-783) $ (-129)) NIL)) (-3683 (((-703 (-130)) $ (-130)) 22)) (-4289 (($ (-400)) 12) (($ (-1178)) 14)) (-2272 (((-112) $) 19)) (-4112 (((-875) $) 26)) (-1743 (($ $) 23))) -(((-874) (-13 (-873) (-625 (-875)) (-10 -8 (-15 -4289 ($ (-400))) (-15 -4289 ($ (-1178))) (-15 -2272 ((-112) $))))) (T -874)) -((-4289 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-874)))) (-4289 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874))))) -(-13 (-873) (-625 (-875)) (-10 -8 (-15 -4289 ($ (-400))) (-15 -4289 ($ (-1178))) (-15 -2272 ((-112) $)))) -((-1952 (((-112) $ $) NIL) (($ $ $) 85)) (-4072 (($ $ $) 125)) (-1922 (((-576) $) 31) (((-576)) 36)) (-2955 (($ (-576)) 53)) (-1813 (($ $ $) 54) (($ (-656 $)) 84)) (-1808 (($ $ (-656 $)) 82)) (-3584 (((-576) $) 34)) (-3529 (($ $ $) 73)) (-3350 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3790 (((-576) $) 33)) (-1701 (($ $ $) 72)) (-1532 (($ $) 114)) (-2726 (($ $ $) 129)) (-3999 (($ (-656 $)) 61)) (-3124 (($ $ (-656 $)) 79)) (-3079 (($ (-576) (-576)) 55)) (-3133 (($ $) 126) (($ $ $) 127)) (-2110 (($ $ (-576)) 43) (($ $) 46)) (-1893 (($ $ $) 97)) (-2823 (($ $ $) 132)) (-2878 (($ $) 115)) (-1903 (($ $ $) 98)) (-2168 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3249 (((-1292) $) 10)) (-1345 (($ $) 118) (($ $ (-783)) 122)) (-1745 (($ $ $) 75)) (-2792 (($ $ $) 74)) (-1992 (($ $ (-656 $)) 110)) (-1559 (($ $ $) 113)) (-2884 (($ (-656 $)) 59)) (-1390 (($ $) 70) (($ (-656 $)) 71)) (-1804 (($ $ $) 123)) (-3526 (($ $) 116)) (-1861 (($ $ $) 128)) (-2204 (($ (-576)) 21) (($ (-1196)) 23) (($ (-1178)) 30) (($ (-227)) 25)) (-2322 (($ $ $) 101)) (-2298 (($ $) 102)) (-4363 (((-1292) (-1178)) 15)) (-2010 (($ (-1178)) 14)) (-3409 (($ (-656 (-656 $))) 58)) (-2100 (($ $ (-576)) 42) (($ $) 45)) (-2043 (((-1178) $) NIL)) (-3021 (($ $ $) 131)) (-4405 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2349 (((-112) $) 108)) (-2998 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-1704 (($ (-576)) 39)) (-2952 (((-576) $) 32) (((-576)) 35)) (-2259 (($ $ $) 40) (($ (-656 $)) 83)) (-3115 (((-1140) $) NIL)) (-1943 (($ $ $) 99)) (-3935 (($) 13)) (-4368 (($ $ (-656 $)) 109)) (-2535 (((-1178) (-1178)) 8)) (-4139 (($ $) 117) (($ $ (-783)) 121)) (-1931 (($ $ $) 96)) (-4106 (($ $ (-783)) 139)) (-2332 (($ (-656 $)) 60)) (-4112 (((-875) $) 19)) (-3187 (($ $ (-576)) 41) (($ $) 44)) (-3212 (($ $) 68) (($ (-656 $)) 69)) (-1514 (($ $) 66) (($ (-656 $)) 67)) (-2344 (($ $) 124)) (-2051 (($ (-656 $)) 65)) (-4410 (($ $ $) 105)) (-1994 (((-112) $ $) NIL)) (-4261 (($ $ $) 130)) (-2310 (($ $ $) 100)) (-2496 (($ $ $) 103) (($ $) 104)) (-3993 (($ $ $) 89)) (-3974 (($ $ $) 87)) (-3938 (((-112) $ $) 16) (($ $ $) 17)) (-3983 (($ $ $) 88)) (-3962 (($ $ $) 86)) (-4046 (($ $ $) 94)) (-4036 (($ $ $) 91) (($ $) 92)) (-4026 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-875) (-13 (-1120) (-10 -8 (-15 -3249 ((-1292) $)) (-15 -2010 ($ (-1178))) (-15 -4363 ((-1292) (-1178))) (-15 -2204 ($ (-576))) (-15 -2204 ($ (-1196))) (-15 -2204 ($ (-1178))) (-15 -2204 ($ (-227))) (-15 -3935 ($)) (-15 -2535 ((-1178) (-1178))) (-15 -1922 ((-576) $)) (-15 -2952 ((-576) $)) (-15 -1922 ((-576))) (-15 -2952 ((-576))) (-15 -3790 ((-576) $)) (-15 -3584 ((-576) $)) (-15 -1704 ($ (-576))) (-15 -2955 ($ (-576))) (-15 -3079 ($ (-576) (-576))) (-15 -2100 ($ $ (-576))) (-15 -2110 ($ $ (-576))) (-15 -3187 ($ $ (-576))) (-15 -2100 ($ $)) (-15 -2110 ($ $)) (-15 -3187 ($ $)) (-15 -2259 ($ $ $)) (-15 -1813 ($ $ $)) (-15 -2259 ($ (-656 $))) (-15 -1813 ($ (-656 $))) (-15 -1992 ($ $ (-656 $))) (-15 -2998 ($ $ (-656 $))) (-15 -2998 ($ $ $ $)) (-15 -1559 ($ $ $)) (-15 -2349 ((-112) $)) (-15 -4368 ($ $ (-656 $))) (-15 -1532 ($ $)) (-15 -3021 ($ $ $)) (-15 -2344 ($ $)) (-15 -3409 ($ (-656 (-656 $)))) (-15 -4072 ($ $ $)) (-15 -3133 ($ $)) (-15 -3133 ($ $ $)) (-15 -1861 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -4261 ($ $ $)) (-15 -2823 ($ $ $)) (-15 -4106 ($ $ (-783))) (-15 -4410 ($ $ $)) (-15 -1701 ($ $ $)) (-15 -3529 ($ $ $)) (-15 -2792 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -3124 ($ $ (-656 $))) (-15 -1808 ($ $ (-656 $))) (-15 -2878 ($ $)) (-15 -4139 ($ $)) (-15 -4139 ($ $ (-783))) (-15 -1345 ($ $)) (-15 -1345 ($ $ (-783))) (-15 -3526 ($ $)) (-15 -1804 ($ $ $)) (-15 -3350 ($ $)) (-15 -3350 ($ $ $)) (-15 -3350 ($ $ $ $)) (-15 -2168 ($ $)) (-15 -2168 ($ $ $)) (-15 -2168 ($ $ $ $)) (-15 -4405 ($ $)) (-15 -4405 ($ $ $)) (-15 -4405 ($ $ $ $)) (-15 -1514 ($ $)) (-15 -1514 ($ (-656 $))) (-15 -3212 ($ $)) (-15 -3212 ($ (-656 $))) (-15 -1390 ($ $)) (-15 -1390 ($ (-656 $))) (-15 -2884 ($ (-656 $))) (-15 -2332 ($ (-656 $))) (-15 -3999 ($ (-656 $))) (-15 -2051 ($ (-656 $))) (-15 -3938 ($ $ $)) (-15 -1952 ($ $ $)) (-15 -3962 ($ $ $)) (-15 -3974 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -4036 ($ $)) (-15 * ($ $ $)) (-15 -4046 ($ $ $)) (-15 ** ($ $ $)) (-15 -1931 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -1903 ($ $ $)) (-15 -1943 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -2322 ($ $ $)) (-15 -2298 ($ $)) (-15 -2496 ($ $ $)) (-15 -2496 ($ $))))) (T -875)) -((-3249 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-875)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-875)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-875)))) (-3935 (*1 *1) (-5 *1 (-875))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-1922 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2952 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-3079 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2110 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-3187 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) (-2100 (*1 *1 *1) (-5 *1 (-875))) (-2110 (*1 *1 *1) (-5 *1 (-875))) (-3187 (*1 *1 *1) (-5 *1 (-875))) (-2259 (*1 *1 *1 *1) (-5 *1 (-875))) (-1813 (*1 *1 *1 *1) (-5 *1 (-875))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-1992 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-2998 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-1559 (*1 *1 *1 *1) (-5 *1 (-875))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-1532 (*1 *1 *1) (-5 *1 (-875))) (-3021 (*1 *1 *1 *1) (-5 *1 (-875))) (-2344 (*1 *1 *1) (-5 *1 (-875))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-875)))) (-5 *1 (-875)))) (-4072 (*1 *1 *1 *1) (-5 *1 (-875))) (-3133 (*1 *1 *1) (-5 *1 (-875))) (-3133 (*1 *1 *1 *1) (-5 *1 (-875))) (-1861 (*1 *1 *1 *1) (-5 *1 (-875))) (-2726 (*1 *1 *1 *1) (-5 *1 (-875))) (-4261 (*1 *1 *1 *1) (-5 *1 (-875))) (-2823 (*1 *1 *1 *1) (-5 *1 (-875))) (-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-875)))) (-4410 (*1 *1 *1 *1) (-5 *1 (-875))) (-1701 (*1 *1 *1 *1) (-5 *1 (-875))) (-3529 (*1 *1 *1 *1) (-5 *1 (-875))) (-2792 (*1 *1 *1 *1) (-5 *1 (-875))) (-1745 (*1 *1 *1 *1) (-5 *1 (-875))) (-3124 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-2878 (*1 *1 *1) (-5 *1 (-875))) (-4139 (*1 *1 *1) (-5 *1 (-875))) (-4139 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-875)))) (-1345 (*1 *1 *1) (-5 *1 (-875))) (-1345 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-875)))) (-3526 (*1 *1 *1) (-5 *1 (-875))) (-1804 (*1 *1 *1 *1) (-5 *1 (-875))) (-3350 (*1 *1 *1) (-5 *1 (-875))) (-3350 (*1 *1 *1 *1) (-5 *1 (-875))) (-3350 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-2168 (*1 *1 *1) (-5 *1 (-875))) (-2168 (*1 *1 *1 *1) (-5 *1 (-875))) (-2168 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-4405 (*1 *1 *1) (-5 *1 (-875))) (-4405 (*1 *1 *1 *1) (-5 *1 (-875))) (-4405 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-1514 (*1 *1 *1) (-5 *1 (-875))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-3212 (*1 *1 *1) (-5 *1 (-875))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-1390 (*1 *1 *1) (-5 *1 (-875))) (-1390 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-3999 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) (-3938 (*1 *1 *1 *1) (-5 *1 (-875))) (-1952 (*1 *1 *1 *1) (-5 *1 (-875))) (-3962 (*1 *1 *1 *1) (-5 *1 (-875))) (-3974 (*1 *1 *1 *1) (-5 *1 (-875))) (-3983 (*1 *1 *1 *1) (-5 *1 (-875))) (-3993 (*1 *1 *1 *1) (-5 *1 (-875))) (-4026 (*1 *1 *1 *1) (-5 *1 (-875))) (-4036 (*1 *1 *1 *1) (-5 *1 (-875))) (-4036 (*1 *1 *1) (-5 *1 (-875))) (* (*1 *1 *1 *1) (-5 *1 (-875))) (-4046 (*1 *1 *1 *1) (-5 *1 (-875))) (** (*1 *1 *1 *1) (-5 *1 (-875))) (-1931 (*1 *1 *1 *1) (-5 *1 (-875))) (-1893 (*1 *1 *1 *1) (-5 *1 (-875))) (-1903 (*1 *1 *1 *1) (-5 *1 (-875))) (-1943 (*1 *1 *1 *1) (-5 *1 (-875))) (-2310 (*1 *1 *1 *1) (-5 *1 (-875))) (-2322 (*1 *1 *1 *1) (-5 *1 (-875))) (-2298 (*1 *1 *1) (-5 *1 (-875))) (-2496 (*1 *1 *1 *1) (-5 *1 (-875))) (-2496 (*1 *1 *1) (-5 *1 (-875)))) -(-13 (-1120) (-10 -8 (-15 -3249 ((-1292) $)) (-15 -2010 ($ (-1178))) (-15 -4363 ((-1292) (-1178))) (-15 -2204 ($ (-576))) (-15 -2204 ($ (-1196))) (-15 -2204 ($ (-1178))) (-15 -2204 ($ (-227))) (-15 -3935 ($)) (-15 -2535 ((-1178) (-1178))) (-15 -1922 ((-576) $)) (-15 -2952 ((-576) $)) (-15 -1922 ((-576))) (-15 -2952 ((-576))) (-15 -3790 ((-576) $)) (-15 -3584 ((-576) $)) (-15 -1704 ($ (-576))) (-15 -2955 ($ (-576))) (-15 -3079 ($ (-576) (-576))) (-15 -2100 ($ $ (-576))) (-15 -2110 ($ $ (-576))) (-15 -3187 ($ $ (-576))) (-15 -2100 ($ $)) (-15 -2110 ($ $)) (-15 -3187 ($ $)) (-15 -2259 ($ $ $)) (-15 -1813 ($ $ $)) (-15 -2259 ($ (-656 $))) (-15 -1813 ($ (-656 $))) (-15 -1992 ($ $ (-656 $))) (-15 -2998 ($ $ (-656 $))) (-15 -2998 ($ $ $ $)) (-15 -1559 ($ $ $)) (-15 -2349 ((-112) $)) (-15 -4368 ($ $ (-656 $))) (-15 -1532 ($ $)) (-15 -3021 ($ $ $)) (-15 -2344 ($ $)) (-15 -3409 ($ (-656 (-656 $)))) (-15 -4072 ($ $ $)) (-15 -3133 ($ $)) (-15 -3133 ($ $ $)) (-15 -1861 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -4261 ($ $ $)) (-15 -2823 ($ $ $)) (-15 -4106 ($ $ (-783))) (-15 -4410 ($ $ $)) (-15 -1701 ($ $ $)) (-15 -3529 ($ $ $)) (-15 -2792 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -3124 ($ $ (-656 $))) (-15 -1808 ($ $ (-656 $))) (-15 -2878 ($ $)) (-15 -4139 ($ $)) (-15 -4139 ($ $ (-783))) (-15 -1345 ($ $)) (-15 -1345 ($ $ (-783))) (-15 -3526 ($ $)) (-15 -1804 ($ $ $)) (-15 -3350 ($ $)) (-15 -3350 ($ $ $)) (-15 -3350 ($ $ $ $)) (-15 -2168 ($ $)) (-15 -2168 ($ $ $)) (-15 -2168 ($ $ $ $)) (-15 -4405 ($ $)) (-15 -4405 ($ $ $)) (-15 -4405 ($ $ $ $)) (-15 -1514 ($ $)) (-15 -1514 ($ (-656 $))) (-15 -3212 ($ $)) (-15 -3212 ($ (-656 $))) (-15 -1390 ($ $)) (-15 -1390 ($ (-656 $))) (-15 -2884 ($ (-656 $))) (-15 -2332 ($ (-656 $))) (-15 -3999 ($ (-656 $))) (-15 -2051 ($ (-656 $))) (-15 -3938 ($ $ $)) (-15 -1952 ($ $ $)) (-15 -3962 ($ $ $)) (-15 -3974 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -4036 ($ $)) (-15 * ($ $ $)) (-15 -4046 ($ $ $)) (-15 ** ($ $ $)) (-15 -1931 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -1903 ($ $ $)) (-15 -1943 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -2322 ($ $ $)) (-15 -2298 ($ $)) (-15 -2496 ($ $ $)) (-15 -2496 ($ $)))) -((-4168 (((-1292) (-656 (-52))) 23)) (-3401 (((-1292) (-1178) (-875)) 13) (((-1292) (-875)) 8) (((-1292) (-1178)) 10))) -(((-876) (-10 -7 (-15 -3401 ((-1292) (-1178))) (-15 -3401 ((-1292) (-875))) (-15 -3401 ((-1292) (-1178) (-875))) (-15 -4168 ((-1292) (-656 (-52)))))) (T -876)) -((-4168 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1292)) (-5 *1 (-876)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-876)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-876)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-876))))) -(-10 -7 (-15 -3401 ((-1292) (-1178))) (-15 -3401 ((-1292) (-875))) (-15 -3401 ((-1292) (-1178) (-875))) (-15 -4168 ((-1292) (-656 (-52))))) -((-1952 (((-112) $ $) NIL)) (-1652 (((-3 $ "failed") (-1196)) 36)) (-2199 (((-783)) 32)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) 29)) (-2043 (((-1178) $) 43)) (-2409 (($ (-939)) 28)) (-3115 (((-1140) $) NIL)) (-1554 (((-1196) $) 13) (((-548) $) 19) (((-906 (-390)) $) 26) (((-906 (-576)) $) 22)) (-4112 (((-875) $) 16)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 40)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 38))) -(((-877 |#1|) (-13 (-856) (-626 (-1196)) (-626 (-548)) (-626 (-906 (-390))) (-626 (-906 (-576))) (-10 -8 (-15 -1652 ((-3 $ "failed") (-1196))))) (-656 (-1196))) (T -877)) -((-1652 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-877 *3)) (-14 *3 (-656 *2))))) -(-13 (-856) (-626 (-1196)) (-626 (-548)) (-626 (-906 (-390))) (-626 (-906 (-576))) (-10 -8 (-15 -1652 ((-3 $ "failed") (-1196))))) -((-1952 (((-112) $ $) NIL)) (-4148 (((-518) $) 9)) (-3958 (((-656 (-451)) $) 13)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 21)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 16))) -(((-878) (-13 (-1120) (-10 -8 (-15 -4148 ((-518) $)) (-15 -3958 ((-656 (-451)) $))))) (T -878)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-878)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-878))))) -(-13 (-1120) (-10 -8 (-15 -4148 ((-518) $)) (-15 -3958 ((-656 (-451)) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-970 |#1|)) NIL) (((-970 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-4115 (((-783)) NIL T CONST)) (-2603 (((-1292) (-783)) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-879 |#1| |#2| |#3| |#4|) (-13 (-1069) (-502 (-970 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4046 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2603 ((-1292) (-783))))) (-1069) (-656 (-1196)) (-656 (-783)) (-783)) (T -879)) -((-4046 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-879 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1069)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-879 *4 *5 *6 *7)) (-4 *4 (-1069)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 *3)) (-14 *7 *3)))) -(-13 (-1069) (-502 (-970 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4046 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2603 ((-1292) (-783))))) -((-1812 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-2589 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) -(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2589 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -1812 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1278 |#1|) (-1263 |#1|)) (T -880)) -((-1812 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))) (-2589 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5))))) -(-10 -7 (-15 -2589 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -1812 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) -((-2589 (((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) 28))) -(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -2589 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (-15 -2589 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)))) (-374) (-1196) |#1|) (T -881)) -((-2589 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) (-5 *1 (-881 *5 *6 *7)))) (-2589 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) (-5 *1 (-881 *5 *6 *7))))) -(-10 -7 (-15 -2589 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (-15 -2589 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-1462 (($ $ (-576)) 68)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-3133 (($ (-1192 (-576)) (-576)) 67)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-3542 (($ $) 70)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-3241 (((-783) $) 75)) (-2287 (((-112) $) 35)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2182 (((-576)) 72)) (-4343 (((-576) $) 71)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3679 (($ $ (-576)) 74)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-2913 (((-1177 (-576)) $) 76)) (-3454 (($ $) 73)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-2641 (((-576) $ (-576)) 69)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-882 |#1|) (-141) (-576)) (T -882)) -((-2913 (*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-1177 (-576))))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-783)))) (-3679 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) (-3454 (*1 *1 *1) (-4 *1 (-882 *2))) (-2182 (*1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) (-3542 (*1 *1 *1) (-4 *1 (-882 *2))) (-2641 (*1 *2 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) (-1462 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) (-3133 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *3 (-576)) (-4 *1 (-882 *4))))) -(-13 (-317) (-148) (-10 -8 (-15 -2913 ((-1177 (-576)) $)) (-15 -3241 ((-783) $)) (-15 -3679 ($ $ (-576))) (-15 -3454 ($ $)) (-15 -2182 ((-576))) (-15 -4343 ((-576) $)) (-15 -3542 ($ $)) (-15 -2641 ((-576) $ (-576))) (-15 -1462 ($ $ (-576))) (-15 -3133 ($ (-1192 (-576)) (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $ (-576)) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3133 (($ (-1192 (-576)) (-576)) NIL)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3542 (($ $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3241 (((-783) $) NIL)) (-2287 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2182 (((-576)) NIL)) (-4343 (((-576) $) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3679 (($ $ (-576)) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-2913 (((-1177 (-576)) $) NIL)) (-3454 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-576) $ (-576)) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-883 |#1|) (-882 |#1|) (-576)) (T -883)) -NIL -(-882 |#1|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-883 |#1|) $) NIL (|has| (-883 |#1|) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-883 |#1|) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-883 |#1|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-883 |#1|) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-883 |#1|) (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-883 |#1|) (-1058 (-576))))) (-2317 (((-883 |#1|) $) NIL) (((-1196) $) NIL (|has| (-883 |#1|) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-883 |#1|) (-1058 (-576)))) (((-576) $) NIL (|has| (-883 |#1|) (-1058 (-576))))) (-2971 (($ $) NIL) (($ (-576) $) NIL)) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-883 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-883 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-883 |#1|))) (|:| |vec| (-1287 (-883 |#1|)))) (-701 $) (-1287 $)) NIL) (((-701 (-883 |#1|)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-883 |#1|) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| (-883 |#1|) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-883 |#1|) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-883 |#1|) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-883 |#1|) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| (-883 |#1|) (-1172)))) (-3197 (((-112) $) NIL (|has| (-883 |#1|) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-883 |#1|) (-861)))) (-1654 (($ $ $) NIL (|has| (-883 |#1|) (-861)))) (-2422 (($ (-1 (-883 |#1|) (-883 |#1|)) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-883 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-883 |#1|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-883 |#1|))) (|:| |vec| (-1287 (-883 |#1|)))) (-1287 $) $) NIL) (((-701 (-883 |#1|)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-883 |#1|) (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-883 |#1|) (-317)))) (-2804 (((-883 |#1|) $) NIL (|has| (-883 |#1|) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-883 |#1|)) (-656 (-883 |#1|))) NIL (|has| (-883 |#1|) (-319 (-883 |#1|)))) (($ $ (-883 |#1|) (-883 |#1|)) NIL (|has| (-883 |#1|) (-319 (-883 |#1|)))) (($ $ (-304 (-883 |#1|))) NIL (|has| (-883 |#1|) (-319 (-883 |#1|)))) (($ $ (-656 (-304 (-883 |#1|)))) NIL (|has| (-883 |#1|) (-319 (-883 |#1|)))) (($ $ (-656 (-1196)) (-656 (-883 |#1|))) NIL (|has| (-883 |#1|) (-526 (-1196) (-883 |#1|)))) (($ $ (-1196) (-883 |#1|)) NIL (|has| (-883 |#1|) (-526 (-1196) (-883 |#1|))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-883 |#1|)) NIL (|has| (-883 |#1|) (-296 (-883 |#1|) (-883 |#1|))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-883 |#1|) (-883 |#1|))) NIL) (($ $ (-1 (-883 |#1|) (-883 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $) NIL (|has| (-883 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-883 |#1|) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-883 |#1|) $) NIL)) (-1554 (((-906 (-576)) $) NIL (|has| (-883 |#1|) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-883 |#1|) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-883 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-883 |#1|) (-1042))) (((-227) $) NIL (|has| (-883 |#1|) (-1042)))) (-2324 (((-176 (-419 (-576))) $) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-883 |#1|) (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-883 |#1|)) NIL) (($ (-1196)) NIL (|has| (-883 |#1|) (-1058 (-1196))))) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-883 |#1|) (-927))) (|has| (-883 |#1|) (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 (((-883 |#1|) $) NIL (|has| (-883 |#1|) (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-419 (-576)) $ (-576)) NIL)) (-2388 (($ $) NIL (|has| (-883 |#1|) (-832)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-883 |#1|) (-883 |#1|))) NIL) (($ $ (-1 (-883 |#1|) (-883 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-883 |#1|) (-918 (-1196)))) (($ $) NIL (|has| (-883 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-883 |#1|) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-883 |#1|) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-883 |#1|) (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| (-883 |#1|) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-883 |#1|) (-861)))) (-4046 (($ $ $) NIL) (($ (-883 |#1|) (-883 |#1|)) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-883 |#1|) $) NIL) (($ $ (-883 |#1|)) NIL))) -(((-884 |#1|) (-13 (-1012 (-883 |#1|)) (-10 -8 (-15 -2641 ((-419 (-576)) $ (-576))) (-15 -2324 ((-176 (-419 (-576))) $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)))) (-576)) (T -884)) -((-2641 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-884 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3)) (-14 *3 (-576)))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-884 *2)) (-14 *2 (-576)))) (-2971 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-884 *3)) (-14 *3 *2)))) -(-13 (-1012 (-883 |#1|)) (-10 -8 (-15 -2641 ((-419 (-576)) $ (-576))) (-15 -2324 ((-176 (-419 (-576))) $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 ((|#2| $) NIL (|has| |#2| (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| |#2| (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| |#2| (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576))))) (-2317 ((|#2| $) NIL) (((-1196) $) NIL (|has| |#2| (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-576)))) (((-576) $) NIL (|has| |#2| (-1058 (-576))))) (-2971 (($ $) 35) (($ (-576) $) 38)) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) 64)) (-4369 (($) NIL (|has| |#2| (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) NIL (|has| |#2| (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| |#2| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| |#2| (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 ((|#2| $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| |#2| (-1172)))) (-3197 (((-112) $) NIL (|has| |#2| (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| |#2| (-861)))) (-1654 (($ $ $) NIL (|has| |#2| (-861)))) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 60)) (-3650 (($) NIL (|has| |#2| (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| |#2| (-317)))) (-2804 ((|#2| $) NIL (|has| |#2| (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1196)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1196) |#2|))) (($ $ (-1196) |#2|) NIL (|has| |#2| (-526 (-1196) |#2|)))) (-2026 (((-783) $) NIL)) (-4368 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-2521 (($ $) NIL)) (-2697 ((|#2| $) NIL)) (-1554 (((-906 (-576)) $) NIL (|has| |#2| (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| |#2| (-626 (-906 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1042))) (((-227) $) NIL (|has| |#2| (-1042)))) (-2324 (((-176 (-419 (-576))) $) 78)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927))))) (-4112 (((-875) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1196)) NIL (|has| |#2| (-1058 (-1196))))) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#2| (-146))))) (-4115 (((-783)) NIL T CONST)) (-2671 ((|#2| $) NIL (|has| |#2| (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-419 (-576)) $ (-576)) 71)) (-2388 (($ $) NIL (|has| |#2| (-832)))) (-4314 (($) 15 T CONST)) (-4320 (($) 17 T CONST)) (-3155 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3993 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3938 (((-112) $ $) 46)) (-3983 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-4046 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4036 (($ $) 50) (($ $ $) 52)) (-4026 (($ $ $) 48)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-885 |#1| |#2|) (-13 (-1012 |#2|) (-10 -8 (-15 -2641 ((-419 (-576)) $ (-576))) (-15 -2324 ((-176 (-419 (-576))) $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)))) (-576) (-882 |#1|)) (T -885)) -((-2641 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-885 *4 *5)) (-5 *3 (-576)) (-4 *5 (-882 *4)))) (-2324 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3 *4)) (-4 *4 (-882 *3)))) (-2971 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-885 *2 *3)) (-4 *3 (-882 *2)))) (-2971 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-885 *3 *4)) (-4 *4 (-882 *3))))) -(-13 (-1012 |#2|) (-10 -8 (-15 -2641 ((-419 (-576)) $ (-576))) (-15 -2324 ((-176 (-419 (-576))) $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)))) -((-1952 (((-112) $ $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))))) (-3442 ((|#2| $) 12)) (-2447 (($ |#1| |#2|) 9)) (-2043 (((-1178) $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))))) (-3115 (((-1140) $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#1| $) 11)) (-4124 (($ |#1| |#2|) 10)) (-4112 (((-875) $) 18 (-3794 (-12 (|has| |#1| (-625 (-875))) (|has| |#2| (-625 (-875)))) (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120)))))) (-1994 (((-112) $ $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))))) (-3938 (((-112) $ $) 23 (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120)))))) -(((-886 |#1| |#2|) (-13 (-1237) (-10 -8 (IF (|has| |#1| (-625 (-875))) (IF (|has| |#2| (-625 (-875))) (-6 (-625 (-875))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1120)) (IF (|has| |#2| (-1120)) (-6 (-1120)) |%noBranch|) |%noBranch|) (-15 -2447 ($ |#1| |#2|)) (-15 -4124 ($ |#1| |#2|)) (-15 -1753 (|#1| $)) (-15 -3442 (|#2| $)))) (-1237) (-1237)) (T -886)) -((-2447 (*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-4124 (*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-1753 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1237)))) (-3442 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (IF (|has| |#1| (-625 (-875))) (IF (|has| |#2| (-625 (-875))) (-6 (-625 (-875))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1120)) (IF (|has| |#2| (-1120)) (-6 (-1120)) |%noBranch|) |%noBranch|) (-15 -2447 ($ |#1| |#2|)) (-15 -4124 ($ |#1| |#2|)) (-15 -1753 (|#1| $)) (-15 -3442 (|#2| $)))) -((-1952 (((-112) $ $) NIL)) (-2732 (((-576) $) 16)) (-1821 (($ (-158)) 13)) (-2893 (($ (-158)) 14)) (-2043 (((-1178) $) NIL)) (-3220 (((-158) $) 15)) (-3115 (((-1140) $) NIL)) (-1911 (($ (-158)) 11)) (-3825 (($ (-158)) 10)) (-4112 (((-875) $) 24) (($ (-158)) 17)) (-2122 (($ (-158)) 12)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-887) (-13 (-1120) (-10 -8 (-15 -3825 ($ (-158))) (-15 -1911 ($ (-158))) (-15 -2122 ($ (-158))) (-15 -1821 ($ (-158))) (-15 -2893 ($ (-158))) (-15 -3220 ((-158) $)) (-15 -2732 ((-576) $)) (-15 -4112 ($ (-158)))))) (T -887)) -((-3825 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-887)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887))))) -(-13 (-1120) (-10 -8 (-15 -3825 ($ (-158))) (-15 -1911 ($ (-158))) (-15 -2122 ($ (-158))) (-15 -1821 ($ (-158))) (-15 -2893 ($ (-158))) (-15 -3220 ((-158) $)) (-15 -2732 ((-576) $)) (-15 -4112 ($ (-158))))) -((-4112 (((-326 (-576)) (-419 (-970 (-48)))) 23) (((-326 (-576)) (-970 (-48))) 18))) -(((-888) (-10 -7 (-15 -4112 ((-326 (-576)) (-970 (-48)))) (-15 -4112 ((-326 (-576)) (-419 (-970 (-48))))))) (T -888)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-888)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-970 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-888))))) -(-10 -7 (-15 -4112 ((-326 (-576)) (-970 (-48)))) (-15 -4112 ((-326 (-576)) (-419 (-970 (-48)))))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 18) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4304 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1178))) 13)) (-1994 (((-112) $ $) NIL)) (-4332 (((-518) $) 10) (((-1178) $) 14)) (-3938 (((-112) $ $) 15))) -(((-889) (-13 (-1103) (-1282) (-10 -8 (-15 -4304 ((-112) $ (|[\|\|]| (-518)))) (-15 -4332 ((-518) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1178)))) (-15 -4332 ((-1178) $))))) (T -889)) -((-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-889)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-889)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-889)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-889))))) -(-13 (-1103) (-1282) (-10 -8 (-15 -4304 ((-112) $ (|[\|\|]| (-518)))) (-15 -4332 ((-518) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1178)))) (-15 -4332 ((-1178) $)))) -((-2422 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 15))) -(((-890 |#1| |#2|) (-10 -7 (-15 -2422 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1237) (-1237)) (T -890)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))) -(-10 -7 (-15 -2422 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) -((-3699 (($ |#1| |#1|) 8)) (-3441 ((|#1| $ (-783)) 15))) -(((-891 |#1|) (-10 -8 (-15 -3699 ($ |#1| |#1|)) (-15 -3441 (|#1| $ (-783)))) (-1237)) (T -891)) -((-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-891 *2)) (-4 *2 (-1237)))) (-3699 (*1 *1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1237))))) -(-10 -8 (-15 -3699 ($ |#1| |#1|)) (-15 -3441 (|#1| $ (-783)))) -((-2422 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) -(((-892 |#1| |#2|) (-10 -7 (-15 -2422 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1237) (-1237)) (T -892)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) -(-10 -7 (-15 -2422 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) -((-3699 (($ |#1| |#1| |#1|) 8)) (-3441 ((|#1| $ (-783)) 15))) -(((-893 |#1|) (-10 -8 (-15 -3699 ($ |#1| |#1| |#1|)) (-15 -3441 (|#1| $ (-783)))) (-1237)) (T -893)) -((-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-893 *2)) (-4 *2 (-1237)))) (-3699 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1237))))) -(-10 -8 (-15 -3699 ($ |#1| |#1| |#1|)) (-15 -3441 (|#1| $ (-783)))) -((-3833 (((-656 (-1201)) (-1178)) 9))) -(((-894) (-10 -7 (-15 -3833 ((-656 (-1201)) (-1178))))) (T -894)) -((-3833 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-894))))) -(-10 -7 (-15 -3833 ((-656 (-1201)) (-1178)))) -((-2422 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 15))) -(((-895 |#1| |#2|) (-10 -7 (-15 -2422 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1237) (-1237)) (T -895)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6))))) -(-10 -7 (-15 -2422 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) -((-2311 (($ |#1| |#1| |#1|) 8)) (-3441 ((|#1| $ (-783)) 15))) -(((-896 |#1|) (-10 -8 (-15 -2311 ($ |#1| |#1| |#1|)) (-15 -3441 (|#1| $ (-783)))) (-1237)) (T -896)) -((-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-896 *2)) (-4 *2 (-1237)))) (-2311 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1237))))) -(-10 -8 (-15 -2311 ($ |#1| |#1| |#1|)) (-15 -3441 (|#1| $ (-783)))) -((-2560 (((-1177 (-656 (-576))) (-656 (-576)) (-1177 (-656 (-576)))) 41)) (-1611 (((-1177 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-4352 (((-1177 (-656 (-576))) (-656 (-576))) 53) (((-1177 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-3433 (((-1177 (-656 (-576))) (-576)) 55)) (-1933 (((-1177 (-656 (-939))) (-1177 (-656 (-939)))) 22)) (-2633 (((-656 (-939)) (-656 (-939))) 18))) -(((-897) (-10 -7 (-15 -2633 ((-656 (-939)) (-656 (-939)))) (-15 -1933 ((-1177 (-656 (-939))) (-1177 (-656 (-939))))) (-15 -1611 ((-1177 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2560 ((-1177 (-656 (-576))) (-656 (-576)) (-1177 (-656 (-576))))) (-15 -4352 ((-1177 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -4352 ((-1177 (-656 (-576))) (-656 (-576)))) (-15 -3433 ((-1177 (-656 (-576))) (-576))))) (T -897)) -((-3433 (*1 *2 *3) (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) (-5 *3 (-576)))) (-4352 (*1 *2 *3) (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) (-5 *3 (-656 (-576))))) (-4352 (*1 *2 *3 *3) (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) (-5 *3 (-656 (-576))))) (-2560 (*1 *2 *3 *2) (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-897)))) (-1611 (*1 *2 *3 *3) (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) (-5 *3 (-656 (-576))))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-1177 (-656 (-939)))) (-5 *1 (-897)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-897))))) -(-10 -7 (-15 -2633 ((-656 (-939)) (-656 (-939)))) (-15 -1933 ((-1177 (-656 (-939))) (-1177 (-656 (-939))))) (-15 -1611 ((-1177 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2560 ((-1177 (-656 (-576))) (-656 (-576)) (-1177 (-656 (-576))))) (-15 -4352 ((-1177 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -4352 ((-1177 (-656 (-576))) (-656 (-576)))) (-15 -3433 ((-1177 (-656 (-576))) (-576)))) -((-1554 (((-906 (-390)) $) 9 (|has| |#1| (-626 (-906 (-390))))) (((-906 (-576)) $) 8 (|has| |#1| (-626 (-906 (-576))))))) -(((-898 |#1|) (-141) (-1237)) (T -898)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-626 (-906 (-576)))) (-6 (-626 (-906 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-906 (-390)))) (-6 (-626 (-906 (-390)))) |%noBranch|))) -(((-626 (-906 (-390))) |has| |#1| (-626 (-906 (-390)))) ((-626 (-906 (-576))) |has| |#1| (-626 (-906 (-576))))) -((-1952 (((-112) $ $) NIL)) (-1989 (($) 14)) (-3347 (($ (-903 |#1| |#2|) (-903 |#1| |#3|)) 28)) (-4204 (((-903 |#1| |#3|) $) 16)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3596 (((-112) $) 22)) (-2532 (($) 19)) (-4112 (((-875) $) 31)) (-1994 (((-112) $ $) NIL)) (-2967 (((-903 |#1| |#2|) $) 15)) (-3938 (((-112) $ $) 26))) -(((-899 |#1| |#2| |#3|) (-13 (-1120) (-10 -8 (-15 -3596 ((-112) $)) (-15 -2532 ($)) (-15 -1989 ($)) (-15 -3347 ($ (-903 |#1| |#2|) (-903 |#1| |#3|))) (-15 -2967 ((-903 |#1| |#2|) $)) (-15 -4204 ((-903 |#1| |#3|) $)))) (-1120) (-1120) (-678 |#2|)) (T -899)) -((-3596 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-112)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1120)) (-4 *5 (-678 *4)))) (-2532 (*1 *1) (-12 (-4 *3 (-1120)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1120)) (-4 *4 (-678 *3)))) (-1989 (*1 *1) (-12 (-4 *3 (-1120)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1120)) (-4 *4 (-678 *3)))) (-3347 (*1 *1 *2 *3) (-12 (-5 *2 (-903 *4 *5)) (-5 *3 (-903 *4 *6)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-678 *5)) (-5 *1 (-899 *4 *5 *6)))) (-2967 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-903 *3 *4)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1120)) (-4 *5 (-678 *4)))) (-4204 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-903 *3 *5)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1120)) (-4 *5 (-678 *4))))) -(-13 (-1120) (-10 -8 (-15 -3596 ((-112) $)) (-15 -2532 ($)) (-15 -1989 ($)) (-15 -3347 ($ (-903 |#1| |#2|) (-903 |#1| |#3|))) (-15 -2967 ((-903 |#1| |#2|) $)) (-15 -4204 ((-903 |#1| |#3|) $)))) -((-1952 (((-112) $ $) 7)) (-1445 (((-903 |#1| $) $ (-906 |#1|) (-903 |#1| $)) 14)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-900 |#1|) (-141) (-1120)) (T -900)) -((-1445 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-903 *4 *1)) (-5 *3 (-906 *4)) (-4 *1 (-900 *4)) (-4 *4 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -1445 ((-903 |t#1| $) $ (-906 |t#1|) (-903 |t#1| $))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1681 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1328 (((-903 |#1| |#2|) |#2| |#3|) 45 (-12 (-2298 (|has| |#2| (-1058 (-1196)))) (-2298 (|has| |#2| (-1069))))) (((-656 (-304 (-970 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1069)) (-2298 (|has| |#2| (-1058 (-1196)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1058 (-1196)))) (((-899 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) -(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -1681 ((-112) |#2| |#3|)) (-15 -1681 ((-112) (-656 |#2|) |#3|)) (-15 -1328 ((-899 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1058 (-1196))) (-15 -1328 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1069)) (-15 -1328 ((-656 (-304 (-970 |#2|))) |#2| |#3|)) (-15 -1328 ((-903 |#1| |#2|) |#2| |#3|))))) (-1120) (-900 |#1|) (-626 (-906 |#1|))) (T -901)) -((-1328 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-903 *5 *3)) (-5 *1 (-901 *5 *3 *4)) (-2298 (-4 *3 (-1058 (-1196)))) (-2298 (-4 *3 (-1069))) (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5))))) (-1328 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-656 (-304 (-970 *3)))) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-1069)) (-2298 (-4 *3 (-1058 (-1196)))) (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5))))) (-1328 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-1058 (-1196))) (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5))))) (-1328 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *6 (-900 *5)) (-5 *2 (-899 *5 *6 (-656 *6))) (-5 *1 (-901 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-906 *5))))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-900 *5)) (-4 *5 (-1120)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6 *4)) (-4 *4 (-626 (-906 *5))))) (-1681 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5)))))) -(-10 -7 (-15 -1681 ((-112) |#2| |#3|)) (-15 -1681 ((-112) (-656 |#2|) |#3|)) (-15 -1328 ((-899 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1058 (-1196))) (-15 -1328 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1069)) (-15 -1328 ((-656 (-304 (-970 |#2|))) |#2| |#3|)) (-15 -1328 ((-903 |#1| |#2|) |#2| |#3|))))) -((-2422 (((-903 |#1| |#3|) (-1 |#3| |#2|) (-903 |#1| |#2|)) 22))) -(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-903 |#1| |#3|) (-1 |#3| |#2|) (-903 |#1| |#2|)))) (-1120) (-1120) (-1120)) (T -902)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-903 *5 *6)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-903 *5 *7)) (-5 *1 (-902 *5 *6 *7))))) -(-10 -7 (-15 -2422 ((-903 |#1| |#3|) (-1 |#3| |#2|) (-903 |#1| |#2|)))) -((-1952 (((-112) $ $) NIL)) (-4025 (($ $ $) 40)) (-4427 (((-3 (-112) "failed") $ (-906 |#1|)) 37)) (-1989 (($) 12)) (-2043 (((-1178) $) NIL)) (-1516 (($ (-906 |#1|) |#2| $) 20)) (-3115 (((-1140) $) NIL)) (-2833 (((-3 |#2| "failed") (-906 |#1|) $) 51)) (-3596 (((-112) $) 15)) (-2532 (($) 13)) (-1523 (((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 |#2|))) $) 25)) (-4124 (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 |#2|)))) 23)) (-4112 (((-875) $) 45)) (-1994 (((-112) $ $) NIL)) (-3387 (($ (-906 |#1|) |#2| $ |#2|) 49)) (-2327 (($ (-906 |#1|) |#2| $) 48)) (-3938 (((-112) $ $) 42))) -(((-903 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3596 ((-112) $)) (-15 -2532 ($)) (-15 -1989 ($)) (-15 -4025 ($ $ $)) (-15 -2833 ((-3 |#2| "failed") (-906 |#1|) $)) (-15 -2327 ($ (-906 |#1|) |#2| $)) (-15 -1516 ($ (-906 |#1|) |#2| $)) (-15 -3387 ($ (-906 |#1|) |#2| $ |#2|)) (-15 -1523 ((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 |#2|))) $)) (-15 -4124 ($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 |#2|))))) (-15 -4427 ((-3 (-112) "failed") $ (-906 |#1|))))) (-1120) (-1120)) (T -903)) -((-3596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-2532 (*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-1989 (*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-4025 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-2833 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) (-5 *1 (-903 *4 *2)))) (-2327 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1120)))) (-1516 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1120)))) (-3387 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1120)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 *4)))) (-5 *1 (-903 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 *4)))) (-4 *4 (-1120)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1120)))) (-4427 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-5 *2 (-112)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3596 ((-112) $)) (-15 -2532 ($)) (-15 -1989 ($)) (-15 -4025 ($ $ $)) (-15 -2833 ((-3 |#2| "failed") (-906 |#1|) $)) (-15 -2327 ($ (-906 |#1|) |#2| $)) (-15 -1516 ($ (-906 |#1|) |#2| $)) (-15 -3387 ($ (-906 |#1|) |#2| $ |#2|)) (-15 -1523 ((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 |#2|))) $)) (-15 -4124 ($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 |#2|))))) (-15 -4427 ((-3 (-112) "failed") $ (-906 |#1|))))) -((-3766 (((-906 |#1|) (-906 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|))) 32) (((-906 |#1|) (-906 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-906 |#1|) (-906 |#1|) (-1 (-112) |#2|)) 35)) (-4427 (((-112) (-656 |#2|) (-906 |#1|)) 42) (((-112) |#2| (-906 |#1|)) 36)) (-2370 (((-1 (-112) |#2|) (-906 |#1|)) 16)) (-1380 (((-656 |#2|) (-906 |#1|)) 24)) (-2544 (((-906 |#1|) (-906 |#1|) |#2|) 20))) -(((-904 |#1| |#2|) (-10 -7 (-15 -3766 ((-906 |#1|) (-906 |#1|) (-1 (-112) |#2|))) (-15 -3766 ((-906 |#1|) (-906 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -3766 ((-906 |#1|) (-906 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|)))) (-15 -2370 ((-1 (-112) |#2|) (-906 |#1|))) (-15 -4427 ((-112) |#2| (-906 |#1|))) (-15 -4427 ((-112) (-656 |#2|) (-906 |#1|))) (-15 -2544 ((-906 |#1|) (-906 |#1|) |#2|)) (-15 -1380 ((-656 |#2|) (-906 |#1|)))) (-1120) (-1237)) (T -904)) -((-1380 (*1 *2 *3) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-5 *2 (-656 *5)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1237)))) (-2544 (*1 *2 *2 *3) (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1237)))) (-4427 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-4 *6 (-1237)) (-5 *2 (-112)) (-5 *1 (-904 *5 *6)))) (-4427 (*1 *2 *3 *4) (-12 (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-5 *2 (-112)) (-5 *1 (-904 *5 *3)) (-4 *3 (-1237)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1237)))) (-3766 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-906 *5)) (-5 *3 (-656 (-1196))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1120)) (-4 *6 (-1237)) (-5 *1 (-904 *5 *6)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *2 (-906 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1120)) (-4 *5 (-1237)) (-5 *1 (-904 *4 *5)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *2 (-906 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1120)) (-4 *5 (-1237)) (-5 *1 (-904 *4 *5))))) -(-10 -7 (-15 -3766 ((-906 |#1|) (-906 |#1|) (-1 (-112) |#2|))) (-15 -3766 ((-906 |#1|) (-906 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -3766 ((-906 |#1|) (-906 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|)))) (-15 -2370 ((-1 (-112) |#2|) (-906 |#1|))) (-15 -4427 ((-112) |#2| (-906 |#1|))) (-15 -4427 ((-112) (-656 |#2|) (-906 |#1|))) (-15 -2544 ((-906 |#1|) (-906 |#1|) |#2|)) (-15 -1380 ((-656 |#2|) (-906 |#1|)))) -((-2422 (((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)) 19))) -(((-905 |#1| |#2|) (-10 -7 (-15 -2422 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) (-1120) (-1120)) (T -905)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6))))) -(-10 -7 (-15 -2422 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) -((-1952 (((-112) $ $) NIL)) (-1923 (($ $ (-656 (-52))) 74)) (-1582 (((-656 $) $) 139)) (-3780 (((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $) 30)) (-4384 (((-112) $) 35)) (-2728 (($ $ (-656 (-1196)) (-52)) 31)) (-1609 (($ $ (-656 (-52))) 73)) (-2980 (((-3 |#1| "failed") $) 71) (((-3 (-1196) "failed") $) 164)) (-2317 ((|#1| $) 68) (((-1196) $) NIL)) (-2263 (($ $) 126)) (-4256 (((-112) $) 55)) (-3279 (((-656 (-52)) $) 50)) (-2575 (($ (-1196) (-112) (-112) (-112)) 75)) (-1961 (((-3 (-656 $) "failed") (-656 $)) 82)) (-1326 (((-112) $) 58)) (-3614 (((-112) $) 57)) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) 41)) (-2899 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2192 (((-3 (-2 (|:| |val| $) (|:| -1495 $)) "failed") $) 97)) (-2279 (((-3 (-656 $) "failed") $) 40)) (-1339 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-2763 (((-3 (-656 $) "failed") $) 42)) (-4044 (((-3 (-2 (|:| |val| $) (|:| -1495 (-783))) "failed") $) 45)) (-3765 (((-112) $) 34)) (-3115 (((-1140) $) NIL)) (-1607 (((-112) $) 28)) (-4328 (((-112) $) 52)) (-4264 (((-656 (-52)) $) 130)) (-1475 (((-112) $) 56)) (-4368 (($ (-115) (-656 $)) 104)) (-4305 (((-783) $) 33)) (-4286 (($ $) 72)) (-1554 (($ (-656 $)) 69)) (-1744 (((-112) $) 32)) (-4112 (((-875) $) 63) (($ |#1|) 23) (($ (-1196)) 76)) (-1994 (((-112) $ $) NIL)) (-2544 (($ $ (-52)) 129)) (-4314 (($) 103 T CONST)) (-4320 (($) 83 T CONST)) (-3938 (((-112) $ $) 93)) (-4046 (($ $ $) 117)) (-4026 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-906 |#1|) (-13 (-1120) (-1058 |#1|) (-1058 (-1196)) (-10 -8 (-15 0 ($) -2665) (-15 1 ($) -2665) (-15 -2279 ((-3 (-656 $) "failed") $)) (-15 -2000 ((-3 (-656 $) "failed") $)) (-15 -1339 ((-3 (-656 $) "failed") $ (-115))) (-15 -1339 ((-3 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -4044 ((-3 (-2 (|:| |val| $) (|:| -1495 (-783))) "failed") $)) (-15 -2899 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2763 ((-3 (-656 $) "failed") $)) (-15 -2192 ((-3 (-2 (|:| |val| $) (|:| -1495 $)) "failed") $)) (-15 -4368 ($ (-115) (-656 $))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4046 ($ $ $)) (-15 -4305 ((-783) $)) (-15 -1554 ($ (-656 $))) (-15 -4286 ($ $)) (-15 -3765 ((-112) $)) (-15 -4256 ((-112) $)) (-15 -4384 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -3614 ((-112) $)) (-15 -1326 ((-112) $)) (-15 -4328 ((-112) $)) (-15 -3279 ((-656 (-52)) $)) (-15 -1609 ($ $ (-656 (-52)))) (-15 -1923 ($ $ (-656 (-52)))) (-15 -2575 ($ (-1196) (-112) (-112) (-112))) (-15 -2728 ($ $ (-656 (-1196)) (-52))) (-15 -3780 ((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $)) (-15 -1607 ((-112) $)) (-15 -2263 ($ $)) (-15 -2544 ($ $ (-52))) (-15 -4264 ((-656 (-52)) $)) (-15 -1582 ((-656 $) $)) (-15 -1961 ((-3 (-656 $) "failed") (-656 $))))) (-1120)) (T -906)) -((-4314 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (-4320 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (-2279 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-2000 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1339 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-906 *4))) (-5 *1 (-906 *4)) (-4 *4 (-1120)))) (-1339 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 (-906 *3))))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4044 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-906 *3)) (|:| -1495 (-783)))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-2899 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-906 *3)) (|:| |den| (-906 *3)))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-2763 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-2192 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-906 *3)) (|:| -1495 (-906 *3)))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-906 *4))) (-5 *1 (-906 *4)) (-4 *4 (-1120)))) (-4026 (*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (-4046 (*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4286 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-2575 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-112)) (-5 *1 (-906 *4)) (-4 *4 (-1120)))) (-2728 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-52)) (-5 *1 (-906 *4)) (-4 *4 (-1120)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52)))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) (-1961 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(-13 (-1120) (-1058 |#1|) (-1058 (-1196)) (-10 -8 (-15 (-4314) ($) -2665) (-15 (-4320) ($) -2665) (-15 -2279 ((-3 (-656 $) "failed") $)) (-15 -2000 ((-3 (-656 $) "failed") $)) (-15 -1339 ((-3 (-656 $) "failed") $ (-115))) (-15 -1339 ((-3 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -4044 ((-3 (-2 (|:| |val| $) (|:| -1495 (-783))) "failed") $)) (-15 -2899 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2763 ((-3 (-656 $) "failed") $)) (-15 -2192 ((-3 (-2 (|:| |val| $) (|:| -1495 $)) "failed") $)) (-15 -4368 ($ (-115) (-656 $))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4046 ($ $ $)) (-15 -4305 ((-783) $)) (-15 -1554 ($ (-656 $))) (-15 -4286 ($ $)) (-15 -3765 ((-112) $)) (-15 -4256 ((-112) $)) (-15 -4384 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -3614 ((-112) $)) (-15 -1326 ((-112) $)) (-15 -4328 ((-112) $)) (-15 -3279 ((-656 (-52)) $)) (-15 -1609 ($ $ (-656 (-52)))) (-15 -1923 ($ $ (-656 (-52)))) (-15 -2575 ($ (-1196) (-112) (-112) (-112))) (-15 -2728 ($ $ (-656 (-1196)) (-52))) (-15 -3780 ((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $)) (-15 -1607 ((-112) $)) (-15 -2263 ($ $)) (-15 -2544 ($ $ (-52))) (-15 -4264 ((-656 (-52)) $)) (-15 -1582 ((-656 $) $)) (-15 -1961 ((-3 (-656 $) "failed") (-656 $))))) -((-1952 (((-112) $ $) NIL)) (-1417 (((-656 |#1|) $) 19)) (-3633 (((-112) $) 49)) (-2980 (((-3 (-684 |#1|) "failed") $) 56)) (-2317 (((-684 |#1|) $) 54)) (-1762 (($ $) 23)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-3107 (((-783) $) 61)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-684 |#1|) $) 21)) (-4112 (((-875) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 9 T CONST)) (-2883 (((-656 (-684 |#1|)) $) 28)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 12)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 67))) -(((-907 |#1|) (-13 (-861) (-1058 (-684 |#1|)) (-10 -8 (-15 1 ($) -2665) (-15 -4112 ((-831 |#1|) $)) (-15 -4112 ($ |#1|)) (-15 -1753 ((-684 |#1|) $)) (-15 -3107 ((-783) $)) (-15 -2883 ((-656 (-684 |#1|)) $)) (-15 -1762 ($ $)) (-15 -3633 ((-112) $)) (-15 -1417 ((-656 |#1|) $)))) (-861)) (T -907)) -((-4320 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-861)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) (-4112 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-861)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-907 *3)) (-4 *3 (-861)))) (-1762 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-861)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-907 *3)) (-4 *3 (-861))))) -(-13 (-861) (-1058 (-684 |#1|)) (-10 -8 (-15 (-4320) ($) -2665) (-15 -4112 ((-831 |#1|) $)) (-15 -4112 ($ |#1|)) (-15 -1753 ((-684 |#1|) $)) (-15 -3107 ((-783) $)) (-15 -2883 ((-656 (-684 |#1|)) $)) (-15 -1762 ($ $)) (-15 -3633 ((-112) $)) (-15 -1417 ((-656 |#1|) $)))) -((-1661 ((|#1| |#1| |#1|) 19))) -(((-908 |#1| |#2|) (-10 -7 (-15 -1661 (|#1| |#1| |#1|))) (-1263 |#2|) (-1069)) (T -908)) -((-1661 (*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-908 *2 *3)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -1661 (|#1| |#1| |#1|))) -((-3155 ((|#2| $ |#3|) 10))) -(((-909 |#1| |#2| |#3|) (-10 -8 (-15 -3155 (|#2| |#1| |#3|))) (-910 |#2| |#3|) (-1237) (-1237)) (T -909)) -NIL -(-10 -8 (-15 -3155 (|#2| |#1| |#3|))) -((-4106 ((|#1| $ |#2|) 7)) (-3155 ((|#1| $ |#2|) 6))) -(((-910 |#1| |#2|) (-141) (-1237) (-1237)) (T -910)) -((-4106 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) (-3155 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -4106 (|t#1| $ |t#2|)) (-15 -3155 (|t#1| $ |t#2|)))) -(((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-2420 (((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 15)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-1507 (((-1055) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 14)) (-3938 (((-112) $ $) 8))) -(((-911) (-141)) (T -911)) -((-2420 (*1 *2 *3 *4) (-12 (-4 *1 (-911)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) (-1507 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-1055))))) -(-13 (-1120) (-10 -7 (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| |explanations| (-1178))) (-1083) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -1507 ((-1055) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-2693 ((|#1| |#1| (-783)) 27)) (-2383 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2497 (((-3 (-2 (|:| -2100 |#1|) (|:| -2110 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) -(((-912 |#1| |#2|) (-10 -7 (-15 -2497 ((-656 |#1|) |#1|)) (-15 -2497 ((-3 (-2 (|:| -2100 |#1|) (|:| -2110 |#1|)) "failed") |#1| (-783) (-783))) (-15 -2383 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2693 (|#1| |#1| (-783)))) (-1263 |#2|) (-374)) (T -912)) -((-2693 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-912 *2 *4)) (-4 *2 (-1263 *4)))) (-2383 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-912 *2 *3)) (-4 *2 (-1263 *3)))) (-2497 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2100 *3) (|:| -2110 *3))) (-5 *1 (-912 *3 *5)) (-4 *3 (-1263 *5)))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-912 *3 *4)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2497 ((-656 |#1|) |#1|)) (-15 -2497 ((-3 (-2 (|:| -2100 |#1|) (|:| -2110 |#1|)) "failed") |#1| (-783) (-783))) (-15 -2383 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2693 (|#1| |#1| (-783)))) -((-3177 (((-1055) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178)) 104) (((-1055) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227)) 100) (((-1055) (-914) (-1083)) 92) (((-1055) (-914)) 93)) (-2420 (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-914) (-1083)) 62) (((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-914)) 64))) -(((-913) (-10 -7 (-15 -3177 ((-1055) (-914))) (-15 -3177 ((-1055) (-914) (-1083))) (-15 -3177 ((-1055) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227))) (-15 -3177 ((-1055) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-914))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-914) (-1083))))) (T -913)) -((-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-913)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-913)))) (-3177 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1055)) (-5 *1 (-913)))) (-3177 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1055)) (-5 *1 (-913)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-913)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1055)) (-5 *1 (-913))))) -(-10 -7 (-15 -3177 ((-1055) (-914))) (-15 -3177 ((-1055) (-914) (-1083))) (-15 -3177 ((-1055) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227))) (-15 -3177 ((-1055) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-914))) (-15 -2420 ((-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) (|:| |explanations| (-656 (-1178)))) (-914) (-1083)))) -((-1952 (((-112) $ $) NIL)) (-2317 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $) 19)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 18)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-914) (-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -2317 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $))))) (T -914)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *1 (-914)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *1 (-914))))) -(-13 (-1120) (-10 -8 (-15 -4112 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -2317 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3155 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-915 |#1| |#2|) (-141) (-1069) (-1120)) (T -915)) -NIL -(-13 (-111 |t#1| |t#1|) (-918 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-910 $ |#2|) . T) ((-918 |#2|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4106 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-916 |#1|) (-141) (-1120)) (T -916)) -NIL -(-13 (-1069) (-918 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-910 $ |#1|) . T) ((-918 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-4106 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-3155 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) -(((-917 |#1| |#2|) (-10 -8 (-15 -3155 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3155 (|#1| |#1| |#2| (-783))) (-15 -3155 (|#1| |#1| (-656 |#2|))) (-15 -4106 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -4106 (|#1| |#1| |#2| (-783))) (-15 -4106 (|#1| |#1| (-656 |#2|))) (-15 -3155 (|#1| |#1| |#2|)) (-15 -4106 (|#1| |#1| |#2|))) (-918 |#2|) (-1120)) (T -917)) -NIL -(-10 -8 (-15 -3155 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3155 (|#1| |#1| |#2| (-783))) (-15 -3155 (|#1| |#1| (-656 |#2|))) (-15 -4106 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -4106 (|#1| |#1| |#2| (-783))) (-15 -4106 (|#1| |#1| (-656 |#2|))) (-15 -3155 (|#1| |#1| |#2|)) (-15 -4106 (|#1| |#1| |#2|))) -((-4106 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-3155 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) -(((-918 |#1|) (-141) (-1120)) (T -918)) -((-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1120)))) (-4106 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-918 *2)) (-4 *2 (-1120)))) (-4106 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-918 *4)) (-4 *4 (-1120)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1120)))) (-3155 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-918 *2)) (-4 *2 (-1120)))) (-3155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-918 *4)) (-4 *4 (-1120))))) -(-13 (-910 $ |t#1|) (-10 -8 (-15 -4106 ($ $ (-656 |t#1|))) (-15 -4106 ($ $ |t#1| (-783))) (-15 -4106 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -3155 ($ $ (-656 |t#1|))) (-15 -3155 ($ $ |t#1| (-783))) (-15 -3155 ($ $ (-656 |t#1|) (-656 (-783)))))) -(((-910 $ |#1|) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) 26)) (-2337 (((-112) $ (-783)) NIL)) (-3078 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-2533 (($ $ $) NIL (|has| $ (-6 -4464)))) (-4402 (($ $ $) NIL (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) (($ $ "left" $) NIL (|has| $ (-6 -4464))) (($ $ "right" $) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2110 (($ $) 25)) (-1569 (($ |#1|) 12) (($ $ $) 17)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2100 (($ $) 23)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) 20)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3183 (((-576) $ $) NIL)) (-2003 (((-112) $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1223 |#1|) $) 9) (((-875) $) 29 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-919 |#1|) (-13 (-120 |#1|) (-625 (-1223 |#1|)) (-10 -8 (-15 -1569 ($ |#1|)) (-15 -1569 ($ $ $)))) (-1120)) (T -919)) -((-1569 (*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1120)))) (-1569 (*1 *1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1120))))) -(-13 (-120 |#1|) (-625 (-1223 |#1|)) (-10 -8 (-15 -1569 ($ |#1|)) (-15 -1569 ($ $ $)))) -((-2438 ((|#2| (-1162 |#1| |#2|)) 48))) -(((-920 |#1| |#2|) (-10 -7 (-15 -2438 (|#2| (-1162 |#1| |#2|)))) (-939) (-13 (-1069) (-10 -7 (-6 (-4465 "*"))))) (T -920)) -((-2438 (*1 *2 *3) (-12 (-5 *3 (-1162 *4 *2)) (-14 *4 (-939)) (-4 *2 (-13 (-1069) (-10 -7 (-6 (-4465 "*"))))) (-5 *1 (-920 *4 *2))))) -(-10 -7 (-15 -2438 (|#2| (-1162 |#1| |#2|)))) -((-1952 (((-112) $ $) 7)) (-2454 (((-1122 |#1|) $) 36)) (-4331 (($) 19 T CONST)) (-3900 (((-3 $ "failed") $) 16)) (-3926 (((-1122 |#1|) $ |#1|) 35)) (-2287 (((-112) $) 18)) (-2905 (($ $ $) 29 (-3794 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-1654 (($ $ $) 30 (-3794 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2043 (((-1178) $) 10)) (-1667 (($ $) 25)) (-3115 (((-1140) $) 11)) (-4368 ((|#1| $ |#1|) 39)) (-2013 (($ (-656 (-656 |#1|))) 37)) (-1722 (($ (-656 |#1|)) 38)) (-2633 (($ $ $) 22)) (-2362 (($ $ $) 21)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4320 (($) 20 T CONST)) (-3993 (((-112) $ $) 31 (-3794 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3974 (((-112) $ $) 33 (-3794 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 32 (-3794 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3962 (((-112) $ $) 34)) (-4046 (($ $ $) 24)) (** (($ $ (-939)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) -(((-921 |#1|) (-141) (-1120)) (T -921)) -((-1722 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-921 *3)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-4 *1 (-921 *3)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1122 *3)))) (-3926 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1122 *3)))) (-3962 (*1 *2 *1 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -1722 ($ (-656 |t#1|))) (-15 -2013 ($ (-656 (-656 |t#1|)))) (-15 -2454 ((-1122 |t#1|) $)) (-15 -3926 ((-1122 |t#1|) $ |t#1|)) (-15 -3962 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-625 (-875)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-861) -3794 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-863) -3794 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3904 (((-656 (-656 (-783))) $) 160)) (-3716 (((-656 (-783)) (-923 |#1|) $) 188)) (-2061 (((-656 (-783)) (-923 |#1|) $) 189)) (-2454 (((-1122 |#1|) $) 152)) (-2922 (((-656 (-923 |#1|)) $) 149)) (-4369 (((-923 |#1|) $ (-576)) 154) (((-923 |#1|) $) 155)) (-3559 (($ (-656 (-923 |#1|))) 162)) (-3241 (((-783) $) 156)) (-1614 (((-1122 (-1122 |#1|)) $) 186)) (-3926 (((-1122 |#1|) $ |#1|) 177) (((-1122 (-1122 |#1|)) $ (-1122 |#1|)) 197) (((-1122 (-656 |#1|)) $ (-656 |#1|)) 200)) (-4217 (((-112) (-923 |#1|) $) 137)) (-2043 (((-1178) $) NIL)) (-1687 (((-1292) $) 142) (((-1292) $ (-576) (-576)) 201)) (-3115 (((-1140) $) NIL)) (-2768 (((-656 (-923 |#1|)) $) 143)) (-4368 (((-923 |#1|) $ (-783)) 150)) (-1877 (((-783) $) 157)) (-4112 (((-875) $) 174) (((-656 (-923 |#1|)) $) 28) (($ (-656 (-923 |#1|))) 161)) (-1994 (((-112) $ $) NIL)) (-1865 (((-656 |#1|) $) 159)) (-3938 (((-112) $ $) 194)) (-3983 (((-112) $ $) 192)) (-3962 (((-112) $ $) 191))) -(((-922 |#1|) (-13 (-1120) (-10 -8 (-15 -4112 ((-656 (-923 |#1|)) $)) (-15 -2768 ((-656 (-923 |#1|)) $)) (-15 -4368 ((-923 |#1|) $ (-783))) (-15 -4369 ((-923 |#1|) $ (-576))) (-15 -4369 ((-923 |#1|) $)) (-15 -3241 ((-783) $)) (-15 -1877 ((-783) $)) (-15 -1865 ((-656 |#1|) $)) (-15 -2922 ((-656 (-923 |#1|)) $)) (-15 -3904 ((-656 (-656 (-783))) $)) (-15 -4112 ($ (-656 (-923 |#1|)))) (-15 -3559 ($ (-656 (-923 |#1|)))) (-15 -3926 ((-1122 |#1|) $ |#1|)) (-15 -1614 ((-1122 (-1122 |#1|)) $)) (-15 -3926 ((-1122 (-1122 |#1|)) $ (-1122 |#1|))) (-15 -3926 ((-1122 (-656 |#1|)) $ (-656 |#1|))) (-15 -4217 ((-112) (-923 |#1|) $)) (-15 -3716 ((-656 (-783)) (-923 |#1|) $)) (-15 -2061 ((-656 (-783)) (-923 |#1|) $)) (-15 -2454 ((-1122 |#1|) $)) (-15 -3962 ((-112) $ $)) (-15 -3983 ((-112) $ $)) (-15 -1687 ((-1292) $)) (-15 -1687 ((-1292) $ (-576) (-576))))) (-1120)) (T -922)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-923 *4)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-923 *4)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-923 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-923 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-656 (-923 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3)))) (-3926 (*1 *2 *1 *3) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1122 (-1122 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3926 (*1 *2 *1 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-1122 (-1122 *4))) (-5 *1 (-922 *4)) (-5 *3 (-1122 *4)))) (-3926 (*1 *2 *1 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-1122 (-656 *4))) (-5 *1 (-922 *4)) (-5 *3 (-656 *4)))) (-4217 (*1 *2 *3 *1) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1120)) (-5 *2 (-112)) (-5 *1 (-922 *4)))) (-3716 (*1 *2 *3 *1) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1120)) (-5 *2 (-656 (-783))) (-5 *1 (-922 *4)))) (-2061 (*1 *2 *3 *1) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1120)) (-5 *2 (-656 (-783))) (-5 *1 (-922 *4)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3962 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3983 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-1687 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-922 *4)) (-4 *4 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -4112 ((-656 (-923 |#1|)) $)) (-15 -2768 ((-656 (-923 |#1|)) $)) (-15 -4368 ((-923 |#1|) $ (-783))) (-15 -4369 ((-923 |#1|) $ (-576))) (-15 -4369 ((-923 |#1|) $)) (-15 -3241 ((-783) $)) (-15 -1877 ((-783) $)) (-15 -1865 ((-656 |#1|) $)) (-15 -2922 ((-656 (-923 |#1|)) $)) (-15 -3904 ((-656 (-656 (-783))) $)) (-15 -4112 ($ (-656 (-923 |#1|)))) (-15 -3559 ($ (-656 (-923 |#1|)))) (-15 -3926 ((-1122 |#1|) $ |#1|)) (-15 -1614 ((-1122 (-1122 |#1|)) $)) (-15 -3926 ((-1122 (-1122 |#1|)) $ (-1122 |#1|))) (-15 -3926 ((-1122 (-656 |#1|)) $ (-656 |#1|))) (-15 -4217 ((-112) (-923 |#1|) $)) (-15 -3716 ((-656 (-783)) (-923 |#1|) $)) (-15 -2061 ((-656 (-783)) (-923 |#1|) $)) (-15 -2454 ((-1122 |#1|) $)) (-15 -3962 ((-112) $ $)) (-15 -3983 ((-112) $ $)) (-15 -1687 ((-1292) $)) (-15 -1687 ((-1292) $ (-576) (-576))))) -((-1952 (((-112) $ $) NIL)) (-2454 (((-1122 |#1|) $) 60)) (-2379 (((-656 $) (-656 $)) 103)) (-3773 (((-576) $) 83)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-3241 (((-783) $) 80)) (-3926 (((-1122 |#1|) $ |#1|) 70)) (-2287 (((-112) $) NIL)) (-1589 (((-112) $) 88)) (-3381 (((-783) $) 84)) (-2905 (($ $ $) NIL (-3794 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-1654 (($ $ $) NIL (-3794 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-4341 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 130)) (-3115 (((-1140) $) NIL)) (-2945 (((-1122 |#1|) $) 136 (|has| |#1| (-379)))) (-4296 (((-112) $) 81)) (-4368 ((|#1| $ |#1|) 68)) (-1877 (((-783) $) 62)) (-2013 (($ (-656 (-656 |#1|))) 118)) (-1945 (((-991) $) 74)) (-1722 (($ (-656 |#1|)) 32)) (-2633 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-4076 (($ (-656 (-656 |#1|))) 57)) (-3530 (($ (-656 (-656 |#1|))) 123)) (-3157 (($ (-656 |#1|)) 132)) (-4112 (((-875) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-1994 (((-112) $ $) NIL)) (-4320 (($) 24 T CONST)) (-3993 (((-112) $ $) NIL (-3794 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3974 (((-112) $ $) NIL (-3794 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3938 (((-112) $ $) 66)) (-3983 (((-112) $ $) NIL (-3794 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3962 (((-112) $ $) 90)) (-4046 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) -(((-923 |#1|) (-13 (-921 |#1|) (-10 -8 (-15 -4341 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -4076 ($ (-656 (-656 |#1|)))) (-15 -4112 ($ (-656 (-656 |#1|)))) (-15 -4112 ($ (-656 |#1|))) (-15 -3530 ($ (-656 (-656 |#1|)))) (-15 -1877 ((-783) $)) (-15 -1945 ((-991) $)) (-15 -3241 ((-783) $)) (-15 -3381 ((-783) $)) (-15 -3773 ((-576) $)) (-15 -4296 ((-112) $)) (-15 -1589 ((-112) $)) (-15 -2379 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -2945 ((-1122 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3157 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -3157 ($ (-656 |#1|))) |%noBranch|)))) (-1120)) (T -923)) -((-4341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-923 *3)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-923 *3)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-923 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-923 *3)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-923 *3)) (-4 *3 (-379)) (-4 *3 (-1120)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-923 *3))))) -(-13 (-921 |#1|) (-10 -8 (-15 -4341 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -4076 ($ (-656 (-656 |#1|)))) (-15 -4112 ($ (-656 (-656 |#1|)))) (-15 -4112 ($ (-656 |#1|))) (-15 -3530 ($ (-656 (-656 |#1|)))) (-15 -1877 ((-783) $)) (-15 -1945 ((-991) $)) (-15 -3241 ((-783) $)) (-15 -3381 ((-783) $)) (-15 -3773 ((-576) $)) (-15 -4296 ((-112) $)) (-15 -1589 ((-112) $)) (-15 -2379 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -2945 ((-1122 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3157 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -3157 ($ (-656 |#1|))) |%noBranch|)))) -((-2177 (((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|)) 160)) (-1636 ((|#1|) 97)) (-1631 (((-430 (-1192 |#4|)) (-1192 |#4|)) 169)) (-1891 (((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)) 84)) (-3255 (((-430 (-1192 |#4|)) (-1192 |#4|)) 179)) (-1850 (((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|) 113))) -(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2177 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|))) (-15 -3255 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -1631 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -1636 (|#1|)) (-15 -1850 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -1891 ((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)))) (-927) (-805) (-861) (-967 |#1| |#2| |#3|)) (T -924)) -((-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-927)) (-4 *6 (-805)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-430 (-1192 *8))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-1192 *8)))) (-1850 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-967 *5 *6 *4)) (-4 *5 (-927)) (-4 *6 (-805)) (-4 *4 (-861)) (-5 *1 (-924 *5 *6 *4 *7)))) (-1636 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-927)) (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-1631 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2177 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-927)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-924 *4 *5 *6 *7))))) -(-10 -7 (-15 -2177 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|))) (-15 -3255 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -1631 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -1636 (|#1|)) (-15 -1850 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -1891 ((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)))) -((-2177 (((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)) 39)) (-1636 ((|#1|) 72)) (-1631 (((-430 (-1192 |#2|)) (-1192 |#2|)) 121)) (-1891 (((-430 (-1192 |#2|)) (-1192 |#2|)) 105)) (-3255 (((-430 (-1192 |#2|)) (-1192 |#2|)) 132))) -(((-925 |#1| |#2|) (-10 -7 (-15 -2177 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))) (-15 -3255 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -1631 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -1636 (|#1|)) (-15 -1891 ((-430 (-1192 |#2|)) (-1192 |#2|)))) (-927) (-1263 |#1|)) (T -925)) -((-1891 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-925 *4 *5)) (-5 *3 (-1192 *5)))) (-1636 (*1 *2) (-12 (-4 *2 (-927)) (-5 *1 (-925 *2 *3)) (-4 *3 (-1263 *2)))) (-1631 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-925 *4 *5)) (-5 *3 (-1192 *5)))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-925 *4 *5)) (-5 *3 (-1192 *5)))) (-2177 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-927)) (-5 *1 (-925 *4 *5))))) -(-10 -7 (-15 -2177 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))) (-15 -3255 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -1631 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -1636 (|#1|)) (-15 -1891 ((-430 (-1192 |#2|)) (-1192 |#2|)))) -((-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 42)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 18)) (-1972 (((-3 $ "failed") $) 36))) -(((-926 |#1|) (-10 -8 (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-927)) (T -926)) -NIL -(-10 -8 (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-1946 (((-430 (-1192 $)) (-1192 $)) 66)) (-3575 (($ $) 57)) (-3163 (((-430 $) $) 58)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 63)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2443 (((-112) $) 59)) (-2287 (((-112) $) 35)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-3705 (((-430 (-1192 $)) (-1192 $)) 64)) (-1988 (((-430 (-1192 $)) (-1192 $)) 65)) (-1450 (((-430 $) $) 56)) (-1943 (((-3 $ "failed") $ $) 48)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-1972 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-927) (-141)) (T -927)) -((-3465 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-927)))) (-1946 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-1988 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3705 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-4251 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *1))) (-5 *3 (-1192 *1)) (-4 *1 (-927)))) (-3080 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-927)) (-5 *2 (-1287 *1)))) (-1972 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-927))))) -(-13 (-1241) (-10 -8 (-15 -1946 ((-430 (-1192 $)) (-1192 $))) (-15 -1988 ((-430 (-1192 $)) (-1192 $))) (-15 -3705 ((-430 (-1192 $)) (-1192 $))) (-15 -3465 ((-1192 $) (-1192 $) (-1192 $))) (-15 -4251 ((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $))) (IF (|has| $ (-146)) (PROGN (-15 -3080 ((-3 (-1287 $) "failed") (-701 $))) (-15 -1972 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2391 (((-112) $) NIL)) (-4186 (((-783)) NIL)) (-3832 (($ $ (-939)) NIL (|has| $ (-379))) (($ $) NIL)) (-2053 (((-1209 (-939) (-783)) (-576)) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 $ "failed") $) NIL)) (-2317 (($ $) NIL)) (-4005 (($ (-1287 $)) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-3933 (($) NIL)) (-2614 (((-112) $) NIL)) (-3878 (($ $) NIL) (($ $ (-783)) NIL)) (-2443 (((-112) $) NIL)) (-3241 (((-845 (-939)) $) NIL) (((-939) $) NIL)) (-2287 (((-112) $) NIL)) (-2558 (($) NIL (|has| $ (-379)))) (-2588 (((-112) $) NIL (|has| $ (-379)))) (-2647 (($ $ (-939)) NIL (|has| $ (-379))) (($ $) NIL)) (-1859 (((-3 $ "failed") $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2354 (((-1192 $) $ (-939)) NIL (|has| $ (-379))) (((-1192 $) $) NIL)) (-4375 (((-939) $) NIL)) (-3003 (((-1192 $) $) NIL (|has| $ (-379)))) (-2586 (((-3 (-1192 $) "failed") $ $) NIL (|has| $ (-379))) (((-1192 $) $) NIL (|has| $ (-379)))) (-1579 (($ $ (-1192 $)) NIL (|has| $ (-379)))) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL T CONST)) (-2409 (($ (-939)) NIL)) (-3274 (((-112) $) NIL)) (-3115 (((-1140) $) NIL)) (-2547 (($) NIL (|has| $ (-379)))) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL)) (-1450 (((-430 $) $) NIL)) (-4416 (((-939)) NIL) (((-845 (-939))) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3334 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-1656 (((-135)) NIL)) (-4106 (($ $) NIL) (($ $ (-783)) NIL)) (-1877 (((-939) $) NIL) (((-845 (-939)) $) NIL)) (-3175 (((-1192 $)) NIL)) (-1984 (($) NIL)) (-2209 (($) NIL (|has| $ (-379)))) (-3435 (((-701 $) (-1287 $)) NIL) (((-1287 $) $) NIL)) (-1554 (((-576) $) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-1972 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $) (-939)) NIL) (((-1287 $)) NIL)) (-3111 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-2269 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-928 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-939)) (T -928)) +((-2952 (((-703 (-1246)) $ (-1246)) NIL)) (-2193 (((-703 (-561)) $ (-561)) NIL)) (-2566 (((-783) $ (-129)) NIL)) (-3213 (((-703 (-130)) $ (-130)) 22)) (-2898 (($ (-400)) 12) (($ (-1179)) 14)) (-3081 (((-112) $) 19)) (-3569 (((-876) $) 26)) (-1540 (($ $) 23))) +(((-875) (-13 (-874) (-625 (-876)) (-10 -8 (-15 -2898 ($ (-400))) (-15 -2898 ($ (-1179))) (-15 -3081 ((-112) $))))) (T -875)) +((-2898 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) +(-13 (-874) (-625 (-876)) (-10 -8 (-15 -2898 ($ (-400))) (-15 -2898 ($ (-1179))) (-15 -3081 ((-112) $)))) +((-3488 (((-112) $ $) NIL) (($ $ $) 85)) (-2565 (($ $ $) 125)) (-3359 (((-576) $) 31) (((-576)) 36)) (-3540 (($ (-576)) 53)) (-4178 (($ $ $) 54) (($ (-656 $)) 84)) (-4123 (($ $ (-656 $)) 82)) (-3520 (((-576) $) 34)) (-1863 (($ $ $) 73)) (-1369 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1682 (((-576) $) 33)) (-2310 (($ $ $) 72)) (-1329 (($ $) 114)) (-1979 (($ $ $) 129)) (-3153 (($ (-656 $)) 61)) (-2445 (($ $ (-656 $)) 79)) (-2243 (($ (-576) (-576)) 55)) (-1502 (($ $) 126) (($ $ $) 127)) (-4249 (($ $ (-576)) 43) (($ $) 46)) (-3428 (($ $ $) 97)) (-3609 (($ $ $) 132)) (-2836 (($ $) 115)) (-3440 (($ $ $) 98)) (-3329 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2111 (((-1293) $) 10)) (-4046 (($ $) 118) (($ $ (-783)) 122)) (-1559 (($ $ $) 75)) (-1408 (($ $ $) 74)) (-4002 (($ $ (-656 $)) 110)) (-3593 (($ $ $) 113)) (-2913 (($ (-656 $)) 59)) (-3716 (($ $) 70) (($ (-656 $)) 71)) (-4083 (($ $ $) 123)) (-4257 (($ $) 116)) (-3418 (($ $ $) 128)) (-3689 (($ (-576)) 21) (($ (-1197)) 23) (($ (-1179)) 30) (($ (-227)) 25)) (-2683 (($ $ $) 101)) (-2662 (($ $) 102)) (-2360 (((-1293) (-1179)) 15)) (-2770 (($ (-1179)) 14)) (-2465 (($ (-656 (-656 $))) 58)) (-4239 (($ $ (-576)) 42) (($ $) 45)) (-1413 (((-1179) $) NIL)) (-2501 (($ $ $) 131)) (-3895 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2231 (((-112) $) 108)) (-2680 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-2336 (($ (-576)) 39)) (-2325 (((-576) $) 32) (((-576)) 35)) (-2926 (($ $ $) 40) (($ (-656 $)) 83)) (-1450 (((-1141) $) NIL)) (-3475 (($ $ $) 99)) (-3839 (($) 13)) (-2796 (($ $ (-656 $)) 109)) (-3855 (((-1179) (-1179)) 8)) (-1984 (($ $) 117) (($ $ (-783)) 121)) (-3464 (($ $ $) 96)) (-2773 (($ $ (-783)) 139)) (-2349 (($ (-656 $)) 60)) (-3569 (((-876) $) 19)) (-2394 (($ $ (-576)) 41) (($ $) 44)) (-4251 (($ $) 68) (($ (-656 $)) 69)) (-1894 (($ $) 66) (($ (-656 $)) 67)) (-3680 (($ $) 124)) (-1476 (($ (-656 $)) 65)) (-1621 (($ $ $) 105)) (-2113 (((-112) $ $) NIL)) (-3923 (($ $ $) 130)) (-2673 (($ $ $) 100)) (-1785 (($ $ $) 103) (($ $) 104)) (-2991 (($ $ $) 89)) (-2962 (($ $ $) 87)) (-2923 (((-112) $ $) 16) (($ $ $) 17)) (-2978 (($ $ $) 88)) (-2948 (($ $ $) 86)) (-3056 (($ $ $) 94)) (-3043 (($ $ $) 91) (($ $) 92)) (-3029 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-876) (-13 (-1121) (-10 -8 (-15 -2111 ((-1293) $)) (-15 -2770 ($ (-1179))) (-15 -2360 ((-1293) (-1179))) (-15 -3689 ($ (-576))) (-15 -3689 ($ (-1197))) (-15 -3689 ($ (-1179))) (-15 -3689 ($ (-227))) (-15 -3839 ($)) (-15 -3855 ((-1179) (-1179))) (-15 -3359 ((-576) $)) (-15 -2325 ((-576) $)) (-15 -3359 ((-576))) (-15 -2325 ((-576))) (-15 -1682 ((-576) $)) (-15 -3520 ((-576) $)) (-15 -2336 ($ (-576))) (-15 -3540 ($ (-576))) (-15 -2243 ($ (-576) (-576))) (-15 -4239 ($ $ (-576))) (-15 -4249 ($ $ (-576))) (-15 -2394 ($ $ (-576))) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2394 ($ $)) (-15 -2926 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -2926 ($ (-656 $))) (-15 -4178 ($ (-656 $))) (-15 -4002 ($ $ (-656 $))) (-15 -2680 ($ $ (-656 $))) (-15 -2680 ($ $ $ $)) (-15 -3593 ($ $ $)) (-15 -2231 ((-112) $)) (-15 -2796 ($ $ (-656 $))) (-15 -1329 ($ $)) (-15 -2501 ($ $ $)) (-15 -3680 ($ $)) (-15 -2465 ($ (-656 (-656 $)))) (-15 -2565 ($ $ $)) (-15 -1502 ($ $)) (-15 -1502 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -1979 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -3609 ($ $ $)) (-15 -2773 ($ $ (-783))) (-15 -1621 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -1863 ($ $ $)) (-15 -1408 ($ $ $)) (-15 -1559 ($ $ $)) (-15 -2445 ($ $ (-656 $))) (-15 -4123 ($ $ (-656 $))) (-15 -2836 ($ $)) (-15 -1984 ($ $)) (-15 -1984 ($ $ (-783))) (-15 -4046 ($ $)) (-15 -4046 ($ $ (-783))) (-15 -4257 ($ $)) (-15 -4083 ($ $ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ $ $)) (-15 -3329 ($ $)) (-15 -3329 ($ $ $)) (-15 -3329 ($ $ $ $)) (-15 -3895 ($ $)) (-15 -3895 ($ $ $)) (-15 -3895 ($ $ $ $)) (-15 -1894 ($ $)) (-15 -1894 ($ (-656 $))) (-15 -4251 ($ $)) (-15 -4251 ($ (-656 $))) (-15 -3716 ($ $)) (-15 -3716 ($ (-656 $))) (-15 -2913 ($ (-656 $))) (-15 -2349 ($ (-656 $))) (-15 -3153 ($ (-656 $))) (-15 -1476 ($ (-656 $))) (-15 -2923 ($ $ $)) (-15 -3488 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2991 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ $)) (-15 -3464 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3440 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2662 ($ $)) (-15 -1785 ($ $ $)) (-15 -1785 ($ $))))) (T -876)) +((-2111 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) (-3839 (*1 *1) (-5 *1 (-876))) (-3855 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3359 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2325 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2243 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2394 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4239 (*1 *1 *1) (-5 *1 (-876))) (-4249 (*1 *1 *1) (-5 *1 (-876))) (-2394 (*1 *1 *1) (-5 *1 (-876))) (-2926 (*1 *1 *1 *1) (-5 *1 (-876))) (-4178 (*1 *1 *1 *1) (-5 *1 (-876))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4002 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2680 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3593 (*1 *1 *1 *1) (-5 *1 (-876))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1329 (*1 *1 *1) (-5 *1 (-876))) (-2501 (*1 *1 *1 *1) (-5 *1 (-876))) (-3680 (*1 *1 *1) (-5 *1 (-876))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-876)))) (-2565 (*1 *1 *1 *1) (-5 *1 (-876))) (-1502 (*1 *1 *1) (-5 *1 (-876))) (-1502 (*1 *1 *1 *1) (-5 *1 (-876))) (-3418 (*1 *1 *1 *1) (-5 *1 (-876))) (-1979 (*1 *1 *1 *1) (-5 *1 (-876))) (-3923 (*1 *1 *1 *1) (-5 *1 (-876))) (-3609 (*1 *1 *1 *1) (-5 *1 (-876))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-1621 (*1 *1 *1 *1) (-5 *1 (-876))) (-2310 (*1 *1 *1 *1) (-5 *1 (-876))) (-1863 (*1 *1 *1 *1) (-5 *1 (-876))) (-1408 (*1 *1 *1 *1) (-5 *1 (-876))) (-1559 (*1 *1 *1 *1) (-5 *1 (-876))) (-2445 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2836 (*1 *1 *1) (-5 *1 (-876))) (-1984 (*1 *1 *1) (-5 *1 (-876))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-4046 (*1 *1 *1) (-5 *1 (-876))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-4257 (*1 *1 *1) (-5 *1 (-876))) (-4083 (*1 *1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3329 (*1 *1 *1) (-5 *1 (-876))) (-3329 (*1 *1 *1 *1) (-5 *1 (-876))) (-3329 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3895 (*1 *1 *1) (-5 *1 (-876))) (-3895 (*1 *1 *1 *1) (-5 *1 (-876))) (-3895 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-1894 (*1 *1 *1) (-5 *1 (-876))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4251 (*1 *1 *1) (-5 *1 (-876))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3716 (*1 *1 *1) (-5 *1 (-876))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3153 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1476 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2923 (*1 *1 *1 *1) (-5 *1 (-876))) (-3488 (*1 *1 *1 *1) (-5 *1 (-876))) (-2948 (*1 *1 *1 *1) (-5 *1 (-876))) (-2962 (*1 *1 *1 *1) (-5 *1 (-876))) (-2978 (*1 *1 *1 *1) (-5 *1 (-876))) (-2991 (*1 *1 *1 *1) (-5 *1 (-876))) (-3029 (*1 *1 *1 *1) (-5 *1 (-876))) (-3043 (*1 *1 *1 *1) (-5 *1 (-876))) (-3043 (*1 *1 *1) (-5 *1 (-876))) (* (*1 *1 *1 *1) (-5 *1 (-876))) (-3056 (*1 *1 *1 *1) (-5 *1 (-876))) (** (*1 *1 *1 *1) (-5 *1 (-876))) (-3464 (*1 *1 *1 *1) (-5 *1 (-876))) (-3428 (*1 *1 *1 *1) (-5 *1 (-876))) (-3440 (*1 *1 *1 *1) (-5 *1 (-876))) (-3475 (*1 *1 *1 *1) (-5 *1 (-876))) (-2673 (*1 *1 *1 *1) (-5 *1 (-876))) (-2683 (*1 *1 *1 *1) (-5 *1 (-876))) (-2662 (*1 *1 *1) (-5 *1 (-876))) (-1785 (*1 *1 *1 *1) (-5 *1 (-876))) (-1785 (*1 *1 *1) (-5 *1 (-876)))) +(-13 (-1121) (-10 -8 (-15 -2111 ((-1293) $)) (-15 -2770 ($ (-1179))) (-15 -2360 ((-1293) (-1179))) (-15 -3689 ($ (-576))) (-15 -3689 ($ (-1197))) (-15 -3689 ($ (-1179))) (-15 -3689 ($ (-227))) (-15 -3839 ($)) (-15 -3855 ((-1179) (-1179))) (-15 -3359 ((-576) $)) (-15 -2325 ((-576) $)) (-15 -3359 ((-576))) (-15 -2325 ((-576))) (-15 -1682 ((-576) $)) (-15 -3520 ((-576) $)) (-15 -2336 ($ (-576))) (-15 -3540 ($ (-576))) (-15 -2243 ($ (-576) (-576))) (-15 -4239 ($ $ (-576))) (-15 -4249 ($ $ (-576))) (-15 -2394 ($ $ (-576))) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2394 ($ $)) (-15 -2926 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -2926 ($ (-656 $))) (-15 -4178 ($ (-656 $))) (-15 -4002 ($ $ (-656 $))) (-15 -2680 ($ $ (-656 $))) (-15 -2680 ($ $ $ $)) (-15 -3593 ($ $ $)) (-15 -2231 ((-112) $)) (-15 -2796 ($ $ (-656 $))) (-15 -1329 ($ $)) (-15 -2501 ($ $ $)) (-15 -3680 ($ $)) (-15 -2465 ($ (-656 (-656 $)))) (-15 -2565 ($ $ $)) (-15 -1502 ($ $)) (-15 -1502 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -1979 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -3609 ($ $ $)) (-15 -2773 ($ $ (-783))) (-15 -1621 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -1863 ($ $ $)) (-15 -1408 ($ $ $)) (-15 -1559 ($ $ $)) (-15 -2445 ($ $ (-656 $))) (-15 -4123 ($ $ (-656 $))) (-15 -2836 ($ $)) (-15 -1984 ($ $)) (-15 -1984 ($ $ (-783))) (-15 -4046 ($ $)) (-15 -4046 ($ $ (-783))) (-15 -4257 ($ $)) (-15 -4083 ($ $ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ $ $)) (-15 -3329 ($ $)) (-15 -3329 ($ $ $)) (-15 -3329 ($ $ $ $)) (-15 -3895 ($ $)) (-15 -3895 ($ $ $)) (-15 -3895 ($ $ $ $)) (-15 -1894 ($ $)) (-15 -1894 ($ (-656 $))) (-15 -4251 ($ $)) (-15 -4251 ($ (-656 $))) (-15 -3716 ($ $)) (-15 -3716 ($ (-656 $))) (-15 -2913 ($ (-656 $))) (-15 -2349 ($ (-656 $))) (-15 -3153 ($ (-656 $))) (-15 -1476 ($ (-656 $))) (-15 -2923 ($ $ $)) (-15 -3488 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2991 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ $)) (-15 -3464 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3440 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2662 ($ $)) (-15 -1785 ($ $ $)) (-15 -1785 ($ $)))) +((-2678 (((-1293) (-656 (-52))) 23)) (-2750 (((-1293) (-1179) (-876)) 13) (((-1293) (-876)) 8) (((-1293) (-1179)) 10))) +(((-877) (-10 -7 (-15 -2750 ((-1293) (-1179))) (-15 -2750 ((-1293) (-876))) (-15 -2750 ((-1293) (-1179) (-876))) (-15 -2678 ((-1293) (-656 (-52)))))) (T -877)) +((-2678 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877))))) +(-10 -7 (-15 -2750 ((-1293) (-1179))) (-15 -2750 ((-1293) (-876))) (-15 -2750 ((-1293) (-1179) (-876))) (-15 -2678 ((-1293) (-656 (-52))))) +((-3488 (((-112) $ $) NIL)) (-3054 (((-3 $ "failed") (-1197)) 36)) (-2096 (((-783)) 32)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) 29)) (-1413 (((-1179) $) 43)) (-3223 (($ (-940)) 28)) (-1450 (((-1141) $) NIL)) (-4171 (((-1197) $) 13) (((-548) $) 19) (((-907 (-390)) $) 26) (((-907 (-576)) $) 22)) (-3569 (((-876) $) 16)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 40)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 38))) +(((-878 |#1|) (-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -3054 ((-3 $ "failed") (-1197))))) (-656 (-1197))) (T -878)) +((-3054 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2))))) +(-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -3054 ((-3 $ "failed") (-1197))))) +((-3488 (((-112) $ $) NIL)) (-2627 (((-518) $) 9)) (-2735 (((-656 (-451)) $) 13)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 21)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 16))) +(((-879) (-13 (-1121) (-10 -8 (-15 -2627 ((-518) $)) (-15 -2735 ((-656 (-451)) $))))) (T -879)) +((-2627 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) +(-13 (-1121) (-10 -8 (-15 -2627 ((-518) $)) (-15 -2735 ((-656 (-451)) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-971 |#1|)) NIL) (((-971 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1778 (((-783)) NIL T CONST)) (-3294 (((-1293) (-783)) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-880 |#1| |#2| |#3| |#4|) (-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1293) (-783))))) (-1070) (-656 (-1197)) (-656 (-783)) (-783)) (T -880)) +((-3056 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) (-14 *7 *3)))) +(-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1293) (-783))))) +((-4167 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-3158 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) +(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -4167 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1279 |#1|) (-1264 |#1|)) (T -881)) +((-4167 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) (-3158 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) +(-10 -7 (-15 -3158 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -4167 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) +((-3158 (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) 28))) +(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -3158 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) (-374) (-1197) |#1|) (T -882)) +((-3158 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7)))) (-3158 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7))))) +(-10 -7 (-15 -3158 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -3158 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-1839 (($ $ (-576)) 68)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-1502 (($ (-1193 (-576)) (-576)) 67)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-4369 (($ $) 70)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3309 (((-783) $) 75)) (-3215 (((-112) $) 35)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3459 (((-576)) 72)) (-2144 (((-576) $) 71)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3169 (($ $ (-576)) 74)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-3229 (((-1178 (-576)) $) 76)) (-1633 (($ $) 73)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-4165 (((-576) $ (-576)) 69)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-883 |#1|) (-141) (-576)) (T -883)) +((-3229 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576))))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) (-3169 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1633 (*1 *1 *1) (-4 *1 (-883 *2))) (-3459 (*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-4369 (*1 *1 *1) (-4 *1 (-883 *2))) (-4165 (*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1839 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) +(-13 (-317) (-148) (-10 -8 (-15 -3229 ((-1178 (-576)) $)) (-15 -3309 ((-783) $)) (-15 -3169 ($ $ (-576))) (-15 -1633 ($ $)) (-15 -3459 ((-576))) (-15 -2144 ((-576) $)) (-15 -4369 ($ $)) (-15 -4165 ((-576) $ (-576))) (-15 -1839 ($ $ (-576))) (-15 -1502 ($ (-1193 (-576)) (-576))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $ (-576)) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-1502 (($ (-1193 (-576)) (-576)) NIL)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-4369 (($ $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3309 (((-783) $) NIL)) (-3215 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 (((-576)) NIL)) (-2144 (((-576) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3169 (($ $ (-576)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3229 (((-1178 (-576)) $) NIL)) (-1633 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-576) $ (-576)) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-884 |#1|) (-883 |#1|) (-576)) (T -884)) +NIL +(-883 |#1|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-884 |#1|) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-884 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-2859 (((-884 |#1|) $) NIL) (((-1197) $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-3718 (($ $) NIL) (($ (-576) $) NIL)) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-884 |#1|)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-884 |#1|) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-884 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-884 |#1|) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-884 |#1|) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-1173)))) (-4099 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-1951 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-4116 (($ (-1 (-884 |#1|) (-884 |#1|)) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-1288 $) $) NIL) (((-701 (-884 |#1|)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-884 |#1|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-884 |#1|) (-317)))) (-3416 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-884 |#1|)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-884 |#1|) (-884 |#1|)) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-304 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-304 (-884 |#1|)))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-1197)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|)))) (($ $ (-1197) (-884 |#1|)) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-884 |#1|)) NIL (|has| (-884 |#1|) (-296 (-884 |#1|) (-884 |#1|))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-884 |#1|) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-884 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-884 |#1|) (-1043))) (((-227) $) NIL (|has| (-884 |#1|) (-1043)))) (-2270 (((-176 (-419 (-576))) $) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-884 |#1|)) NIL) (($ (-1197)) NIL (|has| (-884 |#1|) (-1059 (-1197))))) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))) (|has| (-884 |#1|) (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ (-576)) NIL)) (-1665 (($ $) NIL (|has| (-884 |#1|) (-832)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-3056 (($ $ $) NIL) (($ (-884 |#1|) (-884 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-884 |#1|) $) NIL) (($ $ (-884 |#1|)) NIL))) +(((-885 |#1|) (-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2270 ((-176 (-419 (-576))) $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)))) (-576)) (T -885)) +((-4165 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-885 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) (-3718 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) (-3718 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2)))) +(-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2270 ((-176 (-419 (-576))) $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 ((|#2| $) NIL (|has| |#2| (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| |#2| (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| |#2| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576))))) (-2859 ((|#2| $) NIL) (((-1197) $) NIL (|has| |#2| (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-576)))) (((-576) $) NIL (|has| |#2| (-1059 (-576))))) (-3718 (($ $) 35) (($ (-576) $) 38)) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) 64)) (-1836 (($) NIL (|has| |#2| (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) NIL (|has| |#2| (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#2| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#2| (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 ((|#2| $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-4099 (((-112) $) NIL (|has| |#2| (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-1951 (($ $ $) NIL (|has| |#2| (-861)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 60)) (-3539 (($) NIL (|has| |#2| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| |#2| (-317)))) (-3416 ((|#2| $) NIL (|has| |#2| (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1197) |#2|))) (($ $ (-1197) |#2|) NIL (|has| |#2| (-526 (-1197) |#2|)))) (-2411 (((-783) $) NIL)) (-2796 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3708 (($ $) NIL)) (-1581 ((|#2| $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| |#2| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#2| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1043))) (((-227) $) NIL (|has| |#2| (-1043)))) (-2270 (((-176 (-419 (-576))) $) 78)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1197)) NIL (|has| |#2| (-1059 (-1197))))) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-1778 (((-783)) NIL T CONST)) (-1487 ((|#2| $) NIL (|has| |#2| (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ (-576)) 71)) (-1665 (($ $) NIL (|has| |#2| (-832)))) (-2719 (($) 15 T CONST)) (-2730 (($) 17 T CONST)) (-2018 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-2991 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2923 (((-112) $ $) 46)) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3056 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3043 (($ $) 50) (($ $ $) 52)) (-3029 (($ $ $) 48)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-886 |#1| |#2|) (-13 (-1013 |#2|) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2270 ((-176 (-419 (-576))) $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)))) (-576) (-883 |#1|)) (T -886)) +((-4165 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-886 *4 *5)) (-5 *3 (-576)) (-4 *5 (-883 *4)))) (-2270 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3)))) (-3718 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) (-3718 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) +(-13 (-1013 |#2|) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2270 ((-176 (-419 (-576))) $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)))) +((-3488 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2882 ((|#2| $) 12)) (-3252 (($ |#1| |#2|) 9)) (-1413 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-1450 (((-1141) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#1| $) 11)) (-3581 (($ |#1| |#2|) 10)) (-3569 (((-876) $) 18 (-2758 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) (-2113 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2923 (((-112) $ $) 23 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) +(((-887 |#1| |#2|) (-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3252 ($ |#1| |#2|)) (-15 -3581 ($ |#1| |#2|)) (-15 -3580 (|#1| $)) (-15 -2882 (|#2| $)))) (-1238) (-1238)) (T -887)) +((-3252 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3580 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3252 ($ |#1| |#2|)) (-15 -3581 ($ |#1| |#2|)) (-15 -3580 (|#1| $)) (-15 -2882 (|#2| $)))) +((-3488 (((-112) $ $) NIL)) (-2025 (((-576) $) 16)) (-4255 (($ (-158)) 13)) (-3032 (($ (-158)) 14)) (-1413 (((-1179) $) NIL)) (-4334 (((-158) $) 15)) (-1450 (((-1141) $) NIL)) (-2704 (($ (-158)) 11)) (-1980 (($ (-158)) 10)) (-3569 (((-876) $) 24) (($ (-158)) 17)) (-3263 (($ (-158)) 12)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-888) (-13 (-1121) (-10 -8 (-15 -1980 ($ (-158))) (-15 -2704 ($ (-158))) (-15 -3263 ($ (-158))) (-15 -4255 ($ (-158))) (-15 -3032 ($ (-158))) (-15 -4334 ((-158) $)) (-15 -2025 ((-576) $)) (-15 -3569 ($ (-158)))))) (T -888)) +((-1980 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3032 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(-13 (-1121) (-10 -8 (-15 -1980 ($ (-158))) (-15 -2704 ($ (-158))) (-15 -3263 ($ (-158))) (-15 -4255 ($ (-158))) (-15 -3032 ($ (-158))) (-15 -4334 ((-158) $)) (-15 -2025 ((-576) $)) (-15 -3569 ($ (-158))))) +((-3569 (((-326 (-576)) (-419 (-971 (-48)))) 23) (((-326 (-576)) (-971 (-48))) 18))) +(((-889) (-10 -7 (-15 -3569 ((-326 (-576)) (-971 (-48)))) (-15 -3569 ((-326 (-576)) (-419 (-971 (-48))))))) (T -889)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-889)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-971 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-889))))) +(-10 -7 (-15 -3569 ((-326 (-576)) (-971 (-48)))) (-15 -3569 ((-326 (-576)) (-419 (-971 (-48)))))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2705 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1179))) 13)) (-2113 (((-112) $ $) NIL)) (-1922 (((-518) $) 10) (((-1179) $) 14)) (-2923 (((-112) $ $) 15))) +(((-890) (-13 (-1104) (-1283) (-10 -8 (-15 -2705 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $))))) (T -890)) +((-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-890)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-890)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890))))) +(-13 (-1104) (-1283) (-10 -8 (-15 -2705 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $)))) +((-4116 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) +(((-891 |#1| |#2|) (-10 -7 (-15 -4116 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1238) (-1238)) (T -891)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) +(-10 -7 (-15 -4116 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) +((-2074 (($ |#1| |#1|) 8)) (-1542 ((|#1| $ (-783)) 15))) +(((-892 |#1|) (-10 -8 (-15 -2074 ($ |#1| |#1|)) (-15 -1542 (|#1| $ (-783)))) (-1238)) (T -892)) +((-1542 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) (-2074 (*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238))))) +(-10 -8 (-15 -2074 ($ |#1| |#1|)) (-15 -1542 (|#1| $ (-783)))) +((-4116 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15))) +(((-893 |#1| |#2|) (-10 -7 (-15 -4116 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1238) (-1238)) (T -893)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) +(-10 -7 (-15 -4116 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) +((-2074 (($ |#1| |#1| |#1|) 8)) (-1542 ((|#1| $ (-783)) 15))) +(((-894 |#1|) (-10 -8 (-15 -2074 ($ |#1| |#1| |#1|)) (-15 -1542 (|#1| $ (-783)))) (-1238)) (T -894)) +((-1542 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) (-2074 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238))))) +(-10 -8 (-15 -2074 ($ |#1| |#1| |#1|)) (-15 -1542 (|#1| $ (-783)))) +((-4034 (((-656 (-1202)) (-1179)) 9))) +(((-895) (-10 -7 (-15 -4034 ((-656 (-1202)) (-1179))))) (T -895)) +((-4034 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) +(-10 -7 (-15 -4034 ((-656 (-1202)) (-1179)))) +((-4116 (((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)) 15))) +(((-896 |#1| |#2|) (-10 -7 (-15 -4116 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) (-1238) (-1238)) (T -896)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6))))) +(-10 -7 (-15 -4116 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) +((-2147 (($ |#1| |#1| |#1|) 8)) (-1542 ((|#1| $ (-783)) 15))) +(((-897 |#1|) (-10 -8 (-15 -2147 ($ |#1| |#1| |#1|)) (-15 -1542 (|#1| $ (-783)))) (-1238)) (T -897)) +((-1542 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238)))) (-2147 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) +(-10 -8 (-15 -2147 ($ |#1| |#1| |#1|)) (-15 -1542 (|#1| $ (-783)))) +((-2792 (((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576)))) 41)) (-2797 (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-2246 (((-1178 (-656 (-576))) (-656 (-576))) 53) (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-1482 (((-1178 (-656 (-576))) (-576)) 55)) (-2816 (((-1178 (-656 (-940))) (-1178 (-656 (-940)))) 22)) (-2318 (((-656 (-940)) (-656 (-940))) 18))) +(((-898) (-10 -7 (-15 -2318 ((-656 (-940)) (-656 (-940)))) (-15 -2816 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -2797 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2792 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -2246 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2246 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -1482 ((-1178 (-656 (-576))) (-576))))) (T -898)) +((-1482 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576)))) (-2246 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-2246 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-2792 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-898)))) (-2797 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-2816 (*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898))))) +(-10 -7 (-15 -2318 ((-656 (-940)) (-656 (-940)))) (-15 -2816 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -2797 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2792 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -2246 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2246 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -1482 ((-1178 (-656 (-576))) (-576)))) +((-4171 (((-907 (-390)) $) 9 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 8 (|has| |#1| (-626 (-907 (-576))))))) +(((-899 |#1|) (-141) (-1238)) (T -899)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|))) +(((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576))))) +((-3488 (((-112) $ $) NIL)) (-4140 (($) 14)) (-3152 (($ (-904 |#1| |#2|) (-904 |#1| |#3|)) 28)) (-3809 (((-904 |#1| |#3|) $) 16)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3633 (((-112) $) 22)) (-4196 (($) 19)) (-3569 (((-876) $) 31)) (-2113 (((-112) $ $) NIL)) (-3665 (((-904 |#1| |#2|) $) 15)) (-2923 (((-112) $ $) 26))) +(((-900 |#1| |#2| |#3|) (-13 (-1121) (-10 -8 (-15 -3633 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -3152 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -3665 ((-904 |#1| |#2|) $)) (-15 -3809 ((-904 |#1| |#3|) $)))) (-1121) (-1121) (-678 |#2|)) (T -900)) +((-3633 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-4196 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-4140 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-3152 (*1 *1 *2 *3) (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6)))) (-3665 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-3809 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4))))) +(-13 (-1121) (-10 -8 (-15 -3633 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -3152 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -3665 ((-904 |#1| |#2|) $)) (-15 -3809 ((-904 |#1| |#3|) $)))) +((-3488 (((-112) $ $) 7)) (-2399 (((-904 |#1| $) $ (-907 |#1|) (-904 |#1| $)) 14)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-901 |#1|) (-141) (-1121)) (T -901)) +((-2399 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) (-4 *4 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -2399 ((-904 |t#1| $) $ (-907 |t#1|) (-904 |t#1| $))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-2158 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2857 (((-904 |#1| |#2|) |#2| |#3|) 45 (-12 (-2662 (|has| |#2| (-1059 (-1197)))) (-2662 (|has| |#2| (-1070))))) (((-656 (-304 (-971 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1070)) (-2662 (|has| |#2| (-1059 (-1197)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1059 (-1197)))) (((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) +(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -2158 ((-112) |#2| |#3|)) (-15 -2158 ((-112) (-656 |#2|) |#3|)) (-15 -2857 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -2857 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -2857 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -2857 ((-904 |#1| |#2|) |#2| |#3|))))) (-1121) (-901 |#1|) (-626 (-907 |#1|))) (T -902)) +((-2857 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) (-2662 (-4 *3 (-1059 (-1197)))) (-2662 (-4 *3 (-1070))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-2857 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) (-2662 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-2857 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-2857 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5))))) (-2158 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) +(-10 -7 (-15 -2158 ((-112) |#2| |#3|)) (-15 -2158 ((-112) (-656 |#2|) |#3|)) (-15 -2857 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -2857 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -2857 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -2857 ((-904 |#1| |#2|) |#2| |#3|))))) +((-4116 (((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)) 22))) +(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) (-1121) (-1121) (-1121)) (T -903)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-904 *5 *6)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-904 *5 *7)) (-5 *1 (-903 *5 *6 *7))))) +(-10 -7 (-15 -4116 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1820 (($ $ $) 40)) (-1794 (((-3 (-112) "failed") $ (-907 |#1|)) 37)) (-4140 (($) 12)) (-1413 (((-1179) $) NIL)) (-4402 (($ (-907 |#1|) |#2| $) 20)) (-1450 (((-1141) $) NIL)) (-3714 (((-3 |#2| "failed") (-907 |#1|) $) 51)) (-3633 (((-112) $) 15)) (-4196 (($) 13)) (-1904 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 |#2|))) $) 25)) (-3581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 |#2|)))) 23)) (-3569 (((-876) $) 45)) (-2113 (((-112) $ $) NIL)) (-2249 (($ (-907 |#1|) |#2| $ |#2|) 49)) (-2291 (($ (-907 |#1|) |#2| $) 48)) (-2923 (((-112) $ $) 42))) +(((-904 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3633 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -1820 ($ $ $)) (-15 -3714 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -2291 ($ (-907 |#1|) |#2| $)) (-15 -4402 ($ (-907 |#1|) |#2| $)) (-15 -2249 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1904 ((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 |#2|))))) (-15 -1794 ((-3 (-112) "failed") $ (-907 |#1|))))) (-1121) (-1121)) (T -904)) +((-3633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4196 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4140 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1820 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3714 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-904 *4 *2)))) (-2291 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-4402 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-2249 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 *4)))) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 *4)))) (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) (-1794 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3633 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -1820 ($ $ $)) (-15 -3714 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -2291 ($ (-907 |#1|) |#2| $)) (-15 -4402 ($ (-907 |#1|) |#2| $)) (-15 -2249 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1904 ((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 |#2|))))) (-15 -1794 ((-3 (-112) "failed") $ (-907 |#1|))))) +((-2929 (((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|))) 32) (((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|)) 35)) (-1794 (((-112) (-656 |#2|) (-907 |#1|)) 42) (((-112) |#2| (-907 |#1|)) 36)) (-1999 (((-1 (-112) |#2|) (-907 |#1|)) 16)) (-2317 (((-656 |#2|) (-907 |#1|)) 24)) (-3941 (((-907 |#1|) (-907 |#1|) |#2|) 20))) +(((-905 |#1| |#2|) (-10 -7 (-15 -2929 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -1999 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -1794 ((-112) |#2| (-907 |#1|))) (-15 -1794 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -3941 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -2317 ((-656 |#2|) (-907 |#1|)))) (-1121) (-1238)) (T -905)) +((-2317 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1238)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-905 *5 *3)) (-4 *3 (-1238)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-2929 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-907 *5)) (-5 *3 (-656 (-1197))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-905 *5 *6)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5))))) +(-10 -7 (-15 -2929 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -1999 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -1794 ((-112) |#2| (-907 |#1|))) (-15 -1794 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -3941 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -2317 ((-656 |#2|) (-907 |#1|)))) +((-4116 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 19))) +(((-906 |#1| |#2|) (-10 -7 (-15 -4116 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1121) (-1121)) (T -906)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))) +(-10 -7 (-15 -4116 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-2701 (($ $ (-656 (-52))) 74)) (-1966 (((-656 $) $) 139)) (-1589 (((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $) 30)) (-2550 (((-112) $) 35)) (-1995 (($ $ (-656 (-1197)) (-52)) 31)) (-2772 (($ $ (-656 (-52))) 73)) (-1572 (((-3 |#1| "failed") $) 71) (((-3 (-1197) "failed") $) 164)) (-2859 ((|#1| $) 68) (((-1197) $) NIL)) (-2965 (($ $) 126)) (-3869 (((-112) $) 55)) (-3713 (((-656 (-52)) $) 50)) (-2986 (($ (-1197) (-112) (-112) (-112)) 75)) (-3131 (((-3 (-656 $) "failed") (-656 $)) 82)) (-2832 (((-112) $) 58)) (-3806 (((-112) $) 57)) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) 41)) (-2272 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3572 (((-3 (-2 (|:| |val| $) (|:| -4210 $)) "failed") $) 97)) (-3163 (((-3 (-656 $) "failed") $) 40)) (-3001 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-4283 (((-3 (-656 $) "failed") $) 42)) (-2292 (((-3 (-2 (|:| |val| $) (|:| -4210 (-783))) "failed") $) 45)) (-2640 (((-112) $) 34)) (-1450 (((-1141) $) NIL)) (-2746 (((-112) $) 28)) (-3276 (((-112) $) 52)) (-3954 (((-656 (-52)) $) 130)) (-4030 (((-112) $) 56)) (-2796 (($ (-115) (-656 $)) 104)) (-1887 (((-783) $) 33)) (-1870 (($ $) 72)) (-4171 (($ (-656 $)) 69)) (-1549 (((-112) $) 32)) (-3569 (((-876) $) 63) (($ |#1|) 23) (($ (-1197)) 76)) (-2113 (((-112) $ $) NIL)) (-3941 (($ $ (-52)) 129)) (-2719 (($) 103 T CONST)) (-2730 (($) 83 T CONST)) (-2923 (((-112) $ $) 93)) (-3056 (($ $ $) 117)) (-3029 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-907 |#1|) (-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 0 ($) -1480) (-15 1 ($) -1480) (-15 -3163 ((-3 (-656 $) "failed") $)) (-15 -2164 ((-3 (-656 $) "failed") $)) (-15 -3001 ((-3 (-656 $) "failed") $ (-115))) (-15 -3001 ((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2292 ((-3 (-2 (|:| |val| $) (|:| -4210 (-783))) "failed") $)) (-15 -2272 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4283 ((-3 (-656 $) "failed") $)) (-15 -3572 ((-3 (-2 (|:| |val| $) (|:| -4210 $)) "failed") $)) (-15 -2796 ($ (-115) (-656 $))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3056 ($ $ $)) (-15 -1887 ((-783) $)) (-15 -4171 ($ (-656 $))) (-15 -1870 ($ $)) (-15 -2640 ((-112) $)) (-15 -3869 ((-112) $)) (-15 -2550 ((-112) $)) (-15 -1549 ((-112) $)) (-15 -4030 ((-112) $)) (-15 -3806 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -3276 ((-112) $)) (-15 -3713 ((-656 (-52)) $)) (-15 -2772 ($ $ (-656 (-52)))) (-15 -2701 ($ $ (-656 (-52)))) (-15 -2986 ($ (-1197) (-112) (-112) (-112))) (-15 -1995 ($ $ (-656 (-1197)) (-52))) (-15 -1589 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -2746 ((-112) $)) (-15 -2965 ($ $)) (-15 -3941 ($ $ (-52))) (-15 -3954 ((-656 (-52)) $)) (-15 -1966 ((-656 $) $)) (-15 -3131 ((-3 (-656 $) "failed") (-656 $))))) (-1121)) (T -907)) +((-2719 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2730 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-3163 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2164 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3001 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3001 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 (-907 *3))))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2292 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4210 (-783)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2272 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4283 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3572 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4210 (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3029 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-3056 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2986 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-1995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2965 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3131 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 (-2719) ($) -1480) (-15 (-2730) ($) -1480) (-15 -3163 ((-3 (-656 $) "failed") $)) (-15 -2164 ((-3 (-656 $) "failed") $)) (-15 -3001 ((-3 (-656 $) "failed") $ (-115))) (-15 -3001 ((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2292 ((-3 (-2 (|:| |val| $) (|:| -4210 (-783))) "failed") $)) (-15 -2272 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4283 ((-3 (-656 $) "failed") $)) (-15 -3572 ((-3 (-2 (|:| |val| $) (|:| -4210 $)) "failed") $)) (-15 -2796 ($ (-115) (-656 $))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3056 ($ $ $)) (-15 -1887 ((-783) $)) (-15 -4171 ($ (-656 $))) (-15 -1870 ($ $)) (-15 -2640 ((-112) $)) (-15 -3869 ((-112) $)) (-15 -2550 ((-112) $)) (-15 -1549 ((-112) $)) (-15 -4030 ((-112) $)) (-15 -3806 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -3276 ((-112) $)) (-15 -3713 ((-656 (-52)) $)) (-15 -2772 ($ $ (-656 (-52)))) (-15 -2701 ($ $ (-656 (-52)))) (-15 -2986 ($ (-1197) (-112) (-112) (-112))) (-15 -1995 ($ $ (-656 (-1197)) (-52))) (-15 -1589 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -2746 ((-112) $)) (-15 -2965 ($ $)) (-15 -3941 ($ $ (-52))) (-15 -3954 ((-656 (-52)) $)) (-15 -1966 ((-656 $) $)) (-15 -3131 ((-3 (-656 $) "failed") (-656 $))))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) 19)) (-2682 (((-112) $) 49)) (-1572 (((-3 (-684 |#1|) "failed") $) 56)) (-2859 (((-684 |#1|) $) 54)) (-3592 (($ $) 23)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-2434 (((-783) $) 61)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-684 |#1|) $) 21)) (-3569 (((-876) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 9 T CONST)) (-2903 (((-656 (-684 |#1|)) $) 28)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 12)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 67))) +(((-908 |#1|) (-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 1 ($) -1480) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ($ |#1|)) (-15 -3580 ((-684 |#1|) $)) (-15 -2434 ((-783) $)) (-15 -2903 ((-656 (-684 |#1|)) $)) (-15 -3592 ($ $)) (-15 -2682 ((-112) $)) (-15 -3446 ((-656 |#1|) $)))) (-861)) (T -908)) +((-2730 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3569 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) +(-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 (-2730) ($) -1480) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ($ |#1|)) (-15 -3580 ((-684 |#1|) $)) (-15 -2434 ((-783) $)) (-15 -2903 ((-656 (-684 |#1|)) $)) (-15 -3592 ($ $)) (-15 -2682 ((-112) $)) (-15 -3446 ((-656 |#1|) $)))) +((-1997 ((|#1| |#1| |#1|) 19))) +(((-909 |#1| |#2|) (-10 -7 (-15 -1997 (|#1| |#1| |#1|))) (-1264 |#2|) (-1070)) (T -909)) +((-1997 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -1997 (|#1| |#1| |#1|))) +((-2018 ((|#2| $ |#3|) 10))) +(((-910 |#1| |#2| |#3|) (-10 -8 (-15 -2018 (|#2| |#1| |#3|))) (-911 |#2| |#3|) (-1238) (-1238)) (T -910)) +NIL +(-10 -8 (-15 -2018 (|#2| |#1| |#3|))) +((-2773 ((|#1| $ |#2|) 7)) (-2018 ((|#1| $ |#2|) 6))) +(((-911 |#1| |#2|) (-141) (-1238) (-1238)) (T -911)) +((-2773 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) (-2018 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2773 (|t#1| $ |t#2|)) (-15 -2018 (|t#1| $ |t#2|)))) +(((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1973 (((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 15)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-4323 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 14)) (-2923 (((-112) $ $) 8))) +(((-912) (-141)) (T -912)) +((-1973 (*1 *2 *3 *4) (-12 (-4 *1 (-912)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) (-4323 (*1 *2 *3) (-12 (-4 *1 (-912)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-1056))))) +(-13 (-1121) (-10 -7 (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -4323 ((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-1693 ((|#1| |#1| (-783)) 27)) (-1613 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3443 (((-3 (-2 (|:| -4239 |#1|) (|:| -4249 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) +(((-913 |#1| |#2|) (-10 -7 (-15 -3443 ((-656 |#1|) |#1|)) (-15 -3443 ((-3 (-2 (|:| -4239 |#1|) (|:| -4249 |#1|)) "failed") |#1| (-783) (-783))) (-15 -1613 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1693 (|#1| |#1| (-783)))) (-1264 |#2|) (-374)) (T -913)) +((-1693 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) (-4 *2 (-1264 *4)))) (-1613 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1264 *3)))) (-3443 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-913 *3 *5)) (-4 *3 (-1264 *5)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3443 ((-656 |#1|) |#1|)) (-15 -3443 ((-3 (-2 (|:| -4239 |#1|) (|:| -4249 |#1|)) "failed") |#1| (-783) (-783))) (-15 -1613 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1693 (|#1| |#1| (-783)))) +((-1918 (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179)) 104) (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227)) 100) (((-1056) (-915) (-1084)) 92) (((-1056) (-915)) 93)) (-1973 (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)) 62) (((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915)) 64))) +(((-914) (-10 -7 (-15 -1918 ((-1056) (-915))) (-15 -1918 ((-1056) (-915) (-1084))) (-15 -1918 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -1918 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084))))) (T -914)) +((-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-1918 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-1918 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914))))) +(-10 -7 (-15 -1918 ((-1056) (-915))) (-15 -1918 ((-1056) (-915) (-1084))) (-15 -1918 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -1918 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -1973 ((-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $) 19)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 18)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-915) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2859 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $))))) (T -915)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2859 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2018 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-916 |#1| |#2|) (-141) (-1070) (-1121)) (T -916)) +NIL +(-13 (-111 |t#1| |t#1|) (-919 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-911 $ |#2|) . T) ((-919 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2773 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-917 |#1|) (-141) (-1121)) (T -917)) +NIL +(-13 (-1070) (-919 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ |#1|) . T) ((-919 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2773 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-2018 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) +(((-918 |#1| |#2|) (-10 -8 (-15 -2018 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2018 (|#1| |#1| |#2| (-783))) (-15 -2018 (|#1| |#1| (-656 |#2|))) (-15 -2773 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2773 (|#1| |#1| |#2| (-783))) (-15 -2773 (|#1| |#1| (-656 |#2|))) (-15 -2018 (|#1| |#1| |#2|)) (-15 -2773 (|#1| |#1| |#2|))) (-919 |#2|) (-1121)) (T -918)) +NIL +(-10 -8 (-15 -2018 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2018 (|#1| |#1| |#2| (-783))) (-15 -2018 (|#1| |#1| (-656 |#2|))) (-15 -2773 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2773 (|#1| |#1| |#2| (-783))) (-15 -2773 (|#1| |#1| (-656 |#2|))) (-15 -2018 (|#1| |#1| |#2|)) (-15 -2773 (|#1| |#1| |#2|))) +((-2773 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-2018 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) +(((-919 |#1|) (-141) (-1121)) (T -919)) +((-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-2773 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-2773 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121)))) (-2018 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-2018 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-2018 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121))))) +(-13 (-911 $ |t#1|) (-10 -8 (-15 -2773 ($ $ (-656 |t#1|))) (-15 -2773 ($ $ |t#1| (-783))) (-15 -2773 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -2018 ($ $ (-656 |t#1|))) (-15 -2018 ($ $ |t#1| (-783))) (-15 -2018 ($ $ (-656 |t#1|) (-656 (-783)))))) +(((-911 $ |#1|) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 26)) (-2396 (((-112) $ (-783)) NIL)) (-2232 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3827 (($ $ $) NIL (|has| $ (-6 -4465)))) (-1548 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-4249 (($ $) 25)) (-1651 (($ |#1|) 12) (($ $ $) 17)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-4239 (($ $) 23)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) 20)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3957 (((-576) $ $) NIL)) (-2199 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1224 |#1|) $) 9) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-920 |#1|) (-13 (-120 |#1|) (-625 (-1224 |#1|)) (-10 -8 (-15 -1651 ($ |#1|)) (-15 -1651 ($ $ $)))) (-1121)) (T -920)) +((-1651 (*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121)))) (-1651 (*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121))))) +(-13 (-120 |#1|) (-625 (-1224 |#1|)) (-10 -8 (-15 -1651 ($ |#1|)) (-15 -1651 ($ $ $)))) +((-4124 ((|#2| (-1163 |#1| |#2|)) 48))) +(((-921 |#1| |#2|) (-10 -7 (-15 -4124 (|#2| (-1163 |#1| |#2|)))) (-940) (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) (T -921)) +((-4124 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) (-5 *1 (-921 *4 *2))))) +(-10 -7 (-15 -4124 (|#2| (-1163 |#1| |#2|)))) +((-3488 (((-112) $ $) 7)) (-4266 (((-1123 |#1|) $) 36)) (-3306 (($) 19 T CONST)) (-3451 (((-3 $ "failed") $) 16)) (-3738 (((-1123 |#1|) $ |#1|) 35)) (-3215 (((-112) $) 18)) (-3124 (($ $ $) 29 (-2758 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-1951 (($ $ $) 30 (-2758 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-1413 (((-1179) $) 10)) (-2048 (($ $) 25)) (-1450 (((-1141) $) 11)) (-2796 ((|#1| $ |#1|) 39)) (-2275 (($ (-656 (-656 |#1|))) 37)) (-2514 (($ (-656 |#1|)) 38)) (-2318 (($ $ $) 22)) (-2604 (($ $ $) 21)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2730 (($) 20 T CONST)) (-2991 (((-112) $ $) 31 (-2758 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2962 (((-112) $ $) 33 (-2758 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 32 (-2758 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2948 (((-112) $ $) 34)) (-3056 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +(((-922 |#1|) (-141) (-1121)) (T -922)) +((-2514 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-3738 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2514 ($ (-656 |t#1|))) (-15 -2275 ($ (-656 (-656 |t#1|)))) (-15 -4266 ((-1123 |t#1|) $)) (-15 -3738 ((-1123 |t#1|) $ |t#1|)) (-15 -2948 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-861)) |%noBranch|))) +(((-102) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-861) -2758 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-864) -2758 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3500 (((-656 (-656 (-783))) $) 160)) (-2234 (((-656 (-783)) (-924 |#1|) $) 188)) (-1566 (((-656 (-783)) (-924 |#1|) $) 189)) (-4266 (((-1123 |#1|) $) 152)) (-3311 (((-656 (-924 |#1|)) $) 149)) (-1836 (((-924 |#1|) $ (-576)) 154) (((-924 |#1|) $) 155)) (-1392 (($ (-656 (-924 |#1|))) 162)) (-3309 (((-783) $) 156)) (-2822 (((-1123 (-1123 |#1|)) $) 186)) (-3738 (((-1123 |#1|) $ |#1|) 177) (((-1123 (-1123 |#1|)) $ (-1123 |#1|)) 197) (((-1123 (-656 |#1|)) $ (-656 |#1|)) 200)) (-3456 (((-112) (-924 |#1|) $) 137)) (-1413 (((-1179) $) NIL)) (-2204 (((-1293) $) 142) (((-1293) $ (-576) (-576)) 201)) (-1450 (((-1141) $) NIL)) (-4315 (((-656 (-924 |#1|)) $) 143)) (-2796 (((-924 |#1|) $ (-783)) 150)) (-3600 (((-783) $) 157)) (-3569 (((-876) $) 174) (((-656 (-924 |#1|)) $) 28) (($ (-656 (-924 |#1|))) 161)) (-2113 (((-112) $ $) NIL)) (-3515 (((-656 |#1|) $) 159)) (-2923 (((-112) $ $) 194)) (-2978 (((-112) $ $) 192)) (-2948 (((-112) $ $) 191))) +(((-923 |#1|) (-13 (-1121) (-10 -8 (-15 -3569 ((-656 (-924 |#1|)) $)) (-15 -4315 ((-656 (-924 |#1|)) $)) (-15 -2796 ((-924 |#1|) $ (-783))) (-15 -1836 ((-924 |#1|) $ (-576))) (-15 -1836 ((-924 |#1|) $)) (-15 -3309 ((-783) $)) (-15 -3600 ((-783) $)) (-15 -3515 ((-656 |#1|) $)) (-15 -3311 ((-656 (-924 |#1|)) $)) (-15 -3500 ((-656 (-656 (-783))) $)) (-15 -3569 ($ (-656 (-924 |#1|)))) (-15 -1392 ($ (-656 (-924 |#1|)))) (-15 -3738 ((-1123 |#1|) $ |#1|)) (-15 -2822 ((-1123 (-1123 |#1|)) $)) (-15 -3738 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -3738 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -3456 ((-112) (-924 |#1|) $)) (-15 -2234 ((-656 (-783)) (-924 |#1|) $)) (-15 -1566 ((-656 (-783)) (-924 |#1|) $)) (-15 -4266 ((-1123 |#1|) $)) (-15 -2948 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2204 ((-1293) $)) (-15 -2204 ((-1293) $ (-576) (-576))))) (-1121)) (T -923)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-924 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-1392 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-3738 (*1 *2 *1 *3) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3738 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) (-5 *3 (-1123 *4)))) (-3738 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) (-5 *3 (-656 *4)))) (-3456 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-923 *4)))) (-2234 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-1566 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2948 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2978 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) (-4 *4 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3569 ((-656 (-924 |#1|)) $)) (-15 -4315 ((-656 (-924 |#1|)) $)) (-15 -2796 ((-924 |#1|) $ (-783))) (-15 -1836 ((-924 |#1|) $ (-576))) (-15 -1836 ((-924 |#1|) $)) (-15 -3309 ((-783) $)) (-15 -3600 ((-783) $)) (-15 -3515 ((-656 |#1|) $)) (-15 -3311 ((-656 (-924 |#1|)) $)) (-15 -3500 ((-656 (-656 (-783))) $)) (-15 -3569 ($ (-656 (-924 |#1|)))) (-15 -1392 ($ (-656 (-924 |#1|)))) (-15 -3738 ((-1123 |#1|) $ |#1|)) (-15 -2822 ((-1123 (-1123 |#1|)) $)) (-15 -3738 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -3738 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -3456 ((-112) (-924 |#1|) $)) (-15 -2234 ((-656 (-783)) (-924 |#1|) $)) (-15 -1566 ((-656 (-783)) (-924 |#1|) $)) (-15 -4266 ((-1123 |#1|) $)) (-15 -2948 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2204 ((-1293) $)) (-15 -2204 ((-1293) $ (-576) (-576))))) +((-3488 (((-112) $ $) NIL)) (-4266 (((-1123 |#1|) $) 60)) (-1795 (((-656 $) (-656 $)) 103)) (-1529 (((-576) $) 83)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3309 (((-783) $) 80)) (-3738 (((-1123 |#1|) $ |#1|) 70)) (-3215 (((-112) $) NIL)) (-2561 (((-112) $) 88)) (-2205 (((-783) $) 84)) (-3124 (($ $ $) NIL (-2758 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-1951 (($ $ $) NIL (-2758 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2119 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 130)) (-1450 (((-1141) $) NIL)) (-3452 (((-1123 |#1|) $) 136 (|has| |#1| (-379)))) (-2975 (((-112) $) 81)) (-2796 ((|#1| $ |#1|) 68)) (-3600 (((-783) $) 62)) (-2275 (($ (-656 (-656 |#1|))) 118)) (-2956 (((-992) $) 74)) (-2514 (($ (-656 |#1|)) 32)) (-2318 (($ $ $) NIL)) (-2604 (($ $ $) NIL)) (-2605 (($ (-656 (-656 |#1|))) 57)) (-4275 (($ (-656 (-656 |#1|))) 123)) (-1711 (($ (-656 |#1|)) 132)) (-3569 (((-876) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-2113 (((-112) $ $) NIL)) (-2730 (($) 24 T CONST)) (-2991 (((-112) $ $) NIL (-2758 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2962 (((-112) $ $) NIL (-2758 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2923 (((-112) $ $) 66)) (-2978 (((-112) $ $) NIL (-2758 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2948 (((-112) $ $) 90)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) +(((-924 |#1|) (-13 (-922 |#1|) (-10 -8 (-15 -2119 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2605 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 |#1|))) (-15 -4275 ($ (-656 (-656 |#1|)))) (-15 -3600 ((-783) $)) (-15 -2956 ((-992) $)) (-15 -3309 ((-783) $)) (-15 -2205 ((-783) $)) (-15 -1529 ((-576) $)) (-15 -2975 ((-112) $)) (-15 -2561 ((-112) $)) (-15 -1795 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3452 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -1711 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -1711 ($ (-656 |#1|))) |%noBranch|)))) (-1121)) (T -924)) +((-2119 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-4275 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) (-4 *3 (-1121)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(-13 (-922 |#1|) (-10 -8 (-15 -2119 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2605 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 |#1|))) (-15 -4275 ($ (-656 (-656 |#1|)))) (-15 -3600 ((-783) $)) (-15 -2956 ((-992) $)) (-15 -3309 ((-783) $)) (-15 -2205 ((-783) $)) (-15 -1529 ((-576) $)) (-15 -2975 ((-112) $)) (-15 -2561 ((-112) $)) (-15 -1795 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3452 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -1711 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -1711 ($ (-656 |#1|))) |%noBranch|)))) +((-3401 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|)) 160)) (-3067 ((|#1|) 97)) (-3004 (((-430 (-1193 |#4|)) (-1193 |#4|)) 169)) (-3750 (((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)) 84)) (-3448 (((-430 (-1193 |#4|)) (-1193 |#4|)) 179)) (-3315 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|) 113))) +(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3401 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -3448 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3004 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3067 (|#1|)) (-15 -3315 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -3750 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) (-928) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -925)) +((-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) (-3315 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7)))) (-3067 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-3448 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-3401 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7))))) +(-10 -7 (-15 -3401 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -3448 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3004 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3067 (|#1|)) (-15 -3315 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -3750 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) +((-3401 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 39)) (-3067 ((|#1|) 72)) (-3004 (((-430 (-1193 |#2|)) (-1193 |#2|)) 121)) (-3750 (((-430 (-1193 |#2|)) (-1193 |#2|)) 105)) (-3448 (((-430 (-1193 |#2|)) (-1193 |#2|)) 132))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3401 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -3448 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -3004 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -3067 (|#1|)) (-15 -3750 ((-430 (-1193 |#2|)) (-1193 |#2|)))) (-928) (-1264 |#1|)) (T -926)) +((-3750 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-3067 (*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2)))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-3448 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-3401 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) +(-10 -7 (-15 -3401 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -3448 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -3004 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -3067 (|#1|)) (-15 -3750 ((-430 (-1193 |#2|)) (-1193 |#2|)))) +((-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 42)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 18)) (-3230 (((-3 $ "failed") $) 36))) +(((-927 |#1|) (-10 -8 (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-928)) (T -927)) +NIL +(-10 -8 (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-2971 (((-430 (-1193 $)) (-1193 $)) 66)) (-3420 (($ $) 57)) (-1770 (((-430 $) $) 58)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 63)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-4169 (((-112) $) 59)) (-3215 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2118 (((-430 (-1193 $)) (-1193 $)) 64)) (-2082 (((-430 (-1193 $)) (-1193 $)) 65)) (-1828 (((-430 $) $) 56)) (-3475 (((-3 $ "failed") $ $) 48)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3230 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-928) (-141)) (T -928)) +((-1727 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928)))) (-2971 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-2082 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-2118 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-3807 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) (-4 *1 (-928)))) (-2254 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) (-5 *2 (-1288 *1)))) (-3230 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) +(-13 (-1242) (-10 -8 (-15 -2971 ((-430 (-1193 $)) (-1193 $))) (-15 -2082 ((-430 (-1193 $)) (-1193 $))) (-15 -2118 ((-430 (-1193 $)) (-1193 $))) (-15 -1727 ((-1193 $) (-1193 $) (-1193 $))) (-15 -3807 ((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $))) (IF (|has| $ (-146)) (PROGN (-15 -2254 ((-3 (-1288 $) "failed") (-701 $))) (-15 -3230 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-1697 (((-112) $) NIL)) (-4391 (((-783)) NIL)) (-2208 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-1494 (((-1210 (-940) (-783)) (-576)) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 $ "failed") $) NIL)) (-2859 (($ $) NIL)) (-3208 (($ (-1288 $)) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3814 (($) NIL)) (-2117 (((-112) $) NIL)) (-1332 (($ $) NIL) (($ $ (-783)) NIL)) (-4169 (((-112) $) NIL)) (-3309 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3215 (((-112) $) NIL)) (-2767 (($) NIL (|has| $ (-379)))) (-3146 (((-112) $) NIL (|has| $ (-379)))) (-2471 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) NIL)) (-2460 (((-940) $) NIL)) (-2726 (((-1193 $) $) NIL (|has| $ (-379)))) (-3121 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-3777 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL T CONST)) (-3223 (($ (-940)) NIL)) (-3651 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| $ (-379)))) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL)) (-1828 (((-430 $) $) NIL)) (-1683 (((-940)) NIL) (((-845 (-940))) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2992 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-1972 (((-135)) NIL)) (-2773 (($ $) NIL) (($ $ (-783)) NIL)) (-3600 (((-940) $) NIL) (((-845 (-940)) $) NIL)) (-1897 (((-1193 $)) NIL)) (-2051 (($) NIL)) (-3746 (($) NIL (|has| $ (-379)))) (-1490 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) NIL)) (-4171 (((-576) $) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3230 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $) (-940)) NIL) (((-1288 $)) NIL)) (-2537 (((-112) $ $) NIL)) (-2951 (((-112) $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-3046 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-929 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-940)) (T -929)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-3560 (((-3 (-2 (|:| -3241 (-783)) (|:| -2951 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-3554 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3241 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) -(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3241 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3554 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -3560 ((-3 (-2 (|:| -3241 (-783)) (|:| -2951 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1058 (-576))) (-442 |#1|) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -929)) -((-3560 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-2 (|:| -3241 (-783)) (|:| -2951 *8))) (-5 *1 (-929 *4 *5 *6 *7 *8)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-112)) (-5 *1 (-929 *4 *5 *6 *7 *8)))) (-3241 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-783)) (-5 *1 (-929 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3241 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3554 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -3560 ((-3 (-2 (|:| -3241 (-783)) (|:| -2951 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) -((-3560 (((-3 (-2 (|:| -3241 (-783)) (|:| -2951 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-3554 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3241 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) -(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -3241 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3554 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3560 ((-3 (-2 (|:| -3241 (-783)) (|:| -2951 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1263 (-419 (-576))) (-1263 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -930)) -((-3560 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3241 (-783)) (|:| -2951 *6))) (-5 *1 (-930 *4 *5 *6)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6)))) (-3241 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6))))) -(-10 -7 (-15 -3241 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3554 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3560 ((-3 (-2 (|:| -3241 (-783)) (|:| -2951 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) -((-1505 ((|#2| |#2|) 26)) (-3506 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-1512 (((-939) (-576)) 38)) (-2107 (((-576) |#2|) 45)) (-3304 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) -(((-931 |#1| |#2|) (-10 -7 (-15 -1512 ((-939) (-576))) (-15 -3304 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3304 ((-576) |#2|)) (-15 -3506 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -2107 ((-576) |#2|)) (-15 -1505 (|#2| |#2|))) (-1263 (-419 (-576))) (-1263 (-419 |#1|))) (T -931)) -((-1505 (*1 *2 *2) (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *1 (-931 *3 *2)) (-4 *2 (-1263 (-419 *3))))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-931 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-931 *4 *5)) (-4 *5 (-1263 (-419 *4))))) (-3304 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-931 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-3304 (*1 *2 *3) (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-931 *3 *4)) (-4 *4 (-1263 (-419 *3))))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-939)) (-5 *1 (-931 *4 *5)) (-4 *5 (-1263 (-419 *4)))))) -(-10 -7 (-15 -1512 ((-939) (-576))) (-15 -3304 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3304 ((-576) |#2|)) (-15 -3506 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -2107 ((-576) |#2|)) (-15 -1505 (|#2| |#2|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 ((|#1| $) 100)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-1893 (($ $ $) NIL)) (-3900 (((-3 $ "failed") $) 94)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-1561 (($ |#1| (-430 |#1|)) 92)) (-3352 (((-1192 |#1|) |#1| |#1|) 53)) (-3736 (($ $) 61)) (-2287 (((-112) $) NIL)) (-1660 (((-576) $) 97)) (-2212 (($ $ (-576)) 99)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3827 ((|#1| $) 96)) (-1535 (((-430 |#1|) $) 95)) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) 93)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3330 (($ $) 50)) (-4112 (((-875) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-4115 (((-783)) 71 T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) 26 T CONST)) (-4320 (($) 15 T CONST)) (-3938 (((-112) $ $) 87)) (-4046 (($ $ $) NIL)) (-4036 (($ $) 108) (($ $ $) NIL)) (-4026 (($ $ $) 49)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-932 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -4112 ((-419 |#1|) $)) (-15 -4112 ($ (-419 (-430 |#1|)))) (-15 -3330 ($ $)) (-15 -1535 ((-430 |#1|) $)) (-15 -3827 (|#1| $)) (-15 -2212 ($ $ (-576))) (-15 -1660 ((-576) $)) (-15 -3352 ((-1192 |#1|) |#1| |#1|)) (-15 -3736 ($ $)) (-15 -1561 ($ |#1| (-430 |#1|))) (-15 -1705 (|#1| $)))) (-317)) (T -932)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-932 *3)) (-4 *3 (-317)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-932 *3)))) (-3330 (*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-932 *3)) (-4 *3 (-317)))) (-3827 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-932 *3)) (-4 *3 (-317)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-932 *3)) (-4 *3 (-317)))) (-3352 (*1 *2 *3 *3) (-12 (-5 *2 (-1192 *3)) (-5 *1 (-932 *3)) (-4 *3 (-317)))) (-3736 (*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317)))) (-1561 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-932 *2)))) (-1705 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317))))) -(-13 (-374) (-38 |#1|) (-10 -8 (-15 -4112 ((-419 |#1|) $)) (-15 -4112 ($ (-419 (-430 |#1|)))) (-15 -3330 ($ $)) (-15 -1535 ((-430 |#1|) $)) (-15 -3827 (|#1| $)) (-15 -2212 ($ $ (-576))) (-15 -1660 ((-576) $)) (-15 -3352 ((-1192 |#1|) |#1| |#1|)) (-15 -3736 ($ $)) (-15 -1561 ($ |#1| (-430 |#1|))) (-15 -1705 (|#1| $)))) -((-1561 (((-52) (-970 |#1|) (-430 (-970 |#1|)) (-1196)) 17) (((-52) (-419 (-970 |#1|)) (-1196)) 18))) -(((-933 |#1|) (-10 -7 (-15 -1561 ((-52) (-419 (-970 |#1|)) (-1196))) (-15 -1561 ((-52) (-970 |#1|) (-430 (-970 |#1|)) (-1196)))) (-13 (-317) (-148))) (T -933)) -((-1561 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-970 *6))) (-5 *5 (-1196)) (-5 *3 (-970 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-933 *6)))) (-1561 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-933 *5))))) -(-10 -7 (-15 -1561 ((-52) (-419 (-970 |#1|)) (-1196))) (-15 -1561 ((-52) (-970 |#1|) (-430 (-970 |#1|)) (-1196)))) -((-4010 ((|#4| (-656 |#4|)) 147) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3114 (((-1192 |#4|) (-656 (-1192 |#4|))) 140) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| |#4| |#4|)) (-15 -3114 (|#4| (-656 |#4|))) (-15 -3114 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3114 ((-1192 |#4|) (-656 (-1192 |#4|)))) (-15 -4010 (|#4| |#4| |#4|)) (-15 -4010 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -4010 (|#4| (-656 |#4|)))) (-805) (-861) (-317) (-967 |#3| |#1| |#2|)) (T -934)) -((-4010 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *6 *4 *5)) (-5 *1 (-934 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-4010 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-934 *3 *4 *5 *6)))) (-4010 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-967 *5 *3 *4)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-656 (-1192 *7))) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-1192 *7)) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-3114 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-934 *3 *4 *5 *6)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *6 *4 *5)) (-5 *1 (-934 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3114 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-967 *5 *3 *4))))) -(-10 -7 (-15 -3114 (|#4| |#4| |#4|)) (-15 -3114 (|#4| (-656 |#4|))) (-15 -3114 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3114 ((-1192 |#4|) (-656 (-1192 |#4|)))) (-15 -4010 (|#4| |#4| |#4|)) (-15 -4010 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -4010 (|#4| (-656 |#4|)))) -((-1809 (((-922 (-576)) (-991)) 38) (((-922 (-576)) (-656 (-576))) 34)) (-1638 (((-922 (-576)) (-656 (-576))) 67) (((-922 (-576)) (-939)) 68)) (-3353 (((-922 (-576))) 39)) (-1730 (((-922 (-576))) 53) (((-922 (-576)) (-656 (-576))) 52)) (-4406 (((-922 (-576))) 51) (((-922 (-576)) (-656 (-576))) 50)) (-1786 (((-922 (-576))) 49) (((-922 (-576)) (-656 (-576))) 48)) (-1472 (((-922 (-576))) 47) (((-922 (-576)) (-656 (-576))) 46)) (-2542 (((-922 (-576))) 45) (((-922 (-576)) (-656 (-576))) 44)) (-4201 (((-922 (-576))) 55) (((-922 (-576)) (-656 (-576))) 54)) (-2450 (((-922 (-576)) (-656 (-576))) 72) (((-922 (-576)) (-939)) 74)) (-2946 (((-922 (-576)) (-656 (-576))) 69) (((-922 (-576)) (-939)) 70)) (-2227 (((-922 (-576)) (-656 (-576))) 65) (((-922 (-576)) (-939)) 66)) (-3323 (((-922 (-576)) (-656 (-939))) 57))) -(((-935) (-10 -7 (-15 -1638 ((-922 (-576)) (-939))) (-15 -1638 ((-922 (-576)) (-656 (-576)))) (-15 -2227 ((-922 (-576)) (-939))) (-15 -2227 ((-922 (-576)) (-656 (-576)))) (-15 -3323 ((-922 (-576)) (-656 (-939)))) (-15 -2946 ((-922 (-576)) (-939))) (-15 -2946 ((-922 (-576)) (-656 (-576)))) (-15 -2450 ((-922 (-576)) (-939))) (-15 -2450 ((-922 (-576)) (-656 (-576)))) (-15 -2542 ((-922 (-576)) (-656 (-576)))) (-15 -2542 ((-922 (-576)))) (-15 -1472 ((-922 (-576)) (-656 (-576)))) (-15 -1472 ((-922 (-576)))) (-15 -1786 ((-922 (-576)) (-656 (-576)))) (-15 -1786 ((-922 (-576)))) (-15 -4406 ((-922 (-576)) (-656 (-576)))) (-15 -4406 ((-922 (-576)))) (-15 -1730 ((-922 (-576)) (-656 (-576)))) (-15 -1730 ((-922 (-576)))) (-15 -4201 ((-922 (-576)) (-656 (-576)))) (-15 -4201 ((-922 (-576)))) (-15 -3353 ((-922 (-576)))) (-15 -1809 ((-922 (-576)) (-656 (-576)))) (-15 -1809 ((-922 (-576)) (-991))))) (T -935)) -((-1809 (*1 *2 *3) (-12 (-5 *3 (-991)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-3353 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-4201 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1730 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-4406 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1786 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1472 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2542 (*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(-10 -7 (-15 -1638 ((-922 (-576)) (-939))) (-15 -1638 ((-922 (-576)) (-656 (-576)))) (-15 -2227 ((-922 (-576)) (-939))) (-15 -2227 ((-922 (-576)) (-656 (-576)))) (-15 -3323 ((-922 (-576)) (-656 (-939)))) (-15 -2946 ((-922 (-576)) (-939))) (-15 -2946 ((-922 (-576)) (-656 (-576)))) (-15 -2450 ((-922 (-576)) (-939))) (-15 -2450 ((-922 (-576)) (-656 (-576)))) (-15 -2542 ((-922 (-576)) (-656 (-576)))) (-15 -2542 ((-922 (-576)))) (-15 -1472 ((-922 (-576)) (-656 (-576)))) (-15 -1472 ((-922 (-576)))) (-15 -1786 ((-922 (-576)) (-656 (-576)))) (-15 -1786 ((-922 (-576)))) (-15 -4406 ((-922 (-576)) (-656 (-576)))) (-15 -4406 ((-922 (-576)))) (-15 -1730 ((-922 (-576)) (-656 (-576)))) (-15 -1730 ((-922 (-576)))) (-15 -4201 ((-922 (-576)) (-656 (-576)))) (-15 -4201 ((-922 (-576)))) (-15 -3353 ((-922 (-576)))) (-15 -1809 ((-922 (-576)) (-656 (-576)))) (-15 -1809 ((-922 (-576)) (-991)))) -((-3976 (((-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196))) 14)) (-1449 (((-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196))) 13))) -(((-936 |#1|) (-10 -7 (-15 -1449 ((-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3976 ((-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196))))) (-464)) (T -936)) -((-3976 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-970 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-936 *4)))) (-1449 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-970 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-936 *4))))) -(-10 -7 (-15 -1449 ((-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3976 ((-656 (-970 |#1|)) (-656 (-970 |#1|)) (-656 (-1196))))) -((-4112 (((-326 |#1|) (-489)) 16))) -(((-937 |#1|) (-10 -7 (-15 -4112 ((-326 |#1|) (-489)))) (-568)) (T -937)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-937 *4)) (-4 *4 (-568))))) -(-10 -7 (-15 -4112 ((-326 |#1|) (-489)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2287 (((-112) $) 35)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-938) (-141)) (T -938)) -((-3086 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-2 (|:| -2861 (-656 *1)) (|:| -2547 *1))) (-5 *3 (-656 *1)))) (-3871 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-938))))) -(-13 (-464) (-10 -8 (-15 -3086 ((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $))) (-15 -3871 ((-3 (-656 $) "failed") (-656 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3114 (($ $ $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4320 (($) NIL T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-939)) NIL)) (* (($ (-939) $) NIL) (($ $ $) NIL))) -(((-939) (-13 (-806) (-738) (-10 -8 (-15 -3114 ($ $ $)) (-6 (-4465 "*"))))) (T -939)) -((-3114 (*1 *1 *1 *1) (-5 *1 (-939)))) -(-13 (-806) (-738) (-10 -8 (-15 -3114 ($ $ $)) (-6 (-4465 "*")))) +((-1404 (((-3 (-2 (|:| -3309 (-783)) (|:| -3339 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-1339 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3309 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) +(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3309 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -1339 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1404 ((-3 (-2 (|:| -3309 (-783)) (|:| -3339 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -930)) +((-1404 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-2 (|:| -3309 (-783)) (|:| -3339 *8))) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3309 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3309 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -1339 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1404 ((-3 (-2 (|:| -3309 (-783)) (|:| -3339 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) +((-1404 (((-3 (-2 (|:| -3309 (-783)) (|:| -3339 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-1339 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3309 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) +(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3309 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1339 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1404 ((-3 (-2 (|:| -3309 (-783)) (|:| -3339 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1264 (-419 (-576))) (-1264 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -931)) +((-1404 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3309 (-783)) (|:| -3339 *6))) (-5 *1 (-931 *4 *5 *6)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6)))) (-3309 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-931 *4 *5 *6))))) +(-10 -7 (-15 -3309 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1339 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1404 ((-3 (-2 (|:| -3309 (-783)) (|:| -3339 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) +((-4302 ((|#2| |#2|) 26)) (-4084 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-4373 (((-940) (-576)) 38)) (-3990 (((-576) |#2|) 45)) (-2664 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) +(((-932 |#1| |#2|) (-10 -7 (-15 -4373 ((-940) (-576))) (-15 -2664 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2664 ((-576) |#2|)) (-15 -4084 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3990 ((-576) |#2|)) (-15 -4302 (|#2| |#2|))) (-1264 (-419 (-576))) (-1264 (-419 |#1|))) (T -932)) +((-4302 (*1 *2 *2) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) (-4 *2 (-1264 (-419 *3))))) (-3990 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4))))) (-2664 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-2664 (*1 *2 *3) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) +(-10 -7 (-15 -4373 ((-940) (-576))) (-15 -2664 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2664 ((-576) |#2|)) (-15 -4084 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3990 ((-576) |#2|)) (-15 -4302 (|#2| |#2|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 ((|#1| $) 100)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3451 (((-3 $ "failed") $) 94)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3615 (($ |#1| (-430 |#1|)) 92)) (-3196 (((-1193 |#1|) |#1| |#1|) 53)) (-2403 (($ $) 61)) (-3215 (((-112) $) NIL)) (-1989 (((-576) $) 97)) (-3779 (($ $ (-576)) 99)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1996 ((|#1| $) 96)) (-3350 (((-430 |#1|) $) 95)) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) 93)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2939 (($ $) 50)) (-3569 (((-876) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-1778 (((-783)) 71 T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) 26 T CONST)) (-2730 (($) 15 T CONST)) (-2923 (((-112) $ $) 87)) (-3056 (($ $ $) NIL)) (-3043 (($ $) 108) (($ $ $) NIL)) (-3029 (($ $ $) 49)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-933 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -3569 ((-419 |#1|) $)) (-15 -3569 ($ (-419 (-430 |#1|)))) (-15 -2939 ($ $)) (-15 -3350 ((-430 |#1|) $)) (-15 -1996 (|#1| $)) (-15 -3779 ($ $ (-576))) (-15 -1989 ((-576) $)) (-15 -3196 ((-1193 |#1|) |#1| |#1|)) (-15 -2403 ($ $)) (-15 -3615 ($ |#1| (-430 |#1|))) (-15 -2347 (|#1| $)))) (-317)) (T -933)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-933 *3)))) (-2939 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-1996 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-3615 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) (-2347 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(-13 (-374) (-38 |#1|) (-10 -8 (-15 -3569 ((-419 |#1|) $)) (-15 -3569 ($ (-419 (-430 |#1|)))) (-15 -2939 ($ $)) (-15 -3350 ((-430 |#1|) $)) (-15 -1996 (|#1| $)) (-15 -3779 ($ $ (-576))) (-15 -1989 ((-576) $)) (-15 -3196 ((-1193 |#1|) |#1| |#1|)) (-15 -2403 ($ $)) (-15 -3615 ($ |#1| (-430 |#1|))) (-15 -2347 (|#1| $)))) +((-3615 (((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)) 17) (((-52) (-419 (-971 |#1|)) (-1197)) 18))) +(((-934 |#1|) (-10 -7 (-15 -3615 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -3615 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -934)) +((-3615 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5))))) +(-10 -7 (-15 -3615 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -3615 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) +((-3259 ((|#4| (-656 |#4|)) 147) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3498 (((-1193 |#4|) (-656 (-1193 |#4|))) 140) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3498 (|#4| |#4| |#4|)) (-15 -3498 (|#4| (-656 |#4|))) (-15 -3498 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3498 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -3259 (|#4| |#4| |#4|)) (-15 -3259 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3259 (|#4| (-656 |#4|)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -935)) +((-3259 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3259 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3259 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-656 (-1193 *7))) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-1193 *7)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3498 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3498 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4))))) +(-10 -7 (-15 -3498 (|#4| |#4| |#4|)) (-15 -3498 (|#4| (-656 |#4|))) (-15 -3498 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3498 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -3259 (|#4| |#4| |#4|)) (-15 -3259 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3259 (|#4| (-656 |#4|)))) +((-4136 (((-923 (-576)) (-992)) 38) (((-923 (-576)) (-656 (-576))) 34)) (-3078 (((-923 (-576)) (-656 (-576))) 67) (((-923 (-576)) (-940)) 68)) (-3207 (((-923 (-576))) 39)) (-1428 (((-923 (-576))) 53) (((-923 (-576)) (-656 (-576))) 52)) (-1580 (((-923 (-576))) 51) (((-923 (-576)) (-656 (-576))) 50)) (-3910 (((-923 (-576))) 49) (((-923 (-576)) (-656 (-576))) 48)) (-4010 (((-923 (-576))) 47) (((-923 (-576)) (-656 (-576))) 46)) (-3922 (((-923 (-576))) 45) (((-923 (-576)) (-656 (-576))) 44)) (-1412 (((-923 (-576))) 55) (((-923 (-576)) (-656 (-576))) 54)) (-4227 (((-923 (-576)) (-656 (-576))) 72) (((-923 (-576)) (-940)) 74)) (-3465 (((-923 (-576)) (-656 (-576))) 69) (((-923 (-576)) (-940)) 70)) (-2622 (((-923 (-576)) (-656 (-576))) 65) (((-923 (-576)) (-940)) 66)) (-2861 (((-923 (-576)) (-656 (-940))) 57))) +(((-936) (-10 -7 (-15 -3078 ((-923 (-576)) (-940))) (-15 -3078 ((-923 (-576)) (-656 (-576)))) (-15 -2622 ((-923 (-576)) (-940))) (-15 -2622 ((-923 (-576)) (-656 (-576)))) (-15 -2861 ((-923 (-576)) (-656 (-940)))) (-15 -3465 ((-923 (-576)) (-940))) (-15 -3465 ((-923 (-576)) (-656 (-576)))) (-15 -4227 ((-923 (-576)) (-940))) (-15 -4227 ((-923 (-576)) (-656 (-576)))) (-15 -3922 ((-923 (-576)) (-656 (-576)))) (-15 -3922 ((-923 (-576)))) (-15 -4010 ((-923 (-576)) (-656 (-576)))) (-15 -4010 ((-923 (-576)))) (-15 -3910 ((-923 (-576)) (-656 (-576)))) (-15 -3910 ((-923 (-576)))) (-15 -1580 ((-923 (-576)) (-656 (-576)))) (-15 -1580 ((-923 (-576)))) (-15 -1428 ((-923 (-576)) (-656 (-576)))) (-15 -1428 ((-923 (-576)))) (-15 -1412 ((-923 (-576)) (-656 (-576)))) (-15 -1412 ((-923 (-576)))) (-15 -3207 ((-923 (-576)))) (-15 -4136 ((-923 (-576)) (-656 (-576)))) (-15 -4136 ((-923 (-576)) (-992))))) (T -936)) +((-4136 (*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3207 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1412 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1428 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1580 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3910 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-4010 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3922 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(-10 -7 (-15 -3078 ((-923 (-576)) (-940))) (-15 -3078 ((-923 (-576)) (-656 (-576)))) (-15 -2622 ((-923 (-576)) (-940))) (-15 -2622 ((-923 (-576)) (-656 (-576)))) (-15 -2861 ((-923 (-576)) (-656 (-940)))) (-15 -3465 ((-923 (-576)) (-940))) (-15 -3465 ((-923 (-576)) (-656 (-576)))) (-15 -4227 ((-923 (-576)) (-940))) (-15 -4227 ((-923 (-576)) (-656 (-576)))) (-15 -3922 ((-923 (-576)) (-656 (-576)))) (-15 -3922 ((-923 (-576)))) (-15 -4010 ((-923 (-576)) (-656 (-576)))) (-15 -4010 ((-923 (-576)))) (-15 -3910 ((-923 (-576)) (-656 (-576)))) (-15 -3910 ((-923 (-576)))) (-15 -1580 ((-923 (-576)) (-656 (-576)))) (-15 -1580 ((-923 (-576)))) (-15 -1428 ((-923 (-576)) (-656 (-576)))) (-15 -1428 ((-923 (-576)))) (-15 -1412 ((-923 (-576)) (-656 (-576)))) (-15 -1412 ((-923 (-576)))) (-15 -3207 ((-923 (-576)))) (-15 -4136 ((-923 (-576)) (-656 (-576)))) (-15 -4136 ((-923 (-576)) (-992)))) +((-2889 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 14)) (-2444 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 13))) +(((-937 |#1|) (-10 -7 (-15 -2444 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2889 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) (-464)) (T -937)) +((-2889 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4)))) (-2444 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4))))) +(-10 -7 (-15 -2444 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2889 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) +((-3569 (((-326 |#1|) (-489)) 16))) +(((-938 |#1|) (-10 -7 (-15 -3569 ((-326 |#1|) (-489)))) (-568)) (T -938)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) (-4 *4 (-568))))) +(-10 -7 (-15 -3569 ((-326 |#1|) (-489)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3215 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-939) (-141)) (T -939)) +((-2304 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -1714 (-656 *1)) (|:| -4128 *1))) (-5 *3 (-656 *1)))) (-4397 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) +(-13 (-464) (-10 -8 (-15 -2304 ((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $))) (-15 -4397 ((-3 (-656 $) "failed") (-656 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3498 (($ $ $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2730 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ $ $) NIL))) +(((-940) (-13 (-806) (-738) (-10 -8 (-15 -3498 ($ $ $)) (-6 (-4466 "*"))))) (T -940)) +((-3498 (*1 *1 *1 *1) (-5 *1 (-940)))) +(-13 (-806) (-738) (-10 -8 (-15 -3498 ($ $ $)) (-6 (-4466 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-3635 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) -(((-940 |#1| |#2|) (-10 -7 (-15 -3635 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1263 |#1|)) (T -940)) -((-3635 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1263 *4)) (-5 *1 (-940 *4 *2))))) -(-10 -7 (-15 -3635 (|#2| (-656 |#1|) (-656 |#1|)))) -((-4170 (((-1192 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) -(((-941 |#1| |#2|) (-10 -7 (-15 -4170 ((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4170 ((-1192 |#2|) (-656 |#2|) (-656 |#2|)))) (-1196) (-374)) (T -941)) -((-4170 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1192 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-1196)))) (-4170 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1260 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1196)) (-4 *5 (-374)) (-5 *1 (-941 *4 *5))))) -(-10 -7 (-15 -4170 ((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4170 ((-1192 |#2|) (-656 |#2|) (-656 |#2|)))) -((-3555 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-1178)) 174)) (-1742 ((|#4| |#4|) 193)) (-4356 (((-656 (-419 (-970 |#1|))) (-656 (-1196))) 146)) (-4220 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-970 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-3358 (((-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-656 |#4|)) 69)) (-1425 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-1726 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-1178)) 186)) (-2914 (((-576) (-701 |#4|) (-939) (-1178)) 166) (((-576) (-701 |#4|) (-656 (-1196)) (-939) (-1178)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-939) (-1178)) 164) (((-576) (-701 |#4|) (-1178)) 154) (((-576) (-701 |#4|) (-656 (-1196)) (-1178)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1178)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-939)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-939)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-939)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 (-1196))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-1725 ((|#4| (-970 |#1|)) 80)) (-3637 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-4260 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-4225 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-4021 (((-783) (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-2459 (((-783) (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-3947 (((-112) (-656 (-970 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-1430 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-1513 (((-656 |#4|) |#4|) 57)) (-3327 (((-656 (-419 (-970 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-970 |#1|))) (-701 |#4|)) 66) (((-419 (-970 |#1|)) |#4|) 139)) (-2464 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-970 |#1|))) (-783) (-1178) (-576)) 112)) (-2169 (((-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-2616 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-2717 (((-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-2 (|:| -3608 (-701 (-419 (-970 |#1|)))) (|:| |vec| (-656 (-419 (-970 |#1|)))) (|:| -4134 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) -(((-942 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 (-1196)))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-939))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-939))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-939))) (-15 -2914 ((-576) (-701 |#4|) (-656 |#4|) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-656 (-1196)) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-656 |#4|) (-939) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-656 (-1196)) (-939) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-939) (-1178))) (-15 -3555 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-1178))) (-15 -1726 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-1178))) (-15 -2464 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-970 |#1|))) (-783) (-1178) (-576))) (-15 -3327 ((-419 (-970 |#1|)) |#4|)) (-15 -3327 ((-701 (-419 (-970 |#1|))) (-701 |#4|))) (-15 -3327 ((-656 (-419 (-970 |#1|))) (-656 |#4|))) (-15 -4356 ((-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -1725 (|#4| (-970 |#1|))) (-15 -1430 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2169 ((-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3358 ((-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-656 |#4|))) (-15 -2717 ((-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-2 (|:| -3608 (-701 (-419 (-970 |#1|)))) (|:| |vec| (-656 (-419 (-970 |#1|)))) (|:| -4134 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -1513 ((-656 |#4|) |#4|)) (-15 -2459 ((-783) (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4021 ((-783) (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4225 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -4260 ((-656 (-656 (-576))) (-576) (-576))) (-15 -3637 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2616 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -1425 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -4220 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-970 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1742 (|#4| |#4|)) (-15 -3947 ((-112) (-656 |#4|))) (-15 -3947 ((-112) (-656 (-970 |#1|))))) (-13 (-317) (-148)) (-13 (-861) (-626 (-1196))) (-805) (-967 |#1| |#3| |#2|)) (T -942)) -((-3947 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-942 *4 *5 *6 *7)))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1196)))) (-4 *5 (-805)) (-5 *1 (-942 *3 *4 *5 *2)) (-4 *2 (-967 *3 *5 *4)))) (-4220 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-970 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-967 *9 *11 *10)) (-4 *10 (-13 (-861) (-626 (-1196)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-970 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *9)))) (|:| -3578 (-656 (-1287 (-419 (-970 *9))))))))) (-5 *1 (-942 *9 *10 *11 *12)))) (-1425 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *1 (-942 *4 *5 *6 *7)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3637 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-942 *5 *6 *7 *8)))) (-4260 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-967 *4 *6 *5)))) (-4225 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-967 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1196)))) (-4 *5 (-805)) (-5 *1 (-942 *3 *4 *5 *6)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-942 *4 *5 *6 *7)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-942 *4 *5 *6 *7)))) (-1513 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-942 *4 *5 *6 *3)) (-4 *3 (-967 *4 *6 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3608 (-701 (-419 (-970 *4)))) (|:| |vec| (-656 (-419 (-970 *4)))) (|:| -4134 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) (|:| -3578 (-656 (-1287 (-419 (-970 *4))))))) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3358 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) (|:| -3578 (-656 (-1287 (-419 (-970 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-967 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *1 (-942 *4 *5 *6 *7)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-783)))) (-1430 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-4 *7 (-967 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-970 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-967 *4 *6 *5)) (-5 *1 (-942 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-970 *4)))) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-970 *4)))) (-5 *1 (-942 *4 *5 *6 *7)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-970 *4)))) (-5 *1 (-942 *4 *5 *6 *7)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-419 (-970 *4))) (-5 *1 (-942 *4 *5 *6 *3)) (-4 *3 (-967 *4 *6 *5)))) (-2464 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-970 *8)))) (-5 *5 (-783)) (-5 *6 (-1178)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-967 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1196)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-970 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *8)))) (|:| -3578 (-656 (-1287 (-419 (-970 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-942 *8 *9 *10 *11)) (-5 *7 (-576)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-970 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) (|:| -3578 (-656 (-1287 (-419 (-970 *4)))))))))) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-970 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) (-5 *4 (-1178)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-967 *5 *7 *6)) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *5 *6 *7 *8)))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-939)) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *6 *7 *8 *9)))) (-2914 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1196))) (-5 *5 (-939)) (-5 *6 (-1178)) (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *7 *8 *9 *10)))) (-2914 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-939)) (-5 *6 (-1178)) (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *7 *8 *9 *10)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1178)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *5 *6 *7 *8)))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *6 *7 *8 *9)))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *6 *7 *8 *9)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-939)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-970 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-939)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-970 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *6)))) (|:| -3578 (-656 (-1287 (-419 (-970 *6)))))))))) (-5 *1 (-942 *6 *7 *8 *9)))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-939)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-970 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *6)))) (|:| -3578 (-656 (-1287 (-419 (-970 *6)))))))))) (-5 *1 (-942 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-970 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) (|:| -3578 (-656 (-1287 (-419 (-970 *4)))))))))) (-5 *1 (-942 *4 *5 *6 *7)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1196))) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-970 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-970 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(-10 -7 (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 (-1196)))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-939))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-939))) (-15 -2914 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-701 |#4|) (-939))) (-15 -2914 ((-576) (-701 |#4|) (-656 |#4|) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-656 (-1196)) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-656 |#4|) (-939) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-656 (-1196)) (-939) (-1178))) (-15 -2914 ((-576) (-701 |#4|) (-939) (-1178))) (-15 -3555 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-1178))) (-15 -1726 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|))))))))) (-1178))) (-15 -2464 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-970 |#1|))) (-783) (-1178) (-576))) (-15 -3327 ((-419 (-970 |#1|)) |#4|)) (-15 -3327 ((-701 (-419 (-970 |#1|))) (-701 |#4|))) (-15 -3327 ((-656 (-419 (-970 |#1|))) (-656 |#4|))) (-15 -4356 ((-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -1725 (|#4| (-970 |#1|))) (-15 -1430 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2169 ((-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3358 ((-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-656 |#4|))) (-15 -2717 ((-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))) (-2 (|:| -3608 (-701 (-419 (-970 |#1|)))) (|:| |vec| (-656 (-419 (-970 |#1|)))) (|:| -4134 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -1513 ((-656 |#4|) |#4|)) (-15 -2459 ((-783) (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4021 ((-783) (-656 (-2 (|:| -4134 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4225 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -4260 ((-656 (-656 (-576))) (-576) (-576))) (-15 -3637 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2616 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -1425 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -4220 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-970 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-970 |#1|)))) (|:| -3578 (-656 (-1287 (-419 (-970 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-970 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1742 (|#4| |#4|)) (-15 -3947 ((-112) (-656 |#4|))) (-15 -3947 ((-112) (-656 (-970 |#1|))))) -((-1626 (((-945) |#1| (-1196)) 17) (((-945) |#1| (-1196) (-1114 (-227))) 21)) (-4017 (((-945) |#1| |#1| (-1196) (-1114 (-227))) 19) (((-945) |#1| (-1196) (-1114 (-227))) 15))) -(((-943 |#1|) (-10 -7 (-15 -4017 ((-945) |#1| (-1196) (-1114 (-227)))) (-15 -4017 ((-945) |#1| |#1| (-1196) (-1114 (-227)))) (-15 -1626 ((-945) |#1| (-1196) (-1114 (-227)))) (-15 -1626 ((-945) |#1| (-1196)))) (-626 (-548))) (T -943)) -((-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-945)) (-5 *1 (-943 *3)) (-4 *3 (-626 (-548))))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1114 (-227))) (-5 *2 (-945)) (-5 *1 (-943 *3)) (-4 *3 (-626 (-548))))) (-4017 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1114 (-227))) (-5 *2 (-945)) (-5 *1 (-943 *3)) (-4 *3 (-626 (-548))))) (-4017 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1114 (-227))) (-5 *2 (-945)) (-5 *1 (-943 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -4017 ((-945) |#1| (-1196) (-1114 (-227)))) (-15 -4017 ((-945) |#1| |#1| (-1196) (-1114 (-227)))) (-15 -1626 ((-945) |#1| (-1196) (-1114 (-227)))) (-15 -1626 ((-945) |#1| (-1196)))) -((-4348 (($ $ (-1114 (-227)) (-1114 (-227)) (-1114 (-227))) 121)) (-3764 (((-1114 (-227)) $) 64)) (-3753 (((-1114 (-227)) $) 63)) (-3741 (((-1114 (-227)) $) 62)) (-1419 (((-656 (-656 (-227))) $) 69)) (-2016 (((-1114 (-227)) $) 65)) (-3927 (((-576) (-576)) 57)) (-1915 (((-576) (-576)) 52)) (-2179 (((-576) (-576)) 55)) (-3388 (((-112) (-112)) 59)) (-3511 (((-576)) 56)) (-4014 (($ $ (-1114 (-227))) 124) (($ $) 125)) (-3459 (($ (-1 (-961 (-227)) (-227)) (-1114 (-227))) 131) (($ (-1 (-961 (-227)) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227))) 132)) (-4017 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227))) 135) (($ $ (-1114 (-227))) 127)) (-4246 (((-576)) 60)) (-4350 (((-576)) 50)) (-2164 (((-576)) 53)) (-3944 (((-656 (-656 (-961 (-227)))) $) 151)) (-1866 (((-112) (-112)) 61)) (-4112 (((-875) $) 149)) (-3339 (((-112)) 58))) -(((-944) (-13 (-994) (-10 -8 (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)))) (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ $ (-1114 (-227)))) (-15 -4348 ($ $ (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4014 ($ $ (-1114 (-227)))) (-15 -4014 ($ $)) (-15 -2016 ((-1114 (-227)) $)) (-15 -1419 ((-656 (-656 (-227))) $)) (-15 -4350 ((-576))) (-15 -1915 ((-576) (-576))) (-15 -2164 ((-576))) (-15 -2179 ((-576) (-576))) (-15 -3511 ((-576))) (-15 -3927 ((-576) (-576))) (-15 -3339 ((-112))) (-15 -3388 ((-112) (-112))) (-15 -4246 ((-576))) (-15 -1866 ((-112) (-112)))))) (T -944)) -((-3459 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-944)))) (-3459 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-944)))) (-4017 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-944)))) (-4017 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-944)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) (-4348 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) (-4014 (*1 *1 *1) (-5 *1 (-944))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-944)))) (-4350 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-1915 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2164 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2179 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3511 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3339 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-4246 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(-13 (-994) (-10 -8 (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)))) (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ $ (-1114 (-227)))) (-15 -4348 ($ $ (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4014 ($ $ (-1114 (-227)))) (-15 -4014 ($ $)) (-15 -2016 ((-1114 (-227)) $)) (-15 -1419 ((-656 (-656 (-227))) $)) (-15 -4350 ((-576))) (-15 -1915 ((-576) (-576))) (-15 -2164 ((-576))) (-15 -2179 ((-576) (-576))) (-15 -3511 ((-576))) (-15 -3927 ((-576) (-576))) (-15 -3339 ((-112))) (-15 -3388 ((-112) (-112))) (-15 -4246 ((-576))) (-15 -1866 ((-112) (-112))))) -((-4348 (($ $ (-1114 (-227))) 122) (($ $ (-1114 (-227)) (-1114 (-227))) 123)) (-3753 (((-1114 (-227)) $) 73)) (-3741 (((-1114 (-227)) $) 72)) (-2016 (((-1114 (-227)) $) 74)) (-3875 (((-576) (-576)) 66)) (-4157 (((-576) (-576)) 61)) (-3950 (((-576) (-576)) 64)) (-1678 (((-112) (-112)) 68)) (-4391 (((-576)) 65)) (-4014 (($ $ (-1114 (-227))) 126) (($ $) 127)) (-3459 (($ (-1 (-961 (-227)) (-227)) (-1114 (-227))) 141) (($ (-1 (-961 (-227)) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227))) 142)) (-1626 (($ (-1 (-227) (-227)) (-1114 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-4017 (($ (-1 (-227) (-227)) (-1114 (-227))) 137) (($ (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1114 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1114 (-227)) (-1114 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227))) 140) (($ $ (-1114 (-227))) 128)) (-2504 (((-112) $) 69)) (-3785 (((-576)) 70)) (-1768 (((-576)) 59)) (-3896 (((-576)) 62)) (-3944 (((-656 (-656 (-961 (-227)))) $) 35)) (-3141 (((-112) (-112)) 71)) (-4112 (((-875) $) 167)) (-3453 (((-112)) 67))) -(((-945) (-13 (-973) (-10 -8 (-15 -4017 ($ (-1 (-227) (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ (-656 (-1 (-227) (-227))) (-1114 (-227)))) (-15 -4017 ($ (-656 (-1 (-227) (-227))) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)))) (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -1626 ($ (-1 (-227) (-227)) (-1114 (-227)))) (-15 -1626 ($ (-1 (-227) (-227)))) (-15 -4017 ($ $ (-1114 (-227)))) (-15 -2504 ((-112) $)) (-15 -4348 ($ $ (-1114 (-227)))) (-15 -4348 ($ $ (-1114 (-227)) (-1114 (-227)))) (-15 -4014 ($ $ (-1114 (-227)))) (-15 -4014 ($ $)) (-15 -2016 ((-1114 (-227)) $)) (-15 -1768 ((-576))) (-15 -4157 ((-576) (-576))) (-15 -3896 ((-576))) (-15 -3950 ((-576) (-576))) (-15 -4391 ((-576))) (-15 -3875 ((-576) (-576))) (-15 -3453 ((-112))) (-15 -1678 ((-112) (-112))) (-15 -3785 ((-576))) (-15 -3141 ((-112) (-112)))))) (T -945)) -((-4017 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-4017 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-4017 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-4017 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-4017 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-4017 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-3459 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-3459 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-1626 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) (-5 *1 (-945)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-945)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-4348 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) (-4348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) (-4014 (*1 *1 *1) (-5 *1 (-945))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) (-1768 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3896 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-4391 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3453 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-3785 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3141 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(-13 (-973) (-10 -8 (-15 -4017 ($ (-1 (-227) (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ (-656 (-1 (-227) (-227))) (-1114 (-227)))) (-15 -4017 ($ (-656 (-1 (-227) (-227))) (-1114 (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)))) (-15 -4017 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)))) (-15 -3459 ($ (-1 (-961 (-227)) (-227)) (-1114 (-227)) (-1114 (-227)) (-1114 (-227)))) (-15 -1626 ($ (-1 (-227) (-227)) (-1114 (-227)))) (-15 -1626 ($ (-1 (-227) (-227)))) (-15 -4017 ($ $ (-1114 (-227)))) (-15 -2504 ((-112) $)) (-15 -4348 ($ $ (-1114 (-227)))) (-15 -4348 ($ $ (-1114 (-227)) (-1114 (-227)))) (-15 -4014 ($ $ (-1114 (-227)))) (-15 -4014 ($ $)) (-15 -2016 ((-1114 (-227)) $)) (-15 -1768 ((-576))) (-15 -4157 ((-576) (-576))) (-15 -3896 ((-576))) (-15 -3950 ((-576) (-576))) (-15 -4391 ((-576))) (-15 -3875 ((-576) (-576))) (-15 -3453 ((-112))) (-15 -1678 ((-112) (-112))) (-15 -3785 ((-576))) (-15 -3141 ((-112) (-112))))) -((-4358 (((-656 (-1114 (-227))) (-656 (-656 (-961 (-227))))) 34))) -(((-946) (-10 -7 (-15 -4358 ((-656 (-1114 (-227))) (-656 (-656 (-961 (-227)))))))) (T -946)) -((-4358 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *2 (-656 (-1114 (-227)))) (-5 *1 (-946))))) -(-10 -7 (-15 -4358 ((-656 (-1114 (-227))) (-656 (-656 (-961 (-227))))))) -((-2012 ((|#2| |#2|) 28)) (-3691 ((|#2| |#2|) 29)) (-2665 ((|#2| |#2|) 27)) (-1716 ((|#2| |#2| (-518)) 26))) -(((-947 |#1| |#2|) (-10 -7 (-15 -1716 (|#2| |#2| (-518))) (-15 -2665 (|#2| |#2|)) (-15 -2012 (|#2| |#2|)) (-15 -3691 (|#2| |#2|))) (-1120) (-442 |#1|)) (T -947)) -((-3691 (*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-442 *3)))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-442 *3)))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-442 *3)))) (-1716 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1120)) (-5 *1 (-947 *4 *2)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -1716 (|#2| |#2| (-518))) (-15 -2665 (|#2| |#2|)) (-15 -2012 (|#2| |#2|)) (-15 -3691 (|#2| |#2|))) -((-2012 (((-326 (-576)) (-1196)) 16)) (-3691 (((-326 (-576)) (-1196)) 14)) (-2665 (((-326 (-576)) (-1196)) 12)) (-1716 (((-326 (-576)) (-1196) (-518)) 19))) -(((-948) (-10 -7 (-15 -1716 ((-326 (-576)) (-1196) (-518))) (-15 -2665 ((-326 (-576)) (-1196))) (-15 -2012 ((-326 (-576)) (-1196))) (-15 -3691 ((-326 (-576)) (-1196))))) (T -948)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-948)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-948)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-948)))) (-1716 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-948))))) -(-10 -7 (-15 -1716 ((-326 (-576)) (-1196) (-518))) (-15 -2665 ((-326 (-576)) (-1196))) (-15 -2012 ((-326 (-576)) (-1196))) (-15 -3691 ((-326 (-576)) (-1196)))) -((-1445 (((-903 |#1| |#3|) |#2| (-906 |#1|) (-903 |#1| |#3|)) 25)) (-1806 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1445 ((-903 |#1| |#3|) |#2| (-906 |#1|) (-903 |#1| |#3|)))) (-1120) (-900 |#1|) (-13 (-1120) (-1058 |#2|))) (T -949)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *6)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-4 *6 (-13 (-1120) (-1058 *3))) (-4 *3 (-900 *5)) (-5 *1 (-949 *5 *3 *6)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1120) (-1058 *5))) (-4 *5 (-900 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-949 *4 *5 *6))))) -(-10 -7 (-15 -1806 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1445 ((-903 |#1| |#3|) |#2| (-906 |#1|) (-903 |#1| |#3|)))) -((-1445 (((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)) 30))) -(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -1445 ((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)))) (-1120) (-13 (-568) (-900 |#1|)) (-13 (-442 |#2|) (-626 (-906 |#1|)) (-900 |#1|) (-1058 (-624 $)))) (T -950)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-13 (-442 *6) (-626 *4) (-900 *5) (-1058 (-624 $)))) (-5 *4 (-906 *5)) (-4 *6 (-13 (-568) (-900 *5))) (-5 *1 (-950 *5 *6 *3))))) -(-10 -7 (-15 -1445 ((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)))) -((-1445 (((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|)) 13))) -(((-951 |#1|) (-10 -7 (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|)))) (-557)) (T -951)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 (-576) *3)) (-5 *4 (-906 (-576))) (-4 *3 (-557)) (-5 *1 (-951 *3))))) -(-10 -7 (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|)))) -((-1445 (((-903 |#1| |#2|) (-624 |#2|) (-906 |#1|) (-903 |#1| |#2|)) 57))) -(((-952 |#1| |#2|) (-10 -7 (-15 -1445 ((-903 |#1| |#2|) (-624 |#2|) (-906 |#1|) (-903 |#1| |#2|)))) (-1120) (-13 (-1120) (-1058 (-624 $)) (-626 (-906 |#1|)) (-900 |#1|))) (T -952)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1120)) (-4 *6 (-13 (-1120) (-1058 (-624 $)) (-626 *4) (-900 *5))) (-5 *4 (-906 *5)) (-5 *1 (-952 *5 *6))))) -(-10 -7 (-15 -1445 ((-903 |#1| |#2|) (-624 |#2|) (-906 |#1|) (-903 |#1| |#2|)))) -((-1445 (((-899 |#1| |#2| |#3|) |#3| (-906 |#1|) (-899 |#1| |#2| |#3|)) 17))) -(((-953 |#1| |#2| |#3|) (-10 -7 (-15 -1445 ((-899 |#1| |#2| |#3|) |#3| (-906 |#1|) (-899 |#1| |#2| |#3|)))) (-1120) (-900 |#1|) (-678 |#2|)) (T -953)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *6 *3)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-4 *6 (-900 *5)) (-4 *3 (-678 *6)) (-5 *1 (-953 *5 *6 *3))))) -(-10 -7 (-15 -1445 ((-899 |#1| |#2| |#3|) |#3| (-906 |#1|) (-899 |#1| |#2| |#3|)))) -((-1445 (((-903 |#1| |#5|) |#5| (-906 |#1|) (-903 |#1| |#5|)) 17 (|has| |#3| (-900 |#1|))) (((-903 |#1| |#5|) |#5| (-906 |#1|) (-903 |#1| |#5|) (-1 (-903 |#1| |#5|) |#3| (-906 |#1|) (-903 |#1| |#5|))) 16))) -(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1445 ((-903 |#1| |#5|) |#5| (-906 |#1|) (-903 |#1| |#5|) (-1 (-903 |#1| |#5|) |#3| (-906 |#1|) (-903 |#1| |#5|)))) (IF (|has| |#3| (-900 |#1|)) (-15 -1445 ((-903 |#1| |#5|) |#5| (-906 |#1|) (-903 |#1| |#5|))) |%noBranch|)) (-1120) (-805) (-861) (-13 (-1069) (-900 |#1|)) (-13 (-967 |#4| |#2| |#3|) (-626 (-906 |#1|)))) (T -954)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-13 (-967 *8 *6 *7) (-626 *4))) (-5 *4 (-906 *5)) (-4 *7 (-900 *5)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-13 (-1069) (-900 *5))) (-5 *1 (-954 *5 *6 *7 *8 *3)))) (-1445 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-903 *6 *3) *8 (-906 *6) (-903 *6 *3))) (-4 *8 (-861)) (-5 *2 (-903 *6 *3)) (-5 *4 (-906 *6)) (-4 *6 (-1120)) (-4 *3 (-13 (-967 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1069) (-900 *6))) (-5 *1 (-954 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -1445 ((-903 |#1| |#5|) |#5| (-906 |#1|) (-903 |#1| |#5|) (-1 (-903 |#1| |#5|) |#3| (-906 |#1|) (-903 |#1| |#5|)))) (IF (|has| |#3| (-900 |#1|)) (-15 -1445 ((-903 |#1| |#5|) |#5| (-906 |#1|) (-903 |#1| |#5|))) |%noBranch|)) -((-3766 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -3766 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3766 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1120) (-442 |#1|) (-1237)) (T -955)) -((-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-4 *4 (-1120)) (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-442 *4)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1237)) (-4 *4 (-1120)) (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -3766 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3766 (|#2| |#2| (-656 (-1 (-112) |#3|))))) -((-3766 (((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1196) (-1 (-112) |#1|)) 15))) -(((-956 |#1|) (-10 -7 (-15 -3766 ((-326 (-576)) (-1196) (-1 (-112) |#1|))) (-15 -3766 ((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))))) (-1237)) (T -956)) -((-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-5 *2 (-326 (-576))) (-5 *1 (-956 *5)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1237)) (-5 *2 (-326 (-576))) (-5 *1 (-956 *5))))) -(-10 -7 (-15 -3766 ((-326 (-576)) (-1196) (-1 (-112) |#1|))) (-15 -3766 ((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))))) -((-1445 (((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)) 25))) -(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -1445 ((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)))) (-1120) (-13 (-568) (-900 |#1|) (-626 (-906 |#1|))) (-1012 |#2|)) (T -957)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-1012 *6)) (-4 *6 (-13 (-568) (-900 *5) (-626 *4))) (-5 *4 (-906 *5)) (-5 *1 (-957 *5 *6 *3))))) -(-10 -7 (-15 -1445 ((-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)))) -((-1445 (((-903 |#1| (-1196)) (-1196) (-906 |#1|) (-903 |#1| (-1196))) 18))) -(((-958 |#1|) (-10 -7 (-15 -1445 ((-903 |#1| (-1196)) (-1196) (-906 |#1|) (-903 |#1| (-1196))))) (-1120)) (T -958)) -((-1445 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-5 *1 (-958 *5))))) -(-10 -7 (-15 -1445 ((-903 |#1| (-1196)) (-1196) (-906 |#1|) (-903 |#1| (-1196))))) -((-3158 (((-903 |#1| |#3|) (-656 |#3|) (-656 (-906 |#1|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|))) 34)) (-1445 (((-903 |#1| |#3|) (-656 |#3|) (-656 (-906 |#1|)) (-1 |#3| (-656 |#3|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|))) 33))) -(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -1445 ((-903 |#1| |#3|) (-656 |#3|) (-656 (-906 |#1|)) (-1 |#3| (-656 |#3|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)))) (-15 -3158 ((-903 |#1| |#3|) (-656 |#3|) (-656 (-906 |#1|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|))))) (-1120) (-1069) (-13 (-1069) (-626 (-906 |#1|)) (-1058 |#2|))) (T -959)) -((-3158 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-906 *6))) (-5 *5 (-1 (-903 *6 *8) *8 (-906 *6) (-903 *6 *8))) (-4 *6 (-1120)) (-4 *8 (-13 (-1069) (-626 (-906 *6)) (-1058 *7))) (-5 *2 (-903 *6 *8)) (-4 *7 (-1069)) (-5 *1 (-959 *6 *7 *8)))) (-1445 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-906 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-903 *7 *9) *9 (-906 *7) (-903 *7 *9))) (-4 *7 (-1120)) (-4 *9 (-13 (-1069) (-626 (-906 *7)) (-1058 *8))) (-5 *2 (-903 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1069)) (-5 *1 (-959 *7 *8 *9))))) -(-10 -7 (-15 -1445 ((-903 |#1| |#3|) (-656 |#3|) (-656 (-906 |#1|)) (-1 |#3| (-656 |#3|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|)))) (-15 -3158 ((-903 |#1| |#3|) (-656 |#3|) (-656 (-906 |#1|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-906 |#1|) (-903 |#1| |#3|))))) -((-1948 (((-1192 (-419 (-576))) (-576)) 79)) (-2885 (((-1192 (-576)) (-576)) 82)) (-1941 (((-1192 (-576)) (-576)) 76)) (-4105 (((-576) (-1192 (-576))) 72)) (-2255 (((-1192 (-419 (-576))) (-576)) 65)) (-3799 (((-1192 (-576)) (-576)) 49)) (-3269 (((-1192 (-576)) (-576)) 84)) (-3280 (((-1192 (-576)) (-576)) 83)) (-4439 (((-1192 (-419 (-576))) (-576)) 67))) -(((-960) (-10 -7 (-15 -4439 ((-1192 (-419 (-576))) (-576))) (-15 -3280 ((-1192 (-576)) (-576))) (-15 -3269 ((-1192 (-576)) (-576))) (-15 -3799 ((-1192 (-576)) (-576))) (-15 -2255 ((-1192 (-419 (-576))) (-576))) (-15 -4105 ((-576) (-1192 (-576)))) (-15 -1941 ((-1192 (-576)) (-576))) (-15 -2885 ((-1192 (-576)) (-576))) (-15 -1948 ((-1192 (-419 (-576))) (-576))))) (T -960)) -((-1948 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-960)) (-5 *3 (-576)))) (-2885 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576)))) (-1941 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-576)) (-5 *1 (-960)))) (-2255 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-960)) (-5 *3 (-576)))) (-3799 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576)))) (-3269 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576)))) (-3280 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576)))) (-4439 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-960)) (-5 *3 (-576))))) -(-10 -7 (-15 -4439 ((-1192 (-419 (-576))) (-576))) (-15 -3280 ((-1192 (-576)) (-576))) (-15 -3269 ((-1192 (-576)) (-576))) (-15 -3799 ((-1192 (-576)) (-576))) (-15 -2255 ((-1192 (-419 (-576))) (-576))) (-15 -4105 ((-576) (-1192 (-576)))) (-15 -1941 ((-1192 (-576)) (-576))) (-15 -2885 ((-1192 (-576)) (-576))) (-15 -1948 ((-1192 (-419 (-576))) (-576)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2154 (($ (-783)) NIL (|has| |#1| (-23)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-2819 (($ (-656 |#1|)) 9)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-1662 (((-701 |#1|) $ $) NIL (|has| |#1| (-1069)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1347 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))))) (-1556 (((-112) $ (-783)) NIL)) (-3107 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))))) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3679 (($ $ (-656 |#1|)) 25)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1254 (-576))) NIL)) (-4139 ((|#1| $ $) NIL (|has| |#1| (-1069)))) (-1656 (((-939) $) 13)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-1776 (($ $ $) 23)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-4124 (($ (-656 |#1|)) NIL)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4036 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4026 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-1968 (((-783) $) 11 (|has| $ (-6 -4463))))) -(((-961 |#1|) (-1000 |#1|) (-1069)) (T -961)) -NIL -(-1000 |#1|) -((-3474 (((-493 |#1| |#2|) (-970 |#2|)) 22)) (-3915 (((-253 |#1| |#2|) (-970 |#2|)) 35)) (-3713 (((-970 |#2|) (-493 |#1| |#2|)) 27)) (-1536 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-1424 (((-970 |#2|) (-253 |#1| |#2|)) 32)) (-3012 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-962 |#1| |#2|) (-10 -7 (-15 -3012 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1536 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3474 ((-493 |#1| |#2|) (-970 |#2|))) (-15 -3713 ((-970 |#2|) (-493 |#1| |#2|))) (-15 -1424 ((-970 |#2|) (-253 |#1| |#2|))) (-15 -3915 ((-253 |#1| |#2|) (-970 |#2|)))) (-656 (-1196)) (-1069)) (T -962)) -((-3915 (*1 *2 *3) (-12 (-5 *3 (-970 *5)) (-4 *5 (-1069)) (-5 *2 (-253 *4 *5)) (-5 *1 (-962 *4 *5)) (-14 *4 (-656 (-1196))))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) (-5 *2 (-970 *5)) (-5 *1 (-962 *4 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) (-5 *2 (-970 *5)) (-5 *1 (-962 *4 *5)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-970 *5)) (-4 *5 (-1069)) (-5 *2 (-493 *4 *5)) (-5 *1 (-962 *4 *5)) (-14 *4 (-656 (-1196))))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) (-5 *2 (-253 *4 *5)) (-5 *1 (-962 *4 *5)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) (-5 *2 (-493 *4 *5)) (-5 *1 (-962 *4 *5))))) -(-10 -7 (-15 -3012 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1536 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3474 ((-493 |#1| |#2|) (-970 |#2|))) (-15 -3713 ((-970 |#2|) (-493 |#1| |#2|))) (-15 -1424 ((-970 |#2|) (-253 |#1| |#2|))) (-15 -3915 ((-253 |#1| |#2|) (-970 |#2|)))) -((-3988 (((-656 |#2|) |#2| |#2|) 10)) (-2178 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-2898 (((-656 |#2|) |#2|) 11)) (-2030 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2579 ((|#1| |#2|) 38 (|has| |#1| (-860))))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3988 ((-656 |#2|) |#2| |#2|)) (-15 -2898 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2579 (|#1| |#2|)) (-15 -2178 ((-783) (-656 |#1|))) (-15 -2030 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1263 |#1|)) (T -963)) -((-2030 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-963 *5 *6)) (-4 *6 (-1263 *5)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-963 *4 *5)) (-4 *5 (-1263 *4)))) (-2579 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1263 *2)))) (-2898 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-963 *4 *3)) (-4 *3 (-1263 *4)))) (-3988 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-963 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -3988 ((-656 |#2|) |#2| |#2|)) (-15 -2898 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2579 (|#1| |#2|)) (-15 -2178 ((-783) (-656 |#1|))) (-15 -2030 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) -((-2422 (((-970 |#2|) (-1 |#2| |#1|) (-970 |#1|)) 19))) -(((-964 |#1| |#2|) (-10 -7 (-15 -2422 ((-970 |#2|) (-1 |#2| |#1|) (-970 |#1|)))) (-1069) (-1069)) (T -964)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-970 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-970 *6)) (-5 *1 (-964 *5 *6))))) -(-10 -7 (-15 -2422 ((-970 |#2|) (-1 |#2| |#1|) (-970 |#1|)))) -((-1420 (((-1260 |#1| (-970 |#2|)) (-970 |#2|) (-1283 |#1|)) 18))) -(((-965 |#1| |#2|) (-10 -7 (-15 -1420 ((-1260 |#1| (-970 |#2|)) (-970 |#2|) (-1283 |#1|)))) (-1196) (-1069)) (T -965)) -((-1420 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1069)) (-5 *2 (-1260 *5 (-970 *6))) (-5 *1 (-965 *5 *6)) (-5 *3 (-970 *6))))) -(-10 -7 (-15 -1420 ((-1260 |#1| (-970 |#2|)) (-970 |#2|) (-1283 |#1|)))) -((-4230 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-3575 (($ $) 203)) (-3163 (((-430 $) $) 195)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 141)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-3954 (($ $ $ |#4|) 95)) (-3222 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 131) (((-701 |#2|) (-701 $)) 121)) (-3557 (($ $) 210) (($ $ |#4|) 213)) (-3296 (((-656 $) $) 77)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 229) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 222)) (-1894 (((-656 $) $) 34)) (-1562 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#4|) 192)) (-2000 (((-3 (-656 $) "failed") $) 52)) (-2279 (((-3 (-656 $) "failed") $) 39)) (-4044 (((-3 (-2 (|:| |var| |#4|) (|:| -1495 (-783))) "failed") $) 57)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 134)) (-3705 (((-430 (-1192 $)) (-1192 $)) 147)) (-1988 (((-430 (-1192 $)) (-1192 $)) 145)) (-1450 (((-430 $) $) 165)) (-2143 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-1451 (($ $ |#4|) 97)) (-1554 (((-906 (-390)) $) 243) (((-906 (-576)) $) 236) (((-548) $) 251)) (-3430 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 184)) (-4269 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-1972 (((-3 $ "failed") $) 186)) (-1994 (((-112) $ $) 216))) -(((-966 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -1988 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3705 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3080 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3557 (|#1| |#1| |#4|)) (-15 -3430 (|#1| |#1| |#4|)) (-15 -1451 (|#1| |#1| |#4|)) (-15 -3954 (|#1| |#1| |#1| |#4|)) (-15 -3296 ((-656 |#1|) |#1|)) (-15 -4230 ((-783) |#1| (-656 |#4|))) (-15 -4230 ((-783) |#1|)) (-15 -4044 ((-3 (-2 (|:| |var| |#4|) (|:| -1495 (-783))) "failed") |#1|)) (-15 -2000 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2279 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1562 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1562 (|#1| |#1| |#4| (-783))) (-15 -3768 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1| |#4|)) (-15 -1894 ((-656 |#1|) |#1|)) (-15 -4269 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4269 (|#1| |#1| |#4| (-783))) (-15 -3222 ((-701 |#2|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#4| |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#4| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1562 (|#1| |#2| |#3|)) (-15 -4269 (|#2| |#1| |#3|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -1994 ((-112) |#1| |#1|))) (-967 |#2| |#3| |#4|) (-1069) (-805) (-861)) (T -966)) -NIL -(-10 -8 (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -1972 ((-3 |#1| "failed") |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -1988 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3705 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3080 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3557 (|#1| |#1| |#4|)) (-15 -3430 (|#1| |#1| |#4|)) (-15 -1451 (|#1| |#1| |#4|)) (-15 -3954 (|#1| |#1| |#1| |#4|)) (-15 -3296 ((-656 |#1|) |#1|)) (-15 -4230 ((-783) |#1| (-656 |#4|))) (-15 -4230 ((-783) |#1|)) (-15 -4044 ((-3 (-2 (|:| |var| |#4|) (|:| -1495 (-783))) "failed") |#1|)) (-15 -2000 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2279 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1562 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1562 (|#1| |#1| |#4| (-783))) (-15 -3768 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1| |#4|)) (-15 -1894 ((-656 |#1|) |#1|)) (-15 -4269 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4269 (|#1| |#1| |#4| (-783))) (-15 -3222 ((-701 |#2|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#4| |#1|)) (-15 -2143 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2143 (|#1| |#1| |#4| |#2|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1562 (|#1| |#2| |#3|)) (-15 -4269 (|#2| |#1| |#3|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -1994 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 |#3|) $) 113)) (-1420 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4070 (($ $) 91 (|has| |#1| (-568)))) (-2378 (((-112) $) 93 (|has| |#1| (-568)))) (-4230 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2559 (((-3 $ "failed") $ $) 20)) (-1946 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-927)))) (-3575 (($ $) 101 (|has| |#1| (-464)))) (-3163 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-927)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1058 (-576)))) (((-3 |#3| "failed") $) 143)) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1058 (-576)))) ((|#3| $) 144)) (-3954 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-3309 (($ $) 161)) (-3222 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3900 (((-3 $ "failed") $) 37)) (-3557 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-3296 (((-656 $) $) 112)) (-2443 (((-112) $) 99 (|has| |#1| (-927)))) (-3897 (($ $ |#1| |#2| $) 179)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 87 (-12 (|has| |#3| (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 86 (-12 (|has| |#3| (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-2287 (((-112) $) 35)) (-1757 (((-783) $) 176)) (-1571 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-1894 (((-656 $) $) 129)) (-3146 (((-112) $) 159)) (-1562 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#3|) 123)) (-3661 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3820 (($ (-1 |#2| |#2|) $) 178)) (-2422 (($ (-1 |#1| |#1|) $) 158)) (-2653 (((-3 |#3| "failed") $) 126)) (-2198 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-1698 (($ $) 156)) (-1709 ((|#1| $) 155)) (-3075 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2043 (((-1178) $) 10)) (-2000 (((-3 (-656 $) "failed") $) 117)) (-2279 (((-3 (-656 $) "failed") $) 118)) (-4044 (((-3 (-2 (|:| |var| |#3|) (|:| -1495 (-783))) "failed") $) 116)) (-3115 (((-1140) $) 11)) (-1677 (((-112) $) 173)) (-1685 ((|#1| $) 174)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3114 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-927)))) (-1450 (((-430 $) $) 102 (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1451 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-4106 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-1877 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-1554 (((-906 (-390)) $) 85 (-12 (|has| |#3| (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) 84 (-12 (|has| |#3| (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2310 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-1410 (((-656 |#1|) $) 175)) (-4269 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-1972 (((-3 $ "failed") $) 82 (-3794 (-2310 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) 32 T CONST)) (-4081 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-967 |#1| |#2| |#3|) (-141) (-1069) (-805) (-861)) (T -967)) -((-3557 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-1877 (*1 *2 *1 *3) (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-1877 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-4269 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *2 (-861)))) (-4269 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1894 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-967 *3 *4 *5)))) (-1420 (*1 *2 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1192 *1)) (-4 *1 (-967 *4 *5 *3)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1192 *3)))) (-2653 (*1 *2 *1) (|partial| -12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3661 (*1 *2 *1 *3) (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-3768 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-967 *4 *5 *3)))) (-1562 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *2 (-861)))) (-1562 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1571 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1069)) (-4 *1 (-967 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-861)))) (-1571 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)))) (-2279 (*1 *2 *1) (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-967 *3 *4 *5)))) (-2000 (*1 *2 *1) (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-967 *3 *4 *5)))) (-4044 (*1 *2 *1) (|partial| -12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -1495 (-783)))))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-3296 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-967 *3 *4 *5)))) (-3954 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1451 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-3557 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-3575 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3163 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-430 *1)) (-4 *1 (-967 *3 *4 *5))))) -(-13 (-916 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1058 |t#3|) (-388 |t#1|) (-10 -8 (-15 -1877 ((-783) $ |t#3|)) (-15 -1877 ((-656 (-783)) $ (-656 |t#3|))) (-15 -4269 ($ $ |t#3| (-783))) (-15 -4269 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1894 ((-656 $) $)) (-15 -1420 ((-1192 $) $ |t#3|)) (-15 -1420 ((-1192 |t#1|) $)) (-15 -2653 ((-3 |t#3| "failed") $)) (-15 -3661 ((-783) $ |t#3|)) (-15 -3661 ((-656 (-783)) $ (-656 |t#3|))) (-15 -3768 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |t#3|)) (-15 -1562 ($ $ |t#3| (-783))) (-15 -1562 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1571 ($ (-1192 |t#1|) |t#3|)) (-15 -1571 ($ (-1192 $) |t#3|)) (-15 -2279 ((-3 (-656 $) "failed") $)) (-15 -2000 ((-3 (-656 $) "failed") $)) (-15 -4044 ((-3 (-2 (|:| |var| |t#3|) (|:| -1495 (-783))) "failed") $)) (-15 -4230 ((-783) $)) (-15 -4230 ((-783) $ (-656 |t#3|))) (-15 -1582 ((-656 |t#3|) $)) (-15 -3296 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-906 (-576)))) (IF (|has| |t#3| (-626 (-906 (-576)))) (-6 (-626 (-906 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-906 (-390)))) (IF (|has| |t#3| (-626 (-906 (-390)))) (-6 (-626 (-906 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-900 (-576))) (IF (|has| |t#3| (-900 (-576))) (-6 (-900 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-900 (-390))) (IF (|has| |t#3| (-900 (-390))) (-6 (-900 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3954 ($ $ $ |t#3|)) (-15 -1451 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3430 ($ $ |t#3|)) (-15 -3557 ($ $)) (-15 -3557 ($ $ |t#3|)) (-15 -3163 ((-430 $) $)) (-15 -3575 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-906 (-390))) -12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#3| (-626 (-906 (-390))))) ((-626 (-906 (-576))) -12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#3| (-626 (-906 (-576))))) ((-300) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3794 (|has| |#1| (-927)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-910 $ |#3|) . T) ((-916 |#3|) . T) ((-918 |#3|) . T) ((-900 (-390)) -12 (|has| |#1| (-900 (-390))) (|has| |#3| (-900 (-390)))) ((-900 (-576)) -12 (|has| |#1| (-900 (-576))) (|has| |#3| (-900 (-576)))) ((-927) |has| |#1| (-927)) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1058 |#3|) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) |has| |#1| (-927))) -((-1582 (((-656 |#2|) |#5|) 40)) (-1420 (((-1192 |#5|) |#5| |#2| (-1192 |#5|)) 23) (((-419 (-1192 |#5|)) |#5| |#2|) 16)) (-1571 ((|#5| (-419 (-1192 |#5|)) |#2|) 30)) (-2653 (((-3 |#2| "failed") |#5|) 71)) (-2000 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-2192 (((-3 (-2 (|:| |val| |#5|) (|:| -1495 (-576))) "failed") |#5|) 53)) (-2279 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-4044 (((-3 (-2 (|:| |var| |#2|) (|:| -1495 (-576))) "failed") |#5|) 57))) -(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1582 ((-656 |#2|) |#5|)) (-15 -2653 ((-3 |#2| "failed") |#5|)) (-15 -1420 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -1571 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -1420 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -2279 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2000 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -4044 ((-3 (-2 (|:| |var| |#2|) (|:| -1495 (-576))) "failed") |#5|)) (-15 -2192 ((-3 (-2 (|:| |val| |#5|) (|:| -1495 (-576))) "failed") |#5|))) (-805) (-861) (-1069) (-967 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -4112 ($ |#4|)) (-15 -2686 (|#4| $)) (-15 -2697 (|#4| $))))) (T -968)) -((-2192 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1495 (-576)))) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) (-4044 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1495 (-576)))) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) (-2000 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) (-2279 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) (-1420 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))) (-4 *7 (-967 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1069)) (-5 *1 (-968 *5 *4 *6 *7 *3)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1069)) (-4 *2 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))) (-5 *1 (-968 *5 *4 *6 *7 *2)) (-4 *7 (-967 *6 *5 *4)))) (-1420 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1069)) (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-419 (-1192 *3))) (-5 *1 (-968 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) (-2653 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1069)) (-4 *6 (-967 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-968 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *6)) (-15 -2686 (*6 $)) (-15 -2697 (*6 $))))))) (-1582 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $)))))))) -(-10 -7 (-15 -1582 ((-656 |#2|) |#5|)) (-15 -2653 ((-3 |#2| "failed") |#5|)) (-15 -1420 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -1571 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -1420 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -2279 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2000 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -4044 ((-3 (-2 (|:| |var| |#2|) (|:| -1495 (-576))) "failed") |#5|)) (-15 -2192 ((-3 (-2 (|:| |val| |#5|) (|:| -1495 (-576))) "failed") |#5|))) -((-2422 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2422 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-861) (-1069) (-967 |#3| |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -969)) -((-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1069)) (-4 *6 (-805)) (-4 *2 (-13 (-1120) (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-969 *6 *7 *8 *5 *2)) (-4 *5 (-967 *8 *6 *7))))) -(-10 -7 (-15 -2422 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1196)) $) 16)) (-1420 (((-1192 $) $ (-1196)) 21) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1196))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-1196) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-1196) $) NIL)) (-3954 (($ $ $ (-1196)) NIL (|has| |#1| (-174)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1196)) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-543 (-1196)) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1196) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1196) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#1|) (-1196)) NIL) (($ (-1192 $) (-1196)) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1196)) NIL)) (-3661 (((-543 (-1196)) $) NIL) (((-783) $ (-1196)) NIL) (((-656 (-783)) $ (-656 (-1196))) NIL)) (-3820 (($ (-1 (-543 (-1196)) (-543 (-1196))) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2653 (((-3 (-1196) "failed") $) 19)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-1196)) (|:| -1495 (-783))) "failed") $) NIL)) (-2944 (($ $ (-1196)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1196) |#1|) NIL) (($ $ (-656 (-1196)) (-656 |#1|)) NIL) (($ $ (-1196) $) NIL) (($ $ (-656 (-1196)) (-656 $)) NIL)) (-1451 (($ $ (-1196)) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-1877 (((-543 (-1196)) $) NIL) (((-783) $ (-1196)) NIL) (((-656 (-783)) $ (-656 (-1196))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-1196) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-1196) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-1196) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1196)) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1196)) 27) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-970 |#1|) (-13 (-967 |#1| (-543 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1196))) |%noBranch|))) (-1069)) (T -970)) -((-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-970 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069))))) -(-13 (-967 |#1| (-543 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1196))) |%noBranch|))) -((-3657 (((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-4302 (((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-1930 (((-2 (|:| -1495 (-783)) (|:| -2861 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-1591 (((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) -(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3657 ((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -4302 ((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -1591 ((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -1930 ((-2 (|:| -1495 (-783)) (|:| -2861 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-861) (-568) (-967 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -4112 ($ |#4|)) (-15 -2686 (|#4| $)) (-15 -2697 (|#4| $))))) (T -971)) -((-1930 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *3 (-967 *7 *5 *6)) (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-971 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -4112 ($ *3)) (-15 -2686 (*3 $)) (-15 -2697 (*3 $))))))) (-1591 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-967 *7 *5 *6)) (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *3) (|:| |radicand| *3))) (-5 *1 (-971 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4112 ($ *8)) (-15 -2686 (*8 $)) (-15 -2697 (*8 $))))))) (-4302 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-967 *7 *5 *6)) (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *9) (|:| |radicand| *9))) (-5 *1 (-971 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -4112 ($ *8)) (-15 -2686 (*8 $)) (-15 -2697 (*8 $))))))) (-3657 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) (-4 *7 (-967 *3 *5 *6)) (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *8) (|:| |radicand| *8))) (-5 *1 (-971 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $)))))))) -(-10 -7 (-15 -3657 ((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -4302 ((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -1591 ((-2 (|:| -1495 (-783)) (|:| -2861 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -1930 ((-2 (|:| -1495 (-783)) (|:| -2861 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) -((-1952 (((-112) $ $) NIL)) (-4227 (($ (-1140)) 8)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 15) (((-1140) $) 12)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 11))) -(((-972) (-13 (-1120) (-625 (-1140)) (-10 -8 (-15 -4227 ($ (-1140)))))) (T -972)) -((-4227 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-972))))) -(-13 (-1120) (-625 (-1140)) (-10 -8 (-15 -4227 ($ (-1140))))) -((-3753 (((-1114 (-227)) $) 8)) (-3741 (((-1114 (-227)) $) 9)) (-3944 (((-656 (-656 (-961 (-227)))) $) 10)) (-4112 (((-875) $) 6))) -(((-973) (-141)) (T -973)) -((-3944 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-656 (-656 (-961 (-227))))))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1114 (-227))))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1114 (-227)))))) -(-13 (-625 (-875)) (-10 -8 (-15 -3944 ((-656 (-656 (-961 (-227)))) $)) (-15 -3741 ((-1114 (-227)) $)) (-15 -3753 ((-1114 (-227)) $)))) -(((-625 (-875)) . T)) -((-1963 (((-3 (-701 |#1|) "failed") |#2| (-939)) 18))) -(((-974 |#1| |#2|) (-10 -7 (-15 -1963 ((-3 (-701 |#1|) "failed") |#2| (-939)))) (-568) (-668 |#1|)) (T -974)) -((-1963 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-939)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-974 *5 *3)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -1963 ((-3 (-701 |#1|) "failed") |#2| (-939)))) -((-1925 (((-976 |#2|) (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|) 16)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|) 18)) (-2422 (((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)) 13))) -(((-975 |#1| |#2|) (-10 -7 (-15 -1925 ((-976 |#2|) (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|)) (-15 -2422 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)))) (-1237) (-1237)) (T -975)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-976 *6)) (-5 *1 (-975 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-975 *5 *2)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-976 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-976 *5)) (-5 *1 (-975 *6 *5))))) -(-10 -7 (-15 -1925 ((-976 |#2|) (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|)) (-15 -2422 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 16)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) |#1|) 15)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) 11 (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) 20 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1254 (-576))) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) 21)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 14)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1968 (((-783) $) 8 (|has| $ (-6 -4463))))) -(((-976 |#1|) (-19 |#1|) (-1237)) (T -976)) +((-2700 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) +(((-941 |#1| |#2|) (-10 -7 (-15 -2700 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1264 |#1|)) (T -941)) +((-2700 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) (-5 *1 (-941 *4 *2))))) +(-10 -7 (-15 -2700 (|#2| (-656 |#1|) (-656 |#1|)))) +((-4248 (((-1193 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) +(((-942 |#1| |#2|) (-10 -7 (-15 -4248 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4248 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) (-1197) (-374)) (T -942)) +((-4248 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) (-4248 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) (-4 *5 (-374)) (-5 *1 (-942 *4 *5))))) +(-10 -7 (-15 -4248 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4248 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) +((-1349 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 174)) (-1531 ((|#4| |#4|) 193)) (-2278 (((-656 (-419 (-971 |#1|))) (-656 (-1197))) 146)) (-3480 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-3258 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|)) 69)) (-2197 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-1390 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 186)) (-3239 (((-576) (-701 |#4|) (-940) (-1179)) 166) (((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179)) 164) (((-576) (-701 |#4|) (-1179)) 154) (((-576) (-701 |#4|) (-656 (-1197)) (-1179)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1179)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-1379 ((|#4| (-971 |#1|)) 80)) (-2729 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-3913 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-3545 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-2078 (((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-4318 (((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-3949 (((-112) (-656 (-971 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-2252 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-4383 (((-656 |#4|) |#4|) 57)) (-2900 (((-656 (-419 (-971 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-971 |#1|))) (-701 |#4|)) 66) (((-419 (-971 |#1|)) |#4|) 139)) (-4370 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576)) 112)) (-3342 (((-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-2142 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-1909 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3752 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) +(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -3239 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -1349 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1390 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -4370 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -2900 ((-419 (-971 |#1|)) |#4|)) (-15 -2900 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -2900 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -2278 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1379 (|#4| (-971 |#1|))) (-15 -2252 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3342 ((-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3258 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -1909 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3752 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -4383 ((-656 |#4|) |#4|)) (-15 -4318 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2078 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3545 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3913 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2729 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2142 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2197 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -3480 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1531 (|#4| |#4|)) (-15 -3949 ((-112) (-656 |#4|))) (-15 -3949 ((-112) (-656 (-971 |#1|))))) (-13 (-317) (-148)) (-13 (-861) (-626 (-1197))) (-805) (-968 |#1| |#3| |#2|)) (T -943)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4)))) (-3480 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-971 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) (|:| -3454 (-656 (-1288 (-419 (-971 *9))))))))) (-5 *1 (-943 *9 *10 *11 *12)))) (-2197 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3913 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-4383 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3752 (-701 (-419 (-971 *4)))) (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -3454 (-656 (-1288 (-419 (-971 *4))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3258 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -3454 (-656 (-1288 (-419 (-971 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783)))) (-2252 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-4370 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-971 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) (|:| -3454 (-656 (-1288 (-419 (-971 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -3454 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-3239 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-3239 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -3454 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -3454 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -3454 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(-10 -7 (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -3239 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -3239 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -3239 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -1349 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1390 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -4370 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -2900 ((-419 (-971 |#1|)) |#4|)) (-15 -2900 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -2900 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -2278 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1379 (|#4| (-971 |#1|))) (-15 -2252 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3342 ((-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3258 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -1909 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3752 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -4383 ((-656 |#4|) |#4|)) (-15 -4318 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2078 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3545 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3913 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2729 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2142 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2197 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -3480 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -3454 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1531 (|#4| |#4|)) (-15 -3949 ((-112) (-656 |#4|))) (-15 -3949 ((-112) (-656 (-971 |#1|))))) +((-2949 (((-946) |#1| (-1197)) 17) (((-946) |#1| (-1197) (-1115 (-227))) 21)) (-3330 (((-946) |#1| |#1| (-1197) (-1115 (-227))) 19) (((-946) |#1| (-1197) (-1115 (-227))) 15))) +(((-944 |#1|) (-10 -7 (-15 -3330 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3330 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -2949 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2949 ((-946) |#1| (-1197)))) (-626 (-548))) (T -944)) +((-2949 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-3330 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-3330 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3330 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3330 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -2949 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2949 ((-946) |#1| (-1197)))) +((-2202 (($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 121)) (-4316 (((-1115 (-227)) $) 64)) (-4305 (((-1115 (-227)) $) 63)) (-4293 (((-1115 (-227)) $) 62)) (-2151 (((-656 (-656 (-227))) $) 69)) (-2305 (((-1115 (-227)) $) 65)) (-3748 (((-576) (-576)) 57)) (-2649 (((-576) (-576)) 52)) (-3424 (((-576) (-576)) 55)) (-2259 (((-112) (-112)) 59)) (-4125 (((-576)) 56)) (-3301 (($ $ (-1115 (-227))) 124) (($ $) 125)) (-1677 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 131) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 132)) (-3330 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 135) (($ $ (-1115 (-227))) 127)) (-3765 (((-576)) 60)) (-2224 (((-576)) 50)) (-1398 (((-576)) 53)) (-3918 (((-656 (-656 (-962 (-227)))) $) 151)) (-3466 (((-112) (-112)) 61)) (-3569 (((-876) $) 149)) (-3058 (((-112)) 58))) +(((-945) (-13 (-995) (-10 -8 (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ $ (-1115 (-227)))) (-15 -2202 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3301 ($ $ (-1115 (-227)))) (-15 -3301 ($ $)) (-15 -2305 ((-1115 (-227)) $)) (-15 -2151 ((-656 (-656 (-227))) $)) (-15 -2224 ((-576))) (-15 -2649 ((-576) (-576))) (-15 -1398 ((-576))) (-15 -3424 ((-576) (-576))) (-15 -4125 ((-576))) (-15 -3748 ((-576) (-576))) (-15 -3058 ((-112))) (-15 -2259 ((-112) (-112))) (-15 -3765 ((-576))) (-15 -3466 ((-112) (-112)))))) (T -945)) +((-1677 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-1677 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3330 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3330 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-2202 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-3301 (*1 *1 *1) (-5 *1 (-945))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945)))) (-2224 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-1398 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-4125 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3058 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-3765 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(-13 (-995) (-10 -8 (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ $ (-1115 (-227)))) (-15 -2202 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3301 ($ $ (-1115 (-227)))) (-15 -3301 ($ $)) (-15 -2305 ((-1115 (-227)) $)) (-15 -2151 ((-656 (-656 (-227))) $)) (-15 -2224 ((-576))) (-15 -2649 ((-576) (-576))) (-15 -1398 ((-576))) (-15 -3424 ((-576) (-576))) (-15 -4125 ((-576))) (-15 -3748 ((-576) (-576))) (-15 -3058 ((-112))) (-15 -2259 ((-112) (-112))) (-15 -3765 ((-576))) (-15 -3466 ((-112) (-112))))) +((-2202 (($ $ (-1115 (-227))) 122) (($ $ (-1115 (-227)) (-1115 (-227))) 123)) (-4305 (((-1115 (-227)) $) 73)) (-4293 (((-1115 (-227)) $) 72)) (-2305 (((-1115 (-227)) $) 74)) (-4426 (((-576) (-576)) 66)) (-4150 (((-576) (-576)) 61)) (-3958 (((-576) (-576)) 64)) (-2120 (((-112) (-112)) 68)) (-2619 (((-576)) 65)) (-3301 (($ $ (-1115 (-227))) 126) (($ $) 127)) (-1677 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 141) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 142)) (-2949 (($ (-1 (-227) (-227)) (-1115 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3330 (($ (-1 (-227) (-227)) (-1115 (-227))) 137) (($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1115 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 140) (($ $ (-1115 (-227))) 128)) (-3531 (((-112) $) 69)) (-1628 (((-576)) 70)) (-1774 (((-576)) 59)) (-3404 (((-576)) 62)) (-3918 (((-656 (-656 (-962 (-227)))) $) 35)) (-2007 (((-112) (-112)) 71)) (-3569 (((-876) $) 167)) (-1623 (((-112)) 67))) +(((-946) (-13 (-974) (-10 -8 (-15 -3330 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -3330 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2949 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2949 ($ (-1 (-227) (-227)))) (-15 -3330 ($ $ (-1115 (-227)))) (-15 -3531 ((-112) $)) (-15 -2202 ($ $ (-1115 (-227)))) (-15 -2202 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -3301 ($ $ (-1115 (-227)))) (-15 -3301 ($ $)) (-15 -2305 ((-1115 (-227)) $)) (-15 -1774 ((-576))) (-15 -4150 ((-576) (-576))) (-15 -3404 ((-576))) (-15 -3958 ((-576) (-576))) (-15 -2619 ((-576))) (-15 -4426 ((-576) (-576))) (-15 -1623 ((-112))) (-15 -2120 ((-112) (-112))) (-15 -1628 ((-576))) (-15 -2007 ((-112) (-112)))))) (T -946)) +((-3330 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3330 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3330 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3330 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3330 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3330 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-1677 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-1677 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2949 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-2202 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3301 (*1 *1 *1) (-5 *1 (-946))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-1774 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3404 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2619 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4426 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-1623 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-1628 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2007 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(-13 (-974) (-10 -8 (-15 -3330 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -3330 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3330 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -1677 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2949 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2949 ($ (-1 (-227) (-227)))) (-15 -3330 ($ $ (-1115 (-227)))) (-15 -3531 ((-112) $)) (-15 -2202 ($ $ (-1115 (-227)))) (-15 -2202 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -3301 ($ $ (-1115 (-227)))) (-15 -3301 ($ $)) (-15 -2305 ((-1115 (-227)) $)) (-15 -1774 ((-576))) (-15 -4150 ((-576) (-576))) (-15 -3404 ((-576))) (-15 -3958 ((-576) (-576))) (-15 -2619 ((-576))) (-15 -4426 ((-576) (-576))) (-15 -1623 ((-112))) (-15 -2120 ((-112) (-112))) (-15 -1628 ((-576))) (-15 -2007 ((-112) (-112))))) +((-2298 (((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))) 34))) +(((-947) (-10 -7 (-15 -2298 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227)))))))) (T -947)) +((-2298 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) +(-10 -7 (-15 -2298 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))))) +((-2156 ((|#2| |#2|) 28)) (-2838 ((|#2| |#2|) 29)) (-1480 ((|#2| |#2|) 27)) (-2710 ((|#2| |#2| (-518)) 26))) +(((-948 |#1| |#2|) (-10 -7 (-15 -2710 (|#2| |#2| (-518))) (-15 -1480 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -2838 (|#2| |#2|))) (-1121) (-442 |#1|)) (T -948)) +((-2838 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2710 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2710 (|#2| |#2| (-518))) (-15 -1480 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -2838 (|#2| |#2|))) +((-2156 (((-326 (-576)) (-1197)) 16)) (-2838 (((-326 (-576)) (-1197)) 14)) (-1480 (((-326 (-576)) (-1197)) 12)) (-2710 (((-326 (-576)) (-1197) (-518)) 19))) +(((-949) (-10 -7 (-15 -2710 ((-326 (-576)) (-1197) (-518))) (-15 -1480 ((-326 (-576)) (-1197))) (-15 -2156 ((-326 (-576)) (-1197))) (-15 -2838 ((-326 (-576)) (-1197))))) (T -949)) +((-2838 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) +(-10 -7 (-15 -2710 ((-326 (-576)) (-1197) (-518))) (-15 -1480 ((-326 (-576)) (-1197))) (-15 -2156 ((-326 (-576)) (-1197))) (-15 -2838 ((-326 (-576)) (-1197)))) +((-2399 (((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)) 25)) (-4102 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -4102 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2399 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-901 |#1|) (-13 (-1121) (-1059 |#2|))) (T -950)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) (-5 *1 (-950 *5 *3 *6)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-950 *4 *5 *6))))) +(-10 -7 (-15 -4102 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2399 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) +((-2399 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 30))) +(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|)) (-13 (-442 |#2|) (-626 (-907 |#1|)) (-901 |#1|) (-1059 (-624 $)))) (T -951)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) (-5 *1 (-951 *5 *6 *3))))) +(-10 -7 (-15 -2399 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) +((-2399 (((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)) 13))) +(((-952 |#1|) (-10 -7 (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) (-557)) (T -952)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) (-5 *1 (-952 *3))))) +(-10 -7 (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) +((-2399 (((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)) 57))) +(((-953 |#1| |#2|) (-10 -7 (-15 -2399 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) (-1121) (-13 (-1121) (-1059 (-624 $)) (-626 (-907 |#1|)) (-901 |#1|))) (T -953)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6))))) +(-10 -7 (-15 -2399 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) +((-2399 (((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)) 17))) +(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) (-1121) (-901 |#1|) (-678 |#2|)) (T -954)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3))))) +(-10 -7 (-15 -2399 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) +((-2399 (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|)) 17 (|has| |#3| (-901 |#1|))) (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|))) 16))) +(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2399 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -2399 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) (-1121) (-805) (-861) (-13 (-1070) (-901 |#1|)) (-13 (-968 |#4| |#2| |#3|) (-626 (-907 |#1|)))) (T -955)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) (-2399 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) (-5 *1 (-955 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2399 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -2399 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) +((-2929 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -2929 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2929 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1121) (-442 |#1|) (-1238)) (T -956)) +((-2929 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2929 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2929 (|#2| |#2| (-656 (-1 (-112) |#3|))))) +((-2929 (((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1197) (-1 (-112) |#1|)) 15))) +(((-957 |#1|) (-10 -7 (-15 -2929 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -2929 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) (-1238)) (T -957)) +((-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5))))) +(-10 -7 (-15 -2929 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -2929 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) +((-2399 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 25))) +(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|) (-626 (-907 |#1|))) (-1013 |#2|)) (T -958)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) (-5 *1 (-958 *5 *6 *3))))) +(-10 -7 (-15 -2399 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) +((-2399 (((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))) 18))) +(((-959 |#1|) (-10 -7 (-15 -2399 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) (-1121)) (T -959)) +((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *1 (-959 *5))))) +(-10 -7 (-15 -2399 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) +((-1721 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 34)) (-2399 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 33))) +(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -1721 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) (-1121) (-1070) (-13 (-1070) (-626 (-907 |#1|)) (-1059 |#2|))) (T -960)) +((-1721 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8)))) (-2399 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) (-5 *1 (-960 *7 *8 *9))))) +(-10 -7 (-15 -2399 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -1721 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) +((-2998 (((-1193 (-419 (-576))) (-576)) 79)) (-2928 (((-1193 (-576)) (-576)) 82)) (-2918 (((-1193 (-576)) (-576)) 76)) (-1698 (((-576) (-1193 (-576))) 72)) (-2887 (((-1193 (-419 (-576))) (-576)) 65)) (-1760 (((-1193 (-576)) (-576)) 49)) (-3607 (((-1193 (-576)) (-576)) 84)) (-3724 (((-1193 (-576)) (-576)) 83)) (-1911 (((-1193 (-419 (-576))) (-576)) 67))) +(((-961) (-10 -7 (-15 -1911 ((-1193 (-419 (-576))) (-576))) (-15 -3724 ((-1193 (-576)) (-576))) (-15 -3607 ((-1193 (-576)) (-576))) (-15 -1760 ((-1193 (-576)) (-576))) (-15 -2887 ((-1193 (-419 (-576))) (-576))) (-15 -1698 ((-576) (-1193 (-576)))) (-15 -2918 ((-1193 (-576)) (-576))) (-15 -2928 ((-1193 (-576)) (-576))) (-15 -2998 ((-1193 (-419 (-576))) (-576))))) (T -961)) +((-2998 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2928 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2918 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961)))) (-2887 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-1760 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3607 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3724 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-1911 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(-10 -7 (-15 -1911 ((-1193 (-419 (-576))) (-576))) (-15 -3724 ((-1193 (-576)) (-576))) (-15 -3607 ((-1193 (-576)) (-576))) (-15 -1760 ((-1193 (-576)) (-576))) (-15 -2887 ((-1193 (-419 (-576))) (-576))) (-15 -1698 ((-576) (-1193 (-576)))) (-15 -2918 ((-1193 (-576)) (-576))) (-15 -2928 ((-1193 (-576)) (-576))) (-15 -2998 ((-1193 (-419 (-576))) (-576)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783)) NIL (|has| |#1| (-23)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3042 (($ (-656 |#1|)) 9)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2353 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-3557 (((-112) $ (-783)) NIL)) (-2434 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3169 (($ $ (-656 |#1|)) 25)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1255 (-576))) NIL)) (-1984 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-1972 (((-940) $) 13)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1849 (($ $ $) 23)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-3581 (($ (-656 |#1|)) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3029 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3502 (((-783) $) 11 (|has| $ (-6 -4464))))) +(((-962 |#1|) (-1001 |#1|) (-1070)) (T -962)) +NIL +(-1001 |#1|) +((-1808 (((-493 |#1| |#2|) (-971 |#2|)) 22)) (-3618 (((-253 |#1| |#2|) (-971 |#2|)) 35)) (-2212 (((-971 |#2|) (-493 |#1| |#2|)) 27)) (-3361 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-2186 (((-971 |#2|) (-253 |#1| |#2|)) 32)) (-2827 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) +(((-963 |#1| |#2|) (-10 -7 (-15 -2827 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3361 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1808 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -2212 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -2186 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -3618 ((-253 |#1| |#2|) (-971 |#2|)))) (-656 (-1197)) (-1070)) (T -963)) +((-3618 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) +(-10 -7 (-15 -2827 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3361 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1808 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -2212 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -2186 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -3618 ((-253 |#1| |#2|) (-971 |#2|)))) +((-3033 (((-656 |#2|) |#2| |#2|) 10)) (-3413 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-3092 (((-656 |#2|) |#2|) 11)) (-2457 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-3038 ((|#1| |#2|) 38 (|has| |#1| (-860))))) +(((-964 |#1| |#2|) (-10 -7 (-15 -3033 ((-656 |#2|) |#2| |#2|)) (-15 -3092 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -3038 (|#1| |#2|)) (-15 -3413 ((-783) (-656 |#1|))) (-15 -2457 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1264 |#1|)) (T -964)) +((-2457 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4)))) (-3038 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1264 *2)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4)))) (-3033 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3033 ((-656 |#2|) |#2| |#2|)) (-15 -3092 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -3038 (|#1| |#2|)) (-15 -3413 ((-783) (-656 |#1|))) (-15 -2457 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) +((-4116 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 19))) +(((-965 |#1| |#2|) (-10 -7 (-15 -4116 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1070) (-1070)) (T -965)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-971 *6)) (-5 *1 (-965 *5 *6))))) +(-10 -7 (-15 -4116 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) +((-1799 (((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)) 18))) +(((-966 |#1| |#2|) (-10 -7 (-15 -1799 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) (-1197) (-1070)) (T -966)) +((-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-5 *2 (-1261 *5 (-971 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-971 *6))))) +(-10 -7 (-15 -1799 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) +((-3591 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-3420 (($ $) 203)) (-1770 (((-430 $) $) 195)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 141)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-4004 (($ $ $ |#4|) 95)) (-4344 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 131) (((-701 |#2|) (-701 $)) 121)) (-1371 (($ $) 210) (($ $ |#4|) 213)) (-2101 (((-656 $) $) 77)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 229) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 222)) (-3773 (((-656 $) $) 34)) (-1945 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#4|) 192)) (-2164 (((-3 (-656 $) "failed") $) 52)) (-3163 (((-3 (-656 $) "failed") $) 39)) (-2292 (((-3 (-2 (|:| |var| |#4|) (|:| -4210 (-783))) "failed") $) 57)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 134)) (-2118 (((-430 (-1193 $)) (-1193 $)) 147)) (-2082 (((-430 (-1193 $)) (-1193 $)) 145)) (-1828 (((-430 $) $) 165)) (-3283 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-2455 (($ $ |#4|) 97)) (-4171 (((-907 (-390)) $) 243) (((-907 (-576)) $) 236) (((-548) $) 251)) (-1457 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 184)) (-3998 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-3230 (((-3 $ "failed") $) 186)) (-2113 (((-112) $ $) 216))) +(((-967 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2082 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2118 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2254 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -1371 (|#1| |#1| |#4|)) (-15 -1457 (|#1| |#1| |#4|)) (-15 -2455 (|#1| |#1| |#4|)) (-15 -4004 (|#1| |#1| |#1| |#4|)) (-15 -2101 ((-656 |#1|) |#1|)) (-15 -3591 ((-783) |#1| (-656 |#4|))) (-15 -3591 ((-783) |#1|)) (-15 -2292 ((-3 (-2 (|:| |var| |#4|) (|:| -4210 (-783))) "failed") |#1|)) (-15 -2164 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3163 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1945 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1945 (|#1| |#1| |#4| (-783))) (-15 -1488 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1| |#4|)) (-15 -3773 ((-656 |#1|) |#1|)) (-15 -3998 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3998 (|#1| |#1| |#4| (-783))) (-15 -4344 ((-701 |#2|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#4| |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#4| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3998 (|#2| |#1| |#3|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -2113 ((-112) |#1| |#1|))) (-968 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -967)) +NIL +(-10 -8 (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2082 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2118 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2254 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -1371 (|#1| |#1| |#4|)) (-15 -1457 (|#1| |#1| |#4|)) (-15 -2455 (|#1| |#1| |#4|)) (-15 -4004 (|#1| |#1| |#1| |#4|)) (-15 -2101 ((-656 |#1|) |#1|)) (-15 -3591 ((-783) |#1| (-656 |#4|))) (-15 -3591 ((-783) |#1|)) (-15 -2292 ((-3 (-2 (|:| |var| |#4|) (|:| -4210 (-783))) "failed") |#1|)) (-15 -2164 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3163 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1945 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1945 (|#1| |#1| |#4| (-783))) (-15 -1488 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1| |#4|)) (-15 -3773 ((-656 |#1|) |#1|)) (-15 -3998 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3998 (|#1| |#1| |#4| (-783))) (-15 -4344 ((-701 |#2|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#4| |#1|)) (-15 -3283 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3283 (|#1| |#1| |#4| |#2|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3998 (|#2| |#1| |#3|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -2113 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 |#3|) $) 113)) (-1799 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2544 (($ $) 91 (|has| |#1| (-568)))) (-1574 (((-112) $) 93 (|has| |#1| (-568)))) (-3591 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2780 (((-3 $ "failed") $ $) 20)) (-2971 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3420 (($ $) 101 (|has| |#1| (-464)))) (-1770 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143)) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144)) (-4004 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2112 (($ $) 161)) (-4344 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3451 (((-3 $ "failed") $) 37)) (-1371 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2101 (((-656 $) $) 112)) (-4169 (((-112) $) 99 (|has| |#1| (-928)))) (-3415 (($ $ |#1| |#2| $) 179)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3215 (((-112) $) 35)) (-1675 (((-783) $) 176)) (-1955 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-3773 (((-656 $) $) 129)) (-1606 (((-112) $) 159)) (-1945 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#3|) 123)) (-2987 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-1938 (($ (-1 |#2| |#2|) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-2512 (((-3 |#3| "failed") $) 126)) (-3626 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2079 (($ $) 156)) (-2089 ((|#1| $) 155)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1413 (((-1179) $) 10)) (-2164 (((-3 (-656 $) "failed") $) 117)) (-3163 (((-3 (-656 $) "failed") $) 118)) (-2292 (((-3 (-2 (|:| |var| |#3|) (|:| -4210 (-783))) "failed") $) 116)) (-1450 (((-1141) $) 11)) (-2058 (((-112) $) 173)) (-2068 ((|#1| $) 174)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-2455 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2773 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-3600 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2673 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2060 (((-656 |#1|) $) 175)) (-3998 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3230 (((-3 $ "failed") $) 82 (-2758 (-2673 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) 32 T CONST)) (-2655 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-968 |#1| |#2| |#3|) (-141) (-1070) (-805) (-861)) (T -968)) +((-1371 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3600 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-3998 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-3998 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1799 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *3)))) (-2512 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2987 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-2987 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-1488 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-968 *4 *5 *3)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *4)) (-4 *4 (-1070)) (-4 *1 (-968 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-861)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)))) (-3163 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-2164 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-2292 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -4210 (-783)))))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3591 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-2101 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-4004 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1457 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-1770 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5))))) +(-13 (-917 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1059 |t#3|) (-388 |t#1|) (-10 -8 (-15 -3600 ((-783) $ |t#3|)) (-15 -3600 ((-656 (-783)) $ (-656 |t#3|))) (-15 -3998 ($ $ |t#3| (-783))) (-15 -3998 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -3773 ((-656 $) $)) (-15 -1799 ((-1193 $) $ |t#3|)) (-15 -1799 ((-1193 |t#1|) $)) (-15 -2512 ((-3 |t#3| "failed") $)) (-15 -2987 ((-783) $ |t#3|)) (-15 -2987 ((-656 (-783)) $ (-656 |t#3|))) (-15 -1488 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |t#3|)) (-15 -1945 ($ $ |t#3| (-783))) (-15 -1945 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1955 ($ (-1193 |t#1|) |t#3|)) (-15 -1955 ($ (-1193 $) |t#3|)) (-15 -3163 ((-3 (-656 $) "failed") $)) (-15 -2164 ((-3 (-656 $) "failed") $)) (-15 -2292 ((-3 (-2 (|:| |var| |t#3|) (|:| -4210 (-783))) "failed") $)) (-15 -3591 ((-783) $)) (-15 -3591 ((-783) $ (-656 |t#3|))) (-15 -1966 ((-656 |t#3|) $)) (-15 -2101 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-576)))) (IF (|has| |t#3| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (IF (|has| |t#3| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-576))) (IF (|has| |t#3| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (IF (|has| |t#3| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4004 ($ $ $ |t#3|)) (-15 -2455 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -1457 ($ $ |t#3|)) (-15 -1371 ($ $)) (-15 -1371 ($ $ |t#3|)) (-15 -1770 ((-430 $) $)) (-15 -3420 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-300) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2758 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-1966 (((-656 |#2|) |#5|) 40)) (-1799 (((-1193 |#5|) |#5| |#2| (-1193 |#5|)) 23) (((-419 (-1193 |#5|)) |#5| |#2|) 16)) (-1955 ((|#5| (-419 (-1193 |#5|)) |#2|) 30)) (-2512 (((-3 |#2| "failed") |#5|) 71)) (-2164 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-3572 (((-3 (-2 (|:| |val| |#5|) (|:| -4210 (-576))) "failed") |#5|) 53)) (-3163 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-2292 (((-3 (-2 (|:| |var| |#2|) (|:| -4210 (-576))) "failed") |#5|) 57))) +(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1966 ((-656 |#2|) |#5|)) (-15 -2512 ((-3 |#2| "failed") |#5|)) (-15 -1799 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1955 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1799 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -3163 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2164 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2292 ((-3 (-2 (|:| |var| |#2|) (|:| -4210 (-576))) "failed") |#5|)) (-15 -3572 ((-3 (-2 (|:| |val| |#5|) (|:| -4210 (-576))) "failed") |#5|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3569 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -969)) +((-3572 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4210 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-2292 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4210 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-2164 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-3163 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-1799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 *2))) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *2 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) (-1799 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1193 *3))) (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-2512 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *6)) (-15 -1570 (*6 $)) (-15 -1581 (*6 $))))))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(-10 -7 (-15 -1966 ((-656 |#2|) |#5|)) (-15 -2512 ((-3 |#2| "failed") |#5|)) (-15 -1799 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1955 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1799 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -3163 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2164 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2292 ((-3 (-2 (|:| |var| |#2|) (|:| -4210 (-576))) "failed") |#5|)) (-15 -3572 ((-3 (-2 (|:| |val| |#5|) (|:| -4210 (-576))) "failed") |#5|))) +((-4116 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4116 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -970)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *6 (-805)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7))))) +(-10 -7 (-15 -4116 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1197)) $) 16)) (-1799 (((-1193 $) $ (-1197)) 21) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1197))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1197) $) NIL)) (-4004 (($ $ $ (-1197)) NIL (|has| |#1| (-174)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-543 (-1197)) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1197) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1197) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) (-1197)) NIL) (($ (-1193 $) (-1197)) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1197)) NIL)) (-2987 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-1938 (($ (-1 (-543 (-1197)) (-543 (-1197))) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2512 (((-3 (-1197) "failed") $) 19)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-1197)) (|:| -4210 (-783))) "failed") $) NIL)) (-3441 (($ $ (-1197)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1197) |#1|) NIL) (($ $ (-656 (-1197)) (-656 |#1|)) NIL) (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL)) (-2455 (($ $ (-1197)) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-3600 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1197) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1197)) 27) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-971 |#1|) (-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1197))) |%noBranch|))) (-1070)) (T -971)) +((-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) +(-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1197))) |%noBranch|))) +((-2933 (((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-3053 (((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-2791 (((-2 (|:| -4210 (-783)) (|:| -1714 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-2580 (((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) +(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2933 ((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -3053 ((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -2580 ((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -2791 ((-2 (|:| -4210 (-783)) (|:| -1714 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3569 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -972)) +((-2791 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *3 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3569 ($ *3)) (-15 -1570 (*3 $)) (-15 -1581 (*3 $))))))) (-2580 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *3) (|:| |radicand| *3))) (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $))))))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *9) (|:| |radicand| *9))) (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $))))))) (-2933 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) (-4 *7 (-968 *3 *5 *6)) (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *8) (|:| |radicand| *8))) (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(-10 -7 (-15 -2933 ((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -3053 ((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -2580 ((-2 (|:| -4210 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -2791 ((-2 (|:| -4210 (-783)) (|:| -1714 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) +((-3488 (((-112) $ $) NIL)) (-2714 (($ (-1141)) 8)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (((-1141) $) 12)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11))) +(((-973) (-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -2714 ($ (-1141)))))) (T -973)) +((-2714 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) +(-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -2714 ($ (-1141))))) +((-4305 (((-1115 (-227)) $) 8)) (-4293 (((-1115 (-227)) $) 9)) (-3918 (((-656 (-656 (-962 (-227)))) $) 10)) (-3569 (((-876) $) 6))) +(((-974) (-141)) (T -974)) +((-3918 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227)))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3918 ((-656 (-656 (-962 (-227)))) $)) (-15 -4293 ((-1115 (-227)) $)) (-15 -4305 ((-1115 (-227)) $)))) +(((-625 (-876)) . T)) +((-3156 (((-3 (-701 |#1|) "failed") |#2| (-940)) 18))) +(((-975 |#1| |#2|) (-10 -7 (-15 -3156 ((-3 (-701 |#1|) "failed") |#2| (-940)))) (-568) (-668 |#1|)) (T -975)) +((-3156 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) +(-10 -7 (-15 -3156 ((-3 (-701 |#1|) "failed") |#2| (-940)))) +((-2727 (((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 16)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 18)) (-4116 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 13))) +(((-976 |#1| |#2|) (-10 -7 (-15 -2727 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4116 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) (-1238) (-1238)) (T -976)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-976 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-976 *5 *2)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5))))) +(-10 -7 (-15 -2727 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4116 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 16)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 15)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) 11 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) 20 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1255 (-576))) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 21)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 14)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 8 (|has| $ (-6 -4464))))) +(((-977 |#1|) (-19 |#1|) (-1238)) (T -977)) NIL (-19 |#1|) -((-3681 (($ $ (-1112 $)) 7) (($ $ (-1196)) 6))) -(((-977) (-141)) (T -977)) -((-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-977)))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-1196))))) -(-13 (-10 -8 (-15 -3681 ($ $ (-1196))) (-15 -3681 ($ $ (-1112 $))))) -((-3933 (((-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-970 |#1|)) (-656 (-1196)) (-1196)) 26) (((-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-970 |#1|)) (-656 (-1196))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-970 |#1|) (-1196) (-970 |#1|) (-1196)) 49))) -(((-978 |#1|) (-10 -7 (-15 -3933 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-970 |#1|) (-1196) (-970 |#1|) (-1196))) (-15 -3933 ((-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3933 ((-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-970 |#1|)) (-656 (-1196)) (-1196)))) (-13 (-374) (-148))) (T -978)) -((-3933 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-970 *6))) (-5 *4 (-656 (-1196))) (-5 *5 (-1196)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 *6))) (|:| |prim| (-1192 *6)))) (-5 *1 (-978 *6)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-978 *5)))) (-3933 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-970 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 *5)))) (-5 *1 (-978 *5))))) -(-10 -7 (-15 -3933 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-970 |#1|) (-1196) (-970 |#1|) (-1196))) (-15 -3933 ((-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-970 |#1|)) (-656 (-1196)))) (-15 -3933 ((-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-970 |#1|)) (-656 (-1196)) (-1196)))) -((-3624 (((-656 |#1|) |#1| |#1|) 47)) (-2443 (((-112) |#1|) 44)) (-3186 ((|#1| |#1|) 79)) (-1981 ((|#1| |#1|) 78))) -(((-979 |#1|) (-10 -7 (-15 -2443 ((-112) |#1|)) (-15 -1981 (|#1| |#1|)) (-15 -3186 (|#1| |#1|)) (-15 -3624 ((-656 |#1|) |#1| |#1|))) (-557)) (T -979)) -((-3624 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-979 *3)) (-4 *3 (-557)))) (-3186 (*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-557)))) (-1981 (*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-557)))) (-2443 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -2443 ((-112) |#1|)) (-15 -1981 (|#1| |#1|)) (-15 -3186 (|#1| |#1|)) (-15 -3624 ((-656 |#1|) |#1| |#1|))) -((-3249 (((-1292) (-875)) 9))) -(((-980) (-10 -7 (-15 -3249 ((-1292) (-875))))) (T -980)) -((-3249 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-980))))) -(-10 -7 (-15 -3249 ((-1292) (-875)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-4070 (($ $) 79 (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3309 (($ $) 31)) (-3900 (((-3 $ "failed") $) 42)) (-3557 (($ $) NIL (|has| |#1| (-464)))) (-3897 (($ $ |#1| |#2| $) 62)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) 17)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| |#2|) NIL)) (-3661 ((|#2| $) 24)) (-3820 (($ (-1 |#2| |#2|) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1698 (($ $) 28)) (-1709 ((|#1| $) 26)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) 51)) (-1685 ((|#1| $) NIL)) (-4438 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-1943 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-1877 ((|#2| $) 22)) (-3430 ((|#1| $) NIL (|has| |#1| (-464)))) (-4112 (((-875) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ |#2|) 37)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) 15 T CONST)) (-4081 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) 84 (|has| |#1| (-568)))) (-4314 (($) 27 T CONST)) (-4320 (($) 12 T CONST)) (-3938 (((-112) $ $) 83)) (-4046 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) 69) (($ $ (-783)) 67)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-981 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -4438 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|))) (-1069) (-804)) (T -981)) -((-4438 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-981 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *2 (-804))))) -(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -4438 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2390 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-2559 (((-3 $ "failed") $ $) 52 (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2199 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2628 ((|#2| $) 22)) (-2880 ((|#1| $) 21)) (-4331 (($) NIL (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-3900 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-4369 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2287 (((-112) $) NIL (-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2905 (($ $ $) NIL (-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-1654 (($ $ $) NIL (-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3556 (($ |#1| |#2|) 20)) (-4375 (((-939) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2409 (($ (-939)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3115 (((-1140) $) NIL)) (-2633 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2362 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4112 (((-875) $) 14)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 42 (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-4320 (($) 25 (-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3993 (((-112) $ $) NIL (-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3974 (((-112) $ $) NIL (-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3938 (((-112) $ $) 19)) (-3983 (((-112) $ $) NIL (-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3962 (((-112) $ $) 69 (-3794 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-4046 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4036 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4026 (($ $ $) 45 (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-939)) NIL (-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-939) $) NIL (-3794 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-3794 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) -(((-982 |#1| |#2|) (-13 (-1120) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -3556 ($ |#1| |#2|)) (-15 -2880 (|#1| $)) (-15 -2628 (|#2| $)))) (-1120) (-1120)) (T -982)) -((-3556 (*1 *1 *2 *3) (-12 (-5 *1 (-982 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-2880 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1120)))) (-2628 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-982 *3 *2)) (-4 *3 (-1120))))) -(-13 (-1120) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -3556 ($ |#1| |#2|)) (-15 -2880 (|#1| $)) (-15 -2628 (|#2| $)))) -((-1688 (((-1124) $) 12)) (-3969 (($ (-518) (-1124)) 14)) (-4148 (((-518) $) 9)) (-4112 (((-875) $) 24))) -(((-983) (-13 (-625 (-875)) (-10 -8 (-15 -4148 ((-518) $)) (-15 -1688 ((-1124) $)) (-15 -3969 ($ (-518) (-1124)))))) (T -983)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-983)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-983)))) (-3969 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-983))))) -(-13 (-625 (-875)) (-10 -8 (-15 -4148 ((-518) $)) (-15 -1688 ((-1124) $)) (-15 -3969 ($ (-518) (-1124))))) -((-1952 (((-112) $ $) NIL)) (-4325 (($) NIL T CONST)) (-2322 (($ $ $) 30)) (-2298 (($ $) 24)) (-2043 (((-1178) $) NIL)) (-4195 (((-703 (-886 $ $)) $) 55)) (-2072 (((-703 $) $) 45)) (-1366 (((-703 (-886 $ $)) $) 56)) (-2548 (((-703 (-886 $ $)) $) 57)) (-3684 (((-703 |#1|) $) 36)) (-1351 (((-703 (-886 $ $)) $) 54)) (-3746 (($ $ $) 31)) (-3115 (((-1140) $) NIL)) (-3129 (($) NIL T CONST)) (-2829 (($ $ $) 32)) (-2724 (($ $ $) 29)) (-2660 (($ $ $) 27)) (-4112 (((-875) $) 59) (($ |#1|) 12)) (-1994 (((-112) $ $) NIL)) (-2310 (($ $ $) 28)) (-3938 (((-112) $ $) NIL))) -(((-984 |#1|) (-13 (-987) (-628 |#1|) (-10 -8 (-15 -3684 ((-703 |#1|) $)) (-15 -2072 ((-703 $) $)) (-15 -1351 ((-703 (-886 $ $)) $)) (-15 -4195 ((-703 (-886 $ $)) $)) (-15 -1366 ((-703 (-886 $ $)) $)) (-15 -2548 ((-703 (-886 $ $)) $)) (-15 -2660 ($ $ $)) (-15 -2724 ($ $ $)))) (-1120)) (T -984)) -((-3684 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-984 *3)) (-4 *3 (-1120)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-703 (-984 *3))) (-5 *1 (-984 *3)) (-4 *3 (-1120)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1120)))) (-4195 (*1 *2 *1) (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1120)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1120)))) (-2548 (*1 *2 *1) (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1120)))) (-2660 (*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1120)))) (-2724 (*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1120))))) -(-13 (-987) (-628 |#1|) (-10 -8 (-15 -3684 ((-703 |#1|) $)) (-15 -2072 ((-703 $) $)) (-15 -1351 ((-703 (-886 $ $)) $)) (-15 -4195 ((-703 (-886 $ $)) $)) (-15 -1366 ((-703 (-886 $ $)) $)) (-15 -2548 ((-703 (-886 $ $)) $)) (-15 -2660 ($ $ $)) (-15 -2724 ($ $ $)))) -((-1608 (((-984 |#1|) (-984 |#1|)) 46)) (-3870 (((-984 |#1|) (-984 |#1|)) 22)) (-2967 (((-1122 |#1|) (-984 |#1|)) 41))) -(((-985 |#1|) (-13 (-1237) (-10 -7 (-15 -3870 ((-984 |#1|) (-984 |#1|))) (-15 -2967 ((-1122 |#1|) (-984 |#1|))) (-15 -1608 ((-984 |#1|) (-984 |#1|))))) (-1120)) (T -985)) -((-3870 (*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1120)) (-5 *1 (-985 *3)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-984 *4)) (-4 *4 (-1120)) (-5 *2 (-1122 *4)) (-5 *1 (-985 *4)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1120)) (-5 *1 (-985 *3))))) -(-13 (-1237) (-10 -7 (-15 -3870 ((-984 |#1|) (-984 |#1|))) (-15 -2967 ((-1122 |#1|) (-984 |#1|))) (-15 -1608 ((-984 |#1|) (-984 |#1|))))) -((-2422 (((-984 |#2|) (-1 |#2| |#1|) (-984 |#1|)) 29))) -(((-986 |#1| |#2|) (-13 (-1237) (-10 -7 (-15 -2422 ((-984 |#2|) (-1 |#2| |#1|) (-984 |#1|))))) (-1120) (-1120)) (T -986)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-984 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-984 *6)) (-5 *1 (-986 *5 *6))))) -(-13 (-1237) (-10 -7 (-15 -2422 ((-984 |#2|) (-1 |#2| |#1|) (-984 |#1|))))) -((-1952 (((-112) $ $) 16)) (-4325 (($) 14 T CONST)) (-2322 (($ $ $) 6)) (-2298 (($ $) 8)) (-2043 (((-1178) $) 20)) (-3746 (($ $ $) 12)) (-3115 (((-1140) $) 19)) (-3129 (($) 13 T CONST)) (-2829 (($ $ $) 11)) (-4112 (((-875) $) 18)) (-1994 (((-112) $ $) 17)) (-2310 (($ $ $) 7)) (-3938 (((-112) $ $) 15))) -(((-987) (-141)) (T -987)) -((-4325 (*1 *1) (-4 *1 (-987))) (-3129 (*1 *1) (-4 *1 (-987))) (-3746 (*1 *1 *1 *1) (-4 *1 (-987))) (-2829 (*1 *1 *1 *1) (-4 *1 (-987)))) -(-13 (-113) (-1120) (-10 -8 (-15 -4325 ($) -2665) (-15 -3129 ($) -2665) (-15 -3746 ($ $ $)) (-15 -2829 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3881 (($ $ $) 44)) (-2144 (($ $ $) 45)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1654 ((|#1| $) 46)) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-988 |#1|) (-141) (-861)) (T -988)) -((-1654 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-861)))) (-2144 (*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-861)))) (-3881 (*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-861))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4463) (-15 -1654 (|t#1| $)) (-15 -2144 ($ $ $)) (-15 -3881 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-2570 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3114 |#2|)) |#2| |#2|) 105)) (-2256 ((|#2| |#2| |#2|) 103)) (-3666 (((-2 (|:| |coef2| |#2|) (|:| -3114 |#2|)) |#2| |#2|) 107)) (-3246 (((-2 (|:| |coef1| |#2|) (|:| -3114 |#2|)) |#2| |#2|) 109)) (-2994 (((-2 (|:| |coef2| |#2|) (|:| -4413 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-4344 (((-2 (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|) 56)) (-3836 (((-2 (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|) 80)) (-4030 (((-2 (|:| |coef1| |#2|) (|:| -3954 |#1|)) |#2| |#2|) 82)) (-2937 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2160 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-3185 (((-2 (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2|) 121)) (-4050 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-2534 (((-656 (-783)) |#2| |#2|) 102)) (-2619 ((|#1| |#2| |#2|) 50)) (-2928 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4413 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-4413 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-1817 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|) 54)) (-2675 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|) 79)) (-3954 ((|#1| |#2| |#2|) 76)) (-4265 (((-2 (|:| -2861 |#1|) (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2|) 41)) (-4176 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2906 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-4109 ((|#2| |#2| |#2|) 93)) (-3605 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-3610 ((|#2| |#2| |#2| (-783)) 85)) (-3114 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-1943 (((-1287 |#2|) (-1287 |#2|) |#1|) 22)) (-4293 (((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2|) 46)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2|) 119)) (-1451 ((|#1| |#2|) 116)) (-1542 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-2449 ((|#2| |#2| |#2| (-783)) 90)) (-3994 (((-656 |#2|) |#2| |#2|) 99)) (-3714 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-4054 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1287 |#2|) |#1| (-1287 |#2|)) 17))) -(((-989 |#1| |#2|) (-10 -7 (-15 -3954 (|#1| |#2| |#2|)) (-15 -2675 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -3836 ((-2 (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -4030 ((-2 (|:| |coef1| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -3610 (|#2| |#2| |#2| (-783))) (-15 -3605 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2160 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2449 (|#2| |#2| |#2| (-783))) (-15 -1542 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4050 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4109 (|#2| |#2| |#2|)) (-15 -2906 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2937 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2256 (|#2| |#2| |#2|)) (-15 -2570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3114 |#2|)) |#2| |#2|)) (-15 -3666 ((-2 (|:| |coef2| |#2|) (|:| -3114 |#2|)) |#2| |#2|)) (-15 -3246 ((-2 (|:| |coef1| |#2|) (|:| -3114 |#2|)) |#2| |#2|)) (-15 -1451 (|#1| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2|)) (-15 -3185 ((-2 (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2|)) (-15 -3994 ((-656 |#2|) |#2| |#2|)) (-15 -2534 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -4413 (|#1| |#2| |#2|)) (-15 -2928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4413 |#1|)) |#2| |#2|)) (-15 -2994 ((-2 (|:| |coef2| |#2|) (|:| -4413 |#1|)) |#2| |#2|)) (-15 -3114 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -1943 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -4265 ((-2 (|:| -2861 |#1|) (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2|)) (-15 -4293 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2|)) (-15 -4054 (|#1| |#1| |#1| (-783))) (-15 -3714 (|#2| |#2| |#1| |#1| (-783))) (-15 -4176 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2619 (|#1| |#2| |#2|)) (-15 -1817 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -4344 ((-2 (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|))) (-568) (-1263 |#1|)) (T -989)) -((-4344 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3954 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-1817 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3954 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2619 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) (-4176 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-3714 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-4054 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-989 *2 *4)) (-4 *4 (-1263 *2)))) (-4293 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4265 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2861 *4) (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-1943 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) (-5 *1 (-989 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) (-5 *1 (-989 *3 *4)))) (-3114 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-2994 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4413 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2928 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4413 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4413 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) (-2534 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3994 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1451 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1451 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-1451 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) (-3246 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3114 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3666 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3114 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2570 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3114 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2256 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-2937 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2906 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4109 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-4050 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-1542 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-2449 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-989 *4 *2)) (-4 *2 (-1263 *4)))) (-2160 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-3605 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-3610 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-989 *4 *2)) (-4 *2 (-1263 *4)))) (-4030 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3954 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3836 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3954 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-2675 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3954 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3954 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2))))) -(-10 -7 (-15 -3954 (|#1| |#2| |#2|)) (-15 -2675 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -3836 ((-2 (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -4030 ((-2 (|:| |coef1| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -3610 (|#2| |#2| |#2| (-783))) (-15 -3605 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2160 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2449 (|#2| |#2| |#2| (-783))) (-15 -1542 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4050 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4109 (|#2| |#2| |#2|)) (-15 -2906 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2937 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2256 (|#2| |#2| |#2|)) (-15 -2570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3114 |#2|)) |#2| |#2|)) (-15 -3666 ((-2 (|:| |coef2| |#2|) (|:| -3114 |#2|)) |#2| |#2|)) (-15 -3246 ((-2 (|:| |coef1| |#2|) (|:| -3114 |#2|)) |#2| |#2|)) (-15 -1451 (|#1| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2|)) (-15 -3185 ((-2 (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2|)) (-15 -3994 ((-656 |#2|) |#2| |#2|)) (-15 -2534 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -4413 (|#1| |#2| |#2|)) (-15 -2928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4413 |#1|)) |#2| |#2|)) (-15 -2994 ((-2 (|:| |coef2| |#2|) (|:| -4413 |#1|)) |#2| |#2|)) (-15 -3114 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -1943 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -4265 ((-2 (|:| -2861 |#1|) (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2|)) (-15 -4293 ((-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) |#2| |#2|)) (-15 -4054 (|#1| |#1| |#1| (-783))) (-15 -3714 (|#2| |#2| |#1| |#1| (-783))) (-15 -4176 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2619 (|#1| |#2| |#2|)) (-15 -1817 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|)) (-15 -4344 ((-2 (|:| |coef2| |#2|) (|:| -3954 |#1|)) |#2| |#2|))) -((-1952 (((-112) $ $) NIL)) (-4169 (((-1236) $) 13)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2229 (((-1155) $) 10)) (-4112 (((-875) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-990) (-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -4169 ((-1236) $))))) (T -990)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-990)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-990))))) -(-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -4169 ((-1236) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 40)) (-2559 (((-3 $ "failed") $ $) 54)) (-4331 (($) NIL T CONST)) (-4155 (((-656 (-886 (-939) (-939))) $) 67)) (-3169 (((-939) $) 94)) (-3721 (((-656 (-939)) $) 17)) (-2526 (((-1177 $) (-783)) 39)) (-4281 (($ (-656 (-939))) 16)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2633 (($ $) 70)) (-4112 (((-875) $) 90) (((-656 (-939)) $) 11)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 8 T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 44)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 42)) (-4026 (($ $ $) 46)) (* (($ (-939) $) NIL) (($ (-783) $) 49)) (-1968 (((-783) $) 22))) -(((-991) (-13 (-807) (-625 (-656 (-939))) (-10 -8 (-15 -4281 ($ (-656 (-939)))) (-15 -3721 ((-656 (-939)) $)) (-15 -1968 ((-783) $)) (-15 -2526 ((-1177 $) (-783))) (-15 -4155 ((-656 (-886 (-939) (-939))) $)) (-15 -3169 ((-939) $)) (-15 -2633 ($ $))))) (T -991)) -((-4281 (*1 *1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-991)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-991)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-991)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1177 (-991))) (-5 *1 (-991)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-656 (-886 (-939) (-939)))) (-5 *1 (-991)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-991)))) (-2633 (*1 *1 *1) (-5 *1 (-991)))) -(-13 (-807) (-625 (-656 (-939))) (-10 -8 (-15 -4281 ($ (-656 (-939)))) (-15 -3721 ((-656 (-939)) $)) (-15 -1968 ((-783) $)) (-15 -2526 ((-1177 $) (-783))) (-15 -4155 ((-656 (-886 (-939) (-939))) $)) (-15 -3169 ((-939) $)) (-15 -2633 ($ $)))) -((-4046 (($ $ |#2|) 31)) (-4036 (($ $) 23) (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) -(((-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4046 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) (-993 |#2| |#3| |#4|) (-1069) (-804) (-861)) (T -992)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4046 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-939) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 |#3|) $) 86)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-3365 (((-112) $) 85)) (-2287 (((-112) $) 35)) (-3146 (((-112) $) 74)) (-1562 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1877 ((|#2| $) 76)) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4269 ((|#1| $ |#2|) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-993 |#1| |#2| |#3|) (-141) (-1069) (-804) (-861)) (T -993)) -((-1709 (*1 *2 *1) (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-1069)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *2 *4)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *2 (-804)))) (-1562 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-993 *4 *3 *2)) (-4 *4 (-1069)) (-4 *3 (-804)) (-4 *2 (-861)))) (-1562 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-993 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-804)) (-4 *6 (-861)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3454 (*1 *1 *1) (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-804)) (-4 *4 (-861))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1562 ($ $ |t#3| |t#2|)) (-15 -1562 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -1698 ($ $)) (-15 -1709 (|t#1| $)) (-15 -1877 (|t#2| $)) (-15 -1582 ((-656 |t#3|) $)) (-15 -3365 ((-112) $)) (-15 -3454 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3764 (((-1114 (-227)) $) 8)) (-3753 (((-1114 (-227)) $) 9)) (-3741 (((-1114 (-227)) $) 10)) (-3944 (((-656 (-656 (-961 (-227)))) $) 11)) (-4112 (((-875) $) 6))) -(((-994) (-141)) (T -994)) -((-3944 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-656 (-656 (-961 (-227))))))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1114 (-227))))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1114 (-227))))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1114 (-227)))))) -(-13 (-625 (-875)) (-10 -8 (-15 -3944 ((-656 (-656 (-961 (-227)))) $)) (-15 -3741 ((-1114 (-227)) $)) (-15 -3753 ((-1114 (-227)) $)) (-15 -3764 ((-1114 (-227)) $)))) -(((-625 (-875)) . T)) -((-1582 (((-656 |#4|) $) 23)) (-2397 (((-112) $) 55)) (-2083 (((-112) $) 54)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#4|) 42)) (-4013 (((-112) $) 56)) (-1938 (((-112) $ $) 62)) (-3142 (((-112) $ $) 65)) (-2948 (((-112) $) 60)) (-3223 (((-656 |#5|) (-656 |#5|) $) 98)) (-4322 (((-656 |#5|) (-656 |#5|) $) 95)) (-2960 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3055 (((-656 |#4|) $) 27)) (-2421 (((-112) |#4| $) 34)) (-4181 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3655 (($ $ |#4|) 39)) (-3837 (($ $ |#4|) 38)) (-1570 (($ $ |#4|) 40)) (-3938 (((-112) $ $) 46))) -(((-995 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2083 ((-112) |#1|)) (-15 -3223 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -4322 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2960 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4181 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4013 ((-112) |#1|)) (-15 -3142 ((-112) |#1| |#1|)) (-15 -1938 ((-112) |#1| |#1|)) (-15 -2948 ((-112) |#1|)) (-15 -2397 ((-112) |#1|)) (-15 -2379 ((-2 (|:| |under| |#1|) (|:| -2804 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3655 (|#1| |#1| |#4|)) (-15 -1570 (|#1| |#1| |#4|)) (-15 -3837 (|#1| |#1| |#4|)) (-15 -2421 ((-112) |#4| |#1|)) (-15 -3055 ((-656 |#4|) |#1|)) (-15 -1582 ((-656 |#4|) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-996 |#2| |#3| |#4| |#5|) (-1069) (-805) (-861) (-1085 |#2| |#3| |#4|)) (T -995)) -NIL -(-10 -8 (-15 -2083 ((-112) |#1|)) (-15 -3223 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -4322 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2960 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4181 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4013 ((-112) |#1|)) (-15 -3142 ((-112) |#1| |#1|)) (-15 -1938 ((-112) |#1| |#1|)) (-15 -2948 ((-112) |#1|)) (-15 -2397 ((-112) |#1|)) (-15 -2379 ((-2 (|:| |under| |#1|) (|:| -2804 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3655 (|#1| |#1| |#4|)) (-15 -1570 (|#1| |#1| |#4|)) (-15 -3837 (|#1| |#1| |#4|)) (-15 -2421 ((-112) |#4| |#1|)) (-15 -3055 ((-656 |#4|) |#1|)) (-15 -1582 ((-656 |#4|) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-1582 (((-656 |#3|) $) 34)) (-2397 (((-112) $) 27)) (-2083 (((-112) $) 18 (|has| |#1| (-568)))) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) 28)) (-2337 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4463)))) (-4331 (($) 46 T CONST)) (-4013 (((-112) $) 23 (|has| |#1| (-568)))) (-1938 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3142 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2948 (((-112) $) 26 (|has| |#1| (-568)))) (-3223 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-3966 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4463)))) (-3721 (((-656 |#4|) $) 53 (|has| $ (-6 -4463)))) (-2232 ((|#3| $) 35)) (-2135 (((-112) $ (-783)) 44)) (-3958 (((-656 |#4|) $) 54 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 48)) (-3055 (((-656 |#3|) $) 33)) (-2421 (((-112) |#3| $) 32)) (-1556 (((-112) $ (-783)) 43)) (-2043 (((-1178) $) 10)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3115 (((-1140) $) 11)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3587 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) 39)) (-1937 (((-112) $) 42)) (-3935 (($) 41)) (-3125 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4463)))) (-4286 (($ $) 40)) (-1554 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 61)) (-3655 (($ $ |#3|) 29)) (-3837 (($ $ |#3|) 31)) (-1570 (($ $ |#3|) 30)) (-4112 (((-875) $) 12) (((-656 |#4|) $) 38)) (-1994 (((-112) $ $) 6)) (-1682 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-996 |#1| |#2| |#3| |#4|) (-141) (-1069) (-805) (-861) (-1085 |t#1| |t#2| |t#3|)) (T -996)) -((-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-996 *3 *4 *5 *6)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-996 *3 *4 *5 *6)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-1085 *3 *4 *2)) (-4 *2 (-861)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2421 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *3 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-112)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1085 *3 *4 *2)))) (-1570 (*1 *1 *1 *2) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1085 *3 *4 *2)))) (-3655 (*1 *1 *1 *2) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1085 *3 *4 *2)))) (-2379 (*1 *2 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2804 *1) (|:| |upper| *1))) (-4 *1 (-996 *4 *5 *3 *6)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3142 (*1 *2 *1 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4181 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2960 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4322 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)))) (-3223 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) -(-13 (-1120) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4463) (-15 -2980 ((-3 $ "failed") (-656 |t#4|))) (-15 -2317 ($ (-656 |t#4|))) (-15 -2232 (|t#3| $)) (-15 -1582 ((-656 |t#3|) $)) (-15 -3055 ((-656 |t#3|) $)) (-15 -2421 ((-112) |t#3| $)) (-15 -3837 ($ $ |t#3|)) (-15 -1570 ($ $ |t#3|)) (-15 -3655 ($ $ |t#3|)) (-15 -2379 ((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |t#3|)) (-15 -2397 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2948 ((-112) $)) (-15 -1938 ((-112) $ $)) (-15 -3142 ((-112) $ $)) (-15 -4013 ((-112) $)) (-15 -4181 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2960 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4322 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -3223 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2083 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-875)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-1120) . T) ((-1237) . T)) -((-3615 (((-656 |#4|) |#4| |#4|) 136)) (-3018 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-3800 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-2877 (((-112) |#4|) 43)) (-1756 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-1597 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-4361 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-2018 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-1531 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-4207 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-1482 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-1883 (((-656 |#4|) (-656 |#4|)) 128)) (-1492 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-3762 ((|#4| |#4| (-656 |#4|)) 60)) (-1565 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-2985 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-2485 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-2879 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-4002 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3110 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-4283 (((-112) (-656 |#4|)) 79)) (-2929 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-2541 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-2574 (((-112) |#4|) 36)) (-3945 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2372 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2023 (((-656 |#4|) (-656 |#4|)) 83)) (-2888 (((-656 |#4|) (-656 |#4|)) 97)) (-2253 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-4440 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-2581 (((-112) |#4|) 45))) -(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 ((-656 |#4|) (-656 |#4|))) (-15 -2879 ((-656 |#4|) |#4| |#4|)) (-15 -1883 ((-656 |#4|) (-656 |#4|))) (-15 -3615 ((-656 |#4|) |#4| |#4|)) (-15 -2879 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -2879 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2879 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -2253 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2929 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -4283 ((-112) (-656 |#4|))) (-15 -1597 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -4361 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2018 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3110 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2877 ((-112) |#4|)) (-15 -3800 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2574 ((-112) |#4|)) (-15 -2541 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2581 ((-112) |#4|)) (-15 -4440 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1492 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1492 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3762 (|#4| |#4| (-656 |#4|))) (-15 -2023 ((-656 |#4|) (-656 |#4|))) (-15 -1531 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2888 ((-656 |#4|) (-656 |#4|))) (-15 -4207 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1482 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -1756 ((-656 |#4|) |#4|)) (-15 -3018 ((-656 |#4|) (-656 |#4|))) (-15 -3018 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -1565 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2485 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2985 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -2372 ((-656 |#4|) (-656 |#4|))) (-15 -3945 ((-656 |#4|) (-656 |#4|))) (-15 -4002 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-861) (-1085 |#1| |#2| |#3|)) (T -997)) -((-4002 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-2985 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-2485 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-1565 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3018 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *7)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-1756 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-1482 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-997 *5 *6 *7 *8)))) (-4207 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *1 (-997 *6 *7 *8 *9)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-1531 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3015 (-656 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *2)))) (-1492 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *7)))) (-1492 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-4440 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2581 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-2541 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2574 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2877 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2018 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-4361 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1597 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *5 *6 *7 *8)))) (-2253 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7)))) (-2879 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *7)))) (-2879 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-2879 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *3)))) (-3615 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-1883 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6))))) -(-10 -7 (-15 -2879 ((-656 |#4|) (-656 |#4|))) (-15 -2879 ((-656 |#4|) |#4| |#4|)) (-15 -1883 ((-656 |#4|) (-656 |#4|))) (-15 -3615 ((-656 |#4|) |#4| |#4|)) (-15 -2879 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -2879 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2879 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -2253 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2929 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -4283 ((-112) (-656 |#4|))) (-15 -1597 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -4361 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2018 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3110 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2877 ((-112) |#4|)) (-15 -3800 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2574 ((-112) |#4|)) (-15 -2541 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2581 ((-112) |#4|)) (-15 -4440 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1492 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1492 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3762 (|#4| |#4| (-656 |#4|))) (-15 -2023 ((-656 |#4|) (-656 |#4|))) (-15 -1531 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2888 ((-656 |#4|) (-656 |#4|))) (-15 -4207 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1482 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -1756 ((-656 |#4|) |#4|)) (-15 -3018 ((-656 |#4|) (-656 |#4|))) (-15 -3018 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -1565 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2485 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2985 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -2372 ((-656 |#4|) (-656 |#4|))) (-15 -3945 ((-656 |#4|) (-656 |#4|))) (-15 -4002 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) -((-3088 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2617 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)) 46)) (-2104 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-998 |#1|) (-10 -7 (-15 -3088 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2104 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2617 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)))) (-374)) (T -998)) -((-2617 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5))))) (-5 *1 (-998 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)))) (-2104 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-998 *5)))) (-3088 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-998 *6)) (-5 *3 (-701 *6))))) -(-10 -7 (-15 -3088 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2104 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2617 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)))) -((-3163 (((-430 |#4|) |#4|) 56))) -(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3163 ((-430 |#4|) |#4|))) (-861) (-805) (-464) (-967 |#3| |#2| |#1|)) (T -999)) -((-3163 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -(-10 -7 (-15 -3163 ((-430 |#4|) |#4|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2154 (($ (-783)) 115 (|has| |#1| (-23)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4464))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4464))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3432 (($ $) 93 (|has| $ (-6 -4464)))) (-4203 (($ $) 103)) (-3966 (($ $) 80 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 79 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 52)) (-3538 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1120)))) (-2819 (($ (-656 |#1|)) 121)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1662 (((-701 |#1|) $ $) 108 (|has| |#1| (-1069)))) (-1989 (($ (-783) |#1|) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-2905 (($ $ $) 85 (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1654 (($ $ $) 86 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1347 ((|#1| $) 105 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))))) (-1556 (((-112) $ (-783)) 10)) (-3107 ((|#1| $) 106 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))))) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 43 (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2556 (($ $ |#1|) 42 (|has| $ (-6 -4464)))) (-3679 (($ $ (-656 |#1|)) 119)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-4139 ((|#1| $ $) 109 (|has| |#1| (-1069)))) (-1656 (((-939) $) 120)) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-1776 (($ $ $) 107)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3757 (($ $ $ (-576)) 94 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-4124 (($ (-656 |#1|)) 72)) (-2766 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3983 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 90 (|has| |#1| (-861)))) (-4036 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4026 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1000 |#1|) (-141) (-1069)) (T -1000)) -((-2819 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1069)) (-4 *1 (-1000 *3)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1069)) (-5 *2 (-939)))) (-1776 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1069)))) (-3679 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1000 *3)) (-4 *3 (-1069))))) -(-13 (-1285 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -2819 ($ (-656 |t#1|))) (-15 -1656 ((-939) $)) (-15 -1776 ($ $ $)) (-15 -3679 ($ $ (-656 |t#1|))))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1120) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861))) ((-1237) . T) ((-1285 |#1|) . T)) -((-2422 (((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)) 17))) -(((-1001 |#1| |#2|) (-10 -7 (-15 -2422 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) (-1069) (-1069)) (T -1001)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-961 *6)) (-5 *1 (-1001 *5 *6))))) -(-10 -7 (-15 -2422 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) -((-3426 ((|#1| (-961 |#1|)) 14)) (-1605 ((|#1| (-961 |#1|)) 13)) (-3759 ((|#1| (-961 |#1|)) 12)) (-3005 ((|#1| (-961 |#1|)) 16)) (-2732 ((|#1| (-961 |#1|)) 24)) (-3843 ((|#1| (-961 |#1|)) 15)) (-3205 ((|#1| (-961 |#1|)) 17)) (-3220 ((|#1| (-961 |#1|)) 23)) (-3508 ((|#1| (-961 |#1|)) 22))) -(((-1002 |#1|) (-10 -7 (-15 -3759 (|#1| (-961 |#1|))) (-15 -1605 (|#1| (-961 |#1|))) (-15 -3426 (|#1| (-961 |#1|))) (-15 -3843 (|#1| (-961 |#1|))) (-15 -3005 (|#1| (-961 |#1|))) (-15 -3205 (|#1| (-961 |#1|))) (-15 -3508 (|#1| (-961 |#1|))) (-15 -3220 (|#1| (-961 |#1|))) (-15 -2732 (|#1| (-961 |#1|)))) (-1069)) (T -1002)) -((-2732 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(-10 -7 (-15 -3759 (|#1| (-961 |#1|))) (-15 -1605 (|#1| (-961 |#1|))) (-15 -3426 (|#1| (-961 |#1|))) (-15 -3843 (|#1| (-961 |#1|))) (-15 -3005 (|#1| (-961 |#1|))) (-15 -3205 (|#1| (-961 |#1|))) (-15 -3508 (|#1| (-961 |#1|))) (-15 -3220 (|#1| (-961 |#1|))) (-15 -2732 (|#1| (-961 |#1|)))) -((-4414 (((-3 |#1| "failed") |#1|) 18)) (-3363 (((-3 |#1| "failed") |#1|) 6)) (-2706 (((-3 |#1| "failed") |#1|) 16)) (-3970 (((-3 |#1| "failed") |#1|) 4)) (-2956 (((-3 |#1| "failed") |#1|) 20)) (-1874 (((-3 |#1| "failed") |#1|) 8)) (-2416 (((-3 |#1| "failed") |#1| (-783)) 1)) (-2691 (((-3 |#1| "failed") |#1|) 3)) (-2505 (((-3 |#1| "failed") |#1|) 2)) (-2048 (((-3 |#1| "failed") |#1|) 21)) (-3928 (((-3 |#1| "failed") |#1|) 9)) (-4431 (((-3 |#1| "failed") |#1|) 19)) (-2519 (((-3 |#1| "failed") |#1|) 7)) (-4259 (((-3 |#1| "failed") |#1|) 17)) (-3937 (((-3 |#1| "failed") |#1|) 5)) (-2019 (((-3 |#1| "failed") |#1|) 24)) (-1747 (((-3 |#1| "failed") |#1|) 12)) (-4303 (((-3 |#1| "failed") |#1|) 22)) (-4060 (((-3 |#1| "failed") |#1|) 10)) (-3909 (((-3 |#1| "failed") |#1|) 26)) (-2469 (((-3 |#1| "failed") |#1|) 14)) (-4041 (((-3 |#1| "failed") |#1|) 27)) (-2587 (((-3 |#1| "failed") |#1|) 15)) (-1391 (((-3 |#1| "failed") |#1|) 25)) (-3371 (((-3 |#1| "failed") |#1|) 13)) (-2127 (((-3 |#1| "failed") |#1|) 23)) (-4231 (((-3 |#1| "failed") |#1|) 11))) -(((-1003 |#1|) (-141) (-1222)) (T -1003)) -((-4041 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-3909 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-1391 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2019 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2127 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-4303 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2048 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-4431 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-4414 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-4259 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2706 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2587 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2469 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-1747 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-4231 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-4060 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-3928 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-1874 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2519 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-3937 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-3970 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2691 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2505 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222)))) (-2416 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(-13 (-10 -7 (-15 -2416 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -2505 ((-3 |t#1| "failed") |t#1|)) (-15 -2691 ((-3 |t#1| "failed") |t#1|)) (-15 -3970 ((-3 |t#1| "failed") |t#1|)) (-15 -3937 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -2519 ((-3 |t#1| "failed") |t#1|)) (-15 -1874 ((-3 |t#1| "failed") |t#1|)) (-15 -3928 ((-3 |t#1| "failed") |t#1|)) (-15 -4060 ((-3 |t#1| "failed") |t#1|)) (-15 -4231 ((-3 |t#1| "failed") |t#1|)) (-15 -1747 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -2469 ((-3 |t#1| "failed") |t#1|)) (-15 -2587 ((-3 |t#1| "failed") |t#1|)) (-15 -2706 ((-3 |t#1| "failed") |t#1|)) (-15 -4259 ((-3 |t#1| "failed") |t#1|)) (-15 -4414 ((-3 |t#1| "failed") |t#1|)) (-15 -4431 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2048 ((-3 |t#1| "failed") |t#1|)) (-15 -4303 ((-3 |t#1| "failed") |t#1|)) (-15 -2127 ((-3 |t#1| "failed") |t#1|)) (-15 -2019 ((-3 |t#1| "failed") |t#1|)) (-15 -1391 ((-3 |t#1| "failed") |t#1|)) (-15 -3909 ((-3 |t#1| "failed") |t#1|)) (-15 -4041 ((-3 |t#1| "failed") |t#1|)))) -((-2663 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3470 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2422 ((|#4| (-1 |#4| (-970 |#1|)) |#4|) 31))) -(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3470 (|#4| |#4| |#3|)) (-15 -3470 (|#4| |#4| (-656 |#3|))) (-15 -2663 (|#4| |#4| |#3|)) (-15 -2663 (|#4| |#4| (-656 |#3|))) (-15 -2422 (|#4| (-1 |#4| (-970 |#1|)) |#4|))) (-1069) (-805) (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196))))) (-967 (-970 |#1|) |#2| |#3|)) (T -1004)) -((-2422 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-970 *4))) (-4 *4 (-1069)) (-4 *2 (-967 (-970 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1004 *4 *5 *6 *2)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-4 *4 (-1069)) (-4 *5 (-805)) (-5 *1 (-1004 *4 *5 *6 *2)) (-4 *2 (-967 (-970 *4) *5 *6)))) (-2663 (*1 *2 *2 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-967 (-970 *4) *5 *3)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-4 *4 (-1069)) (-4 *5 (-805)) (-5 *1 (-1004 *4 *5 *6 *2)) (-4 *2 (-967 (-970 *4) *5 *6)))) (-3470 (*1 *2 *2 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)) (-15 -1652 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-967 (-970 *4) *5 *3))))) -(-10 -7 (-15 -3470 (|#4| |#4| |#3|)) (-15 -3470 (|#4| |#4| (-656 |#3|))) (-15 -2663 (|#4| |#4| |#3|)) (-15 -2663 (|#4| |#4| (-656 |#3|))) (-15 -2422 (|#4| (-1 |#4| (-970 |#1|)) |#4|))) -((-2470 ((|#2| |#3|) 35)) (-2282 (((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-1527 (((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) -(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1527 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2282 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -2470 (|#2| |#3|))) (-360) (-1263 |#1|) (-1263 |#2|) (-736 |#2| |#3|)) (T -1005)) -((-2470 (*1 *2 *3) (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1005 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-2282 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1005 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-1527 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -3578 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) -(-10 -7 (-15 -1527 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2282 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -2470 (|#2| |#3|))) -((-1773 (((-1007 (-419 (-576)) (-877 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1007 (-419 (-576)) (-877 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -1773 ((-1007 (-419 (-576)) (-877 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1007 (-419 (-576)) (-877 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1196)) (-783)) (T -1006)) -((-1773 (*1 *2 *2) (-12 (-5 *2 (-1007 (-419 (-576)) (-877 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-1006 *3 *4))))) -(-10 -7 (-15 -1773 ((-1007 (-419 (-576)) (-877 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1007 (-419 (-576)) (-877 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) -((-1952 (((-112) $ $) NIL)) (-3061 (((-3 (-112) "failed") $) 71)) (-1608 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2352 (($ $ (-3 (-112) "failed")) 72)) (-2924 (($ (-656 |#4|) |#4|) 25)) (-2043 (((-1178) $) NIL)) (-4055 (($ $) 69)) (-3115 (((-1140) $) NIL)) (-1937 (((-112) $) 70)) (-3935 (($) 30)) (-2622 ((|#4| $) 74)) (-3010 (((-656 |#4|) $) 73)) (-4112 (((-875) $) 68)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1007 |#1| |#2| |#3| |#4|) (-13 (-1120) (-625 (-875)) (-10 -8 (-15 -3935 ($)) (-15 -2924 ($ (-656 |#4|) |#4|)) (-15 -3061 ((-3 (-112) "failed") $)) (-15 -2352 ($ $ (-3 (-112) "failed"))) (-15 -1937 ((-112) $)) (-15 -3010 ((-656 |#4|) $)) (-15 -2622 (|#4| $)) (-15 -4055 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -1608 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-861) (-805) (-967 |#1| |#3| |#2|)) (T -1007)) -((-3935 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) (-2924 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-967 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1007 *4 *5 *6 *3)))) (-3061 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-1937 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-3010 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-2622 (*1 *2 *1) (-12 (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-1007 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)))) (-4055 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) (-1608 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3))))) -(-13 (-1120) (-625 (-875)) (-10 -8 (-15 -3935 ($)) (-15 -2924 ($ (-656 |#4|) |#4|)) (-15 -3061 ((-3 (-112) "failed") $)) (-15 -2352 ($ $ (-3 (-112) "failed"))) (-15 -1937 ((-112) $)) (-15 -3010 ((-656 |#4|) $)) (-15 -2622 (|#4| $)) (-15 -4055 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -1608 ($ $)) |%noBranch|) |%noBranch|))) -((-3597 (((-112) |#5| |#5|) 44)) (-3964 (((-112) |#5| |#5|) 59)) (-2650 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3382 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3189 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 70)) (-1651 (((-1292)) 32)) (-1586 (((-1292) (-1178) (-1178) (-1178)) 28)) (-3471 (((-656 |#5|) (-656 |#5|)) 100)) (-3923 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) 92)) (-4237 (((-656 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-4336 (((-112) |#5| |#5|) 53)) (-3231 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1384 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2684 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1761 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3760 (((-3 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3291 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1586 ((-1292) (-1178) (-1178) (-1178))) (-15 -1651 ((-1292))) (-15 -3597 ((-112) |#5| |#5|)) (-15 -3291 ((-656 |#5|) (-656 |#5|))) (-15 -4336 ((-112) |#5| |#5|)) (-15 -3964 ((-112) |#5| |#5|)) (-15 -3382 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2684 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1761 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3231 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2650 ((-112) |#5| |#5|)) (-15 -2650 ((-112) |#5| (-656 |#5|))) (-15 -3471 ((-656 |#5|) (-656 |#5|))) (-15 -3189 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3923 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -4237 ((-656 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3760 ((-3 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1008)) -((-3760 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| -3378 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1008 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1091 *6 *7 *8 *9)))) (-4237 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1091 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3378 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1008 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *8)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1008 *5 *6 *7 *8 *3)))) (-2650 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3231 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-1761 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-2684 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-1384 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3382 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3964 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-4336 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3597 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-1651 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-1586 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(-10 -7 (-15 -1586 ((-1292) (-1178) (-1178) (-1178))) (-15 -1651 ((-1292))) (-15 -3597 ((-112) |#5| |#5|)) (-15 -3291 ((-656 |#5|) (-656 |#5|))) (-15 -4336 ((-112) |#5| |#5|)) (-15 -3964 ((-112) |#5| |#5|)) (-15 -3382 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2684 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1761 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3231 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2650 ((-112) |#5| |#5|)) (-15 -2650 ((-112) |#5| (-656 |#5|))) (-15 -3471 ((-656 |#5|) (-656 |#5|))) (-15 -3189 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3923 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -4237 ((-656 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3760 ((-3 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1652 (((-1196) $) 15)) (-1688 (((-1178) $) 16)) (-2440 (($ (-1196) (-1178)) 14)) (-4112 (((-875) $) 13))) -(((-1009) (-13 (-625 (-875)) (-10 -8 (-15 -2440 ($ (-1196) (-1178))) (-15 -1652 ((-1196) $)) (-15 -1688 ((-1178) $))))) (T -1009)) -((-2440 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1009)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1009)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1009))))) -(-13 (-625 (-875)) (-10 -8 (-15 -2440 ($ (-1196) (-1178))) (-15 -1652 ((-1196) $)) (-15 -1688 ((-1178) $)))) -((-2422 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1012 |#1|) (-1012 |#2|)) (T -1010)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1012 *6)) (-5 *1 (-1010 *5 *6 *4 *2)) (-4 *4 (-1012 *5))))) -(-10 -7 (-15 -2422 (|#4| (-1 |#2| |#1|) |#3|))) -((-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-1196) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2317 ((|#2| $) NIL) (((-1196) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3222 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 115) (((-701 |#2|) (-701 $)) 28)) (-4369 (($) 99)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 76) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 85)) (-2461 (($ $) 10)) (-1859 (((-3 $ "failed") $) 20)) (-2422 (($ (-1 |#2| |#2|) $) 22)) (-3650 (($) 16)) (-1914 (($ $) 55)) (-4106 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2521 (($ $) 12)) (-1554 (((-906 (-576)) $) 71) (((-906 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1196)) 58)) (-4115 (((-783)) 31)) (-3962 (((-112) $ $) 51))) -(((-1011 |#1| |#2|) (-10 -8 (-15 -3962 ((-112) |#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -1554 ((-227) |#1|)) (-15 -1554 ((-390) |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -4112 (|#1| (-1196))) (-15 -2980 ((-3 (-1196) "failed") |#1|)) (-15 -2317 ((-1196) |#1|)) (-15 -4369 (|#1|)) (-15 -1914 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -3222 ((-701 |#2|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| |#1|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-1012 |#2|) (-568)) (T -1011)) -((-4115 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1011 *3 *4)) (-4 *3 (-1012 *4))))) -(-10 -8 (-15 -3962 ((-112) |#1| |#1|)) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -1554 ((-227) |#1|)) (-15 -1554 ((-390) |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -4112 (|#1| (-1196))) (-15 -2980 ((-3 (-1196) "failed") |#1|)) (-15 -2317 ((-1196) |#1|)) (-15 -4369 (|#1|)) (-15 -1914 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1445 ((-903 (-576) |#1|) |#1| (-906 (-576)) (-903 (-576) |#1|))) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -3222 ((-701 |#2|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| |#1|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1705 ((|#1| $) 163 (|has| |#1| (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-1946 (((-430 (-1192 $)) (-1192 $)) 154 (|has| |#1| (-927)))) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 157 (|has| |#1| (-927)))) (-4057 (((-112) $ $) 65)) (-3773 (((-576) $) 144 (|has| |#1| (-832)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 193) (((-3 (-1196) "failed") $) 152 (|has| |#1| (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1058 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1058 (-576))))) (-2317 ((|#1| $) 194) (((-1196) $) 153 (|has| |#1| (-1058 (-1196)))) (((-419 (-576)) $) 136 (|has| |#1| (-1058 (-576)))) (((-576) $) 134 (|has| |#1| (-1058 (-576))))) (-1893 (($ $ $) 61)) (-3222 (((-701 (-576)) (-701 $)) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 176) (((-701 |#1|) (-701 $)) 175)) (-3900 (((-3 $ "failed") $) 37)) (-4369 (($) 161 (|has| |#1| (-557)))) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2443 (((-112) $) 79)) (-2690 (((-112) $) 146 (|has| |#1| (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 170 (|has| |#1| (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 169 (|has| |#1| (-900 (-390))))) (-2287 (((-112) $) 35)) (-2461 (($ $) 165)) (-2686 ((|#1| $) 167)) (-1859 (((-3 $ "failed") $) 132 (|has| |#1| (-1172)))) (-3197 (((-112) $) 145 (|has| |#1| (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2905 (($ $ $) 137 (|has| |#1| (-861)))) (-1654 (($ $ $) 138 (|has| |#1| (-861)))) (-2422 (($ (-1 |#1| |#1|) $) 185)) (-2198 (((-701 (-576)) (-1287 $)) 180 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 174) (((-701 |#1|) (-1287 $)) 173)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3650 (($) 131 (|has| |#1| (-1172)) CONST)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1914 (($ $) 162 (|has| |#1| (-317)))) (-2804 ((|#1| $) 159 (|has| |#1| (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 156 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 155 (|has| |#1| (-927)))) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 187 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 186 (|has| |#1| (-526 (-1196) |#1|)))) (-2026 (((-783) $) 64)) (-4368 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-4106 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-783)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-783)) 128 (|has| |#1| (-237))) (($ $ (-1196)) 126 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 124 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 123 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 122 (|has| |#1| (-918 (-1196))))) (-2521 (($ $) 164)) (-2697 ((|#1| $) 166)) (-1554 (((-906 (-576)) $) 172 (|has| |#1| (-626 (-906 (-576))))) (((-906 (-390)) $) 171 (|has| |#1| (-626 (-906 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1042))) (((-227) $) 147 (|has| |#1| (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 158 (-2310 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1196)) 151 (|has| |#1| (-1058 (-1196))))) (-1972 (((-3 $ "failed") $) 150 (-3794 (|has| |#1| (-146)) (-2310 (|has| $ (-146)) (|has| |#1| (-927)))))) (-4115 (((-783)) 32 T CONST)) (-2671 ((|#1| $) 160 (|has| |#1| (-557)))) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-2388 (($ $) 143 (|has| |#1| (-832)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-783)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1196)) 125 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 121 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 120 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 119 (|has| |#1| (-918 (-1196))))) (-3993 (((-112) $ $) 139 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 141 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 140 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 142 (|has| |#1| (-861)))) (-4046 (($ $ $) 73) (($ |#1| |#1|) 168)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) -(((-1012 |#1|) (-141) (-568)) (T -1012)) -((-4046 (*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)))) (-2461 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1914 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-4369 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) -(-13 (-374) (-38 |t#1|) (-1058 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-898 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4046 ($ |t#1| |t#1|)) (-15 -2686 (|t#1| $)) (-15 -2697 (|t#1| $)) (-15 -2461 ($ $)) (-15 -2521 ($ $)) (IF (|has| |t#1| (-1172)) (-6 (-1172)) |%noBranch|) (IF (|has| |t#1| (-1058 (-576))) (PROGN (-6 (-1058 (-576))) (-6 (-1058 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1042)) (-6 (-1042)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1058 (-1196))) (-6 (-1058 (-1196))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -1705 (|t#1| $)) (-15 -1914 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -4369 ($)) (-15 -2671 (|t#1| $)) (-15 -2804 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1196)) |has| |#1| (-1058 (-1196))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1042)) ((-626 (-390)) |has| |#1| (-1042)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-906 (-390))) |has| |#1| (-626 (-906 (-390)))) ((-626 (-906 (-576))) |has| |#1| (-626 (-906 (-576)))) ((-234 $) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-861) -3794 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-863) -3794 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-910 $ #3=(-1196)) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-916 (-1196)) |has| |#1| (-916 (-1196))) ((-918 #3#) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-900 (-390)) |has| |#1| (-900 (-390))) ((-900 (-576)) |has| |#1| (-900 (-576))) ((-898 |#1|) . T) ((-927) |has| |#1| (-927)) ((-938) . T) ((-1042) |has| |#1| (-1042)) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-576))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 #1#) |has| |#1| (-1058 (-1196))) ((-1058 |#1|) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) |has| |#1| (-1172)) ((-1237) . T) ((-1241) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3217 (($ (-1162 |#1| |#2|)) 11)) (-3409 (((-1162 |#1| |#2|) $) 12)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4368 ((|#2| $ (-245 |#1| |#2|)) 16)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) -(((-1013 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3217 ($ (-1162 |#1| |#2|))) (-15 -3409 ((-1162 |#1| |#2|) $)))) (-939) (-374)) (T -1013)) -((-3217 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-14 *3 (-939)) (-4 *4 (-374)) (-5 *1 (-1013 *3 *4)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1013 *3 *4)) (-14 *3 (-939)) (-4 *4 (-374))))) -(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3217 ($ (-1162 |#1| |#2|))) (-15 -3409 ((-1162 |#1| |#2|) $)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2229 (((-1155) $) 9)) (-4112 (((-875) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1014) (-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $))))) (T -1014)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1014))))) -(-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-3792 (($ $) 47)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-3107 (((-783) $) 46)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3854 ((|#1| $) 45)) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1754 ((|#1| |#1| $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-1461 ((|#1| $) 48)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-4248 ((|#1| $) 44)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1015 |#1|) (-141) (-1237)) (T -1015)) -((-1754 (*1 *2 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4463) (-15 -1754 (|t#1| |t#1| $)) (-15 -1461 (|t#1| $)) (-15 -3792 ($ $)) (-15 -3107 ((-783) $)) (-15 -3854 (|t#1| $)) (-15 -4248 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-3167 (((-112) $) 43)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-2936 (((-3 (-419 (-576)) "failed") $) 78)) (-3898 (((-112) $) 72)) (-1982 (((-419 (-576)) $) 76)) (-2287 (((-112) $) 42)) (-2647 ((|#2| $) 22)) (-2422 (($ (-1 |#2| |#2|) $) 19)) (-1667 (($ $) 58)) (-4106 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1554 (((-548) $) 67)) (-2633 (($ $) 17)) (-4112 (((-875) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-4115 (((-783)) 10)) (-2388 ((|#2| $) 71)) (-3938 (((-112) $ $) 26)) (-3962 (((-112) $ $) 69)) (-4036 (($ $) 30) (($ $ $) 29)) (-4026 (($ $ $) 27)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-1016 |#1| |#2|) (-10 -8 (-15 -4112 (|#1| (-419 (-576)))) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3962 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1667 (|#1| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -2388 (|#2| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 -2287 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3167 ((-112) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-1017 |#2|) (-174)) (T -1016)) -((-4115 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1016 *3 *4)) (-4 *3 (-1017 *4))))) -(-10 -8 (-15 -4112 (|#1| (-419 (-576)))) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3962 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1667 (|#1| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -2388 (|#2| |#1|)) (-15 -2647 (|#2| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2422 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 -2287 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3167 ((-112) |#1|)) (-15 * (|#1| (-939) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2980 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2317 (((-576) $) 134 (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) 131)) (-3222 (((-701 (-576)) (-701 $)) 115 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 113) (((-701 |#1|) (-701 $)) 112)) (-3900 (((-3 $ "failed") $) 37)) (-1473 ((|#1| $) 103)) (-2936 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-3898 (((-112) $) 101 (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-3787 (($ |#1| |#1| |#1| |#1|) 104)) (-2287 (((-112) $) 35)) (-2647 ((|#1| $) 105)) (-2905 (($ $ $) 87 (|has| |#1| (-861)))) (-1654 (($ $ $) 88 (|has| |#1| (-861)))) (-2422 (($ (-1 |#1| |#1|) $) 118)) (-2198 (((-701 (-576)) (-1287 $)) 117 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 111) (((-701 |#1|) (-1287 $)) 110)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 96 (|has| |#1| (-374)))) (-3257 ((|#1| $) 106)) (-3737 ((|#1| $) 107)) (-2652 ((|#1| $) 108)) (-3115 (((-1140) $) 11)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 120 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 119 (|has| |#1| (-526 (-1196) |#1|)))) (-4368 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-4106 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-783)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-783)) 84 (|has| |#1| (-237))) (($ $ (-1196)) 82 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 80 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 79 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 78 (|has| |#1| (-918 (-1196))))) (-1554 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-2633 (($ $) 109)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576))))))) (-1972 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-2388 ((|#1| $) 102 (|has| |#1| (-1080)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-783)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1196)) 81 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 77 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 76 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 75 (|has| |#1| (-918 (-1196))))) (-3993 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 91 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 92 (|has| |#1| (-861)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) -(((-1017 |#1|) (-141) (-174)) (T -1017)) -((-2633 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-3787 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)) (-4 *2 (-1080)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2936 (*1 *2 *1) (|partial| -12 (-4 *1 (-1017 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2633 ($ $)) (-15 -2652 (|t#1| $)) (-15 -3737 (|t#1| $)) (-15 -3257 (|t#1| $)) (-15 -2647 (|t#1| $)) (-15 -3787 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1473 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -2388 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3898 ((-112) $)) (-15 -1982 ((-419 (-576)) $)) (-15 -2936 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3794 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3794 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-910 $ #2=(-1196)) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-916 (-1196)) |has| |#1| (-916 (-1196))) ((-918 #2#) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1071 #0#) |has| |#1| (-374)) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1076 #0#) |has| |#1| (-374)) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2422 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1018 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#3| (-1 |#4| |#2|) |#1|))) (-1017 |#2|) (-174) (-1017 |#4|) (-174)) (T -1018)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1017 *6)) (-5 *1 (-1018 *4 *5 *2 *6)) (-4 *4 (-1017 *5))))) -(-10 -7 (-15 -2422 (|#3| (-1 |#4| |#2|) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1473 ((|#1| $) 12)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3898 (((-112) $) NIL (|has| |#1| (-557)))) (-1982 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3787 (($ |#1| |#1| |#1| |#1|) 16)) (-2287 (((-112) $) NIL)) (-2647 ((|#1| $) NIL)) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-3257 ((|#1| $) 15)) (-3737 ((|#1| $) 14)) (-2652 ((|#1| $) 13)) (-3115 (((-1140) $) NIL)) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-4368 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4106 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2633 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576))))))) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-2388 ((|#1| $) NIL (|has| |#1| (-1080)))) (-4314 (($) 8 T CONST)) (-4320 (($) 10 T CONST)) (-3155 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) -(((-1019 |#1|) (-1017 |#1|) (-174)) (T -1019)) -NIL -(-1017 |#1|) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2337 (((-112) $ (-783)) NIL)) (-4331 (($) NIL T CONST)) (-3792 (($ $) 23)) (-3952 (($ (-656 |#1|)) 33)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-3107 (((-783) $) 26)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2976 ((|#1| $) 28)) (-2782 (($ |#1| $) 17)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3854 ((|#1| $) 27)) (-1526 ((|#1| $) 22)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1754 ((|#1| |#1| $) 16)) (-1937 (((-112) $) 18)) (-3935 (($) NIL)) (-1461 ((|#1| $) 21)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) NIL)) (-4248 ((|#1| $) 30)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1020 |#1|) (-13 (-1015 |#1|) (-10 -8 (-15 -3952 ($ (-656 |#1|))))) (-1120)) (T -1020)) -((-3952 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-1020 *3))))) -(-13 (-1015 |#1|) (-10 -8 (-15 -3952 ($ (-656 |#1|))))) -((-1462 (($ $) 12)) (-2770 (($ $ (-576)) 13))) -(((-1021 |#1|) (-10 -8 (-15 -1462 (|#1| |#1|)) (-15 -2770 (|#1| |#1| (-576)))) (-1022)) (T -1021)) -NIL -(-10 -8 (-15 -1462 (|#1| |#1|)) (-15 -2770 (|#1| |#1| (-576)))) -((-1462 (($ $) 6)) (-2770 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) -(((-1022) (-141)) (T -1022)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-419 (-576))))) (-2770 (*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-576)))) (-1462 (*1 *1 *1) (-4 *1 (-1022)))) -(-13 (-10 -8 (-15 -1462 ($ $)) (-15 -2770 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-3828 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4070 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2378 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3313 (((-701 (-419 |#2|)) (-1287 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-3832 (((-419 |#2|) $) NIL)) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3163 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4057 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2199 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-4401 (((-112)) NIL)) (-2846 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1058 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| (-419 |#2|) (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1058 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-4005 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL) (($ (-1287 (-419 |#2|))) 79) (($ (-1287 |#2|) |#2|) NIL)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-1893 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4228 (((-701 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-1428 (((-1287 $) (-1287 $)) NIL)) (-2721 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3900 (((-3 $ "failed") $) NIL)) (-2756 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-3907 (((-112) |#1| |#1|) NIL)) (-4134 (((-939)) NIL)) (-4369 (($) NIL (|has| (-419 |#2|) (-379)))) (-3374 (((-112)) NIL)) (-4273 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-1903 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-3557 (($ $) NIL)) (-3933 (($) NIL (|has| (-419 |#2|) (-360)))) (-2614 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3878 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2443 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3241 (((-939) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-939)) $) NIL (|has| (-419 |#2|) (-360)))) (-2287 (((-112) $) NIL)) (-2014 (((-783)) NIL)) (-2695 (((-1287 $) (-1287 $)) NIL)) (-2647 (((-419 |#2|) $) NIL)) (-3593 (((-656 (-970 |#1|)) (-1196)) NIL (|has| |#1| (-374)))) (-1859 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2354 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-4375 (((-939) $) NIL (|has| (-419 |#2|) (-379)))) (-2708 ((|#3| $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) NIL) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-3075 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2043 (((-1178) $) NIL)) (-3826 (((-701 (-419 |#2|))) 57)) (-4140 (((-701 (-419 |#2|))) 56)) (-1667 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1341 (($ (-1287 |#2|) |#2|) 80)) (-2744 (((-701 (-419 |#2|))) 55)) (-2713 (((-701 (-419 |#2|))) 54)) (-3873 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3248 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 86)) (-1625 (((-1287 $)) 51)) (-1527 (((-1287 $)) 50)) (-3880 (((-112) $) NIL)) (-4187 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3650 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2409 (($ (-939)) NIL (|has| (-419 |#2|) (-379)))) (-1833 (((-3 |#2| "failed")) 70)) (-3115 (((-1140) $) NIL)) (-3892 (((-783)) NIL)) (-2547 (($) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-374)))) (-3114 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1450 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1943 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2026 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-4368 ((|#1| $ |#1| |#1|) NIL)) (-3023 (((-3 |#2| "failed")) 68)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1451 (((-419 |#2|) (-1287 $)) NIL) (((-419 |#2|)) 47)) (-3334 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-4106 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3835 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3175 ((|#3|) 58)) (-1984 (($) NIL (|has| (-419 |#2|) (-360)))) (-3435 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-1554 (((-1287 (-419 |#2|)) $) NIL) (($ (-1287 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2834 (((-1287 $) (-1287 $)) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3794 (|has| (-419 |#2|) (-1058 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1972 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-3069 ((|#3| $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1919 (((-112)) 65)) (-1669 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) NIL)) (-3111 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3418 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1792 (((-112)) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-916 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1196)))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3794 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-1023 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1241) (-1263 |#1|) (-1263 (-419 |#2|)) (-419 |#2|) (-783)) (T -1023)) +((-3191 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6))) +(((-978) (-141)) (T -978)) +((-3191 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978)))) (-3191 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197))))) +(-13 (-10 -8 (-15 -3191 ($ $ (-1197))) (-15 -3191 ($ $ (-1113 $))))) +((-3814 (((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)) 26) (((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197)) 49))) +(((-979 |#1|) (-10 -7 (-15 -3814 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -3814 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -3814 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) (-13 (-374) (-148))) (T -979)) +((-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) (|:| |prim| (-1193 *6)))) (-5 *1 (-979 *6)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5)))) (-3814 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5))))) +(-10 -7 (-15 -3814 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -3814 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -3814 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) +((-3911 (((-656 |#1|) |#1| |#1|) 47)) (-4169 (((-112) |#1|) 44)) (-3991 ((|#1| |#1|) 79)) (-2023 ((|#1| |#1|) 78))) +(((-980 |#1|) (-10 -7 (-15 -4169 ((-112) |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3911 ((-656 |#1|) |#1| |#1|))) (-557)) (T -980)) +((-3911 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) (-3991 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-2023 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-4169 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -4169 ((-112) |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3911 ((-656 |#1|) |#1| |#1|))) +((-2111 (((-1293) (-876)) 9))) +(((-981) (-10 -7 (-15 -2111 ((-1293) (-876))))) (T -981)) +((-2111 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) +(-10 -7 (-15 -2111 ((-1293) (-876)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-2544 (($ $) 79 (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2112 (($ $) 31)) (-3451 (((-3 $ "failed") $) 42)) (-1371 (($ $) NIL (|has| |#1| (-464)))) (-3415 (($ $ |#1| |#2| $) 62)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) 17)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-2987 ((|#2| $) 24)) (-1938 (($ (-1 |#2| |#2|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2079 (($ $) 28)) (-2089 ((|#1| $) 26)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) 51)) (-2068 ((|#1| $) NIL)) (-1901 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-3475 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-3600 ((|#2| $) 22)) (-1457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ |#2|) 37)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) 15 T CONST)) (-2655 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2719 (($) 27 T CONST)) (-2730 (($) 12 T CONST)) (-2923 (((-112) $ $) 83)) (-3056 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 69) (($ $ (-783)) 67)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-982 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -1901 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070) (-804)) (T -982)) +((-1901 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -1901 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-1685 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-2780 (((-3 $ "failed") $ $) 52 (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2096 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2277 ((|#2| $) 22)) (-2864 ((|#1| $) 21)) (-3306 (($) NIL (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-3451 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-1836 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3215 (((-112) $) NIL (-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-3124 (($ $ $) NIL (-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-1951 (($ $ $) NIL (-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-1361 (($ |#1| |#2|) 20)) (-2460 (((-940) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3223 (($ (-940)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1450 (((-1141) $) NIL)) (-2318 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2604 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3569 (((-876) $) 14)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 42 (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2730 (($) 25 (-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-2991 (((-112) $ $) NIL (-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2962 (((-112) $ $) NIL (-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2923 (((-112) $ $) 19)) (-2978 (((-112) $ $) NIL (-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2948 (((-112) $ $) 69 (-2758 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3056 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3043 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3029 (($ $ $) 45 (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-940)) NIL (-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-940) $) NIL (-2758 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-2758 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) +(((-983 |#1| |#2|) (-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -1361 ($ |#1| |#2|)) (-15 -2864 (|#1| $)) (-15 -2277 (|#2| $)))) (-1121) (-1121)) (T -983)) +((-1361 (*1 *1 *2 *3) (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-2864 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121)))) (-2277 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) +(-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -1361 ($ |#1| |#2|)) (-15 -2864 (|#1| $)) (-15 -2277 (|#2| $)))) +((-3104 (((-1125) $) 12)) (-2825 (($ (-518) (-1125)) 14)) (-2627 (((-518) $) 9)) (-3569 (((-876) $) 24))) +(((-984) (-13 (-625 (-876)) (-10 -8 (-15 -2627 ((-518) $)) (-15 -3104 ((-1125) $)) (-15 -2825 ($ (-518) (-1125)))))) (T -984)) +((-2627 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) (-2825 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2627 ((-518) $)) (-15 -3104 ((-1125) $)) (-15 -2825 ($ (-518) (-1125))))) +((-3488 (((-112) $ $) NIL)) (-2140 (($) NIL T CONST)) (-2683 (($ $ $) 30)) (-2662 (($ $) 24)) (-1413 (((-1179) $) NIL)) (-1351 (((-703 (-887 $ $)) $) 55)) (-1671 (((-703 $) $) 45)) (-3766 (((-703 (-887 $ $)) $) 56)) (-2660 (((-703 (-887 $ $)) $) 57)) (-3221 (((-703 |#1|) $) 36)) (-1365 (((-703 (-887 $ $)) $) 54)) (-2502 (($ $ $) 31)) (-1450 (((-1141) $) NIL)) (-3512 (($) NIL T CONST)) (-3664 (($ $ $) 32)) (-1961 (($ $ $) 29)) (-2569 (($ $ $) 27)) (-3569 (((-876) $) 59) (($ |#1|) 12)) (-2113 (((-112) $ $) NIL)) (-2673 (($ $ $) 28)) (-2923 (((-112) $ $) NIL))) +(((-985 |#1|) (-13 (-988) (-628 |#1|) (-10 -8 (-15 -3221 ((-703 |#1|) $)) (-15 -1671 ((-703 $) $)) (-15 -1365 ((-703 (-887 $ $)) $)) (-15 -1351 ((-703 (-887 $ $)) $)) (-15 -3766 ((-703 (-887 $ $)) $)) (-15 -2660 ((-703 (-887 $ $)) $)) (-15 -2569 ($ $ $)) (-15 -1961 ($ $ $)))) (-1121)) (T -985)) +((-3221 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2569 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121)))) (-1961 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) +(-13 (-988) (-628 |#1|) (-10 -8 (-15 -3221 ((-703 |#1|) $)) (-15 -1671 ((-703 $) $)) (-15 -1365 ((-703 (-887 $ $)) $)) (-15 -1351 ((-703 (-887 $ $)) $)) (-15 -3766 ((-703 (-887 $ $)) $)) (-15 -2660 ((-703 (-887 $ $)) $)) (-15 -2569 ($ $ $)) (-15 -1961 ($ $ $)))) +((-2759 (((-985 |#1|) (-985 |#1|)) 46)) (-4385 (((-985 |#1|) (-985 |#1|)) 22)) (-3665 (((-1123 |#1|) (-985 |#1|)) 41))) +(((-986 |#1|) (-13 (-1238) (-10 -7 (-15 -4385 ((-985 |#1|) (-985 |#1|))) (-15 -3665 ((-1123 |#1|) (-985 |#1|))) (-15 -2759 ((-985 |#1|) (-985 |#1|))))) (-1121)) (T -986)) +((-4385 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) (-5 *1 (-986 *4)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) +(-13 (-1238) (-10 -7 (-15 -4385 ((-985 |#1|) (-985 |#1|))) (-15 -3665 ((-1123 |#1|) (-985 |#1|))) (-15 -2759 ((-985 |#1|) (-985 |#1|))))) +((-4116 (((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|)) 29))) +(((-987 |#1| |#2|) (-13 (-1238) (-10 -7 (-15 -4116 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) (-1121) (-1121)) (T -987)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6))))) +(-13 (-1238) (-10 -7 (-15 -4116 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) +((-3488 (((-112) $ $) 16)) (-2140 (($) 14 T CONST)) (-2683 (($ $ $) 6)) (-2662 (($ $) 8)) (-1413 (((-1179) $) 20)) (-2502 (($ $ $) 12)) (-1450 (((-1141) $) 19)) (-3512 (($) 13 T CONST)) (-3664 (($ $ $) 11)) (-3569 (((-876) $) 18)) (-2113 (((-112) $ $) 17)) (-2673 (($ $ $) 7)) (-2923 (((-112) $ $) 15))) +(((-988) (-141)) (T -988)) +((-2140 (*1 *1) (-4 *1 (-988))) (-3512 (*1 *1) (-4 *1 (-988))) (-2502 (*1 *1 *1 *1) (-4 *1 (-988))) (-3664 (*1 *1 *1 *1) (-4 *1 (-988)))) +(-13 (-113) (-1121) (-10 -8 (-15 -2140 ($) -1480) (-15 -3512 ($) -1480) (-15 -2502 ($ $ $)) (-15 -3664 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-1367 (($ $ $) 44)) (-4335 (($ $ $) 45)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1951 ((|#1| $) 46)) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-989 |#1|) (-141) (-861)) (T -989)) +((-1951 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-4335 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-1367 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -1951 (|t#1| $)) (-15 -4335 ($ $ $)) (-15 -1367 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-2920 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|) 105)) (-2901 ((|#2| |#2| |#2|) 103)) (-3025 (((-2 (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|) 107)) (-3362 (((-2 (|:| |coef1| |#2|) (|:| -3498 |#2|)) |#2| |#2|) 109)) (-2637 (((-2 (|:| |coef2| |#2|) (|:| -1652 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-2157 (((-2 (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|) 56)) (-4069 (((-2 (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|) 80)) (-2149 (((-2 (|:| |coef1| |#2|) (|:| -4004 |#1|)) |#2| |#2|) 82)) (-3365 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1353 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-3978 (((-2 (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|) 121)) (-2350 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-3842 (((-656 (-783)) |#2| |#2|) 102)) (-2179 ((|#1| |#2| |#2|) 50)) (-3273 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1652 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-1652 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-4215 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|) 54)) (-1522 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|) 79)) (-4004 ((|#1| |#2| |#2|) 76)) (-3966 (((-2 (|:| -1714 |#1|) (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2|) 41)) (-4299 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3154 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-1728 ((|#2| |#2| |#2|) 93)) (-3719 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-3775 ((|#2| |#2| |#2| (-783)) 85)) (-3498 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-3475 (((-1288 |#2|) (-1288 |#2|) |#1|) 22)) (-2935 (((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2|) 46)) (-2776 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|) 119)) (-2455 ((|#1| |#2|) 116)) (-3422 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-4216 ((|#2| |#2| |#2| (-783)) 90)) (-3093 (((-656 |#2|) |#2| |#2|) 99)) (-2222 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-2386 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1288 |#2|) |#1| (-1288 |#2|)) 17))) +(((-990 |#1| |#2|) (-10 -7 (-15 -4004 (|#1| |#2| |#2|)) (-15 -1522 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -4069 ((-2 (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -2149 ((-2 (|:| |coef1| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -3775 (|#2| |#2| |#2| (-783))) (-15 -3719 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1353 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4216 (|#2| |#2| |#2| (-783))) (-15 -3422 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2350 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1728 (|#2| |#2| |#2|)) (-15 -3154 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2901 (|#2| |#2| |#2|)) (-15 -2920 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -3025 ((-2 (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef1| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -2455 (|#1| |#2|)) (-15 -2776 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -3978 ((-2 (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -3093 ((-656 |#2|) |#2| |#2|)) (-15 -3842 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -1652 (|#1| |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1652 |#1|)) |#2| |#2|)) (-15 -2637 ((-2 (|:| |coef2| |#2|) (|:| -1652 |#1|)) |#2| |#2|)) (-15 -3498 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3475 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -3966 ((-2 (|:| -1714 |#1|) (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2|)) (-15 -2935 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2|)) (-15 -2386 (|#1| |#1| |#1| (-783))) (-15 -2222 (|#2| |#2| |#1| |#1| (-783))) (-15 -4299 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2179 (|#1| |#2| |#2|)) (-15 -4215 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -2157 ((-2 (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|))) (-568) (-1264 |#1|)) (T -990)) +((-2157 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4004 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4215 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4004 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2179 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-4299 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2222 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2386 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) (-4 *4 (-1264 *2)))) (-2935 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3966 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1714 *4) (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3475 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (-3498 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2637 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1652 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1652 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1652 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3842 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3093 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3978 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2455 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2776 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2455 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2455 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3498 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3025 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3498 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2920 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3498 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2901 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3365 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3154 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1728 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2350 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3422 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-4216 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-1353 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3719 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3775 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-2149 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4004 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4069 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4004 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1522 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4004 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4004 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) +(-10 -7 (-15 -4004 (|#1| |#2| |#2|)) (-15 -1522 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -4069 ((-2 (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -2149 ((-2 (|:| |coef1| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -3775 (|#2| |#2| |#2| (-783))) (-15 -3719 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1353 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4216 (|#2| |#2| |#2| (-783))) (-15 -3422 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2350 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1728 (|#2| |#2| |#2|)) (-15 -3154 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2901 (|#2| |#2| |#2|)) (-15 -2920 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -3025 ((-2 (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef1| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -2455 (|#1| |#2|)) (-15 -2776 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -3978 ((-2 (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -3093 ((-656 |#2|) |#2| |#2|)) (-15 -3842 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -1652 (|#1| |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1652 |#1|)) |#2| |#2|)) (-15 -2637 ((-2 (|:| |coef2| |#2|) (|:| -1652 |#1|)) |#2| |#2|)) (-15 -3498 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3475 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -3966 ((-2 (|:| -1714 |#1|) (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2|)) (-15 -2935 ((-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) |#2| |#2|)) (-15 -2386 (|#1| |#1| |#1| (-783))) (-15 -2222 (|#2| |#2| |#1| |#1| (-783))) (-15 -4299 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2179 (|#1| |#2| |#2|)) (-15 -4215 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|)) (-15 -2157 ((-2 (|:| |coef2| |#2|) (|:| -4004 |#1|)) |#2| |#2|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 13)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3122 (((-1156) $) 10)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-991) (-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2983 ((-1237) $))))) (T -991)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991))))) +(-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2983 ((-1237) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 40)) (-2780 (((-3 $ "failed") $ $) 54)) (-3306 (($) NIL T CONST)) (-4126 (((-656 (-887 (-940) (-940))) $) 67)) (-1831 (((-940) $) 94)) (-3965 (((-656 (-940)) $) 17)) (-3763 (((-1178 $) (-783)) 39)) (-2821 (($ (-656 (-940))) 16)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2318 (($ $) 70)) (-3569 (((-876) $) 90) (((-656 (-940)) $) 11)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 8 T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 44)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 42)) (-3029 (($ $ $) 46)) (* (($ (-940) $) NIL) (($ (-783) $) 49)) (-3502 (((-783) $) 22))) +(((-992) (-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -2821 ($ (-656 (-940)))) (-15 -3965 ((-656 (-940)) $)) (-15 -3502 ((-783) $)) (-15 -3763 ((-1178 $) (-783))) (-15 -4126 ((-656 (-887 (-940) (-940))) $)) (-15 -1831 ((-940) $)) (-15 -2318 ($ $))))) (T -992)) +((-2821 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992)))) (-2318 (*1 *1 *1) (-5 *1 (-992)))) +(-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -2821 ($ (-656 (-940)))) (-15 -3965 ((-656 (-940)) $)) (-15 -3502 ((-783) $)) (-15 -3763 ((-1178 $) (-783))) (-15 -4126 ((-656 (-887 (-940) (-940))) $)) (-15 -1831 ((-940) $)) (-15 -2318 ($ $)))) +((-3056 (($ $ |#2|) 31)) (-3043 (($ $) 23) (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) +(((-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3056 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-994 |#2| |#3| |#4|) (-1070) (-804) (-861)) (T -993)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3056 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 |#3|) $) 86)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-2037 (((-112) $) 85)) (-3215 (((-112) $) 35)) (-1606 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3600 ((|#2| $) 76)) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3998 ((|#1| $ |#2|) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-994 |#1| |#2| |#3|) (-141) (-1070) (-804) (-861)) (T -994)) +((-2089 (*1 *2 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-2079 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *2 (-804)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) (-4 *2 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-804)) (-4 *6 (-861)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1633 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1945 ($ $ |t#3| |t#2|)) (-15 -1945 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -2079 ($ $)) (-15 -2089 (|t#1| $)) (-15 -3600 (|t#2| $)) (-15 -1966 ((-656 |t#3|) $)) (-15 -2037 ((-112) $)) (-15 -1633 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4316 (((-1115 (-227)) $) 8)) (-4305 (((-1115 (-227)) $) 9)) (-4293 (((-1115 (-227)) $) 10)) (-3918 (((-656 (-656 (-962 (-227)))) $) 11)) (-3569 (((-876) $) 6))) +(((-995) (-141)) (T -995)) +((-3918 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3918 ((-656 (-656 (-962 (-227)))) $)) (-15 -4293 ((-1115 (-227)) $)) (-15 -4305 ((-1115 (-227)) $)) (-15 -4316 ((-1115 (-227)) $)))) +(((-625 (-876)) . T)) +((-1966 (((-656 |#4|) $) 23)) (-1755 (((-112) $) 55)) (-1781 (((-112) $) 54)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#4|) 42)) (-3290 (((-112) $) 56)) (-2879 (((-112) $ $) 62)) (-1576 (((-112) $ $) 65)) (-3489 (((-112) $) 60)) (-4356 (((-656 |#5|) (-656 |#5|) $) 98)) (-3234 (((-656 |#5|) (-656 |#5|) $) 95)) (-3599 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1994 (((-656 |#4|) $) 27)) (-1983 (((-112) |#4| $) 34)) (-4352 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2907 (($ $ |#4|) 39)) (-4080 (($ $ |#4|) 38)) (-3698 (($ $ |#4|) 40)) (-2923 (((-112) $ $) 46))) +(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1781 ((-112) |#1|)) (-15 -4356 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3234 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3599 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4352 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3290 ((-112) |#1|)) (-15 -1576 ((-112) |#1| |#1|)) (-15 -2879 ((-112) |#1| |#1|)) (-15 -3489 ((-112) |#1|)) (-15 -1755 ((-112) |#1|)) (-15 -1795 ((-2 (|:| |under| |#1|) (|:| -3416 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2907 (|#1| |#1| |#4|)) (-15 -3698 (|#1| |#1| |#4|)) (-15 -4080 (|#1| |#1| |#4|)) (-15 -1983 ((-112) |#4| |#1|)) (-15 -1994 ((-656 |#4|) |#1|)) (-15 -1966 ((-656 |#4|) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-997 |#2| |#3| |#4| |#5|) (-1070) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -996)) +NIL +(-10 -8 (-15 -1781 ((-112) |#1|)) (-15 -4356 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3234 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3599 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4352 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3290 ((-112) |#1|)) (-15 -1576 ((-112) |#1| |#1|)) (-15 -2879 ((-112) |#1| |#1|)) (-15 -3489 ((-112) |#1|)) (-15 -1755 ((-112) |#1|)) (-15 -1795 ((-2 (|:| |under| |#1|) (|:| -3416 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2907 (|#1| |#1| |#4|)) (-15 -3698 (|#1| |#1| |#4|)) (-15 -4080 (|#1| |#1| |#4|)) (-15 -1983 ((-112) |#4| |#1|)) (-15 -1994 ((-656 |#4|) |#1|)) (-15 -1966 ((-656 |#4|) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1966 (((-656 |#3|) $) 34)) (-1755 (((-112) $) 27)) (-1781 (((-112) $) 18 (|has| |#1| (-568)))) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) 28)) (-2396 (((-112) $ (-783)) 45)) (-1971 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464)))) (-3306 (($) 46 T CONST)) (-3290 (((-112) $) 23 (|has| |#1| (-568)))) (-2879 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1576 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3489 (((-112) $) 26 (|has| |#1| (-568)))) (-4356 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-2800 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464)))) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-2665 ((|#3| $) 35)) (-4252 (((-112) $ (-783)) 44)) (-2735 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-1994 (((-656 |#3|) $) 33)) (-1983 (((-112) |#3| $) 32)) (-3557 (((-112) $ (-783)) 43)) (-1413 (((-1179) $) 10)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1450 (((-1141) $) 11)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3542 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) 39)) (-2866 (((-112) $) 42)) (-3839 (($) 41)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2907 (($ $ |#3|) 29)) (-4080 (($ $ |#3|) 31)) (-3698 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2113 (((-112) $ $) 6)) (-2170 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-997 |#1| |#2| |#3| |#4|) (-141) (-1070) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -997)) +((-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1983 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-4080 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3698 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3416 *1) (|:| |upper| *1))) (-4 *1 (-997 *4 *5 *3 *6)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2879 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1576 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4352 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3599 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3234 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-4356 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) +(-13 (-1121) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4464) (-15 -1572 ((-3 $ "failed") (-656 |t#4|))) (-15 -2859 ($ (-656 |t#4|))) (-15 -2665 (|t#3| $)) (-15 -1966 ((-656 |t#3|) $)) (-15 -1994 ((-656 |t#3|) $)) (-15 -1983 ((-112) |t#3| $)) (-15 -4080 ($ $ |t#3|)) (-15 -3698 ($ $ |t#3|)) (-15 -2907 ($ $ |t#3|)) (-15 -1795 ((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |t#3|)) (-15 -1755 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3489 ((-112) $)) (-15 -2879 ((-112) $ $)) (-15 -1576 ((-112) $ $)) (-15 -3290 ((-112) $)) (-15 -4352 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3599 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3234 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -4356 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -1781 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-1121) . T) ((-1238) . T)) +((-3819 (((-656 |#4|) |#4| |#4|) 136)) (-2894 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-1772 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-2826 (((-112) |#4|) 43)) (-1664 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-2632 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-2334 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-2330 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-3319 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-1448 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-4097 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3666 (((-656 |#4|) (-656 |#4|)) 128)) (-4182 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-2618 ((|#4| |#4| (-656 |#4|)) 60)) (-3649 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-3865 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-3335 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-2850 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-3183 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2528 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-2845 (((-112) (-656 |#4|)) 79)) (-3284 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3912 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-2972 (((-112) |#4|) 36)) (-3927 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1517 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2379 (((-656 |#4|) (-656 |#4|)) 83)) (-2966 (((-656 |#4|) (-656 |#4|)) 97)) (-2862 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-1921 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-3063 (((-112) |#4|) 45))) +(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2850 ((-656 |#4|) (-656 |#4|))) (-15 -2850 ((-656 |#4|) |#4| |#4|)) (-15 -3666 ((-656 |#4|) (-656 |#4|))) (-15 -3819 ((-656 |#4|) |#4| |#4|)) (-15 -2850 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -2850 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2850 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -2862 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3284 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2845 ((-112) (-656 |#4|))) (-15 -2632 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -2334 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2330 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2528 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2826 ((-112) |#4|)) (-15 -1772 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2972 ((-112) |#4|)) (-15 -3912 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3063 ((-112) |#4|)) (-15 -1921 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4182 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4182 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2618 (|#4| |#4| (-656 |#4|))) (-15 -2379 ((-656 |#4|) (-656 |#4|))) (-15 -3319 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2966 ((-656 |#4|) (-656 |#4|))) (-15 -1448 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4097 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -1664 ((-656 |#4|) |#4|)) (-15 -2894 ((-656 |#4|) (-656 |#4|))) (-15 -2894 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3649 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3335 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3865 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1517 ((-656 |#4|) (-656 |#4|))) (-15 -3927 ((-656 |#4|) (-656 |#4|))) (-15 -3183 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -998)) +((-3183 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3865 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3335 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3649 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2894 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2894 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-4097 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8)))) (-1448 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3319 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1419 (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2618 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2)))) (-4182 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-4182 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-1772 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-2528 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2850 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2850 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2850 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) (-3819 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3666 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2850 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(-10 -7 (-15 -2850 ((-656 |#4|) (-656 |#4|))) (-15 -2850 ((-656 |#4|) |#4| |#4|)) (-15 -3666 ((-656 |#4|) (-656 |#4|))) (-15 -3819 ((-656 |#4|) |#4| |#4|)) (-15 -2850 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -2850 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2850 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -2862 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3284 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2845 ((-112) (-656 |#4|))) (-15 -2632 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -2334 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2330 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2528 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2826 ((-112) |#4|)) (-15 -1772 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2972 ((-112) |#4|)) (-15 -3912 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3063 ((-112) |#4|)) (-15 -1921 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4182 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4182 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2618 (|#4| |#4| (-656 |#4|))) (-15 -2379 ((-656 |#4|) (-656 |#4|))) (-15 -3319 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2966 ((-656 |#4|) (-656 |#4|))) (-15 -1448 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4097 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -1664 ((-656 |#4|) |#4|)) (-15 -2894 ((-656 |#4|) (-656 |#4|))) (-15 -2894 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3649 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3335 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3865 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1517 ((-656 |#4|) (-656 |#4|))) (-15 -3927 ((-656 |#4|) (-656 |#4|))) (-15 -3183 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) +((-2331 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2154 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 46)) (-3970 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-999 |#1|) (-10 -7 (-15 -2331 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3970 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2154 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -999)) +((-2154 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)))) (-3970 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-999 *5)))) (-2331 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) +(-10 -7 (-15 -2331 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3970 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2154 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) +((-1770 (((-430 |#4|) |#4|) 56))) +(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1770 ((-430 |#4|) |#4|))) (-861) (-805) (-464) (-968 |#3| |#2| |#1|)) (T -1000)) +((-1770 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +(-10 -7 (-15 -1770 ((-430 |#4|) |#4|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3831 (($ (-783)) 115 (|has| |#1| (-23)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-1474 (($ $) 93 (|has| $ (-6 -4465)))) (-3834 (($ $) 103)) (-2800 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3042 (($ (-656 |#1|)) 121)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2353 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-1951 (($ $ $) 86 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1325 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-3557 (((-112) $ (-783)) 10)) (-2434 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3169 (($ $ (-656 |#1|)) 119)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-1984 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-1972 (((-940) $) 120)) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1849 (($ $ $) 107)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2568 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3043 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3029 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1001 |#1|) (-141) (-1070)) (T -1001)) +((-3042 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) (-1849 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) (-3169 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070))))) +(-13 (-1286 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -3042 ($ (-656 |t#1|))) (-15 -1972 ((-940) $)) (-15 -1849 ($ $ $)) (-15 -3169 ($ $ (-656 |t#1|))))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T) ((-1286 |#1|) . T)) +((-4116 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 17))) +(((-1002 |#1| |#2|) (-10 -7 (-15 -4116 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1070) (-1070)) (T -1002)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6))))) +(-10 -7 (-15 -4116 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) +((-2584 ((|#1| (-962 |#1|)) 14)) (-2721 ((|#1| (-962 |#1|)) 13)) (-2589 ((|#1| (-962 |#1|)) 12)) (-2753 ((|#1| (-962 |#1|)) 16)) (-2025 ((|#1| (-962 |#1|)) 24)) (-4144 ((|#1| (-962 |#1|)) 15)) (-4184 ((|#1| (-962 |#1|)) 17)) (-4334 ((|#1| (-962 |#1|)) 23)) (-4105 ((|#1| (-962 |#1|)) 22))) +(((-1003 |#1|) (-10 -7 (-15 -2589 (|#1| (-962 |#1|))) (-15 -2721 (|#1| (-962 |#1|))) (-15 -2584 (|#1| (-962 |#1|))) (-15 -4144 (|#1| (-962 |#1|))) (-15 -2753 (|#1| (-962 |#1|))) (-15 -4184 (|#1| (-962 |#1|))) (-15 -4105 (|#1| (-962 |#1|))) (-15 -4334 (|#1| (-962 |#1|))) (-15 -2025 (|#1| (-962 |#1|)))) (-1070)) (T -1003)) +((-2025 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(-10 -7 (-15 -2589 (|#1| (-962 |#1|))) (-15 -2721 (|#1| (-962 |#1|))) (-15 -2584 (|#1| (-962 |#1|))) (-15 -4144 (|#1| (-962 |#1|))) (-15 -2753 (|#1| (-962 |#1|))) (-15 -4184 (|#1| (-962 |#1|))) (-15 -4105 (|#1| (-962 |#1|))) (-15 -4334 (|#1| (-962 |#1|))) (-15 -2025 (|#1| (-962 |#1|)))) +((-1663 (((-3 |#1| "failed") |#1|) 18)) (-2017 (((-3 |#1| "failed") |#1|) 6)) (-1814 (((-3 |#1| "failed") |#1|) 16)) (-2837 (((-3 |#1| "failed") |#1|) 4)) (-3553 (((-3 |#1| "failed") |#1|) 20)) (-3564 (((-3 |#1| "failed") |#1|) 8)) (-1933 (((-3 |#1| "failed") |#1| (-783)) 1)) (-1673 (((-3 |#1| "failed") |#1|) 3)) (-3543 (((-3 |#1| "failed") |#1|) 2)) (-1462 (((-3 |#1| "failed") |#1|) 21)) (-3760 (((-3 |#1| "failed") |#1|) 9)) (-1835 (((-3 |#1| "failed") |#1|) 19)) (-3682 (((-3 |#1| "failed") |#1|) 7)) (-3903 (((-3 |#1| "failed") |#1|) 17)) (-3862 (((-3 |#1| "failed") |#1|) 5)) (-2342 (((-3 |#1| "failed") |#1|) 24)) (-1582 (((-3 |#1| "failed") |#1|) 12)) (-3065 (((-3 |#1| "failed") |#1|) 22)) (-2442 (((-3 |#1| "failed") |#1|) 10)) (-3549 (((-3 |#1| "failed") |#1|) 26)) (-4417 (((-3 |#1| "failed") |#1|) 14)) (-2261 (((-3 |#1| "failed") |#1|) 27)) (-3134 (((-3 |#1| "failed") |#1|) 15)) (-2881 (((-3 |#1| "failed") |#1|) 25)) (-2099 (((-3 |#1| "failed") |#1|) 13)) (-4174 (((-3 |#1| "failed") |#1|) 23)) (-3603 (((-3 |#1| "failed") |#1|) 11))) +(((-1004 |#1|) (-141) (-1223)) (T -1004)) +((-2261 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3549 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2881 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2342 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4174 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3065 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1462 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3553 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1835 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1663 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3903 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1814 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3134 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4417 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2099 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1582 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3603 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2442 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3760 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3564 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3682 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2017 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3862 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2837 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1673 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3543 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1933 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(-13 (-10 -7 (-15 -1933 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -3543 ((-3 |t#1| "failed") |t#1|)) (-15 -1673 ((-3 |t#1| "failed") |t#1|)) (-15 -2837 ((-3 |t#1| "failed") |t#1|)) (-15 -3862 ((-3 |t#1| "failed") |t#1|)) (-15 -2017 ((-3 |t#1| "failed") |t#1|)) (-15 -3682 ((-3 |t#1| "failed") |t#1|)) (-15 -3564 ((-3 |t#1| "failed") |t#1|)) (-15 -3760 ((-3 |t#1| "failed") |t#1|)) (-15 -2442 ((-3 |t#1| "failed") |t#1|)) (-15 -3603 ((-3 |t#1| "failed") |t#1|)) (-15 -1582 ((-3 |t#1| "failed") |t#1|)) (-15 -2099 ((-3 |t#1| "failed") |t#1|)) (-15 -4417 ((-3 |t#1| "failed") |t#1|)) (-15 -3134 ((-3 |t#1| "failed") |t#1|)) (-15 -1814 ((-3 |t#1| "failed") |t#1|)) (-15 -3903 ((-3 |t#1| "failed") |t#1|)) (-15 -1663 ((-3 |t#1| "failed") |t#1|)) (-15 -1835 ((-3 |t#1| "failed") |t#1|)) (-15 -3553 ((-3 |t#1| "failed") |t#1|)) (-15 -1462 ((-3 |t#1| "failed") |t#1|)) (-15 -3065 ((-3 |t#1| "failed") |t#1|)) (-15 -4174 ((-3 |t#1| "failed") |t#1|)) (-15 -2342 ((-3 |t#1| "failed") |t#1|)) (-15 -2881 ((-3 |t#1| "failed") |t#1|)) (-15 -3549 ((-3 |t#1| "failed") |t#1|)) (-15 -2261 ((-3 |t#1| "failed") |t#1|)))) +((-2597 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1776 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4116 ((|#4| (-1 |#4| (-971 |#1|)) |#4|) 31))) +(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| |#4| |#3|)) (-15 -1776 (|#4| |#4| (-656 |#3|))) (-15 -2597 (|#4| |#4| |#3|)) (-15 -2597 (|#4| |#4| (-656 |#3|))) (-15 -4116 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) (-1070) (-805) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197))))) (-968 (-971 |#1|) |#2| |#3|)) (T -1005)) +((-4116 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-971 *4))) (-4 *4 (-1070)) (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *6 *2)))) (-2597 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-2597 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) (-1776 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-1776 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3))))) +(-10 -7 (-15 -1776 (|#4| |#4| |#3|)) (-15 -1776 (|#4| |#4| (-656 |#3|))) (-15 -2597 (|#4| |#4| |#3|)) (-15 -2597 (|#4| |#4| (-656 |#3|))) (-15 -4116 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) +((-4430 ((|#2| |#3|) 35)) (-3185 (((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-3277 (((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) +(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3277 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3185 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -4430 (|#2| |#3|))) (-360) (-1264 |#1|) (-1264 |#2|) (-736 |#2| |#3|)) (T -1006)) +((-4430 (*1 *2 *3) (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-3277 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -3454 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) +(-10 -7 (-15 -3277 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3185 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -4430 (|#2| |#3|))) +((-1827 (((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -1827 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1197)) (-783)) (T -1007)) +((-1827 (*1 *2 *2) (-12 (-5 *2 (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) +(-10 -7 (-15 -1827 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) +((-3488 (((-112) $ $) NIL)) (-2052 (((-3 (-112) "failed") $) 71)) (-2759 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2525 (($ $ (-3 (-112) "failed")) 72)) (-3331 (($ (-656 |#4|) |#4|) 25)) (-1413 (((-1179) $) NIL)) (-2398 (($ $) 69)) (-1450 (((-1141) $) NIL)) (-2866 (((-112) $) 70)) (-3839 (($) 30)) (-2213 ((|#4| $) 74)) (-2817 (((-656 |#4|) $) 73)) (-3569 (((-876) $) 68)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1008 |#1| |#2| |#3| |#4|) (-13 (-1121) (-625 (-876)) (-10 -8 (-15 -3839 ($)) (-15 -3331 ($ (-656 |#4|) |#4|)) (-15 -2052 ((-3 (-112) "failed") $)) (-15 -2525 ($ $ (-3 (-112) "failed"))) (-15 -2866 ((-112) $)) (-15 -2817 ((-656 |#4|) $)) (-15 -2213 (|#4| $)) (-15 -2398 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2759 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-861) (-805) (-968 |#1| |#3| |#2|)) (T -1008)) +((-3839 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-3331 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-2052 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2866 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2213 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)))) (-2398 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-2759 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) +(-13 (-1121) (-625 (-876)) (-10 -8 (-15 -3839 ($)) (-15 -3331 ($ (-656 |#4|) |#4|)) (-15 -2052 ((-3 (-112) "failed") $)) (-15 -2525 ($ $ (-3 (-112) "failed"))) (-15 -2866 ((-112) $)) (-15 -2817 ((-656 |#4|) $)) (-15 -2213 (|#4| $)) (-15 -2398 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2759 ($ $)) |%noBranch|) |%noBranch|))) +((-3646 (((-112) |#5| |#5|) 44)) (-2777 (((-112) |#5| |#5|) 59)) (-2480 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2217 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-4011 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 70)) (-3205 (((-1293)) 32)) (-3835 (((-1293) (-1179) (-1179) (-1179)) 28)) (-1788 (((-656 |#5|) (-656 |#5|)) 100)) (-3715 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) 92)) (-3669 (((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-3349 (((-112) |#5| |#5|) 53)) (-4434 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1553 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-1607 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1716 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2598 (((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3849 (((-656 |#5|) (-656 |#5|)) 49))) +(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3835 ((-1293) (-1179) (-1179) (-1179))) (-15 -3205 ((-1293))) (-15 -3646 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3349 ((-112) |#5| |#5|)) (-15 -2777 ((-112) |#5| |#5|)) (-15 -2217 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1553 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1607 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1716 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4434 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2480 ((-112) |#5| |#5|)) (-15 -2480 ((-112) |#5| (-656 |#5|))) (-15 -1788 ((-656 |#5|) (-656 |#5|))) (-15 -4011 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3715 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3669 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2598 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1009)) +((-2598 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3669 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-4011 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) (-2480 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4434 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1716 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1607 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1553 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2217 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2777 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3349 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3646 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3205 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3835 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -3835 ((-1293) (-1179) (-1179) (-1179))) (-15 -3205 ((-1293))) (-15 -3646 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3349 ((-112) |#5| |#5|)) (-15 -2777 ((-112) |#5| |#5|)) (-15 -2217 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1553 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1607 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1716 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4434 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2480 ((-112) |#5| |#5|)) (-15 -2480 ((-112) |#5| (-656 |#5|))) (-15 -1788 ((-656 |#5|) (-656 |#5|))) (-15 -4011 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3715 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3669 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2598 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3054 (((-1197) $) 15)) (-3104 (((-1179) $) 16)) (-2335 (($ (-1197) (-1179)) 14)) (-3569 (((-876) $) 13))) +(((-1010) (-13 (-625 (-876)) (-10 -8 (-15 -2335 ($ (-1197) (-1179))) (-15 -3054 ((-1197) $)) (-15 -3104 ((-1179) $))))) (T -1010)) +((-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1010)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2335 ($ (-1197) (-1179))) (-15 -3054 ((-1197) $)) (-15 -3104 ((-1179) $)))) +((-4116 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1013 |#1|) (-1013 |#2|)) (T -1011)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1013 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1013 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) +((-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2859 ((|#2| $) NIL) (((-1197) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-4344 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 115) (((-701 |#2|) (-701 $)) 28)) (-1836 (($) 99)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 76) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 85)) (-4340 (($ $) 10)) (-3396 (((-3 $ "failed") $) 20)) (-4116 (($ (-1 |#2| |#2|) $) 22)) (-3539 (($) 16)) (-2638 (($ $) 55)) (-2773 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3708 (($ $) 12)) (-4171 (((-907 (-576)) $) 71) (((-907 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1197)) 58)) (-1778 (((-783)) 31)) (-2948 (((-112) $ $) 51))) +(((-1012 |#1| |#2|) (-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1836 (|#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -4340 (|#1| |#1|)) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4344 ((-701 |#2|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1013 |#2|) (-568)) (T -1012)) +((-1778 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) (-4 *3 (-1013 *4))))) +(-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1836 (|#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -4340 (|#1| |#1|)) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2399 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4344 ((-701 |#2|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2347 ((|#1| $) 163 (|has| |#1| (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-2971 (((-430 (-1193 $)) (-1193 $)) 154 (|has| |#1| (-928)))) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 157 (|has| |#1| (-928)))) (-2420 (((-112) $ $) 65)) (-1529 (((-576) $) 144 (|has| |#1| (-832)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 193) (((-3 (-1197) "failed") $) 152 (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1059 (-576))))) (-2859 ((|#1| $) 194) (((-1197) $) 153 (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 136 (|has| |#1| (-1059 (-576)))) (((-576) $) 134 (|has| |#1| (-1059 (-576))))) (-3428 (($ $ $) 61)) (-4344 (((-701 (-576)) (-701 $)) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 176) (((-701 |#1|) (-701 $)) 175)) (-3451 (((-3 $ "failed") $) 37)) (-1836 (($) 161 (|has| |#1| (-557)))) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-4169 (((-112) $) 79)) (-1661 (((-112) $) 146 (|has| |#1| (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 170 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 169 (|has| |#1| (-901 (-390))))) (-3215 (((-112) $) 35)) (-4340 (($ $) 165)) (-1570 ((|#1| $) 167)) (-3396 (((-3 $ "failed") $) 132 (|has| |#1| (-1173)))) (-4099 (((-112) $) 145 (|has| |#1| (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3124 (($ $ $) 137 (|has| |#1| (-861)))) (-1951 (($ $ $) 138 (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) 185)) (-3626 (((-701 (-576)) (-1288 $)) 180 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 174) (((-701 |#1|) (-1288 $)) 173)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-3539 (($) 131 (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2638 (($ $) 162 (|has| |#1| (-317)))) (-3416 ((|#1| $) 159 (|has| |#1| (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 156 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 155 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 187 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 186 (|has| |#1| (-526 (-1197) |#1|)))) (-2411 (((-783) $) 64)) (-2796 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-2773 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-783)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-783)) 128 (|has| |#1| (-237))) (($ $ (-1197)) 126 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 124 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 123 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 122 (|has| |#1| (-919 (-1197))))) (-3708 (($ $) 164)) (-1581 ((|#1| $) 166)) (-4171 (((-907 (-576)) $) 172 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 171 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1043))) (((-227) $) 147 (|has| |#1| (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 158 (-2673 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1197)) 151 (|has| |#1| (-1059 (-1197))))) (-3230 (((-3 $ "failed") $) 150 (-2758 (|has| |#1| (-146)) (-2673 (|has| $ (-146)) (|has| |#1| (-928)))))) (-1778 (((-783)) 32 T CONST)) (-1487 ((|#1| $) 160 (|has| |#1| (-557)))) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-1665 (($ $) 143 (|has| |#1| (-832)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-783)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1197)) 125 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 121 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 120 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 119 (|has| |#1| (-919 (-1197))))) (-2991 (((-112) $ $) 139 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 141 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 140 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 142 (|has| |#1| (-861)))) (-3056 (($ $ $) 73) (($ |#1| |#1|) 168)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) +(((-1013 |#1|) (-141) (-568)) (T -1013)) +((-3056 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-4340 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-3708 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1836 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) +(-13 (-374) (-38 |t#1|) (-1059 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-899 |t#1|) (-412 |t#1|) (-10 -8 (-15 -3056 ($ |t#1| |t#1|)) (-15 -1570 (|t#1| $)) (-15 -1581 (|t#1| $)) (-15 -4340 ($ $)) (-15 -3708 ($ $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-1059 (-576))) (PROGN (-6 (-1059 (-576))) (-6 (-1059 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1059 (-1197))) (-6 (-1059 (-1197))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -2347 (|t#1| $)) (-15 -2638 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1836 ($)) (-15 -1487 (|t#1| $)) (-15 -3416 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1197)) |has| |#1| (-1059 (-1197))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1043)) ((-626 (-390)) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-234 $) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-861) -2758 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-864) -2758 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-911 $ #3=(-1197)) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) |has| |#1| (-928)) ((-939) . T) ((-1043) |has| |#1| (-1043)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-576))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #1#) |has| |#1| (-1059 (-1197))) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-4303 (($ (-1163 |#1| |#2|)) 11)) (-2465 (((-1163 |#1| |#2|) $) 12)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 ((|#2| $ (-245 |#1| |#2|)) 16)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) +(((-1014 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -4303 ($ (-1163 |#1| |#2|))) (-15 -2465 ((-1163 |#1| |#2|) $)))) (-940) (-374)) (T -1014)) +((-4303 (*1 *1 *2) (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) (-5 *1 (-1014 *3 *4)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374))))) +(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -4303 ($ (-1163 |#1| |#2|))) (-15 -2465 ((-1163 |#1| |#2|) $)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3122 (((-1156) $) 9)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1015) (-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $))))) (T -1015)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015))))) +(-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-1703 (($ $) 47)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-2434 (((-783) $) 46)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4253 ((|#1| $) 45)) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1641 ((|#1| |#1| $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-3914 ((|#1| $) 48)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-3786 ((|#1| $) 44)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1016 |#1|) (-141) (-1238)) (T -1016)) +((-1641 (*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-1703 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -1641 (|t#1| |t#1| $)) (-15 -3914 (|t#1| $)) (-15 -1703 ($ $)) (-15 -2434 ((-783) $)) (-15 -4253 (|t#1| $)) (-15 -3786 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-1812 (((-112) $) 43)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-3355 (((-3 (-419 (-576)) "failed") $) 78)) (-3426 (((-112) $) 72)) (-2034 (((-419 (-576)) $) 76)) (-3215 (((-112) $) 42)) (-2471 ((|#2| $) 22)) (-4116 (($ (-1 |#2| |#2|) $) 19)) (-2048 (($ $) 58)) (-2773 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4171 (((-548) $) 67)) (-2318 (($ $) 17)) (-3569 (((-876) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-1778 (((-783)) 10)) (-1665 ((|#2| $) 71)) (-2923 (((-112) $ $) 26)) (-2948 (((-112) $ $) 69)) (-3043 (($ $) 30) (($ $ $) 29)) (-3029 (($ $ $) 27)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-1017 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2948 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2048 (|#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -1665 (|#2| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3215 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1812 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-1018 |#2|) (-174)) (T -1017)) +((-1778 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) (-4 *3 (-1018 *4))))) +(-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2948 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2048 (|#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -1665 (|#2| |#1|)) (-15 -2471 (|#2| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3215 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1812 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2859 (((-576) $) 134 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 131)) (-4344 (((-701 (-576)) (-701 $)) 115 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 112)) (-3451 (((-3 $ "failed") $) 37)) (-1851 ((|#1| $) 103)) (-3355 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-3426 (((-112) $) 101 (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-1650 (($ |#1| |#1| |#1| |#1|) 104)) (-3215 (((-112) $) 35)) (-2471 ((|#1| $) 105)) (-3124 (($ $ $) 87 (|has| |#1| (-861)))) (-1951 (($ $ $) 88 (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) 118)) (-3626 (((-701 (-576)) (-1288 $)) 117 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 111) (((-701 |#1|) (-1288 $)) 110)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 96 (|has| |#1| (-374)))) (-3472 ((|#1| $) 106)) (-2413 ((|#1| $) 107)) (-2503 ((|#1| $) 108)) (-1450 (((-1141) $) 11)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 120 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 119 (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-2773 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-783)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-783)) 84 (|has| |#1| (-237))) (($ $ (-1197)) 82 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 80 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 79 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 78 (|has| |#1| (-919 (-1197))))) (-4171 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-2318 (($ $) 109)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3230 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-1665 ((|#1| $) 102 (|has| |#1| (-1081)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-783)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1197)) 81 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 77 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 76 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 75 (|has| |#1| (-919 (-1197))))) (-2991 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 91 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 90 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 92 (|has| |#1| (-861)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) +(((-1018 |#1|) (-141) (-174)) (T -1018)) +((-2318 (*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-3472 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1650 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3355 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2318 ($ $)) (-15 -2503 (|t#1| $)) (-15 -2413 (|t#1| $)) (-15 -3472 (|t#1| $)) (-15 -2471 (|t#1| $)) (-15 -1650 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1851 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -1665 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3426 ((-112) $)) (-15 -2034 ((-419 (-576)) $)) (-15 -3355 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2758 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2758 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-911 $ #2=(-1197)) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-374)) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1077 #0#) |has| |#1| (-374)) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4116 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1019 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) (-1018 |#2|) (-174) (-1018 |#4|) (-174)) (T -1019)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5))))) +(-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1851 ((|#1| $) 12)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3426 (((-112) $) NIL (|has| |#1| (-557)))) (-2034 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1650 (($ |#1| |#1| |#1| |#1|) 16)) (-3215 (((-112) $) NIL)) (-2471 ((|#1| $) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3472 ((|#1| $) 15)) (-2413 ((|#1| $) 14)) (-2503 ((|#1| $) 13)) (-1450 (((-1141) $) NIL)) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2773 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2318 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-1665 ((|#1| $) NIL (|has| |#1| (-1081)))) (-2719 (($) 8 T CONST)) (-2730 (($) 10 T CONST)) (-2018 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) +(((-1020 |#1|) (-1018 |#1|) (-174)) (T -1020)) +NIL +(-1018 |#1|) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2396 (((-112) $ (-783)) NIL)) (-3306 (($) NIL T CONST)) (-1703 (($ $) 23)) (-3981 (($ (-656 |#1|)) 33)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2434 (((-783) $) 26)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3772 ((|#1| $) 28)) (-4436 (($ |#1| $) 17)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4253 ((|#1| $) 27)) (-3267 ((|#1| $) 22)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1641 ((|#1| |#1| $) 16)) (-2866 (((-112) $) 18)) (-3839 (($) NIL)) (-3914 ((|#1| $) 21)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) NIL)) (-3786 ((|#1| $) 30)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1021 |#1|) (-13 (-1016 |#1|) (-10 -8 (-15 -3981 ($ (-656 |#1|))))) (-1121)) (T -1021)) +((-3981 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) +(-13 (-1016 |#1|) (-10 -8 (-15 -3981 ($ (-656 |#1|))))) +((-1839 (($ $) 12)) (-4336 (($ $ (-576)) 13))) +(((-1022 |#1|) (-10 -8 (-15 -1839 (|#1| |#1|)) (-15 -4336 (|#1| |#1| (-576)))) (-1023)) (T -1022)) +NIL +(-10 -8 (-15 -1839 (|#1| |#1|)) (-15 -4336 (|#1| |#1| (-576)))) +((-1839 (($ $) 6)) (-4336 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) +(((-1023) (-141)) (T -1023)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-576))))) (-4336 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576)))) (-1839 (*1 *1 *1) (-4 *1 (-1023)))) +(-13 (-10 -8 (-15 -1839 ($ $)) (-15 -4336 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2002 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2544 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1574 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2747 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2208 (((-419 |#2|) $) NIL)) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1770 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2420 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2096 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-1539 (((-112)) NIL)) (-3847 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-3208 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 79) (($ (-1288 |#2|) |#2|) NIL)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3428 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3567 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2229 (((-1288 $) (-1288 $)) NIL)) (-3685 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3451 (((-3 $ "failed") $) NIL)) (-4233 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-3525 (((-112) |#1| |#1|) NIL)) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| (-419 |#2|) (-379)))) (-2132 (((-112)) NIL)) (-4041 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3440 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1371 (($ $) NIL)) (-3814 (($) NIL (|has| (-419 |#2|) (-360)))) (-2117 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-1332 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4169 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3309 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-3215 (((-112) $) NIL)) (-2285 (((-783)) NIL)) (-1712 (((-1288 $) (-1288 $)) NIL)) (-2471 (((-419 |#2|) $) NIL)) (-3598 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2542 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-2460 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-3671 ((|#3| $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1413 (((-1179) $) NIL)) (-1987 (((-701 (-419 |#2|))) 57)) (-1992 (((-701 (-419 |#2|))) 56)) (-2048 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3026 (($ (-1288 |#2|) |#2|) 80)) (-4120 (((-701 (-419 |#2|))) 55)) (-1867 (((-701 (-419 |#2|))) 54)) (-4405 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3382 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 86)) (-2936 (((-1288 $)) 51)) (-3277 (((-1288 $)) 50)) (-1352 (((-112) $) NIL)) (-4401 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3539 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-4368 (((-3 |#2| "failed")) 70)) (-1450 (((-1141) $) NIL)) (-1464 (((-783)) NIL)) (-4128 (($) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3498 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2411 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2796 ((|#1| $ |#1| |#1|) NIL)) (-2942 (((-3 |#2| "failed")) 68)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2455 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 47)) (-2992 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2773 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4058 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1897 ((|#3|) 58)) (-2051 (($) NIL (|has| (-419 |#2|) (-360)))) (-1490 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-4171 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-3725 (((-1288 $) (-1288 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2758 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3230 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2137 ((|#3| $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2688 (((-112)) 65)) (-2045 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) NIL)) (-2537 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2515 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3961 (((-112)) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2758 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-1024 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-419 |#2|) (-783)) (T -1024)) NIL (-353 |#1| |#2| |#3|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-3899 (((-656 (-576)) $) 73)) (-3580 (($ (-656 (-576))) 81)) (-1705 (((-576) $) 48 (|has| (-576) (-317)))) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL (|has| (-576) (-832)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) 60) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1058 (-1196)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1058 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1058 (-576))))) (-2317 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1058 (-576)))) (((-576) $) NIL (|has| (-576) (-1058 (-576))))) (-1893 (($ $ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-4369 (($) NIL (|has| (-576) (-557)))) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-1888 (((-656 (-576)) $) 79)) (-2690 (((-112) $) NIL (|has| (-576) (-832)))) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (|has| (-576) (-900 (-576)))) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (|has| (-576) (-900 (-390))))) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL)) (-2686 (((-576) $) 45)) (-1859 (((-3 $ "failed") $) NIL (|has| (-576) (-1172)))) (-3197 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-576) (-861)))) (-2422 (($ (-1 (-576) (-576)) $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1914 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-4268 (((-1177 (-576)) $) 78)) (-2082 (($ (-656 (-576)) (-656 (-576))) 82)) (-2804 (((-576) $) 64 (|has| (-576) (-557)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-927)))) (-1450 (((-430 $) $) NIL)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2143 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-2026 (((-783) $) NIL)) (-4368 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2521 (($ $) NIL)) (-2697 (((-576) $) 47)) (-2859 (((-656 (-576)) $) 80)) (-1554 (((-906 (-576)) $) NIL (|has| (-576) (-626 (-906 (-576))))) (((-906 (-390)) $) NIL (|has| (-576) (-626 (-906 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1042))) (((-227) $) NIL (|has| (-576) (-1042)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-927))))) (-4112 (((-875) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1196)) NIL (|has| (-576) (-1058 (-1196)))) (((-419 (-576)) $) 25)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-576) (-927))) (|has| (-576) (-146))))) (-4115 (((-783)) 13 T CONST)) (-2671 (((-576) $) 62 (|has| (-576) (-557)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2388 (($ $) NIL (|has| (-576) (-832)))) (-4314 (($) 14 T CONST)) (-4320 (($) 17 T CONST)) (-3155 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-918 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3993 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3938 (((-112) $ $) 21)) (-3983 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3962 (((-112) $ $) 40 (|has| (-576) (-861)))) (-4046 (($ $ $) 36) (($ (-576) (-576)) 38)) (-4036 (($ $) 23) (($ $ $) 30)) (-4026 (($ $ $) 28)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) -(((-1024 |#1|) (-13 (-1012 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -3899 ((-656 (-576)) $)) (-15 -4268 ((-1177 (-576)) $)) (-15 -1888 ((-656 (-576)) $)) (-15 -2859 ((-656 (-576)) $)) (-15 -3580 ($ (-656 (-576)))) (-15 -2082 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1024)) -((-1914 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1177 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) (-3580 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) (-2082 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) -(-13 (-1012 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1914 ((-419 (-576)) $)) (-15 -3899 ((-656 (-576)) $)) (-15 -4268 ((-1177 (-576)) $)) (-15 -1888 ((-656 (-576)) $)) (-15 -2859 ((-656 (-576)) $)) (-15 -3580 ($ (-656 (-576)))) (-15 -2082 ($ (-656 (-576)) (-656 (-576)))))) -((-3199 (((-52) (-419 (-576)) (-576)) 9))) -(((-1025) (-10 -7 (-15 -3199 ((-52) (-419 (-576)) (-576))))) (T -1025)) -((-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1025))))) -(-10 -7 (-15 -3199 ((-52) (-419 (-576)) (-576)))) -((-2199 (((-576)) 23)) (-3007 (((-576)) 28)) (-2340 (((-1292) (-576)) 26)) (-1871 (((-576) (-576)) 29) (((-576)) 22))) -(((-1026) (-10 -7 (-15 -1871 ((-576))) (-15 -2199 ((-576))) (-15 -1871 ((-576) (-576))) (-15 -2340 ((-1292) (-576))) (-15 -3007 ((-576))))) (T -1026)) -((-3007 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1026)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026)))) (-2199 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026)))) (-1871 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026))))) -(-10 -7 (-15 -1871 ((-576))) (-15 -2199 ((-576))) (-15 -1871 ((-576) (-576))) (-15 -2340 ((-1292) (-576))) (-15 -3007 ((-576)))) -((-2816 (((-430 |#1|) |#1|) 43)) (-1450 (((-430 |#1|) |#1|) 41))) -(((-1027 |#1|) (-10 -7 (-15 -1450 ((-430 |#1|) |#1|)) (-15 -2816 ((-430 |#1|) |#1|))) (-1263 (-419 (-576)))) (T -1027)) -((-2816 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1027 *3)) (-4 *3 (-1263 (-419 (-576)))))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1027 *3)) (-4 *3 (-1263 (-419 (-576))))))) -(-10 -7 (-15 -1450 ((-430 |#1|) |#1|)) (-15 -2816 ((-430 |#1|) |#1|))) -((-2936 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3898 (((-112) |#1|) 14)) (-1982 (((-419 (-576)) |#1|) 10))) -(((-1028 |#1|) (-10 -7 (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|))) (-1058 (-419 (-576)))) (T -1028)) -((-2936 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2)))) (-3898 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1058 (-419 (-576)))))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2))))) -(-10 -7 (-15 -1982 ((-419 (-576)) |#1|)) (-15 -3898 ((-112) |#1|)) (-15 -2936 ((-3 (-419 (-576)) "failed") |#1|))) -((-4267 ((|#2| $ "value" |#2|) 12)) (-4368 ((|#2| $ "value") 10)) (-2777 (((-112) $ $) 18))) -(((-1029 |#1| |#2|) (-10 -8 (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -2777 ((-112) |#1| |#1|)) (-15 -4368 (|#2| |#1| "value"))) (-1030 |#2|) (-1237)) (T -1029)) -NIL -(-10 -8 (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -2777 ((-112) |#1| |#1|)) (-15 -4368 (|#2| |#1| "value"))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-4331 (($) 7 T CONST)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48)) (-3183 (((-576) $ $) 45)) (-2003 (((-112) $) 47)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1030 |#1|) (-141) (-1237)) (T -1030)) -((-4335 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1030 *3)))) (-3395 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1030 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3183 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))) (-2777 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-112)))) (-2520 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-112)))) (-4370 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4464)) (-4 *1 (-1030 *3)) (-4 *3 (-1237)))) (-4267 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4464)) (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) (-3078 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1030 *2)) (-4 *2 (-1237))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -4335 ((-656 $) $)) (-15 -3395 ((-656 $) $)) (-15 -2887 ((-112) $)) (-15 -1688 (|t#1| $)) (-15 -4368 (|t#1| $ "value")) (-15 -2003 ((-112) $)) (-15 -4185 ((-656 |t#1|) $)) (-15 -3183 ((-576) $ $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -2777 ((-112) $ $)) (-15 -2520 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4464)) (PROGN (-15 -4370 ($ $ (-656 $))) (-15 -4267 (|t#1| $ "value" |t#1|)) (-15 -3078 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-1462 (($ $) 9) (($ $ (-939)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-1480 (((-3 $ "failed") (-1192 $) (-939) (-875)) 24) (((-3 $ "failed") (-1192 $) (-939)) 32)) (-2770 (($ $ (-576)) 58)) (-4115 (((-783)) 18)) (-3831 (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 (-419 (-576)))) 63) (((-656 $) (-1192 (-576))) 68) (((-656 $) (-970 $)) 72) (((-656 $) (-970 (-419 (-576)))) 76) (((-656 $) (-970 (-576))) 80)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) -(((-1031 |#1|) (-10 -8 (-15 -1462 (|#1| (-576))) (-15 -1462 (|#1| (-419 (-576)))) (-15 -1462 (|#1| |#1| (-939))) (-15 -3831 ((-656 |#1|) (-970 (-576)))) (-15 -3831 ((-656 |#1|) (-970 (-419 (-576))))) (-15 -3831 ((-656 |#1|) (-970 |#1|))) (-15 -3831 ((-656 |#1|) (-1192 (-576)))) (-15 -3831 ((-656 |#1|) (-1192 (-419 (-576))))) (-15 -3831 ((-656 |#1|) (-1192 |#1|))) (-15 -1480 ((-3 |#1| "failed") (-1192 |#1|) (-939))) (-15 -1480 ((-3 |#1| "failed") (-1192 |#1|) (-939) (-875))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2770 (|#1| |#1| (-576))) (-15 -1462 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4115 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939)))) (-1032)) (T -1031)) -((-4115 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1031 *3)) (-4 *3 (-1032))))) -(-10 -8 (-15 -1462 (|#1| (-576))) (-15 -1462 (|#1| (-419 (-576)))) (-15 -1462 (|#1| |#1| (-939))) (-15 -3831 ((-656 |#1|) (-970 (-576)))) (-15 -3831 ((-656 |#1|) (-970 (-419 (-576))))) (-15 -3831 ((-656 |#1|) (-970 |#1|))) (-15 -3831 ((-656 |#1|) (-1192 (-576)))) (-15 -3831 ((-656 |#1|) (-1192 (-419 (-576))))) (-15 -3831 ((-656 |#1|) (-1192 |#1|))) (-15 -1480 ((-3 |#1| "failed") (-1192 |#1|) (-939))) (-15 -1480 ((-3 |#1| "failed") (-1192 |#1|) (-939) (-875))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2770 (|#1| |#1| (-576))) (-15 -1462 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4115 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 103)) (-4070 (($ $) 104)) (-2378 (((-112) $) 106)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 123)) (-3163 (((-430 $) $) 124)) (-1462 (($ $) 87) (($ $ (-939)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-4057 (((-112) $ $) 114)) (-3773 (((-576) $) 140)) (-4331 (($) 18 T CONST)) (-1480 (((-3 $ "failed") (-1192 $) (-939) (-875)) 81) (((-3 $ "failed") (-1192 $) (-939)) 80)) (-2980 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1058 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2317 (((-576) $) 99 (|has| (-419 (-576)) (-1058 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1058 (-419 (-576))))) (((-419 (-576)) $) 96)) (-4197 (($ $ (-875)) 70)) (-2355 (($ $ (-875)) 69)) (-1893 (($ $ $) 118)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 117)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 112)) (-2443 (((-112) $) 125)) (-2690 (((-112) $) 138)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 86)) (-3197 (((-112) $) 139)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 121)) (-2905 (($ $ $) 132)) (-1654 (($ $ $) 133)) (-3049 (((-3 (-1192 $) "failed") $) 82)) (-3708 (((-3 (-875) "failed") $) 84)) (-4074 (((-3 (-1192 $) "failed") $) 83)) (-3075 (($ (-656 $)) 110) (($ $ $) 109)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 126)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 111)) (-3114 (($ (-656 $)) 108) (($ $ $) 107)) (-1450 (((-430 $) $) 122)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 119)) (-1943 (((-3 $ "failed") $ $) 102)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 113)) (-2026 (((-783) $) 115)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 116)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 105)) (-2641 (((-419 (-576)) $ $) 68)) (-3831 (((-656 $) (-1192 $)) 79) (((-656 $) (-1192 (-419 (-576)))) 78) (((-656 $) (-1192 (-576))) 77) (((-656 $) (-970 $)) 76) (((-656 $) (-970 (-419 (-576)))) 75) (((-656 $) (-970 (-576))) 74)) (-2388 (($ $) 141)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 134)) (-3974 (((-112) $ $) 136)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 135)) (-3962 (((-112) $ $) 137)) (-4046 (($ $ $) 131)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) -(((-1032) (-141)) (T -1032)) -((-1462 (*1 *1 *1) (-4 *1 (-1032))) (-3708 (*1 *2 *1) (|partial| -12 (-4 *1 (-1032)) (-5 *2 (-875)))) (-4074 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1032)))) (-3049 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1032)))) (-1480 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-939)) (-5 *4 (-875)) (-4 *1 (-1032)))) (-1480 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-939)) (-4 *1 (-1032)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1032)) (-5 *2 (-656 *1)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-1192 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-970 *1)) (-4 *1 (-1032)) (-5 *2 (-656 *1)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-970 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-970 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) (-1462 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-939)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1032)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1032)))) (-4197 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-875)))) (-2355 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-875)))) (-2641 (*1 *2 *1 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-419 (-576)))))) -(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1022) (-10 -8 (-15 -3708 ((-3 (-875) "failed") $)) (-15 -4074 ((-3 (-1192 $) "failed") $)) (-15 -3049 ((-3 (-1192 $) "failed") $)) (-15 -1480 ((-3 $ "failed") (-1192 $) (-939) (-875))) (-15 -1480 ((-3 $ "failed") (-1192 $) (-939))) (-15 -3831 ((-656 $) (-1192 $))) (-15 -3831 ((-656 $) (-1192 (-419 (-576))))) (-15 -3831 ((-656 $) (-1192 (-576)))) (-15 -3831 ((-656 $) (-970 $))) (-15 -3831 ((-656 $) (-970 (-419 (-576))))) (-15 -3831 ((-656 $) (-970 (-576)))) (-15 -1462 ($ $ (-939))) (-15 -1462 ($ $)) (-15 -1462 ($ (-419 (-576)))) (-15 -1462 ($ (-576))) (-15 -4197 ($ $ (-875))) (-15 -2355 ($ $ (-875))) (-15 -2641 ((-419 (-576)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-863) . T) ((-938) . T) ((-1022) . T) ((-1058 (-419 (-576))) . T) ((-1058 (-576)) |has| (-419 (-576)) (-1058 (-576))) ((-1071 #0#) . T) ((-1071 #1#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 #1#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-2316 (((-2 (|:| |ans| |#2|) (|:| -2110 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -2316 ((-2 (|:| |ans| |#2|) (|:| -2110 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-27) (-442 |#1|))) (T -1033)) -((-2316 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4153 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1058 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2110 *4) (|:| |sol?| (-112)))) (-5 *1 (-1033 *8 *4))))) -(-10 -7 (-15 -2316 ((-2 (|:| |ans| |#2|) (|:| -2110 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3136 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -3136 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1058 (-576)) (-651 (-576))) (-13 (-1222) (-27) (-442 |#1|))) (T -1034)) -((-3136 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4153 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1058 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1034 *8 *4))))) -(-10 -7 (-15 -3136 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4153 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1802 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3378 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-2806 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4244 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2992 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -2806 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4244 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2992 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1802 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3378 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1058 (-576))) (-1263 |#1|)) (T -1035)) -((-1802 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1058 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3378 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1035 *6 *3)))) (-2992 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5)))) (-2806 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -4244 *6))) (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -2806 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4244 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2992 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1802 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3378 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) -((-4062 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4244 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-3743 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -4062 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4244 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3743 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1058 (-576))) (-1263 |#1|)) (T -1036)) -((-3743 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-4062 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -4244 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -4062 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4244 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3743 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) -((-3104 (((-1 |#1|) (-656 (-2 (|:| -1688 |#1|) (|:| -2869 (-576))))) 34)) (-4084 (((-1 |#1|) (-1122 |#1|)) 42)) (-1834 (((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)) 31))) -(((-1037 |#1|) (-10 -7 (-15 -4084 ((-1 |#1|) (-1122 |#1|))) (-15 -3104 ((-1 |#1|) (-656 (-2 (|:| -1688 |#1|) (|:| -2869 (-576)))))) (-15 -1834 ((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)))) (-1120)) (T -1037)) -((-1834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-576))) (-5 *5 (-576)) (-4 *6 (-1120)) (-5 *2 (-1 *6)) (-5 *1 (-1037 *6)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1688 *4) (|:| -2869 (-576))))) (-4 *4 (-1120)) (-5 *2 (-1 *4)) (-5 *1 (-1037 *4)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1122 *4)) (-4 *4 (-1120)) (-5 *2 (-1 *4)) (-5 *1 (-1037 *4))))) -(-10 -7 (-15 -4084 ((-1 |#1|) (-1122 |#1|))) (-15 -3104 ((-1 |#1|) (-656 (-2 (|:| -1688 |#1|) (|:| -2869 (-576)))))) (-15 -1834 ((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)))) -((-3241 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3241 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1038)) -((-3241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1038 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3241 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1952 (((-112) $ $) NIL)) (-1400 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-1155) $) 11)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1039) (-13 (-1103) (-10 -8 (-15 -1400 ((-1155) $)) (-15 -4158 ((-1155) $))))) (T -1039)) -((-1400 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039))))) -(-13 (-1103) (-10 -8 (-15 -1400 ((-1155) $)) (-15 -4158 ((-1155) $)))) -((-4014 (((-3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) "failed") |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) 32) (((-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576))) 29)) (-3050 (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) 33) (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1|) 28)) (-1829 (((-656 (-419 (-576))) (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) 20)) (-3461 (((-419 (-576)) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) 17))) -(((-1040 |#1|) (-10 -7 (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1|)) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) "failed") |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -3461 ((-419 (-576)) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -1829 ((-656 (-419 (-576))) (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))))) (-1263 (-576))) (T -1040)) -((-1829 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1040 *4)) (-4 *4 (-1263 (-576))))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1040 *4)) (-4 *4 (-1263 (-576))))) (-4014 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))))) (-4014 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2100 *5) (|:| -2110 *5)))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2100 *5) (|:| -2110 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-419 (-576))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576)))))) -(-10 -7 (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1|)) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) "failed") |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -3461 ((-419 (-576)) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -1829 ((-656 (-419 (-576))) (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))))) -((-4014 (((-3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) "failed") |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) 35) (((-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576))) 32)) (-3050 (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) 28) (((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1|) 24))) -(((-1041 |#1|) (-10 -7 (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1|)) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) "failed") |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) (-1263 (-419 (-576)))) (T -1041)) -((-4014 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-419 (-576)))))) (-4014 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 *4)))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2100 *5) (|:| -2110 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -2100 *5) (|:| -2110 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2100 *4) (|:| -2110 *4)))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-419 (-576)))) (-5 *4 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-419 (-576))))))) -(-10 -7 (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1|)) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3050 ((-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-419 (-576)))) (-15 -4014 ((-3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) "failed") |#1| (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))) (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) -((-1554 (((-227) $) 6) (((-390) $) 9))) -(((-1042) (-141)) (T -1042)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3437 (((-656 (-576)) $) 73)) (-3468 (($ (-656 (-576))) 81)) (-2347 (((-576) $) 48 (|has| (-576) (-317)))) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL (|has| (-576) (-832)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 60) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-3729 (((-656 (-576)) $) 79)) (-1661 (((-112) $) NIL (|has| (-576) (-832)))) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL)) (-1570 (((-576) $) 45)) (-3396 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-4099 (((-112) $) NIL (|has| (-576) (-832)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2638 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-3988 (((-1178 (-576)) $) 78)) (-1769 (($ (-656 (-576)) (-656 (-576))) 82)) (-3416 (((-576) $) 64 (|has| (-576) (-557)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3283 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2411 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3708 (($ $) NIL)) (-1581 (((-576) $) 47)) (-3959 (((-656 (-576)) $) 80)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) 25)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-1778 (((-783)) 13 T CONST)) (-1487 (((-576) $) 62 (|has| (-576) (-557)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-1665 (($ $) NIL (|has| (-576) (-832)))) (-2719 (($) 14 T CONST)) (-2730 (($) 17 T CONST)) (-2018 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2991 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2923 (((-112) $ $) 21)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2948 (((-112) $ $) 40 (|has| (-576) (-861)))) (-3056 (($ $ $) 36) (($ (-576) (-576)) 38)) (-3043 (($ $) 23) (($ $ $) 30)) (-3029 (($ $ $) 28)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) +(((-1025 |#1|) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -3437 ((-656 (-576)) $)) (-15 -3988 ((-1178 (-576)) $)) (-15 -3729 ((-656 (-576)) $)) (-15 -3959 ((-656 (-576)) $)) (-15 -3468 ($ (-656 (-576)))) (-15 -1769 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1025)) +((-2638 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-1769 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2638 ((-419 (-576)) $)) (-15 -3437 ((-656 (-576)) $)) (-15 -3988 ((-1178 (-576)) $)) (-15 -3729 ((-656 (-576)) $)) (-15 -3959 ((-656 (-576)) $)) (-15 -3468 ($ (-656 (-576)))) (-15 -1769 ($ (-656 (-576)) (-656 (-576)))))) +((-4119 (((-52) (-419 (-576)) (-576)) 9))) +(((-1026) (-10 -7 (-15 -4119 ((-52) (-419 (-576)) (-576))))) (T -1026)) +((-4119 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1026))))) +(-10 -7 (-15 -4119 ((-52) (-419 (-576)) (-576)))) +((-2096 (((-576)) 23)) (-2779 (((-576)) 28)) (-2429 (((-1293) (-576)) 26)) (-3528 (((-576) (-576)) 29) (((-576)) 22))) +(((-1027) (-10 -7 (-15 -3528 ((-576))) (-15 -2096 ((-576))) (-15 -3528 ((-576) (-576))) (-15 -2429 ((-1293) (-576))) (-15 -2779 ((-576))))) (T -1027)) +((-2779 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-2096 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-3528 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) +(-10 -7 (-15 -3528 ((-576))) (-15 -2096 ((-576))) (-15 -3528 ((-576) (-576))) (-15 -2429 ((-1293) (-576))) (-15 -2779 ((-576)))) +((-3550 (((-430 |#1|) |#1|) 43)) (-1828 (((-430 |#1|) |#1|) 41))) +(((-1028 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3550 ((-430 |#1|) |#1|))) (-1264 (-419 (-576)))) (T -1028)) +((-3550 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576))))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3550 ((-430 |#1|) |#1|))) +((-3355 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3426 (((-112) |#1|) 14)) (-2034 (((-419 (-576)) |#1|) 10))) +(((-1029 |#1|) (-10 -7 (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|))) (-1059 (-419 (-576)))) (T -1029)) +((-3355 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2)))) (-3426 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576)))))) (-2034 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) +(-10 -7 (-15 -2034 ((-419 (-576)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3355 ((-3 (-419 (-576)) "failed") |#1|))) +((-3755 ((|#2| $ "value" |#2|) 12)) (-2796 ((|#2| $ "value") 10)) (-4386 (((-112) $ $) 18))) +(((-1030 |#1| |#2|) (-10 -8 (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -4386 ((-112) |#1| |#1|)) (-15 -2796 (|#2| |#1| "value"))) (-1031 |#2|) (-1238)) (T -1030)) +NIL +(-10 -8 (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -4386 ((-112) |#1| |#1|)) (-15 -2796 (|#2| |#1| "value"))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3306 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48)) (-3957 (((-576) $ $) 45)) (-2199 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1031 |#1|) (-141) (-1238)) (T -1031)) +((-3338 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-2324 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-3957 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-4386 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4465)) (-4 *1 (-1031 *3)) (-4 *3 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2232 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3338 ((-656 $) $)) (-15 -2324 ((-656 $) $)) (-15 -2953 ((-112) $)) (-15 -3104 (|t#1| $)) (-15 -2796 (|t#1| $ "value")) (-15 -2199 ((-112) $)) (-15 -2351 ((-656 |t#1|) $)) (-15 -3957 ((-576) $ $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -4386 ((-112) $ $)) (-15 -3695 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2404 ($ $ (-656 $))) (-15 -3755 (|t#1| $ "value" |t#1|)) (-15 -2232 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-1839 (($ $) 9) (($ $ (-940)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-4077 (((-3 $ "failed") (-1193 $) (-940) (-876)) 24) (((-3 $ "failed") (-1193 $) (-940)) 32)) (-4336 (($ $ (-576)) 58)) (-1778 (((-783)) 18)) (-4022 (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 (-419 (-576)))) 63) (((-656 $) (-1193 (-576))) 68) (((-656 $) (-971 $)) 72) (((-656 $) (-971 (-419 (-576)))) 76) (((-656 $) (-971 (-576))) 80)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) +(((-1032 |#1|) (-10 -8 (-15 -1839 (|#1| (-576))) (-15 -1839 (|#1| (-419 (-576)))) (-15 -1839 (|#1| |#1| (-940))) (-15 -4022 ((-656 |#1|) (-971 (-576)))) (-15 -4022 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -4022 ((-656 |#1|) (-971 |#1|))) (-15 -4022 ((-656 |#1|) (-1193 (-576)))) (-15 -4022 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -4022 ((-656 |#1|) (-1193 |#1|))) (-15 -4077 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -4077 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4336 (|#1| |#1| (-576))) (-15 -1839 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1778 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-1033)) (T -1032)) +((-1778 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033))))) +(-10 -8 (-15 -1839 (|#1| (-576))) (-15 -1839 (|#1| (-419 (-576)))) (-15 -1839 (|#1| |#1| (-940))) (-15 -4022 ((-656 |#1|) (-971 (-576)))) (-15 -4022 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -4022 ((-656 |#1|) (-971 |#1|))) (-15 -4022 ((-656 |#1|) (-1193 (-576)))) (-15 -4022 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -4022 ((-656 |#1|) (-1193 |#1|))) (-15 -4077 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -4077 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4336 (|#1| |#1| (-576))) (-15 -1839 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1778 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 103)) (-2544 (($ $) 104)) (-1574 (((-112) $) 106)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 123)) (-1770 (((-430 $) $) 124)) (-1839 (($ $) 87) (($ $ (-940)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-2420 (((-112) $ $) 114)) (-1529 (((-576) $) 140)) (-3306 (($) 18 T CONST)) (-4077 (((-3 $ "failed") (-1193 $) (-940) (-876)) 81) (((-3 $ "failed") (-1193 $) (-940)) 80)) (-1572 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2859 (((-576) $) 99 (|has| (-419 (-576)) (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 96)) (-1372 (($ $ (-876)) 70)) (-2553 (($ $ (-876)) 69)) (-3428 (($ $ $) 118)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 117)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 112)) (-4169 (((-112) $) 125)) (-1661 (((-112) $) 138)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 86)) (-4099 (((-112) $) 139)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 121)) (-3124 (($ $ $) 132)) (-1951 (($ $ $) 133)) (-3220 (((-3 (-1193 $) "failed") $) 82)) (-2155 (((-3 (-876) "failed") $) 84)) (-2585 (((-3 (-1193 $) "failed") $) 83)) (-3457 (($ (-656 $)) 110) (($ $ $) 109)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 126)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 111)) (-3498 (($ (-656 $)) 108) (($ $ $) 107)) (-1828 (((-430 $) $) 122)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 119)) (-3475 (((-3 $ "failed") $ $) 102)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 113)) (-2411 (((-783) $) 115)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 116)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 105)) (-4165 (((-419 (-576)) $ $) 68)) (-4022 (((-656 $) (-1193 $)) 79) (((-656 $) (-1193 (-419 (-576)))) 78) (((-656 $) (-1193 (-576))) 77) (((-656 $) (-971 $)) 76) (((-656 $) (-971 (-419 (-576)))) 75) (((-656 $) (-971 (-576))) 74)) (-1665 (($ $) 141)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 134)) (-2962 (((-112) $ $) 136)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 135)) (-2948 (((-112) $ $) 137)) (-3056 (($ $ $) 131)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) +(((-1033) (-141)) (T -1033)) +((-1839 (*1 *1 *1) (-4 *1 (-1033))) (-2155 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-2585 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-3220 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-4077 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) (-4 *1 (-1033)))) (-4077 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-1839 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1033)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-4165 (*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-576)))))) +(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1023) (-10 -8 (-15 -2155 ((-3 (-876) "failed") $)) (-15 -2585 ((-3 (-1193 $) "failed") $)) (-15 -3220 ((-3 (-1193 $) "failed") $)) (-15 -4077 ((-3 $ "failed") (-1193 $) (-940) (-876))) (-15 -4077 ((-3 $ "failed") (-1193 $) (-940))) (-15 -4022 ((-656 $) (-1193 $))) (-15 -4022 ((-656 $) (-1193 (-419 (-576))))) (-15 -4022 ((-656 $) (-1193 (-576)))) (-15 -4022 ((-656 $) (-971 $))) (-15 -4022 ((-656 $) (-971 (-419 (-576))))) (-15 -4022 ((-656 $) (-971 (-576)))) (-15 -1839 ($ $ (-940))) (-15 -1839 ($ $)) (-15 -1839 ($ (-419 (-576)))) (-15 -1839 ($ (-576))) (-15 -1372 ($ $ (-876))) (-15 -2553 ($ $ (-876))) (-15 -4165 ((-419 (-576)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) |has| (-419 (-576)) (-1059 (-576))) ((-1072 #0#) . T) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-2206 (((-2 (|:| |ans| |#2|) (|:| -4249 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -2206 ((-2 (|:| |ans| |#2|) (|:| -4249 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1034)) +((-2206 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4106 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112)))) (-5 *1 (-1034 *8 *4))))) +(-10 -7 (-15 -2206 ((-2 (|:| |ans| |#2|) (|:| -4249 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1527 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -1527 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1035)) +((-1527 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4106 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) +(-10 -7 (-15 -1527 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4106 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4061 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-3438 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2738 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2615 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) +(((-1036 |#1| |#2|) (-10 -7 (-15 -3438 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2738 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2615 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -4061 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1036)) +((-4061 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1036 *6 *3)))) (-2615 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-3438 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2738 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -3438 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2738 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2615 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -4061 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) +((-2466 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2738 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-2470 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) +(((-1037 |#1| |#2|) (-10 -7 (-15 -2466 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2738 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2470 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1037)) +((-2470 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-2466 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2738 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -2466 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2738 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2470 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) +((-2488 (((-1 |#1|) (-656 (-2 (|:| -3104 |#1|) (|:| -2724 (-576))))) 34)) (-1509 (((-1 |#1|) (-1123 |#1|)) 42)) (-4378 (((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)) 31))) +(((-1038 |#1|) (-10 -7 (-15 -1509 ((-1 |#1|) (-1123 |#1|))) (-15 -2488 ((-1 |#1|) (-656 (-2 (|:| -3104 |#1|) (|:| -2724 (-576)))))) (-15 -4378 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) (-1121)) (T -1038)) +((-4378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3104 *4) (|:| -2724 (-576))))) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) +(-10 -7 (-15 -1509 ((-1 |#1|) (-1123 |#1|))) (-15 -2488 ((-1 |#1|) (-656 (-2 (|:| -3104 |#1|) (|:| -2724 (-576)))))) (-15 -4378 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) +((-3309 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3309 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1039)) +((-3309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1039 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3309 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1775 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-1156) $) 11)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1040) (-13 (-1104) (-10 -8 (-15 -1775 ((-1156) $)) (-15 -2639 ((-1156) $))))) (T -1040)) +((-1775 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040))))) +(-13 (-1104) (-10 -8 (-15 -1775 ((-1156) $)) (-15 -2639 ((-1156) $)))) +((-3301 (((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 32) (((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 29)) (-3231 (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 33) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|) 28)) (-4328 (((-656 (-419 (-576))) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) 20)) (-1686 (((-419 (-576)) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 17))) +(((-1041 |#1|) (-10 -7 (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -1686 ((-419 (-576)) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -4328 ((-656 (-419 (-576))) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))))) (-1264 (-576))) (T -1041)) +((-4328 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-3301 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-3301 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-3231 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5))))) (-3231 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) (-3231 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-3231 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576)))))) +(-10 -7 (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -1686 ((-419 (-576)) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -4328 ((-656 (-419 (-576))) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))))) +((-3301 (((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 35) (((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 32)) (-3231 (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 28) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|) 24))) +(((-1042 |#1|) (-10 -7 (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-1264 (-419 (-576)))) (T -1042)) +((-3301 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-3301 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-3231 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5))))) (-3231 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4239 *4) (|:| -4249 *4)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-3231 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576))))))) +(-10 -7 (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3231 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -3301 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) +((-4171 (((-227) $) 6) (((-390) $) 9))) +(((-1043) (-141)) (T -1043)) NIL (-13 (-626 (-227)) (-626 (-390))) (((-626 (-227)) . T) ((-626 (-390)) . T)) -((-3177 (((-656 (-390)) (-970 (-576)) (-390)) 28) (((-656 (-390)) (-970 (-419 (-576))) (-390)) 27)) (-4126 (((-656 (-656 (-390))) (-656 (-970 (-576))) (-656 (-1196)) (-390)) 37))) -(((-1043) (-10 -7 (-15 -3177 ((-656 (-390)) (-970 (-419 (-576))) (-390))) (-15 -3177 ((-656 (-390)) (-970 (-576)) (-390))) (-15 -4126 ((-656 (-656 (-390))) (-656 (-970 (-576))) (-656 (-1196)) (-390))))) (T -1043)) -((-4126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1043)) (-5 *5 (-390)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-970 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1043)) (-5 *4 (-390)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-970 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1043)) (-5 *4 (-390))))) -(-10 -7 (-15 -3177 ((-656 (-390)) (-970 (-419 (-576))) (-390))) (-15 -3177 ((-656 (-390)) (-970 (-576)) (-390))) (-15 -4126 ((-656 (-656 (-390))) (-656 (-970 (-576))) (-656 (-1196)) (-390)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 75)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-1462 (($ $) NIL) (($ $ (-939)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) 70)) (-4331 (($) NIL T CONST)) (-1480 (((-3 $ "failed") (-1192 $) (-939) (-875)) NIL) (((-3 $ "failed") (-1192 $) (-939)) 55)) (-2980 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1058 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-3794 (|has| (-419 (-576)) (-1058 (-576))) (|has| |#1| (-1058 (-576)))))) (-2317 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1058 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-3794 (|has| (-419 (-576)) (-1058 (-576))) (|has| |#1| (-1058 (-576)))))) (-4197 (($ $ (-875)) 47)) (-2355 (($ $ (-875)) 48)) (-1893 (($ $ $) NIL)) (-2203 (((-419 (-576)) $ $) 21)) (-3900 (((-3 $ "failed") $) 88)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-2690 (((-112) $) 66)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL)) (-3197 (((-112) $) 69)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-3049 (((-3 (-1192 $) "failed") $) 83)) (-3708 (((-3 (-875) "failed") $) 82)) (-4074 (((-3 (-1192 $) "failed") $) 80)) (-3888 (((-3 (-1081 $ (-1192 $)) "failed") $) 78)) (-3075 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 89)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4112 (((-875) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-2641 (((-419 (-576)) $ $) 27)) (-3831 (((-656 $) (-1192 $)) 61) (((-656 $) (-1192 (-419 (-576)))) NIL) (((-656 $) (-1192 (-576))) NIL) (((-656 $) (-970 $)) NIL) (((-656 $) (-970 (-419 (-576)))) NIL) (((-656 $) (-970 (-576))) NIL)) (-3408 (($ (-1081 $ (-1192 $)) (-875)) 46)) (-2388 (($ $) 22)) (-4314 (($) 32 T CONST)) (-4320 (($) 39 T CONST)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 76)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 24)) (-4046 (($ $ $) 37)) (-4036 (($ $) 38) (($ $ $) 74)) (-4026 (($ $ $) 112)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1044 |#1|) (-13 (-1032) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3408 ($ (-1081 $ (-1192 $)) (-875))) (-15 -3888 ((-3 (-1081 $ (-1192 $)) "failed") $)) (-15 -2203 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1042))) (T -1044)) -((-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 (-1044 *4) (-1192 (-1044 *4)))) (-5 *3 (-875)) (-5 *1 (-1044 *4)) (-4 *4 (-13 (-860) (-374) (-1042))))) (-3888 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081 (-1044 *3) (-1192 (-1044 *3)))) (-5 *1 (-1044 *3)) (-4 *3 (-13 (-860) (-374) (-1042))))) (-2203 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1044 *3)) (-4 *3 (-13 (-860) (-374) (-1042)))))) -(-13 (-1032) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3408 ($ (-1081 $ (-1192 $)) (-875))) (-15 -3888 ((-3 (-1081 $ (-1192 $)) "failed") $)) (-15 -2203 ((-419 (-576)) $ $)))) -((-2553 (((-2 (|:| -3378 |#2|) (|:| -3961 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -2553 (|#2| |#2| |#1|)) (-15 -2553 ((-2 (|:| -3378 |#2|) (|:| -3961 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1045)) -((-2553 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3378 *3) (|:| -3961 (-656 *5)))) (-5 *1 (-1045 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-2553 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-668 *3))))) -(-10 -7 (-15 -2553 (|#2| |#2| |#1|)) (-15 -2553 ((-2 (|:| -3378 |#2|) (|:| -3961 (-656 |#1|))) |#2| (-656 |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-3089 ((|#1| $ |#1|) 14)) (-4267 ((|#1| $ |#1|) 12)) (-1830 (($ |#1|) 10)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-4368 ((|#1| $) 11)) (-2070 ((|#1| $) 13)) (-4112 (((-875) $) 21 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-3938 (((-112) $ $) 9))) -(((-1046 |#1|) (-13 (-1237) (-10 -8 (-15 -1830 ($ |#1|)) (-15 -4368 (|#1| $)) (-15 -4267 (|#1| $ |#1|)) (-15 -2070 (|#1| $)) (-15 -3089 (|#1| $ |#1|)) (-15 -3938 ((-112) $ $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) (-1237)) (T -1046)) -((-1830 (*1 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-4368 (*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-4267 (*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-2070 (*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-3089 (*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-3938 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1046 *3)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -1830 ($ |#1|)) (-15 -4368 (|#1| $)) (-15 -4267 (|#1| $ |#1|)) (-15 -2070 (|#1| $)) (-15 -3089 (|#1| $ |#1|)) (-15 -3938 ((-112) $ $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2822 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1582 (((-656 |#3|) $) NIL)) (-2397 (((-112) $) NIL)) (-2083 (((-112) $) NIL (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-3575 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 112)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 66)) (-4331 (($) NIL T CONST)) (-4013 (((-112) $) 29 (|has| |#1| (-568)))) (-1938 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3142 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2948 (((-112) $) NIL (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3223 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1762 (((-3 $ "failed") $) 45)) (-3182 ((|#4| |#4| $) 69)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-2824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3325 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) NIL)) (-3802 (((-112) |#4| $) NIL)) (-1338 (((-112) |#4| $) NIL)) (-2343 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3035 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3721 (((-656 |#4|) $) 18 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2232 ((|#3| $) 38)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#4|) $) 19 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-1896 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 23)) (-3055 (((-656 |#3|) $) NIL)) (-2421 (((-112) |#3| $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2727 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4109 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 110)) (-2849 (((-3 |#4| "failed") $) 42)) (-3060 (((-656 $) |#4| $) 93)) (-3990 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2710 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-3718 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-1699 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2403 (((-656 |#4|) $) NIL)) (-2498 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1619 ((|#4| |#4| $) NIL)) (-1761 (((-112) $ $) NIL)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3609 ((|#4| |#4| $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-3 |#4| "failed") $) 40)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2917 (((-3 $ "failed") $ |#4|) 59)) (-3679 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-3587 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 17)) (-3935 (($) 14)) (-1877 (((-783) $) NIL)) (-3125 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) 13)) (-1554 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 22)) (-3655 (($ $ |#3|) 52)) (-3837 (($ $ |#3|) 54)) (-1864 (($ $) NIL)) (-1570 (($ $ |#3|) NIL)) (-4112 (((-875) $) 35) (((-656 |#4|) $) 46)) (-2576 (((-783) $) NIL (|has| |#3| (-379)))) (-1994 (((-112) $ $) NIL)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2057 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-1682 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) NIL)) (-1979 (((-112) |#4| $) NIL)) (-3331 (((-112) |#3| $) 65)) (-3938 (((-112) $ $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1047 |#1| |#2| |#3| |#4|) (-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1699 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3718 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3035 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|)) (T -1047)) -((-1699 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1047 *5 *6 *7 *3))) (-5 *1 (-1047 *5 *6 *7 *3)) (-4 *3 (-1085 *5 *6 *7)))) (-2822 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-2822 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-3718 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-3035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1047 *5 *6 *7 *8))))) (-5 *1 (-1047 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1699 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3718 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3035 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-2889 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-3047 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-939)) 63) (((-701 |#1|) (-701 |#1|) (-939)) 62)) (-2808 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-923 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-923 (-576)) (-576)) 75)) (-2141 (((-701 (-970 |#1|)) (-783)) 95)) (-4388 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-939)) 49 (|has| |#1| (-6 (-4465 "*")))) (((-701 |#1|) (-701 |#1|) (-939)) 47 (|has| |#1| (-6 (-4465 "*")))))) -(((-1048 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4465 "*"))) (-15 -4388 ((-701 |#1|) (-701 |#1|) (-939))) |%noBranch|) (IF (|has| |#1| (-6 (-4465 "*"))) (-15 -4388 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-939))) |%noBranch|) (-15 -2141 ((-701 (-970 |#1|)) (-783))) (-15 -3047 ((-701 |#1|) (-701 |#1|) (-939))) (-15 -3047 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-939))) (-15 -2889 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2889 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2889 ((-701 |#1|) (-701 |#1|))) (-15 -2889 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2808 ((-701 (-576)) (-923 (-576)) (-576))) (-15 -2808 ((-701 (-576)) (-656 (-576)))) (-15 -2808 ((-656 (-701 (-576))) (-656 (-923 (-576))) (-576))) (-15 -2808 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1069)) (T -1048)) -((-2808 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1048 *4)) (-4 *4 (-1069)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-923 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1048 *5)) (-4 *5 (-1069)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1048 *4)) (-4 *4 (-1069)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1048 *5)) (-4 *5 (-1069)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) (-2889 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) (-2889 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) (-3047 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-939)) (-4 *4 (-1069)) (-5 *1 (-1048 *4)))) (-3047 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-939)) (-4 *4 (-1069)) (-5 *1 (-1048 *4)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-970 *4))) (-5 *1 (-1048 *4)) (-4 *4 (-1069)))) (-4388 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-939)) (|has| *4 (-6 (-4465 "*"))) (-4 *4 (-1069)) (-5 *1 (-1048 *4)))) (-4388 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-939)) (|has| *4 (-6 (-4465 "*"))) (-4 *4 (-1069)) (-5 *1 (-1048 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4465 "*"))) (-15 -4388 ((-701 |#1|) (-701 |#1|) (-939))) |%noBranch|) (IF (|has| |#1| (-6 (-4465 "*"))) (-15 -4388 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-939))) |%noBranch|) (-15 -2141 ((-701 (-970 |#1|)) (-783))) (-15 -3047 ((-701 |#1|) (-701 |#1|) (-939))) (-15 -3047 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-939))) (-15 -2889 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2889 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2889 ((-701 |#1|) (-701 |#1|))) (-15 -2889 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2808 ((-701 (-576)) (-923 (-576)) (-576))) (-15 -2808 ((-701 (-576)) (-656 (-576)))) (-15 -2808 ((-656 (-701 (-576))) (-656 (-923 (-576))) (-576))) (-15 -2808 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) -((-2733 (((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)) 70 (|has| |#1| (-317)))) (-4149 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|)) 117 (|has| |#1| (-374)))) (-3998 (((-1287 |#1|) (-656 (-1287 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1728 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-939)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-4063 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-3112 (((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|)) 67 (|has| |#1| (-317)))) (-3343 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-2001 (((-701 |#1|) (-1287 (-1287 |#1|))) 40)) (-4102 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) -(((-1049 |#1|) (-10 -7 (-15 -2001 ((-701 |#1|) (-1287 (-1287 |#1|)))) (-15 -3343 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -3112 ((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -2733 ((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4102 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -4102 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4102 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -4063 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -4063 ((-112) (-656 (-701 |#1|)))) (-15 -4149 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -4149 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-939))) (-15 -3998 ((-1287 |#1|) (-656 (-1287 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1069)) (T -1049)) -((-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1287 *5))) (-5 *4 (-576)) (-5 *2 (-1287 *5)) (-5 *1 (-1049 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1069)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1069)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-656 (-701 *5))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1069)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-656 (-701 *5))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1069)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-656 (-701 *4))))) (-1728 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1069)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1049 *6)) (-5 *3 (-656 (-701 *6))))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-374)) (-4 *5 (-1069)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-656 (-701 *5))))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-4 *5 (-1069)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-656 (-701 *5))))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-1049 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1069)) (-5 *2 (-112)) (-5 *1 (-1049 *5)))) (-4102 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1049 *5)) (-4 *5 (-374)) (-4 *5 (-1069)))) (-4102 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1049 *4)) (-4 *4 (-374)) (-4 *4 (-1069)))) (-4102 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1049 *6)) (-4 *6 (-374)) (-4 *6 (-1069)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-317)) (-4 *5 (-1069)) (-5 *2 (-701 *5)) (-5 *1 (-1049 *5)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1069)) (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1049 *5)) (-5 *4 (-1287 *5)))) (-3343 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1069)) (-5 *1 (-1049 *4)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1069)) (-5 *2 (-701 *4)) (-5 *1 (-1049 *4))))) -(-10 -7 (-15 -2001 ((-701 |#1|) (-1287 (-1287 |#1|)))) (-15 -3343 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -3112 ((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -2733 ((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4102 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -4102 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4102 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -4063 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -4063 ((-112) (-656 (-701 |#1|)))) (-15 -4149 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -4149 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -1728 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-939))) (-15 -3998 ((-1287 |#1|) (-656 (-1287 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) -((-2244 ((|#1| (-939) |#1|) 18))) -(((-1050 |#1|) (-10 -7 (-15 -2244 (|#1| (-939) |#1|))) (-13 (-1120) (-10 -8 (-15 -4026 ($ $ $))))) (T -1050)) -((-2244 (*1 *2 *3 *2) (-12 (-5 *3 (-939)) (-5 *1 (-1050 *2)) (-4 *2 (-13 (-1120) (-10 -8 (-15 -4026 ($ $ $)))))))) -(-10 -7 (-15 -2244 (|#1| (-939) |#1|))) -((-2188 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-970 (-576))))) 67)) (-2290 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-970 (-576))))) 52)) (-3674 (((-656 (-326 (-576))) (-701 (-419 (-970 (-576))))) 45)) (-4404 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-970 (-576))))) 85)) (-1452 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-2687 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-1953 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-970 (-576))))) 82))) -(((-1051) (-10 -7 (-15 -2188 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-970 (-576)))))) (-15 -2290 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-970 (-576)))))) (-15 -3674 ((-656 (-326 (-576))) (-701 (-419 (-970 (-576)))))) (-15 -1953 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-970 (-576)))))) (-15 -1452 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2687 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -4404 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-970 (-576)))))))) (T -1051)) -((-4404 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-970 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1051)))) (-2687 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1051)))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1051)))) (-1953 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-970 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1051)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-970 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1051)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-970 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1051)) (-5 *3 (-326 (-576))))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-970 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1051))))) -(-10 -7 (-15 -2188 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-970 (-576)))))) (-15 -2290 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-970 (-576)))))) (-15 -3674 ((-656 (-326 (-576))) (-701 (-419 (-970 (-576)))))) (-15 -1953 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-970 (-576)))))) (-15 -1452 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2687 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -4404 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-970 (-576))))))) -((-3421 ((|#1| |#1| (-939)) 18))) -(((-1052 |#1|) (-10 -7 (-15 -3421 (|#1| |#1| (-939)))) (-13 (-1120) (-10 -8 (-15 * ($ $ $))))) (T -1052)) -((-3421 (*1 *2 *2 *3) (-12 (-5 *3 (-939)) (-5 *1 (-1052 *2)) (-4 *2 (-13 (-1120) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3421 (|#1| |#1| (-939)))) -((-4112 ((|#1| (-322)) 11) (((-1292) |#1|) 9))) -(((-1053 |#1|) (-10 -7 (-15 -4112 ((-1292) |#1|)) (-15 -4112 (|#1| (-322)))) (-1237)) (T -1053)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1053 *2)) (-4 *2 (-1237)))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1053 *3)) (-4 *3 (-1237))))) -(-10 -7 (-15 -4112 ((-1292) |#1|)) (-15 -4112 (|#1| (-322)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2721 (($ |#4|) 25)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2708 ((|#4| $) 27)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4115 (((-783)) 43 T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 21 T CONST)) (-4320 (($) 23 T CONST)) (-3938 (((-112) $ $) 40)) (-4036 (($ $) 31) (($ $ $) NIL)) (-4026 (($ $ $) 29)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1054 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2721 ($ |#4|)) (-15 -4112 ($ |#4|)) (-15 -2708 (|#4| $)))) (-374) (-805) (-861) (-967 |#1| |#2| |#3|) (-656 |#4|)) (T -1054)) -((-2721 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) (-14 *6 (-656 *2)))) (-4112 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2708 (*1 *2 *1) (-12 (-4 *2 (-967 *3 *4 *5)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2721 ($ |#4|)) (-15 -4112 ($ |#4|)) (-15 -2708 (|#4| $)))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-4100 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-2084 (((-112) (-112)) 43)) (-3502 (((-112) (-112)) 42)) (-4267 (((-52) $ (-1196) (-52)) NIL)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 (-52) "failed") (-1196) $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120))))) (-1672 (($ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-3 (-52) "failed") (-1196) $) NIL)) (-2824 (($ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-1908 (((-52) $ (-1196) (-52)) NIL (|has| $ (-6 -4464)))) (-3719 (((-52) $ (-1196)) NIL)) (-3721 (((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-656 (-52)) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-1196) $) NIL (|has| (-1196) (-861)))) (-3958 (((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-656 (-52)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120))))) (-3501 (((-1196) $) NIL (|has| (-1196) (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-52) (-1120)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120))))) (-2351 (((-656 (-1196)) $) 37)) (-3406 (((-112) (-1196) $) NIL)) (-2976 (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL)) (-2782 (($ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL)) (-3963 (((-656 (-1196)) $) NIL)) (-1474 (((-112) (-1196) $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-52) (-1120)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120))))) (-1753 (((-52) $) NIL (|has| (-1196) (-861)))) (-2022 (((-3 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) "failed") (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL)) (-2556 (($ $ (-52)) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-304 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120))))) (-2692 (((-656 (-52)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 (((-52) $ (-1196)) 39) (((-52) $ (-1196) (-52)) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-4112 (((-875) $) 41 (-3794 (|has| (-52) (-625 (-875))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1055) (-13 (-1213 (-1196) (-52)) (-10 -7 (-15 -2084 ((-112) (-112))) (-15 -3502 ((-112) (-112))) (-6 -4463)))) (T -1055)) -((-2084 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1055)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1055))))) -(-13 (-1213 (-1196) (-52)) (-10 -7 (-15 -2084 ((-112) (-112))) (-15 -3502 ((-112) (-112))) (-6 -4463))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2229 (((-1155) $) 9)) (-4112 (((-875) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1056) (-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $))))) (T -1056)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1056))))) -(-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)))) -((-2317 ((|#2| $) 10))) -(((-1057 |#1| |#2|) (-10 -8 (-15 -2317 (|#2| |#1|))) (-1058 |#2|) (-1237)) (T -1057)) -NIL -(-10 -8 (-15 -2317 (|#2| |#1|))) -((-2980 (((-3 |#1| "failed") $) 9)) (-2317 ((|#1| $) 8)) (-4112 (($ |#1|) 6))) -(((-1058 |#1|) (-141) (-1237)) (T -1058)) -((-2980 (*1 *2 *1) (|partial| -12 (-4 *1 (-1058 *2)) (-4 *2 (-1237)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-1237))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -2980 ((-3 |t#1| "failed") $)) (-15 -2317 (|t#1| $)))) +((-1918 (((-656 (-390)) (-971 (-576)) (-390)) 28) (((-656 (-390)) (-971 (-419 (-576))) (-390)) 27)) (-1875 (((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)) 37))) +(((-1044) (-10 -7 (-15 -1918 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -1918 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -1875 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390))))) (T -1044)) +((-1875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390))))) +(-10 -7 (-15 -1918 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -1918 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -1875 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 75)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-1839 (($ $) NIL) (($ $ (-940)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) 70)) (-3306 (($) NIL T CONST)) (-4077 (((-3 $ "failed") (-1193 $) (-940) (-876)) NIL) (((-3 $ "failed") (-1193 $) (-940)) 55)) (-1572 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2758 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-2859 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2758 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-1372 (($ $ (-876)) 47)) (-2553 (($ $ (-876)) 48)) (-3428 (($ $ $) NIL)) (-3675 (((-419 (-576)) $ $) 21)) (-3451 (((-3 $ "failed") $) 88)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-1661 (((-112) $) 66)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL)) (-4099 (((-112) $) 69)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-3220 (((-3 (-1193 $) "failed") $) 83)) (-2155 (((-3 (-876) "failed") $) 82)) (-2585 (((-3 (-1193 $) "failed") $) 80)) (-1426 (((-3 (-1082 $ (-1193 $)) "failed") $) 78)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 89)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-3569 (((-876) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ $) 27)) (-4022 (((-656 $) (-1193 $)) 61) (((-656 $) (-1193 (-419 (-576)))) NIL) (((-656 $) (-1193 (-576))) NIL) (((-656 $) (-971 $)) NIL) (((-656 $) (-971 (-419 (-576)))) NIL) (((-656 $) (-971 (-576))) NIL)) (-2441 (($ (-1082 $ (-1193 $)) (-876)) 46)) (-1665 (($ $) 22)) (-2719 (($) 32 T CONST)) (-2730 (($) 39 T CONST)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 76)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 24)) (-3056 (($ $ $) 37)) (-3043 (($ $) 38) (($ $ $) 74)) (-3029 (($ $ $) 112)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1045 |#1|) (-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2441 ($ (-1082 $ (-1193 $)) (-876))) (-15 -1426 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -3675 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1043))) (T -1045)) +((-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043))))) (-1426 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043))))) (-3675 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) +(-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2441 ($ (-1082 $ (-1193 $)) (-876))) (-15 -1426 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -3675 ((-419 (-576)) $ $)))) +((-2702 (((-2 (|:| -4026 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -4026 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1046)) +((-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4026 *3) (|:| -1757 (-656 *5)))) (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-2702 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3))))) +(-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -4026 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2343 ((|#1| $ |#1|) 14)) (-3755 ((|#1| $ |#1|) 12)) (-4338 (($ |#1|) 10)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2796 ((|#1| $) 11)) (-1659 ((|#1| $) 13)) (-3569 (((-876) $) 21 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2923 (((-112) $ $) 9))) +(((-1047 |#1|) (-13 (-1238) (-10 -8 (-15 -4338 ($ |#1|)) (-15 -2796 (|#1| $)) (-15 -3755 (|#1| $ |#1|)) (-15 -1659 (|#1| $)) (-15 -2343 (|#1| $ |#1|)) (-15 -2923 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1047)) +((-4338 (*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-1659 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2343 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -4338 ($ |#1|)) (-15 -2796 (|#1| $)) (-15 -3755 (|#1| $ |#1|)) (-15 -1659 (|#1| $)) (-15 -2343 (|#1| $ |#1|)) (-15 -2923 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3597 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1966 (((-656 |#3|) $) NIL)) (-1755 (((-112) $) NIL)) (-1781 (((-112) $) NIL (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2795 ((|#4| |#4| $) NIL)) (-3420 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 112)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-1971 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 66)) (-3306 (($) NIL T CONST)) (-3290 (((-112) $) 29 (|has| |#1| (-568)))) (-2879 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1576 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3489 (((-112) $) NIL (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4356 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 45)) (-3947 ((|#4| |#4| $) 69)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2873 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-1793 (((-112) |#4| $) NIL)) (-2989 (((-112) |#4| $) NIL)) (-2464 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3085 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2665 ((|#3| $) 38)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4322 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 23)) (-1994 (((-656 |#3|) $) NIL)) (-1983 (((-112) |#3| $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1988 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-1728 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 110)) (-3967 (((-3 |#4| "failed") $) 42)) (-2042 (((-656 $) |#4| $) 93)) (-3059 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1834 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-2256 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-2289 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1809 (((-656 |#4|) $) NIL)) (-3455 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2860 ((|#4| |#4| $) NIL)) (-1716 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3764 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 40)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3260 (((-3 $ "failed") $ |#4|) 59)) (-3169 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-3542 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 17)) (-3839 (($) 14)) (-3600 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 22)) (-2907 (($ $ |#3|) 52)) (-4080 (($ $ |#3|) 54)) (-3453 (($ $) NIL)) (-3698 (($ $ |#3|) NIL)) (-3569 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3000 (((-783) $) NIL (|has| |#3| (-379)))) (-2113 (((-112) $ $) NIL)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1528 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2170 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) NIL)) (-2011 (((-112) |#4| $) NIL)) (-2951 (((-112) |#3| $) 65)) (-2923 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2289 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2256 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3085 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1048)) +((-2289 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-3597 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3597 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-2256 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3085 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2289 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2256 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3085 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) +((-2980 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-3211 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 63) (((-701 |#1|) (-701 |#1|) (-940)) 62)) (-3462 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-924 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-924 (-576)) (-576)) 75)) (-4312 (((-701 (-971 |#1|)) (-783)) 95)) (-2590 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 49 (|has| |#1| (-6 (-4466 "*")))) (((-701 |#1|) (-701 |#1|) (-940)) 47 (|has| |#1| (-6 (-4466 "*")))))) +(((-1049 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2590 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2590 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -4312 ((-701 (-971 |#1|)) (-783))) (-15 -3211 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -3211 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -2980 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2980 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2980 ((-701 |#1|) (-701 |#1|))) (-15 -2980 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3462 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -3462 ((-701 (-576)) (-656 (-576)))) (-15 -3462 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -3462 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1070)) (T -1049)) +((-3462 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-2980 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-2980 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2590 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2590 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -4312 ((-701 (-971 |#1|)) (-783))) (-15 -3211 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -3211 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -2980 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2980 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2980 ((-701 |#1|) (-701 |#1|))) (-15 -2980 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3462 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -3462 ((-701 (-576)) (-656 (-576)))) (-15 -3462 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -3462 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) +((-4021 (((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)) 70 (|has| |#1| (-317)))) (-4064 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|)) 117 (|has| |#1| (-374)))) (-3142 (((-1288 |#1|) (-656 (-1288 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1409 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2476 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-2546 (((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|)) 67 (|has| |#1| (-317)))) (-3102 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-2177 (((-701 |#1|) (-1288 (-1288 |#1|))) 40)) (-1678 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) +(((-1050 |#1|) (-10 -7 (-15 -2177 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -3102 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2546 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -4021 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1678 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -1678 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1678 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -2476 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -2476 ((-112) (-656 (-701 |#1|)))) (-15 -4064 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -4064 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -3142 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1070)) (T -1050)) +((-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-656 (-701 *4))))) (-1409 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) (-5 *3 (-656 (-701 *6))))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) (-1678 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070)))) (-1678 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) (-4 *4 (-374)) (-4 *4 (-1070)))) (-1678 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5)))) (-3102 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4))))) +(-10 -7 (-15 -2177 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -3102 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2546 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -4021 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1678 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -1678 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1678 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -2476 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -2476 ((-112) (-656 (-701 |#1|)))) (-15 -4064 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -4064 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -1409 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -3142 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) +((-3369 ((|#1| (-940) |#1|) 18))) +(((-1051 |#1|) (-10 -7 (-15 -3369 (|#1| (-940) |#1|))) (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $))))) (T -1051)) +((-3369 (*1 *2 *3 *2) (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)))))))) +(-10 -7 (-15 -3369 (|#1| (-940) |#1|))) +((-3524 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576))))) 67)) (-3247 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576))))) 52)) (-3109 (((-656 (-326 (-576))) (-701 (-419 (-971 (-576))))) 45)) (-1569 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))) 85)) (-2467 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-1629 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-3049 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576))))) 82))) +(((-1052) (-10 -7 (-15 -3524 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -3247 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -3109 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -3049 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -2467 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -1629 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -1569 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576)))))))) (T -1052)) +((-1569 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-1629 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-3049 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1052)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) (-5 *3 (-326 (-576))))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1052))))) +(-10 -7 (-15 -3524 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -3247 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -3109 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -3049 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -2467 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -1629 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -1569 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))))) +((-2543 ((|#1| |#1| (-940)) 18))) +(((-1053 |#1|) (-10 -7 (-15 -2543 (|#1| |#1| (-940)))) (-13 (-1121) (-10 -8 (-15 * ($ $ $))))) (T -1053)) +((-2543 (*1 *2 *2 *3) (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2543 (|#1| |#1| (-940)))) +((-3569 ((|#1| (-322)) 11) (((-1293) |#1|) 9))) +(((-1054 |#1|) (-10 -7 (-15 -3569 ((-1293) |#1|)) (-15 -3569 (|#1| (-322)))) (-1238)) (T -1054)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1054 *3)) (-4 *3 (-1238))))) +(-10 -7 (-15 -3569 ((-1293) |#1|)) (-15 -3569 (|#1| (-322)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3685 (($ |#4|) 25)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-3671 ((|#4| $) 27)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1778 (((-783)) 43 T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 21 T CONST)) (-2730 (($) 23 T CONST)) (-2923 (((-112) $ $) 40)) (-3043 (($ $) 31) (($ $ $) NIL)) (-3029 (($ $ $) 29)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1055 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3685 ($ |#4|)) (-15 -3569 ($ |#4|)) (-15 -3671 (|#4| $)))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|) (-656 |#4|)) (T -1055)) +((-3685 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3671 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3685 ($ |#4|)) (-15 -3569 ($ |#4|)) (-15 -3671 (|#4| $)))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-1656 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-1790 (((-112) (-112)) 43)) (-4040 (((-112) (-112)) 42)) (-3755 (((-52) $ (-1197) (-52)) NIL)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 (-52) "failed") (-1197) $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121))))) (-2065 (($ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1197) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4465)))) (-4272 (((-52) $ (-1197)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2735 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-4027 (((-1197) $) NIL (|has| (-1197) (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121))))) (-3203 (((-656 (-1197)) $) 37)) (-2419 (((-112) (-1197) $) NIL)) (-3772 (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL)) (-4436 (($ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL)) (-2764 (((-656 (-1197)) $) NIL)) (-4018 (((-112) (-1197) $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121))))) (-3580 (((-52) $) NIL (|has| (-1197) (-861)))) (-2366 (((-3 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) "failed") (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL)) (-2740 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-1681 (((-656 (-52)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 (((-52) $ (-1197)) 39) (((-52) $ (-1197) (-52)) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-3569 (((-876) $) 41 (-2758 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1056) (-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -1790 ((-112) (-112))) (-15 -4040 ((-112) (-112))) (-6 -4464)))) (T -1056)) +((-1790 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -1790 ((-112) (-112))) (-15 -4040 ((-112) (-112))) (-6 -4464))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3122 (((-1156) $) 9)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1057) (-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $))))) (T -1057)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057))))) +(-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)))) +((-2859 ((|#2| $) 10))) +(((-1058 |#1| |#2|) (-10 -8 (-15 -2859 (|#2| |#1|))) (-1059 |#2|) (-1238)) (T -1058)) +NIL +(-10 -8 (-15 -2859 (|#2| |#1|))) +((-1572 (((-3 |#1| "failed") $) 9)) (-2859 ((|#1| $) 8)) (-3569 (($ |#1|) 6))) +(((-1059 |#1|) (-141) (-1238)) (T -1059)) +((-1572 (*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238))))) +(-13 (-628 |t#1|) (-10 -8 (-15 -1572 ((-3 |t#1| "failed") $)) (-15 -2859 (|t#1| $)))) (((-628 |#1|) . T)) -((-1872 (((-656 (-656 (-304 (-419 (-970 |#2|))))) (-656 (-970 |#2|)) (-656 (-1196))) 38))) -(((-1059 |#1| |#2|) (-10 -7 (-15 -1872 ((-656 (-656 (-304 (-419 (-970 |#2|))))) (-656 (-970 |#2|)) (-656 (-1196))))) (-568) (-13 (-568) (-1058 |#1|))) (T -1059)) -((-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-13 (-568) (-1058 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *6)))))) (-5 *1 (-1059 *5 *6))))) -(-10 -7 (-15 -1872 ((-656 (-656 (-304 (-419 (-970 |#2|))))) (-656 (-970 |#2|)) (-656 (-1196))))) -((-2161 (((-390)) 17)) (-4084 (((-1 (-390)) (-390) (-390)) 22)) (-4244 (((-1 (-390)) (-783)) 48)) (-2643 (((-390)) 37)) (-4250 (((-1 (-390)) (-390) (-390)) 38)) (-2333 (((-390)) 29)) (-1322 (((-1 (-390)) (-390)) 30)) (-3553 (((-390) (-783)) 43)) (-2329 (((-1 (-390)) (-783)) 44)) (-2117 (((-1 (-390)) (-783) (-783)) 47)) (-4210 (((-1 (-390)) (-783) (-783)) 45))) -(((-1060) (-10 -7 (-15 -2161 ((-390))) (-15 -2643 ((-390))) (-15 -2333 ((-390))) (-15 -3553 ((-390) (-783))) (-15 -4084 ((-1 (-390)) (-390) (-390))) (-15 -4250 ((-1 (-390)) (-390) (-390))) (-15 -1322 ((-1 (-390)) (-390))) (-15 -2329 ((-1 (-390)) (-783))) (-15 -4210 ((-1 (-390)) (-783) (-783))) (-15 -2117 ((-1 (-390)) (-783) (-783))) (-15 -4244 ((-1 (-390)) (-783))))) (T -1060)) -((-4244 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060)))) (-2117 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060)))) (-4210 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060)))) (-1322 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1060)) (-5 *3 (-390)))) (-4250 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1060)) (-5 *3 (-390)))) (-4084 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1060)) (-5 *3 (-390)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1060)))) (-2333 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1060)))) (-2643 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1060)))) (-2161 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1060))))) -(-10 -7 (-15 -2161 ((-390))) (-15 -2643 ((-390))) (-15 -2333 ((-390))) (-15 -3553 ((-390) (-783))) (-15 -4084 ((-1 (-390)) (-390) (-390))) (-15 -4250 ((-1 (-390)) (-390) (-390))) (-15 -1322 ((-1 (-390)) (-390))) (-15 -2329 ((-1 (-390)) (-783))) (-15 -4210 ((-1 (-390)) (-783) (-783))) (-15 -2117 ((-1 (-390)) (-783) (-783))) (-15 -4244 ((-1 (-390)) (-783)))) -((-1450 (((-430 |#1|) |#1|) 33))) -(((-1061 |#1|) (-10 -7 (-15 -1450 ((-430 |#1|) |#1|))) (-1263 (-419 (-970 (-576))))) (T -1061)) -((-1450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-1263 (-419 (-970 (-576)))))))) -(-10 -7 (-15 -1450 ((-430 |#1|) |#1|))) -((-3321 (((-419 (-430 (-970 |#1|))) (-419 (-970 |#1|))) 14))) -(((-1062 |#1|) (-10 -7 (-15 -3321 ((-419 (-430 (-970 |#1|))) (-419 (-970 |#1|))))) (-317)) (T -1062)) -((-3321 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-970 *4)))) (-5 *1 (-1062 *4))))) -(-10 -7 (-15 -3321 ((-419 (-430 (-970 |#1|))) (-419 (-970 |#1|))))) -((-1582 (((-656 (-1196)) (-419 (-970 |#1|))) 17)) (-1420 (((-419 (-1192 (-419 (-970 |#1|)))) (-419 (-970 |#1|)) (-1196)) 24)) (-1571 (((-419 (-970 |#1|)) (-419 (-1192 (-419 (-970 |#1|)))) (-1196)) 26)) (-2653 (((-3 (-1196) "failed") (-419 (-970 |#1|))) 20)) (-2143 (((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-656 (-304 (-419 (-970 |#1|))))) 32) (((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|)))) 33) (((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-656 (-1196)) (-656 (-419 (-970 |#1|)))) 28) (((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|))) 29)) (-4112 (((-419 (-970 |#1|)) |#1|) 11))) -(((-1063 |#1|) (-10 -7 (-15 -1582 ((-656 (-1196)) (-419 (-970 |#1|)))) (-15 -2653 ((-3 (-1196) "failed") (-419 (-970 |#1|)))) (-15 -1420 ((-419 (-1192 (-419 (-970 |#1|)))) (-419 (-970 |#1|)) (-1196))) (-15 -1571 ((-419 (-970 |#1|)) (-419 (-1192 (-419 (-970 |#1|)))) (-1196))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|)))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-656 (-1196)) (-656 (-419 (-970 |#1|))))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-656 (-304 (-419 (-970 |#1|)))))) (-15 -4112 ((-419 (-970 |#1|)) |#1|))) (-568)) (T -1063)) -((-4112 (*1 *2 *3) (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-1063 *3)) (-4 *3 (-568)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-970 *4))))) (-5 *2 (-419 (-970 *4))) (-4 *4 (-568)) (-5 *1 (-1063 *4)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-970 *4)))) (-5 *2 (-419 (-970 *4))) (-4 *4 (-568)) (-5 *1 (-1063 *4)))) (-2143 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-5 *4 (-656 (-419 (-970 *5)))) (-5 *2 (-419 (-970 *5))) (-4 *5 (-568)) (-5 *1 (-1063 *5)))) (-2143 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-970 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-1063 *4)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 (-419 (-970 *5))))) (-5 *4 (-1196)) (-5 *2 (-419 (-970 *5))) (-5 *1 (-1063 *5)) (-4 *5 (-568)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-419 (-1192 (-419 (-970 *5))))) (-5 *1 (-1063 *5)) (-5 *3 (-419 (-970 *5))))) (-2653 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-5 *2 (-1196)) (-5 *1 (-1063 *4)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1196))) (-5 *1 (-1063 *4))))) -(-10 -7 (-15 -1582 ((-656 (-1196)) (-419 (-970 |#1|)))) (-15 -2653 ((-3 (-1196) "failed") (-419 (-970 |#1|)))) (-15 -1420 ((-419 (-1192 (-419 (-970 |#1|)))) (-419 (-970 |#1|)) (-1196))) (-15 -1571 ((-419 (-970 |#1|)) (-419 (-1192 (-419 (-970 |#1|)))) (-1196))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|)))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-656 (-1196)) (-656 (-419 (-970 |#1|))))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-304 (-419 (-970 |#1|))))) (-15 -2143 ((-419 (-970 |#1|)) (-419 (-970 |#1|)) (-656 (-304 (-419 (-970 |#1|)))))) (-15 -4112 ((-419 (-970 |#1|)) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-4331 (($) 18 T CONST)) (-3306 ((|#1| $) 23)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2644 ((|#1| $) 22)) (-4359 ((|#1|) 20 T CONST)) (-4112 (((-875) $) 12)) (-1463 ((|#1| $) 21)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16))) -(((-1064 |#1|) (-141) (-23)) (T -1064)) -((-3306 (*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))) (-4359 (*1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3306 (|t#1| $)) (-15 -2644 (|t#1| $)) (-15 -1463 (|t#1| $)) (-15 -4359 (|t#1|) -2665))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-3642 (($) 25 T CONST)) (-4331 (($) 18 T CONST)) (-3306 ((|#1| $) 23)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-2644 ((|#1| $) 22)) (-4359 ((|#1|) 20 T CONST)) (-4112 (((-875) $) 12)) (-1463 ((|#1| $) 21)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16))) +((-3541 (((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))) 38))) +(((-1060 |#1| |#2|) (-10 -7 (-15 -3541 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) (-568) (-13 (-568) (-1059 |#1|))) (T -1060)) +((-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) +(-10 -7 (-15 -3541 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) +((-1366 (((-390)) 17)) (-1509 (((-1 (-390)) (-390) (-390)) 22)) (-2738 (((-1 (-390)) (-783)) 48)) (-2426 (((-390)) 37)) (-3014 (((-1 (-390)) (-390) (-390)) 38)) (-2363 (((-390)) 29)) (-2794 (((-1 (-390)) (-390)) 30)) (-1330 (((-390) (-783)) 43)) (-2312 (((-1 (-390)) (-783)) 44)) (-1959 (((-1 (-390)) (-783) (-783)) 47)) (-1475 (((-1 (-390)) (-783) (-783)) 45))) +(((-1061) (-10 -7 (-15 -1366 ((-390))) (-15 -2426 ((-390))) (-15 -2363 ((-390))) (-15 -1330 ((-390) (-783))) (-15 -1509 ((-1 (-390)) (-390) (-390))) (-15 -3014 ((-1 (-390)) (-390) (-390))) (-15 -2794 ((-1 (-390)) (-390))) (-15 -2312 ((-1 (-390)) (-783))) (-15 -1475 ((-1 (-390)) (-783) (-783))) (-15 -1959 ((-1 (-390)) (-783) (-783))) (-15 -2738 ((-1 (-390)) (-783))))) (T -1061)) +((-2738 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-1959 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-1475 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-3014 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-1509 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061)))) (-2363 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-2426 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-1366 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) +(-10 -7 (-15 -1366 ((-390))) (-15 -2426 ((-390))) (-15 -2363 ((-390))) (-15 -1330 ((-390) (-783))) (-15 -1509 ((-1 (-390)) (-390) (-390))) (-15 -3014 ((-1 (-390)) (-390) (-390))) (-15 -2794 ((-1 (-390)) (-390))) (-15 -2312 ((-1 (-390)) (-783))) (-15 -1475 ((-1 (-390)) (-783) (-783))) (-15 -1959 ((-1 (-390)) (-783) (-783))) (-15 -2738 ((-1 (-390)) (-783)))) +((-1828 (((-430 |#1|) |#1|) 33))) +(((-1062 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|))) (-1264 (-419 (-971 (-576))))) (T -1062)) +((-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-1264 (-419 (-971 (-576)))))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|))) +((-2835 (((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))) 14))) +(((-1063 |#1|) (-10 -7 (-15 -2835 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) (-317)) (T -1063)) +((-2835 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) +(-10 -7 (-15 -2835 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) +((-1966 (((-656 (-1197)) (-419 (-971 |#1|))) 17)) (-1799 (((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 24)) (-1955 (((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197)) 26)) (-2512 (((-3 (-1197) "failed") (-419 (-971 |#1|))) 20)) (-3283 (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|))))) 32) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 33) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|)))) 28) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 29)) (-3569 (((-419 (-971 |#1|)) |#1|) 11))) +(((-1064 |#1|) (-10 -7 (-15 -1966 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -2512 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1799 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1955 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3569 ((-419 (-971 |#1|)) |#1|))) (-568)) (T -1064)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-568)))) (-3283 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-3283 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-3283 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-5 *4 (-656 (-419 (-971 *5)))) (-5 *2 (-419 (-971 *5))) (-4 *5 (-568)) (-5 *1 (-1064 *5)))) (-3283 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) (-5 *3 (-419 (-971 *5))))) (-2512 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-1197)) (-5 *1 (-1064 *4)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) (-5 *1 (-1064 *4))))) +(-10 -7 (-15 -1966 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -2512 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1799 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1955 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3283 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3569 ((-419 (-971 |#1|)) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3306 (($) 18 T CONST)) (-2687 ((|#1| $) 23)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2436 ((|#1| $) 22)) (-2309 ((|#1|) 20 T CONST)) (-3569 (((-876) $) 12)) (-3924 ((|#1| $) 21)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-1065 |#1|) (-141) (-23)) (T -1065)) -((-3642 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(-13 (-1064 |t#1|) (-10 -8 (-15 -3642 ($) -2665))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-875)) . T) ((-1064 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 (-792 |#1| (-877 |#2|)))))) (-656 (-792 |#1| (-877 |#2|)))) NIL)) (-2822 (((-656 $) (-656 (-792 |#1| (-877 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-112) (-112)) NIL)) (-1582 (((-656 (-877 |#2|)) $) NIL)) (-2397 (((-112) $) NIL)) (-2083 (((-112) $) NIL (|has| |#1| (-568)))) (-3402 (((-112) (-792 |#1| (-877 |#2|)) $) NIL) (((-112) $) NIL)) (-4279 (((-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-3575 (((-656 (-2 (|:| |val| (-792 |#1| (-877 |#2|))) (|:| -4442 $))) (-792 |#1| (-877 |#2|)) $) NIL)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ (-877 |#2|)) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 (-792 |#1| (-877 |#2|)) "failed") $ (-877 |#2|)) NIL)) (-4331 (($) NIL T CONST)) (-4013 (((-112) $) NIL (|has| |#1| (-568)))) (-1938 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3142 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2948 (((-112) $) NIL (|has| |#1| (-568)))) (-4294 (((-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|))) $ (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) (-1 (-112) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)))) NIL)) (-3223 (((-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|))) $) NIL (|has| |#1| (-568)))) (-4322 (((-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|))) $) NIL (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 (-792 |#1| (-877 |#2|)))) NIL)) (-2317 (($ (-656 (-792 |#1| (-877 |#2|)))) NIL)) (-1762 (((-3 $ "failed") $) NIL)) (-3182 (((-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-792 |#1| (-877 |#2|)) (-1120))))) (-2824 (($ (-792 |#1| (-877 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-792 |#1| (-877 |#2|)) (-1120)))) (($ (-1 (-112) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-877 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-877 |#2|)) $) NIL (|has| |#1| (-568)))) (-2876 (((-112) (-792 |#1| (-877 |#2|)) $ (-1 (-112) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)))) NIL)) (-3325 (((-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-2721 (((-792 |#1| (-877 |#2|)) (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) $ (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-792 |#1| (-877 |#2|)) (-1120)))) (((-792 |#1| (-877 |#2|)) (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) $ (-792 |#1| (-877 |#2|))) NIL (|has| $ (-6 -4463))) (((-792 |#1| (-877 |#2|)) (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $ (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) (-1 (-112) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)))) NIL)) (-1999 (((-2 (|:| -1595 (-656 (-792 |#1| (-877 |#2|)))) (|:| -3822 (-656 (-792 |#1| (-877 |#2|))))) $) NIL)) (-3802 (((-112) (-792 |#1| (-877 |#2|)) $) NIL)) (-1338 (((-112) (-792 |#1| (-877 |#2|)) $) NIL)) (-2343 (((-112) (-792 |#1| (-877 |#2|)) $) NIL) (((-112) $) NIL)) (-3721 (((-656 (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2171 (((-112) (-792 |#1| (-877 |#2|)) $) NIL) (((-112) $) NIL)) (-2232 (((-877 |#2|) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-792 |#1| (-877 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-792 |#1| (-877 |#2|)) (-1120))))) (-1896 (($ (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) $) NIL)) (-3055 (((-656 (-877 |#2|)) $) NIL)) (-2421 (((-112) (-877 |#2|) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2727 (((-3 (-792 |#1| (-877 |#2|)) (-656 $)) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-4109 (((-656 (-2 (|:| |val| (-792 |#1| (-877 |#2|))) (|:| -4442 $))) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-2849 (((-3 (-792 |#1| (-877 |#2|)) "failed") $) NIL)) (-3060 (((-656 $) (-792 |#1| (-877 |#2|)) $) NIL)) (-3990 (((-3 (-112) (-656 $)) (-792 |#1| (-877 |#2|)) $) NIL)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) (-792 |#1| (-877 |#2|)) $) NIL) (((-112) (-792 |#1| (-877 |#2|)) $) NIL)) (-2710 (((-656 $) (-792 |#1| (-877 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-877 |#2|)) (-656 $)) NIL)) (-1699 (($ (-792 |#1| (-877 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-877 |#2|))) $) NIL)) (-2403 (((-656 (-792 |#1| (-877 |#2|))) $) NIL)) (-2498 (((-112) (-792 |#1| (-877 |#2|)) $) NIL) (((-112) $) NIL)) (-1619 (((-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-1761 (((-112) $ $) NIL)) (-4181 (((-2 (|:| |num| (-792 |#1| (-877 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-877 |#2|)) $) NIL (|has| |#1| (-568)))) (-3268 (((-112) (-792 |#1| (-877 |#2|)) $) NIL) (((-112) $) NIL)) (-3609 (((-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)) $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-3 (-792 |#1| (-877 |#2|)) "failed") $) NIL)) (-2022 (((-3 (-792 |#1| (-877 |#2|)) "failed") (-1 (-112) (-792 |#1| (-877 |#2|))) $) NIL)) (-2917 (((-3 $ "failed") $ (-792 |#1| (-877 |#2|))) NIL)) (-3679 (($ $ (-792 |#1| (-877 |#2|))) NIL) (((-656 $) (-792 |#1| (-877 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-877 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-656 $)) NIL)) (-3587 (((-112) (-1 (-112) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-792 |#1| (-877 |#2|))) (-656 (-792 |#1| (-877 |#2|)))) NIL (-12 (|has| (-792 |#1| (-877 |#2|)) (-319 (-792 |#1| (-877 |#2|)))) (|has| (-792 |#1| (-877 |#2|)) (-1120)))) (($ $ (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|))) NIL (-12 (|has| (-792 |#1| (-877 |#2|)) (-319 (-792 |#1| (-877 |#2|)))) (|has| (-792 |#1| (-877 |#2|)) (-1120)))) (($ $ (-304 (-792 |#1| (-877 |#2|)))) NIL (-12 (|has| (-792 |#1| (-877 |#2|)) (-319 (-792 |#1| (-877 |#2|)))) (|has| (-792 |#1| (-877 |#2|)) (-1120)))) (($ $ (-656 (-304 (-792 |#1| (-877 |#2|))))) NIL (-12 (|has| (-792 |#1| (-877 |#2|)) (-319 (-792 |#1| (-877 |#2|)))) (|has| (-792 |#1| (-877 |#2|)) (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-1877 (((-783) $) NIL)) (-3125 (((-783) (-792 |#1| (-877 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-792 |#1| (-877 |#2|)) (-1120)))) (((-783) (-1 (-112) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-792 |#1| (-877 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-792 |#1| (-877 |#2|)))) NIL)) (-3655 (($ $ (-877 |#2|)) NIL)) (-3837 (($ $ (-877 |#2|)) NIL)) (-1864 (($ $) NIL)) (-1570 (($ $ (-877 |#2|)) NIL)) (-4112 (((-875) $) NIL) (((-656 (-792 |#1| (-877 |#2|))) $) NIL)) (-2576 (((-783) $) NIL (|has| (-877 |#2|) (-379)))) (-1994 (((-112) $ $) NIL)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 (-792 |#1| (-877 |#2|))))) "failed") (-656 (-792 |#1| (-877 |#2|))) (-1 (-112) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 (-792 |#1| (-877 |#2|))))) "failed") (-656 (-792 |#1| (-877 |#2|))) (-1 (-112) (-792 |#1| (-877 |#2|))) (-1 (-112) (-792 |#1| (-877 |#2|)) (-792 |#1| (-877 |#2|)))) NIL)) (-3877 (((-112) $ (-1 (-112) (-792 |#1| (-877 |#2|)) (-656 (-792 |#1| (-877 |#2|))))) NIL)) (-2057 (((-656 $) (-792 |#1| (-877 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-877 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-656 $)) NIL)) (-1682 (((-112) (-1 (-112) (-792 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-4365 (((-656 (-877 |#2|)) $) NIL)) (-1979 (((-112) (-792 |#1| (-877 |#2|)) $) NIL)) (-3331 (((-112) (-877 |#2|) $) NIL)) (-3938 (((-112) $ $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1066 |#1| |#2|) (-13 (-1091 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|))) (-10 -8 (-15 -2822 ((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-112) (-112))))) (-464) (-656 (-1196))) (T -1066)) -((-2822 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-1066 *5 *6))))) -(-13 (-1091 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-792 |#1| (-877 |#2|))) (-10 -8 (-15 -2822 ((-656 $) (-656 (-792 |#1| (-877 |#2|))) (-112) (-112))))) -((-4084 (((-1 (-576)) (-1114 (-576))) 32)) (-3730 (((-576) (-576) (-576) (-576) (-576)) 29)) (-2347 (((-1 (-576)) |RationalNumber|) NIL)) (-3726 (((-1 (-576)) |RationalNumber|) NIL)) (-4410 (((-1 (-576)) (-576) |RationalNumber|) NIL))) -(((-1067) (-10 -7 (-15 -4084 ((-1 (-576)) (-1114 (-576)))) (-15 -4410 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2347 ((-1 (-576)) |RationalNumber|)) (-15 -3726 ((-1 (-576)) |RationalNumber|)) (-15 -3730 ((-576) (-576) (-576) (-576) (-576))))) (T -1067)) -((-3730 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1067)))) (-3726 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1067)))) (-2347 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1067)))) (-4410 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1067)) (-5 *3 (-576)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1114 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1067))))) -(-10 -7 (-15 -4084 ((-1 (-576)) (-1114 (-576)))) (-15 -4410 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2347 ((-1 (-576)) |RationalNumber|)) (-15 -3726 ((-1 (-576)) |RationalNumber|)) (-15 -3730 ((-576) (-576) (-576) (-576) (-576)))) -((-4112 (((-875) $) NIL) (($ (-576)) 10))) -(((-1068 |#1|) (-10 -8 (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-1069)) (T -1068)) -NIL -(-10 -8 (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1069) (-141)) (T -1069)) -((-4115 (*1 *2) (-12 (-4 *1 (-1069)) (-5 *2 (-783))))) -(-13 (-1078) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -4115 ((-783)) -2665) (-6 -4460))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-4170 (((-419 (-970 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) -(((-1070 |#1| |#2|) (-10 -7 (-15 -4170 ((-419 (-970 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1196) (-374)) (T -1070)) -((-4170 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-970 *6))) (-5 *1 (-1070 *5 *6)) (-14 *5 (-1196))))) -(-10 -7 (-15 -4170 ((-419 (-970 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) -(((-1071 |#1|) (-141) (-1132)) (T -1071)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1132))))) -(-13 (-1120) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1540 (((-112) $) 38)) (-1796 (((-112) $) 17)) (-2758 (((-783) $) 13)) (-2772 (((-783) $) 14)) (-2613 (((-112) $) 30)) (-1780 (((-112) $) 40))) -(((-1072 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2772 ((-783) |#1|)) (-15 -2758 ((-783) |#1|)) (-15 -1780 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -2613 ((-112) |#1|)) (-15 -1796 ((-112) |#1|))) (-1073 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1069) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1072)) -NIL -(-10 -8 (-15 -2772 ((-783) |#1|)) (-15 -2758 ((-783) |#1|)) (-15 -1780 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -2613 ((-112) |#1|)) (-15 -1796 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1540 (((-112) $) 56)) (-2559 (((-3 $ "failed") $ $) 20)) (-1796 (((-112) $) 58)) (-2337 (((-112) $ (-783)) 66)) (-4331 (($) 18 T CONST)) (-2938 (($ $) 39 (|has| |#3| (-317)))) (-2216 ((|#4| $ (-576)) 44)) (-4134 (((-783) $) 38 (|has| |#3| (-568)))) (-3719 ((|#3| $ (-576) (-576)) 46)) (-3721 (((-656 |#3|) $) 73 (|has| $ (-6 -4463)))) (-3519 (((-783) $) 37 (|has| |#3| (-568)))) (-2175 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-2758 (((-783) $) 50)) (-2772 (((-783) $) 49)) (-2135 (((-112) $ (-783)) 65)) (-3263 (((-576) $) 54)) (-3455 (((-576) $) 52)) (-3958 (((-656 |#3|) $) 74 (|has| $ (-6 -4463)))) (-4217 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1120)) (|has| $ (-6 -4463))))) (-4285 (((-576) $) 53)) (-2902 (((-576) $) 51)) (-3409 (($ (-656 (-656 |#3|))) 59)) (-1896 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3065 (((-656 (-656 |#3|)) $) 48)) (-1556 (((-112) $ (-783)) 64)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-3587 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120))))) (-1551 (((-112) $ $) 60)) (-1937 (((-112) $) 63)) (-3935 (($) 62)) (-4368 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-2613 (((-112) $) 57)) (-3125 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4463)))) (-4286 (($ $) 61)) (-3992 ((|#5| $ (-576)) 43)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-1682 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4463)))) (-1780 (((-112) $) 55)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-1968 (((-783) $) 67 (|has| $ (-6 -4463))))) -(((-1073 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1069) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1073)) -((-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1069)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-4285 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-4368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1069)))) (-3719 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1069)))) (-4368 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *2 (-1069)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-2216 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *6 *2 *7)) (-4 *6 (-1069)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *6 *7 *2)) (-4 *6 (-1069)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-2422 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1943 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-2938 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4463) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -3409 ($ (-656 (-656 |t#3|)))) (-15 -1796 ((-112) $)) (-15 -2613 ((-112) $)) (-15 -1540 ((-112) $)) (-15 -1780 ((-112) $)) (-15 -3263 ((-576) $)) (-15 -4285 ((-576) $)) (-15 -3455 ((-576) $)) (-15 -2902 ((-576) $)) (-15 -2758 ((-783) $)) (-15 -2772 ((-783) $)) (-15 -3065 ((-656 (-656 |t#3|)) $)) (-15 -4368 (|t#3| $ (-576) (-576))) (-15 -3719 (|t#3| $ (-576) (-576))) (-15 -4368 (|t#3| $ (-576) (-576) |t#3|)) (-15 -2216 (|t#4| $ (-576))) (-15 -3992 (|t#5| $ (-576))) (-15 -2422 ($ (-1 |t#3| |t#3|) $)) (-15 -2422 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -1943 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -4046 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -2938 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -4134 ((-783) $)) (-15 -3519 ((-783) $)) (-15 -2175 ((-656 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-875)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1071 |#3|) . T) ((-1076 |#3|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1540 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1796 (((-112) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-4331 (($) NIL T CONST)) (-2938 (($ $) 47 (|has| |#3| (-317)))) (-2216 (((-245 |#2| |#3|) $ (-576)) 36)) (-3749 (($ (-701 |#3|)) 45)) (-4134 (((-783) $) 49 (|has| |#3| (-568)))) (-3719 ((|#3| $ (-576) (-576)) NIL)) (-3721 (((-656 |#3|) $) NIL (|has| $ (-6 -4463)))) (-3519 (((-783) $) 51 (|has| |#3| (-568)))) (-2175 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-2758 (((-783) $) NIL)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3263 (((-576) $) NIL)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#3|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-4285 (((-576) $) NIL)) (-2902 (((-576) $) NIL)) (-3409 (($ (-656 (-656 |#3|))) 31)) (-1896 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3065 (((-656 (-656 |#3|)) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-3587 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-1656 (((-135)) 59 (|has| |#3| (-374)))) (-2613 (((-112) $) NIL)) (-3125 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-3992 (((-245 |#1| |#3|) $ (-576)) 40)) (-4112 (((-875) $) 19) (((-701 |#3|) $) 42)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-1780 (((-112) $) NIL)) (-4314 (($) 16 T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1074 |#1| |#2| |#3|) (-13 (-1073 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3749 ($ (-701 |#3|))))) (-783) (-783) (-1069)) (T -1074)) -((-3749 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1069)) (-5 *1 (-1074 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) -(-13 (-1073 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3749 ($ (-701 |#3|))))) -((-2721 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2422 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1075 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2422 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2721 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1069) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1073 |#1| |#2| |#3| |#4| |#5|) (-1069) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1073 |#1| |#2| |#7| |#8| |#9|)) (T -1075)) -((-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1069)) (-4 *2 (-1069)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *12 (-1073 *5 *6 *2 *10 *11)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1069)) (-4 *10 (-1069)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1073 *5 *6 *10 *11 *12)) (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) -(-10 -7 (-15 -2422 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2721 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) -(((-1076 |#1|) (-141) (-1078)) (T -1076)) -NIL -(-13 (-21) (-1071 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-1071 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1652 (((-1196) $) 11)) (-2401 ((|#1| $) 12)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2440 (($ (-1196) |#1|) 10)) (-4112 (((-875) $) 22 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-3938 (((-112) $ $) 17 (|has| |#1| (-1120))))) -(((-1077 |#1| |#2|) (-13 (-1237) (-10 -8 (-15 -2440 ($ (-1196) |#1|)) (-15 -1652 ((-1196) $)) (-15 -2401 (|#1| $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) (-1113 |#2|) (-1237)) (T -1077)) -((-2440 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-4 *4 (-1237)) (-5 *1 (-1077 *3 *4)) (-4 *3 (-1113 *4)))) (-1652 (*1 *2 *1) (-12 (-4 *4 (-1237)) (-5 *2 (-1196)) (-5 *1 (-1077 *3 *4)) (-4 *3 (-1113 *4)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-1113 *3)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -2440 ($ (-1196) |#1|)) (-15 -1652 ((-1196) $)) (-15 -2401 (|#1| $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1078) (-141)) (T -1078)) -NIL -(-13 (-21) (-1132)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-2736 (($ $) 17)) (-3846 (($ $) 25)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 55)) (-2647 (($ $) 27)) (-1914 (($ $) 12)) (-2804 (($ $) 43)) (-1554 (((-390) $) NIL) (((-227) $) NIL) (((-906 (-390)) $) 36)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-4115 (((-783)) 9)) (-2671 (($ $) 45))) -(((-1079 |#1|) (-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1914 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| (-576))) (-15 -1554 ((-227) |#1|)) (-15 -1554 ((-390) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| |#1|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-1080)) (T -1079)) -((-4115 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1079 *3)) (-4 *3 (-1080))))) -(-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1914 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -1445 ((-903 (-390) |#1|) |#1| (-906 (-390)) (-903 (-390) |#1|))) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| (-576))) (-15 -1554 ((-227) |#1|)) (-15 -1554 ((-390) |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| |#1|)) (-15 -4115 ((-783))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1705 (((-576) $) 98)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2736 (($ $) 96)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-1462 (($ $) 106)) (-4057 (((-112) $ $) 65)) (-3773 (((-576) $) 123)) (-4331 (($) 18 T CONST)) (-3846 (($ $) 95)) (-2980 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2317 (((-576) $) 112) (((-419 (-576)) $) 109)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-2443 (((-112) $) 79)) (-2690 (((-112) $) 121)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 102)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 105)) (-2647 (($ $) 101)) (-3197 (((-112) $) 122)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2905 (($ $ $) 115)) (-1654 (($ $ $) 116)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1914 (($ $) 97)) (-2804 (($ $) 99)) (-1450 (((-430 $) $) 82)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-1554 (((-390) $) 114) (((-227) $) 113) (((-906 (-390)) $) 103)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-4115 (((-783)) 32 T CONST)) (-2671 (($ $) 100)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-2388 (($ $) 124)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3993 (((-112) $ $) 117)) (-3974 (((-112) $ $) 119)) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 118)) (-3962 (((-112) $ $) 120)) (-4046 (($ $ $) 73)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-1080) (-141)) (T -1080)) -((-2388 (*1 *1 *1) (-4 *1 (-1080))) (-2647 (*1 *1 *1) (-4 *1 (-1080))) (-2671 (*1 *1 *1) (-4 *1 (-1080))) (-2804 (*1 *1 *1) (-4 *1 (-1080))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1080)) (-5 *2 (-576)))) (-1914 (*1 *1 *1) (-4 *1 (-1080))) (-2736 (*1 *1 *1) (-4 *1 (-1080))) (-3846 (*1 *1 *1) (-4 *1 (-1080)))) -(-13 (-374) (-860) (-1042) (-1058 (-576)) (-1058 (-419 (-576))) (-1022) (-626 (-906 (-390))) (-900 (-390)) (-148) (-10 -8 (-15 -2647 ($ $)) (-15 -2671 ($ $)) (-15 -2804 ($ $)) (-15 -1705 ((-576) $)) (-15 -1914 ($ $)) (-15 -2736 ($ $)) (-15 -3846 ($ $)) (-15 -2388 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-906 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-863) . T) ((-900 (-390)) . T) ((-938) . T) ((-1022) . T) ((-1042) . T) ((-1058 (-419 (-576))) . T) ((-1058 (-576)) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) |#2| $) 26)) (-2199 ((|#1| $) 10)) (-3773 (((-576) |#2| $) 116)) (-1480 (((-3 $ "failed") |#2| (-939)) 75)) (-2110 ((|#1| $) 31)) (-2203 ((|#1| |#2| $ |#1|) 40)) (-4014 (($ $) 28)) (-3900 (((-3 |#2| "failed") |#2| $) 111)) (-2690 (((-112) |#2| $) NIL)) (-3197 (((-112) |#2| $) NIL)) (-1576 (((-112) |#2| $) 27)) (-2180 ((|#1| $) 117)) (-2100 ((|#1| $) 30)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3175 ((|#2| $) 102)) (-4112 (((-875) $) 92)) (-1994 (((-112) $ $) NIL)) (-2641 ((|#1| |#2| $ |#1|) 41)) (-3831 (((-656 $) |#2|) 77)) (-3938 (((-112) $ $) 97))) -(((-1081 |#1| |#2|) (-13 (-1088 |#1| |#2|) (-10 -8 (-15 -2100 (|#1| $)) (-15 -2110 (|#1| $)) (-15 -2199 (|#1| $)) (-15 -2180 (|#1| $)) (-15 -4014 ($ $)) (-15 -1576 ((-112) |#2| $)) (-15 -2203 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1263 |#1|)) (T -1081)) -((-2203 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-2100 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-2110 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-2199 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-2180 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-4014 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-1576 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1081 *4 *3)) (-4 *3 (-1263 *4))))) -(-13 (-1088 |#1| |#2|) (-10 -8 (-15 -2100 (|#1| $)) (-15 -2110 (|#1| $)) (-15 -2199 (|#1| $)) (-15 -2180 (|#1| $)) (-15 -4014 ($ $)) (-15 -1576 ((-112) |#2| $)) (-15 -2203 (|#1| |#2| $ |#1|)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-4258 (($ $ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1717 (($ $ $ $) NIL)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-3773 (((-576) $) NIL)) (-3384 (($ $ $) NIL)) (-4331 (($) NIL T CONST)) (-2165 (($ (-1196)) 10) (($ (-576)) 7)) (-2980 (((-3 (-576) "failed") $) NIL)) (-2317 (((-576) $) NIL)) (-1893 (($ $ $) NIL)) (-3222 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL)) (-3898 (((-112) $) NIL)) (-1982 (((-419 (-576)) $) NIL)) (-4369 (($) NIL) (($ $) NIL)) (-1903 (($ $ $) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-4270 (($ $ $ $) NIL)) (-1724 (($ $ $) NIL)) (-2690 (((-112) $) NIL)) (-3207 (($ $ $) NIL)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL)) (-2287 (((-112) $) NIL)) (-1589 (((-112) $) NIL)) (-1859 (((-3 $ "failed") $) NIL)) (-3197 (((-112) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4120 (($ $ $ $) NIL)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2361 (($ $) NIL)) (-3107 (($ $) NIL)) (-2198 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-2038 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-1920 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2978 (($ $) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4296 (((-112) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-4106 (($ $) NIL) (($ $ (-783)) NIL)) (-3755 (($ $) NIL)) (-4286 (($ $) NIL)) (-1554 (((-576) $) 16) (((-548) $) NIL) (((-906 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1196)) 9)) (-4112 (((-875) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-4115 (((-783)) NIL T CONST)) (-1460 (((-112) $ $) NIL)) (-4410 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-1865 (($) NIL)) (-3111 (((-112) $ $) NIL)) (-1411 (($ $ $ $) NIL)) (-2388 (($ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL)) (-4036 (($ $) 22) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) -(((-1082) (-13 (-557) (-630 (-1196)) (-10 -8 (-6 -4450) (-6 -4455) (-6 -4451) (-15 -2165 ($ (-1196))) (-15 -2165 ($ (-576)))))) (T -1082)) -((-2165 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082)))) (-2165 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1082))))) -(-13 (-557) (-630 (-1196)) (-10 -8 (-6 -4450) (-6 -4455) (-6 -4451) (-15 -2165 ($ (-1196))) (-15 -2165 ($ (-576))))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-4100 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-1521 (($) 9)) (-4267 (((-52) $ (-1196) (-52)) NIL)) (-2033 (($ $) 32)) (-3717 (($ $) 30)) (-3361 (($ $) 29)) (-1653 (($ $) 31)) (-4162 (($ $) 35)) (-1752 (($ $) 36)) (-3106 (($ $) 28)) (-1674 (($ $) 33)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) 27 (|has| $ (-6 -4463)))) (-2049 (((-3 (-52) "failed") (-1196) $) 43)) (-4331 (($) NIL T CONST)) (-3013 (($) 7)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120))))) (-1672 (($ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) 53 (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-3 (-52) "failed") (-1196) $) NIL)) (-2824 (($ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463)))) (-2111 (((-3 (-1178) "failed") $ (-1178) (-576)) 72)) (-1908 (((-52) $ (-1196) (-52)) NIL (|has| $ (-6 -4464)))) (-3719 (((-52) $ (-1196)) NIL)) (-3721 (((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-656 (-52)) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-1196) $) NIL (|has| (-1196) (-861)))) (-3958 (((-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) 38 (|has| $ (-6 -4463))) (((-656 (-52)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120))))) (-3501 (((-1196) $) NIL (|has| (-1196) (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-52) (-1120)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120))))) (-2351 (((-656 (-1196)) $) NIL)) (-3406 (((-112) (-1196) $) NIL)) (-2976 (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL)) (-2782 (($ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) 46)) (-3963 (((-656 (-1196)) $) NIL)) (-1474 (((-112) (-1196) $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-52) (-1120)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120))))) (-1665 (((-390) $ (-1196)) 52)) (-1335 (((-656 (-1178)) $ (-1178)) 74)) (-1753 (((-52) $) NIL (|has| (-1196) (-861)))) (-2022 (((-3 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) "failed") (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL)) (-2556 (($ $ (-52)) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-304 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL (-12 (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-319 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120))))) (-2692 (((-656 (-52)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 (((-52) $ (-1196)) NIL) (((-52) $ (-1196) (-52)) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-1957 (($ $ (-1196)) 54)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-1120)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-52) (-1120)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) 40)) (-2766 (($ $ $) 41)) (-4112 (((-875) $) NIL (-3794 (|has| (-52) (-625 (-875))) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-625 (-875)))))) (-4156 (($ $ (-1196) (-390)) 50)) (-3154 (($ $ (-1196) (-390)) 51)) (-1994 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 (-1196)) (|:| -2904 (-52)))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-52) (-102)) (|has| (-2 (|:| -2239 (-1196)) (|:| -2904 (-52))) (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1083) (-13 (-1213 (-1196) (-52)) (-10 -8 (-15 -2766 ($ $ $)) (-15 -3013 ($)) (-15 -3106 ($ $)) (-15 -3361 ($ $)) (-15 -3717 ($ $)) (-15 -1653 ($ $)) (-15 -1674 ($ $)) (-15 -2033 ($ $)) (-15 -4162 ($ $)) (-15 -1752 ($ $)) (-15 -4156 ($ $ (-1196) (-390))) (-15 -3154 ($ $ (-1196) (-390))) (-15 -1665 ((-390) $ (-1196))) (-15 -1335 ((-656 (-1178)) $ (-1178))) (-15 -1957 ($ $ (-1196))) (-15 -1521 ($)) (-15 -2111 ((-3 (-1178) "failed") $ (-1178) (-576))) (-6 -4463)))) (T -1083)) -((-2766 (*1 *1 *1 *1) (-5 *1 (-1083))) (-3013 (*1 *1) (-5 *1 (-1083))) (-3106 (*1 *1 *1) (-5 *1 (-1083))) (-3361 (*1 *1 *1) (-5 *1 (-1083))) (-3717 (*1 *1 *1) (-5 *1 (-1083))) (-1653 (*1 *1 *1) (-5 *1 (-1083))) (-1674 (*1 *1 *1) (-5 *1 (-1083))) (-2033 (*1 *1 *1) (-5 *1 (-1083))) (-4162 (*1 *1 *1) (-5 *1 (-1083))) (-1752 (*1 *1 *1) (-5 *1 (-1083))) (-4156 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1083)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1083)))) (-1665 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-390)) (-5 *1 (-1083)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1083)) (-5 *3 (-1178)))) (-1957 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1083)))) (-1521 (*1 *1) (-5 *1 (-1083))) (-2111 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-1083))))) -(-13 (-1213 (-1196) (-52)) (-10 -8 (-15 -2766 ($ $ $)) (-15 -3013 ($)) (-15 -3106 ($ $)) (-15 -3361 ($ $)) (-15 -3717 ($ $)) (-15 -1653 ($ $)) (-15 -1674 ($ $)) (-15 -2033 ($ $)) (-15 -4162 ($ $)) (-15 -1752 ($ $)) (-15 -4156 ($ $ (-1196) (-390))) (-15 -3154 ($ $ (-1196) (-390))) (-15 -1665 ((-390) $ (-1196))) (-15 -1335 ((-656 (-1178)) $ (-1178))) (-15 -1957 ($ $ (-1196))) (-15 -1521 ($)) (-15 -2111 ((-3 (-1178) "failed") $ (-1178) (-576))) (-6 -4463))) -((-3094 (($ $) 46)) (-1794 (((-112) $ $) 82)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-970 (-419 (-576)))) 247) (((-3 $ "failed") (-970 (-576))) 246) (((-3 $ "failed") (-970 |#2|)) 249)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-970 (-419 (-576)))) 235) (($ (-970 (-576))) 231) (($ (-970 |#2|)) 255)) (-3309 (($ $) NIL) (($ $ |#4|) 44)) (-2876 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-4429 (((-112) $) 60)) (-4265 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 125)) (-1398 (($ $) 160)) (-3521 (($ $) 156)) (-4012 (($ $) 155)) (-1858 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4333 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2171 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-2232 ((|#4| $) 32)) (-3815 (($ $ $) 128)) (-1818 (((-112) $) 59)) (-2462 (((-783) $) 35)) (-3978 (($ $) 174)) (-2669 (($ $) 171)) (-3769 (((-656 $) $) 72)) (-3742 (($ $) 62)) (-1415 (($ $) 167)) (-2492 (((-656 $) $) 69)) (-3196 (($ $) 64)) (-1709 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3861 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3278 (-783))) $ $) 130)) (-4433 (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $) 126) (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $ |#4|) 127)) (-3834 (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $) 121) (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $ |#4|) 123)) (-2836 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2130 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2301 (((-656 $) $) 54)) (-2498 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-1619 (($ $ $) 116)) (-3650 (($ $) 37)) (-1761 (((-112) $ $) 80)) (-3268 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3609 (($ $ $) 112)) (-3882 (($ $) 41)) (-3114 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-4400 (($ $ |#2|) NIL) (($ $ $) 153)) (-3685 (($ $ |#2|) 148) (($ $ $) 151)) (-3864 (($ $) 49)) (-1648 (($ $) 55)) (-1554 (((-906 (-390)) $) NIL) (((-906 (-576)) $) NIL) (((-548) $) NIL) (($ (-970 (-419 (-576)))) 237) (($ (-970 (-576))) 233) (($ (-970 |#2|)) 248) (((-1178) $) 279) (((-970 |#2|) $) 184)) (-4112 (((-875) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-970 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2275 (((-3 (-112) "failed") $ $) 79))) -(((-1084 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4112 (|#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3114 (|#1| (-656 |#1|))) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 ((-970 |#2|) |#1|)) (-15 -1554 ((-970 |#2|) |#1|)) (-15 -1554 ((-1178) |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1398 (|#1| |#1|)) (-15 -3114 (|#2| |#2| |#1|)) (-15 -4400 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -4400 (|#1| |#1| |#2|)) (-15 -3685 (|#1| |#1| |#2|)) (-15 -3521 (|#1| |#1|)) (-15 -4012 (|#1| |#1|)) (-15 -1554 (|#1| (-970 |#2|))) (-15 -2317 (|#1| (-970 |#2|))) (-15 -2980 ((-3 |#1| "failed") (-970 |#2|))) (-15 -1554 (|#1| (-970 (-576)))) (-15 -2317 (|#1| (-970 (-576)))) (-15 -2980 ((-3 |#1| "failed") (-970 (-576)))) (-15 -1554 (|#1| (-970 (-419 (-576))))) (-15 -2317 (|#1| (-970 (-419 (-576))))) (-15 -2980 ((-3 |#1| "failed") (-970 (-419 (-576))))) (-15 -1619 (|#1| |#1| |#1|)) (-15 -3609 (|#1| |#1| |#1|)) (-15 -3861 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3278 (-783))) |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -4265 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -4433 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1| |#4|)) (-15 -4433 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -3834 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -2960 |#1|)) |#1| |#1| |#4|)) (-15 -3834 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -2130 (|#1| |#1| |#1| |#4|)) (-15 -2836 (|#1| |#1| |#1| |#4|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -2836 (|#1| |#1| |#1|)) (-15 -4333 (|#1| |#1| |#1| |#4|)) (-15 -1858 (|#1| |#1| |#1| |#4|)) (-15 -4333 (|#1| |#1| |#1|)) (-15 -1858 (|#1| |#1| |#1|)) (-15 -2171 ((-112) |#1| (-656 |#1|))) (-15 -2171 ((-112) |#1| |#1|)) (-15 -2498 ((-112) |#1| (-656 |#1|))) (-15 -2498 ((-112) |#1| |#1|)) (-15 -3268 ((-112) |#1| (-656 |#1|))) (-15 -3268 ((-112) |#1| |#1|)) (-15 -2876 ((-112) |#1| (-656 |#1|))) (-15 -2876 ((-112) |#1| |#1|)) (-15 -1794 ((-112) |#1| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -2275 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3769 ((-656 |#1|) |#1|)) (-15 -2492 ((-656 |#1|) |#1|)) (-15 -3196 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -4429 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -3309 (|#1| |#1| |#4|)) (-15 -1709 (|#1| |#1| |#4|)) (-15 -1648 (|#1| |#1|)) (-15 -2301 ((-656 |#1|) |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -2462 ((-783) |#1|)) (-15 -2232 (|#4| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -4112 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-1085 |#2| |#3| |#4|) (-1069) (-805) (-861)) (T -1084)) -NIL -(-10 -8 (-15 -4112 (|#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3114 (|#1| (-656 |#1|))) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 ((-970 |#2|) |#1|)) (-15 -1554 ((-970 |#2|) |#1|)) (-15 -1554 ((-1178) |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1398 (|#1| |#1|)) (-15 -3114 (|#2| |#2| |#1|)) (-15 -4400 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -4400 (|#1| |#1| |#2|)) (-15 -3685 (|#1| |#1| |#2|)) (-15 -3521 (|#1| |#1|)) (-15 -4012 (|#1| |#1|)) (-15 -1554 (|#1| (-970 |#2|))) (-15 -2317 (|#1| (-970 |#2|))) (-15 -2980 ((-3 |#1| "failed") (-970 |#2|))) (-15 -1554 (|#1| (-970 (-576)))) (-15 -2317 (|#1| (-970 (-576)))) (-15 -2980 ((-3 |#1| "failed") (-970 (-576)))) (-15 -1554 (|#1| (-970 (-419 (-576))))) (-15 -2317 (|#1| (-970 (-419 (-576))))) (-15 -2980 ((-3 |#1| "failed") (-970 (-419 (-576))))) (-15 -1619 (|#1| |#1| |#1|)) (-15 -3609 (|#1| |#1| |#1|)) (-15 -3861 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3278 (-783))) |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -4265 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -4433 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1| |#4|)) (-15 -4433 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -3834 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -2960 |#1|)) |#1| |#1| |#4|)) (-15 -3834 ((-2 (|:| -2861 |#1|) (|:| |gap| (-783)) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -2130 (|#1| |#1| |#1| |#4|)) (-15 -2836 (|#1| |#1| |#1| |#4|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -2836 (|#1| |#1| |#1|)) (-15 -4333 (|#1| |#1| |#1| |#4|)) (-15 -1858 (|#1| |#1| |#1| |#4|)) (-15 -4333 (|#1| |#1| |#1|)) (-15 -1858 (|#1| |#1| |#1|)) (-15 -2171 ((-112) |#1| (-656 |#1|))) (-15 -2171 ((-112) |#1| |#1|)) (-15 -2498 ((-112) |#1| (-656 |#1|))) (-15 -2498 ((-112) |#1| |#1|)) (-15 -3268 ((-112) |#1| (-656 |#1|))) (-15 -3268 ((-112) |#1| |#1|)) (-15 -2876 ((-112) |#1| (-656 |#1|))) (-15 -2876 ((-112) |#1| |#1|)) (-15 -1794 ((-112) |#1| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -2275 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3769 ((-656 |#1|) |#1|)) (-15 -2492 ((-656 |#1|) |#1|)) (-15 -3196 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -4429 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -3309 (|#1| |#1| |#4|)) (-15 -1709 (|#1| |#1| |#4|)) (-15 -1648 (|#1| |#1|)) (-15 -2301 ((-656 |#1|) |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -2462 ((-783) |#1|)) (-15 -2232 (|#4| |#1|)) (-15 -1554 ((-548) |#1|)) (-15 -1554 ((-906 (-576)) |#1|)) (-15 -1554 ((-906 (-390)) |#1|)) (-15 -4112 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 |#3|) $) 113)) (-1420 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4070 (($ $) 91 (|has| |#1| (-568)))) (-2378 (((-112) $) 93 (|has| |#1| (-568)))) (-4230 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3094 (($ $) 278)) (-1794 (((-112) $ $) 264)) (-2559 (((-3 $ "failed") $ $) 20)) (-2256 (($ $ $) 223 (|has| |#1| (-568)))) (-3781 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-927)))) (-3575 (($ $) 101 (|has| |#1| (-464)))) (-3163 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-927)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1058 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-970 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (((-3 $ "failed") (-970 (-576))) 235 (-3794 (-12 (-2298 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (((-3 $ "failed") (-970 |#1|)) 232 (-3794 (-12 (-2298 (|has| |#1| (-38 (-419 (-576))))) (-2298 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1196)))) (-12 (-2298 (|has| |#1| (-557))) (-2298 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (-2298 (|has| |#1| (-1012 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))))) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1058 (-576)))) ((|#3| $) 144) (($ (-970 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (($ (-970 (-576))) 234 (-3794 (-12 (-2298 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (($ (-970 |#1|)) 231 (-3794 (-12 (-2298 (|has| |#1| (-38 (-419 (-576))))) (-2298 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1196)))) (-12 (-2298 (|has| |#1| (-557))) (-2298 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (-2298 (|has| |#1| (-1012 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))))) (-3954 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-3309 (($ $) 161) (($ $ |#3|) 273)) (-3222 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-2876 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-3900 (((-3 $ "failed") $) 37)) (-4429 (((-112) $) 271)) (-4265 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 243)) (-1398 (($ $) 212 (|has| |#1| (-464)))) (-3557 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-3296 (((-656 $) $) 112)) (-2443 (((-112) $) 99 (|has| |#1| (-927)))) (-3521 (($ $) 228 (|has| |#1| (-568)))) (-4012 (($ $) 229 (|has| |#1| (-568)))) (-1858 (($ $ $) 255) (($ $ $ |#3|) 253)) (-4333 (($ $ $) 254) (($ $ $ |#3|) 252)) (-3897 (($ $ |#1| |#2| $) 179)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 87 (-12 (|has| |#3| (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 86 (-12 (|has| |#3| (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-2287 (((-112) $) 35)) (-1757 (((-783) $) 176)) (-2171 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-3181 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-2232 ((|#3| $) 282)) (-1571 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-1894 (((-656 $) $) 129)) (-3146 (((-112) $) 159)) (-1562 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3815 (($ $ $) 242)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#3|) 123)) (-1818 (((-112) $) 272)) (-3661 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2462 (((-783) $) 281)) (-3820 (($ (-1 |#2| |#2|) $) 178)) (-2422 (($ (-1 |#1| |#1|) $) 158)) (-2653 (((-3 |#3| "failed") $) 126)) (-3978 (($ $) 209 (|has| |#1| (-464)))) (-2669 (($ $) 210 (|has| |#1| (-464)))) (-3769 (((-656 $) $) 267)) (-3742 (($ $) 270)) (-1415 (($ $) 211 (|has| |#1| (-464)))) (-2492 (((-656 $) $) 268)) (-2198 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-3196 (($ $) 269)) (-1698 (($ $) 156)) (-1709 ((|#1| $) 155) (($ $ |#3|) 274)) (-3075 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3861 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3278 (-783))) $ $) 241)) (-4433 (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $) 245) (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $ |#3|) 244)) (-3834 (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $) 247) (((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $ |#3|) 246)) (-2836 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2130 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2043 (((-1178) $) 10)) (-4109 (($ $ $) 217 (|has| |#1| (-568)))) (-2301 (((-656 $) $) 276)) (-2000 (((-3 (-656 $) "failed") $) 117)) (-2279 (((-3 (-656 $) "failed") $) 118)) (-4044 (((-3 (-2 (|:| |var| |#3|) (|:| -1495 (-783))) "failed") $) 116)) (-2498 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-1619 (($ $ $) 239)) (-3650 (($ $) 280)) (-1761 (((-112) $ $) 265)) (-3268 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-3609 (($ $ $) 240)) (-3882 (($ $) 279)) (-3115 (((-1140) $) 11)) (-1476 (((-2 (|:| -3114 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-1811 (((-2 (|:| -3114 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-1677 (((-112) $) 173)) (-1685 ((|#1| $) 174)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3114 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-927)))) (-1450 (((-430 $) $) 102 (|has| |#1| (-927)))) (-4202 (((-2 (|:| -3114 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-1943 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-4400 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-3685 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1451 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-4106 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-1877 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-3864 (($ $) 277)) (-1648 (($ $) 275)) (-1554 (((-906 (-390)) $) 85 (-12 (|has| |#3| (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) 84 (-12 (|has| |#3| (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-970 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (($ (-970 (-576))) 233 (-3794 (-12 (-2298 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (($ (-970 |#1|)) 230 (|has| |#3| (-626 (-1196)))) (((-1178) $) 208 (-12 (|has| |#1| (-1058 (-576))) (|has| |#3| (-626 (-1196))))) (((-970 |#1|) $) 207 (|has| |#3| (-626 (-1196))))) (-3430 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2310 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-970 |#1|) $) 206 (|has| |#3| (-626 (-1196)))) (($ (-419 (-576))) 81 (-3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) 175)) (-4269 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-1972 (((-3 $ "failed") $) 82 (-3794 (-2310 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) 32 T CONST)) (-4081 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-2275 (((-3 (-112) "failed") $ $) 266)) (-4320 (($) 34 T CONST)) (-2983 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-2367 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-3155 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1085 |#1| |#2| |#3|) (-141) (-1069) (-805) (-861)) (T -1085)) -((-2232 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3650 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3882 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3864 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2301 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-1648 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1709 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3309 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4429 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3742 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3196 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2492 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-3769 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-2275 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1761 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1794 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2876 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2876 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3268 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3268 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2498 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2171 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2171 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1858 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4333 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1858 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-4333 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2836 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2130 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2836 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2130 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3834 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -2960 *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3834 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -2960 *1))) (-4 *1 (-1085 *4 *5 *3)))) (-4433 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1085 *3 *4 *5)))) (-4433 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1085 *4 *5 *3)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3815 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3861 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3278 (-783)))) (-4 *1 (-1085 *3 *4 *5)))) (-3609 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1619 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-419 (-576)))) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-970 (-419 (-576)))) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-970 (-419 (-576)))) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2980 (*1 *1 *2) (|partial| -3794 (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2317 (*1 *1 *2) (-3794 (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1554 (*1 *1 *2) (-3794 (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2980 (*1 *1 *2) (|partial| -3794 (-12 (-5 *2 (-970 *3)) (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-2298 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 *3)) (-12 (-2298 (-4 *3 (-557))) (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 *3)) (-12 (-2298 (-4 *3 (-1012 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2317 (*1 *1 *2) (-3794 (-12 (-5 *2 (-970 *3)) (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-2298 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 *3)) (-12 (-2298 (-4 *3 (-557))) (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-970 *3)) (-12 (-2298 (-4 *3 (-1012 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *5 (-626 (-1196))) (-4 *4 (-805)) (-4 *5 (-861)))) (-4012 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3685 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4400 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3685 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4400 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2256 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3114 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1085 *3 *4 *5)))) (-1811 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3114 *1) (|:| |coef1| *1))) (-4 *1 (-1085 *3 *4 *5)))) (-1476 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3114 *1) (|:| |coef2| *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3954 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3781 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-4109 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2367 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-2983 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-3181 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3114 (*1 *2 *2 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-1398 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-1415 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2669 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3978 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464))))) -(-13 (-967 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2232 (|t#3| $)) (-15 -2462 ((-783) $)) (-15 -3650 ($ $)) (-15 -3882 ($ $)) (-15 -3094 ($ $)) (-15 -3864 ($ $)) (-15 -2301 ((-656 $) $)) (-15 -1648 ($ $)) (-15 -1709 ($ $ |t#3|)) (-15 -3309 ($ $ |t#3|)) (-15 -1818 ((-112) $)) (-15 -4429 ((-112) $)) (-15 -3742 ($ $)) (-15 -3196 ($ $)) (-15 -2492 ((-656 $) $)) (-15 -3769 ((-656 $) $)) (-15 -2275 ((-3 (-112) "failed") $ $)) (-15 -1761 ((-112) $ $)) (-15 -1794 ((-112) $ $)) (-15 -2876 ((-112) $ $)) (-15 -2876 ((-112) $ (-656 $))) (-15 -3268 ((-112) $ $)) (-15 -3268 ((-112) $ (-656 $))) (-15 -2498 ((-112) $ $)) (-15 -2498 ((-112) $ (-656 $))) (-15 -2171 ((-112) $ $)) (-15 -2171 ((-112) $ (-656 $))) (-15 -1858 ($ $ $)) (-15 -4333 ($ $ $)) (-15 -1858 ($ $ $ |t#3|)) (-15 -4333 ($ $ $ |t#3|)) (-15 -2836 ($ $ $)) (-15 -2130 ($ $ $)) (-15 -2836 ($ $ $ |t#3|)) (-15 -2130 ($ $ $ |t#3|)) (-15 -3834 ((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $)) (-15 -3834 ((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -2960 $)) $ $ |t#3|)) (-15 -4433 ((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -4433 ((-2 (|:| -2861 $) (|:| |gap| (-783)) (|:| -4299 $) (|:| -2960 $)) $ $ |t#3|)) (-15 -4265 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -3815 ($ $ $)) (-15 -3861 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3278 (-783))) $ $)) (-15 -3609 ($ $ $)) (-15 -1619 ($ $ $)) (IF (|has| |t#3| (-626 (-1196))) (PROGN (-6 (-625 (-970 |t#1|))) (-6 (-626 (-970 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2980 ((-3 $ "failed") (-970 (-419 (-576))))) (-15 -2317 ($ (-970 (-419 (-576))))) (-15 -1554 ($ (-970 (-419 (-576))))) (-15 -2980 ((-3 $ "failed") (-970 (-576)))) (-15 -2317 ($ (-970 (-576)))) (-15 -1554 ($ (-970 (-576)))) (IF (|has| |t#1| (-1012 (-576))) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-970 |t#1|))) (-15 -2317 ($ (-970 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-970 (-576)))) (-15 -2317 ($ (-970 (-576)))) (-15 -1554 ($ (-970 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-970 |t#1|))) (-15 -2317 ($ (-970 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-970 |t#1|))) (-15 -2317 ($ (-970 |t#1|)))))) (-15 -1554 ($ (-970 |t#1|))) (IF (|has| |t#1| (-1058 (-576))) (-6 (-626 (-1178))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4012 ($ $)) (-15 -3521 ($ $)) (-15 -3685 ($ $ |t#1|)) (-15 -4400 ($ $ |t#1|)) (-15 -3685 ($ $ $)) (-15 -4400 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -4202 ((-2 (|:| -3114 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1811 ((-2 (|:| -3114 $) (|:| |coef1| $)) $ $)) (-15 -1476 ((-2 (|:| -3114 $) (|:| |coef2| $)) $ $)) (-15 -3954 ($ $ $)) (-15 -3781 ((-656 $) $ $)) (-15 -4109 ($ $ $)) (-15 -2367 ($ $ $ (-783))) (-15 -2983 ($ $ $ $ (-783))) (-15 -3181 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3114 (|t#1| |t#1| $)) (-15 -1398 ($ $)) (-15 -1415 ($ $)) (-15 -2669 ($ $)) (-15 -3978 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-875)) . T) ((-625 (-970 |#1|)) |has| |#3| (-626 (-1196))) ((-174) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-906 (-390))) -12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#3| (-626 (-906 (-390))))) ((-626 (-906 (-576))) -12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#3| (-626 (-906 (-576))))) ((-626 (-970 |#1|)) |has| |#3| (-626 (-1196))) ((-626 (-1178)) -12 (|has| |#1| (-1058 (-576))) (|has| |#3| (-626 (-1196)))) ((-300) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3794 (|has| |#1| (-927)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-910 $ |#3|) . T) ((-916 |#3|) . T) ((-918 |#3|) . T) ((-900 (-390)) -12 (|has| |#1| (-900 (-390))) (|has| |#3| (-900 (-390)))) ((-900 (-576)) -12 (|has| |#1| (-900 (-576))) (|has| |#3| (-900 (-576)))) ((-967 |#1| |#2| |#3|) . T) ((-927) |has| |#1| (-927)) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 |#1|) . T) ((-1058 |#3|) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) |has| |#1| (-927))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-1664 (((-656 (-1155)) $) 18)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 27) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-1155) $) 20)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1086) (-13 (-1103) (-10 -8 (-15 -1664 ((-656 (-1155)) $)) (-15 -4158 ((-1155) $))))) (T -1086)) -((-1664 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-1086)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1086))))) -(-13 (-1103) (-10 -8 (-15 -1664 ((-656 (-1155)) $)) (-15 -4158 ((-1155) $)))) -((-3167 (((-112) |#3| $) 15)) (-1480 (((-3 $ "failed") |#3| (-939)) 29)) (-3900 (((-3 |#3| "failed") |#3| $) 45)) (-2690 (((-112) |#3| $) 19)) (-3197 (((-112) |#3| $) 17))) -(((-1087 |#1| |#2| |#3|) (-10 -8 (-15 -1480 ((-3 |#1| "failed") |#3| (-939))) (-15 -3900 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2690 ((-112) |#3| |#1|)) (-15 -3197 ((-112) |#3| |#1|)) (-15 -3167 ((-112) |#3| |#1|))) (-1088 |#2| |#3|) (-13 (-860) (-374)) (-1263 |#2|)) (T -1087)) -NIL -(-10 -8 (-15 -1480 ((-3 |#1| "failed") |#3| (-939))) (-15 -3900 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2690 ((-112) |#3| |#1|)) (-15 -3197 ((-112) |#3| |#1|)) (-15 -3167 ((-112) |#3| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) |#2| $) 22)) (-3773 (((-576) |#2| $) 23)) (-1480 (((-3 $ "failed") |#2| (-939)) 16)) (-2203 ((|#1| |#2| $ |#1|) 14)) (-3900 (((-3 |#2| "failed") |#2| $) 19)) (-2690 (((-112) |#2| $) 20)) (-3197 (((-112) |#2| $) 21)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3175 ((|#2| $) 18)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-2641 ((|#1| |#2| $ |#1|) 15)) (-3831 (((-656 $) |#2|) 17)) (-3938 (((-112) $ $) 8))) -(((-1088 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1263 |t#1|)) (T -1088)) -((-3773 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-576)))) (-3167 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-2690 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-3900 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1263 *3)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1263 *3)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1088 *4 *3)))) (-1480 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-939)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1088 *4 *2)) (-4 *2 (-1263 *4)))) (-2641 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1263 *2)))) (-2203 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1263 *2))))) -(-13 (-1120) (-10 -8 (-15 -3773 ((-576) |t#2| $)) (-15 -3167 ((-112) |t#2| $)) (-15 -3197 ((-112) |t#2| $)) (-15 -2690 ((-112) |t#2| $)) (-15 -3900 ((-3 |t#2| "failed") |t#2| $)) (-15 -3175 (|t#2| $)) (-15 -3831 ((-656 $) |t#2|)) (-15 -1480 ((-3 $ "failed") |t#2| (-939))) (-15 -2641 (|t#1| |t#2| $ |t#1|)) (-15 -2203 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-2088 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783)) 114)) (-3592 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 63)) (-3085 (((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)) 99)) (-2488 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-2134 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-2497 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-1554 (((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 92)) (-3284 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-112)) 62)) (-1399 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1399 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2488 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3284 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-112))) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2088 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1554 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3085 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1089)) -((-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *4 (-783)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1292)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1178)) (-5 *1 (-1089 *4 *5 *6 *7 *8)))) (-2088 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1085 *7 *8 *9)) (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1089 *7 *8 *9 *10 *11)))) (-2497 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-2497 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-2134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1085 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1089 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) (-3592 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3592 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3284 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1089 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1399 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2488 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3284 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-112))) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2088 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1554 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3085 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) -((-3802 (((-112) |#5| $) 26)) (-1338 (((-112) |#5| $) 29)) (-2343 (((-112) |#5| $) 18) (((-112) $) 52)) (-2710 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-3679 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-2057 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-1979 (((-112) |#5| $) 32))) -(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3679 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3679 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3679 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3679 ((-656 |#1|) |#5| |#1|)) (-15 -2057 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2057 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2057 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2057 ((-656 |#1|) |#5| |#1|)) (-15 -2710 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2710 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2710 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2710 ((-656 |#1|) |#5| |#1|)) (-15 -1338 ((-112) |#5| |#1|)) (-15 -2343 ((-112) |#1|)) (-15 -1979 ((-112) |#5| |#1|)) (-15 -3802 ((-112) |#5| |#1|)) (-15 -2343 ((-112) |#5| |#1|)) (-15 -3679 (|#1| |#1| |#5|))) (-1091 |#2| |#3| |#4| |#5|) (-464) (-805) (-861) (-1085 |#2| |#3| |#4|)) (T -1090)) -NIL -(-10 -8 (-15 -3679 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3679 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3679 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3679 ((-656 |#1|) |#5| |#1|)) (-15 -2057 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2057 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2057 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2057 ((-656 |#1|) |#5| |#1|)) (-15 -2710 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2710 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2710 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2710 ((-656 |#1|) |#5| |#1|)) (-15 -1338 ((-112) |#5| |#1|)) (-15 -2343 ((-112) |#1|)) (-15 -1979 ((-112) |#5| |#1|)) (-15 -3802 ((-112) |#5| |#1|)) (-15 -2343 ((-112) |#5| |#1|)) (-15 -3679 (|#1| |#1| |#5|))) -((-1952 (((-112) $ $) 7)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) 86)) (-2822 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1582 (((-656 |#3|) $) 34)) (-2397 (((-112) $) 27)) (-2083 (((-112) $) 18 (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-3575 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) 28)) (-2337 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 80)) (-4331 (($) 46 T CONST)) (-4013 (((-112) $) 23 (|has| |#1| (-568)))) (-1938 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3142 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2948 (((-112) $) 26 (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3223 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1762 (((-3 $ "failed") $) 83)) (-3182 ((|#4| |#4| $) 90)) (-3966 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3325 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) 106)) (-3802 (((-112) |#4| $) 137)) (-1338 (((-112) |#4| $) 134)) (-2343 (((-112) |#4| $) 138) (((-112) $) 135)) (-3721 (((-656 |#4|) $) 53 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) 105) (((-112) $) 104)) (-2232 ((|#3| $) 35)) (-2135 (((-112) $ (-783)) 44)) (-3958 (((-656 |#4|) $) 54 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 48)) (-3055 (((-656 |#3|) $) 33)) (-2421 (((-112) |#3| $) 32)) (-1556 (((-112) $ (-783)) 43)) (-2043 (((-1178) $) 10)) (-2727 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4109 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2849 (((-3 |#4| "failed") $) 84)) (-3060 (((-656 $) |#4| $) 130)) (-3990 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2710 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1699 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2403 (((-656 |#4|) $) 108)) (-2498 (((-112) |#4| $) 100) (((-112) $) 96)) (-1619 ((|#4| |#4| $) 91)) (-1761 (((-112) $ $) 111)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) 101) (((-112) $) 97)) (-3609 ((|#4| |#4| $) 92)) (-3115 (((-1140) $) 11)) (-1753 (((-3 |#4| "failed") $) 85)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2917 (((-3 $ "failed") $ |#4|) 79)) (-3679 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3587 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) 39)) (-1937 (((-112) $) 42)) (-3935 (($) 41)) (-1877 (((-783) $) 107)) (-3125 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4463)))) (-4286 (($ $) 40)) (-1554 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 61)) (-3655 (($ $ |#3|) 29)) (-3837 (($ $ |#3|) 31)) (-1864 (($ $) 89)) (-1570 (($ $ |#3|) 30)) (-4112 (((-875) $) 12) (((-656 |#4|) $) 38)) (-2576 (((-783) $) 77 (|has| |#3| (-379)))) (-1994 (((-112) $ $) 6)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2057 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-1682 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) 82)) (-1979 (((-112) |#4| $) 136)) (-3331 (((-112) |#3| $) 81)) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-1091 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1085 |t#1| |t#2| |t#3|)) (T -1091)) -((-2343 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-1979 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-3990 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-2759 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *1)))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-2759 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-3060 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-2727 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-4109 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3575 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-2710 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-2710 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) (-2710 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)))) (-2710 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)))) (-2057 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-2057 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)))) (-2057 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) (-2057 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)))) (-1699 (*1 *1 *2 *1) (-12 (-4 *1 (-1091 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-1699 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)))) (-3679 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3679 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)))) (-3679 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) (-3679 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1091 *5 *6 *7 *8))))) -(-13 (-1230 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2343 ((-112) |t#4| $)) (-15 -3802 ((-112) |t#4| $)) (-15 -1979 ((-112) |t#4| $)) (-15 -2343 ((-112) $)) (-15 -1338 ((-112) |t#4| $)) (-15 -3990 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -2759 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |t#4| $)) (-15 -2759 ((-112) |t#4| $)) (-15 -3060 ((-656 $) |t#4| $)) (-15 -2727 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -4109 ((-656 (-2 (|:| |val| |t#4|) (|:| -4442 $))) |t#4| |t#4| $)) (-15 -3575 ((-656 (-2 (|:| |val| |t#4|) (|:| -4442 $))) |t#4| $)) (-15 -2710 ((-656 $) |t#4| $)) (-15 -2710 ((-656 $) (-656 |t#4|) $)) (-15 -2710 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2710 ((-656 $) |t#4| (-656 $))) (-15 -2057 ((-656 $) |t#4| $)) (-15 -2057 ((-656 $) |t#4| (-656 $))) (-15 -2057 ((-656 $) (-656 |t#4|) $)) (-15 -2057 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1699 ($ |t#4| $)) (-15 -1699 ($ (-656 |t#4|) $)) (-15 -3679 ((-656 $) |t#4| $)) (-15 -3679 ((-656 $) |t#4| (-656 $))) (-15 -3679 ((-656 $) (-656 |t#4|) $)) (-15 -3679 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2822 ((-656 $) (-656 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-875)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-1836 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|) 86)) (-3337 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 127)) (-3172 (((-656 |#5|) |#4| |#5|) 74)) (-3669 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1363 (((-1292)) 36)) (-3955 (((-1292)) 25)) (-3006 (((-1292) (-1178) (-1178) (-1178)) 32)) (-2433 (((-1292) (-1178) (-1178) (-1178)) 21)) (-2190 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|) 107)) (-4291 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2585 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 113))) -(((-1092 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2433 ((-1292) (-1178) (-1178) (-1178))) (-15 -3955 ((-1292))) (-15 -3006 ((-1292) (-1178) (-1178) (-1178))) (-15 -1363 ((-1292))) (-15 -2190 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4291 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4291 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -2585 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -3337 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -3669 ((-112) |#4| |#5|)) (-15 -3669 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3172 ((-656 |#5|) |#4| |#5|)) (-15 -1836 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1092)) -((-1836 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3172 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3669 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3669 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3337 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2585 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *5 (-112)) (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) (-5 *1 (-1092 *6 *7 *4 *8 *9)))) (-4291 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1092 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-2190 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1363 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3006 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1092 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3955 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-2433 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1092 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(-10 -7 (-15 -2433 ((-1292) (-1178) (-1178) (-1178))) (-15 -3955 ((-1292))) (-15 -3006 ((-1292) (-1178) (-1178) (-1178))) (-15 -1363 ((-1292))) (-15 -2190 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4291 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4291 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -2585 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -3337 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -3669 ((-112) |#4| |#5|)) (-15 -3669 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3172 ((-656 |#5|) |#4| |#5|)) (-15 -1836 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) -((-1952 (((-112) $ $) NIL)) (-4169 (((-1236) $) 13)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2229 (((-1155) $) 10)) (-4112 (((-875) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1093) (-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -4169 ((-1236) $))))) (T -1093)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1093)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-1093))))) -(-13 (-1103) (-10 -8 (-15 -2229 ((-1155) $)) (-15 -4169 ((-1236) $)))) -((-3378 (((-112) $ $) 7))) -(((-1094) (-13 (-1237) (-10 -8 (-15 -3378 ((-112) $ $))))) (T -1094)) -((-3378 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1094))))) -(-13 (-1237) (-10 -8 (-15 -3378 ((-112) $ $)))) -((-1952 (((-112) $ $) NIL)) (-4148 (((-1196) $) 8)) (-2043 (((-1178) $) 17)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 11)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 14))) -(((-1095 |#1|) (-13 (-1120) (-10 -8 (-15 -4148 ((-1196) $)))) (-1196)) (T -1095)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1095 *3)) (-14 *3 *2)))) -(-13 (-1120) (-10 -8 (-15 -4148 ((-1196) $)))) -((-1952 (((-112) $ $) NIL)) (-3766 (($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|))) 34)) (-4278 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1196))) 21)) (-1782 ((|#3| $) 13)) (-2980 (((-3 (-304 |#3|) "failed") $) 60)) (-2317 (((-304 |#3|) $) NIL)) (-1639 (((-656 (-1196)) $) 16)) (-1958 (((-906 |#1|) $) 11)) (-1774 ((|#3| $) 12)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4368 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-939)) 41)) (-4112 (((-875) $) 89) (($ (-304 |#3|)) 22)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 38))) -(((-1096 |#1| |#2| |#3|) (-13 (-1120) (-296 |#3| |#3|) (-1058 (-304 |#3|)) (-10 -8 (-15 -4278 ($ |#3| |#3|)) (-15 -4278 ($ |#3| |#3| (-656 (-1196)))) (-15 -3766 ($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|)))) (-15 -1958 ((-906 |#1|) $)) (-15 -1774 (|#3| $)) (-15 -1782 (|#3| $)) (-15 -4368 (|#3| $ |#3| (-939))) (-15 -1639 ((-656 (-1196)) $)))) (-1120) (-13 (-1069) (-900 |#1|) (-626 (-906 |#1|))) (-13 (-442 |#2|) (-900 |#1|) (-626 (-906 |#1|)))) (T -1096)) -((-4278 (*1 *1 *2 *2) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) (-5 *1 (-1096 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))))) (-4278 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1120)) (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))) (-4 *4 (-1120)) (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) (-5 *1 (-1096 *4 *5 *6)))) (-1958 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 *2))) (-5 *2 (-906 *3)) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-900 *3) (-626 *2))))) (-1774 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *2 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))) (-5 *1 (-1096 *3 *4 *2)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))))) (-1782 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *2 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))) (-5 *1 (-1096 *3 *4 *2)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))))) (-4368 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-939)) (-4 *4 (-1120)) (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))))) (-1639 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) (-5 *2 (-656 (-1196))) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-900 *3) (-626 (-906 *3))))))) -(-13 (-1120) (-296 |#3| |#3|) (-1058 (-304 |#3|)) (-10 -8 (-15 -4278 ($ |#3| |#3|)) (-15 -4278 ($ |#3| |#3| (-656 (-1196)))) (-15 -3766 ($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|)))) (-15 -1958 ((-906 |#1|) $)) (-15 -1774 (|#3| $)) (-15 -1782 (|#3| $)) (-15 -4368 (|#3| $ |#3| (-939))) (-15 -1639 ((-656 (-1196)) $)))) -((-1952 (((-112) $ $) NIL)) (-3734 (($ (-656 (-1096 |#1| |#2| |#3|))) 14)) (-1987 (((-656 (-1096 |#1| |#2| |#3|)) $) 21)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4368 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-939)) 27)) (-4112 (((-875) $) 17)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 20))) -(((-1097 |#1| |#2| |#3|) (-13 (-1120) (-296 |#3| |#3|) (-10 -8 (-15 -3734 ($ (-656 (-1096 |#1| |#2| |#3|)))) (-15 -1987 ((-656 (-1096 |#1| |#2| |#3|)) $)) (-15 -4368 (|#3| $ |#3| (-939))))) (-1120) (-13 (-1069) (-900 |#1|) (-626 (-906 |#1|))) (-13 (-442 |#2|) (-900 |#1|) (-626 (-906 |#1|)))) (T -1097)) -((-3734 (*1 *1 *2) (-12 (-5 *2 (-656 (-1096 *3 *4 *5))) (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) (-4 *5 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))) (-5 *1 (-1097 *3 *4 *5)))) (-1987 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) (-5 *2 (-656 (-1096 *3 *4 *5))) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))))) (-4368 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-939)) (-4 *4 (-1120)) (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4))))))) -(-13 (-1120) (-296 |#3| |#3|) (-10 -8 (-15 -3734 ($ (-656 (-1096 |#1| |#2| |#3|)))) (-15 -1987 ((-656 (-1096 |#1| |#2| |#3|)) $)) (-15 -4368 (|#3| $ |#3| (-939))))) -((-4088 (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|))) 92) (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112)) 90))) -(((-1098 |#1| |#2|) (-10 -7 (-15 -4088 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112))) (-15 -4088 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)))) (-15 -4088 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1196))) (T -1098)) -((-4088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) (-5 *1 (-1098 *5 *6)) (-5 *3 (-656 (-970 *5))) (-14 *6 (-656 (-1196))))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *4)) (|:| -3435 (-656 (-970 *4)))))) (-5 *1 (-1098 *4 *5)) (-5 *3 (-656 (-970 *4))) (-14 *5 (-656 (-1196))))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) (-5 *1 (-1098 *5 *6)) (-5 *3 (-656 (-970 *5))) (-14 *6 (-656 (-1196)))))) -(-10 -7 (-15 -4088 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112))) (-15 -4088 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)))) (-15 -4088 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112)))) -((-1450 (((-430 |#3|) |#3|) 18))) -(((-1099 |#1| |#2| |#3|) (-10 -7 (-15 -1450 ((-430 |#3|) |#3|))) (-1263 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1263 |#2|)) (T -1099)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -1450 ((-430 |#3|) |#3|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 136)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-4070 (($ $) NIL (|has| |#1| (-374)))) (-2378 (((-112) $) NIL (|has| |#1| (-374)))) (-3313 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) 121)) (-3832 ((|#1| $) 125)) (-2053 (((-1209 (-939) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2199 (((-783)) 43 (|has| |#1| (-379)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-4005 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) 46)) (-2943 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-4228 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 113) (((-701 |#1|) (-701 $)) 108)) (-2721 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-3900 (((-3 $ "failed") $) NIL)) (-4134 (((-939)) 84)) (-4369 (($) 47 (|has| |#1| (-379)))) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3933 (($) NIL (|has| |#1| (-360)))) (-2614 (((-112) $) NIL (|has| |#1| (-360)))) (-3878 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-3241 (((-939) $) NIL (|has| |#1| (-360))) (((-845 (-939)) $) NIL (|has| |#1| (-360)))) (-2287 (((-112) $) NIL)) (-2647 ((|#1| $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2354 ((|#2| $) 91 (|has| |#1| (-374)))) (-4375 (((-939) $) 145 (|has| |#1| (-379)))) (-2708 ((|#2| $) 62)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-3650 (($) NIL (|has| |#1| (-360)) CONST)) (-2409 (($ (-939)) 135 (|has| |#1| (-379)))) (-3115 (((-1140) $) NIL)) (-2547 (($) 127)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3224 (((-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576))))) NIL (|has| |#1| (-360)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-1451 ((|#1| (-1287 $)) NIL) ((|#1|) 117)) (-3334 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-4106 (($ $ (-783)) NIL (-3794 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3794 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-1196)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-3835 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3175 ((|#2|) 81)) (-1984 (($) NIL (|has| |#1| (-360)))) (-3435 (((-1287 |#1|) $ (-1287 $)) 96) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) 75) (((-701 |#1|) (-1287 $)) 92)) (-1554 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-4112 (((-875) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-374)) (|has| |#1| (-1058 (-419 (-576))))))) (-1972 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3069 ((|#2| $) 89)) (-4115 (((-783)) 83 T CONST)) (-1994 (((-112) $ $) NIL)) (-3578 (((-1287 $)) 88)) (-3111 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4314 (($) 32 T CONST)) (-4320 (($) 19 T CONST)) (-3155 (($ $ (-783)) NIL (-3794 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3794 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-1196)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1196))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-3938 (((-112) $ $) 67)) (-4046 (($ $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) 71) (($ $ $) NIL)) (-4026 (($ $ $) 69)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-1100 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1263 |#1|) |#2|) (T -1100)) +((-2687 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-2309 (*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2687 (|t#1| $)) (-15 -2436 (|t#1| $)) (-15 -3924 (|t#1| $)) (-15 -2309 (|t#1|) -1480))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2781 (($) 25 T CONST)) (-3306 (($) 18 T CONST)) (-2687 ((|#1| $) 23)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2436 ((|#1| $) 22)) (-2309 ((|#1|) 20 T CONST)) (-3569 (((-876) $) 12)) (-3924 ((|#1| $) 21)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +(((-1066 |#1|) (-141) (-23)) (T -1066)) +((-2781 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(-13 (-1065 |t#1|) (-10 -8 (-15 -2781 ($) -1480))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1065 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 (-792 |#1| (-878 |#2|)))))) (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3597 (((-656 $) (-656 (-792 |#1| (-878 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112)) NIL)) (-1966 (((-656 (-878 |#2|)) $) NIL)) (-1755 (((-112) $) NIL)) (-1781 (((-112) $) NIL (|has| |#1| (-568)))) (-2373 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-2795 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3420 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -3987 $))) (-792 |#1| (-878 |#2|)) $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ (-878 |#2|)) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-1971 (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 (-792 |#1| (-878 |#2|)) "failed") $ (-878 |#2|)) NIL)) (-3306 (($) NIL T CONST)) (-3290 (((-112) $) NIL (|has| |#1| (-568)))) (-2879 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1576 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3489 (((-112) $) NIL (|has| |#1| (-568)))) (-2947 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-4356 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-3234 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2859 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3592 (((-3 $ "failed") $) NIL)) (-3947 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-3945 (($ (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-2813 (((-112) (-792 |#1| (-878 |#2|)) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-2873 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3685 (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|))) NIL (|has| $ (-6 -4464))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-2153 (((-2 (|:| -1957 (-656 (-792 |#1| (-878 |#2|)))) (|:| -3256 (-656 (-792 |#1| (-878 |#2|))))) $) NIL)) (-1793 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-2989 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-2464 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3965 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3363 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-2665 (((-878 |#2|) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-4322 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL)) (-1994 (((-656 (-878 |#2|)) $) NIL)) (-1983 (((-112) (-878 |#2|) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1988 (((-3 (-792 |#1| (-878 |#2|)) (-656 $)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1728 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -3987 $))) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3967 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-2042 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL)) (-3059 (((-3 (-112) (-656 $)) (-792 |#1| (-878 |#2|)) $) NIL)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-1834 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL)) (-2289 (($ (-792 |#1| (-878 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-1809 (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-3455 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-2860 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1716 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-3595 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3764 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-2366 (((-3 (-792 |#1| (-878 |#2|)) "failed") (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL)) (-3260 (((-3 $ "failed") $ (-792 |#1| (-878 |#2|))) NIL)) (-3169 (($ $ (-792 |#1| (-878 |#2|))) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-3542 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-304 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-656 (-304 (-792 |#1| (-878 |#2|))))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-3600 (((-783) $) NIL)) (-1460 (((-783) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-783) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-792 |#1| (-878 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2907 (($ $ (-878 |#2|)) NIL)) (-4080 (($ $ (-878 |#2|)) NIL)) (-3453 (($ $) NIL)) (-3698 (($ $ (-878 |#2|)) NIL)) (-3569 (((-876) $) NIL) (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-3000 (((-783) $) NIL (|has| (-878 |#2|) (-379)))) (-2113 (((-112) $ $) NIL)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-1324 (((-112) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-656 (-792 |#1| (-878 |#2|))))) NIL)) (-1528 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-2170 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2370 (((-656 (-878 |#2|)) $) NIL)) (-2011 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-2951 (((-112) (-878 |#2|) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1067 |#1| |#2|) (-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -3597 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) (-464) (-656 (-1197))) (T -1067)) +((-3597 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1067 *5 *6))))) +(-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -3597 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) +((-1509 (((-1 (-576)) (-1115 (-576))) 32)) (-2357 (((-576) (-576) (-576) (-576) (-576)) 29)) (-2496 (((-1 (-576)) |RationalNumber|) NIL)) (-2307 (((-1 (-576)) |RationalNumber|) NIL)) (-1621 (((-1 (-576)) (-576) |RationalNumber|) NIL))) +(((-1068) (-10 -7 (-15 -1509 ((-1 (-576)) (-1115 (-576)))) (-15 -1621 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2496 ((-1 (-576)) |RationalNumber|)) (-15 -2307 ((-1 (-576)) |RationalNumber|)) (-15 -2357 ((-576) (-576) (-576) (-576) (-576))))) (T -1068)) +((-2357 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068)))) (-2307 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-2496 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) (-5 *3 (-576)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(-10 -7 (-15 -1509 ((-1 (-576)) (-1115 (-576)))) (-15 -1621 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2496 ((-1 (-576)) |RationalNumber|)) (-15 -2307 ((-1 (-576)) |RationalNumber|)) (-15 -2357 ((-576) (-576) (-576) (-576) (-576)))) +((-3569 (((-876) $) NIL) (($ (-576)) 10))) +(((-1069 |#1|) (-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1070)) (T -1069)) +NIL +(-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1070) (-141)) (T -1070)) +((-1778 (*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783))))) +(-13 (-1079) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -1778 ((-783)) -1480) (-6 -4461))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4248 (((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) +(((-1071 |#1| |#2|) (-10 -7 (-15 -4248 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1197) (-374)) (T -1071)) +((-4248 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) +(-10 -7 (-15 -4248 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) +(((-1072 |#1|) (-141) (-1133)) (T -1072)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3400 (((-112) $) 38)) (-4006 (((-112) $) 17)) (-1689 (((-783) $) 13)) (-1699 (((-783) $) 14)) (-2106 (((-112) $) 30)) (-1893 (((-112) $) 40))) +(((-1073 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1699 ((-783) |#1|)) (-15 -1689 ((-783) |#1|)) (-15 -1893 ((-112) |#1|)) (-15 -3400 ((-112) |#1|)) (-15 -2106 ((-112) |#1|)) (-15 -4006 ((-112) |#1|))) (-1074 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1070) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1073)) +NIL +(-10 -8 (-15 -1699 ((-783) |#1|)) (-15 -1689 ((-783) |#1|)) (-15 -1893 ((-112) |#1|)) (-15 -3400 ((-112) |#1|)) (-15 -2106 ((-112) |#1|)) (-15 -4006 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3400 (((-112) $) 56)) (-2780 (((-3 $ "failed") $ $) 20)) (-4006 (((-112) $) 58)) (-2396 (((-112) $ (-783)) 66)) (-3306 (($) 18 T CONST)) (-3377 (($ $) 39 (|has| |#3| (-317)))) (-3823 ((|#4| $ (-576)) 44)) (-3733 (((-783) $) 38 (|has| |#3| (-568)))) (-4272 ((|#3| $ (-576) (-576)) 46)) (-3965 (((-656 |#3|) $) 73 (|has| $ (-6 -4464)))) (-4198 (((-783) $) 37 (|has| |#3| (-568)))) (-3392 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-1689 (((-783) $) 50)) (-1699 (((-783) $) 49)) (-4252 (((-112) $ (-783)) 65)) (-3536 (((-576) $) 54)) (-1643 (((-576) $) 52)) (-2735 (((-656 |#3|) $) 74 (|has| $ (-6 -4464)))) (-3456 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4464))))) (-2858 (((-576) $) 53)) (-3129 (((-576) $) 51)) (-2465 (($ (-656 (-656 |#3|))) 59)) (-4322 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2093 (((-656 (-656 |#3|)) $) 48)) (-3557 (((-112) $ (-783)) 64)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-3542 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-3509 (((-112) $ $) 60)) (-2866 (((-112) $) 63)) (-3839 (($) 62)) (-2796 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-2106 (((-112) $) 57)) (-1460 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4464)))) (-1870 (($ $) 61)) (-3083 ((|#5| $ (-576)) 43)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2170 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4464)))) (-1893 (((-112) $) 55)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3502 (((-783) $) 67 (|has| $ (-6 -4464))))) +(((-1074 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1070) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1074)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-2796 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-3823 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) +(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4464) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -2465 ($ (-656 (-656 |t#3|)))) (-15 -4006 ((-112) $)) (-15 -2106 ((-112) $)) (-15 -3400 ((-112) $)) (-15 -1893 ((-112) $)) (-15 -3536 ((-576) $)) (-15 -2858 ((-576) $)) (-15 -1643 ((-576) $)) (-15 -3129 ((-576) $)) (-15 -1689 ((-783) $)) (-15 -1699 ((-783) $)) (-15 -2093 ((-656 (-656 |t#3|)) $)) (-15 -2796 (|t#3| $ (-576) (-576))) (-15 -4272 (|t#3| $ (-576) (-576))) (-15 -2796 (|t#3| $ (-576) (-576) |t#3|)) (-15 -3823 (|t#4| $ (-576))) (-15 -3083 (|t#5| $ (-576))) (-15 -4116 ($ (-1 |t#3| |t#3|) $)) (-15 -4116 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3475 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -3056 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -3377 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -3733 ((-783) $)) (-15 -4198 ((-783) $)) (-15 -3392 ((-656 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-876)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1072 |#3|) . T) ((-1077 |#3|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3400 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-4006 (((-112) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-3306 (($) NIL T CONST)) (-3377 (($ $) 47 (|has| |#3| (-317)))) (-3823 (((-245 |#2| |#3|) $ (-576)) 36)) (-2531 (($ (-701 |#3|)) 45)) (-3733 (((-783) $) 49 (|has| |#3| (-568)))) (-4272 ((|#3| $ (-576) (-576)) NIL)) (-3965 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-4198 (((-783) $) 51 (|has| |#3| (-568)))) (-3392 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-1689 (((-783) $) NIL)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3536 (((-576) $) NIL)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-2858 (((-576) $) NIL)) (-3129 (((-576) $) NIL)) (-2465 (($ (-656 (-656 |#3|))) 31)) (-4322 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2093 (((-656 (-656 |#3|)) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-3542 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-1972 (((-135)) 59 (|has| |#3| (-374)))) (-2106 (((-112) $) NIL)) (-1460 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-3083 (((-245 |#1| |#3|) $ (-576)) 40)) (-3569 (((-876) $) 19) (((-701 |#3|) $) 42)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-1893 (((-112) $) NIL)) (-2719 (($) 16 T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1075 |#1| |#2| |#3|) (-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2531 ($ (-701 |#3|))))) (-783) (-783) (-1070)) (T -1075)) +((-2531 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) +(-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2531 ($ (-701 |#3|))))) +((-3685 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4116 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1076 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4116 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3685 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1070) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1074 |#1| |#2| |#3| |#4| |#5|) (-1070) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1074 |#1| |#2| |#7| |#8| |#9|)) (T -1076)) +((-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) +(-10 -7 (-15 -4116 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3685 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) +(((-1077 |#1|) (-141) (-1079)) (T -1077)) +NIL +(-13 (-21) (-1072 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1072 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3054 (((-1197) $) 11)) (-3533 ((|#1| $) 12)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2335 (($ (-1197) |#1|) 10)) (-3569 (((-876) $) 22 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2923 (((-112) $ $) 17 (|has| |#1| (-1121))))) +(((-1078 |#1| |#2|) (-13 (-1238) (-10 -8 (-15 -2335 ($ (-1197) |#1|)) (-15 -3054 ((-1197) $)) (-15 -3533 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1114 |#2|) (-1238)) (T -1078)) +((-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-4 *4 (-1238)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-3054 (*1 *2 *1) (-12 (-4 *4 (-1238)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-3533 (*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2335 ($ (-1197) |#1|)) (-15 -3054 ((-1197) $)) (-15 -3533 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1079) (-141)) (T -1079)) +NIL +(-13 (-21) (-1133)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4048 (($ $) 17)) (-4175 (($ $) 25)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 55)) (-2471 (($ $) 27)) (-2638 (($ $) 12)) (-3416 (($ $) 43)) (-4171 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) 36)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-1778 (((-783)) 9)) (-1487 (($ $) 45))) +(((-1080 |#1|) (-10 -8 (-15 -4175 (|#1| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -2471 (|#1| |#1|)) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1081)) (T -1080)) +((-1778 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) +(-10 -8 (-15 -4175 (|#1| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -2471 (|#1| |#1|)) (-15 -2399 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -1778 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2347 (((-576) $) 98)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-4048 (($ $) 96)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-1839 (($ $) 106)) (-2420 (((-112) $ $) 65)) (-1529 (((-576) $) 123)) (-3306 (($) 18 T CONST)) (-4175 (($ $) 95)) (-1572 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2859 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-4169 (((-112) $) 79)) (-1661 (((-112) $) 121)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 105)) (-2471 (($ $) 101)) (-4099 (((-112) $) 122)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3124 (($ $ $) 115)) (-1951 (($ $ $) 116)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2638 (($ $) 97)) (-3416 (($ $) 99)) (-1828 (((-430 $) $) 82)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-4171 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-1778 (((-783)) 32 T CONST)) (-1487 (($ $) 100)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-1665 (($ $) 124)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2991 (((-112) $ $) 117)) (-2962 (((-112) $ $) 119)) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 118)) (-2948 (((-112) $ $) 120)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +(((-1081) (-141)) (T -1081)) +((-1665 (*1 *1 *1) (-4 *1 (-1081))) (-2471 (*1 *1 *1) (-4 *1 (-1081))) (-1487 (*1 *1 *1) (-4 *1 (-1081))) (-3416 (*1 *1 *1) (-4 *1 (-1081))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576)))) (-2638 (*1 *1 *1) (-4 *1 (-1081))) (-4048 (*1 *1 *1) (-4 *1 (-1081))) (-4175 (*1 *1 *1) (-4 *1 (-1081)))) +(-13 (-374) (-860) (-1043) (-1059 (-576)) (-1059 (-419 (-576))) (-1023) (-626 (-907 (-390))) (-901 (-390)) (-148) (-10 -8 (-15 -2471 ($ $)) (-15 -1487 ($ $)) (-15 -3416 ($ $)) (-15 -2347 ((-576) $)) (-15 -2638 ($ $)) (-15 -4048 ($ $)) (-15 -4175 ($ $)) (-15 -1665 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-907 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-390)) . T) ((-939) . T) ((-1023) . T) ((-1043) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) |#2| $) 26)) (-2096 ((|#1| $) 10)) (-1529 (((-576) |#2| $) 116)) (-4077 (((-3 $ "failed") |#2| (-940)) 75)) (-4249 ((|#1| $) 31)) (-3675 ((|#1| |#2| $ |#1|) 40)) (-3301 (($ $) 28)) (-3451 (((-3 |#2| "failed") |#2| $) 111)) (-1661 (((-112) |#2| $) NIL)) (-4099 (((-112) |#2| $) NIL)) (-3745 (((-112) |#2| $) 27)) (-3435 ((|#1| $) 117)) (-4239 ((|#1| $) 30)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1897 ((|#2| $) 102)) (-3569 (((-876) $) 92)) (-2113 (((-112) $ $) NIL)) (-4165 ((|#1| |#2| $ |#1|) 41)) (-4022 (((-656 $) |#2|) 77)) (-2923 (((-112) $ $) 97))) +(((-1082 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -8 (-15 -4239 (|#1| $)) (-15 -4249 (|#1| $)) (-15 -2096 (|#1| $)) (-15 -3435 (|#1| $)) (-15 -3301 ($ $)) (-15 -3745 ((-112) |#2| $)) (-15 -3675 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1264 |#1|)) (T -1082)) +((-3675 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4239 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4249 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2096 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3435 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3301 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3745 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-1264 *4))))) +(-13 (-1089 |#1| |#2|) (-10 -8 (-15 -4239 (|#1| $)) (-15 -4249 (|#1| $)) (-15 -2096 (|#1| $)) (-15 -3435 (|#1| $)) (-15 -3301 ($ $)) (-15 -3745 ((-112) |#2| $)) (-15 -3675 (|#1| |#2| $ |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-3893 (($ $ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2462 (($ $ $ $) NIL)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-1529 (((-576) $) NIL)) (-2742 (($ $ $) NIL)) (-3306 (($) NIL T CONST)) (-3299 (($ (-1197)) 10) (($ (-576)) 7)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2859 (((-576) $) NIL)) (-3428 (($ $ $) NIL)) (-4344 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-2034 (((-419 (-576)) $) NIL)) (-1836 (($) NIL) (($ $) NIL)) (-3440 (($ $ $) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-2533 (($ $ $) NIL)) (-1661 (((-112) $) NIL)) (-4202 (($ $ $) NIL)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-3215 (((-112) $) NIL)) (-2561 (((-112) $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-4099 (((-112) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1819 (($ $ $ $) NIL)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-2241 (($ $) NIL)) (-2434 (($ $) NIL)) (-3626 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2527 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-1373 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3792 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2975 (((-112) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2773 (($ $) NIL) (($ $ (-783)) NIL)) (-1806 (($ $) NIL)) (-1870 (($ $) NIL)) (-4171 (((-576) $) 16) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1197)) 9)) (-3569 (((-876) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-1778 (((-783)) NIL T CONST)) (-3904 (((-112) $ $) NIL)) (-1621 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-3515 (($) NIL)) (-2537 (((-112) $ $) NIL)) (-2070 (($ $ $ $) NIL)) (-1665 (($ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3043 (($ $) 22) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) +(((-1083) (-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -3299 ($ (-1197))) (-15 -3299 ($ (-576)))))) (T -1083)) +((-3299 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083)))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083))))) +(-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -3299 ($ (-1197))) (-15 -3299 ($ (-576))))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-1656 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3225 (($) 9)) (-3755 (((-52) $ (-1197) (-52)) NIL)) (-2479 (($ $) 32)) (-2245 (($ $) 30)) (-2006 (($ $) 29)) (-1941 (($ $) 31)) (-4190 (($ $) 35)) (-1631 (($ $) 36)) (-2509 (($ $) 28)) (-2085 (($ $) 33)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) 27 (|has| $ (-6 -4464)))) (-2195 (((-3 (-52) "failed") (-1197) $) 43)) (-3306 (($) NIL T CONST)) (-2841 (($) 7)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121))))) (-2065 (($ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) 53 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1197) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-4020 (((-3 (-1179) "failed") $ (-1179) (-576)) 72)) (-4332 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4465)))) (-4272 (((-52) $ (-1197)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2735 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) 38 (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-4027 (((-1197) $) NIL (|has| (-1197) (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121))))) (-3203 (((-656 (-1197)) $) NIL)) (-2419 (((-112) (-1197) $) NIL)) (-3772 (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL)) (-4436 (($ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) 46)) (-2764 (((-656 (-1197)) $) NIL)) (-4018 (((-112) (-1197) $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121))))) (-2015 (((-390) $ (-1197)) 52)) (-2946 (((-656 (-1179)) $ (-1179)) 74)) (-3580 (((-52) $) NIL (|has| (-1197) (-861)))) (-2366 (((-3 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) "failed") (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL)) (-2740 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-1681 (((-656 (-52)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 (((-52) $ (-1197)) NIL) (((-52) $ (-1197) (-52)) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-3094 (($ $ (-1197)) 54)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) 40)) (-1615 (($ $ $) 41)) (-3569 (((-876) $) NIL (-2758 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-625 (-876)))))) (-4139 (($ $ (-1197) (-390)) 50)) (-1691 (($ $ (-1197) (-390)) 51)) (-2113 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4438 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4438 (-52))) (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1084) (-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -1615 ($ $ $)) (-15 -2841 ($)) (-15 -2509 ($ $)) (-15 -2006 ($ $)) (-15 -2245 ($ $)) (-15 -1941 ($ $)) (-15 -2085 ($ $)) (-15 -2479 ($ $)) (-15 -4190 ($ $)) (-15 -1631 ($ $)) (-15 -4139 ($ $ (-1197) (-390))) (-15 -1691 ($ $ (-1197) (-390))) (-15 -2015 ((-390) $ (-1197))) (-15 -2946 ((-656 (-1179)) $ (-1179))) (-15 -3094 ($ $ (-1197))) (-15 -3225 ($)) (-15 -4020 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4464)))) (T -1084)) +((-1615 (*1 *1 *1 *1) (-5 *1 (-1084))) (-2841 (*1 *1) (-5 *1 (-1084))) (-2509 (*1 *1 *1) (-5 *1 (-1084))) (-2006 (*1 *1 *1) (-5 *1 (-1084))) (-2245 (*1 *1 *1) (-5 *1 (-1084))) (-1941 (*1 *1 *1) (-5 *1 (-1084))) (-2085 (*1 *1 *1) (-5 *1 (-1084))) (-2479 (*1 *1 *1) (-5 *1 (-1084))) (-4190 (*1 *1 *1) (-5 *1 (-1084))) (-1631 (*1 *1 *1) (-5 *1 (-1084))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-1691 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084)))) (-2946 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179)))) (-3094 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084)))) (-3225 (*1 *1) (-5 *1 (-1084))) (-4020 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) +(-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -1615 ($ $ $)) (-15 -2841 ($)) (-15 -2509 ($ $)) (-15 -2006 ($ $)) (-15 -2245 ($ $)) (-15 -1941 ($ $)) (-15 -2085 ($ $)) (-15 -2479 ($ $)) (-15 -4190 ($ $)) (-15 -1631 ($ $)) (-15 -4139 ($ $ (-1197) (-390))) (-15 -1691 ($ $ (-1197) (-390))) (-15 -2015 ((-390) $ (-1197))) (-15 -2946 ((-656 (-1179)) $ (-1179))) (-15 -3094 ($ $ (-1197))) (-15 -3225 ($)) (-15 -4020 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4464))) +((-4425 (($ $) 46)) (-3984 (((-112) $ $) 82)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) 247) (((-3 $ "failed") (-971 (-576))) 246) (((-3 $ "failed") (-971 |#2|)) 249)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-971 (-419 (-576)))) 235) (($ (-971 (-576))) 231) (($ (-971 |#2|)) 255)) (-2112 (($ $) NIL) (($ $ |#4|) 44)) (-2813 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-1815 (((-112) $) 60)) (-3966 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 125)) (-3494 (($ $) 160)) (-4217 (($ $) 156)) (-3280 (($ $) 155)) (-3387 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3318 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3363 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-2665 ((|#4| $) 32)) (-1900 (($ $ $) 128)) (-4225 (((-112) $) 59)) (-4351 (((-783) $) 35)) (-2914 (($ $) 174)) (-2641 (($ $) 171)) (-1497 (((-656 $) $) 72)) (-2459 (($ $) 62)) (-2114 (($ $) 167)) (-3399 (((-656 $) $) 69)) (-4090 (($ $) 64)) (-2089 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4306 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3701 (-783))) $ $) 130)) (-1857 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $) 126) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $ |#4|) 127)) (-4047 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $) 121) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $ |#4|) 123)) (-3749 (($ $ $) 97) (($ $ $ |#4|) 106)) (-4203 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2057 (((-656 $) $) 54)) (-3455 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-2860 (($ $ $) 116)) (-3539 (($ $) 37)) (-1716 (((-112) $ $) 80)) (-3595 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3764 (($ $ $) 112)) (-1378 (($ $) 41)) (-3498 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-2720 (($ $ |#2|) NIL) (($ $ $) 153)) (-3232 (($ $ |#2|) 148) (($ $ $) 151)) (-4337 (($ $) 49)) (-3171 (($ $) 55)) (-4171 (((-907 (-390)) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (($ (-971 (-419 (-576)))) 237) (($ (-971 (-576))) 233) (($ (-971 |#2|)) 248) (((-1179) $) 279) (((-971 |#2|) $) 184)) (-3569 (((-876) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-971 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3115 (((-3 (-112) "failed") $ $) 79))) +(((-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 ((-971 |#2|) |#1|)) (-15 -4171 ((-971 |#2|) |#1|)) (-15 -4171 ((-1179) |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -2641 (|#1| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3498 (|#2| |#2| |#1|)) (-15 -2720 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -2720 (|#1| |#1| |#2|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1|)) (-15 -3280 (|#1| |#1|)) (-15 -4171 (|#1| (-971 |#2|))) (-15 -2859 (|#1| (-971 |#2|))) (-15 -1572 ((-3 |#1| "failed") (-971 |#2|))) (-15 -4171 (|#1| (-971 (-576)))) (-15 -2859 (|#1| (-971 (-576)))) (-15 -1572 ((-3 |#1| "failed") (-971 (-576)))) (-15 -4171 (|#1| (-971 (-419 (-576))))) (-15 -2859 (|#1| (-971 (-419 (-576))))) (-15 -1572 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -2860 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| |#1|)) (-15 -4306 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3701 (-783))) |#1| |#1|)) (-15 -1900 (|#1| |#1| |#1|)) (-15 -3966 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -1857 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1| |#4|)) (-15 -1857 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -4047 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3599 |#1|)) |#1| |#1| |#4|)) (-15 -4047 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -4203 (|#1| |#1| |#1| |#4|)) (-15 -3749 (|#1| |#1| |#1| |#4|)) (-15 -4203 (|#1| |#1| |#1|)) (-15 -3749 (|#1| |#1| |#1|)) (-15 -3318 (|#1| |#1| |#1| |#4|)) (-15 -3387 (|#1| |#1| |#1| |#4|)) (-15 -3318 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -3363 ((-112) |#1| (-656 |#1|))) (-15 -3363 ((-112) |#1| |#1|)) (-15 -3455 ((-112) |#1| (-656 |#1|))) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3595 ((-112) |#1| (-656 |#1|))) (-15 -3595 ((-112) |#1| |#1|)) (-15 -2813 ((-112) |#1| (-656 |#1|))) (-15 -2813 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -3115 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1497 ((-656 |#1|) |#1|)) (-15 -3399 ((-656 |#1|) |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -1815 ((-112) |#1|)) (-15 -4225 ((-112) |#1|)) (-15 -2112 (|#1| |#1| |#4|)) (-15 -2089 (|#1| |#1| |#4|)) (-15 -3171 (|#1| |#1|)) (-15 -2057 ((-656 |#1|) |#1|)) (-15 -4337 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -4351 ((-783) |#1|)) (-15 -2665 (|#4| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -2089 (|#2| |#1|)) (-15 -2112 (|#1| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1086 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -1085)) +NIL +(-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 ((-971 |#2|) |#1|)) (-15 -4171 ((-971 |#2|) |#1|)) (-15 -4171 ((-1179) |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -2641 (|#1| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3498 (|#2| |#2| |#1|)) (-15 -2720 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -2720 (|#1| |#1| |#2|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1|)) (-15 -3280 (|#1| |#1|)) (-15 -4171 (|#1| (-971 |#2|))) (-15 -2859 (|#1| (-971 |#2|))) (-15 -1572 ((-3 |#1| "failed") (-971 |#2|))) (-15 -4171 (|#1| (-971 (-576)))) (-15 -2859 (|#1| (-971 (-576)))) (-15 -1572 ((-3 |#1| "failed") (-971 (-576)))) (-15 -4171 (|#1| (-971 (-419 (-576))))) (-15 -2859 (|#1| (-971 (-419 (-576))))) (-15 -1572 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -2860 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| |#1|)) (-15 -4306 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3701 (-783))) |#1| |#1|)) (-15 -1900 (|#1| |#1| |#1|)) (-15 -3966 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -1857 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1| |#4|)) (-15 -1857 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -4047 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3599 |#1|)) |#1| |#1| |#4|)) (-15 -4047 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -4203 (|#1| |#1| |#1| |#4|)) (-15 -3749 (|#1| |#1| |#1| |#4|)) (-15 -4203 (|#1| |#1| |#1|)) (-15 -3749 (|#1| |#1| |#1|)) (-15 -3318 (|#1| |#1| |#1| |#4|)) (-15 -3387 (|#1| |#1| |#1| |#4|)) (-15 -3318 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -3363 ((-112) |#1| (-656 |#1|))) (-15 -3363 ((-112) |#1| |#1|)) (-15 -3455 ((-112) |#1| (-656 |#1|))) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3595 ((-112) |#1| (-656 |#1|))) (-15 -3595 ((-112) |#1| |#1|)) (-15 -2813 ((-112) |#1| (-656 |#1|))) (-15 -2813 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -3115 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1497 ((-656 |#1|) |#1|)) (-15 -3399 ((-656 |#1|) |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -1815 ((-112) |#1|)) (-15 -4225 ((-112) |#1|)) (-15 -2112 (|#1| |#1| |#4|)) (-15 -2089 (|#1| |#1| |#4|)) (-15 -3171 (|#1| |#1|)) (-15 -2057 ((-656 |#1|) |#1|)) (-15 -4337 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -4351 ((-783) |#1|)) (-15 -2665 (|#4| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -2089 (|#2| |#1|)) (-15 -2112 (|#1| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 |#3|) $) 113)) (-1799 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2544 (($ $) 91 (|has| |#1| (-568)))) (-1574 (((-112) $) 93 (|has| |#1| (-568)))) (-3591 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-4425 (($ $) 278)) (-3984 (((-112) $ $) 264)) (-2780 (((-3 $ "failed") $ $) 20)) (-2901 (($ $ $) 223 (|has| |#1| (-568)))) (-1598 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3420 (($ $) 101 (|has| |#1| (-464)))) (-1770 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-971 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) 235 (-2758 (-12 (-2662 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) 232 (-2758 (-12 (-2662 (|has| |#1| (-38 (-419 (-576))))) (-2662 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2662 (|has| |#1| (-557))) (-2662 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2662 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) (($ (-971 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 234 (-2758 (-12 (-2662 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 231 (-2758 (-12 (-2662 (|has| |#1| (-38 (-419 (-576))))) (-2662 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2662 (|has| |#1| (-557))) (-2662 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2662 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-4004 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-2112 (($ $) 161) (($ $ |#3|) 273)) (-4344 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-2813 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-3451 (((-3 $ "failed") $) 37)) (-1815 (((-112) $) 271)) (-3966 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 243)) (-3494 (($ $) 212 (|has| |#1| (-464)))) (-1371 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2101 (((-656 $) $) 112)) (-4169 (((-112) $) 99 (|has| |#1| (-928)))) (-4217 (($ $) 228 (|has| |#1| (-568)))) (-3280 (($ $) 229 (|has| |#1| (-568)))) (-3387 (($ $ $) 255) (($ $ $ |#3|) 253)) (-3318 (($ $ $) 254) (($ $ $ |#3|) 252)) (-3415 (($ $ |#1| |#2| $) 179)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3215 (((-112) $) 35)) (-1675 (((-783) $) 176)) (-3363 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-1960 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-2665 ((|#3| $) 282)) (-1955 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-3773 (((-656 $) $) 129)) (-1606 (((-112) $) 159)) (-1945 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1900 (($ $ $) 242)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#3|) 123)) (-4225 (((-112) $) 272)) (-2987 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-4351 (((-783) $) 281)) (-1938 (($ (-1 |#2| |#2|) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-2512 (((-3 |#3| "failed") $) 126)) (-2914 (($ $) 209 (|has| |#1| (-464)))) (-2641 (($ $) 210 (|has| |#1| (-464)))) (-1497 (((-656 $) $) 267)) (-2459 (($ $) 270)) (-2114 (($ $) 211 (|has| |#1| (-464)))) (-3399 (((-656 $) $) 268)) (-3626 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-4090 (($ $) 269)) (-2079 (($ $) 156)) (-2089 ((|#1| $) 155) (($ $ |#3|) 274)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-4306 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3701 (-783))) $ $) 241)) (-1857 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $) 245) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $ |#3|) 244)) (-4047 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $) 247) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $ |#3|) 246)) (-3749 (($ $ $) 251) (($ $ $ |#3|) 249)) (-4203 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1413 (((-1179) $) 10)) (-1728 (($ $ $) 217 (|has| |#1| (-568)))) (-2057 (((-656 $) $) 276)) (-2164 (((-3 (-656 $) "failed") $) 117)) (-3163 (((-3 (-656 $) "failed") $) 118)) (-2292 (((-3 (-2 (|:| |var| |#3|) (|:| -4210 (-783))) "failed") $) 116)) (-3455 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-2860 (($ $ $) 239)) (-3539 (($ $) 280)) (-1716 (((-112) $ $) 265)) (-3595 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-3764 (($ $ $) 240)) (-1378 (($ $) 279)) (-1450 (((-1141) $) 11)) (-4044 (((-2 (|:| -3498 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-4156 (((-2 (|:| -3498 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-2058 (((-112) $) 173)) (-2068 ((|#1| $) 174)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-1422 (((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2720 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-3232 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-2455 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2773 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-3600 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4337 (($ $) 277)) (-3171 (($ $) 275)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-971 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 233 (-2758 (-12 (-2662 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 230 (|has| |#3| (-626 (-1197)))) (((-1179) $) 208 (-12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197))))) (((-971 |#1|) $) 207 (|has| |#3| (-626 (-1197))))) (-1457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2673 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-971 |#1|) $) 206 (|has| |#3| (-626 (-1197)))) (($ (-419 (-576))) 81 (-2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) 175)) (-3998 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3230 (((-3 $ "failed") $) 82 (-2758 (-2673 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) 32 T CONST)) (-2655 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-3115 (((-3 (-112) "failed") $ $) 266)) (-2730 (($) 34 T CONST)) (-3840 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-1483 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-2018 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1086 |#1| |#2| |#3|) (-141) (-1070) (-805) (-861)) (T -1086)) +((-2665 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-4351 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3539 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1378 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4337 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2057 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2089 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2112 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2459 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-1497 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3115 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1716 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3984 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2813 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3595 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3595 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3455 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3363 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3363 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3387 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3318 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3387 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3318 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3749 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4203 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3749 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-4203 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-4047 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3599 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4047 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3599 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-1857 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-1857 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-3966 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-1900 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4306 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3701 (-783)))) (-4 *1 (-1086 *3 *4 *5)))) (-3764 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-1572 (*1 *1 *2) (|partial| -2758 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2859 (*1 *1 *2) (-2758 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-4171 (*1 *1 *2) (-2758 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1572 (*1 *1 *2) (|partial| -2758 (-12 (-5 *2 (-971 *3)) (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-2662 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2662 (-4 *3 (-557))) (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2662 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2859 (*1 *1 *2) (-2758 (-12 (-5 *2 (-971 *3)) (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-2662 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2662 (-4 *3 (-557))) (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2662 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4217 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2720 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3232 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2720 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2901 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1422 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4156 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4044 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3498 *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4004 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1598 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-1728 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1483 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-3840 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-1960 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3498 (*1 *2 *2 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3494 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2641 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2914 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464))))) +(-13 (-968 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2665 (|t#3| $)) (-15 -4351 ((-783) $)) (-15 -3539 ($ $)) (-15 -1378 ($ $)) (-15 -4425 ($ $)) (-15 -4337 ($ $)) (-15 -2057 ((-656 $) $)) (-15 -3171 ($ $)) (-15 -2089 ($ $ |t#3|)) (-15 -2112 ($ $ |t#3|)) (-15 -4225 ((-112) $)) (-15 -1815 ((-112) $)) (-15 -2459 ($ $)) (-15 -4090 ($ $)) (-15 -3399 ((-656 $) $)) (-15 -1497 ((-656 $) $)) (-15 -3115 ((-3 (-112) "failed") $ $)) (-15 -1716 ((-112) $ $)) (-15 -3984 ((-112) $ $)) (-15 -2813 ((-112) $ $)) (-15 -2813 ((-112) $ (-656 $))) (-15 -3595 ((-112) $ $)) (-15 -3595 ((-112) $ (-656 $))) (-15 -3455 ((-112) $ $)) (-15 -3455 ((-112) $ (-656 $))) (-15 -3363 ((-112) $ $)) (-15 -3363 ((-112) $ (-656 $))) (-15 -3387 ($ $ $)) (-15 -3318 ($ $ $)) (-15 -3387 ($ $ $ |t#3|)) (-15 -3318 ($ $ $ |t#3|)) (-15 -3749 ($ $ $)) (-15 -4203 ($ $ $)) (-15 -3749 ($ $ $ |t#3|)) (-15 -4203 ($ $ $ |t#3|)) (-15 -4047 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $)) (-15 -4047 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3599 $)) $ $ |t#3|)) (-15 -1857 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -1857 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3015 $) (|:| -3599 $)) $ $ |t#3|)) (-15 -3966 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -1900 ($ $ $)) (-15 -4306 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3701 (-783))) $ $)) (-15 -3764 ($ $ $)) (-15 -2860 ($ $ $)) (IF (|has| |t#3| (-626 (-1197))) (PROGN (-6 (-625 (-971 |t#1|))) (-6 (-626 (-971 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1572 ((-3 $ "failed") (-971 (-419 (-576))))) (-15 -2859 ($ (-971 (-419 (-576))))) (-15 -4171 ($ (-971 (-419 (-576))))) (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2859 ($ (-971 (-576)))) (-15 -4171 ($ (-971 (-576)))) (IF (|has| |t#1| (-1013 (-576))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2859 ($ (-971 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2859 ($ (-971 (-576)))) (-15 -4171 ($ (-971 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2859 ($ (-971 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2859 ($ (-971 |t#1|)))))) (-15 -4171 ($ (-971 |t#1|))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-626 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3280 ($ $)) (-15 -4217 ($ $)) (-15 -3232 ($ $ |t#1|)) (-15 -2720 ($ $ |t#1|)) (-15 -3232 ($ $ $)) (-15 -2720 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -1422 ((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4156 ((-2 (|:| -3498 $) (|:| |coef1| $)) $ $)) (-15 -4044 ((-2 (|:| -3498 $) (|:| |coef2| $)) $ $)) (-15 -4004 ($ $ $)) (-15 -1598 ((-656 $) $ $)) (-15 -1728 ($ $ $)) (-15 -1483 ($ $ $ (-783))) (-15 -3840 ($ $ $ $ (-783))) (-15 -1960 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3498 (|t#1| |t#1| $)) (-15 -3494 ($ $)) (-15 -2114 ($ $)) (-15 -2641 ($ $)) (-15 -2914 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-625 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-174) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-626 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-626 (-1179)) -12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197)))) ((-300) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2758 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#2| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-3066 (((-656 (-1156)) $) 18)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-1156) $) 20)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1087) (-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2639 ((-1156) $))))) (T -1087)) +((-3066 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087))))) +(-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2639 ((-1156) $)))) +((-1812 (((-112) |#3| $) 15)) (-4077 (((-3 $ "failed") |#3| (-940)) 29)) (-3451 (((-3 |#3| "failed") |#3| $) 45)) (-1661 (((-112) |#3| $) 19)) (-4099 (((-112) |#3| $) 17))) +(((-1088 |#1| |#2| |#3|) (-10 -8 (-15 -4077 ((-3 |#1| "failed") |#3| (-940))) (-15 -3451 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1661 ((-112) |#3| |#1|)) (-15 -4099 ((-112) |#3| |#1|)) (-15 -1812 ((-112) |#3| |#1|))) (-1089 |#2| |#3|) (-13 (-860) (-374)) (-1264 |#2|)) (T -1088)) +NIL +(-10 -8 (-15 -4077 ((-3 |#1| "failed") |#3| (-940))) (-15 -3451 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1661 ((-112) |#3| |#1|)) (-15 -4099 ((-112) |#3| |#1|)) (-15 -1812 ((-112) |#3| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) |#2| $) 22)) (-1529 (((-576) |#2| $) 23)) (-4077 (((-3 $ "failed") |#2| (-940)) 16)) (-3675 ((|#1| |#2| $ |#1|) 14)) (-3451 (((-3 |#2| "failed") |#2| $) 19)) (-1661 (((-112) |#2| $) 20)) (-4099 (((-112) |#2| $) 21)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1897 ((|#2| $) 18)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-4165 ((|#1| |#2| $ |#1|) 15)) (-4022 (((-656 $) |#2|) 17)) (-2923 (((-112) $ $) 8))) +(((-1089 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1264 |t#1|)) (T -1089)) +((-1529 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-576)))) (-1812 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-4099 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-1661 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-3451 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *3)))) (-4077 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4)))) (-4165 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2)))) (-3675 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2))))) +(-13 (-1121) (-10 -8 (-15 -1529 ((-576) |t#2| $)) (-15 -1812 ((-112) |t#2| $)) (-15 -4099 ((-112) |t#2| $)) (-15 -1661 ((-112) |t#2| $)) (-15 -3451 ((-3 |t#2| "failed") |t#2| $)) (-15 -1897 (|t#2| $)) (-15 -4022 ((-656 $) |t#2|)) (-15 -4077 ((-3 $ "failed") |t#2| (-940))) (-15 -4165 (|t#1| |t#2| $ |t#1|)) (-15 -3675 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-1832 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783)) 114)) (-3590 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 63)) (-4395 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)) 99)) (-3368 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-4242 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-3443 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-4171 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 92)) (-3769 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-112)) 62)) (-3508 (((-783) (-656 |#4|) (-656 |#5|)) 21))) +(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3508 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3368 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3769 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-112))) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1832 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4395 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1090)) +((-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1090 *4 *5 *6 *7 *8)))) (-1832 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) (-3443 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3443 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4242 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4242 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-4242 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) (-3590 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3769 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3508 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3368 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3769 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-112))) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1832 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4395 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) +((-1793 (((-112) |#5| $) 26)) (-2989 (((-112) |#5| $) 29)) (-2464 (((-112) |#5| $) 18) (((-112) $) 52)) (-1834 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-3169 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-1528 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-2011 (((-112) |#5| $) 32))) +(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3169 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3169 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3169 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3169 ((-656 |#1|) |#5| |#1|)) (-15 -1528 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1528 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1528 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1528 ((-656 |#1|) |#5| |#1|)) (-15 -1834 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1834 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1834 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1834 ((-656 |#1|) |#5| |#1|)) (-15 -2989 ((-112) |#5| |#1|)) (-15 -2464 ((-112) |#1|)) (-15 -2011 ((-112) |#5| |#1|)) (-15 -1793 ((-112) |#5| |#1|)) (-15 -2464 ((-112) |#5| |#1|)) (-15 -3169 (|#1| |#1| |#5|))) (-1092 |#2| |#3| |#4| |#5|) (-464) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1091)) +NIL +(-10 -8 (-15 -3169 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3169 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3169 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3169 ((-656 |#1|) |#5| |#1|)) (-15 -1528 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1528 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1528 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1528 ((-656 |#1|) |#5| |#1|)) (-15 -1834 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1834 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1834 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1834 ((-656 |#1|) |#5| |#1|)) (-15 -2989 ((-112) |#5| |#1|)) (-15 -2464 ((-112) |#1|)) (-15 -2011 ((-112) |#5| |#1|)) (-15 -1793 ((-112) |#5| |#1|)) (-15 -2464 ((-112) |#5| |#1|)) (-15 -3169 (|#1| |#1| |#5|))) +((-3488 (((-112) $ $) 7)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3597 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1966 (((-656 |#3|) $) 34)) (-1755 (((-112) $) 27)) (-1781 (((-112) $) 18 (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) 102) (((-112) $) 98)) (-2795 ((|#4| |#4| $) 93)) (-3420 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) 28)) (-2396 (((-112) $ (-783)) 45)) (-1971 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3306 (($) 46 T CONST)) (-3290 (((-112) $) 23 (|has| |#1| (-568)))) (-2879 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1576 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3489 (((-112) $) 26 (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4356 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3947 ((|#4| |#4| $) 90)) (-2800 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2873 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-1793 (((-112) |#4| $) 137)) (-2989 (((-112) |#4| $) 134)) (-2464 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) 105) (((-112) $) 104)) (-2665 ((|#3| $) 35)) (-4252 (((-112) $ (-783)) 44)) (-2735 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-1994 (((-656 |#3|) $) 33)) (-1983 (((-112) |#3| $) 32)) (-3557 (((-112) $ (-783)) 43)) (-1413 (((-1179) $) 10)) (-1988 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1728 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3967 (((-3 |#4| "failed") $) 84)) (-2042 (((-656 $) |#4| $) 130)) (-3059 (((-3 (-112) (-656 $)) |#4| $) 133)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1834 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2289 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-1809 (((-656 |#4|) $) 108)) (-3455 (((-112) |#4| $) 100) (((-112) $) 96)) (-2860 ((|#4| |#4| $) 91)) (-1716 (((-112) $ $) 111)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) 101) (((-112) $) 97)) (-3764 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3260 (((-3 $ "failed") $ |#4|) 79)) (-3169 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3542 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) 39)) (-2866 (((-112) $) 42)) (-3839 (($) 41)) (-3600 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2907 (($ $ |#3|) 29)) (-4080 (($ $ |#3|) 31)) (-3453 (($ $) 89)) (-3698 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3000 (((-783) $) 77 (|has| |#3| (-379)))) (-2113 (((-112) $ $) 6)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1528 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2170 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) 82)) (-2011 (((-112) |#4| $) 136)) (-2951 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-1092 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1092)) +((-2464 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1793 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2011 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2989 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3059 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-4244 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-4244 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2042 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1988 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1728 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1834 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1834 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-1834 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-1834 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-1528 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1528 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-1528 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-1528 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-2289 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) (-3169 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3169 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3169 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3169 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *5 *6 *7 *8))))) +(-13 (-1231 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2464 ((-112) |t#4| $)) (-15 -1793 ((-112) |t#4| $)) (-15 -2011 ((-112) |t#4| $)) (-15 -2464 ((-112) $)) (-15 -2989 ((-112) |t#4| $)) (-15 -3059 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -4244 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |t#4| $)) (-15 -4244 ((-112) |t#4| $)) (-15 -2042 ((-656 $) |t#4| $)) (-15 -1988 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -1728 ((-656 (-2 (|:| |val| |t#4|) (|:| -3987 $))) |t#4| |t#4| $)) (-15 -3420 ((-656 (-2 (|:| |val| |t#4|) (|:| -3987 $))) |t#4| $)) (-15 -1834 ((-656 $) |t#4| $)) (-15 -1834 ((-656 $) (-656 |t#4|) $)) (-15 -1834 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1834 ((-656 $) |t#4| (-656 $))) (-15 -1528 ((-656 $) |t#4| $)) (-15 -1528 ((-656 $) |t#4| (-656 $))) (-15 -1528 ((-656 $) (-656 |t#4|) $)) (-15 -1528 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2289 ($ |t#4| $)) (-15 -2289 ($ (-656 |t#4|) $)) (-15 -3169 ((-656 $) |t#4| $)) (-15 -3169 ((-656 $) |t#4| (-656 $))) (-15 -3169 ((-656 $) (-656 |t#4|) $)) (-15 -3169 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3597 ((-656 $) (-656 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) +((-4398 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|) 86)) (-3031 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 127)) (-1866 (((-656 |#5|) |#4| |#5|) 74)) (-3064 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2451 (((-1293)) 36)) (-2697 (((-1293)) 25)) (-2766 (((-1293) (-1179) (-1179) (-1179)) 32)) (-4085 (((-1293) (-1179) (-1179) (-1179)) 21)) (-3548 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|) 107)) (-2922 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3110 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 113))) +(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4085 ((-1293) (-1179) (-1179) (-1179))) (-15 -2697 ((-1293))) (-15 -2766 ((-1293) (-1179) (-1179) (-1179))) (-15 -2451 ((-1293))) (-15 -3548 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -2922 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2922 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -3110 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3031 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3064 ((-112) |#4| |#5|)) (-15 -3064 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1866 ((-656 |#5|) |#4| |#5|)) (-15 -4398 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1093)) +((-4398 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1866 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3064 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3064 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3110 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) (-5 *1 (-1093 *6 *7 *4 *8 *9)))) (-2922 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3548 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2451 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-2766 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2697 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4085 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -4085 ((-1293) (-1179) (-1179) (-1179))) (-15 -2697 ((-1293))) (-15 -2766 ((-1293) (-1179) (-1179) (-1179))) (-15 -2451 ((-1293))) (-15 -3548 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -2922 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2922 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -3110 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3031 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3064 ((-112) |#4| |#5|)) (-15 -3064 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1866 ((-656 |#5|) |#4| |#5|)) (-15 -4398 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 13)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3122 (((-1156) $) 10)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1094) (-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2983 ((-1237) $))))) (T -1094)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094))))) +(-13 (-1104) (-10 -8 (-15 -3122 ((-1156) $)) (-15 -2983 ((-1237) $)))) +((-4026 (((-112) $ $) 7))) +(((-1095) (-13 (-1238) (-10 -8 (-15 -4026 ((-112) $ $))))) (T -1095)) +((-4026 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095))))) +(-13 (-1238) (-10 -8 (-15 -4026 ((-112) $ $)))) +((-3488 (((-112) $ $) NIL)) (-2627 (((-1197) $) 8)) (-1413 (((-1179) $) 17)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 14))) +(((-1096 |#1|) (-13 (-1121) (-10 -8 (-15 -2627 ((-1197) $)))) (-1197)) (T -1096)) +((-2627 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2)))) +(-13 (-1121) (-10 -8 (-15 -2627 ((-1197) $)))) +((-3488 (((-112) $ $) NIL)) (-2929 (($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|))) 34)) (-2414 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1197))) 21)) (-1669 ((|#3| $) 13)) (-1572 (((-3 (-304 |#3|) "failed") $) 60)) (-2859 (((-304 |#3|) $) NIL)) (-3089 (((-656 (-1197)) $) 16)) (-2718 (((-907 |#1|) $) 11)) (-1657 ((|#3| $) 12)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-940)) 41)) (-3569 (((-876) $) 89) (($ (-304 |#3|)) 22)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 38))) +(((-1097 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -2414 ($ |#3| |#3|)) (-15 -2414 ($ |#3| |#3| (-656 (-1197)))) (-15 -2929 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -2718 ((-907 |#1|) $)) (-15 -1657 (|#3| $)) (-15 -1669 (|#3| $)) (-15 -2796 (|#3| $ |#3| (-940))) (-15 -3089 ((-656 (-1197)) $)))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1097)) +((-2414 (*1 *1 *2 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-2414 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-2929 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *6)))) (-2718 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2))))) (-1657 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-1669 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-2796 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-3089 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) +(-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -2414 ($ |#3| |#3|)) (-15 -2414 ($ |#3| |#3| (-656 (-1197)))) (-15 -2929 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -2718 ((-907 |#1|) $)) (-15 -1657 (|#3| $)) (-15 -1669 (|#3| $)) (-15 -2796 (|#3| $ |#3| (-940))) (-15 -3089 ((-656 (-1197)) $)))) +((-3488 (((-112) $ $) NIL)) (-2890 (($ (-656 (-1097 |#1| |#2| |#3|))) 14)) (-3367 (((-656 (-1097 |#1| |#2| |#3|)) $) 21)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-940)) 27)) (-3569 (((-876) $) 17)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 20))) +(((-1098 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -2890 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -3367 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -2796 (|#3| $ |#3| (-940))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1098)) +((-2890 (*1 *1 *2) (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1098 *3 *4 *5)))) (-3367 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-2796 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) +(-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -2890 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -3367 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -2796 (|#3| $ |#3| (-940))))) +((-1543 (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 92) (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 90))) +(((-1099 |#1| |#2|) (-10 -7 (-15 -1543 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -1543 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1543 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1197))) (T -1099)) +((-1543 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *4)) (|:| -1490 (-656 (-971 *4)))))) (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197)))))) +(-10 -7 (-15 -1543 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -1543 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1543 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) +((-1828 (((-430 |#3|) |#3|) 18))) +(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) (-1264 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1264 |#2|)) (T -1100)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 136)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-2544 (($ $) NIL (|has| |#1| (-374)))) (-1574 (((-112) $) NIL (|has| |#1| (-374)))) (-2747 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) 121)) (-2208 ((|#1| $) 125)) (-1494 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2096 (((-783)) 43 (|has| |#1| (-379)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3208 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) 46)) (-3429 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-3567 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 108)) (-3685 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-3451 (((-3 $ "failed") $) NIL)) (-3733 (((-940)) 84)) (-1836 (($) 47 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3814 (($) NIL (|has| |#1| (-360)))) (-2117 (((-112) $) NIL (|has| |#1| (-360)))) (-1332 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-3309 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-3215 (((-112) $) NIL)) (-2471 ((|#1| $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2542 ((|#2| $) 91 (|has| |#1| (-374)))) (-2460 (((-940) $) 145 (|has| |#1| (-379)))) (-3671 ((|#2| $) 62)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3539 (($) NIL (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) 135 (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-4128 (($) 127)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4364 (((-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576))))) NIL (|has| |#1| (-360)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2455 ((|#1| (-1288 $)) NIL) ((|#1|) 117)) (-2992 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2773 (($ $ (-783)) NIL (-2758 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2758 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-4058 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1897 ((|#2|) 81)) (-2051 (($) NIL (|has| |#1| (-360)))) (-1490 (((-1288 |#1|) $ (-1288 $)) 96) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 75) (((-701 |#1|) (-1288 $)) 92)) (-4171 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-3569 (((-876) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3230 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2137 ((|#2| $) 89)) (-1778 (((-783)) 83 T CONST)) (-2113 (((-112) $ $) NIL)) (-3454 (((-1288 $)) 88)) (-2537 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2719 (($) 32 T CONST)) (-2730 (($) 19 T CONST)) (-2018 (($ $ (-783)) NIL (-2758 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2758 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-2923 (((-112) $ $) 67)) (-3056 (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) 71) (($ $ $) NIL)) (-3029 (($ $ $) 69)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +(((-1101 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1264 |#1|) |#2|) (T -1101)) NIL (-736 |#1| |#2|) -((-1450 (((-430 |#3|) |#3|) 19))) -(((-1101 |#1| |#2| |#3|) (-10 -7 (-15 -1450 ((-430 |#3|) |#3|))) (-1263 (-419 (-970 (-576)))) (-13 (-374) (-148) (-736 (-419 (-970 (-576))) |#1|)) (-1263 |#2|)) (T -1101)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-970 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-970 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -1450 ((-430 |#3|) |#3|))) -((-1952 (((-112) $ $) NIL)) (-2905 (($ $ $) 16)) (-1654 (($ $ $) 17)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2106 (($) 6)) (-1554 (((-1196) $) 20)) (-4112 (((-875) $) 13)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 15)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 9))) -(((-1102) (-13 (-861) (-626 (-1196)) (-10 -8 (-15 -2106 ($))))) (T -1102)) -((-2106 (*1 *1) (-5 *1 (-1102)))) -(-13 (-861) (-626 (-1196)) (-10 -8 (-15 -2106 ($)))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-1103) (-141)) (T -1103)) +((-1828 (((-430 |#3|) |#3|) 19))) +(((-1102 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) (-1264 (-419 (-971 (-576)))) (-13 (-374) (-148) (-736 (-419 (-971 (-576))) |#1|)) (-1264 |#2|)) (T -1102)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-971 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-971 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) 16)) (-1951 (($ $ $) 17)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3979 (($) 6)) (-4171 (((-1197) $) 20)) (-3569 (((-876) $) 13)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 15)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 9))) +(((-1103) (-13 (-861) (-626 (-1197)) (-10 -8 (-15 -3979 ($))))) (T -1103)) +((-3979 (*1 *1) (-5 *1 (-1103)))) +(-13 (-861) (-626 (-1197)) (-10 -8 (-15 -3979 ($)))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-1104) (-141)) (T -1104)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-875)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1120) . T) ((-1237) . T)) -((-1675 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-4004 (((-1292)) 21)) (-2009 (((-656 |#1|)) 13))) -(((-1104 |#1|) (-10 -7 (-15 -4004 ((-1292))) (-15 -2009 ((-656 |#1|))) (-15 -1675 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1675 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1104)) -((-1675 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1104 *2)))) (-1675 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1104 *2)))) (-2009 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-133)))) (-4004 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1104 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -4004 ((-1292))) (-15 -2009 ((-656 |#1|))) (-15 -1675 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1675 (|#1| |#1| (-1 (-576) |#1| |#1|)))) -((-3234 (($ (-109) $) 20)) (-1439 (((-703 (-109)) (-518) $) 19)) (-3935 (($) 7)) (-2595 (($) 21)) (-1496 (($) 22)) (-2564 (((-656 (-177)) $) 10)) (-4112 (((-875) $) 25))) -(((-1105) (-13 (-625 (-875)) (-10 -8 (-15 -3935 ($)) (-15 -2564 ((-656 (-177)) $)) (-15 -1439 ((-703 (-109)) (-518) $)) (-15 -3234 ($ (-109) $)) (-15 -2595 ($)) (-15 -1496 ($))))) (T -1105)) -((-3935 (*1 *1) (-5 *1 (-1105))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1105)))) (-1439 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1105)))) (-3234 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1105)))) (-2595 (*1 *1) (-5 *1 (-1105))) (-1496 (*1 *1) (-5 *1 (-1105)))) -(-13 (-625 (-875)) (-10 -8 (-15 -3935 ($)) (-15 -2564 ((-656 (-177)) $)) (-15 -1439 ((-703 (-109)) (-518) $)) (-15 -3234 ($ (-109) $)) (-15 -2595 ($)) (-15 -1496 ($)))) -((-2108 (((-1287 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1287 (-701 (-970 |#1|))) (-656 (-1196)) (-701 (-970 |#1|))) 75) (((-1287 (-701 (-419 (-970 |#1|)))) (-656 (-1196)) (-701 (-419 (-970 |#1|)))) 92)) (-3435 (((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) -(((-1106 |#1|) (-10 -7 (-15 -2108 ((-1287 (-701 (-419 (-970 |#1|)))) (-656 (-1196)) (-701 (-419 (-970 |#1|))))) (-15 -2108 ((-1287 (-701 (-970 |#1|))) (-656 (-1196)) (-701 (-970 |#1|)))) (-15 -2108 ((-1287 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3435 ((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1106)) -((-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1287 *5)) (-5 *1 (-1106 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-1106 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) (-5 *2 (-1287 (-701 (-970 *5)))) (-5 *1 (-1106 *5)) (-5 *4 (-701 (-970 *5))))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) (-5 *2 (-1287 (-701 (-419 (-970 *5))))) (-5 *1 (-1106 *5)) (-5 *4 (-701 (-419 (-970 *5))))))) -(-10 -7 (-15 -2108 ((-1287 (-701 (-419 (-970 |#1|)))) (-656 (-1196)) (-701 (-419 (-970 |#1|))))) (-15 -2108 ((-1287 (-701 (-970 |#1|))) (-656 (-1196)) (-701 (-970 |#1|)))) (-15 -2108 ((-1287 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3435 ((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-3135 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1196)) NIL)) (-2869 (((-783) $) NIL) (((-783) $ (-1196)) NIL)) (-1582 (((-656 (-1108 (-1196))) $) NIL)) (-1420 (((-1192 $) $ (-1108 (-1196))) NIL) (((-1192 |#1|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1108 (-1196)))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3120 (($ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-1108 (-1196)) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL) (((-3 (-1145 |#1| (-1196)) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-1108 (-1196)) $) NIL) (((-1196) $) NIL) (((-1145 |#1| (-1196)) $) NIL)) (-3954 (($ $ $ (-1108 (-1196))) NIL (|has| |#1| (-174)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1108 (-1196))) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-543 (-1108 (-1196))) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1108 (-1196)) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1108 (-1196)) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-3241 (((-783) $ (-1196)) NIL) (((-783) $) NIL)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1571 (($ (-1192 |#1|) (-1108 (-1196))) NIL) (($ (-1192 $) (-1108 (-1196))) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-543 (-1108 (-1196)))) NIL) (($ $ (-1108 (-1196)) (-783)) NIL) (($ $ (-656 (-1108 (-1196))) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1108 (-1196))) NIL)) (-3661 (((-543 (-1108 (-1196))) $) NIL) (((-783) $ (-1108 (-1196))) NIL) (((-656 (-783)) $ (-656 (-1108 (-1196)))) NIL)) (-3820 (($ (-1 (-543 (-1108 (-1196))) (-543 (-1108 (-1196)))) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3738 (((-1 $ (-783)) (-1196)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2653 (((-3 (-1108 (-1196)) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-4194 (((-1108 (-1196)) $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-3558 (((-112) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-1108 (-1196))) (|:| -1495 (-783))) "failed") $) NIL)) (-2295 (($ $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1108 (-1196)) |#1|) NIL) (($ $ (-656 (-1108 (-1196))) (-656 |#1|)) NIL) (($ $ (-1108 (-1196)) $) NIL) (($ $ (-656 (-1108 (-1196))) (-656 $)) NIL) (($ $ (-1196) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1451 (($ $ (-1108 (-1196))) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-1108 (-1196))) (-656 (-783))) NIL) (($ $ (-1108 (-1196)) (-783)) NIL) (($ $ (-656 (-1108 (-1196)))) NIL) (($ $ (-1108 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3630 (((-656 (-1196)) $) NIL)) (-1877 (((-543 (-1108 (-1196))) $) NIL) (((-783) $ (-1108 (-1196))) NIL) (((-656 (-783)) $ (-656 (-1108 (-1196)))) NIL) (((-783) $ (-1196)) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-1108 (-1196)) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-1108 (-1196)) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-1108 (-1196)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1108 (-1196))) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1108 (-1196))) NIL) (($ (-1196)) NIL) (($ (-1145 |#1| (-1196))) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-543 (-1108 (-1196)))) NIL) (($ $ (-1108 (-1196)) (-783)) NIL) (($ $ (-656 (-1108 (-1196))) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-1108 (-1196))) (-656 (-783))) NIL) (($ $ (-1108 (-1196)) (-783)) NIL) (($ $ (-656 (-1108 (-1196)))) NIL) (($ $ (-1108 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1107 |#1|) (-13 (-260 |#1| (-1196) (-1108 (-1196)) (-543 (-1108 (-1196)))) (-1058 (-1145 |#1| (-1196)))) (-1069)) (T -1107)) -NIL -(-13 (-260 |#1| (-1196) (-1108 (-1196)) (-543 (-1108 (-1196)))) (-1058 (-1145 |#1| (-1196)))) -((-1952 (((-112) $ $) NIL)) (-2869 (((-783) $) NIL)) (-1652 ((|#1| $) 10)) (-2980 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3241 (((-783) $) 11)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-3738 (($ |#1| (-783)) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4106 (($ $ (-783)) NIL) (($ $) NIL)) (-4112 (((-875) $) NIL) (($ |#1|) NIL)) (-1994 (((-112) $ $) NIL)) (-3155 (($ $ (-783)) NIL) (($ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 16))) -(((-1108 |#1|) (-275 |#1|) (-861)) (T -1108)) +(((-93) . T) ((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) +((-2097 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1667 (((-1293)) 21)) (-4035 (((-656 |#1|)) 13))) +(((-1105 |#1|) (-10 -7 (-15 -1667 ((-1293))) (-15 -4035 ((-656 |#1|))) (-15 -2097 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2097 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1105)) +((-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-4035 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133)))) (-1667 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -1667 ((-1293))) (-15 -4035 ((-656 |#1|))) (-15 -2097 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2097 (|#1| |#1| (-1 (-576) |#1| |#1|)))) +((-1344 (($ (-109) $) 20)) (-2329 (((-703 (-109)) (-518) $) 19)) (-3839 (($) 7)) (-3222 (($) 21)) (-4220 (($) 22)) (-2843 (((-656 (-177)) $) 10)) (-3569 (((-876) $) 25))) +(((-1106) (-13 (-625 (-876)) (-10 -8 (-15 -3839 ($)) (-15 -2843 ((-656 (-177)) $)) (-15 -2329 ((-703 (-109)) (-518) $)) (-15 -1344 ($ (-109) $)) (-15 -3222 ($)) (-15 -4220 ($))))) (T -1106)) +((-3839 (*1 *1) (-5 *1 (-1106))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106)))) (-2329 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106)))) (-3222 (*1 *1) (-5 *1 (-1106))) (-4220 (*1 *1) (-5 *1 (-1106)))) +(-13 (-625 (-876)) (-10 -8 (-15 -3839 ($)) (-15 -2843 ((-656 (-177)) $)) (-15 -2329 ((-703 (-109)) (-518) $)) (-15 -1344 ($ (-109) $)) (-15 -3222 ($)) (-15 -4220 ($)))) +((-4001 (((-1288 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|))) 75) (((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|)))) 92)) (-1490 (((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) +(((-1107 |#1|) (-10 -7 (-15 -4001 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -4001 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -4001 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1490 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1107)) +((-1490 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-971 *5))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) +(-10 -7 (-15 -4001 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -4001 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -4001 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1490 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1519 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-2724 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1966 (((-656 (-1109 (-1197))) $) NIL)) (-1799 (((-1193 $) $ (-1109 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1109 (-1197)))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1423 (($ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1109 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1109 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-4004 (($ $ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-543 (-1109 (-1197))) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3309 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) (-1109 (-1197))) NIL) (($ (-1193 $) (-1109 (-1197))) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1109 (-1197))) NIL)) (-2987 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL)) (-1938 (($ (-1 (-543 (-1109 (-1197))) (-543 (-1109 (-1197)))) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2421 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2512 (((-3 (-1109 (-1197)) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-2763 (((-1109 (-1197)) $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-1380 (((-112) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-1109 (-1197))) (|:| -4210 (-783))) "failed") $) NIL)) (-4284 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1109 (-1197)) |#1|) NIL) (($ $ (-656 (-1109 (-1197))) (-656 |#1|)) NIL) (($ $ (-1109 (-1197)) $) NIL) (($ $ (-656 (-1109 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-2455 (($ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2659 (((-656 (-1197)) $) NIL)) (-3600 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1109 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1108 |#1|) (-13 (-260 |#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) (-1059 (-1146 |#1| (-1197)))) (-1070)) (T -1108)) +NIL +(-13 (-260 |#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) (-1059 (-1146 |#1| (-1197)))) +((-3488 (((-112) $ $) NIL)) (-2724 (((-783) $) NIL)) (-3054 ((|#1| $) 10)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3309 (((-783) $) 11)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-2421 (($ |#1| (-783)) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2773 (($ $ (-783)) NIL) (($ $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-2113 (((-112) $ $) NIL)) (-2018 (($ $ (-783)) NIL) (($ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 16))) +(((-1109 |#1|) (-275 |#1|) (-861)) (T -1109)) NIL (-275 |#1|) -((-2422 (((-656 |#2|) (-1 |#2| |#1|) (-1114 |#1|)) 29 (|has| |#1| (-860))) (((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)) 14))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -2422 ((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|))) (IF (|has| |#1| (-860)) (-15 -2422 ((-656 |#2|) (-1 |#2| |#1|) (-1114 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1109)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-860)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-1109 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1114 *6)) (-5 *1 (-1109 *5 *6))))) -(-10 -7 (-15 -2422 ((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|))) (IF (|has| |#1| (-860)) (-15 -2422 ((-656 |#2|) (-1 |#2| |#1|) (-1114 |#1|))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4354 (((-656 (-1155)) $) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1110) (-13 (-1103) (-10 -8 (-15 -4354 ((-656 (-1155)) $))))) (T -1110)) -((-4354 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-1110))))) -(-13 (-1103) (-10 -8 (-15 -4354 ((-656 (-1155)) $)))) -((-2422 (((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)) 19))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -2422 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)))) (-1237) (-1237)) (T -1111)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1112 *6)) (-5 *1 (-1111 *5 *6))))) -(-10 -7 (-15 -2422 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)))) -((-1952 (((-112) $ $) NIL (|has| (-1114 |#1|) (-1120)))) (-1652 (((-1196) $) NIL)) (-2401 (((-1114 |#1|) $) NIL)) (-2043 (((-1178) $) NIL (|has| (-1114 |#1|) (-1120)))) (-3115 (((-1140) $) NIL (|has| (-1114 |#1|) (-1120)))) (-2440 (($ (-1196) (-1114 |#1|)) NIL)) (-4112 (((-875) $) NIL (|has| (-1114 |#1|) (-1120)))) (-1994 (((-112) $ $) NIL (|has| (-1114 |#1|) (-1120)))) (-3938 (((-112) $ $) NIL (|has| (-1114 |#1|) (-1120))))) -(((-1112 |#1|) (-13 (-1237) (-10 -8 (-15 -2440 ($ (-1196) (-1114 |#1|))) (-15 -1652 ((-1196) $)) (-15 -2401 ((-1114 |#1|) $)) (IF (|has| (-1114 |#1|) (-1120)) (-6 (-1120)) |%noBranch|))) (-1237)) (T -1112)) -((-2440 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1114 *4)) (-4 *4 (-1237)) (-5 *1 (-1112 *4)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1112 *3)) (-4 *3 (-1237)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-1112 *3)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -2440 ($ (-1196) (-1114 |#1|))) (-15 -1652 ((-1196) $)) (-15 -2401 ((-1114 |#1|) $)) (IF (|has| (-1114 |#1|) (-1120)) (-6 (-1120)) |%noBranch|))) -((-2401 (($ |#1| |#1|) 8)) (-3778 ((|#1| $) 11)) (-1695 ((|#1| $) 13)) (-2655 (((-576) $) 9)) (-3995 ((|#1| $) 10)) (-2667 ((|#1| $) 12)) (-1554 (($ |#1|) 6)) (-2496 (($ |#1| |#1|) 15)) (-3715 (($ $ (-576)) 14))) -(((-1113 |#1|) (-141) (-1237)) (T -1113)) -((-2496 (*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1113 *3)) (-4 *3 (-1237)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))) (-2401 (*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237))))) -(-13 (-630 |t#1|) (-10 -8 (-15 -2496 ($ |t#1| |t#1|)) (-15 -3715 ($ $ (-576))) (-15 -1695 (|t#1| $)) (-15 -2667 (|t#1| $)) (-15 -3778 (|t#1| $)) (-15 -3995 (|t#1| $)) (-15 -2655 ((-576) $)) (-15 -2401 ($ |t#1| |t#1|)))) +((-4116 (((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 29 (|has| |#1| (-860))) (((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 14))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -4116 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1110)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-1110 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1115 *6)) (-5 *1 (-1110 *5 *6))))) +(-10 -7 (-15 -4116 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2267 (((-656 (-1156)) $) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1111) (-13 (-1104) (-10 -8 (-15 -2267 ((-656 (-1156)) $))))) (T -1111)) +((-2267 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) +(-13 (-1104) (-10 -8 (-15 -2267 ((-656 (-1156)) $)))) +((-4116 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 19))) +(((-1112 |#1| |#2|) (-10 -7 (-15 -4116 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-1238) (-1238)) (T -1112)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1112 *5 *6))))) +(-10 -7 (-15 -4116 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-3054 (((-1197) $) NIL)) (-3533 (((-1115 |#1|) $) NIL)) (-1413 (((-1179) $) NIL (|has| (-1115 |#1|) (-1121)))) (-1450 (((-1141) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2335 (($ (-1197) (-1115 |#1|)) NIL)) (-3569 (((-876) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2113 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-2923 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121))))) +(((-1113 |#1|) (-13 (-1238) (-10 -8 (-15 -2335 ($ (-1197) (-1115 |#1|))) (-15 -3054 ((-1197) $)) (-15 -3533 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1113)) +((-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2335 ($ (-1197) (-1115 |#1|))) (-15 -3054 ((-1197) $)) (-15 -3533 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) +((-3533 (($ |#1| |#1|) 8)) (-1579 ((|#1| $) 11)) (-3112 ((|#1| $) 13)) (-4219 (((-576) $) 9)) (-3101 ((|#1| $) 10)) (-4229 ((|#1| $) 12)) (-4171 (($ |#1|) 6)) (-1785 (($ |#1| |#1|) 15)) (-2667 (($ $ (-576)) 14))) +(((-1114 |#1|) (-141) (-1238)) (T -1114)) +((-1785 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-3533 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(-13 (-630 |t#1|) (-10 -8 (-15 -1785 ($ |t#1| |t#1|)) (-15 -2667 ($ $ (-576))) (-15 -3112 (|t#1| $)) (-15 -4229 (|t#1| $)) (-15 -1579 (|t#1| $)) (-15 -3101 (|t#1| $)) (-15 -4219 ((-576) $)) (-15 -3533 ($ |t#1| |t#1|)))) (((-630 |#1|) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2401 (($ |#1| |#1|) 16)) (-2422 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-3778 ((|#1| $) 12)) (-1695 ((|#1| $) 11)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2655 (((-576) $) 15)) (-3995 ((|#1| $) 14)) (-2667 ((|#1| $) 13)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3564 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-1554 (($ |#1|) 29)) (-4112 (((-875) $) 28 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2496 (($ |#1| |#1|) 10)) (-3715 (($ $ (-576)) 17)) (-3938 (((-112) $ $) 22 (|has| |#1| (-1120))))) -(((-1114 |#1|) (-13 (-1113 |#1|) (-10 -7 (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1115 |#1| (-656 |#1|))) |%noBranch|))) (-1237)) (T -1114)) -NIL -(-13 (-1113 |#1|) (-10 -7 (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1115 |#1| (-656 |#1|))) |%noBranch|))) -((-2401 (($ |#1| |#1|) 8)) (-2422 ((|#2| (-1 |#1| |#1|) $) 16)) (-3778 ((|#1| $) 11)) (-1695 ((|#1| $) 13)) (-2655 (((-576) $) 9)) (-3995 ((|#1| $) 10)) (-2667 ((|#1| $) 12)) (-3564 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-1554 (($ |#1|) 6)) (-2496 (($ |#1| |#1|) 15)) (-3715 (($ $ (-576)) 14))) -(((-1115 |#1| |#2|) (-141) (-860) (-1169 |t#1|)) (T -1115)) -((-3564 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1169 *4)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1169 *3)))) (-2422 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1169 *4))))) -(-13 (-1113 |t#1|) (-10 -8 (-15 -3564 (|t#2| (-656 $))) (-15 -3564 (|t#2| $)) (-15 -2422 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-630 |#1|) . T) ((-1113 |#1|) . T)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-2849 (((-1155) $) 12)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 18) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4158 (((-656 (-1155)) $) 10)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1116) (-13 (-1103) (-10 -8 (-15 -4158 ((-656 (-1155)) $)) (-15 -2849 ((-1155) $))))) (T -1116)) -((-4158 (*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-1116)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1116))))) -(-13 (-1103) (-10 -8 (-15 -4158 ((-656 (-1155)) $)) (-15 -2849 ((-1155) $)))) -((-4025 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3863 (($ $ $) 10)) (-1907 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1117 |#1| |#2|) (-10 -8 (-15 -4025 (|#1| |#2| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#2|)) (-15 -1907 (|#1| |#1| |#1|))) (-1118 |#2|) (-1120)) (T -1117)) -NIL -(-10 -8 (-15 -4025 (|#1| |#2| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#2|)) (-15 -1907 (|#1| |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-4025 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3863 (($ $ $) 21)) (-3702 (((-112) $ $) 20)) (-2337 (((-112) $ (-783)) 36)) (-3703 (($) 26) (($ (-656 |#1|)) 25)) (-3603 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4463)))) (-4331 (($) 37 T CONST)) (-3966 (($ $) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4463)))) (-3721 (((-656 |#1|) $) 44 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) 29)) (-2135 (((-112) $ (-783)) 35)) (-3958 (((-656 |#1|) $) 45 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 39)) (-1556 (((-112) $ (-783)) 34)) (-2043 (((-1178) $) 10)) (-2710 (($ $ $) 24)) (-3115 (((-1140) $) 11)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3587 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 30)) (-1937 (((-112) $) 33)) (-3935 (($) 32)) (-1907 (($ $ $) 23) (($ $ |#1|) 22)) (-3125 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4463)))) (-4286 (($ $) 31)) (-1554 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 52)) (-4112 (((-875) $) 12)) (-1514 (($) 28) (($ (-656 |#1|)) 27)) (-1994 (((-112) $ $) 6)) (-1682 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 38 (|has| $ (-6 -4463))))) -(((-1118 |#1|) (-141) (-1120)) (T -1118)) -((-1553 (*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-112)))) (-1514 (*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) (-3703 (*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3703 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) (-2710 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-1907 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-1907 (*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3863 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3702 (*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-112)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-4025 (*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-4025 (*1 *1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(-13 (-1120) (-152 |t#1|) (-10 -8 (-6 -4453) (-15 -1553 ((-112) $ $)) (-15 -1514 ($)) (-15 -1514 ($ (-656 |t#1|))) (-15 -3703 ($)) (-15 -3703 ($ (-656 |t#1|))) (-15 -2710 ($ $ $)) (-15 -1907 ($ $ $)) (-15 -1907 ($ $ |t#1|)) (-15 -3863 ($ $ $)) (-15 -3702 ((-112) $ $)) (-15 -4025 ($ $ $)) (-15 -4025 ($ $ |t#1|)) (-15 -4025 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-625 (-875)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) . T) ((-1237) . T)) -((-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 8))) -(((-1119 |#1|) (-10 -8 (-15 -2043 ((-1178) |#1|)) (-15 -3115 ((-1140) |#1|))) (-1120)) (T -1119)) -NIL -(-10 -8 (-15 -2043 ((-1178) |#1|)) (-15 -3115 ((-1140) |#1|))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-1120) (-141)) (T -1120)) -((-3115 (*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1140)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1178))))) -(-13 (-102) (-625 (-875)) (-10 -8 (-15 -3115 ((-1140) $)) (-15 -2043 ((-1178) $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) 36)) (-2522 (($ (-656 (-939))) 70)) (-1383 (((-3 $ "failed") $ (-939) (-939)) 81)) (-4369 (($) 40)) (-4217 (((-112) (-939) $) 42)) (-4375 (((-939) $) 64)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) 39)) (-1395 (((-3 $ "failed") $ (-939)) 77)) (-3115 (((-1140) $) NIL)) (-4045 (((-1287 $)) 47)) (-2815 (((-656 (-939)) $) 27)) (-1991 (((-783) $ (-939) (-939)) 78)) (-4112 (((-875) $) 32)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 24))) -(((-1121 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -1395 ((-3 $ "failed") $ (-939))) (-15 -1383 ((-3 $ "failed") $ (-939) (-939))) (-15 -2815 ((-656 (-939)) $)) (-15 -2522 ($ (-656 (-939)))) (-15 -4045 ((-1287 $))) (-15 -4217 ((-112) (-939) $)) (-15 -1991 ((-783) $ (-939) (-939))))) (-939) (-939)) (T -1121)) -((-1395 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-939)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1383 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-939)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939)))) (-2522 (*1 *1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939)))) (-4045 (*1 *2) (-12 (-5 *2 (-1287 (-1121 *3 *4))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939)))) (-4217 (*1 *2 *3 *1) (-12 (-5 *3 (-939)) (-5 *2 (-112)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-939)) (-5 *2 (-783)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-379) (-10 -8 (-15 -1395 ((-3 $ "failed") $ (-939))) (-15 -1383 ((-3 $ "failed") $ (-939) (-939))) (-15 -2815 ((-656 (-939)) $)) (-15 -2522 ($ (-656 (-939)))) (-15 -4045 ((-1287 $))) (-15 -4217 ((-112) (-939) $)) (-15 -1991 ((-783) $ (-939) (-939))))) -((-1952 (((-112) $ $) NIL)) (-2984 (($) NIL (|has| |#1| (-379)))) (-4025 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3863 (($ $ $) 81)) (-3702 (((-112) $ $) 82)) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#1| (-379)))) (-3703 (($ (-656 |#1|)) NIL) (($) 13)) (-2146 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1672 (($ |#1| $) 74 (|has| $ (-6 -4463))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4463)))) (-4369 (($) NIL (|has| |#1| (-379)))) (-3721 (((-656 |#1|) $) 19 (|has| $ (-6 -4463)))) (-1553 (((-112) $ $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2905 ((|#1| $) 55 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1654 ((|#1| $) 53 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 34)) (-4375 (((-939) $) NIL (|has| |#1| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2710 (($ $ $) 79)) (-2976 ((|#1| $) 25)) (-2782 (($ |#1| $) 69)) (-2409 (($ (-939)) NIL (|has| |#1| (-379)))) (-3115 (((-1140) $) NIL)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1526 ((|#1| $) 27)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 21)) (-3935 (($) 11)) (-1907 (($ $ |#1|) NIL) (($ $ $) 80)) (-1437 (($) NIL) (($ (-656 |#1|)) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 16)) (-1554 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 62)) (-1376 (($ $) NIL (|has| |#1| (-379)))) (-4112 (((-875) $) NIL)) (-4219 (((-783) $) NIL)) (-1514 (($ (-656 |#1|)) NIL) (($) 12)) (-1994 (((-112) $ $) NIL)) (-2050 (($ (-656 |#1|)) NIL)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 52)) (-1968 (((-783) $) 10 (|has| $ (-6 -4463))))) -(((-1122 |#1|) (-437 |#1|) (-1120)) (T -1122)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3533 (($ |#1| |#1|) 16)) (-4116 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-1579 ((|#1| $) 12)) (-3112 ((|#1| $) 11)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4219 (((-576) $) 15)) (-3101 ((|#1| $) 14)) (-4229 ((|#1| $) 13)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1942 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-4171 (($ |#1|) 29)) (-3569 (((-876) $) 28 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1785 (($ |#1| |#1|) 10)) (-2667 (($ $ (-576)) 17)) (-2923 (((-112) $ $) 22 (|has| |#1| (-1121))))) +(((-1115 |#1|) (-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-656 |#1|))) |%noBranch|))) (-1238)) (T -1115)) +NIL +(-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-656 |#1|))) |%noBranch|))) +((-3533 (($ |#1| |#1|) 8)) (-4116 ((|#2| (-1 |#1| |#1|) $) 16)) (-1579 ((|#1| $) 11)) (-3112 ((|#1| $) 13)) (-4219 (((-576) $) 9)) (-3101 ((|#1| $) 10)) (-4229 ((|#1| $) 12)) (-1942 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-4171 (($ |#1|) 6)) (-1785 (($ |#1| |#1|) 15)) (-2667 (($ $ (-576)) 14))) +(((-1116 |#1| |#2|) (-141) (-860) (-1170 |t#1|)) (T -1116)) +((-1942 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1170 *3)))) (-4116 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4))))) +(-13 (-1114 |t#1|) (-10 -8 (-15 -1942 (|t#2| (-656 $))) (-15 -1942 (|t#2| $)) (-15 -4116 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-630 |#1|) . T) ((-1114 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-3967 (((-1156) $) 12)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2639 (((-656 (-1156)) $) 10)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1117) (-13 (-1104) (-10 -8 (-15 -2639 ((-656 (-1156)) $)) (-15 -3967 ((-1156) $))))) (T -1117)) +((-2639 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117))))) +(-13 (-1104) (-10 -8 (-15 -2639 ((-656 (-1156)) $)) (-15 -3967 ((-1156) $)))) +((-1820 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4327 (($ $ $) 10)) (-2587 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1118 |#1| |#2|) (-10 -8 (-15 -1820 (|#1| |#2| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -4327 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -2587 (|#1| |#1| |#1|))) (-1119 |#2|) (-1121)) (T -1118)) +NIL +(-10 -8 (-15 -1820 (|#1| |#2| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -4327 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -2587 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1820 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4327 (($ $ $) 21)) (-2095 (((-112) $ $) 20)) (-2396 (((-112) $ (-783)) 36)) (-2069 (($) 26) (($ (-656 |#1|)) 25)) (-1971 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4464)))) (-3306 (($) 37 T CONST)) (-2800 (($ $) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 44 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) 29)) (-4252 (((-112) $ (-783)) 35)) (-2735 (((-656 |#1|) $) 45 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 39)) (-3557 (((-112) $ (-783)) 34)) (-1413 (((-1179) $) 10)) (-1834 (($ $ $) 24)) (-1450 (((-1141) $) 11)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3542 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 30)) (-2866 (((-112) $) 33)) (-3839 (($) 32)) (-2587 (($ $ $) 23) (($ $ |#1|) 22)) (-1460 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4464)))) (-1870 (($ $) 31)) (-4171 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 52)) (-3569 (((-876) $) 12)) (-1894 (($) 28) (($ (-656 |#1|)) 27)) (-2113 (((-112) $ $) 6)) (-2170 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 38 (|has| $ (-6 -4464))))) +(((-1119 |#1|) (-141) (-1121)) (T -1119)) +((-3534 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1894 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-2069 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-1834 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2587 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2587 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-4327 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2095 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1820 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1820 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1820 (*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(-13 (-1121) (-152 |t#1|) (-10 -8 (-6 -4454) (-15 -3534 ((-112) $ $)) (-15 -1894 ($)) (-15 -1894 ($ (-656 |t#1|))) (-15 -2069 ($)) (-15 -2069 ($ (-656 |t#1|))) (-15 -1834 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2587 ($ $ |t#1|)) (-15 -4327 ($ $ $)) (-15 -2095 ((-112) $ $)) (-15 -1820 ($ $ $)) (-15 -1820 ($ $ |t#1|)) (-15 -1820 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) . T) ((-1238) . T)) +((-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 8))) +(((-1120 |#1|) (-10 -8 (-15 -1413 ((-1179) |#1|)) (-15 -1450 ((-1141) |#1|))) (-1121)) (T -1120)) +NIL +(-10 -8 (-15 -1413 ((-1179) |#1|)) (-15 -1450 ((-1141) |#1|))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-1121) (-141)) (T -1121)) +((-1450 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) +(-13 (-102) (-625 (-876)) (-10 -8 (-15 -1450 ((-1141) $)) (-15 -1413 ((-1179) $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) 36)) (-3720 (($ (-656 (-940))) 70)) (-1510 (((-3 $ "failed") $ (-940) (-940)) 81)) (-1836 (($) 40)) (-3456 (((-112) (-940) $) 42)) (-2460 (((-940) $) 64)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) 39)) (-4053 (((-3 $ "failed") $ (-940)) 77)) (-1450 (((-1141) $) NIL)) (-2302 (((-1288 $)) 47)) (-3538 (((-656 (-940)) $) 27)) (-3642 (((-783) $ (-940) (-940)) 78)) (-3569 (((-876) $) 32)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 24))) +(((-1122 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -4053 ((-3 $ "failed") $ (-940))) (-15 -1510 ((-3 $ "failed") $ (-940) (-940))) (-15 -3538 ((-656 (-940)) $)) (-15 -3720 ($ (-656 (-940)))) (-15 -2302 ((-1288 $))) (-15 -3456 ((-112) (-940) $)) (-15 -3642 ((-783) $ (-940) (-940))))) (-940) (-940)) (T -1122)) +((-4053 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1510 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2302 (*1 *2) (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3456 (*1 *2 *3 *1) (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-379) (-10 -8 (-15 -4053 ((-3 $ "failed") $ (-940))) (-15 -1510 ((-3 $ "failed") $ (-940) (-940))) (-15 -3538 ((-656 (-940)) $)) (-15 -3720 ($ (-656 (-940)))) (-15 -2302 ((-1288 $))) (-15 -3456 ((-112) (-940) $)) (-15 -3642 ((-783) $ (-940) (-940))))) +((-3488 (((-112) $ $) NIL)) (-3853 (($) NIL (|has| |#1| (-379)))) (-1820 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4327 (($ $ $) 81)) (-2095 (((-112) $ $) 82)) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#1| (-379)))) (-2069 (($ (-656 |#1|)) NIL) (($) 13)) (-4355 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2065 (($ |#1| $) 74 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4464)))) (-1836 (($) NIL (|has| |#1| (-379)))) (-3965 (((-656 |#1|) $) 19 (|has| $ (-6 -4464)))) (-3534 (((-112) $ $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3124 ((|#1| $) 55 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1951 ((|#1| $) 53 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 34)) (-2460 (((-940) $) NIL (|has| |#1| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1834 (($ $ $) 79)) (-3772 ((|#1| $) 25)) (-4436 (($ |#1| $) 69)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3267 ((|#1| $) 27)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 21)) (-3839 (($) 11)) (-2587 (($ $ |#1|) NIL) (($ $ $) 80)) (-2314 (($) NIL) (($ (-656 |#1|)) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 16)) (-4171 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 62)) (-2737 (($ $) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL)) (-3469 (((-783) $) NIL)) (-1894 (($ (-656 |#1|)) NIL) (($) 12)) (-2113 (((-112) $ $) NIL)) (-1470 (($ (-656 |#1|)) NIL)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 52)) (-3502 (((-783) $) 10 (|has| $ (-6 -4464))))) +(((-1123 |#1|) (-437 |#1|) (-1121)) (T -1123)) NIL (-437 |#1|) -((-1952 (((-112) $ $) 7)) (-4384 (((-112) $) 33)) (-2218 ((|#2| $) 28)) (-3883 (((-112) $) 34)) (-1532 ((|#1| $) 29)) (-2475 (((-112) $) 36)) (-2320 (((-112) $) 38)) (-1367 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-2345 (((-112) $) 32)) (-2243 ((|#3| $) 27)) (-3115 (((-1140) $) 11)) (-1357 (((-112) $) 31)) (-2632 ((|#4| $) 26)) (-1615 ((|#5| $) 25)) (-3378 (((-112) $ $) 39)) (-4368 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1523 (((-656 $) $) 30)) (-1554 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-4112 (((-875) $) 12)) (-3918 (($ $) 23)) (-4161 (($ $) 24)) (-1994 (((-112) $ $) 6)) (-3628 (((-112) $) 37)) (-3938 (((-112) $ $) 8)) (-1968 (((-576) $) 22))) -(((-1123 |#1| |#2| |#3| |#4| |#5|) (-141) (-1120) (-1120) (-1120) (-1120) (-1120)) (T -1123)) -((-3378 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112)))) (-1523 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-656 *1)) (-4 *1 (-1123 *3 *4 *5 *6 *7)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *2 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *2 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *2)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-3918 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-576))))) -(-13 (-1120) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -3378 ((-112) $ $)) (-15 -2320 ((-112) $)) (-15 -3628 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -3883 ((-112) $)) (-15 -4384 ((-112) $)) (-15 -2345 ((-112) $)) (-15 -1357 ((-112) $)) (-15 -1523 ((-656 $) $)) (-15 -1532 (|t#1| $)) (-15 -2218 (|t#2| $)) (-15 -2243 (|t#3| $)) (-15 -2632 (|t#4| $)) (-15 -1615 (|t#5| $)) (-15 -4161 ($ $)) (-15 -3918 ($ $)) (-15 -1968 ((-576) $)))) -(((-102) . T) ((-625 (-875)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-4384 (((-112) $) NIL)) (-2218 (((-1196) $) NIL)) (-3883 (((-112) $) NIL)) (-1532 (((-1178) $) NIL)) (-2475 (((-112) $) NIL)) (-2320 (((-112) $) NIL)) (-1367 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-2345 (((-112) $) NIL)) (-2243 (((-576) $) NIL)) (-3115 (((-1140) $) NIL)) (-1357 (((-112) $) NIL)) (-2632 (((-227) $) NIL)) (-1615 (((-875) $) NIL)) (-3378 (((-112) $ $) NIL)) (-4368 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1523 (((-656 $) $) NIL)) (-1554 (($ (-1178)) NIL) (($ (-1196)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-875)) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL)) (-3918 (($ $) NIL)) (-4161 (($ $) NIL)) (-1994 (((-112) $ $) NIL)) (-3628 (((-112) $) NIL)) (-3938 (((-112) $ $) NIL)) (-1968 (((-576) $) NIL))) -(((-1124) (-1123 (-1178) (-1196) (-576) (-227) (-875))) (T -1124)) -NIL -(-1123 (-1178) (-1196) (-576) (-227) (-875)) -((-1952 (((-112) $ $) NIL)) (-4384 (((-112) $) 45)) (-2218 ((|#2| $) 48)) (-3883 (((-112) $) 20)) (-1532 ((|#1| $) 21)) (-2475 (((-112) $) 42)) (-2320 (((-112) $) 14)) (-1367 (((-112) $) 44)) (-2043 (((-1178) $) NIL)) (-2345 (((-112) $) 46)) (-2243 ((|#3| $) 50)) (-3115 (((-1140) $) NIL)) (-1357 (((-112) $) 47)) (-2632 ((|#4| $) 49)) (-1615 ((|#5| $) 51)) (-3378 (((-112) $ $) 41)) (-4368 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1523 (((-656 $) $) 27)) (-1554 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-4112 (((-875) $) 28)) (-3918 (($ $) 26)) (-4161 (($ $) 58)) (-1994 (((-112) $ $) NIL)) (-3628 (((-112) $) 23)) (-3938 (((-112) $ $) 40)) (-1968 (((-576) $) 60))) -(((-1125 |#1| |#2| |#3| |#4| |#5|) (-1123 |#1| |#2| |#3| |#4| |#5|) (-1120) (-1120) (-1120) (-1120) (-1120)) (T -1125)) -NIL -(-1123 |#1| |#2| |#3| |#4| |#5|) -((-3972 (((-1292) $) 22)) (-2813 (($ (-1196) (-446) |#2|) 11)) (-4112 (((-875) $) 16))) -(((-1126 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2813 ($ (-1196) (-446) |#2|)))) (-1120) (-442 |#1|)) (T -1126)) -((-2813 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1120)) (-5 *1 (-1126 *5 *4)) (-4 *4 (-442 *5))))) -(-13 (-407) (-10 -8 (-15 -2813 ($ (-1196) (-446) |#2|)))) -((-3597 (((-112) |#5| |#5|) 44)) (-3964 (((-112) |#5| |#5|) 59)) (-2650 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3382 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3189 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 70)) (-1651 (((-1292)) 32)) (-1586 (((-1292) (-1178) (-1178) (-1178)) 28)) (-3471 (((-656 |#5|) (-656 |#5|)) 101)) (-3923 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) 93)) (-4237 (((-656 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-4336 (((-112) |#5| |#5|) 53)) (-3231 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1384 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2684 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1761 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3760 (((-3 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3291 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1586 ((-1292) (-1178) (-1178) (-1178))) (-15 -1651 ((-1292))) (-15 -3597 ((-112) |#5| |#5|)) (-15 -3291 ((-656 |#5|) (-656 |#5|))) (-15 -4336 ((-112) |#5| |#5|)) (-15 -3964 ((-112) |#5| |#5|)) (-15 -3382 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2684 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1761 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3231 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2650 ((-112) |#5| |#5|)) (-15 -2650 ((-112) |#5| (-656 |#5|))) (-15 -3471 ((-656 |#5|) (-656 |#5|))) (-15 -3189 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3923 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -4237 ((-656 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3760 ((-3 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1127)) -((-3760 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| -3378 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1127 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1091 *6 *7 *8 *9)))) (-4237 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1091 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3378 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1127 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1127 *3 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *8)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1127 *3 *4 *5 *6 *7)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1127 *5 *6 *7 *8 *3)))) (-2650 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3231 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-1761 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-2684 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-1384 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3382 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3964 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-4336 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1127 *3 *4 *5 *6 *7)))) (-3597 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-1651 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-1586 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(-10 -7 (-15 -1586 ((-1292) (-1178) (-1178) (-1178))) (-15 -1651 ((-1292))) (-15 -3597 ((-112) |#5| |#5|)) (-15 -3291 ((-656 |#5|) (-656 |#5|))) (-15 -4336 ((-112) |#5| |#5|)) (-15 -3964 ((-112) |#5| |#5|)) (-15 -3382 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2684 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1761 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3231 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2650 ((-112) |#5| |#5|)) (-15 -2650 ((-112) |#5| (-656 |#5|))) (-15 -3471 ((-656 |#5|) (-656 |#5|))) (-15 -3189 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3923 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -4237 ((-656 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3760 ((-3 (-2 (|:| -3378 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4178 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|) 108)) (-4239 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|) 80)) (-4378 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 102)) (-2838 (((-656 |#5|) |#4| |#5|) 124)) (-3912 (((-656 |#5|) |#4| |#5|) 131)) (-1524 (((-656 |#5|) |#4| |#5|) 132)) (-2493 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 109)) (-1504 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 130)) (-2430 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2500 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3031 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 87)) (-1363 (((-1292)) 36)) (-3955 (((-1292)) 25)) (-3006 (((-1292) (-1178) (-1178) (-1178)) 32)) (-2433 (((-1292) (-1178) (-1178) (-1178)) 21))) -(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2433 ((-1292) (-1178) (-1178) (-1178))) (-15 -3955 ((-1292))) (-15 -3006 ((-1292) (-1178) (-1178) (-1178))) (-15 -1363 ((-1292))) (-15 -4239 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2500 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2500 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -3031 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4378 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2430 ((-112) |#4| |#5|)) (-15 -2493 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -2838 ((-656 |#5|) |#4| |#5|)) (-15 -1504 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3912 ((-656 |#5|) |#4| |#5|)) (-15 -2430 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -1524 ((-656 |#5|) |#4| |#5|)) (-15 -4178 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1128)) -((-4178 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1524 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2430 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3912 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1504 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2838 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2430 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-4378 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *5 (-112)) (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) (-5 *1 (-1128 *6 *7 *4 *8 *9)))) (-2500 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1128 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-4239 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1363 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3006 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3955 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-2433 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(-10 -7 (-15 -2433 ((-1292) (-1178) (-1178) (-1178))) (-15 -3955 ((-1292))) (-15 -3006 ((-1292) (-1178) (-1178) (-1178))) (-15 -1363 ((-1292))) (-15 -4239 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2500 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2500 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -3031 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4378 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2430 ((-112) |#4| |#5|)) (-15 -2493 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -2838 ((-656 |#5|) |#4| |#5|)) (-15 -1504 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3912 ((-656 |#5|) |#4| |#5|)) (-15 -2430 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -1524 ((-656 |#5|) |#4| |#5|)) (-15 -4178 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) -((-1952 (((-112) $ $) 7)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) 86)) (-2822 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1582 (((-656 |#3|) $) 34)) (-2397 (((-112) $) 27)) (-2083 (((-112) $) 18 (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-3575 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) 28)) (-2337 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 80)) (-4331 (($) 46 T CONST)) (-4013 (((-112) $) 23 (|has| |#1| (-568)))) (-1938 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3142 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2948 (((-112) $) 26 (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3223 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1762 (((-3 $ "failed") $) 83)) (-3182 ((|#4| |#4| $) 90)) (-3966 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3325 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) 106)) (-3802 (((-112) |#4| $) 137)) (-1338 (((-112) |#4| $) 134)) (-2343 (((-112) |#4| $) 138) (((-112) $) 135)) (-3721 (((-656 |#4|) $) 53 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) 105) (((-112) $) 104)) (-2232 ((|#3| $) 35)) (-2135 (((-112) $ (-783)) 44)) (-3958 (((-656 |#4|) $) 54 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 48)) (-3055 (((-656 |#3|) $) 33)) (-2421 (((-112) |#3| $) 32)) (-1556 (((-112) $ (-783)) 43)) (-2043 (((-1178) $) 10)) (-2727 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4109 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2849 (((-3 |#4| "failed") $) 84)) (-3060 (((-656 $) |#4| $) 130)) (-3990 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2710 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1699 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2403 (((-656 |#4|) $) 108)) (-2498 (((-112) |#4| $) 100) (((-112) $) 96)) (-1619 ((|#4| |#4| $) 91)) (-1761 (((-112) $ $) 111)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) 101) (((-112) $) 97)) (-3609 ((|#4| |#4| $) 92)) (-3115 (((-1140) $) 11)) (-1753 (((-3 |#4| "failed") $) 85)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2917 (((-3 $ "failed") $ |#4|) 79)) (-3679 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3587 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) 39)) (-1937 (((-112) $) 42)) (-3935 (($) 41)) (-1877 (((-783) $) 107)) (-3125 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4463)))) (-4286 (($ $) 40)) (-1554 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 61)) (-3655 (($ $ |#3|) 29)) (-3837 (($ $ |#3|) 31)) (-1864 (($ $) 89)) (-1570 (($ $ |#3|) 30)) (-4112 (((-875) $) 12) (((-656 |#4|) $) 38)) (-2576 (((-783) $) 77 (|has| |#3| (-379)))) (-1994 (((-112) $ $) 6)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2057 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-1682 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) 82)) (-1979 (((-112) |#4| $) 136)) (-3331 (((-112) |#3| $) 81)) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-1129 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1085 |t#1| |t#2| |t#3|)) (T -1129)) -NIL -(-13 (-1091 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-875)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-4407 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-1467 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-2552 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-1642 (((-576) (-576) (-576)) 21)) (-4321 (((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576)) 77) (((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576)) 72)) (-2138 (((-656 (-576)) (-656 (-939)) (-656 (-576)) (-112)) 54)) (-4028 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-1832 (((-701 (-576)) (-656 (-939)) (-656 (-576))) 59)) (-3122 (((-656 (-701 (-576))) (-656 (-939))) 65)) (-2855 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-4262 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) -(((-1130) (-10 -7 (-15 -4262 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -2855 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3122 ((-656 (-701 (-576))) (-656 (-939)))) (-15 -1832 ((-701 (-576)) (-656 (-939)) (-656 (-576)))) (-15 -4028 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2138 ((-656 (-576)) (-656 (-939)) (-656 (-576)) (-112))) (-15 -4321 ((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576))) (-15 -4321 ((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576))) (-15 -1642 ((-576) (-576) (-576))) (-15 -2552 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1467 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4407 ((-656 (-576)) (-576) (-576) (-576))))) (T -1130)) -((-4407 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1130)) (-5 *3 (-576)))) (-1467 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1130)) (-5 *3 (-576)))) (-2552 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1130)) (-5 *3 (-576)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1130)))) (-4321 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1130)))) (-4321 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-576)) (-5 *1 (-1130)))) (-2138 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-939))) (-5 *4 (-112)) (-5 *1 (-1130)))) (-4028 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1130)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-939))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1130)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1130)))) (-2855 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1130)))) (-4262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1130))))) -(-10 -7 (-15 -4262 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -2855 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3122 ((-656 (-701 (-576))) (-656 (-939)))) (-15 -1832 ((-701 (-576)) (-656 (-939)) (-656 (-576)))) (-15 -4028 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2138 ((-656 (-576)) (-656 (-939)) (-656 (-576)) (-112))) (-15 -4321 ((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576))) (-15 -4321 ((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576))) (-15 -1642 ((-576) (-576) (-576))) (-15 -2552 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1467 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4407 ((-656 (-576)) (-576) (-576) (-576)))) -((** (($ $ (-939)) 10))) -(((-1131 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-939)))) (-1132)) (T -1131)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-939)))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8)) (** (($ $ (-939)) 14)) (* (($ $ $) 15))) -(((-1132) (-141)) (T -1132)) -((* (*1 *1 *1 *1) (-4 *1 (-1132))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1132)) (-5 *2 (-939))))) -(-13 (-1120) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-939))))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3167 (((-112) $) NIL (|has| |#3| (-23)))) (-2793 (($ (-939)) NIL (|has| |#3| (-1069)))) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2390 (($ $ $) NIL (|has| |#3| (-805)))) (-2559 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2337 (((-112) $ (-783)) NIL)) (-2199 (((-783)) NIL (|has| |#3| (-379)))) (-4267 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1120)))) (-2317 (((-576) $) NIL (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) ((|#3| $) NIL (|has| |#3| (-1120)))) (-3222 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) (((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) NIL (|has| |#3| (-1069))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1069)))) (-3900 (((-3 $ "failed") $) NIL (|has| |#3| (-1069)))) (-4369 (($) NIL (|has| |#3| (-379)))) (-1908 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#3| $ (-576)) 12)) (-3721 (((-656 |#3|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL (|has| |#3| (-1069)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#3| (-861)))) (-3958 (((-656 |#3|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#3| (-861)))) (-1896 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#3| |#3|) $) NIL)) (-4375 (((-939) $) NIL (|has| |#3| (-379)))) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1069)))) (((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL (|has| |#3| (-1069))) (((-701 |#3|) (-1287 $)) NIL (|has| |#3| (-1069)))) (-2043 (((-1178) $) NIL (|has| |#3| (-1120)))) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-2409 (($ (-939)) NIL (|has| |#3| (-379)))) (-3115 (((-1140) $) NIL (|has| |#3| (-1120)))) (-1753 ((|#3| $) NIL (|has| (-576) (-861)))) (-2556 (($ $ |#3|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-2692 (((-656 |#3|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-4139 ((|#3| $ $) NIL (|has| |#3| (-1069)))) (-1491 (($ (-1287 |#3|)) NIL)) (-1656 (((-135)) NIL (|has| |#3| (-374)))) (-4106 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1069)))) (-3125 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#3| (-1120))))) (-4286 (($ $) NIL)) (-4112 (((-1287 |#3|) $) NIL) (($ (-576)) NIL (-3794 (-12 (|has| |#3| (-1058 (-576))) (|has| |#3| (-1120))) (|has| |#3| (-1069)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1058 (-419 (-576)))) (|has| |#3| (-1120)))) (($ |#3|) NIL (|has| |#3| (-1120))) (((-875) $) NIL (|has| |#3| (-625 (-875))))) (-4115 (((-783)) NIL (|has| |#3| (-1069)) CONST)) (-1994 (((-112) $ $) NIL (|has| |#3| (-102)))) (-1682 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4463)))) (-4314 (($) NIL (|has| |#3| (-23)) CONST)) (-4320 (($) NIL (|has| |#3| (-1069)) CONST)) (-3155 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1069)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-1196)) NIL (-12 (|has| |#3| (-918 (-1196))) (|has| |#3| (-1069)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1069)))) (-3993 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3962 (((-112) $ $) 24 (|has| |#3| (-861)))) (-4046 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4036 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-4026 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1069))) (($ $ (-939)) NIL (|has| |#3| (-1069)))) (* (($ $ $) NIL (|has| |#3| (-1069))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-939) $) NIL (|has| |#3| (-25)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1133 |#1| |#2| |#3|) (-243 |#1| |#3|) (-783) (-783) (-805)) (T -1133)) +((-3488 (((-112) $ $) 7)) (-2550 (((-112) $) 33)) (-3107 ((|#2| $) 28)) (-1388 (((-112) $) 34)) (-1329 ((|#1| $) 29)) (-1350 (((-112) $) 36)) (-2238 (((-112) $) 38)) (-3187 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-2475 (((-112) $) 32)) (-3133 ((|#3| $) 27)) (-1450 (((-1141) $) 11)) (-1427 (((-112) $) 31)) (-3044 ((|#4| $) 26)) (-3003 ((|#5| $) 25)) (-4026 (((-112) $ $) 39)) (-2796 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1904 (((-656 $) $) 30)) (-4171 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-3569 (((-876) $) 12)) (-3653 (($ $) 23)) (-4181 (($ $) 24)) (-2113 (((-112) $ $) 6)) (-3952 (((-112) $) 37)) (-2923 (((-112) $ $) 8)) (-3502 (((-576) $) 22))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-141) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1124)) +((-4026 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7)))) (-1329 (*1 *2 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-3653 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-576))))) +(-13 (-1121) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -4026 ((-112) $ $)) (-15 -2238 ((-112) $)) (-15 -3952 ((-112) $)) (-15 -1350 ((-112) $)) (-15 -3187 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -2550 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -1427 ((-112) $)) (-15 -1904 ((-656 $) $)) (-15 -1329 (|t#1| $)) (-15 -3107 (|t#2| $)) (-15 -3133 (|t#3| $)) (-15 -3044 (|t#4| $)) (-15 -3003 (|t#5| $)) (-15 -4181 ($ $)) (-15 -3653 ($ $)) (-15 -3502 ((-576) $)))) +(((-102) . T) ((-625 (-876)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2550 (((-112) $) NIL)) (-3107 (((-1197) $) NIL)) (-1388 (((-112) $) NIL)) (-1329 (((-1179) $) NIL)) (-1350 (((-112) $) NIL)) (-2238 (((-112) $) NIL)) (-3187 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-2475 (((-112) $) NIL)) (-3133 (((-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-1427 (((-112) $) NIL)) (-3044 (((-227) $) NIL)) (-3003 (((-876) $) NIL)) (-4026 (((-112) $ $) NIL)) (-2796 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1904 (((-656 $) $) NIL)) (-4171 (($ (-1179)) NIL) (($ (-1197)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-876)) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL)) (-3653 (($ $) NIL)) (-4181 (($ $) NIL)) (-2113 (((-112) $ $) NIL)) (-3952 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3502 (((-576) $) NIL))) +(((-1125) (-1124 (-1179) (-1197) (-576) (-227) (-876))) (T -1125)) +NIL +(-1124 (-1179) (-1197) (-576) (-227) (-876)) +((-3488 (((-112) $ $) NIL)) (-2550 (((-112) $) 45)) (-3107 ((|#2| $) 48)) (-1388 (((-112) $) 20)) (-1329 ((|#1| $) 21)) (-1350 (((-112) $) 42)) (-2238 (((-112) $) 14)) (-3187 (((-112) $) 44)) (-1413 (((-1179) $) NIL)) (-2475 (((-112) $) 46)) (-3133 ((|#3| $) 50)) (-1450 (((-1141) $) NIL)) (-1427 (((-112) $) 47)) (-3044 ((|#4| $) 49)) (-3003 ((|#5| $) 51)) (-4026 (((-112) $ $) 41)) (-2796 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1904 (((-656 $) $) 27)) (-4171 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-3569 (((-876) $) 28)) (-3653 (($ $) 26)) (-4181 (($ $) 58)) (-2113 (((-112) $ $) NIL)) (-3952 (((-112) $) 23)) (-2923 (((-112) $ $) 40)) (-3502 (((-576) $) 60))) +(((-1126 |#1| |#2| |#3| |#4| |#5|) (-1124 |#1| |#2| |#3| |#4| |#5|) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1126)) +NIL +(-1124 |#1| |#2| |#3| |#4| |#5|) +((-2621 (((-1293) $) 22)) (-2788 (($ (-1197) (-446) |#2|) 11)) (-3569 (((-876) $) 16))) +(((-1127 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2788 ($ (-1197) (-446) |#2|)))) (-1121) (-442 |#1|)) (T -1127)) +((-2788 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) +(-13 (-407) (-10 -8 (-15 -2788 ($ (-1197) (-446) |#2|)))) +((-3646 (((-112) |#5| |#5|) 44)) (-2777 (((-112) |#5| |#5|) 59)) (-2480 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2217 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-4011 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 70)) (-3205 (((-1293)) 32)) (-3835 (((-1293) (-1179) (-1179) (-1179)) 28)) (-1788 (((-656 |#5|) (-656 |#5|)) 101)) (-3715 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) 93)) (-3669 (((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-3349 (((-112) |#5| |#5|) 53)) (-4434 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1553 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-1607 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1716 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2598 (((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3849 (((-656 |#5|) (-656 |#5|)) 49))) +(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3835 ((-1293) (-1179) (-1179) (-1179))) (-15 -3205 ((-1293))) (-15 -3646 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3349 ((-112) |#5| |#5|)) (-15 -2777 ((-112) |#5| |#5|)) (-15 -2217 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1553 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1607 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1716 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4434 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2480 ((-112) |#5| |#5|)) (-15 -2480 ((-112) |#5| (-656 |#5|))) (-15 -1788 ((-656 |#5|) (-656 |#5|))) (-15 -4011 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3715 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3669 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2598 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1128)) +((-2598 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3669 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-4011 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3)))) (-2480 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4434 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1716 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1607 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1553 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2217 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2777 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3349 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3646 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3205 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3835 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -3835 ((-1293) (-1179) (-1179) (-1179))) (-15 -3205 ((-1293))) (-15 -3646 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3349 ((-112) |#5| |#5|)) (-15 -2777 ((-112) |#5| |#5|)) (-15 -2217 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1553 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1607 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1716 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4434 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2480 ((-112) |#5| |#5|)) (-15 -2480 ((-112) |#5| (-656 |#5|))) (-15 -1788 ((-656 |#5|) (-656 |#5|))) (-15 -4011 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3715 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3669 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2598 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-4320 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|) 108)) (-3696 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|) 80)) (-2492 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 102)) (-3771 (((-656 |#5|) |#4| |#5|) 124)) (-3586 (((-656 |#5|) |#4| |#5|) 131)) (-3245 (((-656 |#5|) |#4| |#5|) 132)) (-3410 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 109)) (-4290 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 130)) (-4052 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3478 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3036 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 87)) (-2451 (((-1293)) 36)) (-2697 (((-1293)) 25)) (-2766 (((-1293) (-1179) (-1179) (-1179)) 32)) (-4085 (((-1293) (-1179) (-1179) (-1179)) 21))) +(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4085 ((-1293) (-1179) (-1179) (-1179))) (-15 -2697 ((-1293))) (-15 -2766 ((-1293) (-1179) (-1179) (-1179))) (-15 -2451 ((-1293))) (-15 -3696 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3478 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3478 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -3036 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -2492 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4052 ((-112) |#4| |#5|)) (-15 -3410 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3771 ((-656 |#5|) |#4| |#5|)) (-15 -4290 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3586 ((-656 |#5|) |#4| |#5|)) (-15 -4052 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3245 ((-656 |#5|) |#4| |#5|)) (-15 -4320 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1129)) +((-4320 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4052 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3586 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3771 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4052 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2492 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3036 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) (-5 *1 (-1129 *6 *7 *4 *8 *9)))) (-3478 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3696 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2451 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-2766 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2697 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4085 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -4085 ((-1293) (-1179) (-1179) (-1179))) (-15 -2697 ((-1293))) (-15 -2766 ((-1293) (-1179) (-1179) (-1179))) (-15 -2451 ((-1293))) (-15 -3696 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3478 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3478 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -3036 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -2492 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4052 ((-112) |#4| |#5|)) (-15 -3410 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3771 ((-656 |#5|) |#4| |#5|)) (-15 -4290 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3586 ((-656 |#5|) |#4| |#5|)) (-15 -4052 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3245 ((-656 |#5|) |#4| |#5|)) (-15 -4320 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) +((-3488 (((-112) $ $) 7)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3597 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1966 (((-656 |#3|) $) 34)) (-1755 (((-112) $) 27)) (-1781 (((-112) $) 18 (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) 102) (((-112) $) 98)) (-2795 ((|#4| |#4| $) 93)) (-3420 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) 28)) (-2396 (((-112) $ (-783)) 45)) (-1971 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3306 (($) 46 T CONST)) (-3290 (((-112) $) 23 (|has| |#1| (-568)))) (-2879 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1576 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3489 (((-112) $) 26 (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4356 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3947 ((|#4| |#4| $) 90)) (-2800 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2873 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-1793 (((-112) |#4| $) 137)) (-2989 (((-112) |#4| $) 134)) (-2464 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) 105) (((-112) $) 104)) (-2665 ((|#3| $) 35)) (-4252 (((-112) $ (-783)) 44)) (-2735 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-1994 (((-656 |#3|) $) 33)) (-1983 (((-112) |#3| $) 32)) (-3557 (((-112) $ (-783)) 43)) (-1413 (((-1179) $) 10)) (-1988 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1728 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3967 (((-3 |#4| "failed") $) 84)) (-2042 (((-656 $) |#4| $) 130)) (-3059 (((-3 (-112) (-656 $)) |#4| $) 133)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1834 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2289 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-1809 (((-656 |#4|) $) 108)) (-3455 (((-112) |#4| $) 100) (((-112) $) 96)) (-2860 ((|#4| |#4| $) 91)) (-1716 (((-112) $ $) 111)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) 101) (((-112) $) 97)) (-3764 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3260 (((-3 $ "failed") $ |#4|) 79)) (-3169 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3542 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) 39)) (-2866 (((-112) $) 42)) (-3839 (($) 41)) (-3600 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2907 (($ $ |#3|) 29)) (-4080 (($ $ |#3|) 31)) (-3453 (($ $) 89)) (-3698 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3000 (((-783) $) 77 (|has| |#3| (-379)))) (-2113 (((-112) $ $) 6)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1528 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2170 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) 82)) (-2011 (((-112) |#4| $) 136)) (-2951 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-1130 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1130)) +NIL +(-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) +((-1590 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-3955 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-2691 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-3125 (((-576) (-576) (-576)) 21)) (-3224 (((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576)) 77) (((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576)) 72)) (-4281 (((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112)) 54)) (-2124 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-4359 (((-701 (-576)) (-656 (-940)) (-656 (-576))) 59)) (-1441 (((-656 (-701 (-576))) (-656 (-940))) 65)) (-3928 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-3933 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) +(((-1131) (-10 -7 (-15 -3933 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -3928 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -1441 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -4359 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -2124 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -4281 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -3224 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -3224 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -3125 ((-576) (-576) (-576))) (-15 -2691 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3955 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1590 ((-656 (-576)) (-576) (-576) (-576))))) (T -1131)) +((-1590 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-3955 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-2691 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131)))) (-3224 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1131)))) (-3224 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) (-4281 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) (-5 *1 (-1131)))) (-2124 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1131)))) (-3928 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131)))) (-3933 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) +(-10 -7 (-15 -3933 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -3928 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -1441 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -4359 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -2124 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -4281 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -3224 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -3224 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -3125 ((-576) (-576) (-576))) (-15 -2691 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3955 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1590 ((-656 (-576)) (-576) (-576) (-576)))) +((** (($ $ (-940)) 10))) +(((-1132 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940)))) (-1133)) (T -1132)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 15))) +(((-1133) (-141)) (T -1133)) +((* (*1 *1 *1 *1) (-4 *1 (-1133))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-940))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-940))))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#3| (-102)))) (-1812 (((-112) $) NIL (|has| |#3| (-23)))) (-1417 (($ (-940)) NIL (|has| |#3| (-1070)))) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1685 (($ $ $) NIL (|has| |#3| (-805)))) (-2780 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2396 (((-112) $ (-783)) NIL)) (-2096 (((-783)) NIL (|has| |#3| (-379)))) (-3755 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) ((|#3| $) NIL (|has| |#3| (-1121)))) (-4344 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070)))) (-3451 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-1836 (($) NIL (|has| |#3| (-379)))) (-4332 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#3| $ (-576)) 12)) (-3965 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL (|has| |#3| (-1070)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#3| (-861)))) (-2735 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#3| (-861)))) (-4322 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) NIL)) (-2460 (((-940) $) NIL (|has| |#3| (-379)))) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070)))) (-1413 (((-1179) $) NIL (|has| |#3| (-1121)))) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#3| (-379)))) (-1450 (((-1141) $) NIL (|has| |#3| (-1121)))) (-3580 ((|#3| $) NIL (|has| (-576) (-861)))) (-2740 (($ $ |#3|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1681 (((-656 |#3|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-1984 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1871 (($ (-1288 |#3|)) NIL)) (-1972 (((-135)) NIL (|has| |#3| (-374)))) (-2773 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-1460 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#3|) $) NIL) (($ (-576)) NIL (-2758 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL (|has| |#3| (-625 (-876))))) (-1778 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-2113 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2170 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2719 (($) NIL (|has| |#3| (-23)) CONST)) (-2730 (($) NIL (|has| |#3| (-1070)) CONST)) (-2018 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-2991 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2948 (((-112) $ $) 24 (|has| |#3| (-861)))) (-3056 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3043 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3029 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ $ $) NIL (|has| |#3| (-1070))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-940) $) NIL (|has| |#3| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1134 |#1| |#2| |#3|) (-243 |#1| |#3|) (-783) (-783) (-805)) (T -1134)) NIL (-243 |#1| |#3|) -((-2973 (((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 50)) (-1406 (((-576) (-1260 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-1385 (((-576) (-1260 |#2| |#1|)) 76)) (-2446 (((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 58)) (-2036 (((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-2839 (((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 61)) (-1955 (((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 75))) -(((-1134 |#1| |#2|) (-10 -7 (-15 -2973 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2446 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2839 ((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1955 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1385 ((-576) (-1260 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2036 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1406 ((-576) (-1260 |#2| |#1|)))) |%noBranch|)) (-832) (-1196)) (T -1134)) -((-1406 (*1 *2 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1134 *4 *5)))) (-2036 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1134 *4 *5)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1134 *4 *5)))) (-1955 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1134 *4 *5)))) (-2839 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 *4)) (-5 *1 (-1134 *4 *5)))) (-2446 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) (-5 *1 (-1134 *4 *5)) (-5 *3 (-1260 *5 *4)))) (-2973 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) (-5 *1 (-1134 *4 *5)) (-5 *3 (-1260 *5 *4))))) -(-10 -7 (-15 -2973 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2446 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2839 ((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1955 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1385 ((-576) (-1260 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2036 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1406 ((-576) (-1260 |#2| |#1|)))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-1490 (($ (-518) (-1138)) 13)) (-3512 (((-1138) $) 19)) (-4148 (((-518) $) 16)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 26) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1135) (-13 (-1103) (-10 -8 (-15 -1490 ($ (-518) (-1138))) (-15 -4148 ((-518) $)) (-15 -3512 ((-1138) $))))) (T -1135)) -((-1490 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1138)) (-5 *1 (-1135)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1135)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1135))))) -(-13 (-1103) (-10 -8 (-15 -1490 ($ (-518) (-1138))) (-15 -4148 ((-518) $)) (-15 -3512 ((-1138) $)))) -((-3773 (((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)) 19) (((-3 (-576) "failed") |#2| (-1196) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -3773 ((-3 (-576) "failed") |#2|)) (-15 -3773 ((-3 (-576) "failed") |#2| (-1196) (-855 |#2|))) (-15 -3773 ((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)))) (-13 (-568) (-1058 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|))) (T -1136)) -((-3773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-13 (-568) (-1058 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1136 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1058 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1136 *6 *3)))) (-3773 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1058 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))) -(-10 -7 (-15 -3773 ((-3 (-576) "failed") |#2|)) (-15 -3773 ((-3 (-576) "failed") |#2| (-1196) (-855 |#2|))) (-15 -3773 ((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)))) -((-3773 (((-3 (-576) "failed") (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|)) (-1178)) 38) (((-3 (-576) "failed") (-419 (-970 |#1|)) (-1196) (-855 (-419 (-970 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-970 |#1|))) 14))) -(((-1137 |#1|) (-10 -7 (-15 -3773 ((-3 (-576) "failed") (-419 (-970 |#1|)))) (-15 -3773 ((-3 (-576) "failed") (-419 (-970 |#1|)) (-1196) (-855 (-419 (-970 |#1|))))) (-15 -3773 ((-3 (-576) "failed") (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|)) (-1178)))) (-464)) (T -1137)) -((-3773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-970 *6))) (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1137 *6)))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 (-419 (-970 *6)))) (-5 *3 (-419 (-970 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1137 *6)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1137 *4))))) -(-10 -7 (-15 -3773 ((-3 (-576) "failed") (-419 (-970 |#1|)))) (-15 -3773 ((-3 (-576) "failed") (-419 (-970 |#1|)) (-1196) (-855 (-419 (-970 |#1|))))) (-15 -3773 ((-3 (-576) "failed") (-419 (-970 |#1|)) (-1196) (-419 (-970 |#1|)) (-1178)))) -((-1952 (((-112) $ $) NIL)) (-4169 (((-1201) $) 12)) (-4118 (((-656 (-1201)) $) 14)) (-3512 (($ (-656 (-1201)) (-1201)) 10)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 29)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 17))) -(((-1138) (-13 (-1120) (-10 -8 (-15 -3512 ($ (-656 (-1201)) (-1201))) (-15 -4169 ((-1201) $)) (-15 -4118 ((-656 (-1201)) $))))) (T -1138)) -((-3512 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1138)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1138)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1138))))) -(-13 (-1120) (-10 -8 (-15 -3512 ($ (-656 (-1201)) (-1201))) (-15 -4169 ((-1201) $)) (-15 -4118 ((-656 (-1201)) $)))) -((-1608 (((-326 (-576)) (-48)) 12))) -(((-1139) (-10 -7 (-15 -1608 ((-326 (-576)) (-48))))) (T -1139)) -((-1608 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1139))))) -(-10 -7 (-15 -1608 ((-326 (-576)) (-48)))) -((-1952 (((-112) $ $) NIL)) (-1980 (($ $) 44)) (-3167 (((-112) $) 70)) (-4292 (($ $ $) 53)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 98)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-4258 (($ $ $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1717 (($ $ $ $) 81)) (-3575 (($ $) NIL)) (-3163 (((-430 $) $) NIL)) (-4057 (((-112) $ $) NIL)) (-2199 (((-783)) 83)) (-3773 (((-576) $) NIL)) (-3384 (($ $ $) 78)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL)) (-2317 (((-576) $) NIL)) (-1893 (($ $ $) 64)) (-3222 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 92) (((-701 (-576)) (-701 $)) 32)) (-3900 (((-3 $ "failed") $) NIL)) (-2936 (((-3 (-419 (-576)) "failed") $) NIL)) (-3898 (((-112) $) NIL)) (-1982 (((-419 (-576)) $) NIL)) (-4369 (($) 95) (($ $) 96)) (-1903 (($ $ $) 63)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL)) (-2443 (((-112) $) NIL)) (-4270 (($ $ $ $) NIL)) (-1724 (($ $ $) 93)) (-2690 (((-112) $) NIL)) (-3207 (($ $ $) NIL)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL)) (-2322 (($ $ $) 52)) (-2287 (((-112) $) 72)) (-1589 (((-112) $) 69)) (-2298 (($ $) 45)) (-1859 (((-3 $ "failed") $) NIL)) (-3197 (((-112) $) 82)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4120 (($ $ $ $) 79)) (-2905 (($ $ $) 74) (($) 42 T CONST)) (-1654 (($ $ $) 73) (($) 41 T CONST)) (-2361 (($ $) NIL)) (-4375 (((-939) $) 88)) (-3107 (($ $) 77)) (-2198 (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3075 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2043 (((-1178) $) NIL)) (-2038 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-2409 (($ (-939)) 87)) (-1920 (($ $) 57)) (-3115 (((-1140) $) 76)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3114 (($ $ $) 67) (($ (-656 $)) NIL)) (-2978 (($ $) NIL)) (-1450 (((-430 $) $) NIL)) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL)) (-1943 (((-3 $ "failed") $ $) NIL)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4296 (((-112) $) NIL)) (-2026 (((-783) $) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 66)) (-4106 (($ $) NIL) (($ $ (-783)) NIL)) (-3755 (($ $) 58)) (-4286 (($ $) NIL)) (-1554 (((-576) $) 17) (((-548) $) NIL) (((-906 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-4112 (((-875) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-4115 (((-783)) NIL T CONST)) (-1460 (((-112) $ $) NIL)) (-4410 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-1865 (($) 40)) (-3111 (((-112) $ $) NIL)) (-2310 (($ $ $) 50)) (-1411 (($ $ $ $) 80)) (-2388 (($ $) 68)) (-2031 (($ $ $) 47)) (-4314 (($) 7 T CONST)) (-2186 (($ $ $) 51)) (-4320 (($) 39 T CONST)) (-3678 (((-1178) $) 26) (((-1178) $ (-112)) 27) (((-1292) (-834) $) 28) (((-1292) (-834) $ (-112)) 29)) (-2196 (($ $) 48)) (-3155 (($ $) NIL) (($ $ (-783)) NIL)) (-2174 (($ $ $) 49)) (-3993 (((-112) $ $) 56)) (-3974 (((-112) $ $) 54)) (-3938 (((-112) $ $) 43)) (-3983 (((-112) $ $) 55)) (-3962 (((-112) $ $) 10)) (-2020 (($ $ $) 46)) (-4036 (($ $) 16) (($ $ $) 60)) (-4026 (($ $ $) 59)) (** (($ $ (-939)) NIL) (($ $ (-783)) 62)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) -(((-1140) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4450) (-6 -4455) (-6 -4451) (-15 -4292 ($ $ $)) (-15 -2196 ($ $)) (-15 -2174 ($ $ $)) (-15 -2186 ($ $ $))))) (T -1140)) -((-4292 (*1 *1 *1 *1) (-5 *1 (-1140))) (-2196 (*1 *1 *1) (-5 *1 (-1140))) (-2174 (*1 *1 *1 *1) (-5 *1 (-1140))) (-2186 (*1 *1 *1 *1) (-5 *1 (-1140)))) -(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4450) (-6 -4455) (-6 -4451) (-15 -4292 ($ $ $)) (-15 -2196 ($ $)) (-15 -2174 ($ $ $)) (-15 -2186 ($ $ $)))) +((-3740 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 50)) (-3710 (((-576) (-1261 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-1563 (((-576) (-1261 |#2| |#1|)) 76)) (-4199 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 58)) (-2510 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-3781 (((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 61)) (-3074 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 75))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -3740 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -4199 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3781 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3074 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1563 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2510 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3710 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) (-832) (-1197)) (T -1135)) +((-3710 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2510 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-3781 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5)))) (-4199 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4)))) (-3740 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) +(-10 -7 (-15 -3740 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -4199 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3781 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3074 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1563 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2510 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3710 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-4172 (($ (-518) (-1139)) 13)) (-2703 (((-1139) $) 19)) (-2627 (((-518) $) 16)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 26) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1136) (-13 (-1104) (-10 -8 (-15 -4172 ($ (-518) (-1139))) (-15 -2627 ((-518) $)) (-15 -2703 ((-1139) $))))) (T -1136)) +((-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136))))) +(-13 (-1104) (-10 -8 (-15 -4172 ($ (-518) (-1139))) (-15 -2627 ((-518) $)) (-15 -2703 ((-1139) $)))) +((-1529 (((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)) 19) (((-3 (-576) "failed") |#2| (-1197) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) +(((-1137 |#1| |#2|) (-10 -7 (-15 -1529 ((-3 (-576) "failed") |#2|)) (-15 -1529 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -1529 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) (-13 (-568) (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|))) (T -1137)) +((-1529 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) (-1529 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)))) (-1529 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) +(-10 -7 (-15 -1529 ((-3 (-576) "failed") |#2|)) (-15 -1529 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -1529 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) +((-1529 (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)) 38) (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-971 |#1|))) 14))) +(((-1138 |#1|) (-10 -7 (-15 -1529 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -1529 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -1529 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) (-464)) (T -1138)) +((-1529 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-1529 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-1529 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *4))))) +(-10 -7 (-15 -1529 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -1529 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -1529 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1202) $) 12)) (-2915 (((-656 (-1202)) $) 14)) (-2703 (($ (-656 (-1202)) (-1202)) 10)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 29)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 17))) +(((-1139) (-13 (-1121) (-10 -8 (-15 -2703 ($ (-656 (-1202)) (-1202))) (-15 -2983 ((-1202) $)) (-15 -2915 ((-656 (-1202)) $))))) (T -1139)) +((-2703 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) +(-13 (-1121) (-10 -8 (-15 -2703 ($ (-656 (-1202)) (-1202))) (-15 -2983 ((-1202) $)) (-15 -2915 ((-656 (-1202)) $)))) +((-2759 (((-326 (-576)) (-48)) 12))) +(((-1140) (-10 -7 (-15 -2759 ((-326 (-576)) (-48))))) (T -1140)) +((-2759 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140))))) +(-10 -7 (-15 -2759 ((-326 (-576)) (-48)))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) 44)) (-1812 (((-112) $) 70)) (-2693 (($ $ $) 53)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 98)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-3893 (($ $ $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2462 (($ $ $ $) 81)) (-3420 (($ $) NIL)) (-1770 (((-430 $) $) NIL)) (-2420 (((-112) $ $) NIL)) (-2096 (((-783)) 83)) (-1529 (((-576) $) NIL)) (-2742 (($ $ $) 78)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2859 (((-576) $) NIL)) (-3428 (($ $ $) 64)) (-4344 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 92) (((-701 (-576)) (-701 $)) 32)) (-3451 (((-3 $ "failed") $) NIL)) (-3355 (((-3 (-419 (-576)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-2034 (((-419 (-576)) $) NIL)) (-1836 (($) 95) (($ $) 96)) (-3440 (($ $ $) 63)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-4169 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-2533 (($ $ $) 93)) (-1661 (((-112) $) NIL)) (-4202 (($ $ $) NIL)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2683 (($ $ $) 52)) (-3215 (((-112) $) 72)) (-2561 (((-112) $) 69)) (-2662 (($ $) 45)) (-3396 (((-3 $ "failed") $) NIL)) (-4099 (((-112) $) 82)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1819 (($ $ $ $) 79)) (-3124 (($ $ $) 74) (($) 42 T CONST)) (-1951 (($ $ $) 73) (($) 41 T CONST)) (-2241 (($ $) NIL)) (-2460 (((-940) $) 88)) (-2434 (($ $) 77)) (-3626 (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2527 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-3223 (($ (-940)) 87)) (-1373 (($ $) 57)) (-1450 (((-1141) $) 76)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) 67) (($ (-656 $)) NIL)) (-3792 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2975 (((-112) $) NIL)) (-2411 (((-783) $) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 66)) (-2773 (($ $) NIL) (($ $ (-783)) NIL)) (-1806 (($ $) 58)) (-1870 (($ $) NIL)) (-4171 (((-576) $) 17) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-3569 (((-876) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-1778 (((-783)) NIL T CONST)) (-3904 (((-112) $ $) NIL)) (-1621 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-3515 (($) 40)) (-2537 (((-112) $ $) NIL)) (-2673 (($ $ $) 50)) (-2070 (($ $ $ $) 80)) (-1665 (($ $) 68)) (-3562 (($ $ $) 47)) (-2719 (($) 7 T CONST)) (-3868 (($ $ $) 51)) (-2730 (($) 39 T CONST)) (-3157 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-3881 (($ $) 48)) (-2018 (($ $) NIL) (($ $ (-783)) NIL)) (-3856 (($ $ $) 49)) (-2991 (((-112) $ $) 56)) (-2962 (((-112) $ $) 54)) (-2923 (((-112) $ $) 43)) (-2978 (((-112) $ $) 55)) (-2948 (((-112) $ $) 10)) (-3551 (($ $ $) 46)) (-3043 (($ $) 16) (($ $ $) 60)) (-3029 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) 62)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) +(((-1141) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -2693 ($ $ $)) (-15 -3881 ($ $)) (-15 -3856 ($ $ $)) (-15 -3868 ($ $ $))))) (T -1141)) +((-2693 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3881 (*1 *1 *1) (-5 *1 (-1141))) (-3856 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3868 (*1 *1 *1 *1) (-5 *1 (-1141)))) +(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -2693 ($ $ $)) (-15 -3881 ($ $)) (-15 -3856 ($ $ $)) (-15 -3868 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3015 ((|#1| $) 45)) (-2337 (((-112) $ (-783)) 8)) (-4331 (($) 7 T CONST)) (-2133 ((|#1| |#1| $) 47)) (-2034 ((|#1| $) 46)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2976 ((|#1| $) 40)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1526 ((|#1| $) 42)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4305 (((-783) $) 44)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) 43)) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1141 |#1|) (-141) (-1237)) (T -1141)) -((-2133 (*1 *2 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4463) (-15 -2133 (|t#1| |t#1| $)) (-15 -2034 (|t#1| $)) (-15 -3015 (|t#1| $)) (-15 -4305 ((-783) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-3832 ((|#3| $) 87)) (-2980 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3222 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) 84) (((-701 |#3|) (-701 $)) 76)) (-4106 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2572 ((|#3| $) 89)) (-4015 ((|#4| $) 43)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-939)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) -(((-1142 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2572 (|#3| |#1|)) (-15 -3832 (|#3| |#1|)) (-15 -4015 (|#4| |#1|)) (-15 -3222 ((-701 |#3|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -4112 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4112 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939))) (-15 -4112 ((-875) |#1|))) (-1143 |#2| |#3| |#4| |#5|) (-783) (-1069) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1142)) -NIL -(-10 -8 (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2572 (|#3| |#1|)) (-15 -3832 (|#3| |#1|)) (-15 -4015 (|#4| |#1|)) (-15 -3222 ((-701 |#3|) (-701 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3222 ((-701 (-576)) (-701 |#1|))) (-15 -4112 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4106 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4112 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-3832 ((|#2| $) 80)) (-1540 (((-112) $) 124)) (-2559 (((-3 $ "failed") $ $) 20)) (-1796 (((-112) $) 122)) (-2337 (((-112) $ (-783)) 114)) (-1867 (($ |#2|) 83)) (-4331 (($) 18 T CONST)) (-2938 (($ $) 141 (|has| |#2| (-317)))) (-2216 ((|#3| $ (-576)) 136)) (-2980 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1058 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2317 (((-576) $) 98 (|has| |#2| (-1058 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1058 (-419 (-576))))) ((|#2| $) 94)) (-3222 (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 87) (((-701 |#2|) (-701 $)) 86)) (-3900 (((-3 $ "failed") $) 37)) (-4134 (((-783) $) 142 (|has| |#2| (-568)))) (-3719 ((|#2| $ (-576) (-576)) 134)) (-3721 (((-656 |#2|) $) 107 (|has| $ (-6 -4463)))) (-2287 (((-112) $) 35)) (-3519 (((-783) $) 143 (|has| |#2| (-568)))) (-2175 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-2758 (((-783) $) 130)) (-2772 (((-783) $) 131)) (-2135 (((-112) $ (-783)) 115)) (-3996 ((|#2| $) 75 (|has| |#2| (-6 (-4465 "*"))))) (-3263 (((-576) $) 126)) (-3455 (((-576) $) 128)) (-3958 (((-656 |#2|) $) 106 (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-4285 (((-576) $) 127)) (-2902 (((-576) $) 129)) (-3409 (($ (-656 (-656 |#2|))) 121)) (-1896 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-3065 (((-656 (-656 |#2|)) $) 132)) (-1556 (((-112) $ (-783)) 116)) (-2198 (((-701 (-576)) (-1287 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 90 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 85) (((-701 |#2|) (-1287 $)) 84)) (-2043 (((-1178) $) 10)) (-2658 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-3115 (((-1140) $) 11)) (-1943 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-3587 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) 120)) (-1937 (((-112) $) 117)) (-3935 (($) 118)) (-4368 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-4106 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1196)) 55 (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) 53 (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) 52 (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 51 (|has| |#2| (-918 (-1196))))) (-2572 ((|#2| $) 79)) (-2762 (($ (-656 |#2|)) 82)) (-2613 (((-112) $) 123)) (-4015 ((|#3| $) 81)) (-1679 ((|#2| $) 76 (|has| |#2| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4463))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 119)) (-3992 ((|#4| $ (-576)) 137)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1058 (-419 (-576))))) (($ |#2|) 92)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-1682 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4463)))) (-1780 (((-112) $) 125)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1196)) 54 (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) 50 (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) 49 (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 48 (|has| |#2| (-918 (-1196))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-1968 (((-783) $) 113 (|has| $ (-6 -4463))))) -(((-1143 |#1| |#2| |#3| |#4|) (-141) (-783) (-1069) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1143)) -((-1867 (*1 *1 *2) (-12 (-4 *2 (-1069)) (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1069)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1069)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1069)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1143 *3 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069)))) (-2658 (*1 *1 *1) (|partial| -12 (-4 *1 (-1143 *2 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) -(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1073 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -1867 ($ |t#2|)) (-15 -2762 ($ (-656 |t#2|))) (-15 -4015 (|t#3| $)) (-15 -3832 (|t#2| $)) (-15 -2572 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4465 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1679 (|t#2| $)) (-15 -3996 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -2658 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4465 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1058 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-875)) . T) ((-234 $) -3794 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -3794 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-6 (-4465 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -3794 (|has| |#2| (-174)) (|has| |#2| (-6 (-4465 "*")))) ((-738) . T) ((-910 $ #2=(-1196)) -3794 (|has| |#2| (-918 (-1196))) (|has| |#2| (-916 (-1196)))) ((-916 (-1196)) |has| |#2| (-916 (-1196))) ((-918 #2#) -3794 (|has| |#2| (-918 (-1196))) (|has| |#2| (-916 (-1196)))) ((-1073 |#1| |#1| |#2| |#3| |#4|) . T) ((-1058 #0#) |has| |#2| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#2| (-1058 (-576))) ((-1058 |#2|) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3507 ((|#4| |#4|) 81)) (-1941 ((|#4| |#4|) 76)) (-2787 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|))) |#4| |#3|) 91)) (-3534 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-4409 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1941 (|#4| |#4|)) (-15 -4409 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3507 (|#4| |#4|)) (-15 -3534 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2787 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1144)) -((-2787 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) (-5 *1 (-1144 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3534 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3507 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4409 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -1941 (|#4| |#4|)) (-15 -4409 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3507 (|#4| |#4|)) (-15 -3534 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2787 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3578 (-656 |#3|))) |#4| |#3|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 18)) (-1582 (((-656 |#2|) $) 174)) (-1420 (((-1192 $) $ |#2|) 60) (((-1192 |#1|) $) 49)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-4070 (($ $) 118 (|has| |#1| (-568)))) (-2378 (((-112) $) 120 (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2317 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) ((|#2| $) NIL)) (-3954 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-3309 (($ $) 217)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) 90)) (-3557 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-543 |#2|) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| |#1| (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| |#1| (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-2287 (((-112) $) 20)) (-1757 (((-783) $) 30)) (-1571 (($ (-1192 |#1|) |#2|) 54) (($ (-1192 $) |#2|) 71)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) 38)) (-1562 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ |#2|) NIL)) (-3661 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-3820 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) 128)) (-2653 (((-3 |#2| "failed") $) 177)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) 216)) (-1709 ((|#1| $) 43)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| |#2|) (|:| -1495 (-783))) "failed") $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) 39)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 148 (|has| |#1| (-464)))) (-3114 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-927)))) (-1943 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-1451 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-4106 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-1877 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| |#1| (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| |#1| (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3430 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4112 (((-875) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-1410 (((-656 |#1|) $) 162)) (-4269 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) 87 T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) 123 (|has| |#1| (-568)))) (-4314 (($) 12 T CONST)) (-4320 (($) 14 T CONST)) (-3155 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3938 (((-112) $ $) 106)) (-4046 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-4036 (($ $) 93) (($ $ $) 104)) (-4026 (($ $ $) 55)) (** (($ $ (-939)) 110) (($ $ (-783)) 109)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1145 |#1| |#2|) (-967 |#1| (-543 |#2|) |#2|) (-1069) (-861)) (T -1145)) -NIL -(-967 |#1| (-543 |#2|) |#2|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 |#2|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-3585 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3561 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3611 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2817 (((-970 |#1|) $ (-783)) NIL) (((-970 |#1|) $ (-783) (-783)) NIL)) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3146 (((-112) $) NIL)) (-1562 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2607 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-2944 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-4182 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3679 (($ $ (-783)) 16)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2155 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-4106 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-1877 (((-543 |#2|) $) NIL)) (-2523 (((-1 (-1177 |#3|) |#3|) (-656 |#2|) (-656 (-1177 |#3|))) 87)) (-3622 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 18)) (-4112 (((-875) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-4269 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1970 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 52 T CONST)) (-4320 (($) 62 T CONST)) (-3155 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 66)) (** (($ $ (-939)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1146 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -4269 (|#3| $ (-783))) (-15 -4112 ($ |#2|)) (-15 -4112 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2523 ((-1 (-1177 |#3|) |#3|) (-656 |#2|) (-656 (-1177 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $ |#2| |#1|)) (-15 -4182 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1069) (-861) (-967 |#1| (-543 |#2|) |#2|)) (T -1146)) -((-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-967 *4 (-543 *5) *5)) (-5 *1 (-1146 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-861)))) (-4112 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *2 (-861)) (-5 *1 (-1146 *3 *2 *4)) (-4 *4 (-967 *3 (-543 *2) *2)))) (-4112 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *4 (-861)) (-5 *1 (-1146 *3 *4 *2)) (-4 *2 (-967 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-861)) (-5 *1 (-1146 *3 *4 *2)) (-4 *2 (-967 *3 (-543 *4) *4)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1177 *7))) (-4 *6 (-861)) (-4 *7 (-967 *5 (-543 *6) *6)) (-4 *5 (-1069)) (-5 *2 (-1 (-1177 *7) *7)) (-5 *1 (-1146 *5 *6 *7)))) (-2944 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-4 *2 (-861)) (-5 *1 (-1146 *3 *2 *4)) (-4 *4 (-967 *3 (-543 *2) *2)))) (-4182 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1146 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1069)) (-4 *3 (-861)) (-5 *1 (-1146 *4 *3 *5)) (-4 *5 (-967 *4 (-543 *3) *3))))) -(-13 (-752 |#1| |#2|) (-10 -8 (-15 -4269 (|#3| $ (-783))) (-15 -4112 ($ |#2|)) (-15 -4112 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2523 ((-1 (-1177 |#3|) |#3|) (-656 |#2|) (-656 (-1177 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $ |#2| |#1|)) (-15 -4182 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-1952 (((-112) $ $) 7)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) 86)) (-2822 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1582 (((-656 |#3|) $) 34)) (-2397 (((-112) $) 27)) (-2083 (((-112) $) 18 (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-3575 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) 28)) (-2337 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 80)) (-4331 (($) 46 T CONST)) (-4013 (((-112) $) 23 (|has| |#1| (-568)))) (-1938 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3142 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2948 (((-112) $) 26 (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3223 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1762 (((-3 $ "failed") $) 83)) (-3182 ((|#4| |#4| $) 90)) (-3966 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3325 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) 106)) (-3802 (((-112) |#4| $) 137)) (-1338 (((-112) |#4| $) 134)) (-2343 (((-112) |#4| $) 138) (((-112) $) 135)) (-3721 (((-656 |#4|) $) 53 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) 105) (((-112) $) 104)) (-2232 ((|#3| $) 35)) (-2135 (((-112) $ (-783)) 44)) (-3958 (((-656 |#4|) $) 54 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 48)) (-3055 (((-656 |#3|) $) 33)) (-2421 (((-112) |#3| $) 32)) (-1556 (((-112) $ (-783)) 43)) (-2043 (((-1178) $) 10)) (-2727 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4109 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2849 (((-3 |#4| "failed") $) 84)) (-3060 (((-656 $) |#4| $) 130)) (-3990 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2710 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1699 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2403 (((-656 |#4|) $) 108)) (-2498 (((-112) |#4| $) 100) (((-112) $) 96)) (-1619 ((|#4| |#4| $) 91)) (-1761 (((-112) $ $) 111)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) 101) (((-112) $) 97)) (-3609 ((|#4| |#4| $) 92)) (-3115 (((-1140) $) 11)) (-1753 (((-3 |#4| "failed") $) 85)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2917 (((-3 $ "failed") $ |#4|) 79)) (-3679 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3587 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) 39)) (-1937 (((-112) $) 42)) (-3935 (($) 41)) (-1877 (((-783) $) 107)) (-3125 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4463)))) (-4286 (($ $) 40)) (-1554 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 61)) (-3655 (($ $ |#3|) 29)) (-3837 (($ $ |#3|) 31)) (-1864 (($ $) 89)) (-1570 (($ $ |#3|) 30)) (-4112 (((-875) $) 12) (((-656 |#4|) $) 38)) (-2576 (((-783) $) 77 (|has| |#3| (-379)))) (-1994 (((-112) $ $) 6)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2057 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-1682 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) 82)) (-1979 (((-112) |#4| $) 136)) (-3331 (((-112) |#3| $) 81)) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-1147 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1085 |t#1| |t#2| |t#3|)) (T -1147)) -NIL -(-13 (-1129 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-875)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-3177 (((-656 |#2|) |#1|) 15)) (-3984 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-4399 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-2636 ((|#2| |#1|) 54)) (-3131 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3318 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-4306 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-3953 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1868 ((|#2| |#2| |#2| |#2|) 51)) (-3889 ((|#2| |#2| |#2|) 50)) (-3165 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1148 |#1| |#2|) (-10 -7 (-15 -3177 ((-656 |#2|) |#1|)) (-15 -2636 (|#2| |#1|)) (-15 -3131 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3318 ((-656 |#2|) |#1|)) (-15 -4399 ((-656 |#2|) |#1|)) (-15 -4306 ((-656 |#2|) |#1|)) (-15 -3984 ((-656 |#2|) |#1|)) (-15 -3318 ((-656 |#2|) |#2| |#2|)) (-15 -4399 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -4306 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3984 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3889 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2| |#2|)) (-15 -3165 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3953 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1263 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1148)) -((-3953 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3165 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-1868 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3889 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3984 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-4306 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-4399 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-4306 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-4399 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1148 *3 *5)) (-4 *3 (-1263 *5)))) (-2636 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -3177 ((-656 |#2|) |#1|)) (-15 -2636 (|#2| |#1|)) (-15 -3131 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3318 ((-656 |#2|) |#1|)) (-15 -4399 ((-656 |#2|) |#1|)) (-15 -4306 ((-656 |#2|) |#1|)) (-15 -3984 ((-656 |#2|) |#1|)) (-15 -3318 ((-656 |#2|) |#2| |#2|)) (-15 -4399 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -4306 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3984 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3889 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2| |#2|)) (-15 -3165 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3953 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3782 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-970 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-970 |#1|)))) (-656 (-1196))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-970 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-970 |#1|))) (-656 (-1196))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-970 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-970 |#1|))) (-1196)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-970 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-970 |#1|)) (-1196)) 82)) (-3032 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-970 |#1|))) (-656 (-1196))) 111) (((-656 (-326 |#1|)) (-419 (-970 |#1|)) (-1196)) 54)) (-1892 (((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-970 |#1|)) (-1196)) 122) (((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-970 |#1|))) (-1196)) 121))) -(((-1149 |#1|) (-10 -7 (-15 -3782 ((-656 (-304 (-326 |#1|))) (-419 (-970 |#1|)) (-1196))) (-15 -3782 ((-656 (-304 (-326 |#1|))) (-419 (-970 |#1|)))) (-15 -3782 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-970 |#1|))) (-1196))) (-15 -3782 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-970 |#1|))))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-970 |#1|))))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-970 |#1|)))) (-656 (-1196)))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-970 |#1|)))))) (-15 -3032 ((-656 (-326 |#1|)) (-419 (-970 |#1|)) (-1196))) (-15 -3032 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -1892 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-970 |#1|))) (-1196))) (-15 -1892 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-970 |#1|)) (-1196)))) (-13 (-317) (-148))) (T -1149)) -((-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)))) (-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-970 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1149 *5)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1149 *5)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-970 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1149 *4)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-970 *5))))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-970 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1149 *4)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-970 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-970 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5))))) -(-10 -7 (-15 -3782 ((-656 (-304 (-326 |#1|))) (-419 (-970 |#1|)) (-1196))) (-15 -3782 ((-656 (-304 (-326 |#1|))) (-419 (-970 |#1|)))) (-15 -3782 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-970 |#1|))) (-1196))) (-15 -3782 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-970 |#1|))))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-970 |#1|))))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-970 |#1|)))) (-656 (-1196)))) (-15 -3782 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-970 |#1|)))))) (-15 -3032 ((-656 (-326 |#1|)) (-419 (-970 |#1|)) (-1196))) (-15 -3032 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -1892 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-970 |#1|))) (-1196))) (-15 -1892 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-970 |#1|)) (-1196)))) -((-3613 (((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)) 36)) (-3489 (((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|)))) 48))) -(((-1150 |#1|) (-10 -7 (-15 -3489 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -3613 ((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)))) (-568)) (T -1150)) -((-3613 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1150 *5)))) (-3489 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1150 *3))))) -(-10 -7 (-15 -3489 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -3613 ((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)))) -((-3177 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) -(((-1151 |#1|) (-10 -7 (-15 -3177 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -3177 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -3177 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196))) (-15 -3177 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -3177 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))))) (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (T -1151)) -((-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1151 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1151 *5)) (-5 *3 (-326 *5)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1151 *5)) (-5 *3 (-304 (-326 *5))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-304 (-326 *4))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -3177 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -3177 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -3177 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196))) (-15 -3177 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -3177 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))))) -((-3894 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-4383 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1152 |#1| |#2|) (-10 -7 (-15 -4383 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3894 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -4383 (|#2| |#2|)) (-15 -3894 (|#2| |#2|))) |%noBranch|)) (-1237) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4463) (-6 -4464)))) (T -1152)) -((-3894 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4463) (-6 -4464)))))) (-4383 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4463) (-6 -4464)))))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4463) (-6 -4464)))))) (-4383 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4463) (-6 -4464))))))) -(-10 -7 (-15 -4383 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3894 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -4383 (|#2| |#2|)) (-15 -3894 (|#2| |#2|))) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-4380 (((-1184 3 |#1|) $) 141)) (-3839 (((-112) $) 101)) (-2831 (($ $ (-656 (-961 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-961 |#1|))) 103) (((-656 (-961 |#1|)) $) 102)) (-3407 (((-112) $) 72)) (-2819 (($ $ (-961 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-961 |#1|)) 77) (((-961 |#1|) $) 75)) (-1855 (((-2 (|:| -2840 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-4209 (((-783) $) 53)) (-2014 (((-783) $) 52)) (-4234 (($ $ (-783) (-961 |#1|)) 67)) (-1904 (((-112) $) 111)) (-3991 (($ $ (-656 (-656 (-961 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-961 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-961 |#1|)))) 116) (($ (-656 (-656 (-961 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-961 |#1|))) $) 114)) (-2144 (($ (-656 $)) 56) (($ $ $) 57)) (-3039 (((-656 (-173)) $) 133)) (-2851 (((-656 (-961 |#1|)) $) 130)) (-3712 (((-656 (-656 (-173))) $) 132)) (-1932 (((-656 (-656 (-656 (-961 |#1|)))) $) NIL)) (-1954 (((-656 (-656 (-656 (-783)))) $) 131)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4091 (((-783) $ (-656 (-961 |#1|))) 65)) (-4111 (((-112) $) 84)) (-3699 (($ $ (-656 (-961 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-961 |#1|))) 87) (((-656 (-961 |#1|)) $) 85)) (-3607 (($) 48) (($ (-1184 3 |#1|)) 49)) (-4286 (($ $) 63)) (-4366 (((-656 $) $) 62)) (-4418 (($ (-656 $)) 59)) (-4011 (((-656 $) $) 61)) (-4112 (((-875) $) 146)) (-2439 (((-112) $) 94)) (-3439 (($ $ (-656 (-961 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-961 |#1|))) 97) (((-656 (-961 |#1|)) $) 95)) (-3739 (($ $) 140)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1153 |#1|) (-1154 |#1|) (-1069)) (T -1153)) -NIL -(-1154 |#1|) -((-1952 (((-112) $ $) 7)) (-4380 (((-1184 3 |#1|) $) 14)) (-3839 (((-112) $) 30)) (-2831 (($ $ (-656 (-961 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-961 |#1|))) 32) (((-656 (-961 |#1|)) $) 31)) (-3407 (((-112) $) 45)) (-2819 (($ $ (-961 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-961 |#1|)) 47) (((-961 |#1|) $) 46)) (-1855 (((-2 (|:| -2840 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-4209 (((-783) $) 59)) (-2014 (((-783) $) 60)) (-4234 (($ $ (-783) (-961 |#1|)) 51)) (-1904 (((-112) $) 22)) (-3991 (($ $ (-656 (-656 (-961 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-961 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-961 |#1|)))) 25) (($ (-656 (-656 (-961 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-961 |#1|))) $) 23)) (-2144 (($ (-656 $)) 58) (($ $ $) 57)) (-3039 (((-656 (-173)) $) 17)) (-2851 (((-656 (-961 |#1|)) $) 21)) (-3712 (((-656 (-656 (-173))) $) 18)) (-1932 (((-656 (-656 (-656 (-961 |#1|)))) $) 19)) (-1954 (((-656 (-656 (-656 (-783)))) $) 20)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4091 (((-783) $ (-656 (-961 |#1|))) 52)) (-4111 (((-112) $) 40)) (-3699 (($ $ (-656 (-961 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-961 |#1|))) 42) (((-656 (-961 |#1|)) $) 41)) (-3607 (($) 62) (($ (-1184 3 |#1|)) 61)) (-4286 (($ $) 53)) (-4366 (((-656 $) $) 54)) (-4418 (($ (-656 $)) 56)) (-4011 (((-656 $) $) 55)) (-4112 (((-875) $) 12)) (-2439 (((-112) $) 35)) (-3439 (($ $ (-656 (-961 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-961 |#1|))) 37) (((-656 (-961 |#1|)) $) 36)) (-3739 (($ $) 15)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-1154 |#1|) (-141) (-1069)) (T -1154)) -((-4112 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-875)))) (-3607 (*1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-3607 (*1 *1 *2) (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-2144 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-4418 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-4011 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-656 *1)) (-4 *1 (-1154 *3)))) (-4366 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-656 *1)) (-4 *1 (-1154 *3)))) (-4286 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-4091 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-961 *4))) (-4 *1 (-1154 *4)) (-4 *4 (-1069)) (-5 *2 (-783)))) (-4234 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-961 *4)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-961 *3)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-656 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-656 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-656 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-3991 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-961 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1154 *5)) (-4 *5 (-1069)))) (-3991 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1154 *5)) (-4 *5 (-1069)))) (-3991 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-961 *4)))) (-5 *3 (-112)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) (-3991 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) (-3991 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-961 *3)))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3991 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-961 *4)))) (-5 *3 (-112)) (-4 *4 (-1069)) (-4 *1 (-1154 *4)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-656 (-961 *3)))))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-656 (-656 (-961 *3))))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-656 (-173)))))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-173))))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2840 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-3739 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-1184 3 *3))))) -(-13 (-1120) (-10 -8 (-15 -3607 ($)) (-15 -3607 ($ (-1184 3 |t#1|))) (-15 -2014 ((-783) $)) (-15 -4209 ((-783) $)) (-15 -2144 ($ (-656 $))) (-15 -2144 ($ $ $)) (-15 -4418 ($ (-656 $))) (-15 -4011 ((-656 $) $)) (-15 -4366 ((-656 $) $)) (-15 -4286 ($ $)) (-15 -4091 ((-783) $ (-656 (-961 |t#1|)))) (-15 -4234 ($ $ (-783) (-961 |t#1|))) (-15 -2819 ($ $ (-961 |t#1|))) (-15 -2819 ($ $ (-656 |t#1|))) (-15 -2819 ($ $ (-783))) (-15 -2819 ($ (-961 |t#1|))) (-15 -2819 ((-961 |t#1|) $)) (-15 -3407 ((-112) $)) (-15 -3699 ($ $ (-656 (-961 |t#1|)))) (-15 -3699 ($ $ (-656 (-656 |t#1|)))) (-15 -3699 ($ (-656 (-961 |t#1|)))) (-15 -3699 ((-656 (-961 |t#1|)) $)) (-15 -4111 ((-112) $)) (-15 -3439 ($ $ (-656 (-961 |t#1|)))) (-15 -3439 ($ $ (-656 (-656 |t#1|)))) (-15 -3439 ($ (-656 (-961 |t#1|)))) (-15 -3439 ((-656 (-961 |t#1|)) $)) (-15 -2439 ((-112) $)) (-15 -2831 ($ $ (-656 (-961 |t#1|)))) (-15 -2831 ($ $ (-656 (-656 |t#1|)))) (-15 -2831 ($ (-656 (-961 |t#1|)))) (-15 -2831 ((-656 (-961 |t#1|)) $)) (-15 -3839 ((-112) $)) (-15 -3991 ($ $ (-656 (-656 (-961 |t#1|))) (-656 (-173)) (-173))) (-15 -3991 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -3991 ($ $ (-656 (-656 (-961 |t#1|))) (-112) (-112))) (-15 -3991 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -3991 ($ (-656 (-656 (-961 |t#1|))))) (-15 -3991 ($ (-656 (-656 (-961 |t#1|))) (-112) (-112))) (-15 -3991 ((-656 (-656 (-961 |t#1|))) $)) (-15 -1904 ((-112) $)) (-15 -2851 ((-656 (-961 |t#1|)) $)) (-15 -1954 ((-656 (-656 (-656 (-783)))) $)) (-15 -1932 ((-656 (-656 (-656 (-961 |t#1|)))) $)) (-15 -3712 ((-656 (-656 (-173))) $)) (-15 -3039 ((-656 (-173)) $)) (-15 -1855 ((-2 (|:| -2840 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -3739 ($ $)) (-15 -4380 ((-1184 3 |t#1|) $)) (-15 -4112 ((-875) $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 184) (($ (-1201)) NIL) (((-1201) $) 7)) (-4304 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1297))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1135))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1086))) 63) (((-112) $ (|[\|\|]| (-1298))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1171))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1056))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-990))) 99) (((-112) $ (|[\|\|]| (-1093))) 103) (((-112) $ (|[\|\|]| (-1110))) 107) (((-112) $ (|[\|\|]| (-1116))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1186))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1178))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-1994 (((-112) $ $) NIL)) (-4332 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1297) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1135) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1086) $) 64) (((-1298) $) 68) (((-537) $) 72) (((-1171) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1056) $) 92) (((-182) $) 96) (((-990) $) 100) (((-1093) $) 104) (((-1110) $) 108) (((-1116) $) 112) (((-638) $) 116) (((-1186) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1178) $) 144) (((-576) $) 148)) (-3938 (((-112) $ $) NIL))) -(((-1155) (-1157)) (T -1155)) -NIL -(-1157) -((-2286 (((-656 (-1201)) (-1178)) 9))) -(((-1156) (-10 -7 (-15 -2286 ((-656 (-1201)) (-1178))))) (T -1156)) -((-2286 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-1156))))) -(-10 -7 (-15 -2286 ((-656 (-1201)) (-1178)))) -((-1952 (((-112) $ $) 7)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-4304 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1297))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1135))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1086))) 63) (((-112) $ (|[\|\|]| (-1298))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1171))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1056))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-990))) 45) (((-112) $ (|[\|\|]| (-1093))) 43) (((-112) $ (|[\|\|]| (-1110))) 41) (((-112) $ (|[\|\|]| (-1116))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1186))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1178))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-1994 (((-112) $ $) 6)) (-4332 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1297) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1135) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1086) $) 62) (((-1298) $) 60) (((-537) $) 58) (((-1171) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1056) $) 48) (((-182) $) 46) (((-990) $) 44) (((-1093) $) 42) (((-1110) $) 40) (((-1116) $) 38) (((-638) $) 36) (((-1186) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1178) $) 22) (((-576) $) 20)) (-3938 (((-112) $ $) 8))) -(((-1157) (-141)) (T -1157)) -((-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-536)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-220)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-688)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1297)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-139)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-618)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-134)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1135)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-96)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-693)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-529)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1086)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1298)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-537)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1171)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-155)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-683)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-321)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1056)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-182)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-990))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-990)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1093)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1110))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1110)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1116))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1116)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-638)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1186)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-157)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-138)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-490)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-604)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-518)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1178)))) (-4304 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-576))))) -(-13 (-1103) (-1282) (-10 -8 (-15 -4304 ((-112) $ (|[\|\|]| (-536)))) (-15 -4332 ((-536) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-220)))) (-15 -4332 ((-220) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-688)))) (-15 -4332 ((-688) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1297)))) (-15 -4332 ((-1297) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-139)))) (-15 -4332 ((-139) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-618)))) (-15 -4332 ((-618) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-134)))) (-15 -4332 ((-134) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1135)))) (-15 -4332 ((-1135) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-96)))) (-15 -4332 ((-96) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-693)))) (-15 -4332 ((-693) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-529)))) (-15 -4332 ((-529) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1086)))) (-15 -4332 ((-1086) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1298)))) (-15 -4332 ((-1298) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-537)))) (-15 -4332 ((-537) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1171)))) (-15 -4332 ((-1171) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-155)))) (-15 -4332 ((-155) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-683)))) (-15 -4332 ((-683) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-321)))) (-15 -4332 ((-321) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1056)))) (-15 -4332 ((-1056) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-182)))) (-15 -4332 ((-182) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-990)))) (-15 -4332 ((-990) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1093)))) (-15 -4332 ((-1093) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1110)))) (-15 -4332 ((-1110) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1116)))) (-15 -4332 ((-1116) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-638)))) (-15 -4332 ((-638) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1186)))) (-15 -4332 ((-1186) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-157)))) (-15 -4332 ((-157) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-138)))) (-15 -4332 ((-138) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-490)))) (-15 -4332 ((-490) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-604)))) (-15 -4332 ((-604) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-518)))) (-15 -4332 ((-518) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-1178)))) (-15 -4332 ((-1178) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-576)))) (-15 -4332 ((-576) $)))) -(((-93) . T) ((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-875)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1120) . T) ((-1103) . T) ((-1237) . T) ((-1282) . T)) -((-4116 (((-1292) (-656 (-875))) 22) (((-1292) (-875)) 21)) (-1783 (((-1292) (-656 (-875))) 20) (((-1292) (-875)) 19)) (-3972 (((-1292) (-656 (-875))) 18) (((-1292) (-875)) 10) (((-1292) (-1178) (-875)) 16))) -(((-1158) (-10 -7 (-15 -3972 ((-1292) (-1178) (-875))) (-15 -3972 ((-1292) (-875))) (-15 -1783 ((-1292) (-875))) (-15 -4116 ((-1292) (-875))) (-15 -3972 ((-1292) (-656 (-875)))) (-15 -1783 ((-1292) (-656 (-875)))) (-15 -4116 ((-1292) (-656 (-875)))))) (T -1158)) -((-4116 (*1 *2 *3) (-12 (-5 *3 (-656 (-875))) (-5 *2 (-1292)) (-5 *1 (-1158)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-656 (-875))) (-5 *2 (-1292)) (-5 *1 (-1158)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-656 (-875))) (-5 *2 (-1292)) (-5 *1 (-1158)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158))))) -(-10 -7 (-15 -3972 ((-1292) (-1178) (-875))) (-15 -3972 ((-1292) (-875))) (-15 -1783 ((-1292) (-875))) (-15 -4116 ((-1292) (-875))) (-15 -3972 ((-1292) (-656 (-875)))) (-15 -1783 ((-1292) (-656 (-875)))) (-15 -4116 ((-1292) (-656 (-875))))) -((-3333 (($ $ $) 10)) (-3680 (($ $) 9)) (-3121 (($ $ $) 13)) (-2909 (($ $ $) 15)) (-4232 (($ $ $) 12)) (-3724 (($ $ $) 14)) (-1522 (($ $) 17)) (-1388 (($ $) 16)) (-2388 (($ $) 6)) (-4166 (($ $ $) 11) (($ $) 7)) (-4210 (($ $ $) 8))) -(((-1159) (-141)) (T -1159)) -((-1522 (*1 *1 *1) (-4 *1 (-1159))) (-1388 (*1 *1 *1) (-4 *1 (-1159))) (-2909 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3724 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3121 (*1 *1 *1 *1) (-4 *1 (-1159))) (-4232 (*1 *1 *1 *1) (-4 *1 (-1159))) (-4166 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3333 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3680 (*1 *1 *1) (-4 *1 (-1159))) (-4210 (*1 *1 *1 *1) (-4 *1 (-1159))) (-4166 (*1 *1 *1) (-4 *1 (-1159))) (-2388 (*1 *1 *1) (-4 *1 (-1159)))) -(-13 (-10 -8 (-15 -2388 ($ $)) (-15 -4166 ($ $)) (-15 -4210 ($ $ $)) (-15 -3680 ($ $)) (-15 -3333 ($ $ $)) (-15 -4166 ($ $ $)) (-15 -4232 ($ $ $)) (-15 -3121 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -1388 ($ $)) (-15 -1522 ($ $)))) -((-1952 (((-112) $ $) 44)) (-1688 ((|#1| $) 17)) (-3004 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3061 (((-112) $) 19)) (-2142 (($ $ |#1|) 30)) (-2567 (($ $ (-112)) 32)) (-4274 (($ $) 33)) (-1956 (($ $ |#2|) 31)) (-2043 (((-1178) $) NIL)) (-2054 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3115 (((-1140) $) NIL)) (-1937 (((-112) $) 16)) (-3935 (($) 13)) (-4286 (($ $) 29)) (-4124 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3270 ((|#2| $) 18)) (-4112 (((-875) $) 53)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 42))) -(((-1160 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3935 ($)) (-15 -1937 ((-112) $)) (-15 -1688 (|#1| $)) (-15 -3270 (|#2| $)) (-15 -3061 ((-112) $)) (-15 -4124 ($ |#1| |#2| (-112))) (-15 -4124 ($ |#1| |#2|)) (-15 -4124 ($ (-2 (|:| |val| |#1|) (|:| -4442 |#2|)))) (-15 -4124 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))))) (-15 -4124 ((-656 $) |#1| (-656 |#2|))) (-15 -4286 ($ $)) (-15 -2142 ($ $ |#1|)) (-15 -1956 ($ $ |#2|)) (-15 -2567 ($ $ (-112))) (-15 -4274 ($ $)) (-15 -2054 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3004 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1120) (-34)) (-13 (-1120) (-34))) (T -1160)) -((-3935 (*1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-1688 (*1 *2 *1) (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1160 *2 *3)) (-4 *3 (-13 (-1120) (-34))))) (-3270 (*1 *2 *1) (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-13 (-1120) (-34))))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-4124 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-4124 (*1 *1 *2 *3) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4442 *4))) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4442 *5)))) (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-656 (-1160 *4 *5))) (-5 *1 (-1160 *4 *5)))) (-4124 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-656 (-1160 *3 *5))) (-5 *1 (-1160 *3 *5)) (-4 *3 (-13 (-1120) (-34))))) (-4286 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-2142 (*1 *1 *1 *2) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-1956 (*1 *1 *1 *2) (-12 (-5 *1 (-1160 *3 *2)) (-4 *3 (-13 (-1120) (-34))) (-4 *2 (-13 (-1120) (-34))))) (-2567 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-4274 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-2054 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *5 *6)))) (-3004 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5)) (-4 *4 (-13 (-1120) (-34)))))) -(-13 (-1120) (-10 -8 (-15 -3935 ($)) (-15 -1937 ((-112) $)) (-15 -1688 (|#1| $)) (-15 -3270 (|#2| $)) (-15 -3061 ((-112) $)) (-15 -4124 ($ |#1| |#2| (-112))) (-15 -4124 ($ |#1| |#2|)) (-15 -4124 ($ (-2 (|:| |val| |#1|) (|:| -4442 |#2|)))) (-15 -4124 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))))) (-15 -4124 ((-656 $) |#1| (-656 |#2|))) (-15 -4286 ($ $)) (-15 -2142 ($ $ |#1|)) (-15 -1956 ($ $ |#2|)) (-15 -2567 ($ $ (-112))) (-15 -4274 ($ $)) (-15 -2054 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3004 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-1952 (((-112) $ $) NIL (|has| (-1160 |#1| |#2|) (-102)))) (-1688 (((-1160 |#1| |#2|) $) 27)) (-2419 (($ $) 91)) (-1640 (((-112) (-1160 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3345 (($ $ $ (-656 (-1160 |#1| |#2|))) 108) (($ $ $ (-656 (-1160 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2337 (((-112) $ (-783)) NIL)) (-3078 (((-1160 |#1| |#2|) $ (-1160 |#1| |#2|)) 46 (|has| $ (-6 -4464)))) (-4267 (((-1160 |#1| |#2|) $ "value" (-1160 |#1| |#2|)) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 44 (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-3884 (((-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) $) 95)) (-1672 (($ (-1160 |#1| |#2|) $) 42)) (-2824 (($ (-1160 |#1| |#2|) $) 34)) (-3721 (((-656 (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 54)) (-1342 (((-112) (-1160 |#1| |#2|) $) 97)) (-2520 (((-112) $ $) NIL (|has| (-1160 |#1| |#2|) (-1120)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 (-1160 |#1| |#2|)) $) 58 (|has| $ (-6 -4463)))) (-4217 (((-112) (-1160 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-1160 |#1| |#2|) (-1120))))) (-1896 (($ (-1 (-1160 |#1| |#2|) (-1160 |#1| |#2|)) $) 50 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-1160 |#1| |#2|) (-1160 |#1| |#2|)) $) 49)) (-1556 (((-112) $ (-783)) NIL)) (-4185 (((-656 (-1160 |#1| |#2|)) $) 56)) (-2887 (((-112) $) 45)) (-2043 (((-1178) $) NIL (|has| (-1160 |#1| |#2|) (-1120)))) (-3115 (((-1140) $) NIL (|has| (-1160 |#1| |#2|) (-1120)))) (-1916 (((-3 $ "failed") $) 89)) (-3587 (((-112) (-1 (-112) (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-1160 |#1| |#2|)))) NIL (-12 (|has| (-1160 |#1| |#2|) (-319 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1120)))) (($ $ (-304 (-1160 |#1| |#2|))) NIL (-12 (|has| (-1160 |#1| |#2|) (-319 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1120)))) (($ $ (-1160 |#1| |#2|) (-1160 |#1| |#2|)) NIL (-12 (|has| (-1160 |#1| |#2|) (-319 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1120)))) (($ $ (-656 (-1160 |#1| |#2|)) (-656 (-1160 |#1| |#2|))) NIL (-12 (|has| (-1160 |#1| |#2|) (-319 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1120))))) (-1551 (((-112) $ $) 53)) (-1937 (((-112) $) 24)) (-3935 (($) 26)) (-4368 (((-1160 |#1| |#2|) $ "value") NIL)) (-3183 (((-576) $ $) NIL)) (-2003 (((-112) $) 47)) (-3125 (((-783) (-1 (-112) (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4463))) (((-783) (-1160 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-1160 |#1| |#2|) (-1120))))) (-4286 (($ $) 52)) (-4124 (($ (-1160 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1160 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1453 (((-656 |#2|) $) 96)) (-4112 (((-875) $) 87 (|has| (-1160 |#1| |#2|) (-625 (-875))))) (-4335 (((-656 $) $) 31)) (-2777 (((-112) $ $) NIL (|has| (-1160 |#1| |#2|) (-1120)))) (-1994 (((-112) $ $) NIL (|has| (-1160 |#1| |#2|) (-102)))) (-1682 (((-112) (-1 (-112) (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 70 (|has| (-1160 |#1| |#2|) (-102)))) (-1968 (((-783) $) 64 (|has| $ (-6 -4463))))) -(((-1161 |#1| |#2|) (-13 (-1030 (-1160 |#1| |#2|)) (-10 -8 (-6 -4464) (-6 -4463) (-15 -1916 ((-3 $ "failed") $)) (-15 -2419 ($ $)) (-15 -4124 ($ (-1160 |#1| |#2|))) (-15 -4124 ($ |#1| |#2| (-656 $))) (-15 -4124 ($ |#1| |#2| (-656 (-1160 |#1| |#2|)))) (-15 -4124 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1453 ((-656 |#2|) $)) (-15 -3884 ((-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) $)) (-15 -1342 ((-112) (-1160 |#1| |#2|) $)) (-15 -1640 ((-112) (-1160 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2824 ($ (-1160 |#1| |#2|) $)) (-15 -1672 ($ (-1160 |#1| |#2|) $)) (-15 -3345 ($ $ $ (-656 (-1160 |#1| |#2|)))) (-15 -3345 ($ $ $ (-656 (-1160 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1120) (-34)) (-13 (-1120) (-34))) (T -1161)) -((-1916 (*1 *1 *1) (|partial| -12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4)))) (-4124 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1161 *2 *3))) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-4124 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1160 *2 *3))) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1161 *2 *3)))) (-4124 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-1342 (*1 *2 *3 *1) (-12 (-5 *3 (-1160 *4 *5)) (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)))) (-1640 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1160 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *5 *6)))) (-2824 (*1 *1 *2 *1) (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4)))) (-1672 (*1 *1 *2 *1) (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4)))) (-3345 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1160 *3 *4))) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4)))) (-3345 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1160 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) (-5 *1 (-1161 *4 *5))))) -(-13 (-1030 (-1160 |#1| |#2|)) (-10 -8 (-6 -4464) (-6 -4463) (-15 -1916 ((-3 $ "failed") $)) (-15 -2419 ($ $)) (-15 -4124 ($ (-1160 |#1| |#2|))) (-15 -4124 ($ |#1| |#2| (-656 $))) (-15 -4124 ($ |#1| |#2| (-656 (-1160 |#1| |#2|)))) (-15 -4124 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1453 ((-656 |#2|) $)) (-15 -3884 ((-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) $)) (-15 -1342 ((-112) (-1160 |#1| |#2|) $)) (-15 -1640 ((-112) (-1160 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2824 ($ (-1160 |#1| |#2|) $)) (-15 -1672 ($ (-1160 |#1| |#2|) $)) (-15 -3345 ($ $ $ (-656 (-1160 |#1| |#2|)))) (-15 -3345 ($ $ $ (-656 (-1160 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1592 (($ $) NIL)) (-3832 ((|#2| $) NIL)) (-1540 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-3458 (($ (-701 |#2|)) 56)) (-1796 (((-112) $) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-1867 (($ |#2|) 14)) (-4331 (($) NIL T CONST)) (-2938 (($ $) 69 (|has| |#2| (-317)))) (-2216 (((-245 |#1| |#2|) $ (-576)) 42)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) ((|#2| $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) 83)) (-4134 (((-783) $) 71 (|has| |#2| (-568)))) (-3719 ((|#2| $ (-576) (-576)) NIL)) (-3721 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2287 (((-112) $) NIL)) (-3519 (((-783) $) 73 (|has| |#2| (-568)))) (-2175 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-2758 (((-783) $) NIL)) (-1989 (($ |#2|) 25)) (-2772 (((-783) $) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-3996 ((|#2| $) 67 (|has| |#2| (-6 (-4465 "*"))))) (-3263 (((-576) $) NIL)) (-3455 (((-576) $) NIL)) (-3958 (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4285 (((-576) $) NIL)) (-2902 (((-576) $) NIL)) (-3409 (($ (-656 (-656 |#2|))) 37)) (-1896 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3065 (((-656 (-656 |#2|)) $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-2043 (((-1178) $) NIL)) (-2658 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-3115 (((-1140) $) NIL)) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3587 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-4106 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-2572 ((|#2| $) NIL)) (-2762 (($ (-656 |#2|)) 50)) (-2613 (((-112) $) NIL)) (-4015 (((-245 |#1| |#2|) $) NIL)) (-1679 ((|#2| $) 65 (|has| |#2| (-6 (-4465 "*"))))) (-3125 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-4286 (($ $) NIL)) (-1554 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-3992 (((-245 |#1| |#2|) $ (-576)) 44)) (-4112 (((-875) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1058 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-4115 (((-783)) 23 T CONST)) (-1994 (((-112) $ $) NIL)) (-1682 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-1780 (((-112) $) NIL)) (-4314 (($) 16 T CONST)) (-4320 (($) 21 T CONST)) (-3155 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1162 |#1| |#2|) (-13 (-1143 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -1989 ($ |#2|)) (-15 -1592 ($ $)) (-15 -3458 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4465 "*"))) (-6 -4452) |%noBranch|) (IF (|has| |#2| (-6 (-4465 "*"))) (IF (|has| |#2| (-6 -4460)) (-6 -4460) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1069)) (T -1162)) -((-1989 (*1 *1 *2) (-12 (-5 *1 (-1162 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1069)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1069)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1069)) (-5 *1 (-1162 *3 *4)) (-14 *3 (-783))))) -(-13 (-1143 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -1989 ($ |#2|)) (-15 -1592 ($ $)) (-15 -3458 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4465 "*"))) (-6 -4452) |%noBranch|) (IF (|has| |#2| (-6 (-4465 "*"))) (IF (|has| |#2| (-6 -4460)) (-6 -4460) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-1525 (($ $) 19)) (-3537 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2280 (((-112) $ $) 24)) (-1736 (($ $) 17)) (-4368 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (($ $ $) 31)) (-4112 (($ (-145)) 29) (((-875) $) NIL))) -(((-1163 |#1|) (-10 -8 (-15 -4112 ((-875) |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -3537 (|#1| |#1| (-142))) (-15 -3537 (|#1| |#1| (-145))) (-15 -4112 (|#1| (-145))) (-15 -2280 ((-112) |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -4368 ((-145) |#1| (-576))) (-15 -4368 ((-145) |#1| (-576) (-145)))) (-1164)) (T -1163)) -NIL -(-10 -8 (-15 -4112 ((-875) |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -3537 (|#1| |#1| (-142))) (-15 -3537 (|#1| |#1| (-145))) (-15 -4112 (|#1| (-145))) (-15 -2280 ((-112) |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -4368 ((-145) |#1| (-576))) (-15 -4368 ((-145) |#1| (-576) (-145)))) -((-1952 (((-112) $ $) 20 (|has| (-145) (-102)))) (-2132 (($ $) 123)) (-1525 (($ $) 124)) (-3537 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-2257 (((-112) $ $) 121)) (-2234 (((-112) $ $ (-576)) 120)) (-4149 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-3063 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-1715 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4464))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4464))))) (-2379 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-2337 (((-112) $ (-783)) 8)) (-4267 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4464))) (((-145) $ (-1254 (-576)) (-145)) 60 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-4434 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3432 (($ $) 93 (|has| $ (-6 -4464)))) (-4203 (($ $) 103)) (-3298 (($ $ (-1254 (-576)) $) 117)) (-3966 (($ $) 80 (-12 (|has| (-145) (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ (-145) $) 79 (-12 (|has| (-145) (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4463)))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1120)) (|has| $ (-6 -4463)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4463))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4463)))) (-1908 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4464)))) (-3719 (((-145) $ (-576)) 52)) (-2280 (((-112) $ $) 122)) (-3538 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1120))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1120))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3721 (((-656 (-145)) $) 31 (|has| $ (-6 -4463)))) (-1989 (($ (-783) (-145)) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-2905 (($ $ $) 85 (|has| (-145) (-861)))) (-2144 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-3958 (((-656 (-145)) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1654 (($ $ $) 86 (|has| (-145) (-861)))) (-4326 (((-112) $ $ (-145)) 118)) (-1464 (((-783) $ $ (-145)) 119)) (-1896 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3531 (($ $) 125)) (-1736 (($ $) 126)) (-1556 (((-112) $ (-783)) 10)) (-1324 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2043 (((-1178) $) 23 (|has| (-145) (-1120)))) (-3386 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| (-145) (-1120)))) (-1753 (((-145) $) 43 (|has| (-576) (-861)))) (-2022 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2556 (($ $ (-145)) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-2692 (((-656 (-145)) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1254 (-576))) 71) (($ $ $) 105)) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3125 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4463))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1120)) (|has| $ (-6 -4463))))) (-3757 (($ $ $ (-576)) 94 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-4124 (($ (-656 (-145))) 72)) (-2766 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (($ (-145)) 114) (((-875) $) 18 (|has| (-145) (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| (-145) (-102)))) (-1682 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 87 (|has| (-145) (-861)))) (-3974 (((-112) $ $) 89 (|has| (-145) (-861)))) (-3938 (((-112) $ $) 19 (|has| (-145) (-102)))) (-3983 (((-112) $ $) 88 (|has| (-145) (-861)))) (-3962 (((-112) $ $) 90 (|has| (-145) (-861)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1164) (-141)) (T -1164)) -((-1736 (*1 *1 *1) (-4 *1 (-1164))) (-3531 (*1 *1 *1) (-4 *1 (-1164))) (-1525 (*1 *1 *1) (-4 *1 (-1164))) (-2132 (*1 *1 *1) (-4 *1 (-1164))) (-2280 (*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-112)))) (-2257 (*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-112)))) (-2234 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1464 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-145)) (-5 *2 (-783)))) (-4326 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3298 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-1254 (-576))))) (-3538 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-576)))) (-3538 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-576)) (-5 *3 (-142)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1164)))) (-4149 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1164)))) (-4149 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1164)))) (-3537 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-145)))) (-3537 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-142)))) (-1324 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-145)))) (-1324 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-142)))) (-4434 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-145)))) (-4434 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-142)))) (-4368 (*1 *1 *1 *1) (-4 *1 (-1164)))) -(-13 (-19 (-145)) (-10 -8 (-15 -1736 ($ $)) (-15 -3531 ($ $)) (-15 -1525 ($ $)) (-15 -2132 ($ $)) (-15 -2280 ((-112) $ $)) (-15 -2257 ((-112) $ $)) (-15 -2234 ((-112) $ $ (-576))) (-15 -1464 ((-783) $ $ (-145))) (-15 -4326 ((-112) $ $ (-145))) (-15 -3298 ($ $ (-1254 (-576)) $)) (-15 -3538 ((-576) $ $ (-576))) (-15 -3538 ((-576) (-142) $ (-576))) (-15 -4112 ($ (-145))) (-15 -4149 ((-656 $) $ (-145))) (-15 -4149 ((-656 $) $ (-142))) (-15 -3537 ($ $ (-145))) (-15 -3537 ($ $ (-142))) (-15 -1324 ($ $ (-145))) (-15 -1324 ($ $ (-142))) (-15 -4434 ($ $ (-145))) (-15 -4434 ($ $ (-142))) (-15 -4368 ($ $ $)))) -(((-34) . T) ((-102) -3794 (|has| (-145) (-1120)) (|has| (-145) (-861)) (|has| (-145) (-102))) ((-625 (-875)) -3794 (|has| (-145) (-1120)) (|has| (-145) (-861)) (|has| (-145) (-625 (-875)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120))) ((-663 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-863) |has| (-145) (-861)) ((-1120) -3794 (|has| (-145) (-1120)) (|has| (-145) (-861))) ((-1237) . T)) -((-2088 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783)) 112)) (-3592 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 61)) (-3085 (((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)) 97)) (-2488 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-2134 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-2497 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-1554 (((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 90)) (-3284 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 60)) (-1399 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1165 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1399 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2488 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3284 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2088 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1554 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3085 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|) (-1129 |#1| |#2| |#3| |#4|)) (T -1165)) -((-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *4 (-783)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1292)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1129 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1178)) (-5 *1 (-1165 *4 *5 *6 *7 *8)))) (-2088 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1085 *7 *8 *9)) (-4 *11 (-1129 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1165 *7 *8 *9 *10 *11)))) (-2497 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-2497 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3)))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) (-2134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1085 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1165 *7 *8 *9 *3 *4)) (-4 *4 (-1129 *7 *8 *9 *3)))) (-3592 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3)))) (-3592 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) (-3284 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1399 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2488 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3284 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -2134 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2497 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2088 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1554 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3085 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) -((-1952 (((-112) $ $) NIL)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2822 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1582 (((-656 |#3|) $) NIL)) (-2397 (((-112) $) NIL)) (-2083 (((-112) $) NIL (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-3575 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 97)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 75)) (-4331 (($) NIL T CONST)) (-4013 (((-112) $) 29 (|has| |#1| (-568)))) (-1938 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3142 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2948 (((-112) $) NIL (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3223 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1762 (((-3 $ "failed") $) 45)) (-3182 ((|#4| |#4| $) 78)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-2824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3325 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) NIL)) (-3802 (((-112) |#4| $) NIL)) (-1338 (((-112) |#4| $) NIL)) (-2343 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3035 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3721 (((-656 |#4|) $) 18 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2232 ((|#3| $) 38)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#4|) $) 19 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-1896 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 23)) (-3055 (((-656 |#3|) $) NIL)) (-2421 (((-112) |#3| $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2727 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4109 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 117)) (-2849 (((-3 |#4| "failed") $) 42)) (-3060 (((-656 $) |#4| $) 102)) (-3990 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-2759 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2710 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-3718 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-1699 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2403 (((-656 |#4|) $) NIL)) (-2498 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1619 ((|#4| |#4| $) NIL)) (-1761 (((-112) $ $) NIL)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3609 ((|#4| |#4| $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-3 |#4| "failed") $) 40)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2917 (((-3 $ "failed") $ |#4|) 59)) (-3679 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-3587 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 17)) (-3935 (($) 14)) (-1877 (((-783) $) NIL)) (-3125 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) 13)) (-1554 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 22)) (-3655 (($ $ |#3|) 52)) (-3837 (($ $ |#3|) 54)) (-1864 (($ $) NIL)) (-1570 (($ $ |#3|) NIL)) (-4112 (((-875) $) 35) (((-656 |#4|) $) 46)) (-2576 (((-783) $) NIL (|has| |#3| (-379)))) (-1994 (((-112) $ $) NIL)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2057 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-1682 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) NIL)) (-1979 (((-112) |#4| $) NIL)) (-3331 (((-112) |#3| $) 74)) (-3938 (((-112) $ $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1166 |#1| |#2| |#3| |#4|) (-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1699 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3718 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3035 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1085 |#1| |#2| |#3|)) (T -1166)) -((-1699 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1166 *5 *6 *7 *3))) (-5 *1 (-1166 *5 *6 *7 *3)) (-4 *3 (-1085 *5 *6 *7)))) (-2822 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) (-2822 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) (-3718 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) (-3035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1166 *5 *6 *7 *8))))) (-5 *1 (-1166 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1699 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2822 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3718 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3035 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3015 ((|#1| $) 37)) (-4131 (($ (-656 |#1|)) 45)) (-2337 (((-112) $ (-783)) NIL)) (-4331 (($) NIL T CONST)) (-2133 ((|#1| |#1| $) 40)) (-2034 ((|#1| $) 35)) (-3721 (((-656 |#1|) $) 18 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 22)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2976 ((|#1| $) 38)) (-2782 (($ |#1| $) 41)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1526 ((|#1| $) 36)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 32)) (-3935 (($) 43)) (-4305 (((-783) $) 30)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 27)) (-4112 (((-875) $) 14 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2050 (($ (-656 |#1|)) NIL)) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 17 (|has| |#1| (-102)))) (-1968 (((-783) $) 31 (|has| $ (-6 -4463))))) -(((-1167 |#1|) (-13 (-1141 |#1|) (-10 -8 (-15 -4131 ($ (-656 |#1|))))) (-1237)) (T -1167)) -((-4131 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1167 *3))))) -(-13 (-1141 |#1|) (-10 -8 (-15 -4131 ($ (-656 |#1|))))) -((-4267 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1254 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-3588 (((-112) $) 12)) (-1896 (($ (-1 |#2| |#2|) $) 48)) (-1753 ((|#2| $) NIL) (($ $ (-783)) 17)) (-2556 (($ $ |#2|) 49)) (-3498 (((-112) $) 11)) (-4368 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1254 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-3424 (($ $ $) 56) (($ $ |#2|) NIL)) (-2766 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) -(((-1168 |#1| |#2|) (-10 -8 (-15 -3588 ((-112) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -4267 (|#2| |#1| (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576))) (-15 -2556 (|#1| |#1| |#2|)) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -2766 (|#1| |#1| |#2|)) (-15 -2766 (|#1| (-656 |#1|))) (-15 -4267 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -4267 (|#2| |#1| "last" |#2|)) (-15 -4267 (|#1| |#1| "rest" |#1|)) (-15 -4267 (|#2| |#1| "first" |#2|)) (-15 -3424 (|#1| |#1| |#2|)) (-15 -3424 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| "last")) (-15 -4368 (|#1| |#1| "rest")) (-15 -1753 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "first")) (-15 -1753 (|#2| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -4368 (|#2| |#1| "value")) (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|))) (-1169 |#2|) (-1237)) (T -1168)) -NIL -(-10 -8 (-15 -3588 ((-112) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -4267 (|#2| |#1| (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576) |#2|)) (-15 -4368 (|#2| |#1| (-576))) (-15 -2556 (|#1| |#1| |#2|)) (-15 -4368 (|#1| |#1| (-1254 (-576)))) (-15 -2766 (|#1| |#1| |#2|)) (-15 -2766 (|#1| (-656 |#1|))) (-15 -4267 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -4267 (|#2| |#1| "last" |#2|)) (-15 -4267 (|#1| |#1| "rest" |#1|)) (-15 -4267 (|#2| |#1| "first" |#2|)) (-15 -3424 (|#1| |#1| |#2|)) (-15 -3424 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| "last")) (-15 -4368 (|#1| |#1| "rest")) (-15 -1753 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "first")) (-15 -1753 (|#2| |#1|)) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -4368 (|#2| |#1| "value")) (-15 -1896 (|#1| (-1 |#2| |#2|) |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-3456 ((|#1| $) 66)) (-3094 (($ $) 68)) (-4100 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) 53 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-3134 (($ $ $) 57 (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) 55 (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4464))) (($ $ "rest" $) 56 (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4463)))) (-3442 ((|#1| $) 67)) (-4331 (($) 7 T CONST)) (-1762 (($ $) 74) (($ $ (-783)) 72)) (-3966 (($ $) 101 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4463))) (($ |#1| $) 102 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1908 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 89)) (-3588 (((-112) $) 85)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-1989 (($ (-783) |#1|) 111)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 97 (|has| (-576) (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 96 (|has| (-576) (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2849 ((|#1| $) 71) (($ $ (-783)) 69)) (-3386 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3963 (((-656 (-576)) $) 94)) (-1474 (((-112) (-576) $) 93)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 77) (($ $ (-783)) 75)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2556 (($ $ |#1|) 98 (|has| $ (-6 -4464)))) (-3498 (((-112) $) 86)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 92)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3183 (((-576) $ $) 45)) (-2334 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2003 (((-112) $) 47)) (-4385 (($ $) 63)) (-1788 (($ $) 60 (|has| $ (-6 -4464)))) (-4093 (((-783) $) 64)) (-2820 (($ $) 65)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-1554 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 109)) (-3424 (($ $ $) 62 (|has| $ (-6 -4464))) (($ $ |#1|) 61 (|has| $ (-6 -4464)))) (-2766 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1169 |#1|) (-141) (-1237)) (T -1169)) -((-3498 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(-13 (-1275 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3498 ((-112) $)) (-15 -3588 ((-112) $)))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-1030 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1237) . T) ((-1275 |#1|) . T)) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#2| $ |#1| |#2|) NIL)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) NIL)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2351 (((-656 |#1|) $) NIL)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3963 (((-656 |#1|) $) NIL)) (-1474 (((-112) |#1| $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1170 |#1| |#2| |#3|) (-1213 |#1| |#2|) (-1120) (-1120) |#2|) (T -1170)) -NIL -(-1213 |#1| |#2|) -((-1952 (((-112) $ $) NIL)) (-2261 (((-703 (-1155)) $) 27)) (-3324 (((-1155) $) 15)) (-2965 (((-1155) $) 17)) (-2043 (((-1178) $) NIL)) (-3693 (((-518) $) 13)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 37) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1171) (-13 (-1103) (-10 -8 (-15 -3693 ((-518) $)) (-15 -2965 ((-1155) $)) (-15 -2261 ((-703 (-1155)) $)) (-15 -3324 ((-1155) $))))) (T -1171)) -((-3693 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1171)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1171)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-703 (-1155))) (-5 *1 (-1171)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1171))))) -(-13 (-1103) (-10 -8 (-15 -3693 ((-518) $)) (-15 -2965 ((-1155) $)) (-15 -2261 ((-703 (-1155)) $)) (-15 -3324 ((-1155) $)))) -((-1952 (((-112) $ $) 7)) (-1859 (((-3 $ "failed") $) 14)) (-2043 (((-1178) $) 10)) (-3650 (($) 15 T CONST)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-3938 (((-112) $ $) 8))) -(((-1172) (-141)) (T -1172)) -((-3650 (*1 *1) (-4 *1 (-1172))) (-1859 (*1 *1 *1) (|partial| -4 *1 (-1172)))) -(-13 (-1120) (-10 -8 (-15 -3650 ($) -2665) (-15 -1859 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-875)) . T) ((-1120) . T) ((-1237) . T)) -((-3643 (((-1177 |#1|) (-1177 |#1|)) 17)) (-1330 (((-1177 |#1|) (-1177 |#1|)) 13)) (-2323 (((-1177 |#1|) (-1177 |#1|) (-576) (-576)) 20)) (-1856 (((-1177 |#1|) (-1177 |#1|)) 15))) -(((-1173 |#1|) (-10 -7 (-15 -1330 ((-1177 |#1|) (-1177 |#1|))) (-15 -1856 ((-1177 |#1|) (-1177 |#1|))) (-15 -3643 ((-1177 |#1|) (-1177 |#1|))) (-15 -2323 ((-1177 |#1|) (-1177 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1173)) -((-2323 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1173 *4)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1173 *3)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1173 *3)))) (-1330 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1173 *3))))) -(-10 -7 (-15 -1330 ((-1177 |#1|) (-1177 |#1|))) (-15 -1856 ((-1177 |#1|) (-1177 |#1|))) (-15 -3643 ((-1177 |#1|) (-1177 |#1|))) (-15 -2323 ((-1177 |#1|) (-1177 |#1|) (-576) (-576)))) -((-2766 (((-1177 |#1|) (-1177 (-1177 |#1|))) 15))) -(((-1174 |#1|) (-10 -7 (-15 -2766 ((-1177 |#1|) (-1177 (-1177 |#1|))))) (-1237)) (T -1174)) -((-2766 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1174 *4)) (-4 *4 (-1237))))) -(-10 -7 (-15 -2766 ((-1177 |#1|) (-1177 (-1177 |#1|))))) -((-1925 (((-1177 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1177 |#1|)) 25)) (-2721 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1177 |#1|)) 26)) (-2422 (((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)) 16))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -2422 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -1925 ((-1177 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1177 |#1|))) (-15 -2721 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1177 |#1|)))) (-1237) (-1237)) (T -1175)) -((-2721 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1175 *5 *2)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1177 *6)) (-4 *6 (-1237)) (-4 *3 (-1237)) (-5 *2 (-1177 *3)) (-5 *1 (-1175 *6 *3)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1177 *6)) (-5 *1 (-1175 *5 *6))))) -(-10 -7 (-15 -2422 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -1925 ((-1177 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1177 |#1|))) (-15 -2721 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1177 |#1|)))) -((-2422 (((-1177 |#3|) (-1 |#3| |#1| |#2|) (-1177 |#1|) (-1177 |#2|)) 21))) -(((-1176 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-1177 |#3|) (-1 |#3| |#1| |#2|) (-1177 |#1|) (-1177 |#2|)))) (-1237) (-1237) (-1237)) (T -1176)) -((-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1177 *6)) (-5 *5 (-1177 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1177 *8)) (-5 *1 (-1176 *6 *7 *8))))) -(-10 -7 (-15 -2422 ((-1177 |#3|) (-1 |#3| |#1| |#2|) (-1177 |#1|) (-1177 |#2|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) NIL)) (-3456 ((|#1| $) NIL)) (-3094 (($ $) 67)) (-4100 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4464)))) (-1396 (($ $ (-576)) 128 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-2627 (((-875) $) 56 (|has| |#1| (-1120)))) (-2926 (((-112)) 55 (|has| |#1| (-1120)))) (-3078 ((|#1| $ |#1|) NIL (|has| $ (-6 -4464)))) (-3134 (($ $ $) 115 (|has| $ (-6 -4464))) (($ $ (-576) $) 141)) (-4308 ((|#1| $ |#1|) 125 (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) 120 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4464))) (($ $ "rest" $) 124 (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 112 (|has| $ (-6 -4464))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 80)) (-3442 ((|#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3824 (($ $) 14)) (-1762 (($ $) 40) (($ $ (-783)) 111)) (-4022 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1120)))) (-1537 (($ (-656 |#1|)) 130)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) 79)) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3588 (((-112) $) NIL)) (-3721 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-3401 (((-1292) (-576) $) 140 (|has| |#1| (-1120)))) (-3505 (((-783) $) 137)) (-3395 (((-656 $) $) NIL)) (-2520 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1556 (((-112) $ (-783)) NIL)) (-4185 (((-656 |#1|) $) NIL)) (-2887 (((-112) $) NIL)) (-3073 (($ $) 113)) (-4027 (((-112) $) 13)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2849 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) 96)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3528 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-4034 ((|#1| $) 10)) (-1753 ((|#1| $) 39) (($ $ (-783)) 65)) (-2969 (((-2 (|:| |cycle?| (-112)) (|:| -1992 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3579 (($ (-1 (-112) |#1|) $) 145)) (-3590 (($ (-1 (-112) |#1|) $) 146)) (-2556 (($ $ |#1|) 90 (|has| $ (-6 -4464)))) (-3679 (($ $ (-576)) 45)) (-3498 (((-112) $) 94)) (-4351 (((-112) $) 12)) (-1543 (((-112) $) 136)) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 30)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) 20)) (-3935 (($) 60)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3183 (((-576) $ $) 64)) (-2334 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3118 (($ (-1 $)) 63)) (-2003 (((-112) $) 91)) (-4385 (($ $) 92)) (-1788 (($ $) 116 (|has| $ (-6 -4464)))) (-4093 (((-783) $) NIL)) (-2820 (($ $) NIL)) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 59)) (-1554 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 73)) (-4058 (($ |#1| $) 114)) (-3424 (($ $ $) 118 (|has| $ (-6 -4464))) (($ $ |#1|) 119 (|has| $ (-6 -4464)))) (-2766 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-3454 (($ $) 66)) (-4112 (($ (-656 |#1|)) 129) (((-875) $) 57 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) NIL)) (-2777 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 132 (|has| |#1| (-102)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1177 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4464) (-15 -1537 ($ (-656 |#1|))) (IF (|has| |#1| (-1120)) (-15 -4022 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -2969 ((-2 (|:| |cycle?| (-112)) (|:| -1992 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -3118 ($ (-1 $))) (-15 -4058 ($ |#1| $)) (IF (|has| |#1| (-1120)) (PROGN (-15 -3401 ((-1292) (-576) $)) (-15 -2627 ((-875) $)) (-15 -2926 ((-112)))) |%noBranch|) (-15 -3134 ($ $ (-576) $)) (-15 -3528 ($ (-1 |#1|))) (-15 -3528 ($ (-1 |#1| |#1|) |#1|)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)))) (-1237)) (T -1177)) -((-1537 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3)))) (-4022 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1120)) (-4 *4 (-1237)) (-5 *2 (-112)) (-5 *1 (-1177 *4)))) (-2969 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1992 (-783)) (|:| |period| (-783)))) (-5 *1 (-1177 *4)) (-4 *4 (-1237)) (-5 *3 (-783)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-1 (-1177 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1237)))) (-4058 (*1 *1 *2 *1) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-1237)))) (-3401 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1177 *4)) (-4 *4 (-1120)) (-4 *4 (-1237)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1177 *3)) (-4 *3 (-1120)) (-4 *3 (-1237)))) (-2926 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-1120)) (-4 *3 (-1237)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1177 *3)) (-4 *3 (-1237)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3)))) (-3528 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3)))) (-3579 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3)))) (-3590 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3))))) -(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4464) (-15 -1537 ($ (-656 |#1|))) (IF (|has| |#1| (-1120)) (-15 -4022 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -2969 ((-2 (|:| |cycle?| (-112)) (|:| -1992 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -3118 ($ (-1 $))) (-15 -4058 ($ |#1| $)) (IF (|has| |#1| (-1120)) (PROGN (-15 -3401 ((-1292) (-576) $)) (-15 -2627 ((-875) $)) (-15 -2926 ((-112)))) |%noBranch|) (-15 -3134 ($ $ (-576) $)) (-15 -3528 ($ (-1 |#1|))) (-15 -3528 ($ (-1 |#1| |#1|) |#1|)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)))) -((-1952 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2132 (($ $) NIL)) (-1525 (($ $) NIL)) (-3537 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-2257 (((-112) $ $) NIL)) (-2234 (((-112) $ $ (-576)) NIL)) (-1532 (($ (-576)) 8) (($ (-227)) 10)) (-4149 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-3063 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-1715 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-861))))) (-2379 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4464))) (((-145) $ (-1254 (-576)) (-145)) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-4434 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3298 (($ $ (-1254 (-576)) $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-2824 (($ (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4463))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4463)))) (-1908 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4464)))) (-3719 (((-145) $ (-576)) NIL)) (-2280 (((-112) $ $) NIL)) (-3538 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1120))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1120))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3721 (((-656 (-145)) $) NIL (|has| $ (-6 -4463)))) (-1989 (($ (-783) (-145)) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| (-145) (-861)))) (-2144 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-3958 (((-656 (-145)) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-3501 (((-576) $) NIL (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| (-145) (-861)))) (-4326 (((-112) $ $ (-145)) NIL)) (-1464 (((-783) $ $ (-145)) NIL)) (-1896 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3531 (($ $) NIL)) (-1736 (($ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-1324 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2043 (((-1178) $) NIL (|has| (-145) (-1120)))) (-3386 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| (-145) (-1120)))) (-1753 (((-145) $) NIL (|has| (-576) (-861)))) (-2022 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2556 (($ $ (-145)) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-2692 (((-656 (-145)) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (($ $ $) NIL)) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3125 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-4124 (($ (-656 (-145))) NIL)) (-2766 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (($ (-145)) NIL) (((-875) $) NIL (|has| (-145) (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1682 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4463)))) (-3678 (((-1178) $) 21) (((-1178) $ (-112)) 23) (((-1292) (-834) $) 24) (((-1292) (-834) $ (-112)) 25)) (-3993 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3974 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3938 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3983 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3962 (((-112) $ $) NIL (|has| (-145) (-861)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1178) (-13 (-1164) (-840) (-10 -8 (-15 -1532 ($ (-576))) (-15 -1532 ($ (-227)))))) (T -1178)) -((-1532 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1178)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1178))))) -(-13 (-1164) (-840) (-10 -8 (-15 -1532 ($ (-576))) (-15 -1532 ($ (-227))))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-102)) (|has| |#1| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL)) (-4100 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-1178) |#1|) NIL)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#1| "failed") (-1178) $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#1| "failed") (-1178) $) NIL)) (-2824 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-1178)) NIL)) (-3721 (((-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-1178) $) NIL (|has| (-1178) (-861)))) (-3958 (((-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-1178) $) NIL (|has| (-1178) (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)) (|has| |#1| (-1120))))) (-2351 (((-656 (-1178)) $) NIL)) (-3406 (((-112) (-1178) $) NIL)) (-2976 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL)) (-3963 (((-656 (-1178)) $) NIL)) (-1474 (((-112) (-1178) $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)) (|has| |#1| (-1120))))) (-1753 ((|#1| $) NIL (|has| (-1178) (-861)))) (-2022 (((-3 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) "failed") (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL (-12 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-319 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-1178)) NIL) ((|#1| $ (-1178) |#1|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-1120)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-625 (-875))) (|has| |#1| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-102)) (|has| |#1| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 (-1178)) (|:| -2904 |#1|)) (-102)) (|has| |#1| (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1179 |#1|) (-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4463))) (-1120)) (T -1179)) -NIL -(-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4463))) -((-3354 (((-1177 |#1|) (-1177 |#1|)) 83)) (-3900 (((-3 (-1177 |#1|) "failed") (-1177 |#1|)) 39)) (-2274 (((-1177 |#1|) (-419 (-576)) (-1177 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3278 (((-1177 |#1|) |#1| (-1177 |#1|)) 139 (|has| |#1| (-374)))) (-2739 (((-1177 |#1|) (-1177 |#1|)) 97)) (-2428 (((-1177 (-576)) (-576)) 63)) (-2264 (((-1177 |#1|) (-1177 (-1177 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2881 (((-1177 |#1|) (-576) (-576) (-1177 |#1|)) 102)) (-1617 (((-1177 |#1|) |#1| (-576)) 51)) (-4317 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 66)) (-2751 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 136 (|has| |#1| (-374)))) (-3102 (((-1177 |#1|) |#1| (-1 (-1177 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2073 (((-1177 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1177 |#1|))) 137 (|has| |#1| (-374)))) (-3037 (((-1177 |#1|) (-1177 |#1|)) 96)) (-4419 (((-1177 |#1|) (-1177 |#1|)) 82)) (-2079 (((-1177 |#1|) (-576) (-576) (-1177 |#1|)) 103)) (-2944 (((-1177 |#1|) |#1| (-1177 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2356 (((-1177 (-576)) (-576)) 62)) (-4405 (((-1177 |#1|) |#1|) 65)) (-3254 (((-1177 |#1|) (-1177 |#1|) (-576) (-576)) 99)) (-2999 (((-1177 |#1|) (-1 |#1| (-576)) (-1177 |#1|)) 72)) (-1943 (((-3 (-1177 |#1|) "failed") (-1177 |#1|) (-1177 |#1|)) 37)) (-2109 (((-1177 |#1|) (-1177 |#1|)) 98)) (-2143 (((-1177 |#1|) (-1177 |#1|) |#1|) 77)) (-3087 (((-1177 |#1|) (-1177 |#1|)) 68)) (-1661 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 78)) (-4112 (((-1177 |#1|) |#1|) 73)) (-1912 (((-1177 |#1|) (-1177 (-1177 |#1|))) 88)) (-4046 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 38)) (-4036 (((-1177 |#1|) (-1177 |#1|)) 21) (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 23)) (-4026 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 17)) (* (((-1177 |#1|) (-1177 |#1|) |#1|) 29) (((-1177 |#1|) |#1| (-1177 |#1|)) 26) (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 27))) -(((-1180 |#1|) (-10 -7 (-15 -4026 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4036 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4036 ((-1177 |#1|) (-1177 |#1|))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 * ((-1177 |#1|) |#1| (-1177 |#1|))) (-15 * ((-1177 |#1|) (-1177 |#1|) |#1|)) (-15 -1943 ((-3 (-1177 |#1|) "failed") (-1177 |#1|) (-1177 |#1|))) (-15 -4046 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3900 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1617 ((-1177 |#1|) |#1| (-576))) (-15 -2356 ((-1177 (-576)) (-576))) (-15 -2428 ((-1177 (-576)) (-576))) (-15 -4405 ((-1177 |#1|) |#1|)) (-15 -4317 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3087 ((-1177 |#1|) (-1177 |#1|))) (-15 -2999 ((-1177 |#1|) (-1 |#1| (-576)) (-1177 |#1|))) (-15 -4112 ((-1177 |#1|) |#1|)) (-15 -2143 ((-1177 |#1|) (-1177 |#1|) |#1|)) (-15 -1661 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4419 ((-1177 |#1|) (-1177 |#1|))) (-15 -3354 ((-1177 |#1|) (-1177 |#1|))) (-15 -1912 ((-1177 |#1|) (-1177 (-1177 |#1|)))) (-15 -3037 ((-1177 |#1|) (-1177 |#1|))) (-15 -2739 ((-1177 |#1|) (-1177 |#1|))) (-15 -2109 ((-1177 |#1|) (-1177 |#1|))) (-15 -3254 ((-1177 |#1|) (-1177 |#1|) (-576) (-576))) (-15 -2881 ((-1177 |#1|) (-576) (-576) (-1177 |#1|))) (-15 -2079 ((-1177 |#1|) (-576) (-576) (-1177 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ((-1177 |#1|) |#1| (-1177 |#1|))) (-15 -3102 ((-1177 |#1|) |#1| (-1 (-1177 |#1|)))) (-15 -2264 ((-1177 |#1|) (-1177 (-1177 |#1|)))) (-15 -2274 ((-1177 |#1|) (-419 (-576)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2751 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -2073 ((-1177 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1177 |#1|)))) (-15 -3278 ((-1177 |#1|) |#1| (-1177 |#1|)))) |%noBranch|)) (-1069)) (T -1180)) -((-3278 (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-374)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1177 *4))) (-4 *4 (-374)) (-4 *4 (-1069)) (-5 *2 (-1177 *4)) (-5 *1 (-1180 *4)))) (-2751 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-374)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-2274 (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1069)) (-5 *3 (-419 (-576))) (-5 *1 (-1180 *4)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1069)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1177 *3))) (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)))) (-2944 (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-2079 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-1069)) (-5 *1 (-1180 *4)))) (-2881 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-1069)) (-5 *1 (-1180 *4)))) (-3254 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-1069)) (-5 *1 (-1180 *4)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-3037 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1069)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4419 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1069)))) (-2999 (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1069)) (-5 *1 (-1180 *4)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4317 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4405 (*1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1069)))) (-2428 (*1 *2 *3) (-12 (-5 *2 (-1177 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1069)) (-5 *3 (-576)))) (-2356 (*1 *2 *3) (-12 (-5 *2 (-1177 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1069)) (-5 *3 (-576)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1069)))) (-3900 (*1 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4046 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-1943 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) (-4026 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3))))) -(-10 -7 (-15 -4026 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4036 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4036 ((-1177 |#1|) (-1177 |#1|))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 * ((-1177 |#1|) |#1| (-1177 |#1|))) (-15 * ((-1177 |#1|) (-1177 |#1|) |#1|)) (-15 -1943 ((-3 (-1177 |#1|) "failed") (-1177 |#1|) (-1177 |#1|))) (-15 -4046 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3900 ((-3 (-1177 |#1|) "failed") (-1177 |#1|))) (-15 -1617 ((-1177 |#1|) |#1| (-576))) (-15 -2356 ((-1177 (-576)) (-576))) (-15 -2428 ((-1177 (-576)) (-576))) (-15 -4405 ((-1177 |#1|) |#1|)) (-15 -4317 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3087 ((-1177 |#1|) (-1177 |#1|))) (-15 -2999 ((-1177 |#1|) (-1 |#1| (-576)) (-1177 |#1|))) (-15 -4112 ((-1177 |#1|) |#1|)) (-15 -2143 ((-1177 |#1|) (-1177 |#1|) |#1|)) (-15 -1661 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -4419 ((-1177 |#1|) (-1177 |#1|))) (-15 -3354 ((-1177 |#1|) (-1177 |#1|))) (-15 -1912 ((-1177 |#1|) (-1177 (-1177 |#1|)))) (-15 -3037 ((-1177 |#1|) (-1177 |#1|))) (-15 -2739 ((-1177 |#1|) (-1177 |#1|))) (-15 -2109 ((-1177 |#1|) (-1177 |#1|))) (-15 -3254 ((-1177 |#1|) (-1177 |#1|) (-576) (-576))) (-15 -2881 ((-1177 |#1|) (-576) (-576) (-1177 |#1|))) (-15 -2079 ((-1177 |#1|) (-576) (-576) (-1177 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ((-1177 |#1|) |#1| (-1177 |#1|))) (-15 -3102 ((-1177 |#1|) |#1| (-1 (-1177 |#1|)))) (-15 -2264 ((-1177 |#1|) (-1177 (-1177 |#1|)))) (-15 -2274 ((-1177 |#1|) (-419 (-576)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2751 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -2073 ((-1177 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1177 |#1|)))) (-15 -3278 ((-1177 |#1|) |#1| (-1177 |#1|)))) |%noBranch|)) -((-3585 (((-1177 |#1|) (-1177 |#1|)) 60)) (-3434 (((-1177 |#1|) (-1177 |#1|)) 42)) (-3561 (((-1177 |#1|) (-1177 |#1|)) 56)) (-3411 (((-1177 |#1|) (-1177 |#1|)) 38)) (-3611 (((-1177 |#1|) (-1177 |#1|)) 63)) (-3460 (((-1177 |#1|) (-1177 |#1|)) 45)) (-2607 (((-1177 |#1|) (-1177 |#1|)) 34)) (-2155 (((-1177 |#1|) (-1177 |#1|)) 29)) (-3622 (((-1177 |#1|) (-1177 |#1|)) 64)) (-3473 (((-1177 |#1|) (-1177 |#1|)) 46)) (-3598 (((-1177 |#1|) (-1177 |#1|)) 61)) (-3447 (((-1177 |#1|) (-1177 |#1|)) 43)) (-3573 (((-1177 |#1|) (-1177 |#1|)) 58)) (-3423 (((-1177 |#1|) (-1177 |#1|)) 40)) (-3652 (((-1177 |#1|) (-1177 |#1|)) 68)) (-3509 (((-1177 |#1|) (-1177 |#1|)) 50)) (-3631 (((-1177 |#1|) (-1177 |#1|)) 66)) (-3486 (((-1177 |#1|) (-1177 |#1|)) 48)) (-3672 (((-1177 |#1|) (-1177 |#1|)) 71)) (-3536 (((-1177 |#1|) (-1177 |#1|)) 53)) (-1970 (((-1177 |#1|) (-1177 |#1|)) 72)) (-3549 (((-1177 |#1|) (-1177 |#1|)) 54)) (-3663 (((-1177 |#1|) (-1177 |#1|)) 70)) (-3522 (((-1177 |#1|) (-1177 |#1|)) 52)) (-3641 (((-1177 |#1|) (-1177 |#1|)) 69)) (-3497 (((-1177 |#1|) (-1177 |#1|)) 51)) (** (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 36))) -(((-1181 |#1|) (-10 -7 (-15 -2155 ((-1177 |#1|) (-1177 |#1|))) (-15 -2607 ((-1177 |#1|) (-1177 |#1|))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3411 ((-1177 |#1|) (-1177 |#1|))) (-15 -3423 ((-1177 |#1|) (-1177 |#1|))) (-15 -3434 ((-1177 |#1|) (-1177 |#1|))) (-15 -3447 ((-1177 |#1|) (-1177 |#1|))) (-15 -3460 ((-1177 |#1|) (-1177 |#1|))) (-15 -3473 ((-1177 |#1|) (-1177 |#1|))) (-15 -3486 ((-1177 |#1|) (-1177 |#1|))) (-15 -3497 ((-1177 |#1|) (-1177 |#1|))) (-15 -3509 ((-1177 |#1|) (-1177 |#1|))) (-15 -3522 ((-1177 |#1|) (-1177 |#1|))) (-15 -3536 ((-1177 |#1|) (-1177 |#1|))) (-15 -3549 ((-1177 |#1|) (-1177 |#1|))) (-15 -3561 ((-1177 |#1|) (-1177 |#1|))) (-15 -3573 ((-1177 |#1|) (-1177 |#1|))) (-15 -3585 ((-1177 |#1|) (-1177 |#1|))) (-15 -3598 ((-1177 |#1|) (-1177 |#1|))) (-15 -3611 ((-1177 |#1|) (-1177 |#1|))) (-15 -3622 ((-1177 |#1|) (-1177 |#1|))) (-15 -3631 ((-1177 |#1|) (-1177 |#1|))) (-15 -3641 ((-1177 |#1|) (-1177 |#1|))) (-15 -3652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3663 ((-1177 |#1|) (-1177 |#1|))) (-15 -3672 ((-1177 |#1|) (-1177 |#1|))) (-15 -1970 ((-1177 |#1|) (-1177 |#1|)))) (-38 (-419 (-576)))) (T -1181)) -((-1970 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3663 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3522 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3460 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3423 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3))))) -(-10 -7 (-15 -2155 ((-1177 |#1|) (-1177 |#1|))) (-15 -2607 ((-1177 |#1|) (-1177 |#1|))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3411 ((-1177 |#1|) (-1177 |#1|))) (-15 -3423 ((-1177 |#1|) (-1177 |#1|))) (-15 -3434 ((-1177 |#1|) (-1177 |#1|))) (-15 -3447 ((-1177 |#1|) (-1177 |#1|))) (-15 -3460 ((-1177 |#1|) (-1177 |#1|))) (-15 -3473 ((-1177 |#1|) (-1177 |#1|))) (-15 -3486 ((-1177 |#1|) (-1177 |#1|))) (-15 -3497 ((-1177 |#1|) (-1177 |#1|))) (-15 -3509 ((-1177 |#1|) (-1177 |#1|))) (-15 -3522 ((-1177 |#1|) (-1177 |#1|))) (-15 -3536 ((-1177 |#1|) (-1177 |#1|))) (-15 -3549 ((-1177 |#1|) (-1177 |#1|))) (-15 -3561 ((-1177 |#1|) (-1177 |#1|))) (-15 -3573 ((-1177 |#1|) (-1177 |#1|))) (-15 -3585 ((-1177 |#1|) (-1177 |#1|))) (-15 -3598 ((-1177 |#1|) (-1177 |#1|))) (-15 -3611 ((-1177 |#1|) (-1177 |#1|))) (-15 -3622 ((-1177 |#1|) (-1177 |#1|))) (-15 -3631 ((-1177 |#1|) (-1177 |#1|))) (-15 -3641 ((-1177 |#1|) (-1177 |#1|))) (-15 -3652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3663 ((-1177 |#1|) (-1177 |#1|))) (-15 -3672 ((-1177 |#1|) (-1177 |#1|))) (-15 -1970 ((-1177 |#1|) (-1177 |#1|)))) -((-3585 (((-1177 |#1|) (-1177 |#1|)) 102)) (-3434 (((-1177 |#1|) (-1177 |#1|)) 61)) (-3770 (((-2 (|:| -3561 (-1177 |#1|)) (|:| -3573 (-1177 |#1|))) (-1177 |#1|)) 98)) (-3561 (((-1177 |#1|) (-1177 |#1|)) 99)) (-1336 (((-2 (|:| -3411 (-1177 |#1|)) (|:| -3423 (-1177 |#1|))) (-1177 |#1|)) 54)) (-3411 (((-1177 |#1|) (-1177 |#1|)) 55)) (-3611 (((-1177 |#1|) (-1177 |#1|)) 104)) (-3460 (((-1177 |#1|) (-1177 |#1|)) 68)) (-2607 (((-1177 |#1|) (-1177 |#1|)) 40)) (-2155 (((-1177 |#1|) (-1177 |#1|)) 37)) (-3622 (((-1177 |#1|) (-1177 |#1|)) 105)) (-3473 (((-1177 |#1|) (-1177 |#1|)) 69)) (-3598 (((-1177 |#1|) (-1177 |#1|)) 103)) (-3447 (((-1177 |#1|) (-1177 |#1|)) 64)) (-3573 (((-1177 |#1|) (-1177 |#1|)) 100)) (-3423 (((-1177 |#1|) (-1177 |#1|)) 56)) (-3652 (((-1177 |#1|) (-1177 |#1|)) 113)) (-3509 (((-1177 |#1|) (-1177 |#1|)) 88)) (-3631 (((-1177 |#1|) (-1177 |#1|)) 107)) (-3486 (((-1177 |#1|) (-1177 |#1|)) 84)) (-3672 (((-1177 |#1|) (-1177 |#1|)) 117)) (-3536 (((-1177 |#1|) (-1177 |#1|)) 92)) (-1970 (((-1177 |#1|) (-1177 |#1|)) 119)) (-3549 (((-1177 |#1|) (-1177 |#1|)) 94)) (-3663 (((-1177 |#1|) (-1177 |#1|)) 115)) (-3522 (((-1177 |#1|) (-1177 |#1|)) 90)) (-3641 (((-1177 |#1|) (-1177 |#1|)) 109)) (-3497 (((-1177 |#1|) (-1177 |#1|)) 86)) (** (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 41))) -(((-1182 |#1|) (-10 -7 (-15 -2155 ((-1177 |#1|) (-1177 |#1|))) (-15 -2607 ((-1177 |#1|) (-1177 |#1|))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -1336 ((-2 (|:| -3411 (-1177 |#1|)) (|:| -3423 (-1177 |#1|))) (-1177 |#1|))) (-15 -3411 ((-1177 |#1|) (-1177 |#1|))) (-15 -3423 ((-1177 |#1|) (-1177 |#1|))) (-15 -3434 ((-1177 |#1|) (-1177 |#1|))) (-15 -3447 ((-1177 |#1|) (-1177 |#1|))) (-15 -3460 ((-1177 |#1|) (-1177 |#1|))) (-15 -3473 ((-1177 |#1|) (-1177 |#1|))) (-15 -3486 ((-1177 |#1|) (-1177 |#1|))) (-15 -3497 ((-1177 |#1|) (-1177 |#1|))) (-15 -3509 ((-1177 |#1|) (-1177 |#1|))) (-15 -3522 ((-1177 |#1|) (-1177 |#1|))) (-15 -3536 ((-1177 |#1|) (-1177 |#1|))) (-15 -3549 ((-1177 |#1|) (-1177 |#1|))) (-15 -3770 ((-2 (|:| -3561 (-1177 |#1|)) (|:| -3573 (-1177 |#1|))) (-1177 |#1|))) (-15 -3561 ((-1177 |#1|) (-1177 |#1|))) (-15 -3573 ((-1177 |#1|) (-1177 |#1|))) (-15 -3585 ((-1177 |#1|) (-1177 |#1|))) (-15 -3598 ((-1177 |#1|) (-1177 |#1|))) (-15 -3611 ((-1177 |#1|) (-1177 |#1|))) (-15 -3622 ((-1177 |#1|) (-1177 |#1|))) (-15 -3631 ((-1177 |#1|) (-1177 |#1|))) (-15 -3641 ((-1177 |#1|) (-1177 |#1|))) (-15 -3652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3663 ((-1177 |#1|) (-1177 |#1|))) (-15 -3672 ((-1177 |#1|) (-1177 |#1|))) (-15 -1970 ((-1177 |#1|) (-1177 |#1|)))) (-38 (-419 (-576)))) (T -1182)) -((-1970 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3663 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3561 (-1177 *4)) (|:| -3573 (-1177 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1177 *4)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3522 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3460 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3423 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1336 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3411 (-1177 *4)) (|:| -3423 (-1177 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1177 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3))))) -(-10 -7 (-15 -2155 ((-1177 |#1|) (-1177 |#1|))) (-15 -2607 ((-1177 |#1|) (-1177 |#1|))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -1336 ((-2 (|:| -3411 (-1177 |#1|)) (|:| -3423 (-1177 |#1|))) (-1177 |#1|))) (-15 -3411 ((-1177 |#1|) (-1177 |#1|))) (-15 -3423 ((-1177 |#1|) (-1177 |#1|))) (-15 -3434 ((-1177 |#1|) (-1177 |#1|))) (-15 -3447 ((-1177 |#1|) (-1177 |#1|))) (-15 -3460 ((-1177 |#1|) (-1177 |#1|))) (-15 -3473 ((-1177 |#1|) (-1177 |#1|))) (-15 -3486 ((-1177 |#1|) (-1177 |#1|))) (-15 -3497 ((-1177 |#1|) (-1177 |#1|))) (-15 -3509 ((-1177 |#1|) (-1177 |#1|))) (-15 -3522 ((-1177 |#1|) (-1177 |#1|))) (-15 -3536 ((-1177 |#1|) (-1177 |#1|))) (-15 -3549 ((-1177 |#1|) (-1177 |#1|))) (-15 -3770 ((-2 (|:| -3561 (-1177 |#1|)) (|:| -3573 (-1177 |#1|))) (-1177 |#1|))) (-15 -3561 ((-1177 |#1|) (-1177 |#1|))) (-15 -3573 ((-1177 |#1|) (-1177 |#1|))) (-15 -3585 ((-1177 |#1|) (-1177 |#1|))) (-15 -3598 ((-1177 |#1|) (-1177 |#1|))) (-15 -3611 ((-1177 |#1|) (-1177 |#1|))) (-15 -3622 ((-1177 |#1|) (-1177 |#1|))) (-15 -3631 ((-1177 |#1|) (-1177 |#1|))) (-15 -3641 ((-1177 |#1|) (-1177 |#1|))) (-15 -3652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3663 ((-1177 |#1|) (-1177 |#1|))) (-15 -3672 ((-1177 |#1|) (-1177 |#1|))) (-15 -1970 ((-1177 |#1|) (-1177 |#1|)))) -((-2719 (((-976 |#2|) |#2| |#2|) 50)) (-3557 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) -(((-1183 |#1| |#2|) (-10 -7 (-15 -2719 ((-976 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3557 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1263 |#1|)) (T -1183)) -((-3557 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) (-4 *2 (-1263 *3)))) (-2719 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-976 *3)) (-5 *1 (-1183 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2719 ((-976 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3557 (|#2| |#2| |#1|)) |%noBranch|)) -((-1952 (((-112) $ $) NIL)) (-2698 (($ $ (-656 (-783))) 79)) (-4380 (($) 33)) (-2360 (($ $) 51)) (-2137 (((-656 $) $) 60)) (-1876 (((-112) $) 19)) (-1800 (((-656 (-961 |#2|)) $) 86)) (-3404 (($ $) 80)) (-2900 (((-783) $) 47)) (-1989 (($) 32)) (-2867 (($ $ (-656 (-783)) (-961 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-961 |#2|)) 75)) (-2144 (($ $ $) 57) (($ (-656 $)) 59)) (-2105 (((-783) $) 87)) (-2887 (((-112) $) 15)) (-2043 (((-1178) $) NIL)) (-3727 (((-112) $) 22)) (-3115 (((-1140) $) NIL)) (-1668 (((-173) $) 85)) (-2554 (((-961 |#2|) $) 81)) (-2124 (((-783) $) 82)) (-2539 (((-112) $) 84)) (-2281 (($ $ (-656 (-783)) (-173)) 78)) (-2405 (($ $) 52)) (-4112 (((-875) $) 99)) (-1444 (($ $ (-656 (-783)) (-112)) 77)) (-4335 (((-656 $) $) 11)) (-2974 (($ $ (-783)) 46)) (-2623 (($ $) 43)) (-1994 (((-112) $ $) NIL)) (-2126 (($ $ $ (-961 |#2|) (-783)) 68)) (-2604 (($ $ (-961 |#2|)) 67)) (-1905 (($ $ (-656 (-783)) (-961 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-961 |#2|)) 71)) (-3938 (((-112) $ $) 92))) -(((-1184 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -2887 ((-112) $)) (-15 -1876 ((-112) $)) (-15 -3727 ((-112) $)) (-15 -1989 ($)) (-15 -4380 ($)) (-15 -2623 ($ $)) (-15 -2974 ($ $ (-783))) (-15 -4335 ((-656 $) $)) (-15 -2900 ((-783) $)) (-15 -2360 ($ $)) (-15 -2405 ($ $)) (-15 -2144 ($ $ $)) (-15 -2144 ($ (-656 $))) (-15 -2137 ((-656 $) $)) (-15 -1905 ($ $ (-656 (-783)) (-961 |#2|))) (-15 -2604 ($ $ (-961 |#2|))) (-15 -2126 ($ $ $ (-961 |#2|) (-783))) (-15 -2867 ($ $ (-656 (-783)) (-961 |#2|))) (-15 -1905 ($ $ (-656 (-783)) (-783))) (-15 -2867 ($ $ (-656 (-783)) (-783))) (-15 -1905 ((-783) $ (-961 |#2|))) (-15 -2867 ($ $ (-783) (-961 |#2|))) (-15 -1444 ($ $ (-656 (-783)) (-112))) (-15 -2281 ($ $ (-656 (-783)) (-173))) (-15 -2698 ($ $ (-656 (-783)))) (-15 -2554 ((-961 |#2|) $)) (-15 -2124 ((-783) $)) (-15 -2539 ((-112) $)) (-15 -1668 ((-173) $)) (-15 -2105 ((-783) $)) (-15 -3404 ($ $)) (-15 -1800 ((-656 (-961 |#2|)) $)))) (-939) (-1069)) (T -1184)) -((-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-1989 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-4380 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-4335 (*1 *2 *1) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-2405 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-2144 (*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-1905 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-961 *4)) (-4 *4 (-1069)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)))) (-2126 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-961 *5)) (-5 *3 (-783)) (-4 *5 (-1069)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) (-2867 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) (-1905 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)) (-4 *5 (-1069)))) (-2867 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)) (-4 *5 (-1069)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *2 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) (-2867 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)) (-4 *5 (-1069)))) (-2281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)) (-4 *5 (-1069)))) (-2698 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-961 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069)))) (-3404 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-656 (-961 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) (-4 *4 (-1069))))) -(-13 (-1120) (-10 -8 (-15 -2887 ((-112) $)) (-15 -1876 ((-112) $)) (-15 -3727 ((-112) $)) (-15 -1989 ($)) (-15 -4380 ($)) (-15 -2623 ($ $)) (-15 -2974 ($ $ (-783))) (-15 -4335 ((-656 $) $)) (-15 -2900 ((-783) $)) (-15 -2360 ($ $)) (-15 -2405 ($ $)) (-15 -2144 ($ $ $)) (-15 -2144 ($ (-656 $))) (-15 -2137 ((-656 $) $)) (-15 -1905 ($ $ (-656 (-783)) (-961 |#2|))) (-15 -2604 ($ $ (-961 |#2|))) (-15 -2126 ($ $ $ (-961 |#2|) (-783))) (-15 -2867 ($ $ (-656 (-783)) (-961 |#2|))) (-15 -1905 ($ $ (-656 (-783)) (-783))) (-15 -2867 ($ $ (-656 (-783)) (-783))) (-15 -1905 ((-783) $ (-961 |#2|))) (-15 -2867 ($ $ (-783) (-961 |#2|))) (-15 -1444 ($ $ (-656 (-783)) (-112))) (-15 -2281 ($ $ (-656 (-783)) (-173))) (-15 -2698 ($ $ (-656 (-783)))) (-15 -2554 ((-961 |#2|) $)) (-15 -2124 ((-783) $)) (-15 -2539 ((-112) $)) (-15 -1668 ((-173) $)) (-15 -2105 ((-783) $)) (-15 -3404 ($ $)) (-15 -1800 ((-656 (-961 |#2|)) $)))) -((-1952 (((-112) $ $) NIL)) (-1782 ((|#2| $) 11)) (-1774 ((|#1| $) 10)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4124 (($ |#1| |#2|) 9)) (-4112 (((-875) $) 16)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1185 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -4124 ($ |#1| |#2|)) (-15 -1774 (|#1| $)) (-15 -1782 (|#2| $)))) (-1120) (-1120)) (T -1185)) -((-4124 (*1 *1 *2 *3) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-1774 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1120)))) (-1782 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -4124 ($ |#1| |#2|)) (-15 -1774 (|#1| $)) (-15 -1782 (|#2| $)))) -((-1952 (((-112) $ $) NIL)) (-2370 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1186) (-13 (-1103) (-10 -8 (-15 -2370 ((-1155) $))))) (T -1186)) -((-2370 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1186))))) -(-13 (-1103) (-10 -8 (-15 -2370 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 11)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2378 (((-112) $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2736 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-1560 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-4436 (((-1194 |#1| |#2| |#3|) $) 42)) (-2791 (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 32)) (-1627 (((-1194 |#1| |#2| |#3|) $) 33)) (-3585 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3773 (((-576) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2860 (($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-3611 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1196) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-1196))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374))))) (-2317 (((-1194 |#1| |#2| |#3|) $) 140) (((-1196) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-1196))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374))))) (-2971 (($ $) 37) (($ (-576) $) 38)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-1194 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1194 |#1| |#2| |#3|)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3900 (((-3 $ "failed") $) 54)) (-2940 (((-419 (-970 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-970 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-4369 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-2690 (((-112) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3365 (((-112) $) 28)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-900 (-390))) (|has| |#1| (-374)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-900 (-576))) (|has| |#1| (-374))))) (-3241 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-374)))) (-2686 (((-1194 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1859 (((-3 $ "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-374))))) (-3197 (((-112) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2747 (($ $ (-939)) NIL)) (-3235 (($ (-1 |#1| (-576)) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-576)) 19) (($ $ (-1102) (-576)) NIL) (($ $ (-656 (-1102)) (-656 (-576))) NIL)) (-2905 (($ $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-1654 (($ $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-2607 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2198 (((-701 (-1194 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1194 |#1| |#2| |#3|)))) (-1287 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1637 (($ (-576) (-1194 |#1| |#2| |#3|)) 36)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2944 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-374))) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1914 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2804 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-576)) 158)) (-1943 (((-3 $ "failed") $ $) 55 (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1194 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1194 |#1| |#2| |#3|)) (-656 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1132))) (($ $ (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-296 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) 57) (($ $) 56 (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))))) (-2521 (($ $) NIL (|has| |#1| (-374)))) (-2697 (((-1194 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-1877 (((-576) $) 43)) (-3622 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1554 (((-548) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1042)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1042)) (|has| |#1| (-374)))) (((-906 (-390)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-906 (-390)))) (|has| |#1| (-374)))) (((-906 (-576)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-906 (-576)))) (|has| |#1| (-374))))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1194 |#1| |#2| |#3|)) 30) (($ (-1283 |#2|)) 25) (($ (-1196)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-1196))) (|has| |#1| (-374)))) (($ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4269 ((|#1| $ (-576)) 77)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 12)) (-2671 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3631 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2388 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4314 (($) 21 T CONST)) (-4320 (($) 16 T CONST)) (-3155 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) NIL) (($ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))))) (-3993 (((-112) $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3974 (((-112) $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3962 (((-112) $ $) NIL (-3794 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 23)) (** (($ $ (-939)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1194 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1194 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1187 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1194 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -1187)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1249 |#1| (-1194 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-3350 ((|#2| |#2| (-1112 |#2|)) 26) ((|#2| |#2| (-1196)) 28))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -3350 (|#2| |#2| (-1196))) (-15 -3350 (|#2| |#2| (-1112 |#2|)))) (-13 (-568) (-1058 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1222))) (T -1188)) -((-3350 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))) (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1188 *4 *2)))) (-3350 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222)))))) -(-10 -7 (-15 -3350 (|#2| |#2| (-1196))) (-15 -3350 (|#2| |#2| (-1112 |#2|)))) -((-3350 (((-3 (-419 (-970 |#1|)) (-326 |#1|)) (-419 (-970 |#1|)) (-1112 (-419 (-970 |#1|)))) 31) (((-419 (-970 |#1|)) (-970 |#1|) (-1112 (-970 |#1|))) 44) (((-3 (-419 (-970 |#1|)) (-326 |#1|)) (-419 (-970 |#1|)) (-1196)) 33) (((-419 (-970 |#1|)) (-970 |#1|) (-1196)) 36))) -(((-1189 |#1|) (-10 -7 (-15 -3350 ((-419 (-970 |#1|)) (-970 |#1|) (-1196))) (-15 -3350 ((-3 (-419 (-970 |#1|)) (-326 |#1|)) (-419 (-970 |#1|)) (-1196))) (-15 -3350 ((-419 (-970 |#1|)) (-970 |#1|) (-1112 (-970 |#1|)))) (-15 -3350 ((-3 (-419 (-970 |#1|)) (-326 |#1|)) (-419 (-970 |#1|)) (-1112 (-419 (-970 |#1|)))))) (-13 (-568) (-1058 (-576)))) (T -1189)) -((-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-419 (-970 *5)))) (-5 *3 (-419 (-970 *5))) (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1189 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-970 *5))) (-5 *3 (-970 *5)) (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1189 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-3 (-419 (-970 *5)) (-326 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-419 (-970 *5))))) (-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-419 (-970 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-970 *5))))) -(-10 -7 (-15 -3350 ((-419 (-970 |#1|)) (-970 |#1|) (-1196))) (-15 -3350 ((-3 (-419 (-970 |#1|)) (-326 |#1|)) (-419 (-970 |#1|)) (-1196))) (-15 -3350 ((-419 (-970 |#1|)) (-970 |#1|) (-1112 (-970 |#1|)))) (-15 -3350 ((-3 (-419 (-970 |#1|)) (-326 |#1|)) (-419 (-970 |#1|)) (-1112 (-419 (-970 |#1|)))))) -((-2422 (((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)) 13))) -(((-1190 |#1| |#2|) (-10 -7 (-15 -2422 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)))) (-1069) (-1069)) (T -1190)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1192 *6)) (-5 *1 (-1190 *5 *6))))) -(-10 -7 (-15 -2422 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)))) -((-3163 (((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 51)) (-1450 (((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 52))) -(((-1191 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -3163 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))))) (-805) (-861) (-464) (-967 |#3| |#1| |#2|)) (T -1191)) -((-3163 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7)))))) -(-10 -7 (-15 -1450 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -3163 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))))) -((-1952 (((-112) $ $) 171)) (-3167 (((-112) $) 43)) (-1760 (((-1287 |#1|) $ (-783)) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-3105 (($ (-1192 |#1|)) NIL)) (-1420 (((-1192 $) $ (-1102)) 82) (((-1192 |#1|) $) 71)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 164 (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1102))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2256 (($ $ $) 158 (|has| |#1| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) 95 (|has| |#1| (-927)))) (-3575 (($ $) NIL (|has| |#1| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 115 (|has| |#1| (-927)))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1442 (($ $ (-783)) 61)) (-3036 (($ $ (-783)) 63)) (-2137 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-1102) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-1102) $) NIL)) (-3954 (($ $ $ (-1102)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) 80)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3351 (($ $ $) 131)) (-3310 (($ $ $) NIL (|has| |#1| (-568)))) (-4265 (((-2 (|:| -2861 |#1|) (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3557 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1102)) NIL (|has| |#1| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-783) $) 69)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1102) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1102) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-2204 (((-875) $ (-875)) 148)) (-3241 (((-783) $ $) NIL (|has| |#1| (-568)))) (-2287 (((-112) $) 48)) (-1757 (((-783) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| |#1| (-1172)))) (-1571 (($ (-1192 |#1|) (-1102)) 73) (($ (-1192 $) (-1102)) 89)) (-2747 (($ $ (-783)) 51)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) 87) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1102)) NIL) (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 153)) (-3661 (((-783) $) NIL) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-3820 (($ (-1 (-783) (-783)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2528 (((-1192 |#1|) $) NIL)) (-2653 (((-3 (-1102) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) 76)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2043 (((-1178) $) NIL)) (-2842 (((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783)) 60)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-1102)) (|:| -1495 (-783))) "failed") $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#1| (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) 50)) (-1685 ((|#1| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 103 (|has| |#1| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-4438 (($ $ (-783) |#1| $) 123)) (-3705 (((-430 (-1192 $)) (-1192 $)) 101 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 100 (|has| |#1| (-927)))) (-1450 (((-430 $) $) 108 (|has| |#1| (-927)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1102) |#1|) NIL) (($ $ (-656 (-1102)) (-656 |#1|)) NIL) (($ $ (-1102) $) NIL) (($ $ (-656 (-1102)) (-656 $)) NIL)) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3639 (((-3 $ "failed") $ (-783)) 54)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 172 (|has| |#1| (-374)))) (-1451 (($ $ (-1102)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-1877 (((-783) $) 78) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-1102) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1102)) NIL (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-927))))) (-4418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4112 (((-875) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1102)) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) 17 T CONST)) (-4320 (($) 19 T CONST)) (-3155 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-918 (-1196))))) (-3938 (((-112) $ $) 120)) (-4046 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 90)) (** (($ $ (-939)) 14) (($ $ (-783)) 12)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1192 |#1|) (-13 (-1263 |#1|) (-10 -8 (-15 -2204 ((-875) $ (-875))) (-15 -4438 ($ $ (-783) |#1| $)))) (-1069)) (T -1192)) -((-2204 (*1 *2 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1192 *3)) (-4 *3 (-1069)))) (-4438 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1192 *3)) (-4 *3 (-1069))))) -(-13 (-1263 |#1|) (-10 -8 (-15 -2204 ((-875) $ (-875))) (-15 -4438 ($ $ (-783) |#1| $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 11)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 36)) (-2317 (((-1187 |#1| |#2| |#3|) $) NIL) (((-1194 |#1| |#2| |#3|) $) NIL)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1494 (((-419 (-576)) $) 59)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-1646 (($ (-419 (-576)) (-1187 |#1| |#2| |#3|)) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) NIL) (($ $ (-419 (-576))) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-419 (-576))) 20) (($ $ (-1102) (-419 (-576))) NIL) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1731 (((-1187 |#1| |#2| |#3|) $) 41)) (-2184 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) NIL)) (-1637 (((-1187 |#1| |#2| |#3|) $) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2944 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) NIL)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 38)) (-1877 (((-419 (-576)) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1187 |#1| |#2| |#3|)) 30) (($ (-1194 |#1| |#2| |#3|)) 31) (($ (-1283 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 12)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 22 T CONST)) (-4320 (($) 16 T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 24)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1193 |#1| |#2| |#3|) (-13 (-1270 |#1| (-1187 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-1058 (-1194 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -1193)) -((-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1270 |#1| (-1187 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-1058 (-1194 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 129)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 119)) (-1623 (((-1260 |#2| |#1|) $ (-783)) 69)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-1560 (((-1177 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-3585 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3561 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-1177 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1177 |#1|)) 113)) (-3611 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) 25)) (-3686 (($ $) 28)) (-2817 (((-970 |#1|) $ (-783)) 81) (((-970 |#1|) $ (-783) (-783)) 83)) (-3365 (((-112) $) 124)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-783) $) 126) (((-783) $ (-783)) 128)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) NIL)) (-3235 (($ (-1 |#1| (-576)) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) 13) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2607 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-2944 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-3679 (($ $ (-783)) 15)) (-1943 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-2155 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4368 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1132)))) (-4106 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) 31)) (-1877 (((-783) $) NIL)) (-3622 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1260 |#2| |#1|)) 55) (($ (-1283 |#2|)) 36)) (-1410 (((-1177 |#1|) $) 101)) (-4269 ((|#1| $ (-783)) 121)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 58)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 17 T CONST)) (-4320 (($) 20 T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) 198)) (-4026 (($ $ $) 35)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1194 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1260 |#2| |#1|))) (-15 -1623 ((-1260 |#2| |#1|) $ (-783))) (-15 -4112 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -1194)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5)))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) (-4 *4 (-1069)) (-14 *5 (-1196)) (-14 *6 *4))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1278 |#1|) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1260 |#2| |#1|))) (-15 -1623 ((-1260 |#2| |#1|) $ (-783))) (-15 -4112 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-4112 (((-875) $) 33) (($ (-1196)) 35)) (-3794 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-3784 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-2765 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-2752 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-2741 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-2729 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-3042 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) -(((-1195) (-13 (-625 (-875)) (-10 -8 (-15 -4112 ($ (-1196))) (-15 -2765 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2741 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2752 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2729 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3794 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3042 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3784 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3784 ($ $))))) (T -1195)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) (-2765 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-2741 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-2752 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-2729 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3794 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3042 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3784 (*1 *1 *1) (-5 *1 (-1195)))) -(-13 (-625 (-875)) (-10 -8 (-15 -4112 ($ (-1196))) (-15 -2765 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2741 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2752 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2729 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3794 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3042 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3784 ($ (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3784 ($ $)))) -((-1952 (((-112) $ $) NIL)) (-2596 (($ $ (-656 (-875))) 62)) (-3116 (($ $ (-656 (-875))) 60)) (-1532 (((-1178) $) 101)) (-3124 (((-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875)))) $) 108)) (-4377 (((-112) $) 23)) (-2953 (($ $ (-656 (-656 (-875)))) 59) (($ $ (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875))))) 99)) (-4331 (($) 163 T CONST)) (-2145 (((-1292)) 135)) (-1445 (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 69) (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 76)) (-1989 (($) 122) (($ $) 131)) (-4148 (($ $) 100)) (-2905 (($ $ $) NIL)) (-1654 (($ $ $) NIL)) (-2785 (((-656 $) $) 136)) (-2043 (((-1178) $) 114)) (-3115 (((-1140) $) NIL)) (-4368 (($ $ (-656 (-875))) 61)) (-1554 (((-548) $) 48) (((-1196) $) 49) (((-906 (-576)) $) 80) (((-906 (-390)) $) 78)) (-4112 (((-875) $) 55) (($ (-1178)) 50)) (-1994 (((-112) $ $) NIL)) (-3982 (($ $ (-656 (-875))) 63)) (-3678 (((-1178) $) 34) (((-1178) $ (-112)) 35) (((-1292) (-834) $) 36) (((-1292) (-834) $ (-112)) 37)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 51)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) 52))) -(((-1196) (-13 (-861) (-626 (-548)) (-840) (-626 (-1196)) (-628 (-1178)) (-626 (-906 (-576))) (-626 (-906 (-390))) (-900 (-576)) (-900 (-390)) (-10 -8 (-15 -1989 ($)) (-15 -1989 ($ $)) (-15 -2145 ((-1292))) (-15 -4148 ($ $)) (-15 -4377 ((-112) $)) (-15 -3124 ((-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875)))) $)) (-15 -2953 ($ $ (-656 (-656 (-875))))) (-15 -2953 ($ $ (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875)))))) (-15 -3116 ($ $ (-656 (-875)))) (-15 -2596 ($ $ (-656 (-875)))) (-15 -3982 ($ $ (-656 (-875)))) (-15 -4368 ($ $ (-656 (-875)))) (-15 -1532 ((-1178) $)) (-15 -2785 ((-656 $) $)) (-15 -4331 ($) -2665)))) (T -1196)) -((-1989 (*1 *1) (-5 *1 (-1196))) (-1989 (*1 *1 *1) (-5 *1 (-1196))) (-2145 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196)))) (-4148 (*1 *1 *1) (-5 *1 (-1196))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875))))) (-5 *1 (-1196)))) (-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-875)))) (-5 *1 (-1196)))) (-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875))))) (-5 *1 (-1196)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1196)))) (-4331 (*1 *1) (-5 *1 (-1196)))) -(-13 (-861) (-626 (-548)) (-840) (-626 (-1196)) (-628 (-1178)) (-626 (-906 (-576))) (-626 (-906 (-390))) (-900 (-576)) (-900 (-390)) (-10 -8 (-15 -1989 ($)) (-15 -1989 ($ $)) (-15 -2145 ((-1292))) (-15 -4148 ($ $)) (-15 -4377 ((-112) $)) (-15 -3124 ((-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875)))) $)) (-15 -2953 ($ $ (-656 (-656 (-875))))) (-15 -2953 ($ $ (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) (|:| |args| (-656 (-875)))))) (-15 -3116 ($ $ (-656 (-875)))) (-15 -2596 ($ $ (-656 (-875)))) (-15 -3982 ($ $ (-656 (-875)))) (-15 -4368 ($ $ (-656 (-875)))) (-15 -1532 ((-1178) $)) (-15 -2785 ((-656 $) $)) (-15 -4331 ($) -2665))) -((-3113 (((-1287 |#1|) |#1| (-939)) 18) (((-1287 |#1|) (-656 |#1|)) 25))) -(((-1197 |#1|) (-10 -7 (-15 -3113 ((-1287 |#1|) (-656 |#1|))) (-15 -3113 ((-1287 |#1|) |#1| (-939)))) (-1069)) (T -1197)) -((-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-5 *2 (-1287 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1069)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4)) (-5 *1 (-1197 *4))))) -(-10 -7 (-15 -3113 ((-1287 |#1|) (-656 |#1|))) (-15 -3113 ((-1287 |#1|) |#1| (-939)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1058 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1058 (-419 (-576))))) ((|#1| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL (|has| |#1| (-464)))) (-3897 (($ $ |#1| (-991) $) NIL)) (-2287 (((-112) $) 17)) (-1757 (((-783) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-991)) NIL)) (-3661 (((-991) $) NIL)) (-3820 (($ (-1 (-991) (-991)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#1| $) NIL)) (-4438 (($ $ (-991) |#1| $) NIL (-12 (|has| (-991) (-132)) (|has| |#1| (-568))))) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1877 (((-991) $) NIL)) (-3430 ((|#1| $) NIL (|has| |#1| (-464)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3794 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1058 (-419 (-576))))))) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ (-991)) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4314 (($) 10 T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 21)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1198 |#1|) (-13 (-336 |#1| (-991)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-991) (-132)) (-15 -4438 ($ $ (-991) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|))) (-1069)) (T -1198)) -((-4438 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-991)) (-4 *2 (-132)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) (-4 *3 (-1069))))) -(-13 (-336 |#1| (-991)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-991) (-132)) (-15 -4438 ($ $ (-991) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|))) -((-3467 (((-1200) (-1196) $) 25)) (-4298 (($) 29)) (-2975 (((-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-1196) $) 22)) (-1995 (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void")) $) 41) (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) 42) (((-1292) (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) 43)) (-1405 (((-1292) (-1196)) 58)) (-2115 (((-1292) (-1196) $) 55) (((-1292) (-1196)) 56) (((-1292)) 57)) (-3670 (((-1292) (-1196)) 37)) (-3176 (((-1196)) 36)) (-3935 (($) 34)) (-2325 (((-449) (-1196) (-449) (-1196) $) 45) (((-449) (-656 (-1196)) (-449) (-1196) $) 49) (((-449) (-1196) (-449)) 46) (((-449) (-1196) (-449) (-1196)) 50)) (-3143 (((-1196)) 35)) (-4112 (((-875) $) 28)) (-1655 (((-1292)) 30) (((-1292) (-1196)) 33)) (-2202 (((-656 (-1196)) (-1196) $) 24)) (-2545 (((-1292) (-1196) (-656 (-1196)) $) 38) (((-1292) (-1196) (-656 (-1196))) 39) (((-1292) (-656 (-1196))) 40))) -(((-1199) (-13 (-625 (-875)) (-10 -8 (-15 -4298 ($)) (-15 -1655 ((-1292))) (-15 -1655 ((-1292) (-1196))) (-15 -2325 ((-449) (-1196) (-449) (-1196) $)) (-15 -2325 ((-449) (-656 (-1196)) (-449) (-1196) $)) (-15 -2325 ((-449) (-1196) (-449))) (-15 -2325 ((-449) (-1196) (-449) (-1196))) (-15 -3670 ((-1292) (-1196))) (-15 -3143 ((-1196))) (-15 -3176 ((-1196))) (-15 -2545 ((-1292) (-1196) (-656 (-1196)) $)) (-15 -2545 ((-1292) (-1196) (-656 (-1196)))) (-15 -2545 ((-1292) (-656 (-1196)))) (-15 -1995 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void")) $)) (-15 -1995 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void")))) (-15 -1995 ((-1292) (-3 (|:| |fst| (-446)) (|:| -2434 "void")))) (-15 -2115 ((-1292) (-1196) $)) (-15 -2115 ((-1292) (-1196))) (-15 -2115 ((-1292))) (-15 -1405 ((-1292) (-1196))) (-15 -3935 ($)) (-15 -2975 ((-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-1196) $)) (-15 -2202 ((-656 (-1196)) (-1196) $)) (-15 -3467 ((-1200) (-1196) $))))) (T -1199)) -((-4298 (*1 *1) (-5 *1 (-1199))) (-1655 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2325 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-2325 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *4 (-1196)) (-5 *1 (-1199)))) (-2325 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-2325 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3143 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-3176 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-2545 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1995 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2115 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2115 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3935 (*1 *1) (-5 *1 (-1199))) (-2975 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *1 (-1199)))) (-2202 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196)))) (-3467 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199))))) -(-13 (-625 (-875)) (-10 -8 (-15 -4298 ($)) (-15 -1655 ((-1292))) (-15 -1655 ((-1292) (-1196))) (-15 -2325 ((-449) (-1196) (-449) (-1196) $)) (-15 -2325 ((-449) (-656 (-1196)) (-449) (-1196) $)) (-15 -2325 ((-449) (-1196) (-449))) (-15 -2325 ((-449) (-1196) (-449) (-1196))) (-15 -3670 ((-1292) (-1196))) (-15 -3143 ((-1196))) (-15 -3176 ((-1196))) (-15 -2545 ((-1292) (-1196) (-656 (-1196)) $)) (-15 -2545 ((-1292) (-1196) (-656 (-1196)))) (-15 -2545 ((-1292) (-656 (-1196)))) (-15 -1995 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void")) $)) (-15 -1995 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2434 "void")))) (-15 -1995 ((-1292) (-3 (|:| |fst| (-446)) (|:| -2434 "void")))) (-15 -2115 ((-1292) (-1196) $)) (-15 -2115 ((-1292) (-1196))) (-15 -2115 ((-1292))) (-15 -1405 ((-1292) (-1196))) (-15 -3935 ($)) (-15 -2975 ((-3 (|:| |fst| (-446)) (|:| -2434 "void")) (-1196) $)) (-15 -2202 ((-656 (-1196)) (-1196) $)) (-15 -3467 ((-1200) (-1196) $)))) -((-3451 (((-656 (-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576))))))))) $) 66)) (-3823 (((-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576)))))))) (-446) $) 47)) (-3925 (($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-449))))) 17)) (-1405 (((-1292) $) 73)) (-2634 (((-656 (-1196)) $) 22)) (-1348 (((-1124) $) 60)) (-1842 (((-449) (-1196) $) 27)) (-3299 (((-656 (-1196)) $) 30)) (-3935 (($) 19)) (-2325 (((-449) (-656 (-1196)) (-449) $) 25) (((-449) (-1196) (-449) $) 24)) (-4112 (((-875) $) 9) (((-1209 (-1196) (-449)) $) 13))) -(((-1200) (-13 (-625 (-875)) (-10 -8 (-15 -4112 ((-1209 (-1196) (-449)) $)) (-15 -3935 ($)) (-15 -2325 ((-449) (-656 (-1196)) (-449) $)) (-15 -2325 ((-449) (-1196) (-449) $)) (-15 -1842 ((-449) (-1196) $)) (-15 -2634 ((-656 (-1196)) $)) (-15 -3823 ((-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576)))))))) (-446) $)) (-15 -3299 ((-656 (-1196)) $)) (-15 -3451 ((-656 (-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576))))))))) $)) (-15 -1348 ((-1124) $)) (-15 -1405 ((-1292) $)) (-15 -3925 ($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-449))))))))) (T -1200)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-1209 (-1196) (-449))) (-5 *1 (-1200)))) (-3935 (*1 *1) (-5 *1 (-1200))) (-2325 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *1 (-1200)))) (-2325 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1200)))) (-1842 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-449)) (-5 *1 (-1200)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))) (-3823 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576))))))))) (-5 *1 (-1200)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576)))))))))) (-5 *1 (-1200)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1200)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200)))) (-3925 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-449))))) (-5 *1 (-1200))))) -(-13 (-625 (-875)) (-10 -8 (-15 -4112 ((-1209 (-1196) (-449)) $)) (-15 -3935 ($)) (-15 -2325 ((-449) (-656 (-1196)) (-449) $)) (-15 -2325 ((-449) (-1196) (-449) $)) (-15 -1842 ((-449) (-1196) $)) (-15 -2634 ((-656 (-1196)) $)) (-15 -3823 ((-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576)))))))) (-446) $)) (-15 -3299 ((-656 (-1196)) $)) (-15 -3451 ((-656 (-656 (-3 (|:| -4148 (-1196)) (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576))))))))) $)) (-15 -1348 ((-1124) $)) (-15 -1405 ((-1292) $)) (-15 -3925 ($ (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-449)))))))) -((-1952 (((-112) $ $) NIL)) (-2980 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1178) "failed") $) 47)) (-2317 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1178) $) 48)) (-4338 (((-112) $) 53)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2113 (((-3 (-576) (-227) (-518) (-1178) $) $) 55)) (-3478 (((-656 $) $) 57)) (-1554 (((-1124) $) 24) (($ (-1124)) 25)) (-2701 (((-112) $) 56)) (-4112 (((-875) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1178)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1178) $) 49)) (-4304 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1178))) 16)) (-2746 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-1994 (((-112) $ $) NIL)) (-4332 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1178) $) 45)) (-3938 (((-112) $ $) 7))) -(((-1201) (-13 (-1282) (-1120) (-1058 (-576)) (-1058 (-227)) (-1058 (-518)) (-1058 (-1178)) (-625 (-548)) (-10 -8 (-15 -1554 ((-1124) $)) (-15 -1554 ($ (-1124))) (-15 -4112 ((-576) $)) (-15 -4332 ((-576) $)) (-15 -4112 ((-227) $)) (-15 -4332 ((-227) $)) (-15 -4112 ((-518) $)) (-15 -4332 ((-518) $)) (-15 -4112 ((-1178) $)) (-15 -4332 ((-1178) $)) (-15 -2746 ($ (-518) (-656 $))) (-15 -2746 ($ $ (-656 $))) (-15 -4338 ((-112) $)) (-15 -2113 ((-3 (-576) (-227) (-518) (-1178) $) $)) (-15 -3478 ((-656 $) $)) (-15 -2701 ((-112) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-576)))) (-15 -4304 ((-112) $ (|[\|\|]| (-227)))) (-15 -4304 ((-112) $ (|[\|\|]| (-518)))) (-15 -4304 ((-112) $ (|[\|\|]| (-1178))))))) (T -1201)) -((-1554 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1201)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1201)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-2746 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1201))) (-5 *1 (-1201)))) (-2746 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1178) (-1201))) (-5 *1 (-1201)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-1201))))) -(-13 (-1282) (-1120) (-1058 (-576)) (-1058 (-227)) (-1058 (-518)) (-1058 (-1178)) (-625 (-548)) (-10 -8 (-15 -1554 ((-1124) $)) (-15 -1554 ($ (-1124))) (-15 -4112 ((-576) $)) (-15 -4332 ((-576) $)) (-15 -4112 ((-227) $)) (-15 -4332 ((-227) $)) (-15 -4112 ((-518) $)) (-15 -4332 ((-518) $)) (-15 -4112 ((-1178) $)) (-15 -4332 ((-1178) $)) (-15 -2746 ($ (-518) (-656 $))) (-15 -2746 ($ $ (-656 $))) (-15 -4338 ((-112) $)) (-15 -2113 ((-3 (-576) (-227) (-518) (-1178) $) $)) (-15 -3478 ((-656 $) $)) (-15 -2701 ((-112) $)) (-15 -4304 ((-112) $ (|[\|\|]| (-576)))) (-15 -4304 ((-112) $ (|[\|\|]| (-227)))) (-15 -4304 ((-112) $ (|[\|\|]| (-518)))) (-15 -4304 ((-112) $ (|[\|\|]| (-1178)))))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) 22)) (-4331 (($) 12 T CONST)) (-4369 (($) 26)) (-2905 (($ $ $) NIL) (($) 19 T CONST)) (-1654 (($ $ $) NIL) (($) 20 T CONST)) (-4375 (((-939) $) 24)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) 23)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-1202 |#1|) (-13 (-856) (-10 -8 (-15 -4331 ($) -2665))) (-939)) (T -1202)) -((-4331 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-939))))) -(-13 (-856) (-10 -8 (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1419 ((|#1| $) 45)) (-2396 (((-112) $ (-783)) 8)) (-3306 (($) 7 T CONST)) (-4232 ((|#1| |#1| $) 47)) (-2489 ((|#1| $) 46)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3772 ((|#1| $) 40)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3267 ((|#1| $) 42)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-1887 (((-783) $) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) 43)) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1142 |#1|) (-141) (-1238)) (T -1142)) +((-4232 (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -4232 (|t#1| |t#1| $)) (-15 -2489 (|t#1| $)) (-15 -1419 (|t#1| $)) (-15 -1887 ((-783) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-2208 ((|#3| $) 87)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-4344 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 84) (((-701 |#3|) (-701 $)) 76)) (-2773 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2945 ((|#3| $) 89)) (-3312 ((|#4| $) 43)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-940)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) +(((-1143 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2945 (|#3| |#1|)) (-15 -2208 (|#3| |#1|)) (-15 -3312 (|#4| |#1|)) (-15 -4344 ((-701 |#3|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3569 ((-876) |#1|))) (-1144 |#2| |#3| |#4| |#5|) (-783) (-1070) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1143)) +NIL +(-10 -8 (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2945 (|#3| |#1|)) (-15 -2208 (|#3| |#1|)) (-15 -3312 (|#4| |#1|)) (-15 -4344 ((-701 |#3|) (-701 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4344 ((-701 (-576)) (-701 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2773 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2208 ((|#2| $) 80)) (-3400 (((-112) $) 124)) (-2780 (((-3 $ "failed") $ $) 20)) (-4006 (((-112) $) 122)) (-2396 (((-112) $ (-783)) 114)) (-3477 (($ |#2|) 83)) (-3306 (($) 18 T CONST)) (-3377 (($ $) 141 (|has| |#2| (-317)))) (-3823 ((|#3| $ (-576)) 136)) (-1572 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2859 (((-576) $) 98 (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) 94)) (-4344 (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 87) (((-701 |#2|) (-701 $)) 86)) (-3451 (((-3 $ "failed") $) 37)) (-3733 (((-783) $) 142 (|has| |#2| (-568)))) (-4272 ((|#2| $ (-576) (-576)) 134)) (-3965 (((-656 |#2|) $) 107 (|has| $ (-6 -4464)))) (-3215 (((-112) $) 35)) (-4198 (((-783) $) 143 (|has| |#2| (-568)))) (-3392 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-1689 (((-783) $) 130)) (-1699 (((-783) $) 131)) (-4252 (((-112) $ (-783)) 115)) (-3117 ((|#2| $) 75 (|has| |#2| (-6 (-4466 "*"))))) (-3536 (((-576) $) 126)) (-1643 (((-576) $) 128)) (-2735 (((-656 |#2|) $) 106 (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-2858 (((-576) $) 127)) (-3129 (((-576) $) 129)) (-2465 (($ (-656 (-656 |#2|))) 121)) (-4322 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2093 (((-656 (-656 |#2|)) $) 132)) (-3557 (((-112) $ (-783)) 116)) (-3626 (((-701 (-576)) (-1288 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 90 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 85) (((-701 |#2|) (-1288 $)) 84)) (-1413 (((-1179) $) 10)) (-2549 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-3542 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) 120)) (-2866 (((-112) $) 117)) (-3839 (($) 118)) (-2796 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-2773 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1197)) 55 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#2| (-919 (-1197))))) (-2945 ((|#2| $) 79)) (-4273 (($ (-656 |#2|)) 82)) (-2106 (((-112) $) 123)) (-3312 ((|#3| $) 81)) (-2131 ((|#2| $) 76 (|has| |#2| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4464))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 119)) (-3083 ((|#4| $ (-576)) 137)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) 92)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2170 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4464)))) (-1893 (((-112) $) 125)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1197)) 54 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#2| (-919 (-1197))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3502 (((-783) $) 113 (|has| $ (-6 -4464))))) +(((-1144 |#1| |#2| |#3| |#4|) (-141) (-783) (-1070) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1144)) +((-3477 (*1 *1 *2) (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-4273 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-2549 (*1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) +(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1074 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -3477 ($ |t#2|)) (-15 -4273 ($ (-656 |t#2|))) (-15 -3312 (|t#3| $)) (-15 -2208 (|t#2| $)) (-15 -2945 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4466 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2131 (|t#2| $)) (-15 -3117 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -2549 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4466 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-234 $) -2758 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -2758 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-6 (-4466 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -2758 (|has| |#2| (-174)) (|has| |#2| (-6 (-4466 "*")))) ((-738) . T) ((-911 $ #2=(-1197)) -2758 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-917 (-1197)) |has| |#2| (-917 (-1197))) ((-919 #2#) -2758 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-1074 |#1| |#1| |#2| |#3| |#4|) . T) ((-1059 #0#) |has| |#2| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#2| (-1059 (-576))) ((-1059 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4095 ((|#4| |#4|) 81)) (-2918 ((|#4| |#4|) 76)) (-1356 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|))) |#4| |#3|) 91)) (-4319 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1609 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2918 (|#4| |#4|)) (-15 -1609 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4095 (|#4| |#4|)) (-15 -4319 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1356 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1145)) +((-1356 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4319 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1609 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2918 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -2918 (|#4| |#4|)) (-15 -1609 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4095 (|#4| |#4|)) (-15 -4319 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1356 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3454 (-656 |#3|))) |#4| |#3|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 18)) (-1966 (((-656 |#2|) $) 174)) (-1799 (((-1193 $) $ |#2|) 60) (((-1193 |#1|) $) 49)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-2544 (($ $) 118 (|has| |#1| (-568)))) (-1574 (((-112) $) 120 (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2859 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL)) (-4004 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2112 (($ $) 217)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) 90)) (-1371 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-543 |#2|) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3215 (((-112) $) 20)) (-1675 (((-783) $) 30)) (-1955 (($ (-1193 |#1|) |#2|) 54) (($ (-1193 $) |#2|) 71)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) 38)) (-1945 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ |#2|) NIL)) (-2987 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-1938 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 128)) (-2512 (((-3 |#2| "failed") $) 177)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) 216)) (-2089 ((|#1| $) 43)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| |#2|) (|:| -4210 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) 39)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 148 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-2455 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2773 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-3600 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1457 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2060 (((-656 |#1|) $) 162)) (-3998 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) 87 T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2719 (($) 12 T CONST)) (-2730 (($) 14 T CONST)) (-2018 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2923 (((-112) $ $) 106)) (-3056 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-3043 (($ $) 93) (($ $ $) 104)) (-3029 (($ $ $) 55)) (** (($ $ (-940)) 110) (($ $ (-783)) 109)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1146 |#1| |#2|) (-968 |#1| (-543 |#2|) |#2|) (-1070) (-861)) (T -1146)) +NIL +(-968 |#1| (-543 |#2|) |#2|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 |#2|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4024 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-2381 (((-971 |#1|) $ (-783)) NIL) (((-971 |#1|) $ (-783) (-783)) NIL)) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-112) $) NIL)) (-1945 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-3441 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-4362 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3169 (($ $ (-783)) 16)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4103 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2773 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-3600 (((-543 |#2|) $) NIL)) (-3731 (((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|))) 87)) (-4060 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 18)) (-3569 (((-876) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-3998 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4387 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 52 T CONST)) (-2730 (($) 62 T CONST)) (-2018 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 66)) (** (($ $ (-940)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1147 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -3998 (|#3| $ (-783))) (-15 -3569 ($ |#2|)) (-15 -3569 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3731 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $ |#2| |#1|)) (-15 -4362 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1070) (-861) (-968 |#1| (-543 |#2|) |#2|)) (T -1147)) +((-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7)))) (-3441 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-4362 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) (-4 *5 (-968 *4 (-543 *3) *3))))) +(-13 (-752 |#1| |#2|) (-10 -8 (-15 -3998 (|#3| $ (-783))) (-15 -3569 ($ |#2|)) (-15 -3569 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3731 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $ |#2| |#1|)) (-15 -4362 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3597 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1966 (((-656 |#3|) $) 34)) (-1755 (((-112) $) 27)) (-1781 (((-112) $) 18 (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) 102) (((-112) $) 98)) (-2795 ((|#4| |#4| $) 93)) (-3420 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) 28)) (-2396 (((-112) $ (-783)) 45)) (-1971 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3306 (($) 46 T CONST)) (-3290 (((-112) $) 23 (|has| |#1| (-568)))) (-2879 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1576 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3489 (((-112) $) 26 (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4356 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3947 ((|#4| |#4| $) 90)) (-2800 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2873 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-1793 (((-112) |#4| $) 137)) (-2989 (((-112) |#4| $) 134)) (-2464 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) 105) (((-112) $) 104)) (-2665 ((|#3| $) 35)) (-4252 (((-112) $ (-783)) 44)) (-2735 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-1994 (((-656 |#3|) $) 33)) (-1983 (((-112) |#3| $) 32)) (-3557 (((-112) $ (-783)) 43)) (-1413 (((-1179) $) 10)) (-1988 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1728 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3967 (((-3 |#4| "failed") $) 84)) (-2042 (((-656 $) |#4| $) 130)) (-3059 (((-3 (-112) (-656 $)) |#4| $) 133)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1834 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2289 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-1809 (((-656 |#4|) $) 108)) (-3455 (((-112) |#4| $) 100) (((-112) $) 96)) (-2860 ((|#4| |#4| $) 91)) (-1716 (((-112) $ $) 111)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) 101) (((-112) $) 97)) (-3764 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3260 (((-3 $ "failed") $ |#4|) 79)) (-3169 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3542 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) 39)) (-2866 (((-112) $) 42)) (-3839 (($) 41)) (-3600 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2907 (($ $ |#3|) 29)) (-4080 (($ $ |#3|) 31)) (-3453 (($ $) 89)) (-3698 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3000 (((-783) $) 77 (|has| |#3| (-379)))) (-2113 (((-112) $ $) 6)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1528 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2170 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) 82)) (-2011 (((-112) |#4| $) 136)) (-2951 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-1148 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1148)) +NIL +(-13 (-1130 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1130 |#1| |#2| |#3| |#4|) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) +((-1918 (((-656 |#2|) |#1|) 15)) (-2981 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-2706 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-2358 ((|#2| |#1|) 54)) (-1495 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2359 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-3077 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-3993 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3490 ((|#2| |#2| |#2| |#2|) 51)) (-1437 ((|#2| |#2| |#2|) 50)) (-1791 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -1918 ((-656 |#2|) |#1|)) (-15 -2358 (|#2| |#1|)) (-15 -1495 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2359 ((-656 |#2|) |#1|)) (-15 -2706 ((-656 |#2|) |#1|)) (-15 -3077 ((-656 |#2|) |#1|)) (-15 -2981 ((-656 |#2|) |#1|)) (-15 -2359 ((-656 |#2|) |#2| |#2|)) (-15 -2706 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3077 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2981 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1437 (|#2| |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2| |#2|)) (-15 -1791 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3993 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1264 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1149)) +((-3993 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-1791 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3490 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-1437 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2981 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3077 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2706 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2359 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2981 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5)))) (-2358 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1918 ((-656 |#2|) |#1|)) (-15 -2358 (|#2| |#1|)) (-15 -1495 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2359 ((-656 |#2|) |#1|)) (-15 -2706 ((-656 |#2|) |#1|)) (-15 -3077 ((-656 |#2|) |#1|)) (-15 -2981 ((-656 |#2|) |#1|)) (-15 -2359 ((-656 |#2|) |#2| |#2|)) (-15 -2706 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3077 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2981 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1437 (|#2| |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2| |#2|)) (-15 -1791 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3993 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1608 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 82)) (-3050 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 111) (((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197)) 54)) (-3761 (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)) 122) (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 121))) +(((-1150 |#1|) (-10 -7 (-15 -1608 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1608 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -1608 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -1608 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3050 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -3050 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3761 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -3761 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -1150)) +((-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1150 *5)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1150 *5)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5))))) +(-10 -7 (-15 -1608 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1608 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -1608 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -1608 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -1608 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3050 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -3050 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3761 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -3761 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) +((-3795 (((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)) 36)) (-1934 (((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|)))) 48))) +(((-1151 |#1|) (-10 -7 (-15 -1934 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -3795 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) (-568)) (T -1151)) +((-3795 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5)))) (-1934 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1151 *3))))) +(-10 -7 (-15 -1934 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -3795 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) +((-1918 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) +(((-1152 |#1|) (-10 -7 (-15 -1918 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -1918 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -1918 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -1918 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -1918 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (T -1152)) +((-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-326 *5)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-304 (-326 *5))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-304 (-326 *4))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-326 *4))))) +(-10 -7 (-15 -1918 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -1918 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -1918 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -1918 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -1918 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) +((-3385 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2541 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -2541 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3385 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -2541 (|#2| |#2|)) (-15 -3385 (|#2| |#2|))) |%noBranch|)) (-1238) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4464) (-6 -4465)))) (T -1153)) +((-3385 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465)))))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465)))))) (-3385 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) (-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465))))))) +(-10 -7 (-15 -2541 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3385 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -2541 (|#2| |#2|)) (-15 -3385 (|#2| |#2|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-2513 (((-1185 3 |#1|) $) 141)) (-4101 (((-112) $) 101)) (-3691 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-962 |#1|))) 103) (((-656 (-962 |#1|)) $) 102)) (-2430 (((-112) $) 72)) (-3042 (($ $ (-962 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-962 |#1|)) 77) (((-962 |#1|) $) 75)) (-3501 (((-2 (|:| -3791 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-1469 (((-783) $) 53)) (-2285 (((-783) $) 52)) (-3634 (($ $ (-783) (-962 |#1|)) 67)) (-3866 (((-112) $) 111)) (-3071 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-962 |#1|)))) 116) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-962 |#1|))) $) 114)) (-4335 (($ (-656 $)) 56) (($ $ $) 57)) (-3132 (((-656 (-173)) $) 133)) (-1395 (((-656 (-962 |#1|)) $) 130)) (-2201 (((-656 (-656 (-173))) $) 132)) (-2804 (((-656 (-656 (-656 (-962 |#1|)))) $) NIL)) (-3061 (((-656 (-656 (-656 (-783)))) $) 131)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1575 (((-783) $ (-656 (-962 |#1|))) 65)) (-1746 (((-112) $) 84)) (-2074 (($ $ (-656 (-962 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-962 |#1|))) 87) (((-656 (-962 |#1|)) $) 85)) (-3741 (($) 48) (($ (-1185 3 |#1|)) 49)) (-1870 (($ $) 63)) (-2382 (((-656 $) $) 62)) (-1705 (($ (-656 $)) 59)) (-3271 (((-656 $) $) 61)) (-3569 (((-876) $) 146)) (-4137 (((-112) $) 94)) (-1525 (($ $ (-656 (-962 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-962 |#1|))) 97) (((-656 (-962 |#1|)) $) 95)) (-2437 (($ $) 140)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1154 |#1|) (-1155 |#1|) (-1070)) (T -1154)) +NIL +(-1155 |#1|) +((-3488 (((-112) $ $) 7)) (-2513 (((-1185 3 |#1|) $) 14)) (-4101 (((-112) $) 30)) (-3691 (($ $ (-656 (-962 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-962 |#1|))) 32) (((-656 (-962 |#1|)) $) 31)) (-2430 (((-112) $) 45)) (-3042 (($ $ (-962 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-962 |#1|)) 47) (((-962 |#1|) $) 46)) (-3501 (((-2 (|:| -3791 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-1469 (((-783) $) 59)) (-2285 (((-783) $) 60)) (-3634 (($ $ (-783) (-962 |#1|)) 51)) (-3866 (((-112) $) 22)) (-3071 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-962 |#1|)))) 25) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-962 |#1|))) $) 23)) (-4335 (($ (-656 $)) 58) (($ $ $) 57)) (-3132 (((-656 (-173)) $) 17)) (-1395 (((-656 (-962 |#1|)) $) 21)) (-2201 (((-656 (-656 (-173))) $) 18)) (-2804 (((-656 (-656 (-656 (-962 |#1|)))) $) 19)) (-3061 (((-656 (-656 (-656 (-783)))) $) 20)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1575 (((-783) $ (-656 (-962 |#1|))) 52)) (-1746 (((-112) $) 40)) (-2074 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-962 |#1|))) 42) (((-656 (-962 |#1|)) $) 41)) (-3741 (($) 62) (($ (-1185 3 |#1|)) 61)) (-1870 (($ $) 53)) (-2382 (((-656 $) $) 54)) (-1705 (($ (-656 $)) 56)) (-3271 (((-656 $) $) 55)) (-3569 (((-876) $) 12)) (-4137 (((-112) $) 35)) (-1525 (($ $ (-656 (-962 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-962 |#1|))) 37) (((-656 (-962 |#1|)) $) 36)) (-2437 (($ $) 15)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-1155 |#1|) (-141) (-1070)) (T -1155)) +((-3569 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-876)))) (-3741 (*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-4335 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-4335 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-1705 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3271 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-2382 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-1870 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-3634 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3042 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-2074 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2074 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-2074 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3691 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3691 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3071 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-3071 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-3071 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3071 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3071 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) (-4 *1 (-1155 *4)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-962 *3)))))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-962 *3))))))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173)))))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173))))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3791 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3))))) +(-13 (-1121) (-10 -8 (-15 -3741 ($)) (-15 -3741 ($ (-1185 3 |t#1|))) (-15 -2285 ((-783) $)) (-15 -1469 ((-783) $)) (-15 -4335 ($ (-656 $))) (-15 -4335 ($ $ $)) (-15 -1705 ($ (-656 $))) (-15 -3271 ((-656 $) $)) (-15 -2382 ((-656 $) $)) (-15 -1870 ($ $)) (-15 -1575 ((-783) $ (-656 (-962 |t#1|)))) (-15 -3634 ($ $ (-783) (-962 |t#1|))) (-15 -3042 ($ $ (-962 |t#1|))) (-15 -3042 ($ $ (-656 |t#1|))) (-15 -3042 ($ $ (-783))) (-15 -3042 ($ (-962 |t#1|))) (-15 -3042 ((-962 |t#1|) $)) (-15 -2430 ((-112) $)) (-15 -2074 ($ $ (-656 (-962 |t#1|)))) (-15 -2074 ($ $ (-656 (-656 |t#1|)))) (-15 -2074 ($ (-656 (-962 |t#1|)))) (-15 -2074 ((-656 (-962 |t#1|)) $)) (-15 -1746 ((-112) $)) (-15 -1525 ($ $ (-656 (-962 |t#1|)))) (-15 -1525 ($ $ (-656 (-656 |t#1|)))) (-15 -1525 ($ (-656 (-962 |t#1|)))) (-15 -1525 ((-656 (-962 |t#1|)) $)) (-15 -4137 ((-112) $)) (-15 -3691 ($ $ (-656 (-962 |t#1|)))) (-15 -3691 ($ $ (-656 (-656 |t#1|)))) (-15 -3691 ($ (-656 (-962 |t#1|)))) (-15 -3691 ((-656 (-962 |t#1|)) $)) (-15 -4101 ((-112) $)) (-15 -3071 ($ $ (-656 (-656 (-962 |t#1|))) (-656 (-173)) (-173))) (-15 -3071 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -3071 ($ $ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -3071 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -3071 ($ (-656 (-656 (-962 |t#1|))))) (-15 -3071 ($ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -3071 ((-656 (-656 (-962 |t#1|))) $)) (-15 -3866 ((-112) $)) (-15 -1395 ((-656 (-962 |t#1|)) $)) (-15 -3061 ((-656 (-656 (-656 (-783)))) $)) (-15 -2804 ((-656 (-656 (-656 (-962 |t#1|)))) $)) (-15 -2201 ((-656 (-656 (-173))) $)) (-15 -3132 ((-656 (-173)) $)) (-15 -3501 ((-2 (|:| -3791 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -2437 ($ $)) (-15 -2513 ((-1185 3 |t#1|) $)) (-15 -3569 ((-876) $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 184) (($ (-1202)) NIL) (((-1202) $) 7)) (-2705 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1298))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1136))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1172))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1057))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-991))) 99) (((-112) $ (|[\|\|]| (-1094))) 103) (((-112) $ (|[\|\|]| (-1111))) 107) (((-112) $ (|[\|\|]| (-1117))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1187))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1179))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-2113 (((-112) $ $) NIL)) (-1922 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1298) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1136) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1087) $) 64) (((-1299) $) 68) (((-537) $) 72) (((-1172) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1057) $) 92) (((-182) $) 96) (((-991) $) 100) (((-1094) $) 104) (((-1111) $) 108) (((-1117) $) 112) (((-638) $) 116) (((-1187) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1179) $) 144) (((-576) $) 148)) (-2923 (((-112) $ $) NIL))) +(((-1156) (-1158)) (T -1156)) +NIL +(-1158) +((-4342 (((-656 (-1202)) (-1179)) 9))) +(((-1157) (-10 -7 (-15 -4342 ((-656 (-1202)) (-1179))))) (T -1157)) +((-4342 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) +(-10 -7 (-15 -4342 ((-656 (-1202)) (-1179)))) +((-3488 (((-112) $ $) 7)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2705 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1298))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1136))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1172))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1057))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-991))) 45) (((-112) $ (|[\|\|]| (-1094))) 43) (((-112) $ (|[\|\|]| (-1111))) 41) (((-112) $ (|[\|\|]| (-1117))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1187))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1179))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-2113 (((-112) $ $) 6)) (-1922 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1298) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1136) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1087) $) 62) (((-1299) $) 60) (((-537) $) 58) (((-1172) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1057) $) 48) (((-182) $) 46) (((-991) $) 44) (((-1094) $) 42) (((-1111) $) 40) (((-1117) $) 38) (((-638) $) 36) (((-1187) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1179) $) 22) (((-576) $) 20)) (-2923 (((-112) $ $) 8))) +(((-1158) (-141)) (T -1158)) +((-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-220)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-688)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1298)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-618)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-134)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1136)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-693)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1172)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-155)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-683)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-321)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-182)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1111)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-638)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1187)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-157)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-138)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1179)))) (-2705 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-576))))) +(-13 (-1104) (-1283) (-10 -8 (-15 -2705 ((-112) $ (|[\|\|]| (-536)))) (-15 -1922 ((-536) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-220)))) (-15 -1922 ((-220) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-688)))) (-15 -1922 ((-688) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1298)))) (-15 -1922 ((-1298) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-139)))) (-15 -1922 ((-139) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-618)))) (-15 -1922 ((-618) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-134)))) (-15 -1922 ((-134) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1136)))) (-15 -1922 ((-1136) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-96)))) (-15 -1922 ((-96) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-693)))) (-15 -1922 ((-693) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-529)))) (-15 -1922 ((-529) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1087)))) (-15 -1922 ((-1087) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1299)))) (-15 -1922 ((-1299) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-537)))) (-15 -1922 ((-537) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1922 ((-1172) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-155)))) (-15 -1922 ((-155) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-683)))) (-15 -1922 ((-683) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-321)))) (-15 -1922 ((-321) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1057)))) (-15 -1922 ((-1057) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-182)))) (-15 -1922 ((-182) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-991)))) (-15 -1922 ((-991) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1094)))) (-15 -1922 ((-1094) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1111)))) (-15 -1922 ((-1111) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1117)))) (-15 -1922 ((-1117) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-638)))) (-15 -1922 ((-638) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1187)))) (-15 -1922 ((-1187) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-157)))) (-15 -1922 ((-157) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-138)))) (-15 -1922 ((-138) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-490)))) (-15 -1922 ((-490) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-604)))) (-15 -1922 ((-604) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-576)))) (-15 -1922 ((-576) $)))) +(((-93) . T) ((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1104) . T) ((-1238) . T) ((-1283) . T)) +((-1789 (((-1293) (-656 (-876))) 22) (((-1293) (-876)) 21)) (-1912 (((-1293) (-656 (-876))) 20) (((-1293) (-876)) 19)) (-2621 (((-1293) (-656 (-876))) 18) (((-1293) (-876)) 10) (((-1293) (-1179) (-876)) 16))) +(((-1159) (-10 -7 (-15 -2621 ((-1293) (-1179) (-876))) (-15 -2621 ((-1293) (-876))) (-15 -1912 ((-1293) (-876))) (-15 -1789 ((-1293) (-876))) (-15 -2621 ((-1293) (-656 (-876)))) (-15 -1912 ((-1293) (-656 (-876)))) (-15 -1789 ((-1293) (-656 (-876)))))) (T -1159)) +((-1789 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159))))) +(-10 -7 (-15 -2621 ((-1293) (-1179) (-876))) (-15 -2621 ((-1293) (-876))) (-15 -1912 ((-1293) (-876))) (-15 -1789 ((-1293) (-876))) (-15 -2621 ((-1293) (-656 (-876)))) (-15 -1912 ((-1293) (-656 (-876)))) (-15 -1789 ((-1293) (-656 (-876))))) +((-2977 (($ $ $) 10)) (-3180 (($ $) 9)) (-1434 (($ $ $) 13)) (-3186 (($ $ $) 15)) (-3614 (($ $ $) 12)) (-2297 (($ $ $) 14)) (-3235 (($ $) 17)) (-3704 (($ $) 16)) (-1665 (($ $) 6)) (-4228 (($ $ $) 11) (($ $) 7)) (-1475 (($ $ $) 8))) +(((-1160) (-141)) (T -1160)) +((-3235 (*1 *1 *1) (-4 *1 (-1160))) (-3704 (*1 *1 *1) (-4 *1 (-1160))) (-3186 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2297 (*1 *1 *1 *1) (-4 *1 (-1160))) (-1434 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3614 (*1 *1 *1 *1) (-4 *1 (-1160))) (-4228 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2977 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3180 (*1 *1 *1) (-4 *1 (-1160))) (-1475 (*1 *1 *1 *1) (-4 *1 (-1160))) (-4228 (*1 *1 *1) (-4 *1 (-1160))) (-1665 (*1 *1 *1) (-4 *1 (-1160)))) +(-13 (-10 -8 (-15 -1665 ($ $)) (-15 -4228 ($ $)) (-15 -1475 ($ $ $)) (-15 -3180 ($ $)) (-15 -2977 ($ $ $)) (-15 -4228 ($ $ $)) (-15 -3614 ($ $ $)) (-15 -1434 ($ $ $)) (-15 -2297 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3704 ($ $)) (-15 -3235 ($ $)))) +((-3488 (((-112) $ $) 44)) (-3104 ((|#1| $) 17)) (-2739 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2052 (((-112) $) 19)) (-4325 (($ $ |#1|) 30)) (-2880 (($ $ (-112)) 32)) (-2743 (($ $) 33)) (-3084 (($ $ |#2|) 31)) (-1413 (((-1179) $) NIL)) (-1503 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1450 (((-1141) $) NIL)) (-2866 (((-112) $) 16)) (-3839 (($) 13)) (-1870 (($ $) 29)) (-3581 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3986 ((|#2| $) 18)) (-3569 (((-876) $) 53)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 42))) +(((-1161 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3839 ($)) (-15 -2866 ((-112) $)) (-15 -3104 (|#1| $)) (-15 -3986 (|#2| $)) (-15 -2052 ((-112) $)) (-15 -3581 ($ |#1| |#2| (-112))) (-15 -3581 ($ |#1| |#2|)) (-15 -3581 ($ (-2 (|:| |val| |#1|) (|:| -3987 |#2|)))) (-15 -3581 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))))) (-15 -3581 ((-656 $) |#1| (-656 |#2|))) (-15 -1870 ($ $)) (-15 -4325 ($ $ |#1|)) (-15 -3084 ($ $ |#2|)) (-15 -2880 ($ $ (-112))) (-15 -2743 ($ $)) (-15 -1503 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2739 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1161)) +((-3839 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3104 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *3 (-13 (-1121) (-34))))) (-3986 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3987 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3987 *5)))) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) (-3581 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) (-4 *3 (-13 (-1121) (-34))))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4325 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3084 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) (-4 *2 (-13 (-1121) (-34))))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2743 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-1503 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *5 *6)))) (-2739 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) +(-13 (-1121) (-10 -8 (-15 -3839 ($)) (-15 -2866 ((-112) $)) (-15 -3104 (|#1| $)) (-15 -3986 (|#2| $)) (-15 -2052 ((-112) $)) (-15 -3581 ($ |#1| |#2| (-112))) (-15 -3581 ($ |#1| |#2|)) (-15 -3581 ($ (-2 (|:| |val| |#1|) (|:| -3987 |#2|)))) (-15 -3581 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))))) (-15 -3581 ((-656 $) |#1| (-656 |#2|))) (-15 -1870 ($ $)) (-15 -4325 ($ $ |#1|)) (-15 -3084 ($ $ |#2|)) (-15 -2880 ($ $ (-112))) (-15 -2743 ($ $)) (-15 -1503 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2739 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3488 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-3104 (((-1161 |#1| |#2|) $) 27)) (-1967 (($ $) 91)) (-3100 (((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3127 (($ $ $ (-656 (-1161 |#1| |#2|))) 108) (($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2396 (((-112) $ (-783)) NIL)) (-2232 (((-1161 |#1| |#2|) $ (-1161 |#1| |#2|)) 46 (|has| $ (-6 -4465)))) (-3755 (((-1161 |#1| |#2|) $ "value" (-1161 |#1| |#2|)) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 44 (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-2529 (((-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) $) 95)) (-2065 (($ (-1161 |#1| |#2|) $) 42)) (-3945 (($ (-1161 |#1| |#2|) $) 34)) (-3965 (((-656 (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 54)) (-3040 (((-112) (-1161 |#1| |#2|) $) 97)) (-3695 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 (-1161 |#1| |#2|)) $) 58 (|has| $ (-6 -4464)))) (-3456 (((-112) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-1161 |#1| |#2|) (-1121))))) (-4322 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 50 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 49)) (-3557 (((-112) $ (-783)) NIL)) (-2351 (((-656 (-1161 |#1| |#2|)) $) 56)) (-2953 (((-112) $) 45)) (-1413 (((-1179) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-1450 (((-1141) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2658 (((-3 $ "failed") $) 89)) (-3542 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-1161 |#1| |#2|)))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-304 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-1161 |#1| |#2|) (-1161 |#1| |#2|)) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-656 (-1161 |#1| |#2|)) (-656 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121))))) (-3509 (((-112) $ $) 53)) (-2866 (((-112) $) 24)) (-3839 (($) 26)) (-2796 (((-1161 |#1| |#2|) $ "value") NIL)) (-3957 (((-576) $ $) NIL)) (-2199 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464))) (((-783) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-1161 |#1| |#2|) (-1121))))) (-1870 (($ $) 52)) (-3581 (($ (-1161 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1161 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1347 (((-656 |#2|) $) 96)) (-3569 (((-876) $) 87 (|has| (-1161 |#1| |#2|) (-625 (-876))))) (-3338 (((-656 $) $) 31)) (-4386 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2113 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-2170 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 70 (|has| (-1161 |#1| |#2|) (-102)))) (-3502 (((-783) $) 64 (|has| $ (-6 -4464))))) +(((-1162 |#1| |#2|) (-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2658 ((-3 $ "failed") $)) (-15 -1967 ($ $)) (-15 -3581 ($ (-1161 |#1| |#2|))) (-15 -3581 ($ |#1| |#2| (-656 $))) (-15 -3581 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -3581 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1347 ((-656 |#2|) $)) (-15 -2529 ((-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) $)) (-15 -3040 ((-112) (-1161 |#1| |#2|) $)) (-15 -3100 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3945 ($ (-1161 |#1| |#2|) $)) (-15 -2065 ($ (-1161 |#1| |#2|) $)) (-15 -3127 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -3127 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1162)) +((-2658 (*1 *1 *1) (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-1967 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1161 *2 *3))) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)))) (-3581 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3040 (*1 *2 *3 *1) (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)))) (-3100 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *5 *6)))) (-3945 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-3127 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-3127 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *1 (-1162 *4 *5))))) +(-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2658 ((-3 $ "failed") $)) (-15 -1967 ($ $)) (-15 -3581 ($ (-1161 |#1| |#2|))) (-15 -3581 ($ |#1| |#2| (-656 $))) (-15 -3581 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -3581 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1347 ((-656 |#2|) $)) (-15 -2529 ((-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) $)) (-15 -3040 ((-112) (-1161 |#1| |#2|) $)) (-15 -3100 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3945 ($ (-1161 |#1| |#2|) $)) (-15 -2065 ($ (-1161 |#1| |#2|) $)) (-15 -3127 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -3127 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2591 (($ $) NIL)) (-2208 ((|#2| $) NIL)) (-3400 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-1666 (($ (-701 |#2|)) 56)) (-4006 (((-112) $) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-3477 (($ |#2|) 14)) (-3306 (($) NIL T CONST)) (-3377 (($ $) 69 (|has| |#2| (-317)))) (-3823 (((-245 |#1| |#2|) $ (-576)) 42)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) 83)) (-3733 (((-783) $) 71 (|has| |#2| (-568)))) (-4272 ((|#2| $ (-576) (-576)) NIL)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $) NIL)) (-4198 (((-783) $) 73 (|has| |#2| (-568)))) (-3392 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-1689 (((-783) $) NIL)) (-4140 (($ |#2|) 25)) (-1699 (((-783) $) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-3117 ((|#2| $) 67 (|has| |#2| (-6 (-4466 "*"))))) (-3536 (((-576) $) NIL)) (-1643 (((-576) $) NIL)) (-2735 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2858 (((-576) $) NIL)) (-3129 (((-576) $) NIL)) (-2465 (($ (-656 (-656 |#2|))) 37)) (-4322 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2093 (((-656 (-656 |#2|)) $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1413 (((-1179) $) NIL)) (-2549 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3542 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2773 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2945 ((|#2| $) NIL)) (-4273 (($ (-656 |#2|)) 50)) (-2106 (((-112) $) NIL)) (-3312 (((-245 |#1| |#2|) $) NIL)) (-2131 ((|#2| $) 65 (|has| |#2| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-3083 (((-245 |#1| |#2|) $ (-576)) 44)) (-3569 (((-876) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-1778 (((-783)) 23 T CONST)) (-2113 (((-112) $ $) NIL)) (-2170 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1893 (((-112) $) NIL)) (-2719 (($) 16 T CONST)) (-2730 (($) 21 T CONST)) (-2018 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1163 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4140 ($ |#2|)) (-15 -2591 ($ $)) (-15 -1666 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4466 "*"))) (-6 -4453) |%noBranch|) (IF (|has| |#2| (-6 (-4466 "*"))) (IF (|has| |#2| (-6 -4461)) (-6 -4461) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1070)) (T -1163)) +((-4140 (*1 *1 *2) (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1070)))) (-2591 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070)))) (-1666 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-783))))) +(-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4140 ($ |#2|)) (-15 -2591 ($ $)) (-15 -1666 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4466 "*"))) (-6 -4453) |%noBranch|) (IF (|has| |#2| (-6 (-4466 "*"))) (IF (|has| |#2| (-6 -4461)) (-6 -4461) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-3254 (($ $) 19)) (-4330 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2165 (((-112) $ $) 24)) (-1481 (($ $) 17)) (-2796 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) 31)) (-3569 (($ (-145)) 29) (((-876) $) NIL))) +(((-1164 |#1|) (-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -4330 (|#1| |#1| (-142))) (-15 -4330 (|#1| |#1| (-145))) (-15 -3569 (|#1| (-145))) (-15 -2165 ((-112) |#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -2796 ((-145) |#1| (-576))) (-15 -2796 ((-145) |#1| (-576) (-145)))) (-1165)) (T -1164)) +NIL +(-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -4330 (|#1| |#1| (-142))) (-15 -4330 (|#1| |#1| (-145))) (-15 -3569 (|#1| (-145))) (-15 -2165 ((-112) |#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -2796 ((-145) |#1| (-576))) (-15 -2796 ((-145) |#1| (-576) (-145)))) +((-3488 (((-112) $ $) 20 (|has| (-145) (-102)))) (-4222 (($ $) 123)) (-3254 (($ $) 124)) (-4330 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2139 (((-112) $ $) 121)) (-2115 (((-112) $ $ (-576)) 120)) (-4064 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-2071 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-2450 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-2396 (((-112) $ (-783)) 8)) (-3755 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) 60 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-2636 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-1474 (($ $) 93 (|has| $ (-6 -4465)))) (-3834 (($ $) 103)) (-3916 (($ $ (-1255 (-576)) $) 117)) (-2800 (($ $) 80 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-145) $) 79 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4464)))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4464)))) (-4332 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4465)))) (-4272 (((-145) $ (-576)) 52)) (-2165 (((-112) $ $) 122)) (-3659 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3965 (((-656 (-145)) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-145)) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| (-145) (-861)))) (-4335 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-2735 (((-656 (-145)) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-1951 (($ $ $) 86 (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) 118)) (-1358 (((-783) $ $ (-145)) 119)) (-4322 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-4287 (($ $) 125)) (-1481 (($ $) 126)) (-3557 (((-112) $ (-783)) 10)) (-2647 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1413 (((-1179) $) 23 (|has| (-145) (-1121)))) (-2174 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| (-145) (-1121)))) (-3580 (((-145) $) 43 (|has| (-576) (-861)))) (-2366 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2740 (($ $ (-145)) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1681 (((-656 (-145)) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1255 (-576))) 71) (($ $ $) 105)) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4464))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-2568 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-3581 (($ (-656 (-145))) 72)) (-1615 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (($ (-145)) 114) (((-876) $) 18 (|has| (-145) (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| (-145) (-102)))) (-2170 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 87 (|has| (-145) (-861)))) (-2962 (((-112) $ $) 89 (|has| (-145) (-861)))) (-2923 (((-112) $ $) 19 (|has| (-145) (-102)))) (-2978 (((-112) $ $) 88 (|has| (-145) (-861)))) (-2948 (((-112) $ $) 90 (|has| (-145) (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1165) (-141)) (T -1165)) +((-1481 (*1 *1 *1) (-4 *1 (-1165))) (-4287 (*1 *1 *1) (-4 *1 (-1165))) (-3254 (*1 *1 *1) (-4 *1 (-1165))) (-4222 (*1 *1 *1) (-4 *1 (-1165))) (-2165 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2139 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2115 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1358 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-783)))) (-1916 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3916 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576))))) (-3659 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)))) (-3659 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1165)))) (-4064 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-4064 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-4330 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-4330 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2796 (*1 *1 *1 *1) (-4 *1 (-1165)))) +(-13 (-19 (-145)) (-10 -8 (-15 -1481 ($ $)) (-15 -4287 ($ $)) (-15 -3254 ($ $)) (-15 -4222 ($ $)) (-15 -2165 ((-112) $ $)) (-15 -2139 ((-112) $ $)) (-15 -2115 ((-112) $ $ (-576))) (-15 -1358 ((-783) $ $ (-145))) (-15 -1916 ((-112) $ $ (-145))) (-15 -3916 ($ $ (-1255 (-576)) $)) (-15 -3659 ((-576) $ $ (-576))) (-15 -3659 ((-576) (-142) $ (-576))) (-15 -3569 ($ (-145))) (-15 -4064 ((-656 $) $ (-145))) (-15 -4064 ((-656 $) $ (-142))) (-15 -4330 ($ $ (-145))) (-15 -4330 ($ $ (-142))) (-15 -2647 ($ $ (-145))) (-15 -2647 ($ $ (-142))) (-15 -2636 ($ $ (-145))) (-15 -2636 ($ $ (-142))) (-15 -2796 ($ $ $)))) +(((-34) . T) ((-102) -2758 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-102))) ((-625 (-876)) -2758 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-625 (-876)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-663 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-864) |has| (-145) (-861)) ((-1121) -2758 (|has| (-145) (-1121)) (|has| (-145) (-861))) ((-1238) . T)) +((-1832 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783)) 112)) (-3590 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 61)) (-4395 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)) 97)) (-3368 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-4242 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-3443 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-4171 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 90)) (-3769 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 60)) (-3508 (((-783) (-656 |#4|) (-656 |#5|)) 21))) +(((-1166 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3508 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3368 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3769 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1832 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4395 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -1166)) +((-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1166 *4 *5 *6 *7 *8)))) (-1832 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11)))) (-3443 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3443 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4242 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-4242 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-4242 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) (-3590 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-3769 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3508 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3368 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3769 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -3590 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4242 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3443 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1832 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4395 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) +((-3488 (((-112) $ $) NIL)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3597 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1966 (((-656 |#3|) $) NIL)) (-1755 (((-112) $) NIL)) (-1781 (((-112) $) NIL (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2795 ((|#4| |#4| $) NIL)) (-3420 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 97)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-1971 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 75)) (-3306 (($) NIL T CONST)) (-3290 (((-112) $) 29 (|has| |#1| (-568)))) (-2879 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1576 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3489 (((-112) $) NIL (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4356 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 45)) (-3947 ((|#4| |#4| $) 78)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2873 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-1793 (((-112) |#4| $) NIL)) (-2989 (((-112) |#4| $) NIL)) (-2464 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3085 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2665 ((|#3| $) 38)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4322 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 23)) (-1994 (((-656 |#3|) $) NIL)) (-1983 (((-112) |#3| $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-1988 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-1728 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 117)) (-3967 (((-3 |#4| "failed") $) 42)) (-2042 (((-656 $) |#4| $) 102)) (-3059 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-4244 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1834 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-2256 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-2289 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1809 (((-656 |#4|) $) NIL)) (-3455 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2860 ((|#4| |#4| $) NIL)) (-1716 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3764 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 40)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3260 (((-3 $ "failed") $ |#4|) 59)) (-3169 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-3542 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 17)) (-3839 (($) 14)) (-3600 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 22)) (-2907 (($ $ |#3|) 52)) (-4080 (($ $ |#3|) 54)) (-3453 (($ $) NIL)) (-3698 (($ $ |#3|) NIL)) (-3569 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3000 (((-783) $) NIL (|has| |#3| (-379)))) (-2113 (((-112) $ $) NIL)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1528 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2170 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) NIL)) (-2011 (((-112) |#4| $) NIL)) (-2951 (((-112) |#3| $) 74)) (-2923 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1167 |#1| |#2| |#3| |#4|) (-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2289 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2256 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3085 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1167)) +((-2289 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-3597 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3597 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-2256 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3085 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2289 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3597 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2256 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3085 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1419 ((|#1| $) 37)) (-2656 (($ (-656 |#1|)) 45)) (-2396 (((-112) $ (-783)) NIL)) (-3306 (($) NIL T CONST)) (-4232 ((|#1| |#1| $) 40)) (-2489 ((|#1| $) 35)) (-3965 (((-656 |#1|) $) 18 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 22)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3772 ((|#1| $) 38)) (-4436 (($ |#1| $) 41)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3267 ((|#1| $) 36)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 32)) (-3839 (($) 43)) (-1887 (((-783) $) 30)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 27)) (-3569 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1470 (($ (-656 |#1|)) NIL)) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 17 (|has| |#1| (-102)))) (-3502 (((-783) $) 31 (|has| $ (-6 -4464))))) +(((-1168 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -2656 ($ (-656 |#1|))))) (-1238)) (T -1168)) +((-2656 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) +(-13 (-1142 |#1|) (-10 -8 (-15 -2656 ($ (-656 |#1|))))) +((-3755 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-3554 (((-112) $) 12)) (-4322 (($ (-1 |#2| |#2|) $) 48)) (-3580 ((|#2| $) NIL) (($ $ (-783)) 17)) (-2740 (($ $ |#2|) 49)) (-3997 (((-112) $) 11)) (-2796 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1255 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-2563 (($ $ $) 56) (($ $ |#2|) NIL)) (-1615 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) +(((-1169 |#1| |#2|) (-10 -8 (-15 -3554 ((-112) |#1|)) (-15 -3997 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -1615 (|#1| |#1| |#2|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -2563 (|#1| |#1| |#2|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| "last")) (-15 -2796 (|#1| |#1| "rest")) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2796 (|#2| |#1| "value")) (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|))) (-1170 |#2|) (-1238)) (T -1169)) +NIL +(-10 -8 (-15 -3554 ((-112) |#1|)) (-15 -3997 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -1615 (|#1| |#1| |#2|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -2563 (|#1| |#1| |#2|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| "last")) (-15 -2796 (|#1| |#1| "rest")) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2796 (|#2| |#1| "value")) (-15 -4322 (|#1| (-1 |#2| |#2|) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2897 ((|#1| $) 66)) (-4425 (($ $) 68)) (-1656 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1512 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4464)))) (-2882 ((|#1| $) 67)) (-3306 (($) 7 T CONST)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-2800 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4464))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4332 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 89)) (-3554 (((-112) $) 85)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) 111)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 97 (|has| (-576) (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 96 (|has| (-576) (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3967 ((|#1| $) 71) (($ $ (-783)) 69)) (-2174 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2764 (((-656 (-576)) $) 94)) (-4018 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2740 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-3997 (((-112) $) 86)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 92)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3957 (((-576) $ $) 45)) (-3463 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-2199 (((-112) $) 47)) (-2560 (($ $) 63)) (-3930 (($ $) 60 (|has| $ (-6 -4465)))) (-1594 (((-783) $) 64)) (-3574 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 109)) (-2563 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1170 |#1|) (-141) (-1238)) (T -1170)) +((-3997 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(-13 (-1276 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3997 ((-112) $)) (-15 -3554 ((-112) $)))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T) ((-1276 |#1|) . T)) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2764 (((-656 |#1|) $) NIL)) (-4018 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1171 |#1| |#2| |#3|) (-1214 |#1| |#2|) (-1121) (-1121) |#2|) (T -1171)) +NIL +(-1214 |#1| |#2|) +((-3488 (((-112) $ $) NIL)) (-2950 (((-703 (-1156)) $) 27)) (-1616 (((-1156) $) 15)) (-3644 (((-1156) $) 17)) (-1413 (((-1179) $) NIL)) (-3304 (((-518) $) 13)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 37) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1172) (-13 (-1104) (-10 -8 (-15 -3304 ((-518) $)) (-15 -3644 ((-1156) $)) (-15 -2950 ((-703 (-1156)) $)) (-15 -1616 ((-1156) $))))) (T -1172)) +((-3304 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) +(-13 (-1104) (-10 -8 (-15 -3304 ((-518) $)) (-15 -3644 ((-1156) $)) (-15 -2950 ((-703 (-1156)) $)) (-15 -1616 ((-1156) $)))) +((-3488 (((-112) $ $) 7)) (-3396 (((-3 $ "failed") $) 14)) (-1413 (((-1179) $) 10)) (-3539 (($) 15 T CONST)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2923 (((-112) $ $) 8))) +(((-1173) (-141)) (T -1173)) +((-3539 (*1 *1) (-4 *1 (-1173))) (-3396 (*1 *1 *1) (|partial| -4 *1 (-1173)))) +(-13 (-1121) (-10 -8 (-15 -3539 ($) -1480) (-15 -3396 ((-3 $ "failed") $)))) +(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) +((-2793 (((-1178 |#1|) (-1178 |#1|)) 17)) (-2883 (((-1178 |#1|) (-1178 |#1|)) 13)) (-2260 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 20)) (-3366 (((-1178 |#1|) (-1178 |#1|)) 15))) +(((-1174 |#1|) (-10 -7 (-15 -2883 ((-1178 |#1|) (-1178 |#1|))) (-15 -3366 ((-1178 |#1|) (-1178 |#1|))) (-15 -2793 ((-1178 |#1|) (-1178 |#1|))) (-15 -2260 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1174)) +((-2260 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1174 *4)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-3366 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-2883 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3))))) +(-10 -7 (-15 -2883 ((-1178 |#1|) (-1178 |#1|))) (-15 -3366 ((-1178 |#1|) (-1178 |#1|))) (-15 -2793 ((-1178 |#1|) (-1178 |#1|))) (-15 -2260 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) +((-1615 (((-1178 |#1|) (-1178 (-1178 |#1|))) 15))) +(((-1175 |#1|) (-10 -7 (-15 -1615 ((-1178 |#1|) (-1178 (-1178 |#1|))))) (-1238)) (T -1175)) +((-1615 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1175 *4)) (-4 *4 (-1238))))) +(-10 -7 (-15 -1615 ((-1178 |#1|) (-1178 (-1178 |#1|))))) +((-2727 (((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 25)) (-3685 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 26)) (-4116 (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 16))) +(((-1176 |#1| |#2|) (-10 -7 (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -2727 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -3685 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) (-1238) (-1238)) (T -1176)) +((-3685 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1176 *5 *2)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1176 *5 *6))))) +(-10 -7 (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -2727 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -3685 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) +((-4116 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)) 21))) +(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -1177)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-1177 *6 *7 *8))))) +(-10 -7 (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2897 ((|#1| $) NIL)) (-4425 (($ $) 67)) (-1656 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-4075 (($ $ (-576)) 128 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-2265 (((-876) $) 56 (|has| |#1| (-1121)))) (-3354 (((-112)) 55 (|has| |#1| (-1121)))) (-2232 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1512 (($ $ $) 115 (|has| $ (-6 -4465))) (($ $ (-576) $) 141)) (-3099 ((|#1| $ |#1|) 125 (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) 120 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4465))) (($ $ "rest" $) 124 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 112 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 80)) (-2882 ((|#1| $) NIL)) (-3306 (($) NIL T CONST)) (-1969 (($ $) 14)) (-3592 (($ $) 40) (($ $ (-783)) 111)) (-2088 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1121)))) (-3371 (($ (-656 |#1|)) 130)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) 79)) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3554 (((-112) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2750 (((-1293) (-576) $) 140 (|has| |#1| (-1121)))) (-4072 (((-783) $) 137)) (-2324 (((-656 $) $) NIL)) (-3695 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3557 (((-112) $ (-783)) NIL)) (-2351 (((-656 |#1|) $) NIL)) (-2953 (((-112) $) NIL)) (-2187 (($ $) 113)) (-2110 (((-112) $) 13)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3967 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2174 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) 96)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4353 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2196 ((|#1| $) 10)) (-3580 ((|#1| $) 39) (($ $ (-783)) 65)) (-3693 (((-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1952 (($ (-1 (-112) |#1|) $) 145)) (-1963 (($ (-1 (-112) |#1|) $) 146)) (-2740 (($ $ |#1|) 90 (|has| $ (-6 -4465)))) (-3169 (($ $ (-576)) 45)) (-3997 (((-112) $) 94)) (-2235 (((-112) $) 12)) (-3434 (((-112) $) 136)) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 30)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) 20)) (-3839 (($) 60)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3957 (((-576) $ $) 64)) (-3463 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1414 (($ (-1 $)) 63)) (-2199 (((-112) $) 91)) (-2560 (($ $) 92)) (-3930 (($ $) 116 (|has| $ (-6 -4465)))) (-1594 (((-783) $) NIL)) (-3574 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 59)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 73)) (-2839 (($ |#1| $) 114)) (-2563 (($ $ $) 118 (|has| $ (-6 -4465))) (($ $ |#1|) 119 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-1633 (($ $) 66)) (-3569 (($ (-656 |#1|)) 129) (((-876) $) 57 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 132 (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1178 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4465) (-15 -3371 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -2088 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3693 ((-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -1414 ($ (-1 $))) (-15 -2839 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2750 ((-1293) (-576) $)) (-15 -2265 ((-876) $)) (-15 -3354 ((-112)))) |%noBranch|) (-15 -1512 ($ $ (-576) $)) (-15 -4353 ($ (-1 |#1|))) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1963 ($ (-1 (-112) |#1|) $)))) (-1238)) (T -1178)) +((-3371 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-2088 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) (-5 *1 (-1178 *4)))) (-3693 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783)))) (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783)))) (-1414 (*1 *1 *2) (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238)))) (-2750 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-3354 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-1512 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1963 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4465) (-15 -3371 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -2088 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3693 ((-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -1414 ($ (-1 $))) (-15 -2839 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2750 ((-1293) (-576) $)) (-15 -2265 ((-876) $)) (-15 -3354 ((-112)))) |%noBranch|) (-15 -1512 ($ $ (-576) $)) (-15 -4353 ($ (-1 |#1|))) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1963 ($ (-1 (-112) |#1|) $)))) +((-3488 (((-112) $ $) NIL (|has| (-145) (-102)))) (-4222 (($ $) NIL)) (-3254 (($ $) NIL)) (-4330 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2139 (((-112) $ $) NIL)) (-2115 (((-112) $ $ (-576)) NIL)) (-1329 (($ (-576)) 8) (($ (-227)) 10)) (-4064 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-2071 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-2450 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-861))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-2636 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-3916 (($ $ (-1255 (-576)) $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3945 (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465)))) (-4272 (((-145) $ (-576)) NIL)) (-2165 (((-112) $ $) NIL)) (-3659 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1121))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3965 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-145)) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-145) (-861)))) (-4335 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2735 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-4027 (((-576) $) NIL (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) NIL)) (-1358 (((-783) $ $ (-145)) NIL)) (-4322 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-4287 (($ $) NIL)) (-1481 (($ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-2647 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1413 (((-1179) $) NIL (|has| (-145) (-1121)))) (-2174 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| (-145) (-1121)))) (-3580 (((-145) $) NIL (|has| (-576) (-861)))) (-2366 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2740 (($ $ (-145)) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1681 (((-656 (-145)) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) NIL)) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3581 (($ (-656 (-145))) NIL)) (-1615 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (($ (-145)) NIL) (((-876) $) NIL (|has| (-145) (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2170 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3157 (((-1179) $) 21) (((-1179) $ (-112)) 23) (((-1293) (-834) $) 24) (((-1293) (-834) $ (-112)) 25)) (-2991 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2923 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2948 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1179) (-13 (-1165) (-840) (-10 -8 (-15 -1329 ($ (-576))) (-15 -1329 ($ (-227)))))) (T -1179)) +((-1329 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179))))) +(-13 (-1165) (-840) (-10 -8 (-15 -1329 ($ (-576))) (-15 -1329 ($ (-227))))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-102)) (|has| |#1| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL)) (-1656 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-1179) |#1|) NIL)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#1| "failed") (-1179) $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#1| "failed") (-1179) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-1179)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2735 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-3203 (((-656 (-1179)) $) NIL)) (-2419 (((-112) (-1179) $) NIL)) (-3772 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL)) (-2764 (((-656 (-1179)) $) NIL)) (-4018 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-3580 ((|#1| $) NIL (|has| (-1179) (-861)))) (-2366 (((-3 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) "failed") (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-1179)) NIL) ((|#1| $ (-1179) |#1|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-1121)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-625 (-876))) (|has| |#1| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-102)) (|has| |#1| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 (-1179)) (|:| -4438 |#1|)) (-102)) (|has| |#1| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1180 |#1|) (-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4464))) (-1121)) (T -1180)) +NIL +(-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4464))) +((-3216 (((-1178 |#1|) (-1178 |#1|)) 83)) (-3451 (((-3 (-1178 |#1|) "failed") (-1178 |#1|)) 39)) (-3103 (((-1178 |#1|) (-419 (-576)) (-1178 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3701 (((-1178 |#1|) |#1| (-1178 |#1|)) 139 (|has| |#1| (-374)))) (-4081 (((-1178 |#1|) (-1178 |#1|)) 97)) (-4028 (((-1178 (-576)) (-576)) 63)) (-2979 (((-1178 |#1|) (-1178 (-1178 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2875 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 102)) (-3684 (((-1178 |#1|) |#1| (-576)) 51)) (-3192 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 66)) (-4194 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 136 (|has| |#1| (-374)))) (-2468 (((-1178 |#1|) |#1| (-1 (-1178 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-1679 (((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|))) 137 (|has| |#1| (-374)))) (-3108 (((-1178 |#1|) (-1178 |#1|)) 96)) (-1715 (((-1178 |#1|) (-1178 |#1|)) 82)) (-1739 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 103)) (-3441 (((-1178 |#1|) |#1| (-1178 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2562 (((-1178 (-576)) (-576)) 62)) (-3895 (((-1178 |#1|) |#1|) 65)) (-3436 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 99)) (-2689 (((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|)) 72)) (-3475 (((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|)) 37)) (-4012 (((-1178 |#1|) (-1178 |#1|)) 98)) (-3283 (((-1178 |#1|) (-1178 |#1|) |#1|) 77)) (-2316 (((-1178 |#1|) (-1178 |#1|)) 68)) (-1997 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 78)) (-3569 (((-1178 |#1|) |#1|) 73)) (-2616 (((-1178 |#1|) (-1178 (-1178 |#1|))) 88)) (-3056 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 38)) (-3043 (((-1178 |#1|) (-1178 |#1|)) 21) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 23)) (-3029 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 17)) (* (((-1178 |#1|) (-1178 |#1|) |#1|) 29) (((-1178 |#1|) |#1| (-1178 |#1|)) 26) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 27))) +(((-1181 |#1|) (-10 -7 (-15 -3029 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3475 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -3056 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3451 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -3684 ((-1178 |#1|) |#1| (-576))) (-15 -2562 ((-1178 (-576)) (-576))) (-15 -4028 ((-1178 (-576)) (-576))) (-15 -3895 ((-1178 |#1|) |#1|)) (-15 -3192 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2316 ((-1178 |#1|) (-1178 |#1|))) (-15 -2689 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -3569 ((-1178 |#1|) |#1|)) (-15 -3283 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -1997 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1715 ((-1178 |#1|) (-1178 |#1|))) (-15 -3216 ((-1178 |#1|) (-1178 |#1|))) (-15 -2616 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -3108 ((-1178 |#1|) (-1178 |#1|))) (-15 -4081 ((-1178 |#1|) (-1178 |#1|))) (-15 -4012 ((-1178 |#1|) (-1178 |#1|))) (-15 -3436 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -2875 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -1739 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -2468 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -2979 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -3103 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4194 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1679 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -3701 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) (-1070)) (T -1181)) +((-3701 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3103 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)))) (-2468 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-3441 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1739 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2875 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-3436 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1070)))) (-3216 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3283 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-2689 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2316 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3192 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3895 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-4028 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-2562 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-3451 (*1 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3056 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3475 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3043 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(-10 -7 (-15 -3029 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3475 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -3056 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3451 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -3684 ((-1178 |#1|) |#1| (-576))) (-15 -2562 ((-1178 (-576)) (-576))) (-15 -4028 ((-1178 (-576)) (-576))) (-15 -3895 ((-1178 |#1|) |#1|)) (-15 -3192 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2316 ((-1178 |#1|) (-1178 |#1|))) (-15 -2689 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -3569 ((-1178 |#1|) |#1|)) (-15 -3283 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -1997 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1715 ((-1178 |#1|) (-1178 |#1|))) (-15 -3216 ((-1178 |#1|) (-1178 |#1|))) (-15 -2616 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -3108 ((-1178 |#1|) (-1178 |#1|))) (-15 -4081 ((-1178 |#1|) (-1178 |#1|))) (-15 -4012 ((-1178 |#1|) (-1178 |#1|))) (-15 -3436 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -2875 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -1739 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -2468 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -2979 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -3103 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4194 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1679 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -3701 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) +((-4024 (((-1178 |#1|) (-1178 |#1|)) 60)) (-3900 (((-1178 |#1|) (-1178 |#1|)) 42)) (-4005 (((-1178 |#1|) (-1178 |#1|)) 56)) (-3876 (((-1178 |#1|) (-1178 |#1|)) 38)) (-4049 (((-1178 |#1|) (-1178 |#1|)) 63)) (-3919 (((-1178 |#1|) (-1178 |#1|)) 45)) (-3744 (((-1178 |#1|) (-1178 |#1|)) 34)) (-4103 (((-1178 |#1|) (-1178 |#1|)) 29)) (-4060 (((-1178 |#1|) (-1178 |#1|)) 64)) (-3929 (((-1178 |#1|) (-1178 |#1|)) 46)) (-4036 (((-1178 |#1|) (-1178 |#1|)) 61)) (-3909 (((-1178 |#1|) (-1178 |#1|)) 43)) (-4013 (((-1178 |#1|) (-1178 |#1|)) 58)) (-3888 (((-1178 |#1|) (-1178 |#1|)) 40)) (-2789 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3960 (((-1178 |#1|) (-1178 |#1|)) 50)) (-4070 (((-1178 |#1|) (-1178 |#1|)) 66)) (-3937 (((-1178 |#1|) (-1178 |#1|)) 48)) (-2814 (((-1178 |#1|) (-1178 |#1|)) 71)) (-3982 (((-1178 |#1|) (-1178 |#1|)) 53)) (-4387 (((-1178 |#1|) (-1178 |#1|)) 72)) (-3994 (((-1178 |#1|) (-1178 |#1|)) 54)) (-2802 (((-1178 |#1|) (-1178 |#1|)) 70)) (-3973 (((-1178 |#1|) (-1178 |#1|)) 52)) (-4082 (((-1178 |#1|) (-1178 |#1|)) 69)) (-3950 (((-1178 |#1|) (-1178 |#1|)) 51)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 36))) +(((-1182 |#1|) (-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2789 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1182)) +((-4387 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4024 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3))))) +(-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2789 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) +((-4024 (((-1178 |#1|) (-1178 |#1|)) 102)) (-3900 (((-1178 |#1|) (-1178 |#1|)) 61)) (-1505 (((-2 (|:| -4005 (-1178 |#1|)) (|:| -4013 (-1178 |#1|))) (-1178 |#1|)) 98)) (-4005 (((-1178 |#1|) (-1178 |#1|)) 99)) (-2959 (((-2 (|:| -3876 (-1178 |#1|)) (|:| -3888 (-1178 |#1|))) (-1178 |#1|)) 54)) (-3876 (((-1178 |#1|) (-1178 |#1|)) 55)) (-4049 (((-1178 |#1|) (-1178 |#1|)) 104)) (-3919 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3744 (((-1178 |#1|) (-1178 |#1|)) 40)) (-4103 (((-1178 |#1|) (-1178 |#1|)) 37)) (-4060 (((-1178 |#1|) (-1178 |#1|)) 105)) (-3929 (((-1178 |#1|) (-1178 |#1|)) 69)) (-4036 (((-1178 |#1|) (-1178 |#1|)) 103)) (-3909 (((-1178 |#1|) (-1178 |#1|)) 64)) (-4013 (((-1178 |#1|) (-1178 |#1|)) 100)) (-3888 (((-1178 |#1|) (-1178 |#1|)) 56)) (-2789 (((-1178 |#1|) (-1178 |#1|)) 113)) (-3960 (((-1178 |#1|) (-1178 |#1|)) 88)) (-4070 (((-1178 |#1|) (-1178 |#1|)) 107)) (-3937 (((-1178 |#1|) (-1178 |#1|)) 84)) (-2814 (((-1178 |#1|) (-1178 |#1|)) 117)) (-3982 (((-1178 |#1|) (-1178 |#1|)) 92)) (-4387 (((-1178 |#1|) (-1178 |#1|)) 119)) (-3994 (((-1178 |#1|) (-1178 |#1|)) 94)) (-2802 (((-1178 |#1|) (-1178 |#1|)) 115)) (-3973 (((-1178 |#1|) (-1178 |#1|)) 90)) (-4082 (((-1178 |#1|) (-1178 |#1|)) 109)) (-3950 (((-1178 |#1|) (-1178 |#1|)) 86)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 41))) +(((-1183 |#1|) (-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2959 ((-2 (|:| -3876 (-1178 |#1|)) (|:| -3888 (-1178 |#1|))) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -1505 ((-2 (|:| -4005 (-1178 |#1|)) (|:| -4013 (-1178 |#1|))) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2789 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1183)) +((-4387 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4024 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-1505 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -4005 (-1178 *4)) (|:| -4013 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2959 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3876 (-1178 *4)) (|:| -3888 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) +(-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2959 ((-2 (|:| -3876 (-1178 |#1|)) (|:| -3888 (-1178 |#1|))) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -1505 ((-2 (|:| -4005 (-1178 |#1|)) (|:| -4013 (-1178 |#1|))) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2789 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) +((-1931 (((-977 |#2|) |#2| |#2|) 50)) (-1371 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -1931 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1371 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1264 |#1|)) (T -1184)) +((-1371 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) (-4 *2 (-1264 *3)))) (-1931 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1931 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1371 (|#2| |#2| |#1|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1732 (($ $ (-656 (-783))) 79)) (-2513 (($) 33)) (-2593 (($ $) 51)) (-4271 (((-656 $) $) 60)) (-3588 (((-112) $) 19)) (-4038 (((-656 (-962 |#2|)) $) 86)) (-2397 (($ $) 80)) (-3105 (((-783) $) 47)) (-4140 (($) 32)) (-2698 (($ $ (-656 (-783)) (-962 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-962 |#2|)) 75)) (-4335 (($ $ $) 57) (($ (-656 $)) 59)) (-2815 (((-783) $) 87)) (-2953 (((-112) $) 15)) (-1413 (((-1179) $) NIL)) (-2319 (((-112) $) 22)) (-1450 (((-1141) $) NIL)) (-2036 (((-173) $) 85)) (-2717 (((-962 |#2|) $) 81)) (-4143 (((-783) $) 82)) (-3892 (((-112) $) 84)) (-3174 (($ $ (-656 (-783)) (-173)) 78)) (-1829 (($ $) 52)) (-3569 (((-876) $) 99)) (-2388 (($ $ (-656 (-783)) (-112)) 77)) (-3338 (((-656 $) $) 11)) (-3751 (($ $ (-783)) 46)) (-2223 (($ $) 43)) (-2113 (((-112) $ $) NIL)) (-4162 (($ $ $ (-962 |#2|) (-783)) 68)) (-3305 (($ $ (-962 |#2|)) 67)) (-3879 (($ $ (-656 (-783)) (-962 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-962 |#2|)) 71)) (-2923 (((-112) $ $) 92))) +(((-1185 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -2953 ((-112) $)) (-15 -3588 ((-112) $)) (-15 -2319 ((-112) $)) (-15 -4140 ($)) (-15 -2513 ($)) (-15 -2223 ($ $)) (-15 -3751 ($ $ (-783))) (-15 -3338 ((-656 $) $)) (-15 -3105 ((-783) $)) (-15 -2593 ($ $)) (-15 -1829 ($ $)) (-15 -4335 ($ $ $)) (-15 -4335 ($ (-656 $))) (-15 -4271 ((-656 $) $)) (-15 -3879 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -3305 ($ $ (-962 |#2|))) (-15 -4162 ($ $ $ (-962 |#2|) (-783))) (-15 -2698 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -3879 ($ $ (-656 (-783)) (-783))) (-15 -2698 ($ $ (-656 (-783)) (-783))) (-15 -3879 ((-783) $ (-962 |#2|))) (-15 -2698 ($ $ (-783) (-962 |#2|))) (-15 -2388 ($ $ (-656 (-783)) (-112))) (-15 -3174 ($ $ (-656 (-783)) (-173))) (-15 -1732 ($ $ (-656 (-783)))) (-15 -2717 ((-962 |#2|) $)) (-15 -4143 ((-783) $)) (-15 -3892 ((-112) $)) (-15 -2036 ((-173) $)) (-15 -2815 ((-783) $)) (-15 -2397 ($ $)) (-15 -4038 ((-656 (-962 |#2|)) $)))) (-940) (-1070)) (T -1185)) +((-2953 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4140 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2513 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2593 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-1829 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-4335 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-4335 (*1 *1 *2) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-3305 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)))) (-4162 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-2698 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-2698 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-2698 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-2388 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-3174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1732 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070))))) +(-13 (-1121) (-10 -8 (-15 -2953 ((-112) $)) (-15 -3588 ((-112) $)) (-15 -2319 ((-112) $)) (-15 -4140 ($)) (-15 -2513 ($)) (-15 -2223 ($ $)) (-15 -3751 ($ $ (-783))) (-15 -3338 ((-656 $) $)) (-15 -3105 ((-783) $)) (-15 -2593 ($ $)) (-15 -1829 ($ $)) (-15 -4335 ($ $ $)) (-15 -4335 ($ (-656 $))) (-15 -4271 ((-656 $) $)) (-15 -3879 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -3305 ($ $ (-962 |#2|))) (-15 -4162 ($ $ $ (-962 |#2|) (-783))) (-15 -2698 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -3879 ($ $ (-656 (-783)) (-783))) (-15 -2698 ($ $ (-656 (-783)) (-783))) (-15 -3879 ((-783) $ (-962 |#2|))) (-15 -2698 ($ $ (-783) (-962 |#2|))) (-15 -2388 ($ $ (-656 (-783)) (-112))) (-15 -3174 ($ $ (-656 (-783)) (-173))) (-15 -1732 ($ $ (-656 (-783)))) (-15 -2717 ((-962 |#2|) $)) (-15 -4143 ((-783) $)) (-15 -3892 ((-112) $)) (-15 -2036 ((-173) $)) (-15 -2815 ((-783) $)) (-15 -2397 ($ $)) (-15 -4038 ((-656 (-962 |#2|)) $)))) +((-3488 (((-112) $ $) NIL)) (-1669 ((|#2| $) 11)) (-1657 ((|#1| $) 10)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (($ |#1| |#2|) 9)) (-3569 (((-876) $) 16)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1186 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3581 ($ |#1| |#2|)) (-15 -1657 (|#1| $)) (-15 -1669 (|#2| $)))) (-1121) (-1121)) (T -1186)) +((-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1657 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121)))) (-1669 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3581 ($ |#1| |#2|)) (-15 -1657 (|#1| $)) (-15 -1669 (|#2| $)))) +((-3488 (((-112) $ $) NIL)) (-1999 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1187) (-13 (-1104) (-10 -8 (-15 -1999 ((-1156) $))))) (T -1187)) +((-1999 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1187))))) +(-13 (-1104) (-10 -8 (-15 -1999 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 11)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2544 (($ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1574 (((-112) $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4048 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-3605 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-1881 (((-1195 |#1| |#2| |#3|) $) 42)) (-1400 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 32)) (-2008 (((-1195 |#1| |#2| |#3|) $) 33)) (-4024 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-1529 (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2859 (((-1195 |#1| |#2| |#3|) $) 140) (((-1197) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-3718 (($ $) 37) (($ (-576) $) 38)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-1195 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3451 (((-3 $ "failed") $) 54)) (-3397 (((-419 (-971 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-1661 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2037 (((-112) $) 28)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3309 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL (|has| |#1| (-374)))) (-1570 (((-1195 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3396 (((-3 $ "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-4099 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4154 (($ $ (-940)) NIL)) (-1354 (($ (-1 |#1| (-576)) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-576)) 19) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3124 (($ $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-1951 (($ $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3744 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3626 (((-701 (-1195 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2019 (($ (-576) (-1195 |#1| |#2| |#3|)) 36)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3441 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2638 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3416 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-576)) 158)) (-3475 (((-3 $ "failed") $ $) 55 (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195 |#1| |#2| |#3|)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1133))) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 57) (($ $) 56 (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3708 (($ $) NIL (|has| |#1| (-374)))) (-1581 (((-1195 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-3600 (((-576) $) 43)) (-4060 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-548) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1195 |#1| |#2| |#3|)) 30) (($ (-1284 |#2|)) 25) (($ (-1197)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-3998 ((|#1| $ (-576)) 77)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 12)) (-1487 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4070 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-1665 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2719 (($) 21 T CONST)) (-2730 (($) 16 T CONST)) (-2018 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2991 (((-112) $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2962 (((-112) $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2948 (((-112) $ $) NIL (-2758 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 23)) (** (($ $ (-940)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1195 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1188 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1188)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-1369 ((|#2| |#2| (-1113 |#2|)) 26) ((|#2| |#2| (-1197)) 28))) +(((-1189 |#1| |#2|) (-10 -7 (-15 -1369 (|#2| |#2| (-1197))) (-15 -1369 (|#2| |#2| (-1113 |#2|)))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1223))) (T -1189)) +((-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1189 *4 *2)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223)))))) +(-10 -7 (-15 -1369 (|#2| |#2| (-1197))) (-15 -1369 (|#2| |#2| (-1113 |#2|)))) +((-1369 (((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))) 31) (((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|))) 44) (((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197)) 33) (((-419 (-971 |#1|)) (-971 |#1|) (-1197)) 36))) +(((-1190 |#1|) (-10 -7 (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1197))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|)))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))))) (-13 (-568) (-1059 (-576)))) (T -1190)) +((-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1190 *5)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-971 *5))) (-5 *3 (-971 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1190 *5)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 (-419 (-971 *5)) (-326 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-419 (-971 *5))))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-971 *5))))) +(-10 -7 (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1197))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|)))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))))) +((-4116 (((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)) 13))) +(((-1191 |#1| |#2|) (-10 -7 (-15 -4116 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) (-1070) (-1070)) (T -1191)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-1191 *5 *6))))) +(-10 -7 (-15 -4116 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) +((-1770 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 51)) (-1828 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 52))) +(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -1770 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) (-805) (-861) (-464) (-968 |#3| |#1| |#2|)) (T -1192)) +((-1770 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7)))))) +(-10 -7 (-15 -1828 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -1770 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) +((-3488 (((-112) $ $) 171)) (-1812 (((-112) $) 43)) (-1706 (((-1288 |#1|) $ (-783)) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-2500 (($ (-1193 |#1|)) NIL)) (-1799 (((-1193 $) $ (-1103)) 82) (((-1193 |#1|) $) 71)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) 164 (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2901 (($ $ $) 158 (|has| |#1| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) 95 (|has| |#1| (-928)))) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 115 (|has| |#1| (-928)))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2365 (($ $ (-783)) 61)) (-3095 (($ $ (-783)) 63)) (-4271 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-4004 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) 80)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3184 (($ $ $) 131)) (-2709 (($ $ $) NIL (|has| |#1| (-568)))) (-3966 (((-2 (|:| -1714 |#1|) (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1371 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-783) $) 69)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3689 (((-876) $ (-876)) 148)) (-3309 (((-783) $ $) NIL (|has| |#1| (-568)))) (-3215 (((-112) $) 48)) (-1675 (((-783) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) 73) (($ (-1193 $) (-1103)) 89)) (-4154 (($ $ (-783)) 51)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 87) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1103)) NIL) (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 153)) (-2987 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1938 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3785 (((-1193 |#1|) $) NIL)) (-2512 (((-3 (-1103) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) 76)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1413 (((-1179) $) NIL)) (-3815 (((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783)) 60)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-1103)) (|:| -4210 (-783))) "failed") $) NIL)) (-3441 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) 50)) (-2068 ((|#1| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 103 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-1901 (($ $ (-783) |#1| $) 123)) (-2118 (((-430 (-1193 $)) (-1193 $)) 101 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 100 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 108 (|has| |#1| (-928)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2755 (((-3 $ "failed") $ (-783)) 54)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 172 (|has| |#1| (-374)))) (-2455 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3600 (((-783) $) 78) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-1705 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3569 (((-876) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1103)) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) 17 T CONST)) (-2730 (($) 19 T CONST)) (-2018 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2923 (((-112) $ $) 120)) (-3056 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 90)) (** (($ $ (-940)) 14) (($ $ (-783)) 12)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1193 |#1|) (-13 (-1264 |#1|) (-10 -8 (-15 -3689 ((-876) $ (-876))) (-15 -1901 ($ $ (-783) |#1| $)))) (-1070)) (T -1193)) +((-3689 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) (-1901 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) +(-13 (-1264 |#1|) (-10 -8 (-15 -3689 ((-876) $ (-876))) (-15 -1901 ($ $ (-783) |#1| $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 11)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 36)) (-2859 (((-1188 |#1| |#2| |#3|) $) NIL) (((-1195 |#1| |#2| |#3|) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-4201 (((-419 (-576)) $) 59)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2029 (($ (-419 (-576)) (-1188 |#1| |#2| |#3|)) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) 20) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1438 (((-1188 |#1| |#2| |#3|) $) 41)) (-3485 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) NIL)) (-2019 (((-1188 |#1| |#2| |#3|) $) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3441 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-3600 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1188 |#1| |#2| |#3|)) 30) (($ (-1195 |#1| |#2| |#3|)) 31) (($ (-1284 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 12)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 22 T CONST)) (-2730 (($) 16 T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 24)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1194 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1194)) +((-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 129)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 119)) (-2910 (((-1261 |#2| |#1|) $ (-783)) 69)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-3605 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-4024 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1178 |#1|)) 113)) (-4049 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) 25)) (-3243 (($ $) 28)) (-2381 (((-971 |#1|) $ (-783)) 81) (((-971 |#1|) $ (-783) (-783)) 83)) (-2037 (((-112) $) 124)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-783) $) 126) (((-783) $ (-783)) 128)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) NIL)) (-1354 (($ (-1 |#1| (-576)) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 13) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-3441 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-3169 (($ $ (-783)) 15)) (-3475 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-4103 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2796 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1133)))) (-2773 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 31)) (-3600 (((-783) $) NIL)) (-4060 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 55) (($ (-1284 |#2|)) 36)) (-2060 (((-1178 |#1|) $) 101)) (-3998 ((|#1| $ (-783)) 121)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 58)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 17 T CONST)) (-2730 (($) 20 T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 198)) (-3029 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1195 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -2910 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1195)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-2910 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -2910 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3569 (((-876) $) 33) (($ (-1197)) 35)) (-2758 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2744 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3172 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3161 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3150 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3138 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2035 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) +(((-1196) (-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -3172 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3161 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3138 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2758 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2035 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2744 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2744 ($ $))))) (T -1196)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) (-3172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3150 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3161 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3138 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2758 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2035 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2744 (*1 *1 *1) (-5 *1 (-1196)))) +(-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -3172 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3161 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3138 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2758 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2035 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2744 ($ (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2744 ($ $)))) +((-3488 (((-112) $ $) NIL)) (-3233 (($ $ (-656 (-876))) 62)) (-2567 (($ $ (-656 (-876))) 60)) (-1329 (((-1179) $) 101)) (-2445 (((-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876)))) $) 108)) (-2482 (((-112) $) 23)) (-2941 (($ $ (-656 (-656 (-876)))) 59) (($ $ (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876))))) 99)) (-3306 (($) 163 T CONST)) (-4345 (((-1293)) 135)) (-2399 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 69) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 76)) (-4140 (($) 122) (($ $) 131)) (-2627 (($ $) 100)) (-3124 (($ $ $) NIL)) (-1951 (($ $ $) NIL)) (-1649 (((-656 $) $) 136)) (-1413 (((-1179) $) 114)) (-1450 (((-1141) $) NIL)) (-2796 (($ $ (-656 (-876))) 61)) (-4171 (((-548) $) 48) (((-1197) $) 49) (((-907 (-576)) $) 80) (((-907 (-390)) $) 78)) (-3569 (((-876) $) 55) (($ (-1179)) 50)) (-2113 (((-112) $ $) NIL)) (-2967 (($ $ (-656 (-876))) 63)) (-3157 (((-1179) $) 34) (((-1179) $ (-112)) 35) (((-1293) (-834) $) 36) (((-1293) (-834) $ (-112)) 37)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 51)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 52))) +(((-1197) (-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -4140 ($)) (-15 -4140 ($ $)) (-15 -4345 ((-1293))) (-15 -2627 ($ $)) (-15 -2482 ((-112) $)) (-15 -2445 ((-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2941 ($ $ (-656 (-656 (-876))))) (-15 -2941 ($ $ (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -2567 ($ $ (-656 (-876)))) (-15 -3233 ($ $ (-656 (-876)))) (-15 -2967 ($ $ (-656 (-876)))) (-15 -2796 ($ $ (-656 (-876)))) (-15 -1329 ((-1179) $)) (-15 -1649 ((-656 $) $)) (-15 -3306 ($) -1480)))) (T -1197)) +((-4140 (*1 *1) (-5 *1 (-1197))) (-4140 (*1 *1 *1) (-5 *1 (-1197))) (-4345 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197)))) (-2627 (*1 *1 *1) (-5 *1 (-1197))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-2567 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197)))) (-3306 (*1 *1) (-5 *1 (-1197)))) +(-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -4140 ($)) (-15 -4140 ($ $)) (-15 -4345 ((-1293))) (-15 -2627 ($ $)) (-15 -2482 ((-112) $)) (-15 -2445 ((-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2941 ($ $ (-656 (-656 (-876))))) (-15 -2941 ($ $ (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -2567 ($ $ (-656 (-876)))) (-15 -3233 ($ $ (-656 (-876)))) (-15 -2967 ($ $ (-656 (-876)))) (-15 -2796 ($ $ (-656 (-876)))) (-15 -1329 ((-1179) $)) (-15 -1649 ((-656 $) $)) (-15 -3306 ($) -1480))) +((-2557 (((-1288 |#1|) |#1| (-940)) 18) (((-1288 |#1|) (-656 |#1|)) 25))) +(((-1198 |#1|) (-10 -7 (-15 -2557 ((-1288 |#1|) (-656 |#1|))) (-15 -2557 ((-1288 |#1|) |#1| (-940)))) (-1070)) (T -1198)) +((-2557 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) (-4 *3 (-1070)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) (-5 *1 (-1198 *4))))) +(-10 -7 (-15 -2557 ((-1288 |#1|) (-656 |#1|))) (-15 -2557 ((-1288 |#1|) |#1| (-940)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-1371 (($ $) NIL (|has| |#1| (-464)))) (-3415 (($ $ |#1| (-992) $) NIL)) (-3215 (((-112) $) 17)) (-1675 (((-783) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-992)) NIL)) (-2987 (((-992) $) NIL)) (-1938 (($ (-1 (-992) (-992)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#1| $) NIL)) (-1901 (($ $ (-992) |#1| $) NIL (-12 (|has| (-992) (-132)) (|has| |#1| (-568))))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3600 (((-992) $) NIL)) (-1457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2758 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ (-992)) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2719 (($) 10 T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 21)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1199 |#1|) (-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -1901 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070)) (T -1199)) +((-1901 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -1901 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) +((-1745 (((-1201) (-1197) $) 25)) (-3002 (($) 29)) (-3762 (((-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-1197) $) 22)) (-2127 (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) $) 41) (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) 42) (((-1293) (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) 43)) (-3699 (((-1293) (-1197)) 58)) (-4067 (((-1293) (-1197) $) 55) (((-1293) (-1197)) 56) (((-1293)) 57)) (-3076 (((-1293) (-1197)) 37)) (-1908 (((-1197)) 36)) (-3839 (($) 34)) (-3445 (((-449) (-1197) (-449) (-1197) $) 45) (((-449) (-656 (-1197)) (-449) (-1197) $) 49) (((-449) (-1197) (-449)) 46) (((-449) (-1197) (-449) (-1197)) 50)) (-1587 (((-1197)) 35)) (-3569 (((-876) $) 28)) (-1964 (((-1293)) 30) (((-1293) (-1197)) 33)) (-3662 (((-656 (-1197)) (-1197) $) 24)) (-3953 (((-1293) (-1197) (-656 (-1197)) $) 38) (((-1293) (-1197) (-656 (-1197))) 39) (((-1293) (-656 (-1197))) 40))) +(((-1200) (-13 (-625 (-876)) (-10 -8 (-15 -3002 ($)) (-15 -1964 ((-1293))) (-15 -1964 ((-1293) (-1197))) (-15 -3445 ((-449) (-1197) (-449) (-1197) $)) (-15 -3445 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -3445 ((-449) (-1197) (-449))) (-15 -3445 ((-449) (-1197) (-449) (-1197))) (-15 -3076 ((-1293) (-1197))) (-15 -1587 ((-1197))) (-15 -1908 ((-1197))) (-15 -3953 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -3953 ((-1293) (-1197) (-656 (-1197)))) (-15 -3953 ((-1293) (-656 (-1197)))) (-15 -2127 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -2127 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -2127 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -4067 ((-1293) (-1197) $)) (-15 -4067 ((-1293) (-1197))) (-15 -4067 ((-1293))) (-15 -3699 ((-1293) (-1197))) (-15 -3839 ($)) (-15 -3762 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-1197) $)) (-15 -3662 ((-656 (-1197)) (-1197) $)) (-15 -1745 ((-1201) (-1197) $))))) (T -1200)) +((-3002 (*1 *1) (-5 *1 (-1200))) (-1964 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *4 (-1197)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-1587 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-1908 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-3953 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2127 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4067 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4067 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3839 (*1 *1) (-5 *1 (-1200))) (-3762 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *1 (-1200)))) (-3662 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197)))) (-1745 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3002 ($)) (-15 -1964 ((-1293))) (-15 -1964 ((-1293) (-1197))) (-15 -3445 ((-449) (-1197) (-449) (-1197) $)) (-15 -3445 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -3445 ((-449) (-1197) (-449))) (-15 -3445 ((-449) (-1197) (-449) (-1197))) (-15 -3076 ((-1293) (-1197))) (-15 -1587 ((-1197))) (-15 -1908 ((-1197))) (-15 -3953 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -3953 ((-1293) (-1197) (-656 (-1197)))) (-15 -3953 ((-1293) (-656 (-1197)))) (-15 -2127 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -2127 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -2127 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -4067 ((-1293) (-1197) $)) (-15 -4067 ((-1293) (-1197))) (-15 -4067 ((-1293))) (-15 -3699 ((-1293) (-1197))) (-15 -3839 ($)) (-15 -3762 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-1197) $)) (-15 -3662 ((-656 (-1197)) (-1197) $)) (-15 -1745 ((-1201) (-1197) $)))) +((-1603 (((-656 (-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $) 66)) (-1962 (((-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $) 47)) (-2581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-449))))) 17)) (-3699 (((-1293) $) 73)) (-2333 (((-656 (-1197)) $) 22)) (-1336 (((-1125) $) 60)) (-1337 (((-449) (-1197) $) 27)) (-3926 (((-656 (-1197)) $) 30)) (-3839 (($) 19)) (-3445 (((-449) (-656 (-1197)) (-449) $) 25) (((-449) (-1197) (-449) $) 24)) (-3569 (((-876) $) 9) (((-1210 (-1197) (-449)) $) 13))) +(((-1201) (-13 (-625 (-876)) (-10 -8 (-15 -3569 ((-1210 (-1197) (-449)) $)) (-15 -3839 ($)) (-15 -3445 ((-449) (-656 (-1197)) (-449) $)) (-15 -3445 ((-449) (-1197) (-449) $)) (-15 -1337 ((-449) (-1197) $)) (-15 -2333 ((-656 (-1197)) $)) (-15 -1962 ((-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -3926 ((-656 (-1197)) $)) (-15 -1603 ((-656 (-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -1336 ((-1125) $)) (-15 -3699 ((-1293) $)) (-15 -2581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-449))))))))) (T -1201)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-1210 (-1197) (-449))) (-5 *1 (-1201)))) (-3839 (*1 *1) (-5 *1 (-1201))) (-3445 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201)))) (-3445 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) (-1337 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-1962 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) (-5 *1 (-1201)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) (-5 *1 (-1201)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201)))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-449))))) (-5 *1 (-1201))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3569 ((-1210 (-1197) (-449)) $)) (-15 -3839 ($)) (-15 -3445 ((-449) (-656 (-1197)) (-449) $)) (-15 -3445 ((-449) (-1197) (-449) $)) (-15 -1337 ((-449) (-1197) $)) (-15 -2333 ((-656 (-1197)) $)) (-15 -1962 ((-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -3926 ((-656 (-1197)) $)) (-15 -1603 ((-656 (-656 (-3 (|:| -2627 (-1197)) (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -1336 ((-1125) $)) (-15 -3699 ((-1293) $)) (-15 -2581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-449)))))))) +((-3488 (((-112) $ $) NIL)) (-1572 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1179) "failed") $) 47)) (-2859 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1179) $) 48)) (-3370 (((-112) $) 53)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4045 (((-3 (-576) (-227) (-518) (-1179) $) $) 55)) (-1840 (((-656 $) $) 57)) (-4171 (((-1125) $) 24) (($ (-1125)) 25)) (-1761 (((-112) $) 56)) (-3569 (((-876) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1179)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1179) $) 49)) (-2705 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1179))) 16)) (-4145 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-2113 (((-112) $ $) NIL)) (-1922 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1179) $) 45)) (-2923 (((-112) $ $) 7))) +(((-1202) (-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -4171 ((-1125) $)) (-15 -4171 ($ (-1125))) (-15 -3569 ((-576) $)) (-15 -1922 ((-576) $)) (-15 -3569 ((-227) $)) (-15 -1922 ((-227) $)) (-15 -3569 ((-518) $)) (-15 -1922 ((-518) $)) (-15 -3569 ((-1179) $)) (-15 -1922 ((-1179) $)) (-15 -4145 ($ (-518) (-656 $))) (-15 -4145 ($ $ (-656 $))) (-15 -3370 ((-112) $)) (-15 -4045 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -1840 ((-656 $) $)) (-15 -1761 ((-112) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-576)))) (-15 -2705 ((-112) $ (|[\|\|]| (-227)))) (-15 -2705 ((-112) $ (|[\|\|]| (-518)))) (-15 -2705 ((-112) $ (|[\|\|]| (-1179))))))) (T -1202)) +((-4171 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) (-5 *1 (-1202)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2705 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-1202))))) +(-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -4171 ((-1125) $)) (-15 -4171 ($ (-1125))) (-15 -3569 ((-576) $)) (-15 -1922 ((-576) $)) (-15 -3569 ((-227) $)) (-15 -1922 ((-227) $)) (-15 -3569 ((-518) $)) (-15 -1922 ((-518) $)) (-15 -3569 ((-1179) $)) (-15 -1922 ((-1179) $)) (-15 -4145 ($ (-518) (-656 $))) (-15 -4145 ($ $ (-656 $))) (-15 -3370 ((-112) $)) (-15 -4045 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -1840 ((-656 $) $)) (-15 -1761 ((-112) $)) (-15 -2705 ((-112) $ (|[\|\|]| (-576)))) (-15 -2705 ((-112) $ (|[\|\|]| (-227)))) (-15 -2705 ((-112) $ (|[\|\|]| (-518)))) (-15 -2705 ((-112) $ (|[\|\|]| (-1179)))))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) 22)) (-3306 (($) 12 T CONST)) (-1836 (($) 26)) (-3124 (($ $ $) NIL) (($) 19 T CONST)) (-1951 (($ $ $) NIL) (($) 20 T CONST)) (-2460 (((-940) $) 24)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) 23)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3306 ($) -1480))) (-940)) (T -1203)) +((-3306 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940))))) +(-13 (-856) (-10 -8 (-15 -3306 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) 19 T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) 12 T CONST)) (-1654 (($ $ $) NIL) (($) 18 T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3872 (($ $ $) 21)) (-3859 (($ $ $) 20)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) (-939)) (T -1203)) -((-3859 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-939)))) (-3872 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-939)))) (-4331 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-939))))) -(-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) 19 T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) 12 T CONST)) (-1951 (($ $ $) NIL) (($) 18 T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2355 (($ $ $) 21)) (-2341 (($ $ $) 20)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1204 |#1|) (-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) (-940)) (T -1204)) +((-2341 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-2355 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-3306 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940))))) +(-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 9)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 7))) -(((-1204) (-1120)) (T -1204)) -NIL -(-1120) -((-4184 (((-656 (-656 (-970 |#1|))) (-656 (-419 (-970 |#1|))) (-656 (-1196))) 69)) (-3177 (((-656 (-304 (-419 (-970 |#1|)))) (-304 (-419 (-970 |#1|)))) 80) (((-656 (-304 (-419 (-970 |#1|)))) (-419 (-970 |#1|))) 76) (((-656 (-304 (-419 (-970 |#1|)))) (-304 (-419 (-970 |#1|))) (-1196)) 81) (((-656 (-304 (-419 (-970 |#1|)))) (-419 (-970 |#1|)) (-1196)) 75) (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-304 (-419 (-970 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-419 (-970 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-304 (-419 (-970 |#1|)))) (-656 (-1196))) 107) (((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-419 (-970 |#1|))) (-656 (-1196))) 104))) -(((-1205 |#1|) (-10 -7 (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-304 (-419 (-970 |#1|)))) (-656 (-1196)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-419 (-970 |#1|))))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-304 (-419 (-970 |#1|)))))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-419 (-970 |#1|)) (-1196))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-304 (-419 (-970 |#1|))) (-1196))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-419 (-970 |#1|)))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-304 (-419 (-970 |#1|))))) (-15 -4184 ((-656 (-656 (-970 |#1|))) (-656 (-419 (-970 |#1|))) (-656 (-1196))))) (-568)) (T -1205)) -((-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-970 *5)))) (-5 *1 (-1205 *5)))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-970 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-304 (-419 (-970 *4)))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-970 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-419 (-970 *4))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-970 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-304 (-419 (-970 *5)))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-970 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-419 (-970 *5))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-1205 *4)) (-5 *3 (-656 (-304 (-419 (-970 *4))))))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-970 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-1205 *4)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-1205 *5)) (-5 *3 (-656 (-304 (-419 (-970 *5))))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-1205 *5))))) -(-10 -7 (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-419 (-970 |#1|))) (-656 (-1196)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-304 (-419 (-970 |#1|)))) (-656 (-1196)))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-419 (-970 |#1|))))) (-15 -3177 ((-656 (-656 (-304 (-419 (-970 |#1|))))) (-656 (-304 (-419 (-970 |#1|)))))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-419 (-970 |#1|)) (-1196))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-304 (-419 (-970 |#1|))) (-1196))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-419 (-970 |#1|)))) (-15 -3177 ((-656 (-304 (-419 (-970 |#1|)))) (-304 (-419 (-970 |#1|))))) (-15 -4184 ((-656 (-656 (-970 |#1|))) (-656 (-419 (-970 |#1|))) (-656 (-1196))))) -((-1457 (((-1178)) 7)) (-3891 (((-1178)) 11 T CONST)) (-3967 (((-1292) (-1178)) 13)) (-4347 (((-1178)) 8 T CONST)) (-3581 (((-131)) 10 T CONST))) -(((-1206) (-13 (-1237) (-10 -7 (-15 -1457 ((-1178))) (-15 -4347 ((-1178)) -2665) (-15 -3581 ((-131)) -2665) (-15 -3891 ((-1178)) -2665) (-15 -3967 ((-1292) (-1178)))))) (T -1206)) -((-1457 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-4347 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-3581 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1206)))) (-3891 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206))))) -(-13 (-1237) (-10 -7 (-15 -1457 ((-1178))) (-15 -4347 ((-1178)) -2665) (-15 -3581 ((-131)) -2665) (-15 -3891 ((-1178)) -2665) (-15 -3967 ((-1292) (-1178))))) -((-1620 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-2481 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-3847 (((-1208 (-656 |#1|)) (-656 |#1|)) 49)) (-1739 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-4018 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-4135 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-2299 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-2658 (((-656 |#1|) (-656 |#1|)) 46)) (-3566 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-3816 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-2602 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-1878 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-2068 (((-656 (-656 |#1|)) (-1208 (-656 |#1|))) 60))) -(((-1207 |#1|) (-10 -7 (-15 -2602 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -3816 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3566 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1620 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1878 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -2068 ((-656 (-656 |#1|)) (-1208 (-656 |#1|)))) (-15 -2481 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -3847 ((-1208 (-656 |#1|)) (-656 |#1|))) (-15 -2299 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -1739 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2658 ((-656 |#1|) (-656 |#1|))) (-15 -4135 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4018 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-861)) (T -1207)) -((-4018 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-4135 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1207 *6)) (-5 *4 (-656 *5)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1207 *3)))) (-1739 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-656 *4)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1207 *3)))) (-3847 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1208 (-656 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-656 *4)))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 *4))))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-1208 (-656 *4))) (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) (-4 *4 (-861)))) (-1620 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-861)) (-5 *1 (-1207 *4)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *1 (-1207 *4)))) (-3816 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1207 *5)))) (-2602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1207 *6)) (-5 *5 (-656 *4))))) -(-10 -7 (-15 -2602 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -3816 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3566 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1620 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1878 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -2068 ((-656 (-656 |#1|)) (-1208 (-656 |#1|)))) (-15 -2481 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -3847 ((-1208 (-656 |#1|)) (-656 |#1|))) (-15 -2299 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -1739 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2658 ((-656 |#1|) (-656 |#1|))) (-15 -4135 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4018 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) -((-1364 (($ (-656 (-656 |#1|))) 10)) (-3065 (((-656 (-656 |#1|)) $) 11)) (-4112 (((-875) $) 33))) -(((-1208 |#1|) (-10 -8 (-15 -1364 ($ (-656 (-656 |#1|)))) (-15 -3065 ((-656 (-656 |#1|)) $)) (-15 -4112 ((-875) $))) (-1120)) (T -1208)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1208 *3)) (-4 *3 (-1120)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1208 *3)) (-4 *3 (-1120)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-1208 *3))))) -(-10 -8 (-15 -1364 ($ (-656 (-656 |#1|)))) (-15 -3065 ((-656 (-656 |#1|)) $)) (-15 -4112 ((-875) $))) -((-1952 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1976 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4100 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#2| $ |#1| |#2|) NIL)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) NIL)) (-4331 (($) NIL T CONST)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) NIL)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) NIL)) (-2066 ((|#1| $) NIL (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-656 |#2|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-3501 ((|#1| $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-2351 (((-656 |#1|) $) NIL)) (-3406 (((-112) |#1| $) NIL)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3963 (((-656 |#1|) $) NIL)) (-1474 (((-112) |#1| $) NIL)) (-3115 (((-1140) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| |#2| (-1120))))) (-1753 ((|#2| $) NIL (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL)) (-2556 (($ $ |#2|) NIL (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1437 (($) NIL) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-4112 (((-875) $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875))) (|has| |#2| (-625 (-875)))))) (-1994 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) NIL)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) NIL (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) NIL (-3794 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102)) (|has| |#2| (-102))))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1209 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) (-1120) (-1120)) (T -1209)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4463))) -((-1952 (((-112) $ $) NIL)) (-1400 (($ |#1| (-55)) 10)) (-4148 ((|#1| $) 12)) (-2043 (((-1178) $) NIL)) (-1681 (((-112) $ |#1|) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-1994 (((-112) $ $) NIL)) (-2670 (((-55) $) 14)) (-3938 (((-112) $ $) NIL))) -(((-1210 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -1400 ($ |#1| (-55))))) (-1120)) (T -1210)) -((-1400 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1120))))) -(-13 (-847 |#1|) (-10 -8 (-15 -1400 ($ |#1| (-55))))) -((-2780 ((|#1| (-656 |#1|)) 46)) (-2651 ((|#1| |#1| (-576)) 24)) (-4086 (((-1192 |#1|) |#1| (-939)) 20))) -(((-1211 |#1|) (-10 -7 (-15 -2780 (|#1| (-656 |#1|))) (-15 -4086 ((-1192 |#1|) |#1| (-939))) (-15 -2651 (|#1| |#1| (-576)))) (-374)) (T -1211)) -((-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1211 *2)) (-4 *2 (-374)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *4 (-939)) (-5 *2 (-1192 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-374)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-374))))) -(-10 -7 (-15 -2780 (|#1| (-656 |#1|))) (-15 -4086 ((-1192 |#1|) |#1| (-939))) (-15 -2651 (|#1| |#1| (-576)))) -((-1976 (($) 10) (($ (-656 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)))) 14)) (-1672 (($ (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3721 (((-656 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-1896 (($ (-1 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2422 (($ (-1 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2976 (((-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) $) 60)) (-2782 (($ (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) $) 16)) (-3963 (((-656 |#2|) $) 19)) (-1474 (((-112) |#2| $) 65)) (-2022 (((-3 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) "failed") (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) 64)) (-1526 (((-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) $) 69)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2692 (((-656 |#3|) $) 43)) (-4368 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) NIL) (((-783) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-4112 (((-875) $) 27)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3938 (((-112) $ $) 51))) -(((-1212 |#1| |#2| |#3|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -2422 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1976 (|#1| (-656 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))))) (-15 -1976 (|#1|)) (-15 -2422 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1896 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3125 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3721 ((-656 |#3|) |#1|)) (-15 -3125 ((-783) |#3| |#1|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -2692 ((-656 |#3|) |#1|)) (-15 -1474 ((-112) |#2| |#1|)) (-15 -3963 ((-656 |#2|) |#1|)) (-15 -1672 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1672 (|#1| (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -1672 (|#1| (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -2022 ((-3 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) "failed") (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -2976 ((-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -2782 (|#1| (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -1526 ((-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -3125 ((-783) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -3721 ((-656 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -3125 ((-783) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -3587 ((-112) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -1682 ((-112) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -1896 (|#1| (-1 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -2422 (|#1| (-1 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|))) (-1213 |#2| |#3|) (-1120) (-1120)) (T -1212)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -4112 ((-875) |#1|)) (-15 -2422 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1976 (|#1| (-656 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))))) (-15 -1976 (|#1|)) (-15 -2422 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1896 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1682 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3587 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3125 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3721 ((-656 |#3|) |#1|)) (-15 -3125 ((-783) |#3| |#1|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -2692 ((-656 |#3|) |#1|)) (-15 -1474 ((-112) |#2| |#1|)) (-15 -3963 ((-656 |#2|) |#1|)) (-15 -1672 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1672 (|#1| (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -1672 (|#1| (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -2022 ((-3 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) "failed") (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -2976 ((-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -2782 (|#1| (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -1526 ((-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -3125 ((-783) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) |#1|)) (-15 -3721 ((-656 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -3125 ((-783) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -3587 ((-112) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -1682 ((-112) (-1 (-112) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -1896 (|#1| (-1 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|)) (-15 -2422 (|#1| (-1 (-2 (|:| -2239 |#2|) (|:| -2904 |#3|)) (-2 (|:| -2239 |#2|) (|:| -2904 |#3|))) |#1|))) -((-1952 (((-112) $ $) 20 (-3794 (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))))) (-1976 (($) 73) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 72)) (-4100 (((-1292) $ |#1| |#1|) 100 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#2| $ |#1| |#2|) 74)) (-2146 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 46 (|has| $ (-6 -4463)))) (-3603 (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 56 (|has| $ (-6 -4463)))) (-2049 (((-3 |#2| "failed") |#1| $) 62)) (-4331 (($) 7 T CONST)) (-3966 (($ $) 59 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463))))) (-1672 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 48 (|has| $ (-6 -4463))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 47 (|has| $ (-6 -4463))) (((-3 |#2| "failed") |#1| $) 63)) (-2824 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 55 (|has| $ (-6 -4463)))) (-2721 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 57 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 54 (|has| $ (-6 -4463))) (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 53 (|has| $ (-6 -4463)))) (-1908 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4464)))) (-3719 ((|#2| $ |#1|) 89)) (-3721 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 31 (|has| $ (-6 -4463))) (((-656 |#2|) $) 80 (|has| $ (-6 -4463)))) (-2135 (((-112) $ (-783)) 9)) (-2066 ((|#1| $) 97 (|has| |#1| (-861)))) (-3958 (((-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 30 (|has| $ (-6 -4463))) (((-656 |#2|) $) 81 (|has| $ (-6 -4463)))) (-4217 (((-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463))))) (-3501 ((|#1| $) 96 (|has| |#1| (-861)))) (-1896 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 35 (|has| $ (-6 -4464))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4464)))) (-2422 (($ (-1 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1556 (((-112) $ (-783)) 10)) (-2043 (((-1178) $) 23 (-3794 (|has| |#2| (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-2351 (((-656 |#1|) $) 64)) (-3406 (((-112) |#1| $) 65)) (-2976 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 40)) (-2782 (($ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 41)) (-3963 (((-656 |#1|) $) 94)) (-1474 (((-112) |#1| $) 93)) (-3115 (((-1140) $) 22 (-3794 (|has| |#2| (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))))) (-1753 ((|#2| $) 98 (|has| |#1| (-861)))) (-2022 (((-3 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) "failed") (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 52)) (-2556 (($ $ |#2|) 99 (|has| $ (-6 -4464)))) (-1526 (((-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 42)) (-3587 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 33 (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))))) 27 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-304 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 26 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) 25 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 24 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4463)) (|has| |#2| (-1120))))) (-2692 (((-656 |#2|) $) 92)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1437 (($) 50) (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 49)) (-3125 (((-783) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 32 (|has| $ (-6 -4463))) (((-783) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| $ (-6 -4463)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4463)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 60 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))))) (-4124 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 51)) (-4112 (((-875) $) 18 (-3794 (|has| |#2| (-625 (-875))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875)))))) (-1994 (((-112) $ $) 21 (-3794 (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))))) (-2050 (($ (-656 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) 43)) (-1682 (((-112) (-1 (-112) (-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) $) 34 (|has| $ (-6 -4463))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (-3794 (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1213 |#1| |#2|) (-141) (-1120) (-1120)) (T -1213)) -((-4267 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-1976 (*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-1976 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2239 *3) (|:| -2904 *4)))) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *1 (-1213 *3 *4)))) (-2422 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -4267 (|t#2| $ |t#1| |t#2|)) (-15 -1976 ($)) (-15 -1976 ($ (-656 (-2 (|:| -2239 |t#1|) (|:| -2904 |t#2|))))) (-15 -2422 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2239 |#1|) (|:| -2904 |#2|))) . T) ((-102) -3794 (|has| |#2| (-1120)) (|has| |#2| (-102)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-102))) ((-625 (-875)) -3794 (|has| |#2| (-1120)) (|has| |#2| (-625 (-875))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-625 (-875)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-319 (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)))) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1120))) ((-622 |#1| |#2|) . T) ((-1120) -3794 (|has| |#2| (-1120)) (|has| (-2 (|:| -2239 |#1|) (|:| -2904 |#2|)) (-1120))) ((-1237) . T)) -((-1489 (((-112)) 29)) (-2336 (((-1292) (-1178)) 31)) (-2954 (((-112)) 41)) (-4163 (((-1292)) 39)) (-3067 (((-1292) (-1178) (-1178)) 30)) (-1759 (((-112)) 42)) (-2782 (((-1292) |#1| |#2|) 53)) (-2302 (((-1292)) 26)) (-1572 (((-3 |#2| "failed") |#1|) 51)) (-1993 (((-1292)) 40))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -2302 ((-1292))) (-15 -3067 ((-1292) (-1178) (-1178))) (-15 -2336 ((-1292) (-1178))) (-15 -4163 ((-1292))) (-15 -1993 ((-1292))) (-15 -1489 ((-112))) (-15 -2954 ((-112))) (-15 -1759 ((-112))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2782 ((-1292) |#1| |#2|))) (-1120) (-1120)) (T -1214)) -((-2782 (*1 *2 *3 *4) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-1572 (*1 *2 *3) (|partial| -12 (-4 *2 (-1120)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1120)))) (-1759 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-2954 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-1489 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-1993 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4163 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)))) (-3067 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)))) (-2302 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(-10 -7 (-15 -2302 ((-1292))) (-15 -3067 ((-1292) (-1178) (-1178))) (-15 -2336 ((-1292) (-1178))) (-15 -4163 ((-1292))) (-15 -1993 ((-1292))) (-15 -1489 ((-112))) (-15 -2954 ((-112))) (-15 -1759 ((-112))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2782 ((-1292) |#1| |#2|))) -((-1906 (((-1178) (-1178)) 22)) (-1432 (((-52) (-1178)) 25))) -(((-1215) (-10 -7 (-15 -1432 ((-52) (-1178))) (-15 -1906 ((-1178) (-1178))))) (T -1215)) -((-1906 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-1215))))) -(-10 -7 (-15 -1432 ((-52) (-1178))) (-15 -1906 ((-1178) (-1178)))) -((-4112 (((-1217) |#1|) 11))) -(((-1216 |#1|) (-10 -7 (-15 -4112 ((-1217) |#1|))) (-1120)) (T -1216)) -((-4112 (*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1216 *3)) (-4 *3 (-1120))))) -(-10 -7 (-15 -4112 ((-1217) |#1|))) -((-1952 (((-112) $ $) NIL)) (-2989 (((-656 (-1178)) $) 39)) (-4056 (((-656 (-1178)) $ (-656 (-1178))) 42)) (-2749 (((-656 (-1178)) $ (-656 (-1178))) 41)) (-1882 (((-656 (-1178)) $ (-656 (-1178))) 43)) (-2934 (((-656 (-1178)) $) 38)) (-1989 (($) 28)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2868 (((-656 (-1178)) $) 40)) (-1612 (((-1292) $ (-576)) 35) (((-1292) $) 36)) (-1554 (($ (-875) (-576)) 33) (($ (-875) (-576) (-875)) NIL)) (-4112 (((-875) $) 49) (($ (-875)) 32)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1217) (-13 (-1120) (-628 (-875)) (-10 -8 (-15 -1554 ($ (-875) (-576))) (-15 -1554 ($ (-875) (-576) (-875))) (-15 -1612 ((-1292) $ (-576))) (-15 -1612 ((-1292) $)) (-15 -2868 ((-656 (-1178)) $)) (-15 -2989 ((-656 (-1178)) $)) (-15 -1989 ($)) (-15 -2934 ((-656 (-1178)) $)) (-15 -1882 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -4056 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2749 ((-656 (-1178)) $ (-656 (-1178))))))) (T -1217)) -((-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-875)) (-5 *3 (-576)) (-5 *1 (-1217)))) (-1554 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-576)) (-5 *1 (-1217)))) (-1612 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1217)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1217)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-1989 (*1 *1) (-5 *1 (-1217))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-1882 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-4056 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2749 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(-13 (-1120) (-628 (-875)) (-10 -8 (-15 -1554 ($ (-875) (-576))) (-15 -1554 ($ (-875) (-576) (-875))) (-15 -1612 ((-1292) $ (-576))) (-15 -1612 ((-1292) $)) (-15 -2868 ((-656 (-1178)) $)) (-15 -2989 ((-656 (-1178)) $)) (-15 -1989 ($)) (-15 -2934 ((-656 (-1178)) $)) (-15 -1882 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -4056 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2749 ((-656 (-1178)) $ (-656 (-1178)))))) -((-1952 (((-112) $ $) NIL)) (-2384 (((-1178) $ (-1178)) 17) (((-1178) $) 16)) (-4199 (((-1178) $ (-1178)) 15)) (-1985 (($ $ (-1178)) NIL)) (-2267 (((-3 (-1178) "failed") $) 11)) (-1901 (((-1178) $) 8)) (-4420 (((-3 (-1178) "failed") $) 12)) (-3627 (((-1178) $) 9)) (-3822 (($ (-400)) NIL) (($ (-400) (-1178)) NIL)) (-4148 (((-400) $) NIL)) (-2043 (((-1178) $) NIL)) (-1368 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4127 (((-112) $) 21)) (-4112 (((-875) $) NIL)) (-1743 (($ $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1218) (-13 (-375 (-400) (-1178)) (-10 -8 (-15 -2384 ((-1178) $ (-1178))) (-15 -2384 ((-1178) $)) (-15 -1901 ((-1178) $)) (-15 -2267 ((-3 (-1178) "failed") $)) (-15 -4420 ((-3 (-1178) "failed") $)) (-15 -4127 ((-112) $))))) (T -1218)) -((-2384 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2267 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4420 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218))))) -(-13 (-375 (-400) (-1178)) (-10 -8 (-15 -2384 ((-1178) $ (-1178))) (-15 -2384 ((-1178) $)) (-15 -1901 ((-1178) $)) (-15 -2267 ((-3 (-1178) "failed") $)) (-15 -4420 ((-3 (-1178) "failed") $)) (-15 -4127 ((-112) $)))) -((-3773 (((-3 (-576) "failed") |#1|) 19)) (-4129 (((-3 (-576) "failed") |#1|) 14)) (-3051 (((-576) (-1178)) 33))) -(((-1219 |#1|) (-10 -7 (-15 -3773 ((-3 (-576) "failed") |#1|)) (-15 -4129 ((-3 (-576) "failed") |#1|)) (-15 -3051 ((-576) (-1178)))) (-1069)) (T -1219)) -((-3051 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-1219 *4)) (-4 *4 (-1069)))) (-4129 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1069)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1069))))) -(-10 -7 (-15 -3773 ((-3 (-576) "failed") |#1|)) (-15 -4129 ((-3 (-576) "failed") |#1|)) (-15 -3051 ((-576) (-1178)))) -((-1356 (((-1153 (-227))) 9))) -(((-1220) (-10 -7 (-15 -1356 ((-1153 (-227)))))) (T -1220)) -((-1356 (*1 *2) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-1220))))) -(-10 -7 (-15 -1356 ((-1153 (-227))))) -((-2722 (($) 12)) (-3652 (($ $) 36)) (-3631 (($ $) 34)) (-3486 (($ $) 26)) (-3672 (($ $) 18)) (-1970 (($ $) 16)) (-3663 (($ $) 20)) (-3522 (($ $) 31)) (-3641 (($ $) 35)) (-3497 (($ $) 30))) -(((-1221 |#1|) (-10 -8 (-15 -2722 (|#1|)) (-15 -3652 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3497 (|#1| |#1|))) (-1222)) (T -1221)) -NIL -(-10 -8 (-15 -2722 (|#1|)) (-15 -3652 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3497 (|#1| |#1|))) -((-3585 (($ $) 26)) (-3434 (($ $) 11)) (-3561 (($ $) 27)) (-3411 (($ $) 10)) (-3611 (($ $) 28)) (-3460 (($ $) 9)) (-2722 (($) 16)) (-2607 (($ $) 19)) (-2155 (($ $) 18)) (-3622 (($ $) 29)) (-3473 (($ $) 8)) (-3598 (($ $) 30)) (-3447 (($ $) 7)) (-3573 (($ $) 31)) (-3423 (($ $) 6)) (-3652 (($ $) 20)) (-3509 (($ $) 32)) (-3631 (($ $) 21)) (-3486 (($ $) 33)) (-3672 (($ $) 22)) (-3536 (($ $) 34)) (-1970 (($ $) 23)) (-3549 (($ $) 35)) (-3663 (($ $) 24)) (-3522 (($ $) 36)) (-3641 (($ $) 25)) (-3497 (($ $) 37)) (** (($ $ $) 17))) -(((-1222) (-141)) (T -1222)) -((-2722 (*1 *1) (-4 *1 (-1222)))) -(-13 (-1225) (-95) (-505) (-35) (-294) (-10 -8 (-15 -2722 ($)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1225) . T)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1688 ((|#1| $) 19)) (-1478 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-2337 (((-112) $ (-783)) 72)) (-3078 ((|#1| $ |#1|) 14 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 13 (|has| $ (-6 -4464)))) (-4331 (($) NIL T CONST)) (-3721 (((-656 |#1|) $) 77 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 64)) (-2520 (((-112) $ $) 50 (|has| |#1| (-1120)))) (-2135 (((-112) $ (-783)) 62)) (-3958 (((-656 |#1|) $) 78 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-1896 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 27)) (-1556 (((-112) $ (-783)) 60)) (-4185 (((-656 |#1|) $) 55)) (-2887 (((-112) $) 53)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-3587 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 107)) (-1937 (((-112) $) 9)) (-3935 (($) 10)) (-4368 ((|#1| $ "value") NIL)) (-3183 (((-576) $ $) 48)) (-1720 (((-656 $) $) 89)) (-4113 (((-112) $ $) 110)) (-2676 (((-656 $) $) 105)) (-2814 (($ $) 106)) (-2003 (((-112) $) 84)) (-3125 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4463))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-4286 (($ $) 88)) (-4112 (((-875) $) 91 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 12)) (-2777 (((-112) $ $) 39 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 37 (|has| |#1| (-102)))) (-1968 (((-783) $) 58 (|has| $ (-6 -4463))))) -(((-1223 |#1|) (-13 (-1030 |#1|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -1478 ($ |#1| (-656 $))) (-15 -1478 ($ (-656 |#1|))) (-15 -1478 ($ |#1|)) (-15 -2003 ((-112) $)) (-15 -2814 ($ $)) (-15 -2676 ((-656 $) $)) (-15 -4113 ((-112) $ $)) (-15 -1720 ((-656 $) $)))) (-1120)) (T -1223)) -((-2003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1120)))) (-1478 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-1223 *3)))) (-1478 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120)))) (-4113 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1120)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(-13 (-1030 |#1|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -1478 ($ |#1| (-656 $))) (-15 -1478 ($ (-656 |#1|))) (-15 -1478 ($ |#1|)) (-15 -2003 ((-112) $)) (-15 -2814 ($ $)) (-15 -2676 ((-656 $) $)) (-15 -4113 ((-112) $ $)) (-15 -1720 ((-656 $) $)))) -((-3434 (($ $) 15)) (-3460 (($ $) 12)) (-3473 (($ $) 10)) (-3447 (($ $) 17))) -(((-1224 |#1|) (-10 -8 (-15 -3447 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3434 (|#1| |#1|))) (-1225)) (T -1224)) -NIL -(-10 -8 (-15 -3447 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3434 (|#1| |#1|))) -((-3434 (($ $) 11)) (-3411 (($ $) 10)) (-3460 (($ $) 9)) (-3473 (($ $) 8)) (-3447 (($ $) 7)) (-3423 (($ $) 6))) -(((-1225) (-141)) (T -1225)) -((-3434 (*1 *1 *1) (-4 *1 (-1225))) (-3411 (*1 *1 *1) (-4 *1 (-1225))) (-3460 (*1 *1 *1) (-4 *1 (-1225))) (-3473 (*1 *1 *1) (-4 *1 (-1225))) (-3447 (*1 *1 *1) (-4 *1 (-1225))) (-3423 (*1 *1 *1) (-4 *1 (-1225)))) -(-13 (-10 -8 (-15 -3423 ($ $)) (-15 -3447 ($ $)) (-15 -3473 ($ $)) (-15 -3460 ($ $)) (-15 -3411 ($ $)) (-15 -3434 ($ $)))) -((-3626 ((|#2| |#2|) 98)) (-1884 (((-112) |#2|) 29)) (-1473 ((|#2| |#2|) 33)) (-1483 ((|#2| |#2|) 35)) (-3156 ((|#2| |#2| (-1196)) 92) ((|#2| |#2|) 93)) (-3513 (((-171 |#2|) |#2|) 31)) (-3305 ((|#2| |#2| (-1196)) 94) ((|#2| |#2|) 95))) -(((-1226 |#1| |#2|) (-10 -7 (-15 -3156 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-1196))) (-15 -3305 (|#2| |#2|)) (-15 -3305 (|#2| |#2| (-1196))) (-15 -3626 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -1884 ((-112) |#2|)) (-15 -3513 ((-171 |#2|) |#2|))) (-13 (-464) (-1058 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -1226)) -((-3513 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1884 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3305 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3156 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(-10 -7 (-15 -3156 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-1196))) (-15 -3305 (|#2| |#2|)) (-15 -3305 (|#2| |#2| (-1196))) (-15 -3626 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -1884 ((-112) |#2|)) (-15 -3513 ((-171 |#2|) |#2|))) -((-1738 ((|#4| |#4| |#1|) 31)) (-3567 ((|#4| |#4| |#1|) 32))) -(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1738 (|#4| |#4| |#1|)) (-15 -3567 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1227)) -((-3567 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1738 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -1738 (|#4| |#4| |#1|)) (-15 -3567 (|#4| |#4| |#1|))) -((-2412 ((|#2| |#2|) 148)) (-3910 ((|#2| |#2|) 145)) (-3638 ((|#2| |#2|) 136)) (-3380 ((|#2| |#2|) 133)) (-3865 ((|#2| |#2|) 141)) (-2866 ((|#2| |#2|) 129)) (-2399 ((|#2| |#2|) 44)) (-1573 ((|#2| |#2|) 105)) (-1608 ((|#2| |#2|) 88)) (-2712 ((|#2| |#2|) 143)) (-2486 ((|#2| |#2|) 131)) (-3245 ((|#2| |#2|) 153)) (-3273 ((|#2| |#2|) 151)) (-2314 ((|#2| |#2|) 152)) (-3286 ((|#2| |#2|) 150)) (-2246 ((|#2| |#2|) 163)) (-2546 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-906 |#1|))) (|has| |#2| (-900 |#1|)) (|has| |#1| (-626 (-906 |#1|))) (|has| |#1| (-900 |#1|))))) (-2471 ((|#2| |#2|) 89)) (-2258 ((|#2| |#2|) 154)) (-3564 ((|#2| |#2|) 155)) (-1934 ((|#2| |#2|) 142)) (-3493 ((|#2| |#2|) 130)) (-4038 ((|#2| |#2|) 149)) (-4374 ((|#2| |#2|) 147)) (-1517 ((|#2| |#2|) 137)) (-2977 ((|#2| |#2|) 135)) (-3379 ((|#2| |#2|) 139)) (-2895 ((|#2| |#2|) 127))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -3564 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -4038 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -3380 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -2977 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (IF (|has| |#1| (-900 |#1|)) (IF (|has| |#1| (-626 (-906 |#1|))) (IF (|has| |#2| (-626 (-906 |#1|))) (IF (|has| |#2| (-900 |#1|)) (-15 -2546 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1222))) (T -1228)) -((-2546 (*1 *2 *2) (-12 (-4 *3 (-626 (-906 *3))) (-4 *3 (-900 *3)) (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-626 (-906 *3))) (-4 *2 (-900 *3)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3286 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2977 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3380 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3865 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1934 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4038 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2399 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3564 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222)))))) -(-10 -7 (-15 -3564 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -4038 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -3380 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -2977 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (IF (|has| |#1| (-900 |#1|)) (IF (|has| |#1| (-626 (-906 |#1|))) (IF (|has| |#2| (-626 (-906 |#1|))) (IF (|has| |#2| (-900 |#1|)) (-15 -2546 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3402 (((-112) |#5| $) 68) (((-112) $) 110)) (-4279 ((|#5| |#5| $) 83)) (-3603 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4294 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2980 (((-3 $ "failed") (-656 |#5|)) 135)) (-1762 (((-3 $ "failed") $) 120)) (-3182 ((|#5| |#5| $) 102)) (-2876 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3325 ((|#5| |#5| $) 106)) (-2721 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1999 (((-2 (|:| -1595 (-656 |#5|)) (|:| -3822 (-656 |#5|))) $) 63)) (-2171 (((-112) |#5| $) 66) (((-112) $) 111)) (-2232 ((|#4| $) 116)) (-2849 (((-3 |#5| "failed") $) 118)) (-2403 (((-656 |#5|) $) 55)) (-2498 (((-112) |#5| $) 75) (((-112) $) 115)) (-1619 ((|#5| |#5| $) 89)) (-1761 (((-112) $ $) 29)) (-3268 (((-112) |#5| $) 71) (((-112) $) 113)) (-3609 ((|#5| |#5| $) 86)) (-1753 (((-3 |#5| "failed") $) 117)) (-3679 (($ $ |#5|) 136)) (-1877 (((-783) $) 60)) (-4124 (($ (-656 |#5|)) 133)) (-3655 (($ $ |#4|) 131)) (-3837 (($ $ |#4|) 129)) (-1864 (($ $) 128)) (-4112 (((-875) $) NIL) (((-656 |#5|) $) 121)) (-2576 (((-783) $) 140)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3877 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-4365 (((-656 |#4|) $) 123)) (-3331 (((-112) |#4| $) 126)) (-3938 (((-112) $ $) 20))) -(((-1229 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2576 ((-783) |#1|)) (-15 -3679 (|#1| |#1| |#5|)) (-15 -3603 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3331 ((-112) |#4| |#1|)) (-15 -4365 ((-656 |#4|) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1|)) (-15 -2849 ((-3 |#5| "failed") |#1|)) (-15 -1753 ((-3 |#5| "failed") |#1|)) (-15 -3325 (|#5| |#5| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -3182 (|#5| |#5| |#1|)) (-15 -1619 (|#5| |#5| |#1|)) (-15 -3609 (|#5| |#5| |#1|)) (-15 -4279 (|#5| |#5| |#1|)) (-15 -4294 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2721 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2498 ((-112) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -3402 ((-112) |#1|)) (-15 -3877 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2498 ((-112) |#5| |#1|)) (-15 -3268 ((-112) |#5| |#1|)) (-15 -3402 ((-112) |#5| |#1|)) (-15 -2876 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2171 ((-112) |#1|)) (-15 -2171 ((-112) |#5| |#1|)) (-15 -1999 ((-2 (|:| -1595 (-656 |#5|)) (|:| -3822 (-656 |#5|))) |#1|)) (-15 -1877 ((-783) |#1|)) (-15 -2403 ((-656 |#5|) |#1|)) (-15 -2350 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2350 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1761 ((-112) |#1| |#1|)) (-15 -3655 (|#1| |#1| |#4|)) (-15 -3837 (|#1| |#1| |#4|)) (-15 -2232 (|#4| |#1|)) (-15 -2980 ((-3 |#1| "failed") (-656 |#5|))) (-15 -4112 ((-656 |#5|) |#1|)) (-15 -4124 (|#1| (-656 |#5|))) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3603 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) (-1230 |#2| |#3| |#4| |#5|) (-568) (-805) (-861) (-1085 |#2| |#3| |#4|)) (T -1229)) -NIL -(-10 -8 (-15 -2576 ((-783) |#1|)) (-15 -3679 (|#1| |#1| |#5|)) (-15 -3603 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3331 ((-112) |#4| |#1|)) (-15 -4365 ((-656 |#4|) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1|)) (-15 -2849 ((-3 |#5| "failed") |#1|)) (-15 -1753 ((-3 |#5| "failed") |#1|)) (-15 -3325 (|#5| |#5| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -3182 (|#5| |#5| |#1|)) (-15 -1619 (|#5| |#5| |#1|)) (-15 -3609 (|#5| |#5| |#1|)) (-15 -4279 (|#5| |#5| |#1|)) (-15 -4294 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2721 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2498 ((-112) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -3402 ((-112) |#1|)) (-15 -3877 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2498 ((-112) |#5| |#1|)) (-15 -3268 ((-112) |#5| |#1|)) (-15 -3402 ((-112) |#5| |#1|)) (-15 -2876 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2171 ((-112) |#1|)) (-15 -2171 ((-112) |#5| |#1|)) (-15 -1999 ((-2 (|:| -1595 (-656 |#5|)) (|:| -3822 (-656 |#5|))) |#1|)) (-15 -1877 ((-783) |#1|)) (-15 -2403 ((-656 |#5|) |#1|)) (-15 -2350 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2350 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1761 ((-112) |#1| |#1|)) (-15 -3655 (|#1| |#1| |#4|)) (-15 -3837 (|#1| |#1| |#4|)) (-15 -2232 (|#4| |#1|)) (-15 -2980 ((-3 |#1| "failed") (-656 |#5|))) (-15 -4112 ((-656 |#5|) |#1|)) (-15 -4124 (|#1| (-656 |#5|))) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3603 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4112 ((-875) |#1|)) (-15 -3938 ((-112) |#1| |#1|))) -((-1952 (((-112) $ $) 7)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) 86)) (-2822 (((-656 $) (-656 |#4|)) 87)) (-1582 (((-656 |#3|) $) 34)) (-2397 (((-112) $) 27)) (-2083 (((-112) $) 18 (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) 28)) (-2337 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) 80)) (-4331 (($) 46 T CONST)) (-4013 (((-112) $) 23 (|has| |#1| (-568)))) (-1938 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3142 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2948 (((-112) $) 26 (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3223 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1762 (((-3 $ "failed") $) 83)) (-3182 ((|#4| |#4| $) 90)) (-3966 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3325 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) 106)) (-3721 (((-656 |#4|) $) 53 (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) 105) (((-112) $) 104)) (-2232 ((|#3| $) 35)) (-2135 (((-112) $ (-783)) 44)) (-3958 (((-656 |#4|) $) 54 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) 48)) (-3055 (((-656 |#3|) $) 33)) (-2421 (((-112) |#3| $) 32)) (-1556 (((-112) $ (-783)) 43)) (-2043 (((-1178) $) 10)) (-2849 (((-3 |#4| "failed") $) 84)) (-2403 (((-656 |#4|) $) 108)) (-2498 (((-112) |#4| $) 100) (((-112) $) 96)) (-1619 ((|#4| |#4| $) 91)) (-1761 (((-112) $ $) 111)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) 101) (((-112) $) 97)) (-3609 ((|#4| |#4| $) 92)) (-3115 (((-1140) $) 11)) (-1753 (((-3 |#4| "failed") $) 85)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2917 (((-3 $ "failed") $ |#4|) 79)) (-3679 (($ $ |#4|) 78)) (-3587 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) 39)) (-1937 (((-112) $) 42)) (-3935 (($) 41)) (-1877 (((-783) $) 107)) (-3125 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4463)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4463)))) (-4286 (($ $) 40)) (-1554 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) 61)) (-3655 (($ $ |#3|) 29)) (-3837 (($ $ |#3|) 31)) (-1864 (($ $) 89)) (-1570 (($ $ |#3|) 30)) (-4112 (((-875) $) 12) (((-656 |#4|) $) 38)) (-2576 (((-783) $) 77 (|has| |#3| (-379)))) (-1994 (((-112) $ $) 6)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1682 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) 82)) (-3331 (((-112) |#3| $) 81)) (-3938 (((-112) $ $) 8)) (-1968 (((-783) $) 47 (|has| $ (-6 -4463))))) -(((-1230 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-861) (-1085 |t#1| |t#2| |t#3|)) (T -1230)) -((-1761 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-2350 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1230 *5 *6 *7 *8)))) (-2350 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1230 *6 *7 *8 *9)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *6)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-783)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-2 (|:| -1595 (-656 *6)) (|:| -3822 (-656 *6)))))) (-2171 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-2876 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1230 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-112)))) (-3402 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-3268 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-2498 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1230 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) (-2721 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1230 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *2 (-1085 *5 *6 *7)))) (-4294 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1230 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)))) (-4279 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-3609 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-1619 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-3182 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-1864 (*1 *1 *1) (-12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1085 *2 *3 *4)))) (-3325 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1230 *4 *5 *6 *7)))) (-4367 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1595 *1) (|:| -3822 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1230 *4 *5 *6 *7)))) (-1753 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-2849 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-1762 (*1 *1 *1) (|partial| -12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1085 *2 *3 *4)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3331 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-112)))) (-3603 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1230 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1085 *4 *5 *3)))) (-2917 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-3679 (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) -(-13 (-996 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4463) (-6 -4464) (-15 -1761 ((-112) $ $)) (-15 -2350 ((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2350 ((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2403 ((-656 |t#4|) $)) (-15 -1877 ((-783) $)) (-15 -1999 ((-2 (|:| -1595 (-656 |t#4|)) (|:| -3822 (-656 |t#4|))) $)) (-15 -2171 ((-112) |t#4| $)) (-15 -2171 ((-112) $)) (-15 -2876 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3402 ((-112) |t#4| $)) (-15 -3268 ((-112) |t#4| $)) (-15 -2498 ((-112) |t#4| $)) (-15 -3877 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -3402 ((-112) $)) (-15 -3268 ((-112) $)) (-15 -2498 ((-112) $)) (-15 -2721 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4294 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4279 (|t#4| |t#4| $)) (-15 -3609 (|t#4| |t#4| $)) (-15 -1619 (|t#4| |t#4| $)) (-15 -3182 (|t#4| |t#4| $)) (-15 -1864 ($ $)) (-15 -3325 (|t#4| |t#4| $)) (-15 -2822 ((-656 $) (-656 |t#4|))) (-15 -4367 ((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |t#4|)))) (-656 |t#4|))) (-15 -1753 ((-3 |t#4| "failed") $)) (-15 -2849 ((-3 |t#4| "failed") $)) (-15 -1762 ((-3 $ "failed") $)) (-15 -4365 ((-656 |t#3|) $)) (-15 -3331 ((-112) |t#3| $)) (-15 -3603 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2917 ((-3 $ "failed") $ |t#4|)) (-15 -3679 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -2576 ((-783) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-875)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1196)) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-2817 (((-970 |#1|) $ (-783)) 17) (((-970 |#1|) $ (-783) (-783)) NIL)) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-783) $ (-1196)) NIL) (((-783) $ (-1196) (-783)) NIL)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3146 (((-112) $) NIL)) (-1562 (($ $ (-656 (-1196)) (-656 (-543 (-1196)))) NIL) (($ $ (-1196) (-543 (-1196))) NIL) (($ |#1| (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-2944 (($ $ (-1196)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-4182 (($ (-1 $) (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3679 (($ $ (-783)) NIL)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($ $ (-1196) $) NIL) (($ $ (-656 (-1196)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-4106 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-1877 (((-543 (-1196)) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1196)) NIL) (($ (-970 |#1|)) NIL)) (-4269 ((|#1| $ (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (((-970 |#1|) $ (-783)) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3155 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1231 |#1|) (-13 (-752 |#1| (-1196)) (-10 -8 (-15 -4269 ((-970 |#1|) $ (-783))) (-15 -4112 ($ (-1196))) (-15 -4112 ($ (-970 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $ (-1196) |#1|)) (-15 -4182 ($ (-1 $) (-1196) |#1|))) |%noBranch|))) (-1069)) (T -1231)) -((-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-970 *4)) (-5 *1 (-1231 *4)) (-4 *4 (-1069)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-1069)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-1069)) (-5 *1 (-1231 *3)))) (-2944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)))) (-4182 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1196)) (-5 *1 (-1231 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1069))))) -(-13 (-752 |#1| (-1196)) (-10 -8 (-15 -4269 ((-970 |#1|) $ (-783))) (-15 -4112 ($ (-1196))) (-15 -4112 ($ (-970 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $ (-1196) |#1|)) (-15 -4182 ($ (-1 $) (-1196) |#1|))) |%noBranch|))) -((-4180 (($ |#1| (-656 (-656 (-961 (-227)))) (-112)) 19)) (-2441 (((-112) $ (-112)) 18)) (-4266 (((-112) $) 17)) (-4205 (((-656 (-656 (-961 (-227)))) $) 13)) (-1386 ((|#1| $) 8)) (-3546 (((-112) $) 15))) -(((-1232 |#1|) (-10 -8 (-15 -1386 (|#1| $)) (-15 -4205 ((-656 (-656 (-961 (-227)))) $)) (-15 -3546 ((-112) $)) (-15 -4266 ((-112) $)) (-15 -2441 ((-112) $ (-112))) (-15 -4180 ($ |#1| (-656 (-656 (-961 (-227)))) (-112)))) (-994)) (T -1232)) -((-4180 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-112)) (-5 *1 (-1232 *2)) (-4 *2 (-994)))) (-2441 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-994)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-994)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-994)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-1232 *3)) (-4 *3 (-994)))) (-1386 (*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-994))))) -(-10 -8 (-15 -1386 (|#1| $)) (-15 -4205 ((-656 (-656 (-961 (-227)))) $)) (-15 -3546 ((-112) $)) (-15 -4266 ((-112) $)) (-15 -2441 ((-112) $ (-112))) (-15 -4180 ($ |#1| (-656 (-656 (-961 (-227)))) (-112)))) -((-2793 (((-961 (-227)) (-961 (-227))) 31)) (-2819 (((-961 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2292 (((-656 (-961 (-227))) (-961 (-227)) (-961 (-227)) (-961 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-4139 (((-227) (-961 (-227)) (-961 (-227))) 27)) (-1776 (((-961 (-227)) (-961 (-227)) (-961 (-227))) 28)) (-2055 (((-656 (-656 (-227))) (-576)) 44)) (-4036 (((-961 (-227)) (-961 (-227)) (-961 (-227))) 26)) (-4026 (((-961 (-227)) (-961 (-227)) (-961 (-227))) 24)) (* (((-961 (-227)) (-227) (-961 (-227))) 22))) -(((-1233) (-10 -7 (-15 -2819 ((-961 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-961 (-227)) (-227) (-961 (-227)))) (-15 -4026 ((-961 (-227)) (-961 (-227)) (-961 (-227)))) (-15 -4036 ((-961 (-227)) (-961 (-227)) (-961 (-227)))) (-15 -4139 ((-227) (-961 (-227)) (-961 (-227)))) (-15 -1776 ((-961 (-227)) (-961 (-227)) (-961 (-227)))) (-15 -2793 ((-961 (-227)) (-961 (-227)))) (-15 -2055 ((-656 (-656 (-227))) (-576))) (-15 -2292 ((-656 (-961 (-227))) (-961 (-227)) (-961 (-227)) (-961 (-227)) (-227) (-656 (-656 (-227))))))) (T -1233)) -((-2292 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-961 *4))) (-5 *1 (-1233)) (-5 *3 (-961 *4)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1233)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) (-1776 (*1 *2 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) (-4139 (*1 *2 *3 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-227)) (-5 *1 (-1233)))) (-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) (-4026 (*1 *2 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-961 (-227))) (-5 *3 (-227)) (-5 *1 (-1233)))) (-2819 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)) (-5 *3 (-227))))) -(-10 -7 (-15 -2819 ((-961 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-961 (-227)) (-227) (-961 (-227)))) (-15 -4026 ((-961 (-227)) (-961 (-227)) (-961 (-227)))) (-15 -4036 ((-961 (-227)) (-961 (-227)) (-961 (-227)))) (-15 -4139 ((-227) (-961 (-227)) (-961 (-227)))) (-15 -1776 ((-961 (-227)) (-961 (-227)) (-961 (-227)))) (-15 -2793 ((-961 (-227)) (-961 (-227)))) (-15 -2055 ((-656 (-656 (-227))) (-576))) (-15 -2292 ((-656 (-961 (-227))) (-961 (-227)) (-961 (-227)) (-961 (-227)) (-227) (-656 (-656 (-227)))))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-3603 ((|#1| $ (-783)) 18)) (-3107 (((-783) $) 13)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-4112 (((-976 |#1|) $) 12) (($ (-976 |#1|)) 11) (((-875) $) 29 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-3938 (((-112) $ $) 22 (|has| |#1| (-1120))))) -(((-1234 |#1|) (-13 (-502 (-976 |#1|)) (-10 -8 (-15 -3603 (|#1| $ (-783))) (-15 -3107 ((-783) $)) (IF (|has| |#1| (-625 (-875))) (-6 (-625 (-875))) |%noBranch|) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) (-1237)) (T -1234)) -((-3603 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1234 *2)) (-4 *2 (-1237)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1234 *3)) (-4 *3 (-1237))))) -(-13 (-502 (-976 |#1|)) (-10 -8 (-15 -3603 (|#1| $ (-783))) (-15 -3107 ((-783) $)) (IF (|has| |#1| (-625 (-875))) (-6 (-625 (-875))) |%noBranch|) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) -((-4324 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)) 94)) (-1434 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 86)) (-3720 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 70))) -(((-1235 |#1|) (-10 -7 (-15 -1434 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -3720 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -4324 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)))) (-360)) (T -1235)) -((-4324 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1192 (-1192 *5)))) (-5 *1 (-1235 *5)) (-5 *3 (-1192 (-1192 *5))))) (-3720 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4))))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4)))))) -(-10 -7 (-15 -1434 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -3720 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -4324 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 9) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1236) (-1103)) (T -1236)) -NIL -(-1103) -NIL -(((-1237) (-141)) (T -1237)) -NIL -(-13 (-10 -7 (-6 -2601))) -((-2265 (((-112)) 18)) (-1588 (((-1292) (-656 |#1|) (-656 |#1|)) 22) (((-1292) (-656 |#1|)) 23)) (-2135 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-1556 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3149 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4252 (((-2 (|:| -3778 (-656 |#1|)) (|:| -3995 (-656 |#1|)))) 20))) -(((-1238 |#1|) (-10 -7 (-15 -1588 ((-1292) (-656 |#1|))) (-15 -1588 ((-1292) (-656 |#1|) (-656 |#1|))) (-15 -4252 ((-2 (|:| -3778 (-656 |#1|)) (|:| -3995 (-656 |#1|))))) (-15 -1556 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1556 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3149 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2265 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3149 (|#1| (-656 |#1|))) (-15 -2135 ((-112) |#1| |#1|))) |%noBranch|)) (-1120)) (T -1238)) -((-2135 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-861)) (-4 *3 (-1120)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-861)) (-5 *1 (-1238 *2)))) (-2265 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1238 *2)) (-4 *2 (-1120)))) (-1556 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1120)) (-5 *2 (-112)) (-5 *1 (-1238 *3)))) (-1556 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) (-4252 (*1 *2) (-12 (-5 *2 (-2 (|:| -3778 (-656 *3)) (|:| -3995 (-656 *3)))) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) (-1588 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) (-5 *1 (-1238 *4)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) (-5 *1 (-1238 *4))))) -(-10 -7 (-15 -1588 ((-1292) (-656 |#1|))) (-15 -1588 ((-1292) (-656 |#1|) (-656 |#1|))) (-15 -4252 ((-2 (|:| -3778 (-656 |#1|)) (|:| -3995 (-656 |#1|))))) (-15 -1556 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1556 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3149 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2265 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3149 (|#1| (-656 |#1|))) (-15 -2135 ((-112) |#1| |#1|))) |%noBranch|)) -((-1900 (((-1292) (-656 (-1196)) (-656 (-1196))) 14) (((-1292) (-656 (-1196))) 12)) (-1691 (((-1292)) 16)) (-3128 (((-2 (|:| -3995 (-656 (-1196))) (|:| -3778 (-656 (-1196))))) 20))) -(((-1239) (-10 -7 (-15 -1900 ((-1292) (-656 (-1196)))) (-15 -1900 ((-1292) (-656 (-1196)) (-656 (-1196)))) (-15 -3128 ((-2 (|:| -3995 (-656 (-1196))) (|:| -3778 (-656 (-1196)))))) (-15 -1691 ((-1292))))) (T -1239)) -((-1691 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239)))) (-3128 (*1 *2) (-12 (-5 *2 (-2 (|:| -3995 (-656 (-1196))) (|:| -3778 (-656 (-1196))))) (-5 *1 (-1239)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))) -(-10 -7 (-15 -1900 ((-1292) (-656 (-1196)))) (-15 -1900 ((-1292) (-656 (-1196)) (-656 (-1196)))) (-15 -3128 ((-2 (|:| -3995 (-656 (-1196))) (|:| -3778 (-656 (-1196)))))) (-15 -1691 ((-1292)))) -((-3575 (($ $) 17)) (-2443 (((-112) $) 28))) -(((-1240 |#1|) (-10 -8 (-15 -3575 (|#1| |#1|)) (-15 -2443 ((-112) |#1|))) (-1241)) (T -1240)) -NIL -(-10 -8 (-15 -3575 (|#1| |#1|)) (-15 -2443 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 57)) (-3163 (((-430 $) $) 58)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2443 (((-112) $) 59)) (-2287 (((-112) $) 35)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1450 (((-430 $) $) 56)) (-1943 (((-3 $ "failed") $ $) 48)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1241) (-141)) (T -1241)) -((-2443 (*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-112)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) (-3575 (*1 *1 *1) (-4 *1 (-1241))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241))))) -(-13 (-464) (-10 -8 (-15 -2443 ((-112) $)) (-15 -3163 ((-430 $) $)) (-15 -3575 ($ $)) (-15 -1450 ((-430 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3872 (($ $ $) NIL)) (-3859 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-1242) (-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665)))) (T -1242)) -((-3859 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3872 (*1 *1 *1 *1) (-5 *1 (-1242))) (-4331 (*1 *1) (-5 *1 (-1242)))) -(-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 9)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 7))) +(((-1205) (-1121)) (T -1205)) +NIL +(-1121) +((-4381 (((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 69)) (-1918 (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|)))) 80) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|))) 76) (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 81) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 75) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 107) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 104))) +(((-1206 |#1|) (-10 -7 (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -4381 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) (-568)) (T -1206)) +((-4381 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5)))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4)))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-304 (-419 (-971 *5)))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-419 (-971 *5))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) (-5 *3 (-656 (-304 (-419 (-971 *5))))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5))))) +(-10 -7 (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -1918 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -1918 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -4381 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) +((-3871 (((-1179)) 7)) (-1454 (((-1179)) 11 T CONST)) (-3697 (((-1293) (-1179)) 13)) (-2191 (((-1179)) 8 T CONST)) (-3479 (((-131)) 10 T CONST))) +(((-1207) (-13 (-1238) (-10 -7 (-15 -3871 ((-1179))) (-15 -2191 ((-1179)) -1480) (-15 -3479 ((-131)) -1480) (-15 -1454 ((-1179)) -1480) (-15 -3697 ((-1293) (-1179)))))) (T -1207)) +((-3871 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-2191 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-3479 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207)))) (-1454 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) +(-13 (-1238) (-10 -7 (-15 -3871 ((-1179))) (-15 -2191 ((-1179)) -1480) (-15 -3479 ((-131)) -1480) (-15 -1454 ((-1179)) -1480) (-15 -3697 ((-1293) (-1179))))) +((-2871 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-1411 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-4186 (((-1209 (-656 |#1|)) (-656 |#1|)) 49)) (-1506 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-3406 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-1946 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-2038 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-2549 (((-656 |#1|) (-656 |#1|)) 46)) (-3336 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-1910 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-3285 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-3611 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-1635 (((-656 (-656 |#1|)) (-1209 (-656 |#1|))) 60))) +(((-1208 |#1|) (-10 -7 (-15 -3285 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1910 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3336 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2871 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3611 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1635 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -1411 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -4186 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -2038 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -1506 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2549 ((-656 |#1|) (-656 |#1|))) (-15 -1946 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3406 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-861)) (T -1208)) +((-3406 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-1946 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1208 *6)) (-5 *4 (-656 *5)))) (-2549 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4))))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-861)))) (-2871 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-3336 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-1910 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5)))) (-3285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) +(-10 -7 (-15 -3285 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1910 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3336 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2871 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3611 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1635 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -1411 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -4186 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -2038 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -1506 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2549 ((-656 |#1|) (-656 |#1|))) (-15 -1946 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3406 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) +((-2463 (($ (-656 (-656 |#1|))) 10)) (-2093 (((-656 (-656 |#1|)) $) 11)) (-3569 (((-876) $) 33))) +(((-1209 |#1|) (-10 -8 (-15 -2463 ($ (-656 (-656 |#1|)))) (-15 -2093 ((-656 (-656 |#1|)) $)) (-15 -3569 ((-876) $))) (-1121)) (T -1209)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-2463 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) +(-10 -8 (-15 -2463 ($ (-656 (-656 |#1|)))) (-15 -2093 ((-656 (-656 |#1|)) $)) (-15 -3569 ((-876) $))) +((-3488 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1656 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) NIL)) (-3306 (($) NIL T CONST)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) NIL)) (-1617 ((|#1| $) NIL (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4027 ((|#1| $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-2419 (((-112) |#1| $) NIL)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-2764 (((-656 |#1|) $) NIL)) (-4018 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2314 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2113 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) NIL)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) NIL (-2758 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1210 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121)) (T -1210)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-3488 (((-112) $ $) NIL)) (-1775 (($ |#1| (-55)) 10)) (-2627 ((|#1| $) 12)) (-1413 (((-1179) $) NIL)) (-2158 (((-112) $ |#1|) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2113 (((-112) $ $) NIL)) (-1479 (((-55) $) 14)) (-2923 (((-112) $ $) NIL))) +(((-1211 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -1775 ($ |#1| (-55))))) (-1121)) (T -1211)) +((-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) +(-13 (-847 |#1|) (-10 -8 (-15 -1775 ($ |#1| (-55))))) +((-4415 ((|#1| (-656 |#1|)) 46)) (-2491 ((|#1| |#1| (-576)) 24)) (-1526 (((-1193 |#1|) |#1| (-940)) 20))) +(((-1212 |#1|) (-10 -7 (-15 -4415 (|#1| (-656 |#1|))) (-15 -1526 ((-1193 |#1|) |#1| (-940))) (-15 -2491 (|#1| |#1| (-576)))) (-374)) (T -1212)) +((-2491 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374)))) (-1526 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) (-4 *3 (-374)))) (-4415 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) +(-10 -7 (-15 -4415 (|#1| (-656 |#1|))) (-15 -1526 ((-1193 |#1|) |#1| (-940))) (-15 -2491 (|#1| |#1| (-576)))) +((-4127 (($) 10) (($ (-656 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)))) 14)) (-2065 (($ (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-4322 (($ (-1 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4116 (($ (-1 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3772 (((-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) $) 60)) (-4436 (($ (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) $) 16)) (-2764 (((-656 |#2|) $) 19)) (-4018 (((-112) |#2| $) 65)) (-2366 (((-3 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) "failed") (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) 64)) (-3267 (((-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) $) 69)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1681 (((-656 |#3|) $) 43)) (-2796 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) NIL) (((-783) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-3569 (((-876) $) 27)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2923 (((-112) $ $) 51))) +(((-1213 |#1| |#2| |#3|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4127 (|#1| (-656 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))))) (-15 -4127 (|#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4322 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3965 ((-656 |#3|) |#1|)) (-15 -1460 ((-783) |#3| |#1|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -1681 ((-656 |#3|) |#1|)) (-15 -4018 ((-112) |#2| |#1|)) (-15 -2764 ((-656 |#2|) |#1|)) (-15 -2065 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2065 (|#1| (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -2065 (|#1| (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -2366 ((-3 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) "failed") (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -3772 ((-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -4436 (|#1| (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -3267 ((-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -1460 ((-783) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -3965 ((-656 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -1460 ((-783) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -3542 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -2170 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -4322 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -4116 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|))) (-1214 |#2| |#3|) (-1121) (-1121)) (T -1213)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4127 (|#1| (-656 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))))) (-15 -4127 (|#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4322 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2170 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3542 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3965 ((-656 |#3|) |#1|)) (-15 -1460 ((-783) |#3| |#1|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -1681 ((-656 |#3|) |#1|)) (-15 -4018 ((-112) |#2| |#1|)) (-15 -2764 ((-656 |#2|) |#1|)) (-15 -2065 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2065 (|#1| (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -2065 (|#1| (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -2366 ((-3 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) "failed") (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -3772 ((-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -4436 (|#1| (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -3267 ((-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -1460 ((-783) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) |#1|)) (-15 -3965 ((-656 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -1460 ((-783) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -3542 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -2170 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -4322 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|)) (-15 -4116 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4438 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4438 |#3|))) |#1|))) +((-3488 (((-112) $ $) 20 (-2758 (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))))) (-4127 (($) 73) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 72)) (-1656 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#2| $ |#1| |#2|) 74)) (-4355 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 46 (|has| $ (-6 -4464)))) (-1971 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 56 (|has| $ (-6 -4464)))) (-2195 (((-3 |#2| "failed") |#1| $) 62)) (-3306 (($) 7 T CONST)) (-2800 (($ $) 59 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-2065 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 55 (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 57 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 53 (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 89)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 31 (|has| $ (-6 -4464))) (((-656 |#2|) $) 80 (|has| $ (-6 -4464)))) (-4252 (((-112) $ (-783)) 9)) (-1617 ((|#1| $) 97 (|has| |#1| (-861)))) (-2735 (((-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 30 (|has| $ (-6 -4464))) (((-656 |#2|) $) 81 (|has| $ (-6 -4464)))) (-3456 (((-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4027 ((|#1| $) 96 (|has| |#1| (-861)))) (-4322 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 35 (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3557 (((-112) $ (-783)) 10)) (-1413 (((-1179) $) 23 (-2758 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3203 (((-656 |#1|) $) 64)) (-2419 (((-112) |#1| $) 65)) (-3772 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 40)) (-4436 (($ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 41)) (-2764 (((-656 |#1|) $) 94)) (-4018 (((-112) |#1| $) 93)) (-1450 (((-1141) $) 22 (-2758 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))))) (-3580 ((|#2| $) 98 (|has| |#1| (-861)))) (-2366 (((-3 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 52)) (-2740 (($ $ |#2|) 99 (|has| $ (-6 -4465)))) (-3267 (((-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 42)) (-3542 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 33 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))))) 27 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 26 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) 25 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 24 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1681 (((-656 |#2|) $) 92)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2314 (($) 50) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 49)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 51)) (-3569 (((-876) $) 18 (-2758 (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876)))))) (-2113 (((-112) $ $) 21 (-2758 (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))))) (-1470 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) 43)) (-2170 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) $) 34 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (-2758 (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1214 |#1| |#2|) (-141) (-1121) (-1121)) (T -1214)) +((-3755 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4127 (*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 *3) (|:| -4438 *4)))) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3755 (|t#2| $ |t#1| |t#2|)) (-15 -4127 ($)) (-15 -4127 ($ (-656 (-2 (|:| -4300 |t#1|) (|:| -4438 |t#2|))))) (-15 -4116 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4300 |#1|) (|:| -4438 |#2|))) . T) ((-102) -2758 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-102))) ((-625 (-876)) -2758 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-1121) -2758 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4438 |#2|)) (-1121))) ((-1238) . T)) +((-4160 (((-112)) 29)) (-2385 (((-1293) (-1179)) 31)) (-3529 (((-112)) 41)) (-4200 (((-1293)) 39)) (-2116 (((-1293) (-1179) (-1179)) 30)) (-1695 (((-112)) 42)) (-4436 (((-1293) |#1| |#2|) 53)) (-2067 (((-1293)) 26)) (-3711 (((-3 |#2| "failed") |#1|) 51)) (-2104 (((-1293)) 40))) +(((-1215 |#1| |#2|) (-10 -7 (-15 -2067 ((-1293))) (-15 -2116 ((-1293) (-1179) (-1179))) (-15 -2385 ((-1293) (-1179))) (-15 -4200 ((-1293))) (-15 -2104 ((-1293))) (-15 -4160 ((-112))) (-15 -3529 ((-112))) (-15 -1695 ((-112))) (-15 -3711 ((-3 |#2| "failed") |#1|)) (-15 -4436 ((-1293) |#1| |#2|))) (-1121) (-1121)) (T -1215)) +((-4436 (*1 *2 *3 *4) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3711 (*1 *2 *3) (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121)))) (-1695 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3529 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4160 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2104 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4200 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-2116 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-2067 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-10 -7 (-15 -2067 ((-1293))) (-15 -2116 ((-1293) (-1179) (-1179))) (-15 -2385 ((-1293) (-1179))) (-15 -4200 ((-1293))) (-15 -2104 ((-1293))) (-15 -4160 ((-112))) (-15 -3529 ((-112))) (-15 -1695 ((-112))) (-15 -3711 ((-3 |#2| "failed") |#1|)) (-15 -4436 ((-1293) |#1| |#2|))) +((-3890 (((-1179) (-1179)) 22)) (-2262 (((-52) (-1179)) 25))) +(((-1216) (-10 -7 (-15 -2262 ((-52) (-1179))) (-15 -3890 ((-1179) (-1179))))) (T -1216)) +((-3890 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) +(-10 -7 (-15 -2262 ((-52) (-1179))) (-15 -3890 ((-1179) (-1179)))) +((-3569 (((-1218) |#1|) 11))) +(((-1217 |#1|) (-10 -7 (-15 -3569 ((-1218) |#1|))) (-1121)) (T -1217)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1217 *3)) (-4 *3 (-1121))))) +(-10 -7 (-15 -3569 ((-1218) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2982 (((-656 (-1179)) $) 39)) (-2408 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-4176 (((-656 (-1179)) $ (-656 (-1179))) 41)) (-3655 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-3334 (((-656 (-1179)) $) 38)) (-4140 (($) 28)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2712 (((-656 (-1179)) $) 40)) (-1976 (((-1293) $ (-576)) 35) (((-1293) $) 36)) (-4171 (($ (-876) (-576)) 33) (($ (-876) (-576) (-876)) NIL)) (-3569 (((-876) $) 49) (($ (-876)) 32)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1218) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -4171 ($ (-876) (-576) (-876))) (-15 -1976 ((-1293) $ (-576))) (-15 -1976 ((-1293) $)) (-15 -2712 ((-656 (-1179)) $)) (-15 -2982 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3334 ((-656 (-1179)) $)) (-15 -3655 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2408 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4176 ((-656 (-1179)) $ (-656 (-1179))))))) (T -1218)) +((-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-4171 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-4140 (*1 *1) (-5 *1 (-1218))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-3655 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2408 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-4176 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -4171 ($ (-876) (-576) (-876))) (-15 -1976 ((-1293) $ (-576))) (-15 -1976 ((-1293) $)) (-15 -2712 ((-656 (-1179)) $)) (-15 -2982 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3334 ((-656 (-1179)) $)) (-15 -3655 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2408 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4176 ((-656 (-1179)) $ (-656 (-1179)))))) +((-3488 (((-112) $ $) NIL)) (-1624 (((-1179) $ (-1179)) 17) (((-1179) $) 16)) (-1394 (((-1179) $ (-1179)) 15)) (-2062 (($ $ (-1179)) NIL)) (-3019 (((-3 (-1179) "failed") $) 11)) (-3841 (((-1179) $) 8)) (-1724 (((-3 (-1179) "failed") $) 12)) (-3940 (((-1179) $) 9)) (-3256 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-2627 (((-400) $) NIL)) (-1413 (((-1179) $) NIL)) (-3197 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1885 (((-112) $) 21)) (-3569 (((-876) $) NIL)) (-1540 (($ $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1219) (-13 (-375 (-400) (-1179)) (-10 -8 (-15 -1624 ((-1179) $ (-1179))) (-15 -1624 ((-1179) $)) (-15 -3841 ((-1179) $)) (-15 -3019 ((-3 (-1179) "failed") $)) (-15 -1724 ((-3 (-1179) "failed") $)) (-15 -1885 ((-112) $))))) (T -1219)) +((-1624 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-3019 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-1724 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) +(-13 (-375 (-400) (-1179)) (-10 -8 (-15 -1624 ((-1179) $ (-1179))) (-15 -1624 ((-1179) $)) (-15 -3841 ((-1179) $)) (-15 -3019 ((-3 (-1179) "failed") $)) (-15 -1724 ((-3 (-1179) "failed") $)) (-15 -1885 ((-112) $)))) +((-1529 (((-3 (-576) "failed") |#1|) 19)) (-1906 (((-3 (-576) "failed") |#1|) 14)) (-3241 (((-576) (-1179)) 33))) +(((-1220 |#1|) (-10 -7 (-15 -1529 ((-3 (-576) "failed") |#1|)) (-15 -1906 ((-3 (-576) "failed") |#1|)) (-15 -3241 ((-576) (-1179)))) (-1070)) (T -1220)) +((-3241 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) (-4 *4 (-1070)))) (-1906 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070)))) (-1529 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) +(-10 -7 (-15 -1529 ((-3 (-576) "failed") |#1|)) (-15 -1906 ((-3 (-576) "failed") |#1|)) (-15 -3241 ((-576) (-1179)))) +((-1416 (((-1154 (-227))) 9))) +(((-1221) (-10 -7 (-15 -1416 ((-1154 (-227)))))) (T -1221)) +((-1416 (*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) +(-10 -7 (-15 -1416 ((-1154 (-227))))) +((-1600 (($) 12)) (-2789 (($ $) 36)) (-4070 (($ $) 34)) (-3937 (($ $) 26)) (-2814 (($ $) 18)) (-4387 (($ $) 16)) (-2802 (($ $) 20)) (-3973 (($ $) 31)) (-4082 (($ $) 35)) (-3950 (($ $) 30))) +(((-1222 |#1|) (-10 -8 (-15 -1600 (|#1|)) (-15 -2789 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3950 (|#1| |#1|))) (-1223)) (T -1222)) +NIL +(-10 -8 (-15 -1600 (|#1|)) (-15 -2789 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3950 (|#1| |#1|))) +((-4024 (($ $) 26)) (-3900 (($ $) 11)) (-4005 (($ $) 27)) (-3876 (($ $) 10)) (-4049 (($ $) 28)) (-3919 (($ $) 9)) (-1600 (($) 16)) (-3744 (($ $) 19)) (-4103 (($ $) 18)) (-4060 (($ $) 29)) (-3929 (($ $) 8)) (-4036 (($ $) 30)) (-3909 (($ $) 7)) (-4013 (($ $) 31)) (-3888 (($ $) 6)) (-2789 (($ $) 20)) (-3960 (($ $) 32)) (-4070 (($ $) 21)) (-3937 (($ $) 33)) (-2814 (($ $) 22)) (-3982 (($ $) 34)) (-4387 (($ $) 23)) (-3994 (($ $) 35)) (-2802 (($ $) 24)) (-3973 (($ $) 36)) (-4082 (($ $) 25)) (-3950 (($ $) 37)) (** (($ $ $) 17))) +(((-1223) (-141)) (T -1223)) +((-1600 (*1 *1) (-4 *1 (-1223)))) +(-13 (-1226) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1600 ($)))) +(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1226) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 19)) (-3255 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-2396 (((-112) $ (-783)) 72)) (-2232 ((|#1| $ |#1|) 14 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 13 (|has| $ (-6 -4465)))) (-3306 (($) NIL T CONST)) (-3965 (((-656 |#1|) $) 77 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 64)) (-3695 (((-112) $ $) 50 (|has| |#1| (-1121)))) (-4252 (((-112) $ (-783)) 62)) (-2735 (((-656 |#1|) $) 78 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4322 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 27)) (-3557 (((-112) $ (-783)) 60)) (-2351 (((-656 |#1|) $) 55)) (-2953 (((-112) $) 53)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3542 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 107)) (-2866 (((-112) $) 9)) (-3839 (($) 10)) (-2796 ((|#1| $ "value") NIL)) (-3957 (((-576) $ $) 48)) (-2494 (((-656 $) $) 89)) (-1756 (((-112) $ $) 110)) (-1530 (((-656 $) $) 105)) (-3526 (($ $) 106)) (-2199 (((-112) $) 84)) (-1460 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4464))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 88)) (-3569 (((-876) $) 91 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 12)) (-4386 (((-112) $ $) 39 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 37 (|has| |#1| (-102)))) (-3502 (((-783) $) 58 (|has| $ (-6 -4464))))) +(((-1224 |#1|) (-13 (-1031 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3255 ($ |#1| (-656 $))) (-15 -3255 ($ (-656 |#1|))) (-15 -3255 ($ |#1|)) (-15 -2199 ((-112) $)) (-15 -3526 ($ $)) (-15 -1530 ((-656 $) $)) (-15 -1756 ((-112) $ $)) (-15 -2494 ((-656 $) $)))) (-1121)) (T -1224)) +((-2199 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-3255 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-3255 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) (-3255 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-1756 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(-13 (-1031 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3255 ($ |#1| (-656 $))) (-15 -3255 ($ (-656 |#1|))) (-15 -3255 ($ |#1|)) (-15 -2199 ((-112) $)) (-15 -3526 ($ $)) (-15 -1530 ((-656 $) $)) (-15 -1756 ((-112) $ $)) (-15 -2494 ((-656 $) $)))) +((-3900 (($ $) 15)) (-3919 (($ $) 12)) (-3929 (($ $) 10)) (-3909 (($ $) 17))) +(((-1225 |#1|) (-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3900 (|#1| |#1|))) (-1226)) (T -1225)) +NIL +(-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3900 (|#1| |#1|))) +((-3900 (($ $) 11)) (-3876 (($ $) 10)) (-3919 (($ $) 9)) (-3929 (($ $) 8)) (-3909 (($ $) 7)) (-3888 (($ $) 6))) +(((-1226) (-141)) (T -1226)) +((-3900 (*1 *1 *1) (-4 *1 (-1226))) (-3876 (*1 *1 *1) (-4 *1 (-1226))) (-3919 (*1 *1 *1) (-4 *1 (-1226))) (-3929 (*1 *1 *1) (-4 *1 (-1226))) (-3909 (*1 *1 *1) (-4 *1 (-1226))) (-3888 (*1 *1 *1) (-4 *1 (-1226)))) +(-13 (-10 -8 (-15 -3888 ($ $)) (-15 -3909 ($ $)) (-15 -3929 ($ $)) (-15 -3919 ($ $)) (-15 -3876 ($ $)) (-15 -3900 ($ $)))) +((-3932 ((|#2| |#2|) 98)) (-3679 (((-112) |#2|) 29)) (-1851 ((|#2| |#2|) 33)) (-1861 ((|#2| |#2|) 35)) (-1701 ((|#2| |#2| (-1197)) 92) ((|#2| |#2|) 93)) (-4138 (((-171 |#2|) |#2|) 31)) (-2676 ((|#2| |#2| (-1197)) 94) ((|#2| |#2|) 95))) +(((-1227 |#1| |#2|) (-10 -7 (-15 -1701 (|#2| |#2|)) (-15 -1701 (|#2| |#2| (-1197))) (-15 -2676 (|#2| |#2|)) (-15 -2676 (|#2| |#2| (-1197))) (-15 -3932 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -3679 ((-112) |#2|)) (-15 -4138 ((-171 |#2|) |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -1227)) +((-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-3679 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-2676 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1701 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(-10 -7 (-15 -1701 (|#2| |#2|)) (-15 -1701 (|#2| |#2| (-1197))) (-15 -2676 (|#2| |#2|)) (-15 -2676 (|#2| |#2| (-1197))) (-15 -3932 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -3679 ((-112) |#2|)) (-15 -4138 ((-171 |#2|) |#2|))) +((-1498 ((|#4| |#4| |#1|) 31)) (-3347 ((|#4| |#4| |#1|) 32))) +(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1498 (|#4| |#4| |#1|)) (-15 -3347 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1228)) +((-3347 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1498 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -1498 (|#4| |#4| |#1|)) (-15 -3347 (|#4| |#4| |#1|))) +((-1895 ((|#2| |#2|) 148)) (-3561 ((|#2| |#2|) 145)) (-2741 ((|#2| |#2|) 136)) (-2194 ((|#2| |#2|) 133)) (-4347 ((|#2| |#2|) 141)) (-4003 ((|#2| |#2|) 129)) (-1777 ((|#2| |#2|) 44)) (-3722 ((|#2| |#2|) 105)) (-2759 ((|#2| |#2|) 88)) (-1856 ((|#2| |#2|) 143)) (-3348 ((|#2| |#2|) 131)) (-3352 ((|#2| |#2|) 153)) (-3638 ((|#2| |#2|) 151)) (-2183 ((|#2| |#2|) 152)) (-3789 ((|#2| |#2|) 150)) (-2775 ((|#2| |#2|) 163)) (-3964 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-907 |#1|))) (|has| |#2| (-901 |#1|)) (|has| |#1| (-626 (-907 |#1|))) (|has| |#1| (-901 |#1|))))) (-4441 ((|#2| |#2|) 89)) (-2912 ((|#2| |#2|) 154)) (-1942 ((|#2| |#2|) 155)) (-2828 ((|#2| |#2|) 142)) (-1974 ((|#2| |#2|) 130)) (-2228 ((|#2| |#2|) 149)) (-2449 ((|#2| |#2|) 147)) (-4411 ((|#2| |#2|) 137)) (-3783 ((|#2| |#2|) 135)) (-2182 ((|#2| |#2|) 139)) (-3060 ((|#2| |#2|) 127))) +(((-1229 |#1| |#2|) (-10 -7 (-15 -1942 (|#2| |#2|)) (-15 -2759 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -3722 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -4441 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -3060 (|#2| |#2|)) (-15 -2182 (|#2| |#2|)) (-15 -4411 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -1974 (|#2| |#2|)) (-15 -2828 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4347 (|#2| |#2|)) (-15 -2741 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -3352 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -3964 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1223))) (T -1229)) +((-3964 (*1 *2 *2) (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3352 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2183 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2449 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2194 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2741 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4347 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2828 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1974 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2228 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4411 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2182 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3060 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4441 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2759 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1942 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223)))))) +(-10 -7 (-15 -1942 (|#2| |#2|)) (-15 -2759 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -3722 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -4441 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -3060 (|#2| |#2|)) (-15 -2182 (|#2| |#2|)) (-15 -4411 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -1974 (|#2| |#2|)) (-15 -2828 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4347 (|#2| |#2|)) (-15 -2741 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -3352 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -3964 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2373 (((-112) |#5| $) 68) (((-112) $) 110)) (-2795 ((|#5| |#5| $) 83)) (-1971 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2947 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1572 (((-3 $ "failed") (-656 |#5|)) 135)) (-3592 (((-3 $ "failed") $) 120)) (-3947 ((|#5| |#5| $) 102)) (-2813 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2873 ((|#5| |#5| $) 106)) (-3685 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2153 (((-2 (|:| -1957 (-656 |#5|)) (|:| -3256 (-656 |#5|))) $) 63)) (-3363 (((-112) |#5| $) 66) (((-112) $) 111)) (-2665 ((|#4| $) 116)) (-3967 (((-3 |#5| "failed") $) 118)) (-1809 (((-656 |#5|) $) 55)) (-3455 (((-112) |#5| $) 75) (((-112) $) 115)) (-2860 ((|#5| |#5| $) 89)) (-1716 (((-112) $ $) 29)) (-3595 (((-112) |#5| $) 71) (((-112) $) 113)) (-3764 ((|#5| |#5| $) 86)) (-3580 (((-3 |#5| "failed") $) 117)) (-3169 (($ $ |#5|) 136)) (-3600 (((-783) $) 60)) (-3581 (($ (-656 |#5|)) 133)) (-2907 (($ $ |#4|) 131)) (-4080 (($ $ |#4|) 129)) (-3453 (($ $) 128)) (-3569 (((-876) $) NIL) (((-656 |#5|) $) 121)) (-3000 (((-783) $) 140)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1324 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-2370 (((-656 |#4|) $) 123)) (-2951 (((-112) |#4| $) 126)) (-2923 (((-112) $ $) 20))) +(((-1230 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3000 ((-783) |#1|)) (-15 -3169 (|#1| |#1| |#5|)) (-15 -1971 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2951 ((-112) |#4| |#1|)) (-15 -2370 ((-656 |#4|) |#1|)) (-15 -3592 ((-3 |#1| "failed") |#1|)) (-15 -3967 ((-3 |#5| "failed") |#1|)) (-15 -3580 ((-3 |#5| "failed") |#1|)) (-15 -2873 (|#5| |#5| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3947 (|#5| |#5| |#1|)) (-15 -2860 (|#5| |#5| |#1|)) (-15 -3764 (|#5| |#5| |#1|)) (-15 -2795 (|#5| |#5| |#1|)) (-15 -2947 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3685 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3455 ((-112) |#1|)) (-15 -3595 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -1324 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3455 ((-112) |#5| |#1|)) (-15 -3595 ((-112) |#5| |#1|)) (-15 -2373 ((-112) |#5| |#1|)) (-15 -2813 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3363 ((-112) |#1|)) (-15 -3363 ((-112) |#5| |#1|)) (-15 -2153 ((-2 (|:| -1957 (-656 |#5|)) (|:| -3256 (-656 |#5|))) |#1|)) (-15 -3600 ((-783) |#1|)) (-15 -1809 ((-656 |#5|) |#1|)) (-15 -2516 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2516 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1716 ((-112) |#1| |#1|)) (-15 -2907 (|#1| |#1| |#4|)) (-15 -4080 (|#1| |#1| |#4|)) (-15 -2665 (|#4| |#1|)) (-15 -1572 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3569 ((-656 |#5|) |#1|)) (-15 -3581 (|#1| (-656 |#5|))) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1971 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-1231 |#2| |#3| |#4| |#5|) (-568) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1230)) +NIL +(-10 -8 (-15 -3000 ((-783) |#1|)) (-15 -3169 (|#1| |#1| |#5|)) (-15 -1971 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2951 ((-112) |#4| |#1|)) (-15 -2370 ((-656 |#4|) |#1|)) (-15 -3592 ((-3 |#1| "failed") |#1|)) (-15 -3967 ((-3 |#5| "failed") |#1|)) (-15 -3580 ((-3 |#5| "failed") |#1|)) (-15 -2873 (|#5| |#5| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3947 (|#5| |#5| |#1|)) (-15 -2860 (|#5| |#5| |#1|)) (-15 -3764 (|#5| |#5| |#1|)) (-15 -2795 (|#5| |#5| |#1|)) (-15 -2947 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3685 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3455 ((-112) |#1|)) (-15 -3595 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -1324 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3455 ((-112) |#5| |#1|)) (-15 -3595 ((-112) |#5| |#1|)) (-15 -2373 ((-112) |#5| |#1|)) (-15 -2813 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3363 ((-112) |#1|)) (-15 -3363 ((-112) |#5| |#1|)) (-15 -2153 ((-2 (|:| -1957 (-656 |#5|)) (|:| -3256 (-656 |#5|))) |#1|)) (-15 -3600 ((-783) |#1|)) (-15 -1809 ((-656 |#5|) |#1|)) (-15 -2516 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2516 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1716 ((-112) |#1| |#1|)) (-15 -2907 (|#1| |#1| |#4|)) (-15 -4080 (|#1| |#1| |#4|)) (-15 -2665 (|#4| |#1|)) (-15 -1572 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3569 ((-656 |#5|) |#1|)) (-15 -3581 (|#1| (-656 |#5|))) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1971 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3569 ((-876) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3597 (((-656 $) (-656 |#4|)) 87)) (-1966 (((-656 |#3|) $) 34)) (-1755 (((-112) $) 27)) (-1781 (((-112) $) 18 (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) 102) (((-112) $) 98)) (-2795 ((|#4| |#4| $) 93)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) 28)) (-2396 (((-112) $ (-783)) 45)) (-1971 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3306 (($) 46 T CONST)) (-3290 (((-112) $) 23 (|has| |#1| (-568)))) (-2879 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1576 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3489 (((-112) $) 26 (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4356 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3947 ((|#4| |#4| $) 90)) (-2800 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2873 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) 105) (((-112) $) 104)) (-2665 ((|#3| $) 35)) (-4252 (((-112) $ (-783)) 44)) (-2735 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-1994 (((-656 |#3|) $) 33)) (-1983 (((-112) |#3| $) 32)) (-3557 (((-112) $ (-783)) 43)) (-1413 (((-1179) $) 10)) (-3967 (((-3 |#4| "failed") $) 84)) (-1809 (((-656 |#4|) $) 108)) (-3455 (((-112) |#4| $) 100) (((-112) $) 96)) (-2860 ((|#4| |#4| $) 91)) (-1716 (((-112) $ $) 111)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) 101) (((-112) $) 97)) (-3764 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3260 (((-3 $ "failed") $ |#4|) 79)) (-3169 (($ $ |#4|) 78)) (-3542 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) 39)) (-2866 (((-112) $) 42)) (-3839 (($) 41)) (-3600 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2907 (($ $ |#3|) 29)) (-4080 (($ $ |#3|) 31)) (-3453 (($ $) 89)) (-3698 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3000 (((-783) $) 77 (|has| |#3| (-379)))) (-2113 (((-112) $ $) 6)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2170 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) 82)) (-2951 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-1231 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1231)) +((-1716 (*1 *2 *1 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2516 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8)))) (-2516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-2 (|:| -1957 (-656 *6)) (|:| -3256 (-656 *6)))))) (-3363 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2813 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)))) (-2373 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3595 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3455 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3685 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) (-2947 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)))) (-2795 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3764 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2860 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3947 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-2873 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-2393 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1957 *1) (|:| -3256 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-3580 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3967 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2951 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-1971 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) (-3260 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3169 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) +(-13 (-997 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -1716 ((-112) $ $)) (-15 -2516 ((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2516 ((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1809 ((-656 |t#4|) $)) (-15 -3600 ((-783) $)) (-15 -2153 ((-2 (|:| -1957 (-656 |t#4|)) (|:| -3256 (-656 |t#4|))) $)) (-15 -3363 ((-112) |t#4| $)) (-15 -3363 ((-112) $)) (-15 -2813 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2373 ((-112) |t#4| $)) (-15 -3595 ((-112) |t#4| $)) (-15 -3455 ((-112) |t#4| $)) (-15 -1324 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -2373 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -3685 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2947 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2795 (|t#4| |t#4| $)) (-15 -3764 (|t#4| |t#4| $)) (-15 -2860 (|t#4| |t#4| $)) (-15 -3947 (|t#4| |t#4| $)) (-15 -3453 ($ $)) (-15 -2873 (|t#4| |t#4| $)) (-15 -3597 ((-656 $) (-656 |t#4|))) (-15 -2393 ((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |t#4|)))) (-656 |t#4|))) (-15 -3580 ((-3 |t#4| "failed") $)) (-15 -3967 ((-3 |t#4| "failed") $)) (-15 -3592 ((-3 $ "failed") $)) (-15 -2370 ((-656 |t#3|) $)) (-15 -2951 ((-112) |t#3| $)) (-15 -1971 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3260 ((-3 $ "failed") $ |t#4|)) (-15 -3169 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3000 ((-783) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1197)) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-2381 (((-971 |#1|) $ (-783)) 17) (((-971 |#1|) $ (-783) (-783)) NIL)) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-783) $ (-1197)) NIL) (((-783) $ (-1197) (-783)) NIL)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-112) $) NIL)) (-1945 (($ $ (-656 (-1197)) (-656 (-543 (-1197)))) NIL) (($ $ (-1197) (-543 (-1197))) NIL) (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-3441 (($ $ (-1197)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-4362 (($ (-1 $) (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3169 (($ $ (-783)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3283 (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2773 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-3600 (((-543 (-1197)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1197)) NIL) (($ (-971 |#1|)) NIL)) (-3998 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (((-971 |#1|) $ (-783)) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2018 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1232 |#1|) (-13 (-752 |#1| (-1197)) (-10 -8 (-15 -3998 ((-971 |#1|) $ (-783))) (-15 -3569 ($ (-1197))) (-15 -3569 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $ (-1197) |#1|)) (-15 -4362 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) (-1070)) (T -1232)) +((-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) (-4 *4 (-1070)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-1070)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-5 *1 (-1232 *3)))) (-3441 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-4362 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) +(-13 (-752 |#1| (-1197)) (-10 -8 (-15 -3998 ((-971 |#1|) $ (-783))) (-15 -3569 ($ (-1197))) (-15 -3569 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $ (-1197) |#1|)) (-15 -4362 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) +((-4341 (($ |#1| (-656 (-656 (-962 (-227)))) (-112)) 19)) (-4149 (((-112) $ (-112)) 18)) (-3975 (((-112) $) 17)) (-1432 (((-656 (-656 (-962 (-227)))) $) 13)) (-1768 ((|#1| $) 8)) (-4409 (((-112) $) 15))) +(((-1233 |#1|) (-10 -8 (-15 -1768 (|#1| $)) (-15 -1432 ((-656 (-656 (-962 (-227)))) $)) (-15 -4409 ((-112) $)) (-15 -3975 ((-112) $)) (-15 -4149 ((-112) $ (-112))) (-15 -4341 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) (-995)) (T -1233)) +((-4341 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) (-5 *1 (-1233 *2)) (-4 *2 (-995)))) (-4149 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-1768 (*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(-10 -8 (-15 -1768 (|#1| $)) (-15 -1432 ((-656 (-656 (-962 (-227)))) $)) (-15 -4409 ((-112) $)) (-15 -3975 ((-112) $)) (-15 -4149 ((-112) $ (-112))) (-15 -4341 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) +((-1417 (((-962 (-227)) (-962 (-227))) 31)) (-3042 (((-962 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3269 (((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-1984 (((-227) (-962 (-227)) (-962 (-227))) 27)) (-1849 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 28)) (-1511 (((-656 (-656 (-227))) (-576)) 44)) (-3043 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 26)) (-3029 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 24)) (* (((-962 (-227)) (-227) (-962 (-227))) 22))) +(((-1234) (-10 -7 (-15 -3042 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -3029 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -3043 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1984 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -1849 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1417 ((-962 (-227)) (-962 (-227)))) (-15 -1511 ((-656 (-656 (-227))) (-576))) (-15 -3269 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227))))))) (T -1234)) +((-3269 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-1849 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-1984 (*1 *2 *3 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) (-3043 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-962 (-227))) (-5 *3 (-227)) (-5 *1 (-1234)))) (-3042 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) +(-10 -7 (-15 -3042 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -3029 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -3043 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1984 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -1849 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1417 ((-962 (-227)) (-962 (-227)))) (-15 -1511 ((-656 (-656 (-227))) (-576))) (-15 -3269 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1971 ((|#1| $ (-783)) 18)) (-2434 (((-783) $) 13)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3569 (((-977 |#1|) $) 12) (($ (-977 |#1|)) 11) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2923 (((-112) $ $) 22 (|has| |#1| (-1121))))) +(((-1235 |#1|) (-13 (-502 (-977 |#1|)) (-10 -8 (-15 -1971 (|#1| $ (-783))) (-15 -2434 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1235)) +((-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1235 *3)) (-4 *3 (-1238))))) +(-13 (-502 (-977 |#1|)) (-10 -8 (-15 -1971 (|#1| $ (-783))) (-15 -2434 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) +((-3253 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)) 94)) (-2283 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 86)) (-2266 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 70))) +(((-1236 |#1|) (-10 -7 (-15 -2283 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -2266 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3253 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) (-360)) (T -1236)) +((-3253 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5))))) (-2266 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4))))) (-2283 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) +(-10 -7 (-15 -2283 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -2266 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3253 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 9) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1237) (-1104)) (T -1237)) +NIL +(-1104) +NIL +(((-1238) (-141)) (T -1238)) +NIL +(-13 (-10 -7 (-6 -4134))) +((-2993 (((-112)) 18)) (-2551 (((-1293) (-656 |#1|) (-656 |#1|)) 22) (((-1293) (-656 |#1|)) 23)) (-4252 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-3557 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1636 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3820 (((-2 (|:| -1579 (-656 |#1|)) (|:| -3101 (-656 |#1|)))) 20))) +(((-1239 |#1|) (-10 -7 (-15 -2551 ((-1293) (-656 |#1|))) (-15 -2551 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -3820 ((-2 (|:| -1579 (-656 |#1|)) (|:| -3101 (-656 |#1|))))) (-15 -3557 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3557 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1636 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2993 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -1636 (|#1| (-656 |#1|))) (-15 -4252 ((-112) |#1| |#1|))) |%noBranch|)) (-1121)) (T -1239)) +((-4252 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) (-4 *3 (-1121)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) (-5 *1 (-1239 *2)))) (-2993 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) (-4 *2 (-1121)))) (-3557 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) (-5 *1 (-1239 *3)))) (-3557 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-3820 (*1 *2) (-12 (-5 *2 (-2 (|:| -1579 (-656 *3)) (|:| -3101 (-656 *3)))) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-2551 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4))))) +(-10 -7 (-15 -2551 ((-1293) (-656 |#1|))) (-15 -2551 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -3820 ((-2 (|:| -1579 (-656 |#1|)) (|:| -3101 (-656 |#1|))))) (-15 -3557 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3557 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1636 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2993 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -1636 (|#1| (-656 |#1|))) (-15 -4252 ((-112) |#1| |#1|))) |%noBranch|)) +((-3829 (((-1293) (-656 (-1197)) (-656 (-1197))) 14) (((-1293) (-656 (-1197))) 12)) (-2225 (((-1293)) 16)) (-1477 (((-2 (|:| -3101 (-656 (-1197))) (|:| -1579 (-656 (-1197))))) 20))) +(((-1240) (-10 -7 (-15 -3829 ((-1293) (-656 (-1197)))) (-15 -3829 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -1477 ((-2 (|:| -3101 (-656 (-1197))) (|:| -1579 (-656 (-1197)))))) (-15 -2225 ((-1293))))) (T -1240)) +((-2225 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240)))) (-1477 (*1 *2) (-12 (-5 *2 (-2 (|:| -3101 (-656 (-1197))) (|:| -1579 (-656 (-1197))))) (-5 *1 (-1240)))) (-3829 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) +(-10 -7 (-15 -3829 ((-1293) (-656 (-1197)))) (-15 -3829 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -1477 ((-2 (|:| -3101 (-656 (-1197))) (|:| -1579 (-656 (-1197)))))) (-15 -2225 ((-1293)))) +((-3420 (($ $) 17)) (-4169 (((-112) $) 28))) +(((-1241 |#1|) (-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -4169 ((-112) |#1|))) (-1242)) (T -1241)) +NIL +(-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -4169 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 57)) (-1770 (((-430 $) $) 58)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-4169 (((-112) $) 59)) (-3215 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 56)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1242) (-141)) (T -1242)) +((-4169 (*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) (-3420 (*1 *1 *1) (-4 *1 (-1242))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242))))) +(-13 (-464) (-10 -8 (-15 -4169 ((-112) $)) (-15 -1770 ((-430 $) $)) (-15 -3420 ($ $)) (-15 -1828 ((-430 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2355 (($ $ $) NIL)) (-2341 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1243) (-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480)))) (T -1243)) +((-2341 (*1 *1 *1 *1) (-5 *1 (-1243))) (-2355 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3306 (*1 *1) (-5 *1 (-1243)))) +(-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3872 (($ $ $) NIL)) (-3859 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-1243) (-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665)))) (T -1243)) -((-3859 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3872 (*1 *1 *1 *1) (-5 *1 (-1243))) (-4331 (*1 *1) (-5 *1 (-1243)))) -(-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2355 (($ $ $) NIL)) (-2341 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1244) (-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480)))) (T -1244)) +((-2341 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2355 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3306 (*1 *1) (-5 *1 (-1244)))) +(-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3872 (($ $ $) NIL)) (-3859 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-1244) (-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665)))) (T -1244)) -((-3859 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3872 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4331 (*1 *1) (-5 *1 (-1244)))) -(-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2355 (($ $ $) NIL)) (-2341 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1245) (-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480)))) (T -1245)) +((-2341 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2355 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3306 (*1 *1) (-5 *1 (-1245)))) +(-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-1952 (((-112) $ $) NIL)) (-2199 (((-783)) NIL)) (-4331 (($) NIL T CONST)) (-4369 (($) NIL)) (-2905 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (($ $ $) NIL) (($) NIL T CONST)) (-4375 (((-939) $) NIL)) (-2043 (((-1178) $) NIL)) (-2409 (($ (-939)) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) NIL)) (-3872 (($ $ $) NIL)) (-3859 (($ $ $) NIL)) (-1994 (((-112) $ $) NIL)) (-3993 (((-112) $ $) NIL)) (-3974 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3962 (((-112) $ $) NIL))) -(((-1245) (-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665)))) (T -1245)) -((-3859 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3872 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4331 (*1 *1) (-5 *1 (-1245)))) -(-13 (-856) (-10 -8 (-15 -3859 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4331 ($) -2665))) +((-3488 (((-112) $ $) NIL)) (-2096 (((-783)) NIL)) (-3306 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1951 (($ $ $) NIL) (($) NIL T CONST)) (-2460 (((-940) $) NIL)) (-1413 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2355 (($ $ $) NIL)) (-2341 (($ $ $) NIL)) (-2113 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1246) (-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480)))) (T -1246)) +((-2341 (*1 *1 *1 *1) (-5 *1 (-1246))) (-2355 (*1 *1 *1 *1) (-5 *1 (-1246))) (-3306 (*1 *1) (-5 *1 (-1246)))) +(-13 (-856) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3306 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2422 (((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)) 23))) -(((-1246 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2422 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) (-1069) (-1069) (-1196) (-1196) |#1| |#2|) (T -1246)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196))))) -(-10 -7 (-15 -2422 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 (-1102)) $) 86)) (-1652 (((-1196) $) 118)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2736 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-1560 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3585 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 177 (|has| |#1| (-374)))) (-3163 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3561 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-3611 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) 18 T CONST)) (-1893 (($ $ $) 172 (|has| |#1| (-374)))) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-2940 (((-419 (-970 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-970 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1903 (($ $ $) 171 (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2443 (((-112) $) 179 (|has| |#1| (-374)))) (-3365 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-576) $) 115) (((-576) $ (-576)) 114)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) 116)) (-3235 (($ (-1 |#1| (-576)) $) 187)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3146 (((-112) $) 74)) (-1562 (($ |#1| (-576)) 73) (($ $ (-1102) (-576)) 88) (($ $ (-656 (-1102)) (-656 (-576))) 87)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-2607 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-3075 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2043 (((-1178) $) 10)) (-1667 (($ $) 180 (|has| |#1| (-374)))) (-2944 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3794 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3114 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1450 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 173 (|has| |#1| (-374)))) (-3679 (($ $ (-576)) 110)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2155 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2026 (((-783) $) 169 (|has| |#1| (-374)))) (-4368 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 170 (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) 108 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-1877 (((-576) $) 76)) (-3622 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4269 ((|#1| $ (-576)) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-3187 ((|#1| $) 117)) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3631 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1196)) 107 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1247 |#1|) (-141) (-1069)) (T -1247)) -((-2860 (*1 *1 *2) (-12 (-5 *2 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1069)) (-4 *1 (-1247 *3)))) (-3235 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1247 *3)) (-4 *3 (-1069)))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1069)) (-4 *4 (-568)) (-5 *2 (-419 (-970 *4))))) (-2940 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1069)) (-4 *4 (-568)) (-5 *2 (-419 (-970 *4))))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) (-2944 (*1 *1 *1 *2) (-3794 (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1069)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-977)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1069)) (-12 (|has| *3 (-15 -1582 ((-656 *2) *3))) (|has| *3 (-15 -2944 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1265 |t#1| (-576)) (-10 -8 (-15 -2860 ($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -3235 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2940 ((-419 (-970 |t#1|)) $ (-576))) (-15 -2940 ((-419 (-970 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $)) (IF (|has| |t#1| (-15 -2944 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1582 ((-656 (-1196)) |t#1|))) (-15 -2944 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-977)) (IF (|has| |t#1| (-29 (-576))) (-15 -2944 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1022)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1132)) ((-300) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-910 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))) ((-993 |#1| #0# (-1102)) . T) ((-938) |has| |#1| (-374)) ((-1022) |has| |#1| (-38 (-419 (-576)))) ((-1071 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1076 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T)) -((-3167 (((-112) $) 12)) (-2980 (((-3 |#3| "failed") $) 17) (((-3 (-1196) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2317 ((|#3| $) 14) (((-1196) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) -(((-1248 |#1| |#2| |#3|) (-10 -8 (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-1196) "failed") |#1|)) (-15 -2317 ((-1196) |#1|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3167 ((-112) |#1|))) (-1249 |#2| |#3|) (-1069) (-1278 |#2|)) (T -1248)) -NIL -(-10 -8 (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2980 ((-3 (-1196) "failed") |#1|)) (-15 -2317 ((-1196) |#1|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3167 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1705 ((|#2| $) 251 (-2310 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1582 (((-656 (-1102)) $) 86)) (-1652 (((-1196) $) 118)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2736 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-1560 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-4436 ((|#2| $) 287)) (-2791 (((-3 |#2| "failed") $) 283)) (-1627 ((|#2| $) 284)) (-3585 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) 20)) (-1946 (((-430 (-1192 $)) (-1192 $)) 260 (-2310 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-3575 (($ $) 177 (|has| |#1| (-374)))) (-3163 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 257 (-2310 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-4057 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3561 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3773 (((-576) $) 269 (-2310 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2860 (($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-3611 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-3 (-1196) "failed") $) 262 (-2310 (|has| |#2| (-1058 (-1196))) (|has| |#1| (-374))))) (-2317 ((|#2| $) 291) (((-576) $) 279 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2310 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-1196) $) 261 (-2310 (|has| |#2| (-1058 (-1196))) (|has| |#1| (-374))))) (-2971 (($ $) 286) (($ (-576) $) 285)) (-1893 (($ $ $) 172 (|has| |#1| (-374)))) (-3309 (($ $) 72)) (-3222 (((-701 |#2|) (-701 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 237 (-2310 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 236 (-2310 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3900 (((-3 $ "failed") $) 37)) (-2940 (((-419 (-970 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-970 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-4369 (($) 253 (-2310 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1903 (($ $ $) 171 (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2443 (((-112) $) 179 (|has| |#1| (-374)))) (-2690 (((-112) $) 267 (-2310 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3365 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 245 (-2310 (|has| |#2| (-900 (-390))) (|has| |#1| (-374)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 244 (-2310 (|has| |#2| (-900 (-576))) (|has| |#1| (-374))))) (-3241 (((-576) $) 115) (((-576) $ (-576)) 114)) (-2287 (((-112) $) 35)) (-2461 (($ $) 249 (|has| |#1| (-374)))) (-2686 ((|#2| $) 247 (|has| |#1| (-374)))) (-2770 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1859 (((-3 $ "failed") $) 281 (-2310 (|has| |#2| (-1172)) (|has| |#1| (-374))))) (-3197 (((-112) $) 268 (-2310 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2747 (($ $ (-939)) 116)) (-3235 (($ (-1 |#1| (-576)) $) 187)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3146 (((-112) $) 74)) (-1562 (($ |#1| (-576)) 73) (($ $ (-1102) (-576)) 88) (($ $ (-656 (-1102)) (-656 (-576))) 87)) (-2905 (($ $ $) 276 (-2310 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-1654 (($ $ $) 275 (-2310 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2422 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-2607 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2198 (((-701 |#2|) (-1287 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 235 (-2310 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) 234 (-2310 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-3075 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1637 (($ (-576) |#2|) 288)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 180 (|has| |#1| (-374)))) (-2944 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3794 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3650 (($) 282 (-2310 (|has| |#2| (-1172)) (|has| |#1| (-374))) CONST)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3114 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1914 (($ $) 252 (-2310 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2804 ((|#2| $) 255 (-2310 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3705 (((-430 (-1192 $)) (-1192 $)) 258 (-2310 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-1988 (((-430 (-1192 $)) (-1192 $)) 259 (-2310 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-1450 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 173 (|has| |#1| (-374)))) (-3679 (($ $ (-576)) 110)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2155 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) |#2|) 228 (-2310 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 |#2|)) 227 (-2310 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 226 (-2310 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2310 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2310 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 223 (-2310 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2026 (((-783) $) 169 (|has| |#1| (-374)))) (-4368 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1132))) (($ $ |#2|) 222 (-2310 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 170 (|has| |#1| (-374)))) (-4106 (($ $ (-1 |#2| |#2|) (-783)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-3794 (-2310 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-3794 (-2310 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 108 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196))) 106 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1196) (-783)) 105 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2521 (($ $) 250 (|has| |#1| (-374)))) (-2697 ((|#2| $) 248 (|has| |#1| (-374)))) (-1877 (((-576) $) 76)) (-3622 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1554 (((-227) $) 266 (-2310 (|has| |#2| (-1042)) (|has| |#1| (-374)))) (((-390) $) 265 (-2310 (|has| |#2| (-1042)) (|has| |#1| (-374)))) (((-548) $) 264 (-2310 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-906 (-390)) $) 243 (-2310 (|has| |#2| (-626 (-906 (-390)))) (|has| |#1| (-374)))) (((-906 (-576)) $) 242 (-2310 (|has| |#2| (-626 (-906 (-576)))) (|has| |#1| (-374))))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 256 (-2310 (-2310 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#1| (-374))))) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1196)) 263 (-2310 (|has| |#2| (-1058 (-1196))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4269 ((|#1| $ (-576)) 71)) (-1972 (((-3 $ "failed") $) 60 (-3794 (-2310 (-3794 (|has| |#2| (-146)) (-2310 (|has| $ (-146)) (|has| |#2| (-927)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-4115 (((-783)) 32 T CONST)) (-3187 ((|#1| $) 117)) (-2671 ((|#2| $) 254 (-2310 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3631 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2388 (($ $) 270 (-2310 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1 |#2| |#2|) (-783)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-3794 (-2310 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-3794 (-2310 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 107 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196))) 103 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1196) (-783)) 102 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-3794 (-2310 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3993 (((-112) $ $) 274 (-2310 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3974 (((-112) $ $) 272 (-2310 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3938 (((-112) $ $) 8)) (-3983 (((-112) $ $) 273 (-2310 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3962 (((-112) $ $) 271 (-2310 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1249 |#1| |#2|) (-141) (-1069) (-1278 |t#1|)) (T -1249)) -((-1877 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1278 *3)) (-5 *2 (-576)))) (-1637 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1069)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1278 *4)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1278 *3)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1278 *2)))) (-2971 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1278 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1278 *3)))) (-2791 (*1 *2 *1) (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1278 *3))))) -(-13 (-1247 |t#1|) (-1058 |t#2|) (-628 |t#2|) (-10 -8 (-15 -1637 ($ (-576) |t#2|)) (-15 -1877 ((-576) $)) (-15 -4436 (|t#2| $)) (-15 -2971 ($ $)) (-15 -2971 ($ (-576) $)) (-15 -1627 (|t#2| $)) (-15 -2791 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1012 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-1196)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1042))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1042))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-906 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-906 (-390))))) ((-626 (-906 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-906 (-576))))) ((-234 $) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1132)) ((-300) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1196) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1196) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-861) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-863) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-910 $ #4=(-1196)) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-916 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) ((-916 (-1196)) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-916 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) ((-918 #4#) -3794 (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-916 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))) ((-900 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-900 (-390)))) ((-900 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-900 (-576)))) ((-898 |#2|) |has| |#1| (-374)) ((-927) -12 (|has| |#1| (-374)) (|has| |#2| (-927))) ((-993 |#1| #0# (-1102)) . T) ((-938) |has| |#1| (-374)) ((-1012 |#2|) |has| |#1| (-374)) ((-1022) |has| |#1| (-38 (-419 (-576)))) ((-1042) -12 (|has| |#1| (-374)) (|has| |#2| (-1042))) ((-1058 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-576)))) ((-1058 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-576)))) ((-1058 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1058 (-1196)))) ((-1058 |#2|) . T) ((-1071 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1071 |#1|) . T) ((-1071 |#2|) |has| |#1| (-374)) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1076 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1076 |#1|) . T) ((-1076 |#2|) |has| |#1| (-374)) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) -12 (|has| |#1| (-374)) (|has| |#2| (-1172))) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1247 |#1|) . T) ((-1265 |#1| #0#) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 81)) (-1705 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 100)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-1560 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-4436 ((|#2| $) 11)) (-2791 (((-3 |#2| "failed") $) 35)) (-1627 ((|#2| $) 36)) (-3585 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-3773 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2860 (($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-3611 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-3 (-1196) "failed") $) NIL (-12 (|has| |#2| (-1058 (-1196))) (|has| |#1| (-374))))) (-2317 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1058 (-576))) (|has| |#1| (-374)))) (((-1196) $) NIL (-12 (|has| |#2| (-1058 (-1196))) (|has| |#1| (-374))))) (-2971 (($ $) 65) (($ (-576) $) 28)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3222 (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3900 (((-3 $ "failed") $) 88)) (-2940 (((-419 (-970 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-970 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-4369 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-2690 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3365 (((-112) $) 74)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| |#2| (-900 (-390))) (|has| |#1| (-374)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| |#2| (-900 (-576))) (|has| |#1| (-374))))) (-3241 (((-576) $) 105) (((-576) $ (-576)) 107)) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-374)))) (-2686 ((|#2| $) 165 (|has| |#1| (-374)))) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1859 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1172)) (|has| |#1| (-374))))) (-3197 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2747 (($ $ (-939)) 148)) (-3235 (($ (-1 |#1| (-576)) $) 144)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-576)) 20) (($ $ (-1102) (-576)) NIL) (($ $ (-656 (-1102)) (-656 (-576))) NIL)) (-2905 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-1654 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2422 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-2607 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2198 (((-701 |#2|) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1637 (($ (-576) |#2|) 10)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 159 (|has| |#1| (-374)))) (-2944 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 233 (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222)))))) (-3650 (($) NIL (-12 (|has| |#2| (-1172)) (|has| |#1| (-374))) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1914 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2804 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-927)) (|has| |#1| (-374))))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-576)) 138)) (-1943 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) |#2|) NIL (-12 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1132))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-3794 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 153 (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))))) (-2521 (($ $) NIL (|has| |#1| (-374)))) (-2697 ((|#2| $) 166 (|has| |#1| (-374)))) (-1877 (((-576) $) 12)) (-3622 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-1554 (((-227) $) NIL (-12 (|has| |#2| (-1042)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1042)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-906 (-390)) $) NIL (-12 (|has| |#2| (-626 (-906 (-390)))) (|has| |#1| (-374)))) (((-906 (-576)) $) NIL (-12 (|has| |#2| (-626 (-906 (-576)))) (|has| |#1| (-374))))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927)) (|has| |#1| (-374))))) (-3454 (($ $) 136)) (-4112 (((-875) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1196)) NIL (-12 (|has| |#2| (-1058 (-1196))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4269 ((|#1| $ (-576)) 85)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-4115 (((-783)) 155 T CONST)) (-3187 ((|#1| $) 102)) (-2671 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2388 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4314 (($) 13 T CONST)) (-4320 (($) 18 T CONST)) (-3155 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-3794 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3794 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| |#2| (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))))) (-3993 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3974 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3938 (((-112) $ $) 72)) (-3983 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3962 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-4036 (($ $) 227) (($ $ $) 78)) (-4026 (($ $ $) 76)) (** (($ $ (-939)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1250 |#1| |#2|) (-1249 |#1| |#2|) (-1069) (-1278 |#1|)) (T -1250)) -NIL -(-1249 |#1| |#2|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1705 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 10)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2378 (((-112) $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2736 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-1560 (((-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-4436 (((-1279 |#1| |#2| |#3|) $) NIL)) (-2791 (((-3 (-1279 |#1| |#2| |#3|) "failed") $) NIL)) (-1627 (((-1279 |#1| |#2| |#3|) $) NIL)) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3773 (((-576) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2860 (($ (-1177 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-1279 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-1196))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374))))) (-2317 (((-1279 |#1| |#2| |#3|) $) NIL) (((-1196) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-1196))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374))))) (-2971 (($ $) NIL) (($ (-576) $) NIL)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-1279 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-1279 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1279 |#1| |#2| |#3|)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3900 (((-3 $ "failed") $) NIL)) (-2940 (((-419 (-970 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-970 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-4369 (($) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-2690 (((-112) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-900 (-390))) (|has| |#1| (-374)))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-900 (-576))) (|has| |#1| (-374))))) (-3241 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-2287 (((-112) $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-374)))) (-2686 (((-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1859 (((-3 $ "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-374))))) (-3197 (((-112) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2747 (($ $ (-939)) NIL)) (-3235 (($ (-1 |#1| (-576)) $) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-576)) 18) (($ $ (-1102) (-576)) NIL) (($ $ (-656 (-1102)) (-656 (-576))) NIL)) (-2905 (($ $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-1654 (($ $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2198 (((-701 (-1279 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-1279 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1279 |#1| |#2| |#3|)))) (-1287 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1637 (($ (-576) (-1279 |#1| |#2| |#3|)) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2944 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-374))) CONST)) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1914 (($ $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2804 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-576)) NIL)) (-1943 (((-3 $ "failed") $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1279 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1279 |#1| |#2| |#3|)) (-656 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1132))) (($ $ (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-296 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) 26) (($ $) 25 (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))))) (-2521 (($ $) NIL (|has| |#1| (-374)))) (-2697 (((-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-1877 (((-576) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1554 (((-548) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1042)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1042)) (|has| |#1| (-374)))) (((-906 (-390)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-906 (-390)))) (|has| |#1| (-374)))) (((-906 (-576)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-906 (-576)))) (|has| |#1| (-374))))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1279 |#1| |#2| |#3|)) NIL) (($ (-1283 |#2|)) 24) (($ (-1196)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-1196))) (|has| |#1| (-374)))) (($ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-1058 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4269 ((|#1| $ (-576)) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 11)) (-2671 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-927)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2388 (($ $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4314 (($) 20 T CONST)) (-4320 (($) 15 T CONST)) (-3155 (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) NIL) (($ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-916 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-918 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-916 (-1196))))))) (-3993 (((-112) $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3974 (((-112) $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3938 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3962 (((-112) $ $) NIL (-3794 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 22)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1279 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1251 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1279 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -1251)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1249 |#1| (-1279 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-4397 (((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112)) 13)) (-2816 (((-430 |#1|) |#1|) 26)) (-1450 (((-430 |#1|) |#1|) 24))) -(((-1252 |#1|) (-10 -7 (-15 -1450 ((-430 |#1|) |#1|)) (-15 -2816 ((-430 |#1|) |#1|)) (-15 -4397 ((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112)))) (-1263 (-576))) (T -1252)) -((-4397 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))) (-2816 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(-10 -7 (-15 -1450 ((-430 |#1|) |#1|)) (-15 -2816 ((-430 |#1|) |#1|)) (-15 -4397 ((-2 (|:| |contp| (-576)) (|:| -1749 (-656 (-2 (|:| |irr| |#1|) (|:| -2432 (-576)))))) |#1| (-112)))) -((-2422 (((-1177 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 23 (|has| |#1| (-860))) (((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 17))) -(((-1253 |#1| |#2|) (-10 -7 (-15 -2422 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-860)) (-15 -2422 ((-1177 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1253)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-860)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1177 *6)) (-5 *1 (-1253 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6))))) -(-10 -7 (-15 -2422 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-860)) (-15 -2422 ((-1177 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|)) -((-1952 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2401 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2422 (((-1177 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-3778 ((|#1| $) 15)) (-1695 ((|#1| $) 12)) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-2655 (((-576) $) 19)) (-3995 ((|#1| $) 18)) (-2667 ((|#1| $) 13)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-2825 (((-112) $) 17)) (-3564 (((-1177 |#1|) $) 41 (|has| |#1| (-860))) (((-1177 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-1554 (($ |#1|) 26)) (-4112 (($ (-1114 |#1|)) 25) (((-875) $) 37 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) NIL (|has| |#1| (-1120)))) (-2496 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3715 (($ $ (-576)) 14)) (-3938 (((-112) $ $) 30 (|has| |#1| (-1120))))) -(((-1254 |#1|) (-13 (-1113 |#1|) (-10 -8 (-15 -2496 ($ |#1|)) (-15 -2401 ($ |#1|)) (-15 -4112 ($ (-1114 |#1|))) (-15 -2825 ((-112) $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1115 |#1| (-1177 |#1|))) |%noBranch|))) (-1237)) (T -1254)) -((-2496 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-2401 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1114 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1254 *3)) (-4 *3 (-1237))))) -(-13 (-1113 |#1|) (-10 -8 (-15 -2496 ($ |#1|)) (-15 -2401 ($ |#1|)) (-15 -4112 ($ (-1114 |#1|))) (-15 -2825 ((-112) $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1115 |#1| (-1177 |#1|))) |%noBranch|))) -((-2422 (((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)) 15))) -(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 ((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)))) (-1196) (-1069) (-1196) (-1069)) (T -1255)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1260 *5 *6)) (-14 *5 (-1196)) (-4 *6 (-1069)) (-4 *8 (-1069)) (-5 *2 (-1260 *7 *8)) (-5 *1 (-1255 *5 *6 *7 *8)) (-14 *7 (-1196))))) -(-10 -7 (-15 -2422 ((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)))) -((-1361 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4212 ((|#1| |#3|) 13)) (-4415 ((|#3| |#3|) 19))) -(((-1256 |#1| |#2| |#3|) (-10 -7 (-15 -4212 (|#1| |#3|)) (-15 -4415 (|#3| |#3|)) (-15 -1361 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1012 |#1|) (-1263 |#2|)) (T -1256)) -((-1361 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1256 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-4415 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1012 *3)) (-5 *1 (-1256 *3 *4 *2)) (-4 *2 (-1263 *4)))) (-4212 (*1 *2 *3) (-12 (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-1256 *2 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -4212 (|#1| |#3|)) (-15 -4415 (|#3| |#3|)) (-15 -1361 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2064 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-2506 (((-3 |#2| "failed") |#2| (-783)) 36)) (-3029 (((-3 (-2 (|:| -2100 |#2|) (|:| -2110 |#2|)) "failed") |#2|) 50)) (-2524 (((-656 |#2|) |#2|) 52)) (-2237 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1257 |#1| |#2|) (-10 -7 (-15 -2506 ((-3 |#2| "failed") |#2| (-783))) (-15 -2064 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2237 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3029 ((-3 (-2 (|:| -2100 |#2|) (|:| -2110 |#2|)) "failed") |#2|)) (-15 -2524 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1263 |#1|)) (T -1257)) -((-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))) (-3029 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -2100 *3) (|:| -2110 *3))) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))) (-2237 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1263 *3)))) (-2064 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4)))) (-2506 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4))))) -(-10 -7 (-15 -2506 ((-3 |#2| "failed") |#2| (-783))) (-15 -2064 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2237 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3029 ((-3 (-2 (|:| -2100 |#2|) (|:| -2110 |#2|)) "failed") |#2|)) (-15 -2524 ((-656 |#2|) |#2|))) -((-2483 (((-3 (-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) "failed") |#2| |#2|) 30))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -2483 ((-3 (-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) "failed") |#2| |#2|))) (-568) (-1263 |#1|)) (T -1258)) -((-2483 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2483 ((-3 (-2 (|:| -4299 |#2|) (|:| -2960 |#2|)) "failed") |#2| |#2|))) -((-3485 ((|#2| |#2| |#2|) 22)) (-3160 ((|#2| |#2| |#2|) 36)) (-4141 ((|#2| |#2| |#2| (-783) (-783)) 44))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -3485 (|#2| |#2| |#2|)) (-15 -3160 (|#2| |#2| |#2|)) (-15 -4141 (|#2| |#2| |#2| (-783) (-783)))) (-1069) (-1263 |#1|)) (T -1259)) -((-4141 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1069)) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4)))) (-3160 (*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))) (-3485 (*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -3485 (|#2| |#2| |#2|)) (-15 -3160 (|#2| |#2| |#2|)) (-15 -4141 (|#2| |#2| |#2| (-783) (-783)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1760 (((-1287 |#2|) $ (-783)) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-3105 (($ (-1192 |#2|)) NIL)) (-1420 (((-1192 $) $ (-1102)) NIL) (((-1192 |#2|) $) NIL)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4070 (($ $) NIL (|has| |#2| (-568)))) (-2378 (((-112) $) NIL (|has| |#2| (-568)))) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1102))) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2256 (($ $ $) NIL (|has| |#2| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-3575 (($ $) NIL (|has| |#2| (-464)))) (-3163 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-4057 (((-112) $ $) NIL (|has| |#2| (-374)))) (-1442 (($ $ (-783)) NIL)) (-3036 (($ $ (-783)) NIL)) (-2137 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1058 (-576)))) (((-3 (-1102) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1058 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1058 (-576)))) (((-1102) $) NIL)) (-3954 (($ $ $ (-1102)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-1893 (($ $ $) NIL (|has| |#2| (-374)))) (-3309 (($ $) NIL)) (-3222 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1903 (($ $ $) NIL (|has| |#2| (-374)))) (-3351 (($ $ $) NIL)) (-3310 (($ $ $) NIL (|has| |#2| (-568)))) (-4265 (((-2 (|:| -2861 |#2|) (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-3557 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1102)) NIL (|has| |#2| (-464)))) (-3296 (((-656 $) $) NIL)) (-2443 (((-112) $) NIL (|has| |#2| (-927)))) (-3897 (($ $ |#2| (-783) $) NIL)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) NIL (-12 (|has| (-1102) (-900 (-390))) (|has| |#2| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) NIL (-12 (|has| (-1102) (-900 (-576))) (|has| |#2| (-900 (-576)))))) (-3241 (((-783) $ $) NIL (|has| |#2| (-568)))) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1859 (((-3 $ "failed") $) NIL (|has| |#2| (-1172)))) (-1571 (($ (-1192 |#2|) (-1102)) NIL) (($ (-1192 $) (-1102)) NIL)) (-2747 (($ $ (-783)) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1562 (($ |#2| (-783)) 18) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1102)) NIL) (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL)) (-3661 (((-783) $) NIL) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-3820 (($ (-1 (-783) (-783)) $) NIL)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-2528 (((-1192 |#2|) $) NIL)) (-2653 (((-3 (-1102) "failed") $) NIL)) (-2198 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1698 (($ $) NIL)) (-1709 ((|#2| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2043 (((-1178) $) NIL)) (-2842 (((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783)) NIL)) (-2000 (((-3 (-656 $) "failed") $) NIL)) (-2279 (((-3 (-656 $) "failed") $) NIL)) (-4044 (((-3 (-2 (|:| |var| (-1102)) (|:| -1495 (-783))) "failed") $) NIL)) (-2944 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#2| (-1172)) CONST)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 ((|#2| $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3114 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4438 (($ $ (-783) |#2| $) NIL)) (-3705 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-927)))) (-1450 (((-430 $) $) NIL (|has| |#2| (-927)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#2| (-374)))) (-1943 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2143 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1102) |#2|) NIL) (($ $ (-656 (-1102)) (-656 |#2|)) NIL) (($ $ (-1102) $) NIL) (($ $ (-656 (-1102)) (-656 $)) NIL)) (-2026 (((-783) $) NIL (|has| |#2| (-374)))) (-4368 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-3639 (((-3 $ "failed") $ (-783)) NIL)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#2| (-374)))) (-1451 (($ $ (-1102)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-4106 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-1877 (((-783) $) NIL) (((-783) $ (-1102)) NIL) (((-656 (-783)) $ (-656 (-1102))) NIL)) (-1554 (((-906 (-390)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-390)))) (|has| |#2| (-626 (-906 (-390)))))) (((-906 (-576)) $) NIL (-12 (|has| (-1102) (-626 (-906 (-576)))) (|has| |#2| (-626 (-906 (-576)))))) (((-548) $) NIL (-12 (|has| (-1102) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3430 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1102)) NIL (|has| |#2| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-927))))) (-4418 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-4112 (((-875) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1102)) NIL) (($ (-1283 |#1|)) 20) (($ (-419 (-576))) NIL (-3794 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1058 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-783)) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-1972 (((-3 $ "failed") $) NIL (-3794 (-12 (|has| $ (-146)) (|has| |#2| (-927))) (|has| |#2| (-146))))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4314 (($) NIL T CONST)) (-4320 (($) 14 T CONST)) (-3155 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-918 (-1196))))) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1260 |#1| |#2|) (-13 (-1263 |#2|) (-628 (-1283 |#1|)) (-10 -8 (-15 -4438 ($ $ (-783) |#2| $)))) (-1196) (-1069)) (T -1260)) -((-4438 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1260 *4 *3)) (-14 *4 (-1196)) (-4 *3 (-1069))))) -(-13 (-1263 |#2|) (-628 (-1283 |#1|)) (-10 -8 (-15 -4438 ($ $ (-783) |#2| $)))) -((-2422 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1261 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|))) (-1069) (-1263 |#1|) (-1069) (-1263 |#3|)) (T -1261)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *4 *6 *2)) (-4 *4 (-1263 *5))))) -(-10 -7 (-15 -2422 (|#4| (-1 |#3| |#1|) |#2|))) -((-1760 (((-1287 |#2|) $ (-783)) 129)) (-1582 (((-656 (-1102)) $) 16)) (-3105 (($ (-1192 |#2|)) 80)) (-4230 (((-783) $) NIL) (((-783) $ (-656 (-1102))) 21)) (-1946 (((-430 (-1192 $)) (-1192 $)) 204)) (-3575 (($ $) 194)) (-3163 (((-430 $) $) 192)) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 95)) (-1442 (($ $ (-783)) 84)) (-3036 (($ $ (-783)) 86)) (-2137 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2980 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL)) (-2317 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1102) $) NIL)) (-3310 (($ $ $) 170)) (-4265 (((-2 (|:| -2861 |#2|) (|:| -4299 $) (|:| -2960 $)) $ $) 172)) (-3241 (((-783) $ $) 189)) (-1859 (((-3 $ "failed") $) 138)) (-1562 (($ |#2| (-783)) NIL) (($ $ (-1102) (-783)) 59) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-3661 (((-783) $) NIL) (((-783) $ (-1102)) 54) (((-656 (-783)) $ (-656 (-1102))) 55)) (-2528 (((-1192 |#2|) $) 72)) (-2653 (((-3 (-1102) "failed") $) 52)) (-2842 (((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783)) 83)) (-2944 (($ $) 219)) (-3650 (($) 134)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 201)) (-3705 (((-430 (-1192 $)) (-1192 $)) 101)) (-1988 (((-430 (-1192 $)) (-1192 $)) 99)) (-1450 (((-430 $) $) 120)) (-2143 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1102) |#2|) 39) (($ $ (-656 (-1102)) (-656 |#2|)) 36) (($ $ (-1102) $) 32) (($ $ (-656 (-1102)) (-656 $)) 30)) (-2026 (((-783) $) 207)) (-4368 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 212)) (-4106 (($ $ (-656 (-1102)) (-656 (-783))) NIL) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102))) NIL) (($ $ (-1102)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-1877 (((-783) $) NIL) (((-783) $ (-1102)) 17) (((-656 (-783)) $ (-656 (-1102))) 23)) (-3430 ((|#2| $) NIL) (($ $ (-1102)) 140)) (-4418 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1102)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-1262 |#1| |#2|) (-10 -8 (-15 -4112 (|#1| |#1|)) (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -4368 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2026 ((-783) |#1|)) (-15 -4293 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -4368 (|#2| (-419 |#1|) |#2|)) (-15 -2137 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4265 ((-2 (|:| -2861 |#2|) (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -3310 (|#1| |#1| |#1|)) (-15 -4418 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4418 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3241 ((-783) |#1| |#1|)) (-15 -4368 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3036 (|#1| |#1| (-783))) (-15 -1442 (|#1| |#1| (-783))) (-15 -2842 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| (-783))) (-15 -3105 (|#1| (-1192 |#2|))) (-15 -2528 ((-1192 |#2|) |#1|)) (-15 -1760 ((-1287 |#2|) |#1| (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| |#2|)) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -1946 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1988 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3705 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3430 (|#1| |#1| (-1102))) (-15 -1582 ((-656 (-1102)) |#1|)) (-15 -4230 ((-783) |#1| (-656 (-1102)))) (-15 -4230 ((-783) |#1|)) (-15 -1562 (|#1| |#1| (-656 (-1102)) (-656 (-783)))) (-15 -1562 (|#1| |#1| (-1102) (-783))) (-15 -3661 ((-656 (-783)) |#1| (-656 (-1102)))) (-15 -3661 ((-783) |#1| (-1102))) (-15 -2653 ((-3 (-1102) "failed") |#1|)) (-15 -1877 ((-656 (-783)) |#1| (-656 (-1102)))) (-15 -1877 ((-783) |#1| (-1102))) (-15 -4112 (|#1| (-1102))) (-15 -2980 ((-3 (-1102) "failed") |#1|)) (-15 -2317 ((-1102) |#1|)) (-15 -2143 (|#1| |#1| (-656 (-1102)) (-656 |#1|))) (-15 -2143 (|#1| |#1| (-1102) |#1|)) (-15 -2143 (|#1| |#1| (-656 (-1102)) (-656 |#2|))) (-15 -2143 (|#1| |#1| (-1102) |#2|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1877 ((-783) |#1|)) (-15 -1562 (|#1| |#2| (-783))) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -3661 ((-783) |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -4106 (|#1| |#1| (-1102))) (-15 -4106 (|#1| |#1| (-656 (-1102)))) (-15 -4106 (|#1| |#1| (-1102) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1102)) (-656 (-783)))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) (-1263 |#2|) (-1069)) (T -1262)) -NIL -(-10 -8 (-15 -4112 (|#1| |#1|)) (-15 -3465 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -4106 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4106 (|#1| |#1| (-1196) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1196)))) (-15 -4106 (|#1| |#1| (-1196))) (-15 -3163 ((-430 |#1|) |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -3650 (|#1|)) (-15 -1859 ((-3 |#1| "failed") |#1|)) (-15 -4368 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2026 ((-783) |#1|)) (-15 -4293 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -4368 (|#2| (-419 |#1|) |#2|)) (-15 -2137 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4265 ((-2 (|:| -2861 |#2|) (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| |#1|)) (-15 -3310 (|#1| |#1| |#1|)) (-15 -4418 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4418 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3241 ((-783) |#1| |#1|)) (-15 -4368 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3036 (|#1| |#1| (-783))) (-15 -1442 (|#1| |#1| (-783))) (-15 -2842 ((-2 (|:| -4299 |#1|) (|:| -2960 |#1|)) |#1| (-783))) (-15 -3105 (|#1| (-1192 |#2|))) (-15 -2528 ((-1192 |#2|) |#1|)) (-15 -1760 ((-1287 |#2|) |#1| (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4106 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4106 (|#1| |#1| (-783))) (-15 -4106 (|#1| |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| |#2|)) (-15 -1450 ((-430 |#1|) |#1|)) (-15 -1946 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1988 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3705 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4251 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3430 (|#1| |#1| (-1102))) (-15 -1582 ((-656 (-1102)) |#1|)) (-15 -4230 ((-783) |#1| (-656 (-1102)))) (-15 -4230 ((-783) |#1|)) (-15 -1562 (|#1| |#1| (-656 (-1102)) (-656 (-783)))) (-15 -1562 (|#1| |#1| (-1102) (-783))) (-15 -3661 ((-656 (-783)) |#1| (-656 (-1102)))) (-15 -3661 ((-783) |#1| (-1102))) (-15 -2653 ((-3 (-1102) "failed") |#1|)) (-15 -1877 ((-656 (-783)) |#1| (-656 (-1102)))) (-15 -1877 ((-783) |#1| (-1102))) (-15 -4112 (|#1| (-1102))) (-15 -2980 ((-3 (-1102) "failed") |#1|)) (-15 -2317 ((-1102) |#1|)) (-15 -2143 (|#1| |#1| (-656 (-1102)) (-656 |#1|))) (-15 -2143 (|#1| |#1| (-1102) |#1|)) (-15 -2143 (|#1| |#1| (-656 (-1102)) (-656 |#2|))) (-15 -2143 (|#1| |#1| (-1102) |#2|)) (-15 -2143 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2143 (|#1| |#1| |#1| |#1|)) (-15 -2143 (|#1| |#1| (-304 |#1|))) (-15 -2143 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1877 ((-783) |#1|)) (-15 -1562 (|#1| |#2| (-783))) (-15 -2980 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2980 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -4112 (|#1| |#2|)) (-15 -3661 ((-783) |#1|)) (-15 -3430 (|#2| |#1|)) (-15 -4106 (|#1| |#1| (-1102))) (-15 -4106 (|#1| |#1| (-656 (-1102)))) (-15 -4106 (|#1| |#1| (-1102) (-783))) (-15 -4106 (|#1| |#1| (-656 (-1102)) (-656 (-783)))) (-15 -4112 (|#1| (-576))) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1760 (((-1287 |#1|) $ (-783)) 256)) (-1582 (((-656 (-1102)) $) 113)) (-3105 (($ (-1192 |#1|)) 254)) (-1420 (((-1192 $) $ (-1102)) 128) (((-1192 |#1|) $) 127)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4070 (($ $) 91 (|has| |#1| (-568)))) (-2378 (((-112) $) 93 (|has| |#1| (-568)))) (-4230 (((-783) $) 115) (((-783) $ (-656 (-1102))) 114)) (-2559 (((-3 $ "failed") $ $) 20)) (-2256 (($ $ $) 241 (|has| |#1| (-568)))) (-1946 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-927)))) (-3575 (($ $) 101 (|has| |#1| (-464)))) (-3163 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4251 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-927)))) (-4057 (((-112) $ $) 226 (|has| |#1| (-374)))) (-1442 (($ $ (-783)) 249)) (-3036 (($ $ (-783)) 248)) (-2137 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1058 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1058 (-576)))) (((-3 (-1102) "failed") $) 143)) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1058 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1058 (-576)))) (((-1102) $) 144)) (-3954 (($ $ $ (-1102)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-1893 (($ $ $) 230 (|has| |#1| (-374)))) (-3309 (($ $) 161)) (-3222 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 229 (|has| |#1| (-374)))) (-3351 (($ $ $) 247)) (-3310 (($ $ $) 238 (|has| |#1| (-568)))) (-4265 (((-2 (|:| -2861 |#1|) (|:| -4299 $) (|:| -2960 $)) $ $) 237 (|has| |#1| (-568)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-3557 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1102)) 108 (|has| |#1| (-464)))) (-3296 (((-656 $) $) 112)) (-2443 (((-112) $) 99 (|has| |#1| (-927)))) (-3897 (($ $ |#1| (-783) $) 179)) (-1445 (((-903 (-390) $) $ (-906 (-390)) (-903 (-390) $)) 87 (-12 (|has| (-1102) (-900 (-390))) (|has| |#1| (-900 (-390))))) (((-903 (-576) $) $ (-906 (-576)) (-903 (-576) $)) 86 (-12 (|has| (-1102) (-900 (-576))) (|has| |#1| (-900 (-576)))))) (-3241 (((-783) $ $) 242 (|has| |#1| (-568)))) (-2287 (((-112) $) 35)) (-1757 (((-783) $) 176)) (-1859 (((-3 $ "failed") $) 222 (|has| |#1| (-1172)))) (-1571 (($ (-1192 |#1|) (-1102)) 120) (($ (-1192 $) (-1102)) 119)) (-2747 (($ $ (-783)) 253)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-1894 (((-656 $) $) 129)) (-3146 (((-112) $) 159)) (-1562 (($ |#1| (-783)) 160) (($ $ (-1102) (-783)) 122) (($ $ (-656 (-1102)) (-656 (-783))) 121)) (-3768 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $ (-1102)) 123) (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 251)) (-3661 (((-783) $) 177) (((-783) $ (-1102)) 125) (((-656 (-783)) $ (-656 (-1102))) 124)) (-3820 (($ (-1 (-783) (-783)) $) 178)) (-2422 (($ (-1 |#1| |#1|) $) 158)) (-2528 (((-1192 |#1|) $) 255)) (-2653 (((-3 (-1102) "failed") $) 126)) (-2198 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3608 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-1698 (($ $) 156)) (-1709 ((|#1| $) 155)) (-3075 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2043 (((-1178) $) 10)) (-2842 (((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783)) 250)) (-2000 (((-3 (-656 $) "failed") $) 117)) (-2279 (((-3 (-656 $) "failed") $) 118)) (-4044 (((-3 (-2 (|:| |var| (-1102)) (|:| -1495 (-783))) "failed") $) 116)) (-2944 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) 221 (|has| |#1| (-1172)) CONST)) (-3115 (((-1140) $) 11)) (-1677 (((-112) $) 173)) (-1685 ((|#1| $) 174)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3114 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3705 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-927)))) (-1988 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-927)))) (-1450 (((-430 $) $) 102 (|has| |#1| (-927)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 231 (|has| |#1| (-374)))) (-1943 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-2143 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1102) |#1|) 148) (($ $ (-656 (-1102)) (-656 |#1|)) 147) (($ $ (-1102) $) 146) (($ $ (-656 (-1102)) (-656 $)) 145)) (-2026 (((-783) $) 227 (|has| |#1| (-374)))) (-4368 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-3639 (((-3 $ "failed") $ (-783)) 252)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 228 (|has| |#1| (-374)))) (-1451 (($ $ (-1102)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-4106 (($ $ (-656 (-1102)) (-656 (-783))) 44) (($ $ (-1102) (-783)) 43) (($ $ (-656 (-1102))) 42) (($ $ (-1102)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1196)) 220 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 218 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 217 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 216 (|has| |#1| (-918 (-1196))))) (-1877 (((-783) $) 157) (((-783) $ (-1102)) 133) (((-656 (-783)) $ (-656 (-1102))) 132)) (-1554 (((-906 (-390)) $) 85 (-12 (|has| (-1102) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390)))))) (((-906 (-576)) $) 84 (-12 (|has| (-1102) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576)))))) (((-548) $) 83 (-12 (|has| (-1102) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3430 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1102)) 109 (|has| |#1| (-464)))) (-3080 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2310 (|has| $ (-146)) (|has| |#1| (-927))))) (-4418 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1102)) 142) (($ (-419 (-576))) 81 (-3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1410 (((-656 |#1|) $) 175)) (-4269 ((|#1| $ (-783)) 162) (($ $ (-1102) (-783)) 131) (($ $ (-656 (-1102)) (-656 (-783))) 130)) (-1972 (((-3 $ "failed") $) 82 (-3794 (-2310 (|has| $ (-146)) (|has| |#1| (-927))) (|has| |#1| (-146))))) (-4115 (((-783)) 32 T CONST)) (-4081 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-656 (-1102)) (-656 (-783))) 47) (($ $ (-1102) (-783)) 46) (($ $ (-656 (-1102))) 45) (($ $ (-1102)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1196)) 219 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196))) 215 (|has| |#1| (-918 (-1196)))) (($ $ (-1196) (-783)) 214 (|has| |#1| (-918 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 213 (|has| |#1| (-918 (-1196))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1263 |#1|) (-141) (-1069)) (T -1263)) -((-1760 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1263 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-5 *2 (-1192 *3)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1069)) (-4 *1 (-1263 *3)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-3639 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1263 *3)))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1263 *4)))) (-1442 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-3351 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-1451 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-174)))) (-3954 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-174)))) (-4368 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-568)))) (-3241 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2256 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-568)))) (-4418 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-568)))) (-4418 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-568)))) (-3310 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-568)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2861 *3) (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1263 *3)))) (-2137 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1263 *3)))) (-4368 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576))))))) -(-13 (-967 |t#1| (-783) (-1102)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -1760 ((-1287 |t#1|) $ (-783))) (-15 -2528 ((-1192 |t#1|) $)) (-15 -3105 ($ (-1192 |t#1|))) (-15 -2747 ($ $ (-783))) (-15 -3639 ((-3 $ "failed") $ (-783))) (-15 -3768 ((-2 (|:| -4299 $) (|:| -2960 $)) $ $)) (-15 -2842 ((-2 (|:| -4299 $) (|:| -2960 $)) $ (-783))) (-15 -1442 ($ $ (-783))) (-15 -3036 ($ $ (-783))) (-15 -3351 ($ $ $)) (-15 -4106 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1172)) (-6 (-1172)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1451 (|t#1| $)) (-15 -3954 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -4368 ((-419 $) (-419 $) (-419 $))) (-15 -3241 ((-783) $ $)) (-15 -2256 ($ $ $)) (-15 -4418 ((-3 $ "failed") $ $)) (-15 -4418 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -3310 ($ $ $)) (-15 -4265 ((-2 (|:| -2861 |t#1|) (|:| -4299 $) (|:| -2960 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -2137 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4459) (-15 -4368 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -2944 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3794 (|has| |#1| (-1058 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1102)) . T) ((-628 |#1|) . T) ((-628 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1102) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-906 (-390))) -12 (|has| (-1102) (-626 (-906 (-390)))) (|has| |#1| (-626 (-906 (-390))))) ((-626 (-906 (-576))) -12 (|has| (-1102) (-626 (-906 (-576)))) (|has| |#1| (-626 (-906 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3794 (|has| |#1| (-927)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-910 $ #2#) . T) ((-910 $ #4=(-1196)) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-916 #2#) . T) ((-916 (-1196)) |has| |#1| (-916 (-1196))) ((-918 #2#) . T) ((-918 #4#) -3794 (|has| |#1| (-918 (-1196))) (|has| |#1| (-916 (-1196)))) ((-900 (-390)) -12 (|has| (-1102) (-900 (-390))) (|has| |#1| (-900 (-390)))) ((-900 (-576)) -12 (|has| (-1102) (-900 (-576))) (|has| |#1| (-900 (-576)))) ((-967 |#1| #0# #2#) . T) ((-927) |has| |#1| (-927)) ((-938) |has| |#1| (-374)) ((-1058 (-419 (-576))) |has| |#1| (-1058 (-419 (-576)))) ((-1058 (-576)) |has| |#1| (-1058 (-576))) ((-1058 #2#) . T) ((-1058 |#1|) . T) ((-1071 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1076 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1172) |has| |#1| (-1172)) ((-1237) . T) ((-1241) |has| |#1| (-927))) -((-1582 (((-656 (-1102)) $) 34)) (-3309 (($ $) 31)) (-1562 (($ |#2| |#3|) NIL) (($ $ (-1102) |#3|) 28) (($ $ (-656 (-1102)) (-656 |#3|)) 27)) (-1698 (($ $) 14)) (-1709 ((|#2| $) 12)) (-1877 ((|#3| $) 10))) -(((-1264 |#1| |#2| |#3|) (-10 -8 (-15 -1582 ((-656 (-1102)) |#1|)) (-15 -1562 (|#1| |#1| (-656 (-1102)) (-656 |#3|))) (-15 -1562 (|#1| |#1| (-1102) |#3|)) (-15 -3309 (|#1| |#1|)) (-15 -1562 (|#1| |#2| |#3|)) (-15 -1877 (|#3| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1709 (|#2| |#1|))) (-1265 |#2| |#3|) (-1069) (-804)) (T -1264)) -NIL -(-10 -8 (-15 -1582 ((-656 (-1102)) |#1|)) (-15 -1562 (|#1| |#1| (-656 (-1102)) (-656 |#3|))) (-15 -1562 (|#1| |#1| (-1102) |#3|)) (-15 -3309 (|#1| |#1|)) (-15 -1562 (|#1| |#2| |#3|)) (-15 -1877 (|#3| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1709 (|#2| |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 (-1102)) $) 86)) (-1652 (((-1196) $) 118)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2736 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-1560 (((-1177 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-3365 (((-112) $) 85)) (-3241 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-2287 (((-112) $) 35)) (-2747 (($ $ (-939)) 116)) (-3146 (((-112) $) 74)) (-1562 (($ |#1| |#2|) 73) (($ $ (-1102) |#2|) 88) (($ $ (-656 (-1102)) (-656 |#2|)) 87)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-3679 (($ $ |#2|) 110)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2143 (((-1177 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4368 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1132)))) (-4106 (($ $ (-1196)) 108 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1877 ((|#2| $) 76)) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4269 ((|#1| $ |#2|) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-3187 ((|#1| $) 117)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2641 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1196)) 107 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1265 |#1| |#2|) (-141) (-1069) (-804)) (T -1265)) -((-1560 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-5 *2 (-1177 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (-5 *2 (-1196)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-3241 (*1 *2 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-2736 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-2736 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4112 (*2 (-1196)))) (-4 *2 (-1069)))) (-3679 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) (-2143 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1177 *3))))) -(-13 (-993 |t#1| |t#2| (-1102)) (-296 |t#2| |t#1|) (-10 -8 (-15 -1560 ((-1177 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1652 ((-1196) $)) (-15 -3187 (|t#1| $)) (-15 -2747 ($ $ (-939))) (-15 -3241 (|t#2| $)) (-15 -3241 (|t#2| $ |t#2|)) (-15 -2736 ($ $ |t#2|)) (-15 -2736 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4112 (|t#1| (-1196)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2641 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3679 ($ $ |t#2|)) (IF (|has| |t#2| (-1132)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-916 (-1196))) (-6 (-916 (-1196))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2143 ((-1177 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1132)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-910 $ #1=(-1196)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-916 (-1196)))) ((-916 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-916 (-1196)))) ((-918 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-916 (-1196)))) ((-993 |#1| |#2| (-1102)) . T) ((-1071 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1076 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-3575 ((|#2| |#2|) 12)) (-3163 (((-430 |#2|) |#2|) 14)) (-2040 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) -(((-1266 |#1| |#2|) (-10 -7 (-15 -3163 ((-430 |#2|) |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -2040 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1263 |#1|) (-568) (-10 -8 (-15 -3114 ($ $ $))))) (T -1266)) -((-2040 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3114 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1266 *3 *4)))) (-3575 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) (-4 *2 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3114 ($ $ $))))))) (-3163 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1266 *4 *3)) (-4 *3 (-13 (-1263 *4) (-568) (-10 -8 (-15 -3114 ($ $ $)))))))) -(-10 -7 (-15 -3163 ((-430 |#2|) |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -2040 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) -((-2422 (((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)) 24))) -(((-1267 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2422 ((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)))) (-1069) (-1069) (-1196) (-1196) |#1| |#2|) (T -1267)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5 *7 *9)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1272 *6 *8 *10)) (-5 *1 (-1267 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196))))) -(-10 -7 (-15 -2422 ((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 (-1102)) $) 86)) (-1652 (((-1196) $) 118)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3585 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 177 (|has| |#1| (-374)))) (-3163 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3561 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-3611 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) 18 T CONST)) (-1893 (($ $ $) 172 (|has| |#1| (-374)))) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 171 (|has| |#1| (-374)))) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2443 (((-112) $) 179 (|has| |#1| (-374)))) (-3365 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) 116) (($ $ (-419 (-576))) 185)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3146 (((-112) $) 74)) (-1562 (($ |#1| (-419 (-576))) 73) (($ $ (-1102) (-419 (-576))) 88) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) 87)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-2607 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-3075 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2043 (((-1178) $) 10)) (-1667 (($ $) 180 (|has| |#1| (-374)))) (-2944 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3794 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3114 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1450 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 173 (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) 110)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2155 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) 169 (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 170 (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) 108 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1877 (((-419 (-576)) $) 76)) (-3622 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-3187 ((|#1| $) 117)) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3631 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1196)) 107 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1268 |#1|) (-141) (-1069)) (T -1268)) -((-2860 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1069)) (-4 *1 (-1268 *4)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1268 *3)) (-4 *3 (-1069)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) (-2944 (*1 *1 *1 *2) (-3794 (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1069)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-977)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1069)) (-12 (|has| *3 (-15 -1582 ((-656 *2) *3))) (|has| *3 (-15 -2944 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1265 |t#1| (-419 (-576))) (-10 -8 (-15 -2860 ($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -2747 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $)) (IF (|has| |t#1| (-15 -2944 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1582 ((-656 (-1196)) |t#1|))) (-15 -2944 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-977)) (IF (|has| |t#1| (-29 (-576))) (-15 -2944 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1022)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1132)) ((-300) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-910 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196)))) ((-993 |#1| #0# (-1102)) . T) ((-938) |has| |#1| (-374)) ((-1022) |has| |#1| (-38 (-419 (-576)))) ((-1071 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1076 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T)) -((-3167 (((-112) $) 12)) (-2980 (((-3 |#3| "failed") $) 17)) (-2317 ((|#3| $) 14))) -(((-1269 |#1| |#2| |#3|) (-10 -8 (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3167 ((-112) |#1|))) (-1270 |#2| |#3|) (-1069) (-1247 |#2|)) (T -1269)) -NIL -(-10 -8 (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3167 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 (-1102)) $) 86)) (-1652 (((-1196) $) 118)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3585 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 177 (|has| |#1| (-374)))) (-3163 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3561 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-3611 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#2| "failed") $) 197)) (-2317 ((|#2| $) 198)) (-1893 (($ $ $) 172 (|has| |#1| (-374)))) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-1494 (((-419 (-576)) $) 194)) (-1903 (($ $ $) 171 (|has| |#1| (-374)))) (-1646 (($ (-419 (-576)) |#2|) 195)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2443 (((-112) $) 179 (|has| |#1| (-374)))) (-3365 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) 116) (($ $ (-419 (-576))) 185)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3146 (((-112) $) 74)) (-1562 (($ |#1| (-419 (-576))) 73) (($ $ (-1102) (-419 (-576))) 88) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) 87)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-2607 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-3075 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1731 ((|#2| $) 193)) (-2184 (((-3 |#2| "failed") $) 191)) (-1637 ((|#2| $) 192)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 180 (|has| |#1| (-374)))) (-2944 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3794 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3114 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1450 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 173 (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) 110)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2155 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) 169 (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 170 (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) 108 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1877 (((-419 (-576)) $) 76)) (-3622 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-3187 ((|#1| $) 117)) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3631 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1196)) 107 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1270 |#1| |#2|) (-141) (-1069) (-1247 |t#1|)) (T -1270)) -((-1877 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1247 *3)) (-5 *2 (-419 (-576))))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1069)) (-4 *1 (-1270 *4 *3)) (-4 *3 (-1247 *4)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1247 *3)) (-5 *2 (-419 (-576))))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1247 *3)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1247 *3)))) (-2184 (*1 *2 *1) (|partial| -12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1247 *3))))) -(-13 (-1268 |t#1|) (-1058 |t#2|) (-628 |t#2|) (-10 -8 (-15 -1646 ($ (-419 (-576)) |t#2|)) (-15 -1494 ((-419 (-576)) $)) (-15 -1731 (|t#2| $)) (-15 -1877 ((-419 (-576)) $)) (-15 -1637 (|t#2| $)) (-15 -2184 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1132)) ((-300) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-910 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196)))) ((-993 |#1| #0# (-1102)) . T) ((-938) |has| |#1| (-374)) ((-1022) |has| |#1| (-38 (-419 (-576)))) ((-1058 |#2|) . T) ((-1071 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1076 #1#) -3794 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T) ((-1268 |#1|) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 104)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-3585 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-3611 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL)) (-2317 ((|#2| $) NIL)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) 85)) (-1494 (((-419 (-576)) $) 13)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-1646 (($ (-419 (-576)) |#2|) 11)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-3365 (((-112) $) 74)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) 130) (($ $ (-419 (-576))) 128)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-419 (-576))) 33) (($ $ (-1102) (-419 (-576))) NIL) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) 125)) (-2607 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1731 ((|#2| $) 12)) (-2184 (((-3 |#2| "failed") $) 44)) (-1637 ((|#2| $) 45)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) 101 (|has| |#1| (-374)))) (-2944 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 151 (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222)))))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) 122)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1877 (((-419 (-576)) $) 16)) (-3622 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 120)) (-4112 (((-875) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) 107)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) 127 T CONST)) (-3187 ((|#1| $) 106)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 21 T CONST)) (-4320 (($) 17 T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3938 (((-112) $ $) 72)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-4036 (($ $) 142) (($ $ $) 78)) (-4026 (($ $ $) 76)) (** (($ $ (-939)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1271 |#1| |#2|) (-1270 |#1| |#2|) (-1069) (-1247 |#1|)) (T -1271)) -NIL -(-1270 |#1| |#2|) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 11)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) NIL (|has| |#1| (-568)))) (-2736 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1560 (((-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-3575 (($ $) NIL (|has| |#1| (-374)))) (-3163 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4057 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-783) (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1279 |#1| |#2| |#3|) "failed") $) 22)) (-2317 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1279 |#1| |#2| |#3|) $) NIL)) (-1893 (($ $ $) NIL (|has| |#1| (-374)))) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-1494 (((-419 (-576)) $) 69)) (-1903 (($ $ $) NIL (|has| |#1| (-374)))) (-1646 (($ (-419 (-576)) (-1251 |#1| |#2| |#3|)) NIL)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2443 (((-112) $) NIL (|has| |#1| (-374)))) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-2287 (((-112) $) NIL)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) NIL) (($ $ (-419 (-576))) NIL)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-419 (-576))) 30) (($ $ (-1102) (-419 (-576))) NIL) (($ $ (-656 (-1102)) (-656 (-419 (-576)))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-3075 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1731 (((-1251 |#1| |#2| |#3|) $) 72)) (-2184 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-1637 (((-1251 |#1| |#2| |#3|) $) NIL)) (-2043 (((-1178) $) NIL)) (-1667 (($ $) NIL (|has| |#1| (-374)))) (-2944 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3114 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1450 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4241 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) NIL (|has| |#1| (-374)))) (-3679 (($ $ (-419 (-576))) NIL)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3871 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2026 (((-783) $) NIL (|has| |#1| (-374)))) (-4368 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1132)))) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) NIL (|has| |#1| (-374)))) (-4106 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 38)) (-1877 (((-419 (-576)) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) NIL)) (-4112 (((-875) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1251 |#1| |#2| |#3|)) 16) (($ (-1279 |#1| |#2| |#3|)) 17) (($ (-1283 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4269 ((|#1| $ (-419 (-576))) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 12)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 32 T CONST)) (-4320 (($) 26 T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 34)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1272 |#1| |#2| |#3|) (-13 (-1270 |#1| (-1251 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-1058 (-1279 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -1272)) -((-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1270 |#1| (-1251 |#1| |#2| |#3|)) (-910 $ (-1283 |#2|)) (-1058 (-1279 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 37)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL)) (-4070 (($ $) NIL)) (-2378 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 (-576) "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1058 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1058 (-419 (-576))))) (((-3 (-1272 |#2| |#3| |#4|) "failed") $) 22)) (-2317 (((-576) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1058 (-576)))) (((-419 (-576)) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1058 (-419 (-576))))) (((-1272 |#2| |#3| |#4|) $) NIL)) (-3309 (($ $) 41)) (-3900 (((-3 $ "failed") $) 27)) (-3557 (($ $) NIL (|has| (-1272 |#2| |#3| |#4|) (-464)))) (-3897 (($ $ (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) 11)) (-3146 (((-112) $) NIL)) (-1562 (($ (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-3661 (((-329 |#2| |#3| |#4|) $) NIL)) (-3820 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-2422 (($ (-1 (-1272 |#2| |#3| |#4|) (-1272 |#2| |#3| |#4|)) $) NIL)) (-3504 (((-3 (-855 |#2|) "failed") $) 90)) (-1698 (($ $) NIL)) (-1709 (((-1272 |#2| |#3| |#4|) $) 20)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1677 (((-112) $) NIL)) (-1685 (((-1272 |#2| |#3| |#4|) $) NIL)) (-1943 (((-3 $ "failed") $ (-1272 |#2| |#3| |#4|)) NIL (|has| (-1272 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-2455 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $) 74)) (-1877 (((-329 |#2| |#3| |#4|) $) 17)) (-3430 (((-1272 |#2| |#3| |#4|) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-464)))) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ (-1272 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-3794 (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1272 |#2| |#3| |#4|) (-1058 (-419 (-576))))))) (-1410 (((-656 (-1272 |#2| |#3| |#4|)) $) NIL)) (-4269 (((-1272 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-146)))) (-4115 (((-783)) NIL T CONST)) (-4081 (($ $ $ (-783)) NIL (|has| (-1272 |#2| |#3| |#4|) (-174)))) (-1994 (((-112) $ $) NIL)) (-3111 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ (-1272 |#2| |#3| |#4|)) NIL (|has| (-1272 |#2| |#3| |#4|) (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1272 |#2| |#3| |#4|)) NIL) (($ (-1272 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576))))))) -(((-1273 |#1| |#2| |#3| |#4|) (-13 (-336 (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3504 ((-3 (-855 |#2|) "failed") $)) (-15 -2455 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $)))) (-13 (-1058 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -1273)) -((-3504 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4))) (-2455 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1178)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) -(-13 (-336 (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3504 ((-3 (-855 |#2|) "failed") $)) (-15 -2455 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $)))) -((-1688 ((|#2| $) 34)) (-3456 ((|#2| $) 18)) (-3094 (($ $) 53)) (-1396 (($ $ (-576)) 85)) (-2337 (((-112) $ (-783)) 46)) (-3078 ((|#2| $ |#2|) 82)) (-4308 ((|#2| $ |#2|) 78)) (-4267 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4370 (($ $ (-656 $)) 81)) (-3442 ((|#2| $) 17)) (-1762 (($ $) NIL) (($ $ (-783)) 59)) (-3395 (((-656 $) $) 31)) (-2520 (((-112) $ $) 69)) (-2135 (((-112) $ (-783)) 45)) (-1556 (((-112) $ (-783)) 43)) (-2887 (((-112) $) 33)) (-2849 ((|#2| $) 25) (($ $ (-783)) 64)) (-4368 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2003 (((-112) $) 23)) (-4385 (($ $) 56)) (-1788 (($ $) 86)) (-4093 (((-783) $) 58)) (-2820 (($ $) 57)) (-2766 (($ $ $) 77) (($ |#2| $) NIL)) (-4335 (((-656 $) $) 32)) (-3938 (((-112) $ $) 67)) (-1968 (((-783) $) 52))) -(((-1274 |#1| |#2|) (-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -1396 (|#1| |#1| (-576))) (-15 -4267 (|#2| |#1| "last" |#2|)) (-15 -4308 (|#2| |#1| |#2|)) (-15 -4267 (|#1| |#1| "rest" |#1|)) (-15 -4267 (|#2| |#1| "first" |#2|)) (-15 -1788 (|#1| |#1|)) (-15 -4385 (|#1| |#1|)) (-15 -4093 ((-783) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -3456 (|#2| |#1|)) (-15 -3442 (|#2| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2849 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "last")) (-15 -2849 (|#2| |#1|)) (-15 -1762 (|#1| |#1| (-783))) (-15 -4368 (|#1| |#1| "rest")) (-15 -1762 (|#1| |#1|)) (-15 -4368 (|#2| |#1| "first")) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -3078 (|#2| |#1| |#2|)) (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -4370 (|#1| |#1| (-656 |#1|))) (-15 -2520 ((-112) |#1| |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -1688 (|#2| |#1|)) (-15 -2887 ((-112) |#1|)) (-15 -3395 ((-656 |#1|) |#1|)) (-15 -4335 ((-656 |#1|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783)))) (-1275 |#2|) (-1237)) (T -1274)) -NIL -(-10 -8 (-15 -3938 ((-112) |#1| |#1|)) (-15 -1396 (|#1| |#1| (-576))) (-15 -4267 (|#2| |#1| "last" |#2|)) (-15 -4308 (|#2| |#1| |#2|)) (-15 -4267 (|#1| |#1| "rest" |#1|)) (-15 -4267 (|#2| |#1| "first" |#2|)) (-15 -1788 (|#1| |#1|)) (-15 -4385 (|#1| |#1|)) (-15 -4093 ((-783) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -3456 (|#2| |#1|)) (-15 -3442 (|#2| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2849 (|#1| |#1| (-783))) (-15 -4368 (|#2| |#1| "last")) (-15 -2849 (|#2| |#1|)) (-15 -1762 (|#1| |#1| (-783))) (-15 -4368 (|#1| |#1| "rest")) (-15 -1762 (|#1| |#1|)) (-15 -4368 (|#2| |#1| "first")) (-15 -2766 (|#1| |#2| |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -3078 (|#2| |#1| |#2|)) (-15 -4267 (|#2| |#1| "value" |#2|)) (-15 -4370 (|#1| |#1| (-656 |#1|))) (-15 -2520 ((-112) |#1| |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -1688 (|#2| |#1|)) (-15 -2887 ((-112) |#1|)) (-15 -3395 ((-656 |#1|) |#1|)) (-15 -4335 ((-656 |#1|) |#1|)) (-15 -1968 ((-783) |#1|)) (-15 -2337 ((-112) |#1| (-783))) (-15 -2135 ((-112) |#1| (-783))) (-15 -1556 ((-112) |#1| (-783)))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1688 ((|#1| $) 49)) (-3456 ((|#1| $) 66)) (-3094 (($ $) 68)) (-1396 (($ $ (-576)) 53 (|has| $ (-6 -4464)))) (-2337 (((-112) $ (-783)) 8)) (-3078 ((|#1| $ |#1|) 40 (|has| $ (-6 -4464)))) (-3134 (($ $ $) 57 (|has| $ (-6 -4464)))) (-4308 ((|#1| $ |#1|) 55 (|has| $ (-6 -4464)))) (-3265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4464)))) (-4267 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4464))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4464))) (($ $ "rest" $) 56 (|has| $ (-6 -4464))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4464)))) (-4370 (($ $ (-656 $)) 42 (|has| $ (-6 -4464)))) (-3442 ((|#1| $) 67)) (-4331 (($) 7 T CONST)) (-1762 (($ $) 74) (($ $ (-783)) 72)) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-3395 (((-656 $) $) 51)) (-2520 (((-112) $ $) 43 (|has| |#1| (-1120)))) (-2135 (((-112) $ (-783)) 9)) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36)) (-1556 (((-112) $ (-783)) 10)) (-4185 (((-656 |#1|) $) 46)) (-2887 (((-112) $) 50)) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-2849 ((|#1| $) 71) (($ $ (-783)) 69)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 77) (($ $ (-783)) 75)) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3183 (((-576) $ $) 45)) (-2003 (((-112) $) 47)) (-4385 (($ $) 63)) (-1788 (($ $) 60 (|has| $ (-6 -4464)))) (-4093 (((-783) $) 64)) (-2820 (($ $) 65)) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-4286 (($ $) 13)) (-3424 (($ $ $) 62 (|has| $ (-6 -4464))) (($ $ |#1|) 61 (|has| $ (-6 -4464)))) (-2766 (($ $ $) 79) (($ |#1| $) 78)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-4335 (((-656 $) $) 52)) (-2777 (((-112) $ $) 44 (|has| |#1| (-1120)))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1275 |#1|) (-141) (-1237)) (T -1275)) -((-2766 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2766 (*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1753 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-1762 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-1762 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-4385 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3424 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3424 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1788 (*1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3265 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4267 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3134 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4267 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4464)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-4308 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4267 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1396 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4464)) (-4 *1 (-1275 *3)) (-4 *3 (-1237))))) -(-13 (-1030 |t#1|) (-10 -8 (-15 -2766 ($ $ $)) (-15 -2766 ($ |t#1| $)) (-15 -1753 (|t#1| $)) (-15 -4368 (|t#1| $ "first")) (-15 -1753 ($ $ (-783))) (-15 -1762 ($ $)) (-15 -4368 ($ $ "rest")) (-15 -1762 ($ $ (-783))) (-15 -2849 (|t#1| $)) (-15 -4368 (|t#1| $ "last")) (-15 -2849 ($ $ (-783))) (-15 -3094 ($ $)) (-15 -3442 (|t#1| $)) (-15 -3456 (|t#1| $)) (-15 -2820 ($ $)) (-15 -4093 ((-783) $)) (-15 -4385 ($ $)) (IF (|has| $ (-6 -4464)) (PROGN (-15 -3424 ($ $ $)) (-15 -3424 ($ $ |t#1|)) (-15 -1788 ($ $)) (-15 -3265 (|t#1| $ |t#1|)) (-15 -4267 (|t#1| $ "first" |t#1|)) (-15 -3134 ($ $ $)) (-15 -4267 ($ $ "rest" $)) (-15 -4308 (|t#1| $ |t#1|)) (-15 -4267 (|t#1| $ "last" |t#1|)) (-15 -1396 ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-625 (-875)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-1030 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1237) . T)) -((-2422 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1276 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 (|#4| (-1 |#2| |#1|) |#3|))) (-1069) (-1069) (-1278 |#1|) (-1278 |#2|)) (T -1276)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1278 *6)) (-5 *1 (-1276 *5 *6 *4 *2)) (-4 *4 (-1278 *5))))) -(-10 -7 (-15 -2422 (|#4| (-1 |#2| |#1|) |#3|))) -((-3167 (((-112) $) 17)) (-3585 (($ $) 105)) (-3434 (($ $) 81)) (-3561 (($ $) 101)) (-3411 (($ $) 77)) (-3611 (($ $) 109)) (-3460 (($ $) 85)) (-2607 (($ $) 75)) (-2155 (($ $) 73)) (-3622 (($ $) 111)) (-3473 (($ $) 87)) (-3598 (($ $) 107)) (-3447 (($ $) 83)) (-3573 (($ $) 103)) (-3423 (($ $) 79)) (-4112 (((-875) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3652 (($ $) 117)) (-3509 (($ $) 93)) (-3631 (($ $) 113)) (-3486 (($ $) 89)) (-3672 (($ $) 121)) (-3536 (($ $) 97)) (-1970 (($ $) 123)) (-3549 (($ $) 99)) (-3663 (($ $) 119)) (-3522 (($ $) 95)) (-3641 (($ $) 115)) (-3497 (($ $) 91)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) -(((-1277 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3434 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3652 (|#1| |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939))) (-15 -3167 ((-112) |#1|)) (-15 -4112 ((-875) |#1|))) (-1278 |#2|) (-1069)) (T -1277)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3434 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3652 (|#1| |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4112 (|#1| |#2|)) (-15 -4112 (|#1| |#1|)) (-15 -4112 (|#1| (-419 (-576)))) (-15 -4112 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-939))) (-15 -3167 ((-112) |#1|)) (-15 -4112 ((-875) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1582 (((-656 (-1102)) $) 86)) (-1652 (((-1196) $) 118)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4070 (($ $) 64 (|has| |#1| (-568)))) (-2378 (((-112) $) 66 (|has| |#1| (-568)))) (-2736 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-1560 (((-1177 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-3585 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) 20)) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3561 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-1177 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1177 |#1|)) 168)) (-3611 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) 18 T CONST)) (-3309 (($ $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-3686 (($ $) 167)) (-2817 (((-970 |#1|) $ (-783)) 165) (((-970 |#1|) $ (-783) (-783)) 164)) (-3365 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-783) $) 115) (((-783) $ (-783)) 114)) (-2287 (((-112) $) 35)) (-2770 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2747 (($ $ (-939)) 116)) (-3235 (($ (-1 |#1| (-576)) $) 166)) (-3146 (((-112) $) 74)) (-1562 (($ |#1| (-783)) 73) (($ $ (-1102) (-783)) 88) (($ $ (-656 (-1102)) (-656 (-783))) 87)) (-2422 (($ (-1 |#1| |#1|) $) 75)) (-2607 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) 77)) (-1709 ((|#1| $) 78)) (-2043 (((-1178) $) 10)) (-2944 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 161 (-3794 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3115 (((-1140) $) 11)) (-3679 (($ $ (-783)) 110)) (-1943 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2155 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (((-1177 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4368 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1132)))) (-4106 (($ $ (-1196)) 108 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-1877 (((-783) $) 76)) (-3622 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 84)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1410 (((-1177 |#1|) $) 169)) (-4269 ((|#1| $ (-783)) 71)) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4115 (((-783)) 32 T CONST)) (-3187 ((|#1| $) 117)) (-1994 (((-112) $ $) 6)) (-3652 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3631 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3155 (($ $ (-1196)) 107 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-916 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1278 |#1|) (-141) (-1069)) (T -1278)) -((-2860 (*1 *1 *2) (-12 (-5 *2 (-1177 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1069)) (-4 *1 (-1278 *3)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1069)) (-5 *2 (-1177 *3)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-4 *1 (-1278 *3)))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1069)))) (-3235 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1278 *3)) (-4 *3 (-1069)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1069)) (-5 *2 (-970 *4)))) (-2817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1069)) (-5 *2 (-970 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) (-2944 (*1 *1 *1 *2) (-3794 (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1069)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-977)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1069)) (-12 (|has| *3 (-15 -1582 ((-656 *2) *3))) (|has| *3 (-15 -2944 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1265 |t#1| (-783)) (-10 -8 (-15 -2860 ($ (-1177 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -1410 ((-1177 |t#1|) $)) (-15 -2860 ($ (-1177 |t#1|))) (-15 -3686 ($ $)) (-15 -3235 ($ (-1 |t#1| (-576)) $)) (-15 -2817 ((-970 |t#1|) $ (-783))) (-15 -2817 ((-970 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2944 ($ $)) (IF (|has| |t#1| (-15 -2944 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1582 ((-656 (-1196)) |t#1|))) (-15 -2944 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-977)) (IF (|has| |t#1| (-29 (-576))) (-15 -2944 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1022)) (-6 (-1222))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-875)) . T) ((-174) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1132)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-910 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196)))) ((-993 |#1| #0# (-1102)) . T) ((-1022) |has| |#1| (-38 (-419 (-576)))) ((-1071 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1071 |#1|) . T) ((-1071 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1076 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1076 |#1|) . T) ((-1076 $) -3794 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1265 |#1| #0#) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1582 (((-656 (-1102)) $) NIL)) (-1652 (((-1196) $) 90)) (-1623 (((-1260 |#2| |#1|) $ (-783)) 73)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-568)))) (-2378 (((-112) $) 142 (|has| |#1| (-568)))) (-2736 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-1560 (((-1177 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-3585 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2559 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3561 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3411 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2860 (($ (-1177 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1177 |#1|)) NIL)) (-3611 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3460 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (($) NIL T CONST)) (-3354 (($ $) 134)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3686 (($ $) 140)) (-2817 (((-970 |#1|) $ (-783)) 63) (((-970 |#1|) $ (-783) (-783)) 65)) (-3365 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3241 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-2287 (((-112) $) NIL)) (-2739 (($ $) 117)) (-2770 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2881 (($ (-576) (-576) $) 136)) (-2747 (($ $ (-939)) 139)) (-3235 (($ (-1 |#1| (-576)) $) 111)) (-3146 (((-112) $) NIL)) (-1562 (($ |#1| (-783)) 16) (($ $ (-1102) (-783)) NIL) (($ $ (-656 (-1102)) (-656 (-783))) NIL)) (-2422 (($ (-1 |#1| |#1|) $) 98)) (-2607 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1698 (($ $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3037 (($ $) 115)) (-4419 (($ $) 113)) (-2079 (($ (-576) (-576) $) 138)) (-2944 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 156 (-3794 (-12 (|has| |#1| (-15 -2944 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1582 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-977)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3115 (((-1140) $) NIL)) (-3254 (($ $ (-576) (-576)) 121)) (-3679 (($ $ (-783)) 123)) (-1943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2109 (($ $) 119)) (-2143 (((-1177 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4368 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1132)))) (-4106 (($ $ (-1196)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) 103)) (-1877 (((-783) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3598 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3573 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3454 (($ $) 125)) (-4112 (((-875) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1260 |#2| |#1|)) 81) (($ (-1283 |#2|)) 22)) (-1410 (((-1177 |#1|) $) NIL)) (-4269 ((|#1| $ (-783)) 94)) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4115 (((-783)) NIL T CONST)) (-3187 ((|#1| $) 91)) (-1994 (((-112) $ $) NIL)) (-3652 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3111 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3486 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3536 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2641 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4112 (|#1| (-1196))))))) (-1970 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3549 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3663 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3641 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3497 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4314 (($) 18 T CONST)) (-4320 (($) 13 T CONST)) (-3155 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-916 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3938 (((-112) $ $) NIL)) (-4046 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) 107)) (-4026 (($ $ $) 20)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1279 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1260 |#2| |#1|))) (-15 -1623 ((-1260 |#2| |#1|) $ (-783))) (-15 -4112 ($ (-1283 |#2|))) (-15 -4419 ($ $)) (-15 -3037 ($ $)) (-15 -2739 ($ $)) (-15 -2109 ($ $)) (-15 -3254 ($ $ (-576) (-576))) (-15 -3354 ($ $)) (-15 -2881 ($ (-576) (-576) $)) (-15 -2079 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) (-1069) (-1196) |#1|) (T -1279)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1279 *3 *4 *5)))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1279 *4 *5 *6)) (-4 *4 (-1069)) (-14 *5 (-1196)) (-14 *6 *4))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4419 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) (-14 *4 *2))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) (-14 *4 *2))) (-2739 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) (-14 *4 *2))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) (-14 *4 *2))) (-3254 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1196)) (-14 *5 *3))) (-3354 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) (-14 *4 *2))) (-2881 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1196)) (-14 *5 *3))) (-2079 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1196)) (-14 *5 *3))) (-2944 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) -(-13 (-1278 |#1|) (-910 $ (-1283 |#2|)) (-10 -8 (-15 -4112 ($ (-1260 |#2| |#1|))) (-15 -1623 ((-1260 |#2| |#1|) $ (-783))) (-15 -4112 ($ (-1283 |#2|))) (-15 -4419 ($ $)) (-15 -3037 ($ $)) (-15 -2739 ($ $)) (-15 -2109 ($ $)) (-15 -3254 ($ $ (-576) (-576))) (-15 -3354 ($ $)) (-15 -2881 ($ (-576) (-576) $)) (-15 -2079 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2944 ($ $ (-1283 |#2|))) |%noBranch|))) -((-4422 (((-1 (-1177 |#1|) (-656 (-1177 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-4075 (((-1 (-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3148 (((-1 (-1177 |#1|) (-1177 |#1|)) (-1 |#2| |#2|)) 13)) (-3250 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1763 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2395 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-1426 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-3311 ((|#2| |#2| |#2|) 43))) -(((-1280 |#1| |#2|) (-10 -7 (-15 -3148 ((-1 (-1177 |#1|) (-1177 |#1|)) (-1 |#2| |#2|))) (-15 -4075 ((-1 (-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4422 ((-1 (-1177 |#1|) (-656 (-1177 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -3311 (|#2| |#2| |#2|)) (-15 -1763 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3250 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2395 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -1426 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1278 |#1|)) (T -1280)) -((-1426 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1278 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1280 *5 *6)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1278 *5)) (-5 *1 (-1280 *5 *2)))) (-3250 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-3311 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1280 *3 *2)) (-4 *2 (-1278 *3)))) (-4422 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1177 *4) (-656 (-1177 *4)))) (-5 *1 (-1280 *4 *5)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1177 *4) (-1177 *4) (-1177 *4))) (-5 *1 (-1280 *4 *5)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1177 *4) (-1177 *4))) (-5 *1 (-1280 *4 *5))))) -(-10 -7 (-15 -3148 ((-1 (-1177 |#1|) (-1177 |#1|)) (-1 |#2| |#2|))) (-15 -4075 ((-1 (-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4422 ((-1 (-1177 |#1|) (-656 (-1177 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -3311 (|#2| |#2| |#2|)) (-15 -1763 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3250 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2395 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -1426 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) -((-3744 ((|#2| |#4| (-783)) 31)) (-3030 ((|#4| |#2|) 26)) (-1944 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-3706 (((-1 |#4| (-656 |#4|)) |#3|) 43))) -(((-1281 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3030 (|#4| |#2|)) (-15 -3744 (|#2| |#4| (-783))) (-15 -3706 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -1944 (|#4| (-419 |#2|))) |%noBranch|)) (-1069) (-1263 |#1|) (-668 |#2|) (-1278 |#1|)) (T -1281)) -((-1944 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-568)) (-4 *4 (-1069)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1278 *4)))) (-3744 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1278 *5)))) (-3030 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *3 (-1263 *4)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(-10 -7 (-15 -3030 (|#4| |#2|)) (-15 -3744 (|#2| |#4| (-783))) (-15 -3706 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -1944 (|#4| (-419 |#2|))) |%noBranch|)) -NIL -(((-1282) (-141)) (T -1282)) -NIL -(-13 (-10 -7 (-6 -2601))) -((-1952 (((-112) $ $) NIL)) (-1652 (((-1196)) 12)) (-2043 (((-1178) $) 18)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 11) (((-1196) $) 8)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 15))) -(((-1283 |#1|) (-13 (-1120) (-625 (-1196)) (-10 -8 (-15 -4112 ((-1196) $)) (-15 -1652 ((-1196))))) (-1196)) (T -1283)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) (-1652 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))) -(-13 (-1120) (-625 (-1196)) (-10 -8 (-15 -4112 ((-1196) $)) (-15 -1652 ((-1196))))) -((-2154 (($ (-783)) 19)) (-1662 (((-701 |#2|) $ $) 41)) (-1347 ((|#2| $) 51)) (-3107 ((|#2| $) 50)) (-4139 ((|#2| $ $) 36)) (-1776 (($ $ $) 47)) (-4036 (($ $) 23) (($ $ $) 29)) (-4026 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1284 |#1| |#2|) (-10 -8 (-15 -1347 (|#2| |#1|)) (-15 -3107 (|#2| |#1|)) (-15 -1776 (|#1| |#1| |#1|)) (-15 -1662 ((-701 |#2|) |#1| |#1|)) (-15 -4139 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -2154 (|#1| (-783))) (-15 -4026 (|#1| |#1| |#1|))) (-1285 |#2|) (-1237)) (T -1284)) -NIL -(-10 -8 (-15 -1347 (|#2| |#1|)) (-15 -3107 (|#2| |#1|)) (-15 -1776 (|#1| |#1| |#1|)) (-15 -1662 ((-701 |#2|) |#1| |#1|)) (-15 -4139 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -2154 (|#1| (-783))) (-15 -4026 (|#1| |#1| |#1|))) -((-1952 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2154 (($ (-783)) 115 (|has| |#1| (-23)))) (-4100 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4464))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4464))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) 8)) (-4267 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4463)))) (-4331 (($) 7 T CONST)) (-3432 (($ $) 93 (|has| $ (-6 -4464)))) (-4203 (($ $) 103)) (-3966 (($ $) 80 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-2824 (($ |#1| $) 79 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) 52)) (-3538 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) 31 (|has| $ (-6 -4463)))) (-1662 (((-701 |#1|) $ $) 108 (|has| |#1| (-1069)))) (-1989 (($ (-783) |#1|) 70)) (-2135 (((-112) $ (-783)) 9)) (-2066 (((-576) $) 44 (|has| (-576) (-861)))) (-2905 (($ $ $) 85 (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) 30 (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3501 (((-576) $) 45 (|has| (-576) (-861)))) (-1654 (($ $ $) 86 (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1347 ((|#1| $) 105 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))))) (-1556 (((-112) $ (-783)) 10)) (-3107 ((|#1| $) 106 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))))) (-2043 (((-1178) $) 23 (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3963 (((-656 (-576)) $) 47)) (-1474 (((-112) (-576) $) 48)) (-3115 (((-1140) $) 22 (|has| |#1| (-1120)))) (-1753 ((|#1| $) 43 (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2556 (($ $ |#1|) 42 (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) 14)) (-2790 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) 49)) (-1937 (((-112) $) 11)) (-3935 (($) 12)) (-4368 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-4139 ((|#1| $ $) 109 (|has| |#1| (-1069)))) (-2334 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-1776 (($ $ $) 107 (|has| |#1| (-1069)))) (-3125 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4463))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4463))))) (-3757 (($ $ $ (-576)) 94 (|has| $ (-6 -4464)))) (-4286 (($ $) 13)) (-1554 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 72)) (-2766 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4112 (((-875) $) 18 (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3974 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3938 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3983 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3962 (((-112) $ $) 90 (|has| |#1| (-861)))) (-4036 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4026 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-1968 (((-783) $) 6 (|has| $ (-6 -4463))))) -(((-1285 |#1|) (-141) (-1237)) (T -1285)) -((-4026 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-25)))) (-2154 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1237)))) (-4036 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) (-4139 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1069)))) (-1662 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-1069)) (-5 *2 (-701 *3)))) (-1776 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1069)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) (-4 *2 (-1069)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) (-4 *2 (-1069))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4026 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2154 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4036 ($ $)) (-15 -4036 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1069)) (PROGN (-15 -4139 (|t#1| $ $)) (-15 -1662 ((-701 |t#1|) $ $)) (-15 -1776 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1022)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -3107 (|t#1| $)) (-15 -1347 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-875)) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861)) (|has| |#1| (-625 (-875)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-863) |has| |#1| (-861)) ((-1120) -3794 (|has| |#1| (-1120)) (|has| |#1| (-861))) ((-1237) . T)) -((-1925 (((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 13)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 15)) (-2422 (((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)) 30) (((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|)) 18))) -(((-1286 |#1| |#2|) (-10 -7 (-15 -1925 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2422 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -2422 ((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)))) (-1237) (-1237)) (T -1286)) -((-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1286 *5 *2)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1286 *6 *5))))) -(-10 -7 (-15 -1925 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2422 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -2422 ((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)))) -((-1952 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2154 (($ (-783)) NIL (|has| |#1| (-23)))) (-4095 (($ (-656 |#1|)) 11)) (-4100 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4464)))) (-3063 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-1715 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4464))) (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-861))))) (-2379 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2337 (((-112) $ (-783)) NIL)) (-4267 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-4331 (($) NIL T CONST)) (-3432 (($ $) NIL (|has| $ (-6 -4464)))) (-4203 (($ $) NIL)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4463))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-1908 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4464)))) (-3719 ((|#1| $ (-576)) NIL)) (-3538 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1120))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1120)))) (-3721 (((-656 |#1|) $) 16 (|has| $ (-6 -4463)))) (-1662 (((-701 |#1|) $ $) NIL (|has| |#1| (-1069)))) (-1989 (($ (-783) |#1|) NIL)) (-2135 (((-112) $ (-783)) NIL)) (-2066 (((-576) $) NIL (|has| (-576) (-861)))) (-2905 (($ $ $) NIL (|has| |#1| (-861)))) (-2144 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3958 (((-656 |#1|) $) NIL (|has| $ (-6 -4463)))) (-4217 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3501 (((-576) $) 12 (|has| (-576) (-861)))) (-1654 (($ $ $) NIL (|has| |#1| (-861)))) (-1896 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1347 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))))) (-1556 (((-112) $ (-783)) NIL)) (-3107 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))))) (-2043 (((-1178) $) NIL (|has| |#1| (-1120)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3963 (((-656 (-576)) $) NIL)) (-1474 (((-112) (-576) $) NIL)) (-3115 (((-1140) $) NIL (|has| |#1| (-1120)))) (-1753 ((|#1| $) NIL (|has| (-576) (-861)))) (-2022 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2556 (($ $ |#1|) NIL (|has| $ (-6 -4464)))) (-3587 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1120))))) (-1551 (((-112) $ $) NIL)) (-2790 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-2692 (((-656 |#1|) $) NIL)) (-1937 (((-112) $) NIL)) (-3935 (($) NIL)) (-4368 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-4139 ((|#1| $ $) NIL (|has| |#1| (-1069)))) (-2334 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-1776 (($ $ $) NIL (|has| |#1| (-1069)))) (-3125 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-1120))))) (-3757 (($ $ $ (-576)) NIL (|has| $ (-6 -4464)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-4124 (($ (-656 |#1|)) 10)) (-2766 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4112 (((-875) $) NIL (|has| |#1| (-625 (-875))))) (-1994 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1682 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4463)))) (-3993 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3974 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3938 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4036 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4026 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1287 |#1|) (-13 (-1285 |#1|) (-10 -8 (-15 -4095 ($ (-656 |#1|))))) (-1237)) (T -1287)) -((-4095 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3))))) -(-13 (-1285 |#1|) (-10 -8 (-15 -4095 ($ (-656 |#1|))))) -((-1952 (((-112) $ $) NIL)) (-2537 (((-1178) $ (-1178)) 107) (((-1178) $ (-1178) (-1178)) 105) (((-1178) $ (-1178) (-656 (-1178))) 104)) (-3858 (($) 69)) (-3475 (((-1292) $ (-480) (-939)) 54)) (-3479 (((-1292) $ (-939) (-1178)) 89) (((-1292) $ (-939) (-887)) 90)) (-3817 (((-1292) $ (-939) (-390) (-390)) 57)) (-3750 (((-1292) $ (-1178)) 84)) (-3809 (((-1292) $ (-939) (-1178)) 94)) (-2664 (((-1292) $ (-939) (-390) (-390)) 58)) (-4337 (((-1292) $ (-939) (-939)) 55)) (-2513 (((-1292) $) 85)) (-3369 (((-1292) $ (-939) (-1178)) 93)) (-1803 (((-1292) $ (-480) (-939)) 41)) (-2840 (((-1292) $ (-939) (-1178)) 92)) (-1502 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-3294 (((-1292) $ (-783) (-783)) 52)) (-1468 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-2043 (((-1178) $) NIL)) (-2239 (((-576) $) 48)) (-3115 (((-1140) $) NIL)) (-1486 (((-1287 (-3 (-480) "undefined")) $) 47)) (-3844 (((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2840 (-576)) (|:| -3174 (-576)) (|:| |spline| (-576)) (|:| -2181 (-576)) (|:| |axesColor| (-887)) (|:| -3479 (-576)) (|:| |unitsColor| (-887)) (|:| |showing| (-576)))) $) 46)) (-1446 (((-1292) $ (-939) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-887) (-576) (-887) (-576)) 83)) (-3690 (((-656 (-961 (-227))) $) NIL)) (-1479 (((-480) $ (-939)) 43)) (-3033 (((-1292) $ (-783) (-783) (-939) (-939)) 50)) (-2606 (((-1292) $ (-1178)) 95)) (-3174 (((-1292) $ (-939) (-1178)) 91)) (-4112 (((-875) $) 102)) (-1595 (((-1292) $) 96)) (-1994 (((-112) $ $) NIL)) (-2181 (((-1292) $ (-939) (-1178)) 87) (((-1292) $ (-939) (-887)) 88)) (-3938 (((-112) $ $) NIL))) -(((-1288) (-13 (-1120) (-10 -8 (-15 -3690 ((-656 (-961 (-227))) $)) (-15 -3858 ($)) (-15 -1468 ($ $)) (-15 -1502 ((-656 (-270)) $)) (-15 -1502 ($ $ (-656 (-270)))) (-15 -1468 ($ (-480) (-656 (-270)))) (-15 -1446 ((-1292) $ (-939) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-887) (-576) (-887) (-576))) (-15 -3844 ((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2840 (-576)) (|:| -3174 (-576)) (|:| |spline| (-576)) (|:| -2181 (-576)) (|:| |axesColor| (-887)) (|:| -3479 (-576)) (|:| |unitsColor| (-887)) (|:| |showing| (-576)))) $)) (-15 -1486 ((-1287 (-3 (-480) "undefined")) $)) (-15 -3750 ((-1292) $ (-1178))) (-15 -1803 ((-1292) $ (-480) (-939))) (-15 -1479 ((-480) $ (-939))) (-15 -2181 ((-1292) $ (-939) (-1178))) (-15 -2181 ((-1292) $ (-939) (-887))) (-15 -3479 ((-1292) $ (-939) (-1178))) (-15 -3479 ((-1292) $ (-939) (-887))) (-15 -2840 ((-1292) $ (-939) (-1178))) (-15 -3369 ((-1292) $ (-939) (-1178))) (-15 -3174 ((-1292) $ (-939) (-1178))) (-15 -2606 ((-1292) $ (-1178))) (-15 -1595 ((-1292) $)) (-15 -3033 ((-1292) $ (-783) (-783) (-939) (-939))) (-15 -2664 ((-1292) $ (-939) (-390) (-390))) (-15 -3817 ((-1292) $ (-939) (-390) (-390))) (-15 -3809 ((-1292) $ (-939) (-1178))) (-15 -3294 ((-1292) $ (-783) (-783))) (-15 -3475 ((-1292) $ (-480) (-939))) (-15 -4337 ((-1292) $ (-939) (-939))) (-15 -2537 ((-1178) $ (-1178))) (-15 -2537 ((-1178) $ (-1178) (-1178))) (-15 -2537 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2513 ((-1292) $)) (-15 -2239 ((-576) $)) (-15 -4112 ((-875) $))))) (T -1288)) -((-4112 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1288)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-656 (-961 (-227)))) (-5 *1 (-1288)))) (-3858 (*1 *1) (-5 *1 (-1288))) (-1468 (*1 *1 *1) (-5 *1 (-1288))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-1502 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-1468 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) (-1446 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-939)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-887)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2840 (-576)) (|:| -3174 (-576)) (|:| |spline| (-576)) (|:| -2181 (-576)) (|:| |axesColor| (-887)) (|:| -3479 (-576)) (|:| |unitsColor| (-887)) (|:| |showing| (-576))))) (-5 *1 (-1288)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1288)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1803 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-939)) (-5 *2 (-480)) (-5 *1 (-1288)))) (-2181 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2181 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-887)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3479 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3479 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-887)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2840 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3369 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3174 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2606 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3033 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2664 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-939)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3817 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-939)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3809 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3294 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3475 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-4337 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2537 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2537 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2537 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))) -(-13 (-1120) (-10 -8 (-15 -3690 ((-656 (-961 (-227))) $)) (-15 -3858 ($)) (-15 -1468 ($ $)) (-15 -1502 ((-656 (-270)) $)) (-15 -1502 ($ $ (-656 (-270)))) (-15 -1468 ($ (-480) (-656 (-270)))) (-15 -1446 ((-1292) $ (-939) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-887) (-576) (-887) (-576))) (-15 -3844 ((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2840 (-576)) (|:| -3174 (-576)) (|:| |spline| (-576)) (|:| -2181 (-576)) (|:| |axesColor| (-887)) (|:| -3479 (-576)) (|:| |unitsColor| (-887)) (|:| |showing| (-576)))) $)) (-15 -1486 ((-1287 (-3 (-480) "undefined")) $)) (-15 -3750 ((-1292) $ (-1178))) (-15 -1803 ((-1292) $ (-480) (-939))) (-15 -1479 ((-480) $ (-939))) (-15 -2181 ((-1292) $ (-939) (-1178))) (-15 -2181 ((-1292) $ (-939) (-887))) (-15 -3479 ((-1292) $ (-939) (-1178))) (-15 -3479 ((-1292) $ (-939) (-887))) (-15 -2840 ((-1292) $ (-939) (-1178))) (-15 -3369 ((-1292) $ (-939) (-1178))) (-15 -3174 ((-1292) $ (-939) (-1178))) (-15 -2606 ((-1292) $ (-1178))) (-15 -1595 ((-1292) $)) (-15 -3033 ((-1292) $ (-783) (-783) (-939) (-939))) (-15 -2664 ((-1292) $ (-939) (-390) (-390))) (-15 -3817 ((-1292) $ (-939) (-390) (-390))) (-15 -3809 ((-1292) $ (-939) (-1178))) (-15 -3294 ((-1292) $ (-783) (-783))) (-15 -3475 ((-1292) $ (-480) (-939))) (-15 -4337 ((-1292) $ (-939) (-939))) (-15 -2537 ((-1178) $ (-1178))) (-15 -2537 ((-1178) $ (-1178) (-1178))) (-15 -2537 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2513 ((-1292) $)) (-15 -2239 ((-576) $)) (-15 -4112 ((-875) $)))) -((-1952 (((-112) $ $) NIL)) (-4348 (((-1292) $ (-390)) 169) (((-1292) $ (-390) (-390) (-390)) 170)) (-2537 (((-1178) $ (-1178)) 179) (((-1178) $ (-1178) (-1178)) 177) (((-1178) $ (-1178) (-656 (-1178))) 176)) (-3620 (($) 67)) (-2509 (((-1292) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1292) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1292) $ (-390) (-390)) 145) (((-1292) $ (-390) (-390) (-390)) 152)) (-4067 (((-390)) 122) (((-390) (-390)) 123)) (-2629 (((-390)) 117) (((-390) (-390)) 119)) (-2760 (((-390)) 120) (((-390) (-390)) 121)) (-1487 (((-390)) 126) (((-390) (-390)) 127)) (-2997 (((-390)) 124) (((-390) (-390)) 125)) (-3817 (((-1292) $ (-390) (-390)) 171)) (-3750 (((-1292) $ (-1178)) 153)) (-4380 (((-1153 (-227)) $) 68) (($ $ (-1153 (-227))) 69)) (-4172 (((-1292) $ (-1178)) 187)) (-2451 (((-1292) $ (-1178)) 188)) (-1870 (((-1292) $ (-390) (-390)) 151) (((-1292) $ (-576) (-576)) 168)) (-4337 (((-1292) $ (-939) (-939)) 160)) (-2513 (((-1292) $) 137)) (-2919 (((-1292) $ (-1178)) 186)) (-1484 (((-1292) $ (-1178)) 134)) (-1502 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-3294 (((-1292) $ (-783) (-783)) 159)) (-4234 (((-1292) $ (-783) (-961 (-227))) 193)) (-2677 (($ $) 73) (($ (-1153 (-227)) (-1178)) 74) (($ (-1153 (-227)) (-656 (-270))) 75)) (-2241 (((-1292) $ (-390) (-390) (-390)) 131)) (-2043 (((-1178) $) NIL)) (-2239 (((-576) $) 128)) (-2605 (((-1292) $ (-390)) 174)) (-3660 (((-1292) $ (-390)) 191)) (-3115 (((-1140) $) NIL)) (-1624 (((-1292) $ (-390)) 190)) (-2094 (((-1292) $ (-1178)) 136)) (-3033 (((-1292) $ (-783) (-783) (-939) (-939)) 158)) (-3300 (((-1292) $ (-1178)) 133)) (-2606 (((-1292) $ (-1178)) 135)) (-4287 (((-1292) $ (-158) (-158)) 157)) (-4112 (((-875) $) 166)) (-1595 (((-1292) $) 138)) (-2611 (((-1292) $ (-1178)) 189)) (-1994 (((-112) $ $) NIL)) (-2181 (((-1292) $ (-1178)) 132)) (-3938 (((-112) $ $) NIL))) -(((-1289) (-13 (-1120) (-10 -8 (-15 -2629 ((-390))) (-15 -2629 ((-390) (-390))) (-15 -2760 ((-390))) (-15 -2760 ((-390) (-390))) (-15 -4067 ((-390))) (-15 -4067 ((-390) (-390))) (-15 -2997 ((-390))) (-15 -2997 ((-390) (-390))) (-15 -1487 ((-390))) (-15 -1487 ((-390) (-390))) (-15 -3620 ($)) (-15 -2677 ($ $)) (-15 -2677 ($ (-1153 (-227)) (-1178))) (-15 -2677 ($ (-1153 (-227)) (-656 (-270)))) (-15 -4380 ((-1153 (-227)) $)) (-15 -4380 ($ $ (-1153 (-227)))) (-15 -4234 ((-1292) $ (-783) (-961 (-227)))) (-15 -1502 ((-656 (-270)) $)) (-15 -1502 ($ $ (-656 (-270)))) (-15 -3294 ((-1292) $ (-783) (-783))) (-15 -4337 ((-1292) $ (-939) (-939))) (-15 -3750 ((-1292) $ (-1178))) (-15 -3033 ((-1292) $ (-783) (-783) (-939) (-939))) (-15 -2509 ((-1292) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2509 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2509 ((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2509 ((-1292) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2509 ((-1292) $ (-390) (-390))) (-15 -2509 ((-1292) $ (-390) (-390) (-390))) (-15 -2606 ((-1292) $ (-1178))) (-15 -2181 ((-1292) $ (-1178))) (-15 -3300 ((-1292) $ (-1178))) (-15 -1484 ((-1292) $ (-1178))) (-15 -2094 ((-1292) $ (-1178))) (-15 -1870 ((-1292) $ (-390) (-390))) (-15 -1870 ((-1292) $ (-576) (-576))) (-15 -4348 ((-1292) $ (-390))) (-15 -4348 ((-1292) $ (-390) (-390) (-390))) (-15 -3817 ((-1292) $ (-390) (-390))) (-15 -2919 ((-1292) $ (-1178))) (-15 -1624 ((-1292) $ (-390))) (-15 -3660 ((-1292) $ (-390))) (-15 -4172 ((-1292) $ (-1178))) (-15 -2451 ((-1292) $ (-1178))) (-15 -2611 ((-1292) $ (-1178))) (-15 -2241 ((-1292) $ (-390) (-390) (-390))) (-15 -2605 ((-1292) $ (-390))) (-15 -2513 ((-1292) $)) (-15 -4287 ((-1292) $ (-158) (-158))) (-15 -2537 ((-1178) $ (-1178))) (-15 -2537 ((-1178) $ (-1178) (-1178))) (-15 -2537 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -1595 ((-1292) $)) (-15 -2239 ((-576) $))))) (T -1289)) -((-2629 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2760 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4067 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2997 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-1487 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-3620 (*1 *1) (-5 *1 (-1289))) (-2677 (*1 *1 *1) (-5 *1 (-1289))) (-2677 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-227))) (-5 *3 (-1178)) (-5 *1 (-1289)))) (-2677 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-1289)))) (-4380 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-1289)))) (-4234 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-961 (-227))) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-1502 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-3294 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4337 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3033 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2509 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1289)))) (-2509 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2509 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2509 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2509 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2606 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3300 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2094 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1870 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1870 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4348 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4348 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2919 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2451 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2611 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2241 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2605 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4287 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2537 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-2537 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-2537 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) -(-13 (-1120) (-10 -8 (-15 -2629 ((-390))) (-15 -2629 ((-390) (-390))) (-15 -2760 ((-390))) (-15 -2760 ((-390) (-390))) (-15 -4067 ((-390))) (-15 -4067 ((-390) (-390))) (-15 -2997 ((-390))) (-15 -2997 ((-390) (-390))) (-15 -1487 ((-390))) (-15 -1487 ((-390) (-390))) (-15 -3620 ($)) (-15 -2677 ($ $)) (-15 -2677 ($ (-1153 (-227)) (-1178))) (-15 -2677 ($ (-1153 (-227)) (-656 (-270)))) (-15 -4380 ((-1153 (-227)) $)) (-15 -4380 ($ $ (-1153 (-227)))) (-15 -4234 ((-1292) $ (-783) (-961 (-227)))) (-15 -1502 ((-656 (-270)) $)) (-15 -1502 ($ $ (-656 (-270)))) (-15 -3294 ((-1292) $ (-783) (-783))) (-15 -4337 ((-1292) $ (-939) (-939))) (-15 -3750 ((-1292) $ (-1178))) (-15 -3033 ((-1292) $ (-783) (-783) (-939) (-939))) (-15 -2509 ((-1292) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2509 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2509 ((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2509 ((-1292) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2509 ((-1292) $ (-390) (-390))) (-15 -2509 ((-1292) $ (-390) (-390) (-390))) (-15 -2606 ((-1292) $ (-1178))) (-15 -2181 ((-1292) $ (-1178))) (-15 -3300 ((-1292) $ (-1178))) (-15 -1484 ((-1292) $ (-1178))) (-15 -2094 ((-1292) $ (-1178))) (-15 -1870 ((-1292) $ (-390) (-390))) (-15 -1870 ((-1292) $ (-576) (-576))) (-15 -4348 ((-1292) $ (-390))) (-15 -4348 ((-1292) $ (-390) (-390) (-390))) (-15 -3817 ((-1292) $ (-390) (-390))) (-15 -2919 ((-1292) $ (-1178))) (-15 -1624 ((-1292) $ (-390))) (-15 -3660 ((-1292) $ (-390))) (-15 -4172 ((-1292) $ (-1178))) (-15 -2451 ((-1292) $ (-1178))) (-15 -2611 ((-1292) $ (-1178))) (-15 -2241 ((-1292) $ (-390) (-390) (-390))) (-15 -2605 ((-1292) $ (-390))) (-15 -2513 ((-1292) $)) (-15 -4287 ((-1292) $ (-158) (-158))) (-15 -2537 ((-1178) $ (-1178))) (-15 -2537 ((-1178) $ (-1178) (-1178))) (-15 -2537 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -1595 ((-1292) $)) (-15 -2239 ((-576) $)))) -((-2364 (((-656 (-1178)) (-656 (-1178))) 104) (((-656 (-1178))) 96)) (-3218 (((-656 (-1178))) 94)) (-3099 (((-656 (-939)) (-656 (-939))) 69) (((-656 (-939))) 64)) (-2853 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-1628 (((-1292)) 71)) (-1583 (((-939) (-939)) 87) (((-939)) 86)) (-3483 (((-939) (-939)) 85) (((-939)) 84)) (-3916 (((-887) (-887)) 81) (((-887)) 80)) (-1649 (((-227)) 91) (((-227) (-390)) 93)) (-1477 (((-939)) 88) (((-939) (-939)) 89)) (-2062 (((-939) (-939)) 83) (((-939)) 82)) (-1854 (((-887) (-887)) 75) (((-887)) 73)) (-3617 (((-887) (-887)) 77) (((-887)) 76)) (-3251 (((-887) (-887)) 79) (((-887)) 78))) -(((-1290) (-10 -7 (-15 -1854 ((-887))) (-15 -1854 ((-887) (-887))) (-15 -3617 ((-887))) (-15 -3617 ((-887) (-887))) (-15 -3251 ((-887))) (-15 -3251 ((-887) (-887))) (-15 -3916 ((-887))) (-15 -3916 ((-887) (-887))) (-15 -2062 ((-939))) (-15 -2062 ((-939) (-939))) (-15 -2853 ((-656 (-783)))) (-15 -2853 ((-656 (-783)) (-656 (-783)))) (-15 -3099 ((-656 (-939)))) (-15 -3099 ((-656 (-939)) (-656 (-939)))) (-15 -1628 ((-1292))) (-15 -2364 ((-656 (-1178)))) (-15 -2364 ((-656 (-1178)) (-656 (-1178)))) (-15 -3218 ((-656 (-1178)))) (-15 -3483 ((-939))) (-15 -1583 ((-939))) (-15 -3483 ((-939) (-939))) (-15 -1583 ((-939) (-939))) (-15 -1477 ((-939) (-939))) (-15 -1477 ((-939))) (-15 -1649 ((-227) (-390))) (-15 -1649 ((-227))))) (T -1290)) -((-1649 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1290)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1290)))) (-1477 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-1583 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-3483 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-3218 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-2364 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-1628 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1290)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1290)))) (-3099 (*1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1290)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) (-2853 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-2062 (*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-3916 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-3251 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-3617 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) (-1854 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290))))) -(-10 -7 (-15 -1854 ((-887))) (-15 -1854 ((-887) (-887))) (-15 -3617 ((-887))) (-15 -3617 ((-887) (-887))) (-15 -3251 ((-887))) (-15 -3251 ((-887) (-887))) (-15 -3916 ((-887))) (-15 -3916 ((-887) (-887))) (-15 -2062 ((-939))) (-15 -2062 ((-939) (-939))) (-15 -2853 ((-656 (-783)))) (-15 -2853 ((-656 (-783)) (-656 (-783)))) (-15 -3099 ((-656 (-939)))) (-15 -3099 ((-656 (-939)) (-656 (-939)))) (-15 -1628 ((-1292))) (-15 -2364 ((-656 (-1178)))) (-15 -2364 ((-656 (-1178)) (-656 (-1178)))) (-15 -3218 ((-656 (-1178)))) (-15 -3483 ((-939))) (-15 -1583 ((-939))) (-15 -3483 ((-939) (-939))) (-15 -1583 ((-939) (-939))) (-15 -1477 ((-939) (-939))) (-15 -1477 ((-939))) (-15 -1649 ((-227) (-390))) (-15 -1649 ((-227)))) -((-4295 (((-480) (-656 (-656 (-961 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-961 (-227))))) 21) (((-480) (-656 (-656 (-961 (-227)))) (-887) (-887) (-939) (-656 (-270))) 20)) (-4443 (((-1288) (-656 (-656 (-961 (-227)))) (-656 (-270))) 30) (((-1288) (-656 (-656 (-961 (-227)))) (-887) (-887) (-939) (-656 (-270))) 29)) (-4112 (((-1288) (-480)) 46))) -(((-1291) (-10 -7 (-15 -4295 ((-480) (-656 (-656 (-961 (-227)))) (-887) (-887) (-939) (-656 (-270)))) (-15 -4295 ((-480) (-656 (-656 (-961 (-227)))))) (-15 -4295 ((-480) (-656 (-656 (-961 (-227)))) (-656 (-270)))) (-15 -4443 ((-1288) (-656 (-656 (-961 (-227)))) (-887) (-887) (-939) (-656 (-270)))) (-15 -4443 ((-1288) (-656 (-656 (-961 (-227)))) (-656 (-270)))) (-15 -4112 ((-1288) (-480))))) (T -1291)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-4443 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-4443 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-887)) (-5 *5 (-939)) (-5 *6 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291)))) (-4295 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *2 (-480)) (-5 *1 (-1291)))) (-4295 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-887)) (-5 *5 (-939)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291))))) -(-10 -7 (-15 -4295 ((-480) (-656 (-656 (-961 (-227)))) (-887) (-887) (-939) (-656 (-270)))) (-15 -4295 ((-480) (-656 (-656 (-961 (-227)))))) (-15 -4295 ((-480) (-656 (-656 (-961 (-227)))) (-656 (-270)))) (-15 -4443 ((-1288) (-656 (-656 (-961 (-227)))) (-887) (-887) (-939) (-656 (-270)))) (-15 -4443 ((-1288) (-656 (-656 (-961 (-227)))) (-656 (-270)))) (-15 -4112 ((-1288) (-480)))) -((-2434 (($) 6)) (-4112 (((-875) $) 9))) -(((-1292) (-13 (-625 (-875)) (-10 -8 (-15 -2434 ($))))) (T -1292)) -((-2434 (*1 *1) (-5 *1 (-1292)))) -(-13 (-625 (-875)) (-10 -8 (-15 -2434 ($)))) -((-4046 (($ $ |#2|) 10))) -(((-1293 |#1| |#2|) (-10 -8 (-15 -4046 (|#1| |#1| |#2|))) (-1294 |#2|) (-374)) (T -1293)) -NIL -(-10 -8 (-15 -4046 (|#1| |#1| |#2|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1656 (((-135)) 33)) (-4112 (((-875) $) 12)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-3938 (((-112) $ $) 8)) (-4046 (($ $ |#1|) 34)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1294 |#1|) (-141) (-374)) (T -1294)) -((-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-374)))) (-1656 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(-13 (-729 |t#1|) (-10 -8 (-15 -4046 ($ $ |t#1|)) (-15 -1656 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1120) . T) ((-1237) . T)) -((-2645 (((-656 (-1231 |#1|)) (-1196) (-1231 |#1|)) 83)) (-3437 (((-1177 (-1177 (-970 |#1|))) (-1196) (-1177 (-970 |#1|))) 63)) (-3153 (((-1 (-1177 (-1231 |#1|)) (-1177 (-1231 |#1|))) (-783) (-1231 |#1|) (-1177 (-1231 |#1|))) 74)) (-2368 (((-1 (-1177 (-970 |#1|)) (-1177 (-970 |#1|))) (-783)) 65)) (-2788 (((-1 (-1192 (-970 |#1|)) (-970 |#1|)) (-1196)) 32)) (-4390 (((-1 (-1177 (-970 |#1|)) (-1177 (-970 |#1|))) (-783)) 64))) -(((-1295 |#1|) (-10 -7 (-15 -2368 ((-1 (-1177 (-970 |#1|)) (-1177 (-970 |#1|))) (-783))) (-15 -4390 ((-1 (-1177 (-970 |#1|)) (-1177 (-970 |#1|))) (-783))) (-15 -3437 ((-1177 (-1177 (-970 |#1|))) (-1196) (-1177 (-970 |#1|)))) (-15 -2788 ((-1 (-1192 (-970 |#1|)) (-970 |#1|)) (-1196))) (-15 -2645 ((-656 (-1231 |#1|)) (-1196) (-1231 |#1|))) (-15 -3153 ((-1 (-1177 (-1231 |#1|)) (-1177 (-1231 |#1|))) (-783) (-1231 |#1|) (-1177 (-1231 |#1|))))) (-374)) (T -1295)) -((-3153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1231 *6)) (-5 *2 (-1 (-1177 *4) (-1177 *4))) (-5 *1 (-1295 *6)) (-5 *5 (-1177 *4)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-656 (-1231 *5))) (-5 *1 (-1295 *5)) (-5 *4 (-1231 *5)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1192 (-970 *4)) (-970 *4))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-1177 (-1177 (-970 *5)))) (-5 *1 (-1295 *5)) (-5 *4 (-1177 (-970 *5))))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1177 (-970 *4)) (-1177 (-970 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1177 (-970 *4)) (-1177 (-970 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(-10 -7 (-15 -2368 ((-1 (-1177 (-970 |#1|)) (-1177 (-970 |#1|))) (-783))) (-15 -4390 ((-1 (-1177 (-970 |#1|)) (-1177 (-970 |#1|))) (-783))) (-15 -3437 ((-1177 (-1177 (-970 |#1|))) (-1196) (-1177 (-970 |#1|)))) (-15 -2788 ((-1 (-1192 (-970 |#1|)) (-970 |#1|)) (-1196))) (-15 -2645 ((-656 (-1231 |#1|)) (-1196) (-1231 |#1|))) (-15 -3153 ((-1 (-1177 (-1231 |#1|)) (-1177 (-1231 |#1|))) (-783) (-1231 |#1|) (-1177 (-1231 |#1|))))) -((-2282 (((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-1527 (((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) -(((-1296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1527 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2282 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1263 |#1|) (-1263 |#2|) (-421 |#2| |#3|)) (T -1296)) -((-2282 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-1527 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -3578 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(-10 -7 (-15 -1527 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2282 ((-2 (|:| -3578 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) -((-1952 (((-112) $ $) NIL)) (-3002 (((-1155) $) 11)) (-3577 (((-1155) $) 9)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1297) (-13 (-1103) (-10 -8 (-15 -3577 ((-1155) $)) (-15 -3002 ((-1155) $))))) (T -1297)) -((-3577 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1297)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1297))))) -(-13 (-1103) (-10 -8 (-15 -3577 ((-1155) $)) (-15 -3002 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3270 (((-1155) $) 9)) (-4112 (((-875) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) NIL))) -(((-1298) (-13 (-1103) (-10 -8 (-15 -3270 ((-1155) $))))) (T -1298)) -((-3270 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1298))))) -(-13 (-1103) (-10 -8 (-15 -3270 ((-1155) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 58)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) NIL)) (-2287 (((-112) $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-4115 (((-783)) NIL T CONST)) (-2603 (((-1292) (-783)) 16)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 37 T CONST)) (-4320 (($) 84 T CONST)) (-3938 (((-112) $ $) 87)) (-4046 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4036 (($ $) 89) (($ $ $) NIL)) (-4026 (($ $ $) 63)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1299 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1069) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4046 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2603 ((-1292) (-783))))) (-1069) (-861) (-805) (-967 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1299)) -((-4046 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1069)) (-4 *3 (-861)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-967 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1069)) (-4 *5 (-861)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1292)) (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-967 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) -(-13 (-1069) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4046 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2603 ((-1292) (-783))))) -((-1952 (((-112) $ $) NIL)) (-4367 (((-656 (-2 (|:| -1595 $) (|:| -3822 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2822 (((-656 $) (-656 |#4|)) 96)) (-1582 (((-656 |#3|) $) NIL)) (-2397 (((-112) $) NIL)) (-2083 (((-112) $) NIL (|has| |#1| (-568)))) (-3402 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-2379 (((-2 (|:| |under| $) (|:| -2804 $) (|:| |upper| $)) $ |#3|) NIL)) (-2337 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4331 (($) NIL T CONST)) (-4013 (((-112) $) NIL (|has| |#1| (-568)))) (-1938 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3142 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2948 (((-112) $) NIL (|has| |#1| (-568)))) (-4294 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3223 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-4322 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2980 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1762 (((-3 $ "failed") $) 78)) (-3182 ((|#4| |#4| $) 83)) (-3966 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-2824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2960 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2876 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3325 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4463))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4463))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1999 (((-2 (|:| -1595 (-656 |#4|)) (|:| -3822 (-656 |#4|))) $) NIL)) (-3721 (((-656 |#4|) $) NIL (|has| $ (-6 -4463)))) (-2171 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2232 ((|#3| $) 84)) (-2135 (((-112) $ (-783)) NIL)) (-3958 (((-656 |#4|) $) 32 (|has| $ (-6 -4463)))) (-4217 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120))))) (-3084 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-1896 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4464)))) (-2422 (($ (-1 |#4| |#4|) $) NIL)) (-3055 (((-656 |#3|) $) NIL)) (-2421 (((-112) |#3| $) NIL)) (-1556 (((-112) $ (-783)) NIL)) (-2043 (((-1178) $) NIL)) (-2849 (((-3 |#4| "failed") $) NIL)) (-2403 (((-656 |#4|) $) 54)) (-2498 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1619 ((|#4| |#4| $) 82)) (-1761 (((-112) $ $) 93)) (-4181 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3268 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3609 ((|#4| |#4| $) NIL)) (-3115 (((-1140) $) NIL)) (-1753 (((-3 |#4| "failed") $) 77)) (-2022 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2917 (((-3 $ "failed") $ |#4|) NIL)) (-3679 (($ $ |#4|) NIL)) (-3587 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-2143 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1120))))) (-1551 (((-112) $ $) NIL)) (-1937 (((-112) $) 75)) (-3935 (($) 46)) (-1877 (((-783) $) NIL)) (-3125 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#4| (-1120)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4286 (($ $) NIL)) (-1554 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4124 (($ (-656 |#4|)) NIL)) (-3655 (($ $ |#3|) NIL)) (-3837 (($ $ |#3|) NIL)) (-1864 (($ $) NIL)) (-1570 (($ $ |#3|) NIL)) (-4112 (((-875) $) NIL) (((-656 |#4|) $) 63)) (-2576 (((-783) $) NIL (|has| |#3| (-379)))) (-2032 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-2514 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-1994 (((-112) $ $) NIL)) (-2350 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3877 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1682 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4463)))) (-4365 (((-656 |#3|) $) NIL)) (-3331 (((-112) |#3| $) NIL)) (-3938 (((-112) $ $) NIL)) (-1968 (((-783) $) NIL (|has| $ (-6 -4463))))) -(((-1300 |#1| |#2| |#3| |#4|) (-13 (-1230 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3084 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3084 ((-3 $ "failed") (-656 |#4|))) (-15 -2032 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2032 ((-3 $ "failed") (-656 |#4|))) (-15 -2514 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2514 ((-656 $) (-656 |#4|))))) (-568) (-805) (-861) (-1085 |#1| |#2| |#3|)) (T -1300)) -((-3084 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-3084 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-2032 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-2032 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1300 *6 *7 *8 *9))) (-5 *1 (-1300 *6 *7 *8 *9)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1300 *4 *5 *6 *7))) (-5 *1 (-1300 *4 *5 *6 *7))))) -(-13 (-1230 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3084 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3084 ((-3 $ "failed") (-656 |#4|))) (-15 -2032 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2032 ((-3 $ "failed") (-656 |#4|))) (-15 -2514 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2514 ((-656 $) (-656 |#4|))))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-2559 (((-3 $ "failed") $ $) 20)) (-4331 (($) 18 T CONST)) (-3900 (((-3 $ "failed") $) 37)) (-2287 (((-112) $) 35)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1301 |#1|) (-141) (-1069)) (T -1301)) -NIL -(-13 (-1069) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T)) -((-1952 (((-112) $ $) 67)) (-3167 (((-112) $) NIL)) (-1417 (((-656 |#1|) $) 52)) (-2725 (($ $ (-783)) 46)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2136 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-4331 (($) NIL T CONST)) (-4226 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-2980 (((-3 (-831 |#1|) "failed") $) NIL)) (-2317 (((-831 |#1|) $) NIL)) (-3309 (($ $) 39)) (-3900 (((-3 $ "failed") $) NIL)) (-3748 (((-112) $) NIL)) (-4001 (($ $) NIL)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1617 (($ (-831 |#1|) |#2|) 38)) (-3848 (($ $) 40)) (-3178 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-3940 (((-831 |#1|) $) NIL)) (-3256 (((-831 |#1|) $) 41)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-3052 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-3544 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1698 (((-831 |#1|) $) 35)) (-1709 ((|#2| $) 37)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1877 (((-783) $) 43)) (-1744 (((-112) $) 47)) (-2665 ((|#2| $) NIL)) (-4112 (((-875) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-831 |#1|)) NIL)) (-2861 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 13 T CONST)) (-4320 (($) 19 T CONST)) (-2883 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3938 (((-112) $ $) 44)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-939)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1302 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1308 |#1| |#2|)) (-861) (-1069)) (T -1302)) -NIL -(-13 (-393 |#2| (-831 |#1|)) (-1308 |#1| |#2|)) -((-2607 ((|#3| |#3| (-783)) 28)) (-2155 ((|#3| |#3| (-783)) 34)) (-1663 ((|#3| |#3| |#3| (-783)) 35))) -(((-1303 |#1| |#2| |#3|) (-10 -7 (-15 -2155 (|#3| |#3| (-783))) (-15 -2607 (|#3| |#3| (-783))) (-15 -1663 (|#3| |#3| |#3| (-783)))) (-13 (-1069) (-729 (-419 (-576)))) (-861) (-1308 |#2| |#1|)) (T -1303)) -((-1663 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1069) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) (-2607 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1069) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) (-2155 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1069) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4))))) -(-10 -7 (-15 -2155 (|#3| |#3| (-783))) (-15 -2607 (|#3| |#3| (-783))) (-15 -1663 (|#3| |#3| |#3| (-783)))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1417 (((-656 |#1|) $) 47)) (-2559 (((-3 $ "failed") $ $) 20)) (-2136 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-4331 (($) 18 T CONST)) (-4226 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2980 (((-3 (-831 |#1|) "failed") $) 71)) (-2317 (((-831 |#1|) $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-3748 (((-112) $) 52)) (-4001 (($ $) 51)) (-2287 (((-112) $) 35)) (-3146 (((-112) $) 57)) (-1617 (($ (-831 |#1|) |#2|) 58)) (-3848 (($ $) 56)) (-3178 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3940 (((-831 |#1|) $) 68)) (-2422 (($ (-1 |#2| |#2|) $) 48)) (-3052 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1744 (((-112) $) 54)) (-2665 ((|#2| $) 53)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-2861 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1304 |#1| |#2|) (-141) (-861) (-1069)) (T -1304)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1069)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-831 *3)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-2861 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1304 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1069)))) (-2861 (*1 *2 *1 *1) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1069)))) (-3052 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)))) (-3052 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-4226 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)))) (-4226 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-1617 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1304 *4 *3)) (-4 *3 (-1069)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-112)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-4112 (*1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-112)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1069)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-112)))) (-4001 (*1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) (-2136 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)) (-4 *3 (-174)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-4 *4 (-174)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-656 *3))))) -(-13 (-1069) (-1301 |t#2|) (-1058 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3940 ((-831 |t#1|) $)) (-15 -3178 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2861 (|t#2| $ (-831 |t#1|))) (-15 -2861 (|t#2| $ $)) (-15 -3052 ($ $ |t#1|)) (-15 -3052 ($ $ (-831 |t#1|))) (-15 -3052 ($ $ $)) (-15 -4226 ($ $ |t#1|)) (-15 -4226 ($ $ (-831 |t#1|))) (-15 -4226 ($ $ $)) (-15 -1617 ($ (-831 |t#1|) |t#2|)) (-15 -3146 ((-112) $)) (-15 -3848 ($ $)) (-15 -4112 ($ |t#1|)) (-15 -1744 ((-112) $)) (-15 -2665 (|t#2| $)) (-15 -3748 ((-112) $)) (-15 -4001 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2136 ($ $ $)) (-15 -2136 ($ $ (-783)))) |%noBranch|) (-15 -2422 ($ (-1 |t#2| |t#2|) $)) (-15 -1417 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4456)) (-6 -4456) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1058 #0#) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1301 |#2|) . T)) -((-2391 (((-112) $) 15)) (-3331 (((-112) $) 14)) (-2269 (($ $) 19) (($ $ (-783)) 21))) -(((-1305 |#1| |#2|) (-10 -8 (-15 -2269 (|#1| |#1| (-783))) (-15 -2269 (|#1| |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -3331 ((-112) |#1|))) (-1306 |#2|) (-374)) (T -1305)) -NIL -(-10 -8 (-15 -2269 (|#1| |#1| (-783))) (-15 -2269 (|#1| |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -3331 ((-112) |#1|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1887 (((-2 (|:| -4288 $) (|:| -4450 $) (|:| |associate| $)) $) 47)) (-4070 (($ $) 46)) (-2378 (((-112) $) 44)) (-2391 (((-112) $) 104)) (-4186 (((-783)) 100)) (-2559 (((-3 $ "failed") $ $) 20)) (-3575 (($ $) 81)) (-3163 (((-430 $) $) 80)) (-4057 (((-112) $ $) 65)) (-4331 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 111)) (-2317 ((|#1| $) 112)) (-1893 (($ $ $) 61)) (-3900 (((-3 $ "failed") $) 37)) (-1903 (($ $ $) 62)) (-3086 (((-2 (|:| -2861 (-656 $)) (|:| -2547 $)) (-656 $)) 57)) (-3878 (($ $ (-783)) 97 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2443 (((-112) $) 79)) (-3241 (((-845 (-939)) $) 94 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2287 (((-112) $) 35)) (-2477 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3075 (($ $ $) 52) (($ (-656 $)) 51)) (-2043 (((-1178) $) 10)) (-1667 (($ $) 78)) (-3274 (((-112) $) 103)) (-3115 (((-1140) $) 11)) (-3465 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3114 (($ $ $) 54) (($ (-656 $)) 53)) (-1450 (((-430 $) $) 82)) (-4416 (((-845 (-939))) 101)) (-4241 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2547 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1943 (((-3 $ "failed") $ $) 48)) (-3871 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2026 (((-783) $) 64)) (-4293 (((-2 (|:| -4299 $) (|:| -2960 $)) $ $) 63)) (-3334 (((-3 (-783) "failed") $ $) 95 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1656 (((-135)) 109)) (-1877 (((-845 (-939)) $) 102)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-1972 (((-3 $ "failed") $) 93 (-3794 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-3111 (((-112) $ $) 45)) (-3331 (((-112) $) 105)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-2269 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3938 (((-112) $ $) 8)) (-4046 (($ $ $) 73) (($ $ |#1|) 108)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1306 |#1|) (-141) (-374)) (T -1306)) -((-3331 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-939))))) (-4416 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-939))))) (-4186 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-2269 (*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-2269 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) -(-13 (-374) (-1058 |t#1|) (-1294 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -3331 ((-112) $)) (-15 -2391 ((-112) $)) (-15 -3274 ((-112) $)) (-15 -1877 ((-845 (-939)) $)) (-15 -4416 ((-845 (-939)))) (-15 -4186 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -2269 ($ $)) (-15 -2269 ($ $ (-783)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3794 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-875)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -3794 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-938) . T) ((-1058 |#1|) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1241) . T) ((-1294 |#1|) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1417 (((-656 |#1|) $) 98)) (-2725 (($ $ (-783)) 102)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2136 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-4331 (($) NIL T CONST)) (-4226 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2980 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-907 |#1|) "failed") $) NIL)) (-2317 (((-831 |#1|) $) NIL) (((-907 |#1|) $) NIL)) (-3309 (($ $) 101)) (-3900 (((-3 $ "failed") $) NIL)) (-3748 (((-112) $) 90)) (-4001 (($ $) 93)) (-4191 (($ $ $ (-783)) 103)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1617 (($ (-831 |#1|) |#2|) NIL) (($ (-907 |#1|) |#2|) 29)) (-3848 (($ $) 119)) (-3178 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3940 (((-831 |#1|) $) NIL)) (-3256 (((-831 |#1|) $) NIL)) (-2422 (($ (-1 |#2| |#2|) $) NIL)) (-3052 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2607 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-3544 (((-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1698 (((-907 |#1|) $) 83)) (-1709 ((|#2| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-2155 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-1877 (((-783) $) 99)) (-1744 (((-112) $) 84)) (-2665 ((|#2| $) 88)) (-4112 (((-875) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-907 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1302 |#1| |#2|) $) 76) (((-1311 |#1| |#2|) $) 81)) (-1410 (((-656 |#2|) $) NIL)) (-4269 ((|#2| $ (-907 |#1|)) NIL)) (-2861 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 21 T CONST)) (-4320 (($) 28 T CONST)) (-2883 (((-656 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1427 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-3938 (((-112) $ $) 77)) (-4036 (($ $) 111) (($ $ $) 110)) (-4026 (($ $ $) 20)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-907 |#1|)) NIL))) -(((-1307 |#1| |#2|) (-13 (-1308 |#1| |#2|) (-393 |#2| (-907 |#1|)) (-10 -8 (-15 -4112 ($ (-676 |#1| |#2|))) (-15 -4112 ((-1302 |#1| |#2|) $)) (-15 -4112 ((-1311 |#1| |#2|) $)) (-15 -1427 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -4191 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2155 ($ $ (-783))) (-15 -2607 ($ $ (-783)))) |%noBranch|))) (-861) (-174)) (T -1307)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1307 *3 *4)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1427 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4191 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(-13 (-1308 |#1| |#2|) (-393 |#2| (-907 |#1|)) (-10 -8 (-15 -4112 ($ (-676 |#1| |#2|))) (-15 -4112 ((-1302 |#1| |#2|) $)) (-15 -4112 ((-1311 |#1| |#2|) $)) (-15 -1427 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -4191 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2155 ($ $ (-783))) (-15 -2607 ($ $ (-783)))) |%noBranch|))) -((-1952 (((-112) $ $) 7)) (-3167 (((-112) $) 17)) (-1417 (((-656 |#1|) $) 47)) (-2725 (($ $ (-783)) 80)) (-2559 (((-3 $ "failed") $ $) 20)) (-2136 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-4331 (($) 18 T CONST)) (-4226 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2980 (((-3 (-831 |#1|) "failed") $) 71)) (-2317 (((-831 |#1|) $) 72)) (-3900 (((-3 $ "failed") $) 37)) (-3748 (((-112) $) 52)) (-4001 (($ $) 51)) (-2287 (((-112) $) 35)) (-3146 (((-112) $) 57)) (-1617 (($ (-831 |#1|) |#2|) 58)) (-3848 (($ $) 56)) (-3178 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3940 (((-831 |#1|) $) 68)) (-3256 (((-831 |#1|) $) 82)) (-2422 (($ (-1 |#2| |#2|) $) 48)) (-3052 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2043 (((-1178) $) 10)) (-3115 (((-1140) $) 11)) (-1877 (((-783) $) 81)) (-1744 (((-112) $) 54)) (-2665 ((|#2| $) 53)) (-4112 (((-875) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-2861 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-4115 (((-783)) 32 T CONST)) (-1994 (((-112) $ $) 6)) (-4314 (($) 19 T CONST)) (-4320 (($) 34 T CONST)) (-3938 (((-112) $ $) 8)) (-4036 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-939)) 28) (($ $ (-783)) 36)) (* (($ (-939) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1308 |#1| |#2|) (-141) (-861) (-1069)) (T -1308)) -((-3256 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-831 *3)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *2 (-783)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069))))) -(-13 (-1304 |t#1| |t#2|) (-10 -8 (-15 -3256 ((-831 |t#1|) $)) (-15 -1877 ((-783) $)) (-15 -2725 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-875)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1058 #0#) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1069) . T) ((-1078) . T) ((-1132) . T) ((-1120) . T) ((-1237) . T) ((-1301 |#2|) . T) ((-1304 |#1| |#2|) . T)) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-1417 (((-656 (-1196)) $) NIL)) (-1418 (($ (-1302 (-1196) |#1|)) NIL)) (-2725 (($ $ (-783)) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2136 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-4331 (($) NIL T CONST)) (-4226 (($ $ (-1196)) NIL) (($ $ (-831 (-1196))) NIL) (($ $ $) NIL)) (-2980 (((-3 (-831 (-1196)) "failed") $) NIL)) (-2317 (((-831 (-1196)) $) NIL)) (-3900 (((-3 $ "failed") $) NIL)) (-3748 (((-112) $) NIL)) (-4001 (($ $) NIL)) (-2287 (((-112) $) NIL)) (-3146 (((-112) $) NIL)) (-1617 (($ (-831 (-1196)) |#1|) NIL)) (-3848 (($ $) NIL)) (-3178 (((-2 (|:| |k| (-831 (-1196))) (|:| |c| |#1|)) $) NIL)) (-3940 (((-831 (-1196)) $) NIL)) (-3256 (((-831 (-1196)) $) NIL)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3052 (($ $ (-1196)) NIL) (($ $ (-831 (-1196))) NIL) (($ $ $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3564 (((-1302 (-1196) |#1|) $) NIL)) (-1877 (((-783) $) NIL)) (-1744 (((-112) $) NIL)) (-2665 ((|#1| $) NIL)) (-4112 (((-875) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1196))) NIL) (($ (-1196)) NIL)) (-2861 ((|#1| $ (-831 (-1196))) NIL) ((|#1| $ $) NIL)) (-4115 (((-783)) NIL T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) NIL T CONST)) (-4240 (((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $) NIL)) (-4320 (($) NIL T CONST)) (-3938 (((-112) $ $) NIL)) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-939)) NIL) (($ $ (-783)) NIL)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1196) $) NIL))) -(((-1309 |#1|) (-13 (-1308 (-1196) |#1|) (-10 -8 (-15 -3564 ((-1302 (-1196) |#1|) $)) (-15 -1418 ($ (-1302 (-1196) |#1|))) (-15 -4240 ((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $)))) (-1069)) (T -1309)) -((-3564 (*1 *2 *1) (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1069)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1069)) (-5 *1 (-1309 *3)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1196)) (|:| |c| (-1309 *3))))) (-5 *1 (-1309 *3)) (-4 *3 (-1069))))) -(-13 (-1308 (-1196) |#1|) (-10 -8 (-15 -3564 ((-1302 (-1196) |#1|) $)) (-15 -1418 ($ (-1302 (-1196) |#1|))) (-15 -4240 ((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $)))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) NIL)) (-2559 (((-3 $ "failed") $ $) NIL)) (-4331 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL)) (-2317 ((|#2| $) NIL)) (-3309 (($ $) NIL)) (-3900 (((-3 $ "failed") $) 42)) (-3748 (((-112) $) 35)) (-4001 (($ $) 37)) (-2287 (((-112) $) NIL)) (-1757 (((-783) $) NIL)) (-1894 (((-656 $) $) NIL)) (-3146 (((-112) $) NIL)) (-1617 (($ |#2| |#1|) NIL)) (-3940 ((|#2| $) 24)) (-3256 ((|#2| $) 22)) (-2422 (($ (-1 |#1| |#1|) $) NIL)) (-3544 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1698 ((|#2| $) NIL)) (-1709 ((|#1| $) NIL)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-1744 (((-112) $) 32)) (-2665 ((|#1| $) 33)) (-4112 (((-875) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1410 (((-656 |#1|) $) NIL)) (-4269 ((|#1| $ |#2|) NIL)) (-2861 ((|#1| $ |#2|) 28)) (-4115 (((-783)) 14 T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 29 T CONST)) (-4320 (($) 11 T CONST)) (-2883 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3938 (((-112) $ $) 30)) (-4046 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-4036 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 50)) (** (($ $ (-939)) NIL) (($ $ (-783)) 52)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1968 (((-783) $) 16))) -(((-1310 |#1| |#2|) (-13 (-1069) (-1301 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1968 ((-783) $)) (-15 -3256 (|#2| $)) (-15 -3940 (|#2| $)) (-15 -3309 ($ $)) (-15 -2861 (|#1| $ |#2|)) (-15 -1744 ((-112) $)) (-15 -2665 (|#1| $)) (-15 -3748 ((-112) $)) (-15 -4001 ($ $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4046 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|))) (-1069) (-858)) (T -1310)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858)))) (-3309 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-1310 *3 *4)) (-4 *4 (-858)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858)))) (-3256 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1069)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1069)))) (-2861 (*1 *2 *1 *3) (-12 (-4 *2 (-1069)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858)))) (-2665 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1069)) (-4 *3 (-858))))) -(-13 (-1069) (-1301 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1968 ((-783) $)) (-15 -3256 (|#2| $)) (-15 -3940 (|#2| $)) (-15 -3309 ($ $)) (-15 -2861 (|#1| $ |#2|)) (-15 -1744 ((-112) $)) (-15 -2665 (|#1| $)) (-15 -3748 ((-112) $)) (-15 -4001 ($ $)) (-15 -2422 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4046 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|))) -((-1952 (((-112) $ $) 27)) (-3167 (((-112) $) NIL)) (-1417 (((-656 |#1|) $) 132)) (-1418 (($ (-1302 |#1| |#2|)) 50)) (-2725 (($ $ (-783)) 38)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2136 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-4331 (($) NIL T CONST)) (-4226 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-2980 (((-3 (-831 |#1|) "failed") $) NIL)) (-2317 (((-831 |#1|) $) NIL)) (-3900 (((-3 $ "failed") $) 122)) (-3748 (((-112) $) 117)) (-4001 (($ $) 118)) (-2287 (((-112) $) NIL)) (-3146 (((-112) $) NIL)) (-1617 (($ (-831 |#1|) |#2|) 20)) (-3848 (($ $) NIL)) (-3178 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3940 (((-831 |#1|) $) 123)) (-3256 (((-831 |#1|) $) 126)) (-2422 (($ (-1 |#2| |#2|) $) 131)) (-3052 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-3564 (((-1302 |#1| |#2|) $) 94)) (-1877 (((-783) $) 129)) (-1744 (((-112) $) 81)) (-2665 ((|#2| $) 32)) (-4112 (((-875) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-2861 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-4115 (((-783)) 120 T CONST)) (-1994 (((-112) $ $) NIL)) (-4314 (($) 15 T CONST)) (-4240 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4320 (($) 33 T CONST)) (-3938 (((-112) $ $) 14)) (-4036 (($ $) 98) (($ $ $) 101)) (-4026 (($ $ $) 61)) (** (($ $ (-939)) NIL) (($ $ (-783)) 55)) (* (($ (-939) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1311 |#1| |#2|) (-13 (-1308 |#1| |#2|) (-10 -8 (-15 -3564 ((-1302 |#1| |#2|) $)) (-15 -1418 ($ (-1302 |#1| |#2|))) (-15 -4240 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1069)) (T -1311)) -((-3564 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) (-5 *1 (-1311 *3 *4)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) (-5 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069))))) -(-13 (-1308 |#1| |#2|) (-10 -8 (-15 -3564 ((-1302 |#1| |#2|) $)) (-15 -1418 ($ (-1302 |#1| |#2|))) (-15 -4240 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1952 (((-112) $ $) NIL)) (-3252 (($ (-656 (-939))) 10)) (-3797 (((-991) $) 12)) (-2043 (((-1178) $) NIL)) (-3115 (((-1140) $) NIL)) (-4112 (((-875) $) 25) (($ (-991)) 14) (((-991) $) 13)) (-1994 (((-112) $ $) NIL)) (-3938 (((-112) $ $) 17))) -(((-1312) (-13 (-1120) (-502 (-991)) (-10 -8 (-15 -3252 ($ (-656 (-939)))) (-15 -3797 ((-991) $))))) (T -1312)) -((-3252 (*1 *1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1312)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-1312))))) -(-13 (-1120) (-502 (-991)) (-10 -8 (-15 -3252 ($ (-656 (-939)))) (-15 -3797 ((-991) $)))) -((-1438 (((-656 (-1177 |#1|)) (-1 (-656 (-1177 |#1|)) (-656 (-1177 |#1|))) (-576)) 16) (((-1177 |#1|) (-1 (-1177 |#1|) (-1177 |#1|))) 13))) -(((-1313 |#1|) (-10 -7 (-15 -1438 ((-1177 |#1|) (-1 (-1177 |#1|) (-1177 |#1|)))) (-15 -1438 ((-656 (-1177 |#1|)) (-1 (-656 (-1177 |#1|)) (-656 (-1177 |#1|))) (-576)))) (-1237)) (T -1313)) -((-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1177 *5)) (-656 (-1177 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1177 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1237)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-1 (-1177 *4) (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1313 *4)) (-4 *4 (-1237))))) -(-10 -7 (-15 -1438 ((-1177 |#1|) (-1 (-1177 |#1|) (-1177 |#1|)))) (-15 -1438 ((-656 (-1177 |#1|)) (-1 (-656 (-1177 |#1|)) (-656 (-1177 |#1|))) (-576)))) -((-3845 (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|))) 174) (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112)) 173) (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-1066 |#1| |#2|)) 156)) (-3123 (((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|))) 85) (((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)) (-112)) 84) (((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)) (-112) (-112)) 83)) (-3163 (((-656 (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-792 |#1| (-877 |#3|)))) (-1066 |#1| |#2|)) 73)) (-4126 (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|))) 140) (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112)) 139) (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|)) 132)) (-2223 (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|))) 145) (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112)) 144) (((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|)) 142)) (-1554 (((-656 (-792 |#1| (-877 |#3|))) (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-792 |#1| (-877 |#3|)))) 111) (((-1192 (-1044 (-419 |#1|))) (-1192 |#1|)) 102) (((-970 (-1044 (-419 |#1|))) (-792 |#1| (-877 |#3|))) 109) (((-970 (-1044 (-419 |#1|))) (-970 |#1|)) 107) (((-792 |#1| (-877 |#3|)) (-792 |#1| (-877 |#2|))) 33))) -(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)) (-112) (-112))) (-15 -3123 ((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)) (-112))) (-15 -3123 ((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-1066 |#1| |#2|))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112) (-112))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112) (-112))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)))) (-15 -3163 ((-656 (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-792 |#1| (-877 |#3|)))) (-1066 |#1| |#2|))) (-15 -1554 ((-792 |#1| (-877 |#3|)) (-792 |#1| (-877 |#2|)))) (-15 -1554 ((-970 (-1044 (-419 |#1|))) (-970 |#1|))) (-15 -1554 ((-970 (-1044 (-419 |#1|))) (-792 |#1| (-877 |#3|)))) (-15 -1554 ((-1192 (-1044 (-419 |#1|))) (-1192 |#1|))) (-15 -1554 ((-656 (-792 |#1| (-877 |#3|))) (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-792 |#1| (-877 |#3|)))))) (-13 (-860) (-317) (-148) (-1042)) (-656 (-1196)) (-656 (-1196))) (T -1314)) -((-1554 (*1 *2 *3) (-12 (-5 *3 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-792 *4 (-877 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-792 *4 (-877 *6)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-1192 (-1044 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-877 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *6 (-656 (-1196))) (-5 *2 (-970 (-1044 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-970 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-970 (-1044 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-877 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *5 (-656 (-1196))) (-5 *2 (-792 *4 (-877 *6))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-792 *4 (-877 *6))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-2223 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1044 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-4126 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-4126 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-4126 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1044 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *4)) (|:| -3435 (-656 (-970 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-656 (-970 *4))) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-970 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3845 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-970 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3845 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-970 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-2 (|:| -3920 (-1192 *4)) (|:| -3435 (-656 (-970 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-1066 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3123 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))) -(-10 -7 (-15 -3123 ((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)) (-112) (-112))) (-15 -3123 ((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)) (-112))) (-15 -3123 ((-656 (-1066 |#1| |#2|)) (-656 (-970 |#1|)))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-1066 |#1| |#2|))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112) (-112))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112) (-112))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)) (-112))) (-15 -3845 ((-656 (-2 (|:| -3920 (-1192 |#1|)) (|:| -3435 (-656 (-970 |#1|))))) (-656 (-970 |#1|)))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112) (-112))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112))) (-15 -4126 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112) (-112))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)) (-112))) (-15 -2223 ((-656 (-656 (-1044 (-419 |#1|)))) (-656 (-970 |#1|)))) (-15 -3163 ((-656 (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-792 |#1| (-877 |#3|)))) (-1066 |#1| |#2|))) (-15 -1554 ((-792 |#1| (-877 |#3|)) (-792 |#1| (-877 |#2|)))) (-15 -1554 ((-970 (-1044 (-419 |#1|))) (-970 |#1|))) (-15 -1554 ((-970 (-1044 (-419 |#1|))) (-792 |#1| (-877 |#3|)))) (-15 -1554 ((-1192 (-1044 (-419 |#1|))) (-1192 |#1|))) (-15 -1554 ((-656 (-792 |#1| (-877 |#3|))) (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-792 |#1| (-877 |#3|)))))) -((-3548 (((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|) 21)) (-2479 (((-112) (-1287 |#1|)) 12)) (-1497 (((-3 (-1287 (-576)) "failed") (-1287 |#1|)) 16))) -(((-1315 |#1|) (-10 -7 (-15 -2479 ((-112) (-1287 |#1|))) (-15 -1497 ((-3 (-1287 (-576)) "failed") (-1287 |#1|))) (-15 -3548 ((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|))) (-13 (-1069) (-651 (-576)))) (T -1315)) -((-3548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 (-576)))) (-5 *2 (-1287 (-419 (-576)))) (-5 *1 (-1315 *4)))) (-1497 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 (-576)))) (-5 *2 (-1287 (-576))) (-5 *1 (-1315 *4)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1315 *4))))) -(-10 -7 (-15 -2479 ((-112) (-1287 |#1|))) (-15 -1497 ((-3 (-1287 (-576)) "failed") (-1287 |#1|))) (-15 -3548 ((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|))) -((-1952 (((-112) $ $) NIL)) (-3167 (((-112) $) 11)) (-2559 (((-3 $ "failed") $ $) NIL)) (-2199 (((-783)) 8)) (-4331 (($) NIL T CONST)) (-3900 (((-3 $ "failed") $) 58)) (-4369 (($) 49)) (-2287 (((-112) $) 57)) (-1859 (((-3 $ "failed") $) 40)) (-4375 (((-939) $) 15)) (-2043 (((-1178) $) NIL)) (-3650 (($) 32 T CONST)) (-2409 (($ (-939)) 50)) (-3115 (((-1140) $) NIL)) (-1554 (((-576) $) 13)) (-4112 (((-875) $) 27) (($ (-576)) 24)) (-4115 (((-783)) 9 T CONST)) (-1994 (((-112) $ $) 60)) (-4314 (($) 29 T CONST)) (-4320 (($) 31 T CONST)) (-3938 (((-112) $ $) 38)) (-4036 (($ $) 52) (($ $ $) 47)) (-4026 (($ $ $) 35)) (** (($ $ (-939)) NIL) (($ $ (-783)) 54)) (* (($ (-939) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) -(((-1316 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1172)) (-939)) (T -1316)) -NIL -(-13 (-174) (-379) (-626 (-576)) (-1172)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3261964 3261969 3261974 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3261949 3261954 3261959 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3261934 3261939 3261944 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3261919 3261924 3261929 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1316 3261062 3261794 3261871 "ZMOD" 3261876 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1315 3260116 3260280 3260503 "ZLINDEP" 3260894 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1314 3249416 3251184 3253156 "ZDSOLVE" 3258246 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1313 3248662 3248803 3248992 "YSTREAM" 3249262 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1312 3248090 3248336 3248449 "YDIAGRAM" 3248571 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1311 3245864 3247391 3247595 "XRPOLY" 3247933 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1310 3242417 3243735 3244310 "XPR" 3245336 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1309 3240138 3241748 3241952 "XPOLY" 3242248 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1308 3237777 3239145 3239200 "XPOLYC" 3239488 NIL XPOLYC (NIL T T) -9 NIL 3239601 NIL) (-1307 3234153 3236294 3236682 "XPBWPOLY" 3237435 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3229834 3232129 3232171 "XF" 3232792 NIL XF (NIL T) -9 NIL 3233192 NIL) (-1305 3229455 3229543 3229712 "XF-" 3229717 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1304 3224637 3225926 3225981 "XFALG" 3228153 NIL XFALG (NIL T T) -9 NIL 3228942 NIL) (-1303 3223770 3223874 3224079 "XEXPPKG" 3224529 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1302 3221879 3223620 3223716 "XDPOLY" 3223721 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1301 3220672 3221272 3221315 "XALG" 3221320 NIL XALG (NIL T) -9 NIL 3221431 NIL) (-1300 3214114 3218649 3219143 "WUTSET" 3220264 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1299 3212370 3213166 3213489 "WP" 3213925 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1298 3211972 3212192 3212262 "WHILEAST" 3212322 T WHILEAST (NIL) -8 NIL NIL NIL) (-1297 3211444 3211689 3211783 "WHEREAST" 3211900 T WHEREAST (NIL) -8 NIL NIL NIL) (-1296 3210330 3210528 3210823 "WFFINTBS" 3211241 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1295 3208234 3208661 3209123 "WEIER" 3209902 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1294 3207266 3207716 3207758 "VSPACE" 3207894 NIL VSPACE (NIL T) -9 NIL 3207968 NIL) (-1293 3207104 3207131 3207222 "VSPACE-" 3207227 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1292 3206913 3206955 3207023 "VOID" 3207058 T VOID (NIL) -8 NIL NIL NIL) (-1291 3205049 3205408 3205814 "VIEW" 3206529 T VIEW (NIL) -7 NIL NIL NIL) (-1290 3201473 3202112 3202849 "VIEWDEF" 3204334 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1289 3190777 3193021 3195194 "VIEW3D" 3199322 T VIEW3D (NIL) -8 NIL NIL NIL) (-1288 3183028 3184688 3186267 "VIEW2D" 3189220 T VIEW2D (NIL) -8 NIL NIL NIL) (-1287 3178384 3182798 3182890 "VECTOR" 3182971 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1286 3176961 3177220 3177538 "VECTOR2" 3178114 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1285 3170359 3174665 3174708 "VECTCAT" 3175703 NIL VECTCAT (NIL T) -9 NIL 3176290 NIL) (-1284 3169373 3169627 3170017 "VECTCAT-" 3170022 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1283 3168827 3169024 3169144 "VARIABLE" 3169288 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1282 3168760 3168765 3168795 "UTYPE" 3168800 T UTYPE (NIL) -9 NIL NIL NIL) (-1281 3167590 3167744 3168006 "UTSODETL" 3168586 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1280 3165030 3165490 3166014 "UTSODE" 3167131 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1279 3156978 3162791 3163271 "UTS" 3164608 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1278 3147542 3152912 3152955 "UTSCAT" 3154067 NIL UTSCAT (NIL T) -9 NIL 3154825 NIL) (-1277 3144890 3145612 3146601 "UTSCAT-" 3146606 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1276 3144517 3144560 3144693 "UTS2" 3144841 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1275 3138718 3141327 3141370 "URAGG" 3143440 NIL URAGG (NIL T) -9 NIL 3144163 NIL) (-1274 3135657 3136520 3137643 "URAGG-" 3137648 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1273 3131366 3134292 3134757 "UPXSSING" 3135321 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1272 3123542 3130748 3131012 "UPXS" 3131160 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1271 3116615 3123446 3123518 "UPXSCONS" 3123523 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1270 3106022 3112818 3112880 "UPXSCCA" 3113454 NIL UPXSCCA (NIL T T) -9 NIL 3113687 NIL) (-1269 3105660 3105745 3105919 "UPXSCCA-" 3105924 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1268 3094919 3101488 3101531 "UPXSCAT" 3102179 NIL UPXSCAT (NIL T) -9 NIL 3102788 NIL) (-1267 3094349 3094428 3094607 "UPXS2" 3094834 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1266 3093003 3093256 3093607 "UPSQFREE" 3094092 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1265 3086211 3089271 3089326 "UPSCAT" 3090406 NIL UPSCAT (NIL T T) -9 NIL 3091171 NIL) (-1264 3085415 3085622 3085949 "UPSCAT-" 3085954 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1263 3070497 3078542 3078585 "UPOLYC" 3080686 NIL UPOLYC (NIL T) -9 NIL 3081907 NIL) (-1262 3061825 3064251 3067398 "UPOLYC-" 3067403 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1261 3061452 3061495 3061628 "UPOLYC2" 3061776 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1260 3052987 3061135 3061264 "UP" 3061371 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1259 3052326 3052433 3052597 "UPMP" 3052876 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1258 3051879 3051960 3052099 "UPDIVP" 3052239 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1257 3050447 3050696 3051012 "UPDECOMP" 3051628 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1256 3049678 3049790 3049976 "UPCDEN" 3050331 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1255 3049197 3049266 3049415 "UP2" 3049603 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1254 3047664 3048401 3048678 "UNISEG" 3048955 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1253 3046879 3047006 3047211 "UNISEG2" 3047507 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1252 3045939 3046119 3046345 "UNIFACT" 3046695 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1251 3028691 3045251 3045493 "ULS" 3045755 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3016321 3028595 3028667 "ULSCONS" 3028672 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1249 2997042 3009402 3009464 "ULSCCAT" 3010102 NIL ULSCCAT (NIL T T) -9 NIL 3010391 NIL) (-1248 2996092 2996337 2996725 "ULSCCAT-" 2996730 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1247 2985156 2991639 2991682 "ULSCAT" 2992545 NIL ULSCAT (NIL T) -9 NIL 2993276 NIL) (-1246 2984586 2984665 2984844 "ULS2" 2985071 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1245 2983705 2984215 2984322 "UINT8" 2984433 T UINT8 (NIL) -8 NIL NIL 2984518) (-1244 2982823 2983333 2983440 "UINT64" 2983551 T UINT64 (NIL) -8 NIL NIL 2983636) (-1243 2981941 2982451 2982558 "UINT32" 2982669 T UINT32 (NIL) -8 NIL NIL 2982754) (-1242 2981059 2981569 2981676 "UINT16" 2981787 T UINT16 (NIL) -8 NIL NIL 2981872) (-1241 2979348 2980305 2980335 "UFD" 2980547 T UFD (NIL) -9 NIL 2980661 NIL) (-1240 2979142 2979188 2979283 "UFD-" 2979288 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1239 2978224 2978407 2978623 "UDVO" 2978948 T UDVO (NIL) -7 NIL NIL NIL) (-1238 2976040 2976449 2976920 "UDPO" 2977788 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1237 2975973 2975978 2976008 "TYPE" 2976013 T TYPE (NIL) -9 NIL NIL NIL) (-1236 2975733 2975928 2975959 "TYPEAST" 2975964 T TYPEAST (NIL) -8 NIL NIL NIL) (-1235 2974704 2974906 2975146 "TWOFACT" 2975527 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1234 2973727 2974113 2974348 "TUPLE" 2974504 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1233 2971418 2971937 2972476 "TUBETOOL" 2973210 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1232 2970267 2970472 2970713 "TUBE" 2971211 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1231 2964996 2969239 2969522 "TS" 2970019 NIL TS (NIL T) -8 NIL NIL NIL) (-1230 2953636 2957755 2957852 "TSETCAT" 2963121 NIL TSETCAT (NIL T T T T) -9 NIL 2964652 NIL) (-1229 2948368 2949968 2951859 "TSETCAT-" 2951864 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1228 2943007 2943854 2944783 "TRMANIP" 2947504 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1227 2942448 2942511 2942674 "TRIMAT" 2942939 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1226 2940314 2940551 2940908 "TRIGMNIP" 2942197 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1225 2939834 2939947 2939977 "TRIGCAT" 2940190 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1224 2939503 2939582 2939723 "TRIGCAT-" 2939728 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1223 2936351 2938361 2938642 "TREE" 2939257 NIL TREE (NIL T) -8 NIL NIL NIL) (-1222 2935625 2936153 2936183 "TRANFUN" 2936218 T TRANFUN (NIL) -9 NIL 2936284 NIL) (-1221 2934904 2935095 2935375 "TRANFUN-" 2935380 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1220 2934708 2934740 2934801 "TOPSP" 2934865 T TOPSP (NIL) -7 NIL NIL NIL) (-1219 2934056 2934171 2934325 "TOOLSIGN" 2934589 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1218 2932690 2933233 2933472 "TEXTFILE" 2933839 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1217 2930602 2931143 2931572 "TEX" 2932283 T TEX (NIL) -8 NIL NIL NIL) (-1216 2930383 2930414 2930486 "TEX1" 2930565 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1215 2930031 2930094 2930184 "TEMUTL" 2930315 T TEMUTL (NIL) -7 NIL NIL NIL) (-1214 2928185 2928465 2928790 "TBCMPPK" 2929754 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1213 2919894 2926271 2926327 "TBAGG" 2926727 NIL TBAGG (NIL T T) -9 NIL 2926938 NIL) (-1212 2914964 2916452 2918206 "TBAGG-" 2918211 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1211 2914348 2914455 2914600 "TANEXP" 2914853 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1210 2913859 2914123 2914213 "TALGOP" 2914293 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1209 2907255 2913716 2913809 "TABLE" 2913814 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1208 2906667 2906766 2906904 "TABLEAU" 2907152 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1207 2901275 2902495 2903743 "TABLBUMP" 2905453 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1206 2900497 2900644 2900825 "SYSTEM" 2901116 T SYSTEM (NIL) -8 NIL NIL NIL) (-1205 2896956 2897655 2898438 "SYSSOLP" 2899748 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1204 2896754 2896911 2896942 "SYSPTR" 2896947 T SYSPTR (NIL) -8 NIL NIL NIL) (-1203 2895790 2896295 2896414 "SYSNNI" 2896600 NIL SYSNNI (NIL NIL) -8 NIL NIL 2896685) (-1202 2895089 2895548 2895627 "SYSINT" 2895687 NIL SYSINT (NIL NIL) -8 NIL NIL 2895732) (-1201 2891421 2892367 2893077 "SYNTAX" 2894401 T SYNTAX (NIL) -8 NIL NIL NIL) (-1200 2888579 2889181 2889813 "SYMTAB" 2890811 T SYMTAB (NIL) -8 NIL NIL NIL) (-1199 2883828 2884730 2885713 "SYMS" 2887618 T SYMS (NIL) -8 NIL NIL NIL) (-1198 2881063 2883286 2883516 "SYMPOLY" 2883633 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1197 2880580 2880655 2880778 "SYMFUNC" 2880975 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1196 2876600 2877892 2878705 "SYMBOL" 2879789 T SYMBOL (NIL) -8 NIL NIL NIL) (-1195 2870139 2871828 2873548 "SWITCH" 2874902 T SWITCH (NIL) -8 NIL NIL NIL) (-1194 2863483 2869095 2869389 "SUTS" 2869903 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2855659 2862865 2863129 "SUPXS" 2863277 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2847142 2855277 2855403 "SUP" 2855568 NIL SUP (NIL T) -8 NIL NIL NIL) (-1191 2846301 2846428 2846645 "SUPFRACF" 2847010 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1190 2845922 2845981 2846094 "SUP2" 2846236 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1189 2844370 2844644 2845000 "SUMRF" 2845621 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1188 2843705 2843771 2843963 "SUMFS" 2844291 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1187 2826492 2843017 2843259 "SULS" 2843521 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2826094 2826314 2826384 "SUCHTAST" 2826444 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1185 2825389 2825619 2825759 "SUCH" 2826002 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1184 2819256 2820295 2821254 "SUBSPACE" 2824477 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1183 2818686 2818776 2818940 "SUBRESP" 2819144 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1182 2812054 2813351 2814662 "STTF" 2817422 NIL STTF (NIL T) -7 NIL NIL NIL) (-1181 2806227 2807347 2808494 "STTFNC" 2810954 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1180 2797540 2799409 2801203 "STTAYLOR" 2804468 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1179 2790676 2797404 2797487 "STRTBL" 2797492 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1178 2785637 2790385 2790484 "STRING" 2790599 T STRING (NIL) -8 NIL NIL NIL) (-1177 2778393 2783256 2783867 "STREAM" 2785061 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1176 2777903 2777980 2778124 "STREAM3" 2778310 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1175 2776885 2777068 2777303 "STREAM2" 2777716 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1174 2776573 2776625 2776718 "STREAM1" 2776827 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1173 2775589 2775770 2776001 "STINPROD" 2776389 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1172 2775127 2775337 2775367 "STEP" 2775447 T STEP (NIL) -9 NIL 2775525 NIL) (-1171 2774314 2774616 2774764 "STEPAST" 2775001 T STEPAST (NIL) -8 NIL NIL NIL) (-1170 2767752 2774213 2774290 "STBL" 2774295 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1169 2762822 2766915 2766958 "STAGG" 2767111 NIL STAGG (NIL T) -9 NIL 2767200 NIL) (-1168 2760524 2761126 2761998 "STAGG-" 2762003 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1167 2758674 2760294 2760386 "STACK" 2760467 NIL STACK (NIL T) -8 NIL NIL NIL) (-1166 2751369 2756815 2757271 "SREGSET" 2758304 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1165 2743794 2745163 2746676 "SRDCMPK" 2749975 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1164 2736631 2741153 2741183 "SRAGG" 2742486 T SRAGG (NIL) -9 NIL 2743094 NIL) (-1163 2735648 2735903 2736282 "SRAGG-" 2736287 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1162 2729832 2734595 2735016 "SQMATRIX" 2735274 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1161 2723520 2726550 2727277 "SPLTREE" 2729177 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1160 2719483 2720176 2720822 "SPLNODE" 2722946 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1159 2718530 2718763 2718793 "SPFCAT" 2719237 T SPFCAT (NIL) -9 NIL NIL NIL) (-1158 2717267 2717477 2717741 "SPECOUT" 2718288 T SPECOUT (NIL) -7 NIL NIL NIL) (-1157 2708363 2710235 2710265 "SPADXPT" 2714941 T SPADXPT (NIL) -9 NIL 2717105 NIL) (-1156 2708124 2708164 2708233 "SPADPRSR" 2708316 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1155 2706173 2708079 2708110 "SPADAST" 2708115 T SPADAST (NIL) -8 NIL NIL NIL) (-1154 2698104 2699877 2699920 "SPACEC" 2704293 NIL SPACEC (NIL T) -9 NIL 2706109 NIL) (-1153 2696234 2698036 2698085 "SPACE3" 2698090 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1152 2694986 2695157 2695448 "SORTPAK" 2696039 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1151 2693078 2693381 2693793 "SOLVETRA" 2694650 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1150 2692128 2692350 2692611 "SOLVESER" 2692851 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1149 2687432 2688320 2689315 "SOLVERAD" 2691180 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1148 2683247 2683856 2684585 "SOLVEFOR" 2686799 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1147 2677517 2682596 2682693 "SNTSCAT" 2682698 NIL SNTSCAT (NIL T T T T) -9 NIL 2682768 NIL) (-1146 2671623 2675840 2676231 "SMTS" 2677207 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1145 2666032 2671511 2671588 "SMP" 2671593 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1144 2664191 2664492 2664890 "SMITH" 2665729 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1143 2656295 2660770 2660873 "SMATCAT" 2662224 NIL SMATCAT (NIL NIL T T T) -9 NIL 2662774 NIL) (-1142 2653235 2654058 2655236 "SMATCAT-" 2655241 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1141 2650876 2652443 2652486 "SKAGG" 2652747 NIL SKAGG (NIL T) -9 NIL 2652882 NIL) (-1140 2647066 2650349 2650533 "SINT" 2650685 T SINT (NIL) -8 NIL NIL 2650847) (-1139 2646838 2646876 2646942 "SIMPAN" 2647022 T SIMPAN (NIL) -7 NIL NIL NIL) (-1138 2646117 2646373 2646513 "SIG" 2646720 T SIG (NIL) -8 NIL NIL NIL) (-1137 2644955 2645176 2645451 "SIGNRF" 2645876 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1136 2643788 2643939 2644223 "SIGNEF" 2644784 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1135 2643094 2643371 2643495 "SIGAST" 2643686 T SIGAST (NIL) -8 NIL NIL NIL) (-1134 2640784 2641238 2641744 "SHP" 2642635 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1133 2634613 2640685 2640761 "SHDP" 2640766 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1132 2634172 2634364 2634394 "SGROUP" 2634487 T SGROUP (NIL) -9 NIL 2634549 NIL) (-1131 2634030 2634056 2634129 "SGROUP-" 2634134 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1130 2630821 2631519 2632242 "SGCF" 2633329 T SGCF (NIL) -7 NIL NIL NIL) (-1129 2625189 2630268 2630365 "SFRTCAT" 2630370 NIL SFRTCAT (NIL T T T T) -9 NIL 2630409 NIL) (-1128 2618610 2619628 2620764 "SFRGCD" 2624172 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1127 2611736 2612809 2613995 "SFQCMPK" 2617543 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1126 2611356 2611445 2611556 "SFORT" 2611677 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1125 2610474 2611196 2611317 "SEXOF" 2611322 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1124 2609581 2610355 2610423 "SEX" 2610428 T SEX (NIL) -8 NIL NIL NIL) (-1123 2605362 2606077 2606172 "SEXCAT" 2608794 NIL SEXCAT (NIL T T T T T) -9 NIL 2609354 NIL) (-1122 2602515 2605296 2605344 "SET" 2605349 NIL SET (NIL T) -8 NIL NIL NIL) (-1121 2600739 2601228 2601533 "SETMN" 2602256 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1120 2600305 2600457 2600487 "SETCAT" 2600604 T SETCAT (NIL) -9 NIL 2600689 NIL) (-1119 2600085 2600137 2600236 "SETCAT-" 2600241 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1118 2596446 2598546 2598589 "SETAGG" 2599459 NIL SETAGG (NIL T) -9 NIL 2599799 NIL) (-1117 2595904 2596020 2596257 "SETAGG-" 2596262 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1116 2595347 2595600 2595701 "SEQAST" 2595825 T SEQAST (NIL) -8 NIL NIL NIL) (-1115 2594546 2594840 2594901 "SEGXCAT" 2595187 NIL SEGXCAT (NIL T T) -9 NIL 2595307 NIL) (-1114 2593552 2594212 2594394 "SEG" 2594399 NIL SEG (NIL T) -8 NIL NIL NIL) (-1113 2592531 2592745 2592788 "SEGCAT" 2593310 NIL SEGCAT (NIL T) -9 NIL 2593531 NIL) (-1112 2591463 2591894 2592102 "SEGBIND" 2592358 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1111 2591084 2591143 2591256 "SEGBIND2" 2591398 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1110 2590657 2590885 2590962 "SEGAST" 2591029 T SEGAST (NIL) -8 NIL NIL NIL) (-1109 2589876 2590002 2590206 "SEG2" 2590501 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1108 2589247 2589811 2589858 "SDVAR" 2589863 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1107 2581498 2589017 2589147 "SDPOL" 2589152 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1106 2580091 2580357 2580676 "SCPKG" 2581213 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1105 2579255 2579427 2579619 "SCOPE" 2579921 T SCOPE (NIL) -8 NIL NIL NIL) (-1104 2578475 2578609 2578788 "SCACHE" 2579110 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1103 2578107 2578293 2578323 "SASTCAT" 2578328 T SASTCAT (NIL) -9 NIL 2578341 NIL) (-1102 2577594 2577942 2578018 "SAOS" 2578053 T SAOS (NIL) -8 NIL NIL NIL) (-1101 2577159 2577194 2577367 "SAERFFC" 2577553 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1100 2570822 2577056 2577136 "SAE" 2577141 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1099 2570415 2570450 2570609 "SAEFACT" 2570781 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1098 2568736 2569050 2569451 "RURPK" 2570081 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1097 2567373 2567679 2567984 "RULESET" 2568570 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1096 2564596 2565126 2565584 "RULE" 2567054 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1095 2564208 2564390 2564473 "RULECOLD" 2564548 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1094 2563998 2564026 2564097 "RTVALUE" 2564159 T RTVALUE (NIL) -8 NIL NIL NIL) (-1093 2563469 2563715 2563809 "RSTRCAST" 2563926 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1092 2558317 2559112 2560032 "RSETGCD" 2562668 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1091 2547547 2552626 2552723 "RSETCAT" 2556842 NIL RSETCAT (NIL T T T T) -9 NIL 2557939 NIL) (-1090 2545474 2546013 2546837 "RSETCAT-" 2546842 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1089 2537860 2539236 2540756 "RSDCMPK" 2544073 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1088 2535825 2536292 2536366 "RRCC" 2537452 NIL RRCC (NIL T T) -9 NIL 2537796 NIL) (-1087 2535176 2535350 2535629 "RRCC-" 2535634 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1086 2534619 2534872 2534973 "RPTAST" 2535097 T RPTAST (NIL) -8 NIL NIL NIL) (-1085 2508095 2517731 2517798 "RPOLCAT" 2528464 NIL RPOLCAT (NIL T T T) -9 NIL 2531624 NIL) (-1084 2499593 2501933 2505055 "RPOLCAT-" 2505060 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1083 2490530 2497804 2498286 "ROUTINE" 2499133 T ROUTINE (NIL) -8 NIL NIL NIL) (-1082 2487191 2490156 2490296 "ROMAN" 2490412 T ROMAN (NIL) -8 NIL NIL NIL) (-1081 2485435 2486051 2486311 "ROIRC" 2486996 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1080 2481639 2483924 2483954 "RNS" 2484258 T RNS (NIL) -9 NIL 2484532 NIL) (-1079 2480148 2480531 2481065 "RNS-" 2481140 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1078 2479537 2479945 2479975 "RNG" 2479980 T RNG (NIL) -9 NIL 2480001 NIL) (-1077 2478540 2478902 2479104 "RNGBIND" 2479388 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1076 2477925 2478313 2478356 "RMODULE" 2478361 NIL RMODULE (NIL T) -9 NIL 2478388 NIL) (-1075 2476761 2476855 2477191 "RMCAT2" 2477826 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1074 2473611 2476107 2476404 "RMATRIX" 2476523 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1073 2466438 2468698 2468813 "RMATCAT" 2472172 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2473154 NIL) (-1072 2465813 2465960 2466267 "RMATCAT-" 2466272 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1071 2465428 2465600 2465643 "RLINSET" 2465705 NIL RLINSET (NIL T) -9 NIL 2465749 NIL) (-1070 2464995 2465070 2465198 "RINTERP" 2465347 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1069 2464039 2464593 2464623 "RING" 2464679 T RING (NIL) -9 NIL 2464771 NIL) (-1068 2463831 2463875 2463972 "RING-" 2463977 NIL RING- (NIL T) -8 NIL NIL NIL) (-1067 2462672 2462909 2463167 "RIDIST" 2463595 T RIDIST (NIL) -7 NIL NIL NIL) (-1066 2453961 2462140 2462346 "RGCHAIN" 2462520 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1065 2453297 2453703 2453744 "RGBCSPC" 2453802 NIL RGBCSPC (NIL T) -9 NIL 2453854 NIL) (-1064 2452441 2452822 2452863 "RGBCMDL" 2453095 NIL RGBCMDL (NIL T) -9 NIL 2453209 NIL) (-1063 2449435 2450049 2450719 "RF" 2451805 NIL RF (NIL T) -7 NIL NIL NIL) (-1062 2449081 2449144 2449247 "RFFACTOR" 2449366 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1061 2448806 2448841 2448938 "RFFACT" 2449040 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1060 2446923 2447287 2447669 "RFDIST" 2448446 T RFDIST (NIL) -7 NIL NIL NIL) (-1059 2446376 2446468 2446631 "RETSOL" 2446825 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1058 2446012 2446092 2446135 "RETRACT" 2446268 NIL RETRACT (NIL T) -9 NIL 2446355 NIL) (-1057 2445861 2445886 2445973 "RETRACT-" 2445978 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1056 2445463 2445683 2445753 "RETAST" 2445813 T RETAST (NIL) -8 NIL NIL NIL) (-1055 2438207 2445116 2445243 "RESULT" 2445358 T RESULT (NIL) -8 NIL NIL NIL) (-1054 2436798 2437476 2437675 "RESRING" 2438110 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1053 2436434 2436483 2436581 "RESLATC" 2436735 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1052 2436139 2436174 2436281 "REPSQ" 2436393 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1051 2433561 2434141 2434743 "REP" 2435559 T REP (NIL) -7 NIL NIL NIL) (-1050 2433258 2433293 2433404 "REPDB" 2433520 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1049 2427158 2428547 2429770 "REP2" 2432070 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1048 2423535 2424216 2425024 "REP1" 2426385 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1047 2416231 2421676 2422132 "REGSET" 2423165 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1046 2414996 2415379 2415629 "REF" 2416016 NIL REF (NIL T) -8 NIL NIL NIL) (-1045 2414373 2414476 2414643 "REDORDER" 2414880 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1044 2410341 2413586 2413813 "RECLOS" 2414201 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1043 2409393 2409574 2409789 "REALSOLV" 2410148 T REALSOLV (NIL) -7 NIL NIL NIL) (-1042 2409239 2409280 2409310 "REAL" 2409315 T REAL (NIL) -9 NIL 2409350 NIL) (-1041 2405722 2406524 2407408 "REAL0Q" 2408404 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1040 2401323 2402311 2403372 "REAL0" 2404703 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1039 2400794 2401040 2401134 "RDUCEAST" 2401251 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1038 2400199 2400271 2400478 "RDIV" 2400716 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1037 2399267 2399441 2399654 "RDIST" 2400021 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1036 2397864 2398151 2398523 "RDETRS" 2398975 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1035 2395676 2396130 2396668 "RDETR" 2397406 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1034 2394301 2394579 2394976 "RDEEFS" 2395392 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1033 2392810 2393116 2393541 "RDEEF" 2393989 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1032 2386843 2389764 2389794 "RCFIELD" 2391089 T RCFIELD (NIL) -9 NIL 2391820 NIL) (-1031 2384907 2385411 2386107 "RCFIELD-" 2386182 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1030 2381151 2382980 2383023 "RCAGG" 2384107 NIL RCAGG (NIL T) -9 NIL 2384572 NIL) (-1029 2380779 2380873 2381036 "RCAGG-" 2381041 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1028 2380114 2380226 2380391 "RATRET" 2380663 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1027 2379667 2379734 2379855 "RATFACT" 2380042 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1026 2378975 2379095 2379247 "RANDSRC" 2379537 T RANDSRC (NIL) -7 NIL NIL NIL) (-1025 2378709 2378753 2378826 "RADUTIL" 2378924 T RADUTIL (NIL) -7 NIL NIL NIL) (-1024 2371537 2377540 2377851 "RADIX" 2378432 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1023 2361997 2371379 2371509 "RADFF" 2371514 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1022 2361644 2361719 2361749 "RADCAT" 2361909 T RADCAT (NIL) -9 NIL NIL NIL) (-1021 2361426 2361474 2361574 "RADCAT-" 2361579 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1020 2359527 2361196 2361288 "QUEUE" 2361369 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1019 2355788 2359460 2359508 "QUAT" 2359513 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1018 2355419 2355462 2355593 "QUATCT2" 2355739 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1017 2348217 2351842 2351884 "QUATCAT" 2352675 NIL QUATCAT (NIL T) -9 NIL 2353441 NIL) (-1016 2344356 2345393 2346783 "QUATCAT-" 2346879 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1015 2341796 2343404 2343447 "QUAGG" 2343828 NIL QUAGG (NIL T) -9 NIL 2344003 NIL) (-1014 2341398 2341618 2341688 "QQUTAST" 2341748 T QQUTAST (NIL) -8 NIL NIL NIL) (-1013 2340411 2340911 2341076 "QFORM" 2341279 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1012 2330743 2336258 2336300 "QFCAT" 2336968 NIL QFCAT (NIL T) -9 NIL 2337969 NIL) (-1011 2326310 2327511 2329105 "QFCAT-" 2329201 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1010 2325941 2325984 2326115 "QFCAT2" 2326261 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1009 2325396 2325506 2325638 "QEQUAT" 2325831 T QEQUAT (NIL) -8 NIL NIL NIL) (-1008 2318522 2319595 2320781 "QCMPACK" 2324329 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1007 2316060 2316508 2316938 "QALGSET" 2318177 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1006 2315295 2315471 2315707 "QALGSET2" 2315878 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1005 2313980 2314204 2314523 "PWFFINTB" 2315068 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1004 2312155 2312323 2312679 "PUSHVAR" 2313794 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1003 2308044 2309098 2309141 "PTRANFN" 2311052 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1002 2306435 2306726 2307050 "PTPACK" 2307755 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1001 2306064 2306121 2306232 "PTFUNC2" 2306372 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1000 2300459 2304853 2304896 "PTCAT" 2305196 NIL PTCAT (NIL T) -9 NIL 2305349 NIL) (-999 2300117 2300152 2300276 "PSQFR" 2300418 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-998 2298712 2299010 2299344 "PSEUDLIN" 2299815 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-997 2285475 2287846 2290170 "PSETPK" 2296472 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-996 2278493 2281233 2281329 "PSETCAT" 2284350 NIL PSETCAT (NIL T T T T) -9 NIL 2285164 NIL) (-995 2276329 2276963 2277784 "PSETCAT-" 2277789 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-994 2275678 2275843 2275871 "PSCURVE" 2276139 T PSCURVE (NIL) -9 NIL 2276306 NIL) (-993 2271662 2273178 2273243 "PSCAT" 2274087 NIL PSCAT (NIL T T T) -9 NIL 2274327 NIL) (-992 2270725 2270941 2271341 "PSCAT-" 2271346 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-991 2269084 2269794 2270057 "PRTITION" 2270482 T PRTITION (NIL) -8 NIL NIL NIL) (-990 2268559 2268805 2268897 "PRTDAST" 2269012 T PRTDAST (NIL) -8 NIL NIL NIL) (-989 2257649 2259863 2262051 "PRS" 2266421 NIL PRS (NIL T T) -7 NIL NIL NIL) (-988 2255435 2256971 2257011 "PRQAGG" 2257194 NIL PRQAGG (NIL T) -9 NIL 2257296 NIL) (-987 2254771 2255076 2255104 "PROPLOG" 2255243 T PROPLOG (NIL) -9 NIL 2255358 NIL) (-986 2254375 2254432 2254555 "PROPFUN2" 2254694 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-985 2253690 2253811 2253983 "PROPFUN1" 2254236 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-984 2251871 2252437 2252734 "PROPFRML" 2253426 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-983 2251340 2251447 2251575 "PROPERTY" 2251763 T PROPERTY (NIL) -8 NIL NIL NIL) (-982 2245398 2249506 2250326 "PRODUCT" 2250566 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-981 2242676 2244856 2245090 "PR" 2245209 NIL PR (NIL T T) -8 NIL NIL NIL) (-980 2242472 2242504 2242563 "PRINT" 2242637 T PRINT (NIL) -7 NIL NIL NIL) (-979 2241812 2241929 2242081 "PRIMES" 2242352 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-978 2239877 2240278 2240744 "PRIMELT" 2241391 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-977 2239606 2239655 2239683 "PRIMCAT" 2239807 T PRIMCAT (NIL) -9 NIL NIL NIL) (-976 2235724 2239544 2239589 "PRIMARR" 2239594 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-975 2234731 2234909 2235137 "PRIMARR2" 2235542 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-974 2234374 2234430 2234541 "PREASSOC" 2234669 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-973 2233849 2233982 2234010 "PPCURVE" 2234215 T PPCURVE (NIL) -9 NIL 2234351 NIL) (-972 2233444 2233644 2233727 "PORTNUM" 2233786 T PORTNUM (NIL) -8 NIL NIL NIL) (-971 2230803 2231202 2231794 "POLYROOT" 2233025 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-970 2224709 2230407 2230567 "POLY" 2230676 NIL POLY (NIL T) -8 NIL NIL NIL) (-969 2224092 2224150 2224384 "POLYLIFT" 2224645 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-968 2220367 2220816 2221445 "POLYCATQ" 2223637 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-967 2206709 2212114 2212179 "POLYCAT" 2215693 NIL POLYCAT (NIL T T T) -9 NIL 2217571 NIL) (-966 2200158 2202020 2204404 "POLYCAT-" 2204409 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-965 2199745 2199813 2199933 "POLY2UP" 2200084 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-964 2199377 2199434 2199543 "POLY2" 2199682 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-963 2198062 2198301 2198577 "POLUTIL" 2199151 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-962 2196417 2196694 2197025 "POLTOPOL" 2197784 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-961 2191883 2196351 2196398 "POINT" 2196403 NIL POINT (NIL T) -8 NIL NIL NIL) (-960 2190070 2190427 2190802 "PNTHEORY" 2191528 T PNTHEORY (NIL) -7 NIL NIL NIL) (-959 2188528 2188825 2189224 "PMTOOLS" 2189768 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-958 2188121 2188199 2188316 "PMSYM" 2188444 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-957 2187629 2187698 2187873 "PMQFCAT" 2188046 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-956 2186984 2187094 2187250 "PMPRED" 2187506 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-955 2186377 2186463 2186625 "PMPREDFS" 2186885 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-954 2185041 2185249 2185627 "PMPLCAT" 2186139 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-953 2184573 2184652 2184804 "PMLSAGG" 2184956 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-952 2184046 2184122 2184304 "PMKERNEL" 2184491 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-951 2183663 2183738 2183851 "PMINS" 2183965 NIL PMINS (NIL T) -7 NIL NIL NIL) (-950 2183105 2183174 2183383 "PMFS" 2183588 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-949 2182333 2182451 2182656 "PMDOWN" 2182982 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-948 2181500 2181658 2181839 "PMASS" 2182172 T PMASS (NIL) -7 NIL NIL NIL) (-947 2180773 2180883 2181046 "PMASSFS" 2181387 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-946 2180428 2180496 2180590 "PLOTTOOL" 2180699 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-945 2175035 2176239 2177387 "PLOT" 2179300 T PLOT (NIL) -8 NIL NIL NIL) (-944 2170839 2171883 2172804 "PLOT3D" 2174134 T PLOT3D (NIL) -8 NIL NIL NIL) (-943 2169751 2169928 2170163 "PLOT1" 2170643 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-942 2145142 2149817 2154668 "PLEQN" 2165017 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-941 2144460 2144582 2144762 "PINTERP" 2145007 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-940 2144153 2144200 2144303 "PINTERPA" 2144407 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-939 2143369 2143917 2144004 "PI" 2144044 T PI (NIL) -8 NIL NIL 2144111) (-938 2141652 2142627 2142655 "PID" 2142837 T PID (NIL) -9 NIL 2142971 NIL) (-937 2141403 2141440 2141515 "PICOERCE" 2141609 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-936 2140723 2140862 2141038 "PGROEB" 2141259 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-935 2136310 2137124 2138029 "PGE" 2139838 T PGE (NIL) -7 NIL NIL NIL) (-934 2134433 2134680 2135046 "PGCD" 2136027 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-933 2133771 2133874 2134035 "PFRPAC" 2134317 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-932 2130411 2132319 2132672 "PFR" 2133450 NIL PFR (NIL T) -8 NIL NIL NIL) (-931 2128800 2129044 2129369 "PFOTOOLS" 2130158 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-930 2127333 2127572 2127923 "PFOQ" 2128557 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-929 2125834 2126046 2126402 "PFO" 2127117 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-928 2122387 2125723 2125792 "PF" 2125797 NIL PF (NIL NIL) -8 NIL NIL NIL) (-927 2119707 2120978 2121006 "PFECAT" 2121591 T PFECAT (NIL) -9 NIL 2121975 NIL) (-926 2119152 2119306 2119520 "PFECAT-" 2119525 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-925 2117755 2118007 2118308 "PFBRU" 2118901 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-924 2115621 2115973 2116405 "PFBR" 2117406 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-923 2111667 2113133 2113780 "PERM" 2115007 NIL PERM (NIL T) -8 NIL NIL NIL) (-922 2106901 2107874 2108744 "PERMGRP" 2110830 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-921 2104965 2105925 2105966 "PERMCAT" 2106366 NIL PERMCAT (NIL T) -9 NIL 2106664 NIL) (-920 2104618 2104659 2104783 "PERMAN" 2104918 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-919 2102109 2104283 2104405 "PENDTREE" 2104529 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-918 2101038 2101253 2101294 "PDSPC" 2101827 NIL PDSPC (NIL T) -9 NIL 2102072 NIL) (-917 2100141 2100359 2100721 "PDSPC-" 2100726 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-916 2099023 2099791 2099832 "PDRING" 2099837 NIL PDRING (NIL T) -9 NIL 2099865 NIL) (-915 2097910 2098528 2098582 "PDMOD" 2098587 NIL PDMOD (NIL T T) -9 NIL 2098691 NIL) (-914 2095125 2095903 2096571 "PDEPROB" 2097262 T PDEPROB (NIL) -8 NIL NIL NIL) (-913 2092670 2093174 2093729 "PDEPACK" 2094590 T PDEPACK (NIL) -7 NIL NIL NIL) (-912 2091582 2091772 2092023 "PDECOMP" 2092469 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-911 2089147 2089990 2090018 "PDECAT" 2090805 T PDECAT (NIL) -9 NIL 2091518 NIL) (-910 2088776 2088831 2088885 "PDDOM" 2089050 NIL PDDOM (NIL T T) -9 NIL 2089130 NIL) (-909 2088595 2088625 2088732 "PDDOM-" 2088737 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-908 2088346 2088379 2088469 "PCOMP" 2088556 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-907 2086524 2087147 2087444 "PBWLB" 2088075 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-906 2078997 2080597 2081935 "PATTERN" 2085207 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-905 2078629 2078686 2078795 "PATTERN2" 2078934 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-904 2076386 2076774 2077231 "PATTERN1" 2078218 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-903 2073754 2074335 2074816 "PATRES" 2075951 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-902 2073318 2073385 2073517 "PATRES2" 2073681 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-901 2071201 2071606 2072013 "PATMATCH" 2072985 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-900 2070697 2070906 2070947 "PATMAB" 2071054 NIL PATMAB (NIL T) -9 NIL 2071137 NIL) (-899 2069215 2069551 2069809 "PATLRES" 2070502 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-898 2068761 2068884 2068925 "PATAB" 2068930 NIL PATAB (NIL T) -9 NIL 2069102 NIL) (-897 2066943 2067338 2067761 "PARTPERM" 2068358 T PARTPERM (NIL) -7 NIL NIL NIL) (-896 2066564 2066627 2066729 "PARSURF" 2066874 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-895 2066196 2066253 2066362 "PARSU2" 2066501 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-894 2065960 2066000 2066067 "PARSER" 2066149 T PARSER (NIL) -7 NIL NIL NIL) (-893 2065581 2065644 2065746 "PARSCURV" 2065891 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-892 2065213 2065270 2065379 "PARSC2" 2065518 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-891 2064852 2064910 2065007 "PARPCURV" 2065149 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-890 2064484 2064541 2064650 "PARPC2" 2064789 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-889 2063545 2063857 2064039 "PARAMAST" 2064322 T PARAMAST (NIL) -8 NIL NIL NIL) (-888 2063065 2063151 2063270 "PAN2EXPR" 2063446 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-887 2061842 2062186 2062414 "PALETTE" 2062857 T PALETTE (NIL) -8 NIL NIL NIL) (-886 2060235 2060847 2061207 "PAIR" 2061528 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-885 2053827 2059492 2059687 "PADICRC" 2060089 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-884 2046743 2053171 2053356 "PADICRAT" 2053674 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-883 2045058 2046680 2046725 "PADIC" 2046730 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-882 2042154 2043718 2043758 "PADICCT" 2044339 NIL PADICCT (NIL NIL) -9 NIL 2044621 NIL) (-881 2041111 2041311 2041579 "PADEPAC" 2041941 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-880 2040323 2040456 2040662 "PADE" 2040973 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-879 2038710 2039531 2039811 "OWP" 2040127 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-878 2038203 2038416 2038513 "OVERSET" 2038633 T OVERSET (NIL) -8 NIL NIL NIL) (-877 2037249 2037808 2037980 "OVAR" 2038071 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-876 2036513 2036634 2036795 "OUT" 2037108 T OUT (NIL) -7 NIL NIL NIL) (-875 2025385 2027622 2029822 "OUTFORM" 2034333 T OUTFORM (NIL) -8 NIL NIL NIL) (-874 2024721 2024982 2025109 "OUTBFILE" 2025278 T OUTBFILE (NIL) -8 NIL NIL NIL) (-873 2024028 2024193 2024221 "OUTBCON" 2024539 T OUTBCON (NIL) -9 NIL 2024705 NIL) (-872 2023629 2023741 2023898 "OUTBCON-" 2023903 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-871 2023009 2023358 2023447 "OSI" 2023560 T OSI (NIL) -8 NIL NIL NIL) (-870 2022512 2022850 2022878 "OSGROUP" 2022883 T OSGROUP (NIL) -9 NIL 2022905 NIL) (-869 2021257 2021484 2021769 "ORTHPOL" 2022259 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-868 2018808 2021092 2021213 "OREUP" 2021218 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-867 2016211 2018499 2018626 "ORESUP" 2018750 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-866 2013739 2014239 2014800 "OREPCTO" 2015700 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-865 2007411 2009612 2009653 "OREPCAT" 2012001 NIL OREPCAT (NIL T) -9 NIL 2013105 NIL) (-864 2004558 2005340 2006398 "OREPCAT-" 2006403 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-863 2003805 2004028 2004056 "ORDTYPE" 2004365 T ORDTYPE (NIL) -9 NIL 2004528 NIL) (-862 2003148 2003322 2003577 "ORDTYPE-" 2003582 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-861 2002718 2003016 2003044 "ORDSET" 2003049 T ORDSET (NIL) -9 NIL 2003071 NIL) (-860 2001256 2002047 2002075 "ORDRING" 2002277 T ORDRING (NIL) -9 NIL 2002402 NIL) (-859 2000901 2000995 2001139 "ORDRING-" 2001144 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 2000254 2000717 2000745 "ORDMON" 2000750 T ORDMON (NIL) -9 NIL 2000771 NIL) (-857 1999416 1999563 1999758 "ORDFUNS" 2000103 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1998727 1999146 1999174 "ORDFIN" 1999239 T ORDFIN (NIL) -9 NIL 1999313 NIL) (-855 1995286 1997313 1997722 "ORDCOMP" 1998351 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1994552 1994679 1994865 "ORDCOMP2" 1995146 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1991133 1992043 1992857 "OPTPROB" 1993758 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1987935 1988574 1989278 "OPTPACK" 1990449 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1985608 1986374 1986402 "OPTCAT" 1987221 T OPTCAT (NIL) -9 NIL 1987871 NIL) (-850 1984992 1985285 1985390 "OPSIG" 1985523 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1984760 1984799 1984865 "OPQUERY" 1984946 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1981891 1983071 1983575 "OP" 1984289 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1981251 1981477 1981518 "OPERCAT" 1981730 NIL OPERCAT (NIL T) -9 NIL 1981827 NIL) (-846 1981006 1981062 1981179 "OPERCAT-" 1981184 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1977819 1979803 1980172 "ONECOMP" 1980670 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1977124 1977239 1977413 "ONECOMP2" 1977691 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1976543 1976649 1976779 "OMSERVER" 1977014 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1973405 1975983 1976023 "OMSAGG" 1976084 NIL OMSAGG (NIL T) -9 NIL 1976148 NIL) (-841 1972028 1972291 1972573 "OMPKG" 1973143 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1971458 1971561 1971589 "OM" 1971888 T OM (NIL) -9 NIL NIL NIL) (-839 1970005 1971007 1971176 "OMLO" 1971339 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1968965 1969112 1969332 "OMEXPR" 1969831 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1968256 1968511 1968647 "OMERR" 1968849 T OMERR (NIL) -8 NIL NIL NIL) (-836 1967407 1967677 1967837 "OMERRK" 1968116 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1966858 1967084 1967192 "OMENC" 1967319 T OMENC (NIL) -8 NIL NIL NIL) (-834 1960753 1961938 1963109 "OMDEV" 1965707 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1959822 1959993 1960187 "OMCONN" 1960579 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1958316 1959292 1959320 "OINTDOM" 1959325 T OINTDOM (NIL) -9 NIL 1959346 NIL) (-831 1955654 1957004 1957341 "OFMONOID" 1958011 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1955026 1955591 1955636 "ODVAR" 1955641 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1952449 1954771 1954926 "ODR" 1954931 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1944754 1952225 1952351 "ODPOL" 1952356 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1938553 1944626 1944731 "ODP" 1944736 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1937319 1937534 1937809 "ODETOOLS" 1938327 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1934286 1934944 1935660 "ODESYS" 1936652 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1929168 1930076 1931101 "ODERTRIC" 1933361 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1928594 1928676 1928870 "ODERED" 1929080 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1925482 1926030 1926707 "ODERAT" 1928017 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1922441 1922906 1923503 "ODEPRRIC" 1925011 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1920384 1920980 1921466 "ODEPROB" 1921975 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1916904 1917389 1918036 "ODEPRIM" 1919863 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1916153 1916255 1916515 "ODEPAL" 1916796 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1912315 1913106 1913970 "ODEPACK" 1915309 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1911376 1911483 1911705 "ODEINT" 1912204 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1905477 1906902 1908349 "ODEIFTBL" 1909949 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1900875 1901661 1902613 "ODEEF" 1904636 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1900224 1900313 1900536 "ODECONST" 1900780 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1898335 1898996 1899024 "ODECAT" 1899629 T ODECAT (NIL) -9 NIL 1900160 NIL) (-811 1895190 1898040 1898162 "OCT" 1898245 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1894828 1894871 1894998 "OCTCT2" 1895141 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1889435 1891871 1891911 "OC" 1893008 NIL OC (NIL T) -9 NIL 1893866 NIL) (-808 1886662 1887410 1888400 "OC-" 1888494 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1885987 1886455 1886483 "OCAMON" 1886488 T OCAMON (NIL) -9 NIL 1886509 NIL) (-806 1885491 1885832 1885860 "OASGP" 1885865 T OASGP (NIL) -9 NIL 1885885 NIL) (-805 1884725 1885214 1885242 "OAMONS" 1885282 T OAMONS (NIL) -9 NIL 1885325 NIL) (-804 1884112 1884545 1884573 "OAMON" 1884578 T OAMON (NIL) -9 NIL 1884598 NIL) (-803 1883343 1883861 1883889 "OAGROUP" 1883894 T OAGROUP (NIL) -9 NIL 1883914 NIL) (-802 1883033 1883083 1883171 "NUMTUBE" 1883287 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1876606 1878124 1879660 "NUMQUAD" 1881517 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1872362 1873350 1874375 "NUMODE" 1875601 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1869703 1870583 1870611 "NUMINT" 1871534 T NUMINT (NIL) -9 NIL 1872298 NIL) (-798 1868651 1868848 1869066 "NUMFMT" 1869505 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1855010 1857955 1860487 "NUMERIC" 1866158 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1849380 1854459 1854554 "NTSCAT" 1854559 NIL NTSCAT (NIL T T T T) -9 NIL 1854598 NIL) (-795 1848574 1848739 1848932 "NTPOLFN" 1849219 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1836375 1845399 1846211 "NSUP" 1847795 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1836007 1836064 1836173 "NSUP2" 1836312 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1825957 1835781 1835914 "NSMP" 1835919 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1824389 1824690 1825047 "NREP" 1825645 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1822980 1823232 1823590 "NPCOEF" 1824132 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1822046 1822161 1822377 "NORMRETR" 1822861 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1820087 1820377 1820786 "NORMPK" 1821754 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1819772 1819800 1819924 "NORMMA" 1820053 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1819572 1819729 1819758 "NONE" 1819763 T NONE (NIL) -8 NIL NIL NIL) (-785 1819361 1819390 1819459 "NONE1" 1819536 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1818858 1818920 1819099 "NODE1" 1819293 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1817139 1817990 1818245 "NNI" 1818592 T NNI (NIL) -8 NIL NIL 1818827) (-782 1815559 1815872 1816236 "NLINSOL" 1816807 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1811800 1812795 1813694 "NIPROB" 1814680 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1810557 1810791 1811093 "NFINTBAS" 1811562 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1809731 1810207 1810248 "NETCLT" 1810420 NIL NETCLT (NIL T) -9 NIL 1810502 NIL) (-778 1808439 1808670 1808951 "NCODIV" 1809499 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1808201 1808238 1808313 "NCNTFRAC" 1808396 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1806381 1806745 1807165 "NCEP" 1807826 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1805218 1805991 1806019 "NASRING" 1806129 T NASRING (NIL) -9 NIL 1806209 NIL) (-774 1805013 1805057 1805151 "NASRING-" 1805156 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1804106 1804631 1804659 "NARNG" 1804776 T NARNG (NIL) -9 NIL 1804867 NIL) (-772 1803798 1803865 1803999 "NARNG-" 1804004 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1802677 1802884 1803119 "NAGSP" 1803583 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1793949 1795633 1797306 "NAGS" 1801024 T NAGS (NIL) -7 NIL NIL NIL) (-769 1792497 1792805 1793136 "NAGF07" 1793638 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1787035 1788326 1789633 "NAGF04" 1791210 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1780003 1781617 1783250 "NAGF02" 1785422 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1775227 1776327 1777444 "NAGF01" 1778906 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1768855 1770421 1772006 "NAGE04" 1773662 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1760024 1762145 1764275 "NAGE02" 1766745 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1755977 1756924 1757888 "NAGE01" 1759080 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1753772 1754306 1754864 "NAGD03" 1755439 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1745522 1747450 1749404 "NAGD02" 1751838 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1739333 1740758 1742198 "NAGD01" 1744102 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1735542 1736364 1737201 "NAGC06" 1738516 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1734007 1734339 1734695 "NAGC05" 1735206 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1733383 1733502 1733646 "NAGC02" 1733883 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1732328 1732911 1732951 "NAALG" 1733030 NIL NAALG (NIL T) -9 NIL 1733091 NIL) (-755 1732163 1732192 1732282 "NAALG-" 1732287 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1726113 1727221 1728408 "MULTSQFR" 1731059 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1725432 1725507 1725691 "MULTFACT" 1726025 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1718103 1722017 1722070 "MTSCAT" 1723140 NIL MTSCAT (NIL T T) -9 NIL 1723655 NIL) (-751 1717815 1717869 1717961 "MTHING" 1718043 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1717607 1717640 1717700 "MSYSCMD" 1717775 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1713689 1716362 1716682 "MSET" 1717320 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1710758 1713250 1713291 "MSETAGG" 1713296 NIL MSETAGG (NIL T) -9 NIL 1713330 NIL) (-747 1706600 1708137 1708882 "MRING" 1710058 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1706166 1706233 1706364 "MRF2" 1706527 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1705784 1705819 1705963 "MRATFAC" 1706125 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1703396 1703691 1704122 "MPRFF" 1705489 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1697417 1703250 1703347 "MPOLY" 1703352 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1696907 1696942 1697150 "MPCPF" 1697376 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1696421 1696464 1696648 "MPC3" 1696858 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1695616 1695697 1695918 "MPC2" 1696336 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1693917 1694254 1694644 "MONOTOOL" 1695276 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1693128 1693445 1693473 "MONOID" 1693692 T MONOID (NIL) -9 NIL 1693839 NIL) (-737 1692674 1692793 1692974 "MONOID-" 1692979 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1682264 1688494 1688553 "MONOGEN" 1689227 NIL MONOGEN (NIL T T) -9 NIL 1689683 NIL) (-735 1679482 1680217 1681217 "MONOGEN-" 1681336 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1678301 1678747 1678775 "MONADWU" 1679167 T MONADWU (NIL) -9 NIL 1679405 NIL) (-733 1677673 1677832 1678080 "MONADWU-" 1678085 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1677018 1677262 1677290 "MONAD" 1677497 T MONAD (NIL) -9 NIL 1677609 NIL) (-731 1676703 1676781 1676913 "MONAD-" 1676918 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1674992 1675616 1675895 "MOEBIUS" 1676456 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1674256 1674660 1674700 "MODULE" 1674705 NIL MODULE (NIL T) -9 NIL 1674744 NIL) (-728 1673824 1673920 1674110 "MODULE-" 1674115 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1671504 1672188 1672515 "MODRING" 1673648 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1668448 1669609 1670130 "MODOP" 1671033 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1667036 1667515 1667792 "MODMONOM" 1668311 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1656804 1665327 1665741 "MODMON" 1666673 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1653960 1655648 1655924 "MODFIELD" 1656679 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1652937 1653241 1653431 "MMLFORM" 1653790 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1652463 1652506 1652685 "MMAP" 1652888 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1650528 1651295 1651336 "MLO" 1651759 NIL MLO (NIL T) -9 NIL 1652001 NIL) (-719 1647894 1648410 1649012 "MLIFT" 1650009 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1647285 1647369 1647523 "MKUCFUNC" 1647805 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1646884 1646954 1647077 "MKRECORD" 1647208 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1645931 1646093 1646321 "MKFUNC" 1646695 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1645319 1645423 1645579 "MKFLCFN" 1645814 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1644596 1644698 1644883 "MKBCFUNC" 1645212 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1641185 1644150 1644286 "MINT" 1644480 T MINT (NIL) -8 NIL NIL NIL) (-712 1639997 1640240 1640517 "MHROWRED" 1640940 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1635377 1638532 1638937 "MFLOAT" 1639612 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1634734 1634810 1634981 "MFINFACT" 1635289 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1631049 1631897 1632781 "MESH" 1633870 T MESH (NIL) -7 NIL NIL NIL) (-708 1629439 1629751 1630104 "MDDFACT" 1630736 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1626209 1628570 1628611 "MDAGG" 1628866 NIL MDAGG (NIL T) -9 NIL 1629009 NIL) (-706 1614903 1625502 1625709 "MCMPLX" 1626022 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1614040 1614186 1614387 "MCDEN" 1614752 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1611930 1612200 1612580 "MCALCFN" 1613770 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1610855 1611095 1611328 "MAYBE" 1611736 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1608467 1608990 1609552 "MATSTOR" 1610326 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1604379 1607839 1608087 "MATRIX" 1608252 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1600145 1600852 1601588 "MATLIN" 1603736 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1589971 1593202 1593279 "MATCAT" 1598311 NIL MATCAT (NIL T T T) -9 NIL 1599783 NIL) (-698 1586164 1587234 1588647 "MATCAT-" 1588652 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1584758 1584911 1585244 "MATCAT2" 1585999 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1582870 1583194 1583578 "MAPPKG3" 1584433 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1581851 1582024 1582246 "MAPPKG2" 1582694 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1580350 1580634 1580961 "MAPPKG1" 1581557 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579429 1579756 1579933 "MAPPAST" 1580193 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1579040 1579098 1579221 "MAPHACK3" 1579365 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1578632 1578693 1578807 "MAPHACK2" 1578972 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1578070 1578173 1578315 "MAPHACK1" 1578523 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1576149 1576770 1577074 "MAGMA" 1577798 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1575628 1575873 1575964 "MACROAST" 1576078 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1572049 1573867 1574328 "M3D" 1575200 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1566099 1570360 1570401 "LZSTAGG" 1571183 NIL LZSTAGG (NIL T) -9 NIL 1571478 NIL) (-685 1562057 1563230 1564687 "LZSTAGG-" 1564692 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1559144 1559948 1560435 "LWORD" 1561602 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1558720 1558948 1559023 "LSTAST" 1559089 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1551610 1558491 1558625 "LSQM" 1558630 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1550834 1550973 1551201 "LSPP" 1551465 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1548646 1548947 1549403 "LSMP" 1550523 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545425 1546099 1546829 "LSMP1" 1547948 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1539227 1544515 1544556 "LSAGG" 1544618 NIL LSAGG (NIL T) -9 NIL 1544696 NIL) (-677 1535922 1536846 1538059 "LSAGG-" 1538064 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1533521 1535066 1535315 "LPOLY" 1535717 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1533103 1533188 1533311 "LPEFRAC" 1533430 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531424 1532197 1532450 "LO" 1532935 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1531036 1531174 1531202 "LOGIC" 1531313 T LOGIC (NIL) -9 NIL 1531394 NIL) (-672 1530898 1530921 1530992 "LOGIC-" 1530997 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1530091 1530231 1530424 "LODOOPS" 1530754 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1527514 1530007 1530073 "LODO" 1530078 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1526052 1526287 1526640 "LODOF" 1527261 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1522256 1524687 1524728 "LODOCAT" 1525166 NIL LODOCAT (NIL T) -9 NIL 1525377 NIL) (-667 1521989 1522047 1522174 "LODOCAT-" 1522179 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519309 1521830 1521948 "LODO2" 1521953 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1516744 1519246 1519291 "LODO1" 1519296 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1515625 1515790 1516095 "LODEEF" 1516567 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1510903 1513791 1513832 "LNAGG" 1514694 NIL LNAGG (NIL T) -9 NIL 1515129 NIL) (-662 1510050 1510264 1510606 "LNAGG-" 1510611 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1506186 1506975 1507614 "LMOPS" 1509465 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1505575 1505963 1506004 "LMODULE" 1506009 NIL LMODULE (NIL T) -9 NIL 1506035 NIL) (-659 1502776 1505220 1505343 "LMDICT" 1505485 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502394 1502566 1502607 "LLINSET" 1502668 NIL LLINSET (NIL T) -9 NIL 1502712 NIL) (-657 1502093 1502302 1502362 "LITERAL" 1502367 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495259 1501027 1501331 "LIST" 1501822 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1494784 1494858 1494997 "LIST3" 1495179 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1493791 1493969 1494197 "LIST2" 1494602 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1491925 1492237 1492636 "LIST2MAP" 1493438 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1491556 1491744 1491785 "LINSET" 1491790 NIL LINSET (NIL T) -9 NIL 1491824 NIL) (-651 1489969 1490583 1490624 "LINEXP" 1491114 NIL LINEXP (NIL T) -9 NIL 1491387 NIL) (-650 1488546 1488806 1489117 "LINDEP" 1489721 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485313 1486032 1486809 "LIMITRF" 1487801 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1483616 1483912 1484321 "LIMITPS" 1485008 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478044 1483127 1483355 "LIE" 1483437 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1476978 1477447 1477487 "LIECAT" 1477627 NIL LIECAT (NIL T) -9 NIL 1477778 NIL) (-645 1476819 1476846 1476934 "LIECAT-" 1476939 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469412 1476359 1476515 "LIB" 1476683 T LIB (NIL) -8 NIL NIL NIL) (-643 1465047 1465930 1466865 "LGROBP" 1468529 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463045 1463319 1463669 "LF" 1464768 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1461885 1462577 1462605 "LFCAT" 1462812 T LFCAT (NIL) -9 NIL 1462951 NIL) (-640 1458787 1459417 1460105 "LEXTRIPK" 1461249 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455531 1456357 1456860 "LEXP" 1458367 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455007 1455252 1455344 "LETAST" 1455459 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453405 1453718 1454119 "LEADCDET" 1454689 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1452595 1452669 1452898 "LAZM3PK" 1453326 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447512 1450672 1451210 "LAUPOL" 1452107 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447091 1447135 1447296 "LAPLACE" 1447462 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445030 1446192 1446443 "LA" 1446924 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444010 1444594 1444635 "LALG" 1444697 NIL LALG (NIL T) -9 NIL 1444756 NIL) (-631 1443724 1443783 1443919 "LALG-" 1443924 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1443559 1443583 1443624 "KVTFROM" 1443686 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442482 1442926 1443111 "KTVLOGIC" 1443394 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442317 1442341 1442382 "KRCFROM" 1442444 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441221 1441408 1441707 "KOVACIC" 1442117 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441056 1441080 1441121 "KONVERT" 1441183 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1440891 1440915 1440956 "KOERCE" 1441018 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1438722 1439484 1439861 "KERNEL" 1440547 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438218 1438299 1438431 "KERNEL2" 1438636 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1431929 1436695 1436749 "KDAGG" 1437126 NIL KDAGG (NIL T T) -9 NIL 1437332 NIL) (-621 1431458 1431582 1431787 "KDAGG-" 1431792 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1424606 1431119 1431274 "KAFILE" 1431336 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419034 1424117 1424345 "JORDAN" 1424427 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418413 1418683 1418804 "JOINAST" 1418933 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418259 1418318 1418373 "JAVACODE" 1418378 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414486 1416436 1416490 "IXAGG" 1417419 NIL IXAGG (NIL T T) -9 NIL 1417878 NIL) (-615 1413405 1413711 1414130 "IXAGG-" 1414135 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1408938 1413327 1413386 "IVECTOR" 1413391 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1407704 1407941 1408207 "ITUPLE" 1408705 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406206 1406383 1406678 "ITRIGMNP" 1407526 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1404951 1405155 1405438 "ITFUN3" 1405982 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1404583 1404640 1404749 "ITFUN2" 1404888 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1403742 1404063 1404237 "ITFORM" 1404429 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1401703 1402762 1403040 "ITAYLOR" 1403497 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1390648 1395840 1397003 "ISUPS" 1400573 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1389752 1389892 1390128 "ISUMP" 1390495 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385130 1389697 1389738 "ISTRING" 1389743 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1384606 1384851 1384943 "ISAST" 1385058 T ISAST (NIL) -8 NIL NIL NIL) (-603 1383815 1383897 1384113 "IRURPK" 1384520 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1382751 1382952 1383192 "IRSN" 1383595 T IRSN (NIL) -7 NIL NIL NIL) (-601 1380822 1381177 1381606 "IRRF2F" 1382389 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1380569 1380607 1380683 "IRREDFFX" 1380778 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379184 1379443 1379742 "IROOT" 1380302 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1375788 1376868 1377560 "IR" 1378524 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1374993 1375281 1375432 "IRFORM" 1375657 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1372606 1373101 1373667 "IR2" 1374471 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1371706 1371819 1372033 "IR2F" 1372489 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371497 1371531 1371591 "IPRNTPK" 1371666 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368078 1371386 1371455 "IPF" 1371460 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366405 1368003 1368060 "IPADIC" 1368065 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1365717 1365965 1366095 "IP4ADDR" 1366295 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365091 1365346 1365478 "IOMODE" 1365605 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364164 1364688 1364815 "IOBFILE" 1364984 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1363652 1364068 1364096 "IOBCON" 1364101 T IOBCON (NIL) -9 NIL 1364122 NIL) (-587 1363163 1363221 1363404 "INVLAPLA" 1363588 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1352811 1355165 1357551 "INTTR" 1360827 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349146 1349888 1350753 "INTTOOLS" 1351996 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1348732 1348823 1348940 "INTSLPE" 1349049 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1346685 1348655 1348714 "INTRVL" 1348719 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344287 1344799 1345374 "INTRF" 1346170 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1343698 1343795 1343937 "INTRET" 1344185 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1341695 1342084 1342554 "INTRAT" 1343306 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1338958 1339541 1340160 "INTPM" 1341180 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1335703 1336302 1337040 "INTPAF" 1338344 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1330882 1331844 1332895 "INTPACK" 1334672 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1327694 1330679 1330788 "INT" 1330793 T INT (NIL) -8 NIL NIL NIL) (-575 1326946 1327098 1327306 "INTHERTR" 1327536 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326385 1326465 1326653 "INTHERAL" 1326860 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324231 1324674 1325131 "INTHEORY" 1325948 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1315637 1317258 1319030 "INTG0" 1322583 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296210 1301000 1305810 "INTFTBL" 1310847 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295459 1295597 1295770 "INTFACT" 1296069 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1292886 1293332 1293889 "INTEF" 1295013 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291239 1291978 1292006 "INTDOM" 1292307 T INTDOM (NIL) -9 NIL 1292514 NIL) (-567 1290608 1290782 1291024 "INTDOM-" 1291029 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1286968 1288897 1288951 "INTCAT" 1289750 NIL INTCAT (NIL T) -9 NIL 1290071 NIL) (-565 1286440 1286543 1286671 "INTBIT" 1286860 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285139 1285293 1285600 "INTALG" 1286285 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1284622 1284712 1284869 "INTAF" 1285043 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1277971 1284432 1284572 "INTABL" 1284577 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277304 1277770 1277835 "INT8" 1277869 T INT8 (NIL) -8 NIL NIL 1277914) (-560 1276636 1277102 1277167 "INT64" 1277201 T INT64 (NIL) -8 NIL NIL 1277246) (-559 1275968 1276434 1276499 "INT32" 1276533 T INT32 (NIL) -8 NIL NIL 1276578) (-558 1275300 1275766 1275831 "INT16" 1275865 T INT16 (NIL) -8 NIL NIL 1275910) (-557 1269995 1272848 1272876 "INS" 1273810 T INS (NIL) -9 NIL 1274475 NIL) (-556 1267235 1268006 1268980 "INS-" 1269053 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266010 1266237 1266535 "INPSIGN" 1266988 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265128 1265245 1265442 "INPRODPF" 1265890 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264022 1264139 1264376 "INPRODFF" 1265008 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263022 1263174 1263434 "INNMFACT" 1263858 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262219 1262316 1262504 "INMODGCD" 1262921 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1260727 1260972 1261296 "INFSP" 1261964 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1259911 1260028 1260211 "INFPROD0" 1260607 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1256766 1257976 1258491 "INFORM" 1259404 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256376 1256436 1256534 "INFORM1" 1256701 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1255899 1255988 1256102 "INFINITY" 1256282 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255075 1255619 1255720 "INETCLTS" 1255818 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1253691 1253941 1254262 "INEP" 1254823 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1252896 1253588 1253653 "INDE" 1253658 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252460 1252528 1252645 "INCRMAPS" 1252823 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251278 1251729 1251935 "INBFILE" 1252274 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1246577 1247514 1248458 "INBFF" 1250366 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245485 1245754 1245782 "INBCON" 1246295 T INBCON (NIL) -9 NIL 1246561 NIL) (-538 1244737 1244960 1245236 "INBCON-" 1245241 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244216 1244461 1244552 "INAST" 1244666 T INAST (NIL) -8 NIL NIL NIL) (-536 1243643 1243895 1244001 "IMPTAST" 1244130 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240044 1243487 1243591 "IMATRIX" 1243596 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1238752 1238875 1239191 "IMATQF" 1239900 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1236972 1237199 1237536 "IMATLIN" 1238508 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1231553 1236896 1236954 "ILIST" 1236959 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229461 1231413 1231526 "IIARRAY2" 1231531 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1224859 1229372 1229436 "IFF" 1229441 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224206 1224476 1224592 "IFAST" 1224763 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219204 1223498 1223686 "IFARRAY" 1224063 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218384 1219108 1219181 "IFAMON" 1219186 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1217968 1218033 1218087 "IEVALAB" 1218294 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1217643 1217711 1217871 "IEVALAB-" 1217876 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217233 1217557 1217620 "IDPO" 1217625 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216441 1217122 1217197 "IDPOAMS" 1217202 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1215706 1216330 1216405 "IDPOAM" 1216410 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214563 1214880 1214933 "IDPC" 1215451 NIL IDPC (NIL T T) -9 NIL 1215642 NIL) (-520 1213990 1214455 1214528 "IDPAM" 1214533 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213882 1213955 "IDPAG" 1213960 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -3042 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file +((-4116 (((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)) 23))) +(((-1247 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4116 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1247)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) +(-10 -7 (-15 -4116 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-4048 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3605 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 177 (|has| |#1| (-374)))) (-1770 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) 18 T CONST)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-3397 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4169 (((-112) $) 179 (|has| |#1| (-374)))) (-2037 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-576) $) 115) (((-576) $ (-576)) 114)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) 116)) (-1354 (($ (-1 |#1| (-576)) $) 187)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1606 (((-112) $) 74)) (-1945 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1413 (((-1179) $) 10)) (-2048 (($ $) 180 (|has| |#1| (-374)))) (-3441 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2758 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-3169 (($ $ (-576)) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2411 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 170 (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3600 (((-576) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3998 ((|#1| $ (-576)) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2394 ((|#1| $) 117)) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1248 |#1|) (-141) (-1070)) (T -1248)) +((-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1248 *3)))) (-1354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) (-3397 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-3397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-3441 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-3441 (*1 *1 *1 *2) (-2758 (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1966 ((-656 *2) *3))) (|has| *3 (-15 -3441 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1266 |t#1| (-576)) (-10 -8 (-15 -3079 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -1354 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3397 ((-419 (-971 |t#1|)) $ (-576))) (-15 -3397 ((-419 (-971 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $)) (IF (|has| |t#1| (-15 -3441 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1966 ((-656 (-1197)) |t#1|))) (-15 -3441 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -3441 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1133)) ((-300) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) +((-1812 (((-112) $) 12)) (-1572 (((-3 |#3| "failed") $) 17) (((-3 (-1197) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2859 ((|#3| $) 14) (((-1197) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) +(((-1249 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -1812 ((-112) |#1|))) (-1250 |#2| |#3|) (-1070) (-1279 |#2|)) (T -1249)) +NIL +(-10 -8 (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -1812 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2347 ((|#2| $) 251 (-2673 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1966 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-4048 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3605 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-1881 ((|#2| $) 287)) (-1400 (((-3 |#2| "failed") $) 283)) (-2008 ((|#2| $) 284)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) 20)) (-2971 (((-430 (-1193 $)) (-1193 $)) 260 (-2673 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3420 (($ $) 177 (|has| |#1| (-374)))) (-1770 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 257 (-2673 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2420 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1529 (((-576) $) 269 (-2673 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) 262 (-2673 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2859 ((|#2| $) 291) (((-576) $) 279 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2673 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) 261 (-2673 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-3718 (($ $) 286) (($ (-576) $) 285)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2112 (($ $) 72)) (-4344 (((-701 |#2|) (-701 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 237 (-2673 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 236 (-2673 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3451 (((-3 $ "failed") $) 37)) (-3397 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1836 (($) 253 (-2673 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4169 (((-112) $) 179 (|has| |#1| (-374)))) (-1661 (((-112) $) 267 (-2673 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2037 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 245 (-2673 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 244 (-2673 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3309 (((-576) $) 115) (((-576) $ (-576)) 114)) (-3215 (((-112) $) 35)) (-4340 (($ $) 249 (|has| |#1| (-374)))) (-1570 ((|#2| $) 247 (|has| |#1| (-374)))) (-4336 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3396 (((-3 $ "failed") $) 281 (-2673 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-4099 (((-112) $) 268 (-2673 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4154 (($ $ (-940)) 116)) (-1354 (($ (-1 |#1| (-576)) $) 187)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1606 (((-112) $) 74)) (-1945 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-3124 (($ $ $) 276 (-2673 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-1951 (($ $ $) 275 (-2673 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4116 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3626 (((-701 |#2|) (-1288 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 235 (-2673 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) 234 (-2673 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2019 (($ (-576) |#2|) 288)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 180 (|has| |#1| (-374)))) (-3441 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2758 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3539 (($) 282 (-2673 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2638 (($ $) 252 (-2673 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3416 ((|#2| $) 255 (-2673 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2118 (((-430 (-1193 $)) (-1193 $)) 258 (-2673 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2082 (((-430 (-1193 $)) (-1193 $)) 259 (-2673 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-3169 (($ $ (-576)) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) 228 (-2673 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) 227 (-2673 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 226 (-2673 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2673 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2673 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 223 (-2673 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2411 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133))) (($ $ |#2|) 222 (-2673 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 170 (|has| |#1| (-374)))) (-2773 (($ $ (-1 |#2| |#2|) (-783)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-2758 (-2673 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-2758 (-2673 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 108 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 106 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 105 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3708 (($ $) 250 (|has| |#1| (-374)))) (-1581 ((|#2| $) 248 (|has| |#1| (-374)))) (-3600 (((-576) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-227) $) 266 (-2673 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) 265 (-2673 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) 264 (-2673 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) 243 (-2673 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) 242 (-2673 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 256 (-2673 (-2673 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#1| (-374))))) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1197)) 263 (-2673 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3998 ((|#1| $ (-576)) 71)) (-3230 (((-3 $ "failed") $) 60 (-2758 (-2673 (-2758 (|has| |#2| (-146)) (-2673 (|has| $ (-146)) (|has| |#2| (-928)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1778 (((-783)) 32 T CONST)) (-2394 ((|#1| $) 117)) (-1487 ((|#2| $) 254 (-2673 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-1665 (($ $) 270 (-2673 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1 |#2| |#2|) (-783)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-2758 (-2673 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-2758 (-2673 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 107 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 103 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 102 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-2758 (-2673 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2991 (((-112) $ $) 274 (-2673 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2962 (((-112) $ $) 272 (-2673 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2923 (((-112) $ $) 8)) (-2978 (((-112) $ $) 273 (-2673 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2948 (((-112) $ $) 271 (-2673 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1250 |#1| |#2|) (-141) (-1070) (-1279 |t#1|)) (T -1250)) +((-3600 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) (-5 *2 (-576)))) (-2019 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1070)) (-4 *1 (-1250 *4 *3)) (-4 *3 (-1279 *4)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-3718 (*1 *1 *1) (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2)))) (-3718 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-1400 (*1 *2 *1) (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) +(-13 (-1248 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2019 ($ (-576) |t#2|)) (-15 -3600 ((-576) $)) (-15 -1881 (|t#2| $)) (-15 -3718 ($ $)) (-15 -3718 ($ (-576) $)) (-15 -2008 (|t#2| $)) (-15 -1400 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1013 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-576))))) ((-234 $) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1133)) ((-300) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-861) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-864) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-911 $ #4=(-1197)) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-919 #4#) -2758 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-901 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576)))) ((-899 |#2|) |has| |#1| (-374)) ((-928) -12 (|has| |#1| (-374)) (|has| |#2| (-928))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1013 |#2|) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1043) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-1059 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-1059 |#2|) . T) ((-1072 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-374)) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 |#2|) |has| |#1| (-374)) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) -12 (|has| |#1| (-374)) (|has| |#2| (-1173))) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1248 |#1|) . T) ((-1266 |#1| #0#) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 81)) (-2347 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 100)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-3605 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-1881 ((|#2| $) 11)) (-1400 (((-3 |#2| "failed") $) 35)) (-2008 ((|#2| $) 36)) (-4024 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-1529 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-4049 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2859 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-3718 (($ $) 65) (($ (-576) $) 28)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-4344 (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3451 (((-3 $ "failed") $) 88)) (-3397 (((-419 (-971 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-1661 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2037 (((-112) $) 74)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3309 (((-576) $) 105) (((-576) $ (-576)) 107)) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL (|has| |#1| (-374)))) (-1570 ((|#2| $) 165 (|has| |#1| (-374)))) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3396 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-4099 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4154 (($ $ (-940)) 148)) (-1354 (($ (-1 |#1| (-576)) $) 144)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-576)) 20) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3124 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-1951 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4116 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3744 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3626 (((-701 |#2|) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2019 (($ (-576) |#2|) 10)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 159 (|has| |#1| (-374)))) (-3441 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 233 (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-3539 (($) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2638 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3416 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-576)) 138)) (-3475 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1133))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-2758 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 153 (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3708 (($ $) NIL (|has| |#1| (-374)))) (-1581 ((|#2| $) 166 (|has| |#1| (-374)))) (-3600 (((-576) $) 12)) (-4060 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-227) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1633 (($ $) 136)) (-3569 (((-876) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1197)) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3998 ((|#1| $ (-576)) 85)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1778 (((-783)) 155 T CONST)) (-2394 ((|#1| $) 102)) (-1487 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-1665 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2719 (($) 13 T CONST)) (-2730 (($) 18 T CONST)) (-2018 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-2758 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2758 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2991 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2962 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2923 (((-112) $ $) 72)) (-2978 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2948 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-3043 (($ $) 227) (($ $ $) 78)) (-3029 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1251 |#1| |#2|) (-1250 |#1| |#2|) (-1070) (-1279 |#1|)) (T -1251)) +NIL +(-1250 |#1| |#2|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2347 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 10)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2544 (($ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1574 (((-112) $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4048 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-3605 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-1881 (((-1280 |#1| |#2| |#3|) $) NIL)) (-1400 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL)) (-2008 (((-1280 |#1| |#2| |#3|) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1529 (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2859 (((-1280 |#1| |#2| |#3|) $) NIL) (((-1197) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-3718 (($ $) NIL) (($ (-576) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-1280 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3451 (((-3 $ "failed") $) NIL)) (-3397 (((-419 (-971 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-1661 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3309 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-3215 (((-112) $) NIL)) (-4340 (($ $) NIL (|has| |#1| (-374)))) (-1570 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3396 (((-3 $ "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-4099 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4154 (($ $ (-940)) NIL)) (-1354 (($ (-1 |#1| (-576)) $) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-576)) 18) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3124 (($ $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-1951 (($ $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3626 (((-701 (-1280 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2019 (($ (-576) (-1280 |#1| |#2| |#3|)) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3441 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2638 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3416 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-576)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1280 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1280 |#1| |#2| |#3|)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1133))) (($ $ (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-296 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 26) (($ $) 25 (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3708 (($ $) NIL (|has| |#1| (-374)))) (-1581 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-3600 (((-576) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-548) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1280 |#1| |#2| |#3|)) NIL) (($ (-1284 |#2|)) 24) (($ (-1197)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-3998 ((|#1| $ (-576)) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 11)) (-1487 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1665 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2719 (($) 20 T CONST)) (-2730 (($) 15 T CONST)) (-2018 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2991 (((-112) $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2962 (((-112) $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2923 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2948 (((-112) $ $) NIL (-2758 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 22)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1252 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1252)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-2684 (((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112)) 13)) (-3550 (((-430 |#1|) |#1|) 26)) (-1828 (((-430 |#1|) |#1|) 24))) +(((-1253 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3550 ((-430 |#1|) |#1|)) (-15 -2684 ((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112)))) (-1264 (-576))) (T -1253)) +((-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-3550 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3550 ((-430 |#1|) |#1|)) (-15 -2684 ((-2 (|:| |contp| (-576)) (|:| -1601 (-656 (-2 (|:| |irr| |#1|) (|:| -4073 (-576)))))) |#1| (-112)))) +((-4116 (((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 23 (|has| |#1| (-860))) (((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 17))) +(((-1254 |#1| |#2|) (-10 -7 (-15 -4116 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1254)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1254 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1254 *5 *6))))) +(-10 -7 (-15 -4116 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3533 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4116 (((-1178 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-1579 ((|#1| $) 15)) (-3112 ((|#1| $) 12)) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4219 (((-576) $) 19)) (-3101 ((|#1| $) 18)) (-4229 ((|#1| $) 13)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3619 (((-112) $) 17)) (-1942 (((-1178 |#1|) $) 41 (|has| |#1| (-860))) (((-1178 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-4171 (($ |#1|) 26)) (-3569 (($ (-1115 |#1|)) 25) (((-876) $) 37 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1785 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2667 (($ $ (-576)) 14)) (-2923 (((-112) $ $) 30 (|has| |#1| (-1121))))) +(((-1255 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -1785 ($ |#1|)) (-15 -3533 ($ |#1|)) (-15 -3569 ($ (-1115 |#1|))) (-15 -3619 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) (-1238)) (T -1255)) +((-1785 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-3533 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1115 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) +(-13 (-1114 |#1|) (-10 -8 (-15 -1785 ($ |#1|)) (-15 -3533 ($ |#1|)) (-15 -3569 ($ (-1115 |#1|))) (-15 -3619 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) +((-4116 (((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)) 15))) +(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) (-1197) (-1070) (-1197) (-1070)) (T -1256)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1261 *5 *6)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1261 *7 *8)) (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1197))))) +(-10 -7 (-15 -4116 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) +((-1455 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1493 ((|#1| |#3|) 13)) (-1674 ((|#3| |#3|) 19))) +(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -1493 (|#1| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1455 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-1264 |#2|)) (T -1257)) +((-1455 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) (-4 *2 (-1264 *4)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1493 (|#1| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1455 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1596 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-3555 (((-3 |#2| "failed") |#2| (-783)) 36)) (-3012 (((-3 (-2 (|:| -4239 |#2|) (|:| -4249 |#2|)) "failed") |#2|) 50)) (-3742 (((-656 |#2|) |#2|) 52)) (-2708 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1258 |#1| |#2|) (-10 -7 (-15 -3555 ((-3 |#2| "failed") |#2| (-783))) (-15 -1596 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3012 ((-3 (-2 (|:| -4239 |#2|) (|:| -4249 |#2|)) "failed") |#2|)) (-15 -3742 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1264 |#1|)) (T -1258)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-3012 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-2708 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1264 *3)))) (-1596 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4)))) (-3555 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) +(-10 -7 (-15 -3555 ((-3 |#2| "failed") |#2| (-783))) (-15 -1596 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3012 ((-3 (-2 (|:| -4239 |#2|) (|:| -4249 |#2|)) "failed") |#2|)) (-15 -3742 ((-656 |#2|) |#2|))) +((-1431 (((-3 (-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) "failed") |#2| |#2|) 30))) +(((-1259 |#1| |#2|) (-10 -7 (-15 -1431 ((-3 (-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) "failed") |#2| |#2|))) (-568) (-1264 |#1|)) (T -1259)) +((-1431 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1431 ((-3 (-2 (|:| -3015 |#2|) (|:| -3599 |#2|)) "failed") |#2| |#2|))) +((-1905 ((|#2| |#2| |#2|) 22)) (-1738 ((|#2| |#2| |#2|) 36)) (-1998 ((|#2| |#2| |#2| (-783) (-783)) 44))) +(((-1260 |#1| |#2|) (-10 -7 (-15 -1905 (|#2| |#2| |#2|)) (-15 -1738 (|#2| |#2| |#2|)) (-15 -1998 (|#2| |#2| |#2| (-783) (-783)))) (-1070) (-1264 |#1|)) (T -1260)) +((-1998 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4)))) (-1738 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3)))) (-1905 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -1905 (|#2| |#2| |#2|)) (-15 -1738 (|#2| |#2| |#2|)) (-15 -1998 (|#2| |#2| |#2| (-783) (-783)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1706 (((-1288 |#2|) $ (-783)) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-2500 (($ (-1193 |#2|)) NIL)) (-1799 (((-1193 $) $ (-1103)) NIL) (((-1193 |#2|) $) NIL)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2544 (($ $) NIL (|has| |#2| (-568)))) (-1574 (((-112) $) NIL (|has| |#2| (-568)))) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2901 (($ $ $) NIL (|has| |#2| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3420 (($ $) NIL (|has| |#2| (-464)))) (-1770 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2420 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2365 (($ $ (-783)) NIL)) (-3095 (($ $ (-783)) NIL)) (-4271 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-1103) $) NIL)) (-4004 (($ $ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3428 (($ $ $) NIL (|has| |#2| (-374)))) (-2112 (($ $) NIL)) (-4344 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#2| (-374)))) (-3184 (($ $ $) NIL)) (-2709 (($ $ $) NIL (|has| |#2| (-568)))) (-3966 (((-2 (|:| -1714 |#2|) (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-1371 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-2101 (((-656 $) $) NIL)) (-4169 (((-112) $) NIL (|has| |#2| (-928)))) (-3415 (($ $ |#2| (-783) $) NIL)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3309 (((-783) $ $) NIL (|has| |#2| (-568)))) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-1955 (($ (-1193 |#2|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4154 (($ $ (-783)) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-1945 (($ |#2| (-783)) 18) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1103)) NIL) (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL)) (-2987 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1938 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-3785 (((-1193 |#2|) $) NIL)) (-2512 (((-3 (-1103) "failed") $) NIL)) (-3626 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2079 (($ $) NIL)) (-2089 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1413 (((-1179) $) NIL)) (-3815 (((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783)) NIL)) (-2164 (((-3 (-656 $) "failed") $) NIL)) (-3163 (((-3 (-656 $) "failed") $) NIL)) (-2292 (((-3 (-2 (|:| |var| (-1103)) (|:| -4210 (-783))) "failed") $) NIL)) (-3441 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#2| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 ((|#2| $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1901 (($ $ (-783) |#2| $) NIL)) (-2118 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3283 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) NIL) (($ $ (-656 (-1103)) (-656 |#2|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2411 (((-783) $) NIL (|has| |#2| (-374)))) (-2796 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-2755 (((-3 $ "failed") $ (-783)) NIL)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#2| (-374)))) (-2455 (($ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2773 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3600 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-1705 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-3569 (((-876) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) NIL) (($ (-1284 |#1|)) 20) (($ (-419 (-576))) NIL (-2758 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3230 (((-3 $ "failed") $) NIL (-2758 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2719 (($) NIL T CONST)) (-2730 (($) 14 T CONST)) (-2018 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1261 |#1| |#2|) (-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -1901 ($ $ (-783) |#2| $)))) (-1197) (-1070)) (T -1261)) +((-1901 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) (-4 *3 (-1070))))) +(-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -1901 ($ $ (-783) |#2| $)))) +((-4116 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-1264 |#1|) (-1070) (-1264 |#3|)) (T -1262)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *4 *6 *2)) (-4 *4 (-1264 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) +((-1706 (((-1288 |#2|) $ (-783)) 129)) (-1966 (((-656 (-1103)) $) 16)) (-2500 (($ (-1193 |#2|)) 80)) (-3591 (((-783) $) NIL) (((-783) $ (-656 (-1103))) 21)) (-2971 (((-430 (-1193 $)) (-1193 $)) 204)) (-3420 (($ $) 194)) (-1770 (((-430 $) $) 192)) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 95)) (-2365 (($ $ (-783)) 84)) (-3095 (($ $ (-783)) 86)) (-4271 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1572 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1103) $) NIL)) (-2709 (($ $ $) 170)) (-3966 (((-2 (|:| -1714 |#2|) (|:| -3015 $) (|:| -3599 $)) $ $) 172)) (-3309 (((-783) $ $) 189)) (-3396 (((-3 $ "failed") $) 138)) (-1945 (($ |#2| (-783)) NIL) (($ $ (-1103) (-783)) 59) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-2987 (((-783) $) NIL) (((-783) $ (-1103)) 54) (((-656 (-783)) $ (-656 (-1103))) 55)) (-3785 (((-1193 |#2|) $) 72)) (-2512 (((-3 (-1103) "failed") $) 52)) (-3815 (((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783)) 83)) (-3441 (($ $) 219)) (-3539 (($) 134)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 201)) (-2118 (((-430 (-1193 $)) (-1193 $)) 101)) (-2082 (((-430 (-1193 $)) (-1193 $)) 99)) (-1828 (((-430 $) $) 120)) (-3283 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) 39) (($ $ (-656 (-1103)) (-656 |#2|)) 36) (($ $ (-1103) $) 32) (($ $ (-656 (-1103)) (-656 $)) 30)) (-2411 (((-783) $) 207)) (-2796 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 212)) (-2773 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3600 (((-783) $) NIL) (((-783) $ (-1103)) 17) (((-656 (-783)) $ (-656 (-1103))) 23)) (-1457 ((|#2| $) NIL) (($ $ (-1103)) 140)) (-1705 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-1263 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -2796 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2411 ((-783) |#1|)) (-15 -2935 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -2796 (|#2| (-419 |#1|) |#2|)) (-15 -4271 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3966 ((-2 (|:| -1714 |#2|) (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -1705 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -1705 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3309 ((-783) |#1| |#1|)) (-15 -2796 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3095 (|#1| |#1| (-783))) (-15 -2365 (|#1| |#1| (-783))) (-15 -3815 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| (-783))) (-15 -2500 (|#1| (-1193 |#2|))) (-15 -3785 ((-1193 |#2|) |#1|)) (-15 -1706 ((-1288 |#2|) |#1| (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| |#2|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2971 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2082 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2118 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1457 (|#1| |#1| (-1103))) (-15 -1966 ((-656 (-1103)) |#1|)) (-15 -3591 ((-783) |#1| (-656 (-1103)))) (-15 -3591 ((-783) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1945 (|#1| |#1| (-1103) (-783))) (-15 -2987 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2987 ((-783) |#1| (-1103))) (-15 -2512 ((-3 (-1103) "failed") |#1|)) (-15 -3600 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -3600 ((-783) |#1| (-1103))) (-15 -3569 (|#1| (-1103))) (-15 -1572 ((-3 (-1103) "failed") |#1|)) (-15 -2859 ((-1103) |#1|)) (-15 -3283 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -3283 (|#1| |#1| (-1103) |#1|)) (-15 -3283 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -3283 (|#1| |#1| (-1103) |#2|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3600 ((-783) |#1|)) (-15 -1945 (|#1| |#2| (-783))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2987 ((-783) |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -2773 (|#1| |#1| (-1103))) (-15 -2773 (|#1| |#1| (-656 (-1103)))) (-15 -2773 (|#1| |#1| (-1103) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1264 |#2|) (-1070)) (T -1263)) +NIL +(-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -1727 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -2773 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2773 (|#1| |#1| (-1197) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1197)))) (-15 -2773 (|#1| |#1| (-1197))) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3539 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -2796 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2411 ((-783) |#1|)) (-15 -2935 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -2796 (|#2| (-419 |#1|) |#2|)) (-15 -4271 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3966 ((-2 (|:| -1714 |#2|) (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -1705 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -1705 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3309 ((-783) |#1| |#1|)) (-15 -2796 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3095 (|#1| |#1| (-783))) (-15 -2365 (|#1| |#1| (-783))) (-15 -3815 ((-2 (|:| -3015 |#1|) (|:| -3599 |#1|)) |#1| (-783))) (-15 -2500 (|#1| (-1193 |#2|))) (-15 -3785 ((-1193 |#2|) |#1|)) (-15 -1706 ((-1288 |#2|) |#1| (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2773 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2773 (|#1| |#1| (-783))) (-15 -2773 (|#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| |#2|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2971 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2082 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -2118 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3807 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1457 (|#1| |#1| (-1103))) (-15 -1966 ((-656 (-1103)) |#1|)) (-15 -3591 ((-783) |#1| (-656 (-1103)))) (-15 -3591 ((-783) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1945 (|#1| |#1| (-1103) (-783))) (-15 -2987 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2987 ((-783) |#1| (-1103))) (-15 -2512 ((-3 (-1103) "failed") |#1|)) (-15 -3600 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -3600 ((-783) |#1| (-1103))) (-15 -3569 (|#1| (-1103))) (-15 -1572 ((-3 (-1103) "failed") |#1|)) (-15 -2859 ((-1103) |#1|)) (-15 -3283 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -3283 (|#1| |#1| (-1103) |#1|)) (-15 -3283 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -3283 (|#1| |#1| (-1103) |#2|)) (-15 -3283 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3283 (|#1| |#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| (-304 |#1|))) (-15 -3283 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3600 ((-783) |#1|)) (-15 -1945 (|#1| |#2| (-783))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2987 ((-783) |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -2773 (|#1| |#1| (-1103))) (-15 -2773 (|#1| |#1| (-656 (-1103)))) (-15 -2773 (|#1| |#1| (-1103) (-783))) (-15 -2773 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1706 (((-1288 |#1|) $ (-783)) 256)) (-1966 (((-656 (-1103)) $) 113)) (-2500 (($ (-1193 |#1|)) 254)) (-1799 (((-1193 $) $ (-1103)) 128) (((-1193 |#1|) $) 127)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2544 (($ $) 91 (|has| |#1| (-568)))) (-1574 (((-112) $) 93 (|has| |#1| (-568)))) (-3591 (((-783) $) 115) (((-783) $ (-656 (-1103))) 114)) (-2780 (((-3 $ "failed") $ $) 20)) (-2901 (($ $ $) 241 (|has| |#1| (-568)))) (-2971 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3420 (($ $) 101 (|has| |#1| (-464)))) (-1770 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3807 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-2420 (((-112) $ $) 226 (|has| |#1| (-374)))) (-2365 (($ $ (-783)) 249)) (-3095 (($ $ (-783)) 248)) (-4271 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) 143)) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) (((-1103) $) 144)) (-4004 (($ $ $ (-1103)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3428 (($ $ $) 230 (|has| |#1| (-374)))) (-2112 (($ $) 161)) (-4344 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 229 (|has| |#1| (-374)))) (-3184 (($ $ $) 247)) (-2709 (($ $ $) 238 (|has| |#1| (-568)))) (-3966 (((-2 (|:| -1714 |#1|) (|:| -3015 $) (|:| -3599 $)) $ $) 237 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-1371 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1103)) 108 (|has| |#1| (-464)))) (-2101 (((-656 $) $) 112)) (-4169 (((-112) $) 99 (|has| |#1| (-928)))) (-3415 (($ $ |#1| (-783) $) 179)) (-2399 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3309 (((-783) $ $) 242 (|has| |#1| (-568)))) (-3215 (((-112) $) 35)) (-1675 (((-783) $) 176)) (-3396 (((-3 $ "failed") $) 222 (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) 120) (($ (-1193 $) (-1103)) 119)) (-4154 (($ $ (-783)) 253)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-3773 (((-656 $) $) 129)) (-1606 (((-112) $) 159)) (-1945 (($ |#1| (-783)) 160) (($ $ (-1103) (-783)) 122) (($ $ (-656 (-1103)) (-656 (-783))) 121)) (-1488 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $ (-1103)) 123) (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 251)) (-2987 (((-783) $) 177) (((-783) $ (-1103)) 125) (((-656 (-783)) $ (-656 (-1103))) 124)) (-1938 (($ (-1 (-783) (-783)) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-3785 (((-1193 |#1|) $) 255)) (-2512 (((-3 (-1103) "failed") $) 126)) (-3626 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3752 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2079 (($ $) 156)) (-2089 ((|#1| $) 155)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1413 (((-1179) $) 10)) (-3815 (((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783)) 250)) (-2164 (((-3 (-656 $) "failed") $) 117)) (-3163 (((-3 (-656 $) "failed") $) 118)) (-2292 (((-3 (-2 (|:| |var| (-1103)) (|:| -4210 (-783))) "failed") $) 116)) (-3441 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) 221 (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) 11)) (-2058 (((-112) $) 173)) (-2068 ((|#1| $) 174)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2118 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-2082 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 231 (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-3283 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1103) |#1|) 148) (($ $ (-656 (-1103)) (-656 |#1|)) 147) (($ $ (-1103) $) 146) (($ $ (-656 (-1103)) (-656 $)) 145)) (-2411 (((-783) $) 227 (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-2755 (((-3 $ "failed") $ (-783)) 252)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 228 (|has| |#1| (-374)))) (-2455 (($ $ (-1103)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2773 (($ $ (-656 (-1103)) (-656 (-783))) 44) (($ $ (-1103) (-783)) 43) (($ $ (-656 (-1103))) 42) (($ $ (-1103)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1197)) 220 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 216 (|has| |#1| (-919 (-1197))))) (-3600 (((-783) $) 157) (((-783) $ (-1103)) 133) (((-656 (-783)) $ (-656 (-1103))) 132)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1103)) 109 (|has| |#1| (-464)))) (-2254 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2673 (|has| $ (-146)) (|has| |#1| (-928))))) (-1705 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1103)) 142) (($ (-419 (-576))) 81 (-2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2060 (((-656 |#1|) $) 175)) (-3998 ((|#1| $ (-783)) 162) (($ $ (-1103) (-783)) 131) (($ $ (-656 (-1103)) (-656 (-783))) 130)) (-3230 (((-3 $ "failed") $) 82 (-2758 (-2673 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-1778 (((-783)) 32 T CONST)) (-2655 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-656 (-1103)) (-656 (-783))) 47) (($ $ (-1103) (-783)) 46) (($ $ (-656 (-1103))) 45) (($ $ (-1103)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 215 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 213 (|has| |#1| (-919 (-1197))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1264 |#1|) (-141) (-1070)) (T -1264)) +((-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3)))) (-2500 (*1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-2755 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-1488 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1264 *3)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1264 *4)))) (-2365 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-3184 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)))) (-2773 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-4004 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-2796 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-3309 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2901 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-1705 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-1705 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-2709 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3966 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1714 *3) (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1264 *3)))) (-4271 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1264 *3)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3441 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576))))))) +(-13 (-968 |t#1| (-783) (-1103)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -1706 ((-1288 |t#1|) $ (-783))) (-15 -3785 ((-1193 |t#1|) $)) (-15 -2500 ($ (-1193 |t#1|))) (-15 -4154 ($ $ (-783))) (-15 -2755 ((-3 $ "failed") $ (-783))) (-15 -1488 ((-2 (|:| -3015 $) (|:| -3599 $)) $ $)) (-15 -3815 ((-2 (|:| -3015 $) (|:| -3599 $)) $ (-783))) (-15 -2365 ($ $ (-783))) (-15 -3095 ($ $ (-783))) (-15 -3184 ($ $ $)) (-15 -2773 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2455 (|t#1| $)) (-15 -4004 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2796 ((-419 $) (-419 $) (-419 $))) (-15 -3309 ((-783) $ $)) (-15 -2901 ($ $ $)) (-15 -1705 ((-3 $ "failed") $ $)) (-15 -1705 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -2709 ($ $ $)) (-15 -3966 ((-2 (|:| -1714 |t#1|) (|:| -3015 $) (|:| -3599 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -4271 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4460) (-15 -2796 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -3441 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2758 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1103)) . T) ((-628 |#1|) . T) ((-628 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2758 (|has| |#1| (-928)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2#) . T) ((-911 $ #4=(-1197)) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) . T) ((-919 #4#) -2758 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) -12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390)))) ((-901 (-576)) -12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))) ((-968 |#1| #0# #2#) . T) ((-928) |has| |#1| (-928)) ((-939) |has| |#1| (-374)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 |#1|) . T) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-1966 (((-656 (-1103)) $) 34)) (-2112 (($ $) 31)) (-1945 (($ |#2| |#3|) NIL) (($ $ (-1103) |#3|) 28) (($ $ (-656 (-1103)) (-656 |#3|)) 27)) (-2079 (($ $) 14)) (-2089 ((|#2| $) 12)) (-3600 ((|#3| $) 10))) +(((-1265 |#1| |#2| |#3|) (-10 -8 (-15 -1966 ((-656 (-1103)) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1945 (|#1| |#1| (-1103) |#3|)) (-15 -2112 (|#1| |#1|)) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3600 (|#3| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 -2089 (|#2| |#1|))) (-1266 |#2| |#3|) (-1070) (-804)) (T -1265)) +NIL +(-10 -8 (-15 -1966 ((-656 (-1103)) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1945 (|#1| |#1| (-1103) |#3|)) (-15 -2112 (|#1| |#1|)) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3600 (|#3| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 -2089 (|#2| |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-4048 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3605 (((-1178 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-2037 (((-112) $) 85)) (-3309 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-3215 (((-112) $) 35)) (-4154 (($ $ (-940)) 116)) (-1606 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73) (($ $ (-1103) |#2|) 88) (($ $ (-656 (-1103)) (-656 |#2|)) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3169 (($ $ |#2|) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3283 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2796 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1133)))) (-2773 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3600 ((|#2| $) 76)) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3998 ((|#1| $ |#2|) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2394 ((|#1| $) 117)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4165 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1266 |#1| |#2|) (-141) (-1070) (-804)) (T -1266)) +((-3605 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1197)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3309 (*1 *2 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4048 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4048 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4165 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3569 (*2 (-1197)))) (-4 *2 (-1070)))) (-3169 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3283 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) +(-13 (-994 |t#1| |t#2| (-1103)) (-296 |t#2| |t#1|) (-10 -8 (-15 -3605 ((-1178 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3054 ((-1197) $)) (-15 -2394 (|t#1| $)) (-15 -4154 ($ $ (-940))) (-15 -3309 (|t#2| $)) (-15 -3309 (|t#2| $ |t#2|)) (-15 -4048 ($ $ |t#2|)) (-15 -4048 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3569 (|t#1| (-1197)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4165 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3169 ($ $ |t#2|)) (IF (|has| |t#2| (-1133)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3283 ((-1178 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1133)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #1=(-1197)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| |#2| (-1103)) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3420 ((|#2| |#2|) 12)) (-1770 (((-430 |#2|) |#2|) 14)) (-2547 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) +(((-1267 |#1| |#2|) (-10 -7 (-15 -1770 ((-430 |#2|) |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -2547 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1264 |#1|) (-568) (-10 -8 (-15 -3498 ($ $ $))))) (T -1267)) +((-2547 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1267 *3 *4)))) (-3420 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $))))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3498 ($ $ $)))))))) +(-10 -7 (-15 -1770 ((-430 |#2|) |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -2547 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) +((-4116 (((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)) 24))) +(((-1268 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4116 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1268)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1273 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) +(-10 -7 (-15 -4116 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 177 (|has| |#1| (-374)))) (-1770 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) 18 T CONST)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4169 (((-112) $) 179 (|has| |#1| (-374)))) (-2037 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1606 (((-112) $) 74)) (-1945 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1413 (((-1179) $) 10)) (-2048 (($ $) 180 (|has| |#1| (-374)))) (-3441 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2758 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 170 (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3600 (((-419 (-576)) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2394 ((|#1| $) 117)) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1269 |#1|) (-141) (-1070)) (T -1269)) +((-3079 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1070)) (-4 *1 (-1269 *4)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070)))) (-3441 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-3441 (*1 *1 *1 *2) (-2758 (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1966 ((-656 *2) *3))) (|has| *3 (-15 -3441 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1266 |t#1| (-419 (-576))) (-10 -8 (-15 -3079 ($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -4154 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $)) (IF (|has| |t#1| (-15 -3441 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1966 ((-656 (-1197)) |t#1|))) (-15 -3441 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -3441 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) +((-1812 (((-112) $) 12)) (-1572 (((-3 |#3| "failed") $) 17)) (-2859 ((|#3| $) 14))) +(((-1270 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -1812 ((-112) |#1|))) (-1271 |#2| |#3|) (-1070) (-1248 |#2|)) (T -1270)) +NIL +(-10 -8 (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -1812 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 177 (|has| |#1| (-374)))) (-1770 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 197)) (-2859 ((|#2| $) 198)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-4201 (((-419 (-576)) $) 194)) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-2029 (($ (-419 (-576)) |#2|) 195)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4169 (((-112) $) 179 (|has| |#1| (-374)))) (-2037 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1606 (((-112) $) 74)) (-1945 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1438 ((|#2| $) 193)) (-3485 (((-3 |#2| "failed") $) 191)) (-2019 ((|#2| $) 192)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 180 (|has| |#1| (-374)))) (-3441 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2758 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 170 (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3600 (((-419 (-576)) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2394 ((|#1| $) 117)) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1271 |#1| |#2|) (-141) (-1070) (-1248 |t#1|)) (T -1271)) +((-3600 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-2029 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1248 *4)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-3485 (*1 *2 *1) (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) +(-13 (-1269 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2029 ($ (-419 (-576)) |t#2|)) (-15 -4201 ((-419 (-576)) $)) (-15 -1438 (|t#2| $)) (-15 -3600 ((-419 (-576)) $)) (-15 -2019 (|t#2| $)) (-15 -3485 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1059 |#2|) . T) ((-1072 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2758 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T) ((-1269 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 104)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-4024 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-4049 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL)) (-2859 ((|#2| $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) 85)) (-4201 (((-419 (-576)) $) 13)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2029 (($ (-419 (-576)) |#2|) 11)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-2037 (((-112) $) 74)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) 130) (($ $ (-419 (-576))) 128)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) 33) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 125)) (-3744 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1438 ((|#2| $) 12)) (-3485 (((-3 |#2| "failed") $) 44)) (-2019 ((|#2| $) 45)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) 101 (|has| |#1| (-374)))) (-3441 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 151 (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) 122)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3600 (((-419 (-576)) $) 16)) (-4060 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 120)) (-3569 (((-876) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) 107)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) 127 T CONST)) (-2394 ((|#1| $) 106)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 21 T CONST)) (-2730 (($) 17 T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2923 (((-112) $ $) 72)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-3043 (($ $) 142) (($ $ $) 78)) (-3029 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1272 |#1| |#2|) (-1271 |#1| |#2|) (-1070) (-1248 |#1|)) (T -1272)) +NIL +(-1271 |#1| |#2|) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 11)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) NIL (|has| |#1| (-568)))) (-4048 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3605 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-374)))) (-1770 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2420 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1280 |#1| |#2| |#3|) "failed") $) 22)) (-2859 (((-1252 |#1| |#2| |#3|) $) NIL) (((-1280 |#1| |#2| |#3|) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-4201 (((-419 (-576)) $) 69)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2029 (($ (-419 (-576)) (-1252 |#1| |#2| |#3|)) NIL)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4169 (((-112) $) NIL (|has| |#1| (-374)))) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-3215 (((-112) $) NIL)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) 30) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1438 (((-1252 |#1| |#2| |#3|) $) 72)) (-3485 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) NIL)) (-2019 (((-1252 |#1| |#2| |#3|) $) NIL)) (-1413 (((-1179) $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-374)))) (-3441 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3721 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3169 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2411 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) NIL (|has| |#1| (-374)))) (-2773 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-3600 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) NIL)) (-3569 (((-876) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1252 |#1| |#2| |#3|)) 16) (($ (-1280 |#1| |#2| |#3|)) 17) (($ (-1284 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3998 ((|#1| $ (-419 (-576))) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 12)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 32 T CONST)) (-2730 (($) 26 T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 34)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1273 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1273)) +((-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 37)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2544 (($ $) NIL)) (-1574 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 22)) (-2859 (((-576) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-2112 (($ $) 41)) (-3451 (((-3 $ "failed") $) 27)) (-1371 (($ $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-3415 (($ $ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) 11)) (-1606 (((-112) $) NIL)) (-1945 (($ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-2987 (((-329 |#2| |#3| |#4|) $) NIL)) (-1938 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-4116 (($ (-1 (-1273 |#2| |#3| |#4|) (-1273 |#2| |#3| |#4|)) $) NIL)) (-4063 (((-3 (-855 |#2|) "failed") $) 90)) (-2079 (($ $) NIL)) (-2089 (((-1273 |#2| |#3| |#4|) $) 20)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-112) $) NIL)) (-2068 (((-1273 |#2| |#3| |#4|) $) NIL)) (-3475 (((-3 $ "failed") $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-4276 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $) 74)) (-3600 (((-329 |#2| |#3| |#4|) $) 17)) (-1457 (((-1273 |#2| |#3| |#4|) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-1273 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2758 (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))))) (-2060 (((-656 (-1273 |#2| |#3| |#4|)) $) NIL)) (-3998 (((-1273 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-146)))) (-1778 (((-783)) NIL T CONST)) (-2655 (($ $ $ (-783)) NIL (|has| (-1273 |#2| |#3| |#4|) (-174)))) (-2113 (((-112) $ $) NIL)) (-2537 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1273 |#2| |#3| |#4|)) NIL) (($ (-1273 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))))) +(((-1274 |#1| |#2| |#3| |#4|) (-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -4063 ((-3 (-855 |#2|) "failed") $)) (-15 -4276 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -1274)) +((-4063 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4))) (-4276 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1179)))) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) +(-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -4063 ((-3 (-855 |#2|) "failed") $)) (-15 -4276 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) +((-3104 ((|#2| $) 34)) (-2897 ((|#2| $) 18)) (-4425 (($ $) 53)) (-4075 (($ $ (-576)) 85)) (-2396 (((-112) $ (-783)) 46)) (-2232 ((|#2| $ |#2|) 82)) (-3099 ((|#2| $ |#2|) 78)) (-3755 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2404 (($ $ (-656 $)) 81)) (-2882 ((|#2| $) 17)) (-3592 (($ $) NIL) (($ $ (-783)) 59)) (-2324 (((-656 $) $) 31)) (-3695 (((-112) $ $) 69)) (-4252 (((-112) $ (-783)) 45)) (-3557 (((-112) $ (-783)) 43)) (-2953 (((-112) $) 33)) (-3967 ((|#2| $) 25) (($ $ (-783)) 64)) (-2796 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2199 (((-112) $) 23)) (-2560 (($ $) 56)) (-3930 (($ $) 86)) (-1594 (((-783) $) 58)) (-3574 (($ $) 57)) (-1615 (($ $ $) 77) (($ |#2| $) NIL)) (-3338 (((-656 $) $) 32)) (-2923 (((-112) $ $) 67)) (-3502 (((-783) $) 52))) +(((-1275 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -4075 (|#1| |#1| (-576))) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -3099 (|#2| |#1| |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -3930 (|#1| |#1|)) (-15 -2560 (|#1| |#1|)) (-15 -1594 ((-783) |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -2897 (|#2| |#1|)) (-15 -2882 (|#2| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3967 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3967 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -2796 (|#2| |#1| "first")) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2232 (|#2| |#1| |#2|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2404 (|#1| |#1| (-656 |#1|))) (-15 -3695 ((-112) |#1| |#1|)) (-15 -2199 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -2953 ((-112) |#1|)) (-15 -2324 ((-656 |#1|) |#1|)) (-15 -3338 ((-656 |#1|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783)))) (-1276 |#2|) (-1238)) (T -1275)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -4075 (|#1| |#1| (-576))) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -3099 (|#2| |#1| |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -3930 (|#1| |#1|)) (-15 -2560 (|#1| |#1|)) (-15 -1594 ((-783) |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -2897 (|#2| |#1|)) (-15 -2882 (|#2| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3967 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3967 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -2796 (|#2| |#1| "first")) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2232 (|#2| |#1| |#2|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2404 (|#1| |#1| (-656 |#1|))) (-15 -3695 ((-112) |#1| |#1|)) (-15 -2199 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -2953 ((-112) |#1|)) (-15 -2324 ((-656 |#1|) |#1|)) (-15 -3338 ((-656 |#1|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -2396 ((-112) |#1| (-783))) (-15 -4252 ((-112) |#1| (-783))) (-15 -3557 ((-112) |#1| (-783)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2897 ((|#1| $) 66)) (-4425 (($ $) 68)) (-4075 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-2396 (((-112) $ (-783)) 8)) (-2232 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1512 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3099 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-3559 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465)))) (-2404 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-2882 ((|#1| $) 67)) (-3306 (($) 7 T CONST)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2324 (((-656 $) $) 51)) (-3695 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4252 (((-112) $ (-783)) 9)) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-3557 (((-112) $ (-783)) 10)) (-2351 (((-656 |#1|) $) 46)) (-2953 (((-112) $) 50)) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3967 ((|#1| $) 71) (($ $ (-783)) 69)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3957 (((-576) $ $) 45)) (-2199 (((-112) $) 47)) (-2560 (($ $) 63)) (-3930 (($ $) 60 (|has| $ (-6 -4465)))) (-1594 (((-783) $) 64)) (-3574 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-2563 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 79) (($ |#1| $) 78)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3338 (((-656 $) $) 52)) (-4386 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1276 |#1|) (-141) (-1238)) (T -1276)) +((-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3580 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-2560 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2563 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2563 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3930 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3559 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1512 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3099 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238))))) +(-13 (-1031 |t#1|) (-10 -8 (-15 -1615 ($ $ $)) (-15 -1615 ($ |t#1| $)) (-15 -3580 (|t#1| $)) (-15 -2796 (|t#1| $ "first")) (-15 -3580 ($ $ (-783))) (-15 -3592 ($ $)) (-15 -2796 ($ $ "rest")) (-15 -3592 ($ $ (-783))) (-15 -3967 (|t#1| $)) (-15 -2796 (|t#1| $ "last")) (-15 -3967 ($ $ (-783))) (-15 -4425 ($ $)) (-15 -2882 (|t#1| $)) (-15 -2897 (|t#1| $)) (-15 -3574 ($ $)) (-15 -1594 ((-783) $)) (-15 -2560 ($ $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2563 ($ $ $)) (-15 -2563 ($ $ |t#1|)) (-15 -3930 ($ $)) (-15 -3559 (|t#1| $ |t#1|)) (-15 -3755 (|t#1| $ "first" |t#1|)) (-15 -1512 ($ $ $)) (-15 -3755 ($ $ "rest" $)) (-15 -3099 (|t#1| $ |t#1|)) (-15 -3755 (|t#1| $ "last" |t#1|)) (-15 -4075 ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-4116 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) (-1070) (-1070) (-1279 |#1|) (-1279 |#2|)) (T -1277)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) +((-1812 (((-112) $) 17)) (-4024 (($ $) 105)) (-3900 (($ $) 81)) (-4005 (($ $) 101)) (-3876 (($ $) 77)) (-4049 (($ $) 109)) (-3919 (($ $) 85)) (-3744 (($ $) 75)) (-4103 (($ $) 73)) (-4060 (($ $) 111)) (-3929 (($ $) 87)) (-4036 (($ $) 107)) (-3909 (($ $) 83)) (-4013 (($ $) 103)) (-3888 (($ $) 79)) (-3569 (((-876) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2789 (($ $) 117)) (-3960 (($ $) 93)) (-4070 (($ $) 113)) (-3937 (($ $) 89)) (-2814 (($ $) 121)) (-3982 (($ $) 97)) (-4387 (($ $) 123)) (-3994 (($ $) 99)) (-2802 (($ $) 119)) (-3973 (($ $) 95)) (-4082 (($ $) 115)) (-3950 (($ $) 91)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) +(((-1278 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -1812 ((-112) |#1|)) (-15 -3569 ((-876) |#1|))) (-1279 |#2|) (-1070)) (T -1278)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -1812 ((-112) |#1|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-1966 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2544 (($ $) 64 (|has| |#1| (-568)))) (-1574 (((-112) $) 66 (|has| |#1| (-568)))) (-4048 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-3605 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) 20)) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1178 |#1|)) 168)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) 18 T CONST)) (-2112 (($ $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-3243 (($ $) 167)) (-2381 (((-971 |#1|) $ (-783)) 165) (((-971 |#1|) $ (-783) (-783)) 164)) (-2037 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-783) $) 115) (((-783) $ (-783)) 114)) (-3215 (((-112) $) 35)) (-4336 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4154 (($ $ (-940)) 116)) (-1354 (($ (-1 |#1| (-576)) $) 166)) (-1606 (((-112) $) 74)) (-1945 (($ |#1| (-783)) 73) (($ $ (-1103) (-783)) 88) (($ $ (-656 (-1103)) (-656 (-783))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) 77)) (-2089 ((|#1| $) 78)) (-1413 (((-1179) $) 10)) (-3441 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 161 (-2758 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-3169 (($ $ (-783)) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3283 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2796 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1133)))) (-2773 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3600 (((-783) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2060 (((-1178 |#1|) $) 169)) (-3998 ((|#1| $ (-783)) 71)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1778 (((-783)) 32 T CONST)) (-2394 ((|#1| $) 117)) (-2113 (((-112) $ $) 6)) (-2789 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2018 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1279 |#1|) (-141) (-1070)) (T -1279)) +((-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-3243 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)))) (-1354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070)))) (-2381 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (-2381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3441 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-3441 (*1 *1 *1 *2) (-2758 (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1966 ((-656 *2) *3))) (|has| *3 (-15 -3441 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1266 |t#1| (-783)) (-10 -8 (-15 -3079 ($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -2060 ((-1178 |t#1|) $)) (-15 -3079 ($ (-1178 |t#1|))) (-15 -3243 ($ $)) (-15 -1354 ($ (-1 |t#1| (-576)) $)) (-15 -2381 ((-971 |t#1|) $ (-783))) (-15 -2381 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3441 ($ $)) (IF (|has| |t#1| (-15 -3441 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1966 ((-656 (-1197)) |t#1|))) (-15 -3441 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -3441 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1133)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2758 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1266 |#1| #0#) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-1966 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 90)) (-2910 (((-1261 |#2| |#1|) $ (-783)) 73)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2544 (($ $) NIL (|has| |#1| (-568)))) (-1574 (((-112) $) 142 (|has| |#1| (-568)))) (-4048 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-3605 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2780 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1178 |#1|)) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($) NIL T CONST)) (-3216 (($ $) 134)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-3243 (($ $) 140)) (-2381 (((-971 |#1|) $ (-783)) 63) (((-971 |#1|) $ (-783) (-783)) 65)) (-2037 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3309 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-3215 (((-112) $) NIL)) (-4081 (($ $) 117)) (-4336 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2875 (($ (-576) (-576) $) 136)) (-4154 (($ $ (-940)) 139)) (-1354 (($ (-1 |#1| (-576)) $) 111)) (-1606 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 16) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 98)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2079 (($ $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-3108 (($ $) 115)) (-1715 (($ $) 113)) (-1739 (($ (-576) (-576) $) 138)) (-3441 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 156 (-2758 (-12 (|has| |#1| (-15 -3441 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1966 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-3436 (($ $ (-576) (-576)) 121)) (-3169 (($ $ (-783)) 123)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4012 (($ $) 119)) (-3283 (((-1178 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2796 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1133)))) (-2773 (($ $ (-1197)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 103)) (-3600 (((-783) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1633 (($ $) 125)) (-3569 (((-876) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 81) (($ (-1284 |#2|)) 22)) (-2060 (((-1178 |#1|) $) NIL)) (-3998 ((|#1| $ (-783)) 94)) (-3230 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1778 (((-783)) NIL T CONST)) (-2394 ((|#1| $) 91)) (-2113 (((-112) $ $) NIL)) (-2789 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2537 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2719 (($) 18 T CONST)) (-2730 (($) 13 T CONST)) (-2018 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 107)) (-3029 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1280 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -2910 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (-15 -1715 ($ $)) (-15 -3108 ($ $)) (-15 -4081 ($ $)) (-15 -4012 ($ $)) (-15 -3436 ($ $ (-576) (-576))) (-15 -3216 ($ $)) (-15 -2875 ($ (-576) (-576) $)) (-15 -1739 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1280)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1280 *3 *4 *5)))) (-2910 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-1715 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-3108 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-4081 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-4012 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-3436 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-3216 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2875 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-1739 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -2910 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (-15 -1715 ($ $)) (-15 -3108 ($ $)) (-15 -4081 ($ $)) (-15 -4012 ($ $)) (-15 -3436 ($ $ (-576) (-576))) (-15 -3216 ($ $)) (-15 -2875 ($ (-576) (-576) $)) (-15 -1739 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3441 ($ $ (-1284 |#2|))) |%noBranch|))) +((-1742 (((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-2594 (((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1627 (((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|)) 13)) (-3393 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1725 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1736 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-2209 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-2723 ((|#2| |#2| |#2|) 43))) +(((-1281 |#1| |#2|) (-10 -7 (-15 -1627 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -2594 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1742 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2723 (|#2| |#2| |#2|)) (-15 -1725 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3393 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1736 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2209 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1279 |#1|)) (T -1281)) +((-2209 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1281 *5 *6)))) (-1736 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) (-5 *1 (-1281 *5 *2)))) (-3393 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2723 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) (-4 *2 (-1279 *3)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) +(-10 -7 (-15 -1627 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -2594 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1742 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2723 (|#2| |#2| |#2|)) (-15 -1725 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3393 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1736 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2209 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) +((-2481 ((|#2| |#4| (-783)) 31)) (-3023 ((|#4| |#2|) 26)) (-2943 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-2129 (((-1 |#4| (-656 |#4|)) |#3|) 43))) +(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3023 (|#4| |#2|)) (-15 -2481 (|#2| |#4| (-783))) (-15 -2129 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2943 (|#4| (-419 |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-668 |#2|) (-1279 |#1|)) (T -1282)) +((-2943 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-2129 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5)))) (-3023 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) +(-10 -7 (-15 -3023 (|#4| |#2|)) (-15 -2481 (|#2| |#4| (-783))) (-15 -2129 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2943 (|#4| (-419 |#2|))) |%noBranch|)) +NIL +(((-1283) (-141)) (T -1283)) +NIL +(-13 (-10 -7 (-6 -4134))) +((-3488 (((-112) $ $) NIL)) (-3054 (((-1197)) 12)) (-1413 (((-1179) $) 18)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11) (((-1197) $) 8)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 15))) +(((-1284 |#1|) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3569 ((-1197) $)) (-15 -3054 ((-1197))))) (-1197)) (T -1284)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) (-3054 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) +(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3569 ((-1197) $)) (-15 -3054 ((-1197))))) +((-3831 (($ (-783)) 19)) (-2353 (((-701 |#2|) $ $) 41)) (-1325 ((|#2| $) 51)) (-2434 ((|#2| $) 50)) (-1984 ((|#2| $ $) 36)) (-1849 (($ $ $) 47)) (-3043 (($ $) 23) (($ $ $) 29)) (-3029 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1285 |#1| |#2|) (-10 -8 (-15 -1325 (|#2| |#1|)) (-15 -2434 (|#2| |#1|)) (-15 -1849 (|#1| |#1| |#1|)) (-15 -2353 ((-701 |#2|) |#1| |#1|)) (-15 -1984 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3831 (|#1| (-783))) (-15 -3029 (|#1| |#1| |#1|))) (-1286 |#2|) (-1238)) (T -1285)) +NIL +(-10 -8 (-15 -1325 (|#2| |#1|)) (-15 -2434 (|#2| |#1|)) (-15 -1849 (|#1| |#1| |#1|)) (-15 -2353 ((-701 |#2|) |#1| |#1|)) (-15 -1984 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3831 (|#1| (-783))) (-15 -3029 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3831 (($ (-783)) 115 (|has| |#1| (-23)))) (-1656 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3306 (($) 7 T CONST)) (-1474 (($ $) 93 (|has| $ (-6 -4465)))) (-3834 (($ $) 103)) (-2800 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2353 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) 70)) (-4252 (((-112) $ (-783)) 9)) (-1617 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4027 (((-576) $) 45 (|has| (-576) (-861)))) (-1951 (($ $ $) 86 (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1325 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-3557 (((-112) $ (-783)) 10)) (-2434 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-1413 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2764 (((-656 (-576)) $) 47)) (-4018 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) 14)) (-1385 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) 49)) (-2866 (((-112) $) 11)) (-3839 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-1984 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-3463 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1849 (($ $ $) 107 (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2568 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2923 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2948 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3043 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3029 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) +(((-1286 |#1|) (-141) (-1238)) (T -1286)) +((-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (-1984 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-2353 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-701 *3)))) (-1849 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3029 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3831 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3043 ($ $)) (-15 -3043 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-15 -1984 (|t#1| $ $)) (-15 -2353 ((-701 |t#1|) $ $)) (-15 -1849 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1023)) (IF (|has| |t#1| (-1070)) (PROGN (-15 -2434 (|t#1| $)) (-15 -1325 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2758 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) +((-2727 (((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 13)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 15)) (-4116 (((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)) 30) (((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|)) 18))) +(((-1287 |#1| |#2|) (-10 -7 (-15 -2727 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4116 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4116 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) (-1238) (-1238)) (T -1287)) +((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1287 *5 *2)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) +(-10 -7 (-15 -2727 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4116 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4116 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783)) NIL (|has| |#1| (-23)))) (-2760 (($ (-656 |#1|)) 11)) (-1656 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2071 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2450 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-2396 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1971 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3306 (($) NIL T CONST)) (-1474 (($ $) NIL (|has| $ (-6 -4465)))) (-3834 (($ $) NIL)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 16 (|has| $ (-6 -4464)))) (-2353 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) NIL)) (-4252 (((-112) $ (-783)) NIL)) (-1617 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4335 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2735 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3456 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4027 (((-576) $) 12 (|has| (-576) (-861)))) (-1951 (($ $ $) NIL (|has| |#1| (-861)))) (-4322 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-3557 (((-112) $ (-783)) NIL)) (-2434 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1413 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2174 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2764 (((-656 (-576)) $) NIL)) (-4018 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-2366 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3542 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-3509 (((-112) $ $) NIL)) (-1385 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1681 (((-656 |#1|) $) NIL)) (-2866 (((-112) $) NIL)) (-3839 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1984 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3463 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1849 (($ $ $) NIL (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2568 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 10)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2113 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2170 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3029 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1288 |#1|) (-13 (-1286 |#1|) (-10 -8 (-15 -2760 ($ (-656 |#1|))))) (-1238)) (T -1288)) +((-2760 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) +(-13 (-1286 |#1|) (-10 -8 (-15 -2760 ($ (-656 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1382 (((-1179) $ (-1179)) 107) (((-1179) $ (-1179) (-1179)) 105) (((-1179) $ (-1179) (-656 (-1179))) 104)) (-4294 (($) 69)) (-3604 (((-1293) $ (-480) (-940)) 54)) (-2326 (((-1293) $ (-940) (-1179)) 89) (((-1293) $ (-940) (-888)) 90)) (-1878 (((-1293) $ (-940) (-390) (-390)) 57)) (-1357 (((-1293) $ (-1179)) 84)) (-2185 (((-1293) $ (-940) (-1179)) 94)) (-2610 (((-1293) $ (-940) (-390) (-390)) 58)) (-3360 (((-1293) $ (-940) (-940)) 55)) (-1362 (((-1293) $) 85)) (-2077 (((-1293) $ (-940) (-1179)) 93)) (-4071 (((-1293) $ (-480) (-940)) 41)) (-3791 (((-1293) $ (-940) (-1179)) 92)) (-4419 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-3885 (((-1293) $ (-783) (-783)) 52)) (-3968 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-1413 (((-1179) $) NIL)) (-4300 (((-576) $) 48)) (-1450 (((-1141) $) NIL)) (-4129 (((-1288 (-3 (-480) "undefined")) $) 47)) (-4155 (((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3791 (-576)) (|:| -1888 (-576)) (|:| |spline| (-576)) (|:| -3449 (-576)) (|:| |axesColor| (-888)) (|:| -2326 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $) 46)) (-2410 (((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576)) 83)) (-3286 (((-656 (-962 (-227))) $) NIL)) (-4065 (((-480) $ (-940)) 43)) (-3062 (((-1293) $ (-783) (-783) (-940) (-940)) 50)) (-2044 (((-1293) $ (-1179)) 95)) (-1888 (((-1293) $ (-940) (-1179)) 91)) (-3569 (((-876) $) 102)) (-1957 (((-1293) $) 96)) (-2113 (((-112) $ $) NIL)) (-3449 (((-1293) $ (-940) (-1179)) 87) (((-1293) $ (-940) (-888)) 88)) (-2923 (((-112) $ $) NIL))) +(((-1289) (-13 (-1121) (-10 -8 (-15 -3286 ((-656 (-962 (-227))) $)) (-15 -4294 ($)) (-15 -3968 ($ $)) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -3968 ($ (-480) (-656 (-270)))) (-15 -2410 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -4155 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3791 (-576)) (|:| -1888 (-576)) (|:| |spline| (-576)) (|:| -3449 (-576)) (|:| |axesColor| (-888)) (|:| -2326 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -4129 ((-1288 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1293) $ (-1179))) (-15 -4071 ((-1293) $ (-480) (-940))) (-15 -4065 ((-480) $ (-940))) (-15 -3449 ((-1293) $ (-940) (-1179))) (-15 -3449 ((-1293) $ (-940) (-888))) (-15 -2326 ((-1293) $ (-940) (-1179))) (-15 -2326 ((-1293) $ (-940) (-888))) (-15 -3791 ((-1293) $ (-940) (-1179))) (-15 -2077 ((-1293) $ (-940) (-1179))) (-15 -1888 ((-1293) $ (-940) (-1179))) (-15 -2044 ((-1293) $ (-1179))) (-15 -1957 ((-1293) $)) (-15 -3062 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2610 ((-1293) $ (-940) (-390) (-390))) (-15 -1878 ((-1293) $ (-940) (-390) (-390))) (-15 -2185 ((-1293) $ (-940) (-1179))) (-15 -3885 ((-1293) $ (-783) (-783))) (-15 -3604 ((-1293) $ (-480) (-940))) (-15 -3360 ((-1293) $ (-940) (-940))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1362 ((-1293) $)) (-15 -4300 ((-576) $)) (-15 -3569 ((-876) $))))) (T -1289)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1289)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289)))) (-4294 (*1 *1) (-5 *1 (-1289))) (-3968 (*1 *1 *1) (-5 *1 (-1289))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-4419 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-3968 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-2410 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3791 (-576)) (|:| -1888 (-576)) (|:| |spline| (-576)) (|:| -3449 (-576)) (|:| |axesColor| (-888)) (|:| -2326 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) (-5 *1 (-1289)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4071 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4065 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289)))) (-3449 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3449 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2326 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2326 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3791 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2077 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1888 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3062 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2610 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1878 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2185 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3604 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3360 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) +(-13 (-1121) (-10 -8 (-15 -3286 ((-656 (-962 (-227))) $)) (-15 -4294 ($)) (-15 -3968 ($ $)) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -3968 ($ (-480) (-656 (-270)))) (-15 -2410 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -4155 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3791 (-576)) (|:| -1888 (-576)) (|:| |spline| (-576)) (|:| -3449 (-576)) (|:| |axesColor| (-888)) (|:| -2326 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -4129 ((-1288 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1293) $ (-1179))) (-15 -4071 ((-1293) $ (-480) (-940))) (-15 -4065 ((-480) $ (-940))) (-15 -3449 ((-1293) $ (-940) (-1179))) (-15 -3449 ((-1293) $ (-940) (-888))) (-15 -2326 ((-1293) $ (-940) (-1179))) (-15 -2326 ((-1293) $ (-940) (-888))) (-15 -3791 ((-1293) $ (-940) (-1179))) (-15 -2077 ((-1293) $ (-940) (-1179))) (-15 -1888 ((-1293) $ (-940) (-1179))) (-15 -2044 ((-1293) $ (-1179))) (-15 -1957 ((-1293) $)) (-15 -3062 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2610 ((-1293) $ (-940) (-390) (-390))) (-15 -1878 ((-1293) $ (-940) (-390) (-390))) (-15 -2185 ((-1293) $ (-940) (-1179))) (-15 -3885 ((-1293) $ (-783) (-783))) (-15 -3604 ((-1293) $ (-480) (-940))) (-15 -3360 ((-1293) $ (-940) (-940))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1362 ((-1293) $)) (-15 -4300 ((-576) $)) (-15 -3569 ((-876) $)))) +((-3488 (((-112) $ $) NIL)) (-2202 (((-1293) $ (-390)) 169) (((-1293) $ (-390) (-390) (-390)) 170)) (-1382 (((-1179) $ (-1179)) 179) (((-1179) $ (-1179) (-1179)) 177) (((-1179) $ (-1179) (-656 (-1179))) 176)) (-3880 (($) 67)) (-3578 (((-1293) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1293) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1293) $ (-390) (-390)) 145) (((-1293) $ (-390) (-390) (-390)) 152)) (-2517 (((-390)) 122) (((-390) (-390)) 123)) (-2287 (((-390)) 117) (((-390) (-390)) 119)) (-4254 (((-390)) 120) (((-390) (-390)) 121)) (-4141 (((-390)) 126) (((-390) (-390)) 127)) (-2669 (((-390)) 124) (((-390) (-390)) 125)) (-1878 (((-1293) $ (-390) (-390)) 171)) (-1357 (((-1293) $ (-1179)) 153)) (-2513 (((-1154 (-227)) $) 68) (($ $ (-1154 (-227))) 69)) (-4267 (((-1293) $ (-1179)) 187)) (-4237 (((-1293) $ (-1179)) 188)) (-3518 (((-1293) $ (-390) (-390)) 151) (((-1293) $ (-576) (-576)) 168)) (-3360 (((-1293) $ (-940) (-940)) 160)) (-1362 (((-1293) $) 137)) (-3281 (((-1293) $ (-1179)) 186)) (-4107 (((-1293) $ (-1179)) 134)) (-4419 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-3885 (((-1293) $ (-783) (-783)) 159)) (-3634 (((-1293) $ (-783) (-962 (-227))) 193)) (-1538 (($ $) 73) (($ (-1154 (-227)) (-1179)) 74) (($ (-1154 (-227)) (-656 (-270))) 75)) (-2733 (((-1293) $ (-390) (-390) (-390)) 131)) (-1413 (((-1179) $) NIL)) (-4300 (((-576) $) 128)) (-3317 (((-1293) $ (-390)) 174)) (-2973 (((-1293) $ (-390)) 191)) (-1450 (((-1141) $) NIL)) (-2924 (((-1293) $ (-390)) 190)) (-1898 (((-1293) $ (-1179)) 136)) (-3062 (((-1293) $ (-783) (-783) (-940) (-940)) 158)) (-2623 (((-1293) $ (-1179)) 133)) (-2044 (((-1293) $ (-1179)) 135)) (-2870 (((-1293) $ (-158) (-158)) 157)) (-3569 (((-876) $) 166)) (-1957 (((-1293) $) 138)) (-2084 (((-1293) $ (-1179)) 189)) (-2113 (((-112) $ $) NIL)) (-3449 (((-1293) $ (-1179)) 132)) (-2923 (((-112) $ $) NIL))) +(((-1290) (-13 (-1121) (-10 -8 (-15 -2287 ((-390))) (-15 -2287 ((-390) (-390))) (-15 -4254 ((-390))) (-15 -4254 ((-390) (-390))) (-15 -2517 ((-390))) (-15 -2517 ((-390) (-390))) (-15 -2669 ((-390))) (-15 -2669 ((-390) (-390))) (-15 -4141 ((-390))) (-15 -4141 ((-390) (-390))) (-15 -3880 ($)) (-15 -1538 ($ $)) (-15 -1538 ($ (-1154 (-227)) (-1179))) (-15 -1538 ($ (-1154 (-227)) (-656 (-270)))) (-15 -2513 ((-1154 (-227)) $)) (-15 -2513 ($ $ (-1154 (-227)))) (-15 -3634 ((-1293) $ (-783) (-962 (-227)))) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -3885 ((-1293) $ (-783) (-783))) (-15 -3360 ((-1293) $ (-940) (-940))) (-15 -1357 ((-1293) $ (-1179))) (-15 -3062 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -3578 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3578 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3578 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3578 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3578 ((-1293) $ (-390) (-390))) (-15 -3578 ((-1293) $ (-390) (-390) (-390))) (-15 -2044 ((-1293) $ (-1179))) (-15 -3449 ((-1293) $ (-1179))) (-15 -2623 ((-1293) $ (-1179))) (-15 -4107 ((-1293) $ (-1179))) (-15 -1898 ((-1293) $ (-1179))) (-15 -3518 ((-1293) $ (-390) (-390))) (-15 -3518 ((-1293) $ (-576) (-576))) (-15 -2202 ((-1293) $ (-390))) (-15 -2202 ((-1293) $ (-390) (-390) (-390))) (-15 -1878 ((-1293) $ (-390) (-390))) (-15 -3281 ((-1293) $ (-1179))) (-15 -2924 ((-1293) $ (-390))) (-15 -2973 ((-1293) $ (-390))) (-15 -4267 ((-1293) $ (-1179))) (-15 -4237 ((-1293) $ (-1179))) (-15 -2084 ((-1293) $ (-1179))) (-15 -2733 ((-1293) $ (-390) (-390) (-390))) (-15 -3317 ((-1293) $ (-390))) (-15 -1362 ((-1293) $)) (-15 -2870 ((-1293) $ (-158) (-158))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1957 ((-1293) $)) (-15 -4300 ((-576) $))))) (T -1290)) +((-2287 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-4254 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2517 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2517 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2669 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2669 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-4141 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3880 (*1 *1) (-5 *1 (-1290))) (-1538 (*1 *1 *1) (-5 *1 (-1290))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-3634 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-4419 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3360 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3062 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3578 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1290)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3578 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3578 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3578 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2623 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1898 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3518 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3518 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2202 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2202 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3281 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2924 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2973 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4267 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4237 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2733 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3317 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2870 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) +(-13 (-1121) (-10 -8 (-15 -2287 ((-390))) (-15 -2287 ((-390) (-390))) (-15 -4254 ((-390))) (-15 -4254 ((-390) (-390))) (-15 -2517 ((-390))) (-15 -2517 ((-390) (-390))) (-15 -2669 ((-390))) (-15 -2669 ((-390) (-390))) (-15 -4141 ((-390))) (-15 -4141 ((-390) (-390))) (-15 -3880 ($)) (-15 -1538 ($ $)) (-15 -1538 ($ (-1154 (-227)) (-1179))) (-15 -1538 ($ (-1154 (-227)) (-656 (-270)))) (-15 -2513 ((-1154 (-227)) $)) (-15 -2513 ($ $ (-1154 (-227)))) (-15 -3634 ((-1293) $ (-783) (-962 (-227)))) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -3885 ((-1293) $ (-783) (-783))) (-15 -3360 ((-1293) $ (-940) (-940))) (-15 -1357 ((-1293) $ (-1179))) (-15 -3062 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -3578 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3578 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3578 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3578 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3578 ((-1293) $ (-390) (-390))) (-15 -3578 ((-1293) $ (-390) (-390) (-390))) (-15 -2044 ((-1293) $ (-1179))) (-15 -3449 ((-1293) $ (-1179))) (-15 -2623 ((-1293) $ (-1179))) (-15 -4107 ((-1293) $ (-1179))) (-15 -1898 ((-1293) $ (-1179))) (-15 -3518 ((-1293) $ (-390) (-390))) (-15 -3518 ((-1293) $ (-576) (-576))) (-15 -2202 ((-1293) $ (-390))) (-15 -2202 ((-1293) $ (-390) (-390) (-390))) (-15 -1878 ((-1293) $ (-390) (-390))) (-15 -3281 ((-1293) $ (-1179))) (-15 -2924 ((-1293) $ (-390))) (-15 -2973 ((-1293) $ (-390))) (-15 -4267 ((-1293) $ (-1179))) (-15 -4237 ((-1293) $ (-1179))) (-15 -2084 ((-1293) $ (-1179))) (-15 -2733 ((-1293) $ (-390) (-390) (-390))) (-15 -3317 ((-1293) $ (-390))) (-15 -1362 ((-1293) $)) (-15 -2870 ((-1293) $ (-158) (-158))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1957 ((-1293) $)) (-15 -4300 ((-576) $)))) +((-1458 (((-656 (-1179)) (-656 (-1179))) 104) (((-656 (-1179))) 96)) (-4313 (((-656 (-1179))) 94)) (-2435 (((-656 (-940)) (-656 (-940))) 69) (((-656 (-940))) 64)) (-3908 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-2963 (((-1293)) 71)) (-3798 (((-940) (-940)) 87) (((-940)) 86)) (-1884 (((-940) (-940)) 85) (((-940)) 84)) (-3629 (((-888) (-888)) 81) (((-888)) 80)) (-3182 (((-227)) 91) (((-227) (-390)) 93)) (-4055 (((-940)) 88) (((-940) (-940)) 89)) (-1577 (((-940) (-940)) 83) (((-940)) 82)) (-3356 (((-888) (-888)) 75) (((-888)) 73)) (-3843 (((-888) (-888)) 77) (((-888)) 76)) (-3402 (((-888) (-888)) 79) (((-888)) 78))) +(((-1291) (-10 -7 (-15 -3356 ((-888))) (-15 -3356 ((-888) (-888))) (-15 -3843 ((-888))) (-15 -3843 ((-888) (-888))) (-15 -3402 ((-888))) (-15 -3402 ((-888) (-888))) (-15 -3629 ((-888))) (-15 -3629 ((-888) (-888))) (-15 -1577 ((-940))) (-15 -1577 ((-940) (-940))) (-15 -3908 ((-656 (-783)))) (-15 -3908 ((-656 (-783)) (-656 (-783)))) (-15 -2435 ((-656 (-940)))) (-15 -2435 ((-656 (-940)) (-656 (-940)))) (-15 -2963 ((-1293))) (-15 -1458 ((-656 (-1179)))) (-15 -1458 ((-656 (-1179)) (-656 (-1179)))) (-15 -4313 ((-656 (-1179)))) (-15 -1884 ((-940))) (-15 -3798 ((-940))) (-15 -1884 ((-940) (-940))) (-15 -3798 ((-940) (-940))) (-15 -4055 ((-940) (-940))) (-15 -4055 ((-940))) (-15 -3182 ((-227) (-390))) (-15 -3182 ((-227))))) (T -1291)) +((-3182 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) (-4055 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-4055 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3798 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1884 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-4313 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-1458 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-2963 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-2435 (*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-3908 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1577 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3629 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3402 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3843 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3356 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3356 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(-10 -7 (-15 -3356 ((-888))) (-15 -3356 ((-888) (-888))) (-15 -3843 ((-888))) (-15 -3843 ((-888) (-888))) (-15 -3402 ((-888))) (-15 -3402 ((-888) (-888))) (-15 -3629 ((-888))) (-15 -3629 ((-888) (-888))) (-15 -1577 ((-940))) (-15 -1577 ((-940) (-940))) (-15 -3908 ((-656 (-783)))) (-15 -3908 ((-656 (-783)) (-656 (-783)))) (-15 -2435 ((-656 (-940)))) (-15 -2435 ((-656 (-940)) (-656 (-940)))) (-15 -2963 ((-1293))) (-15 -1458 ((-656 (-1179)))) (-15 -1458 ((-656 (-1179)) (-656 (-1179)))) (-15 -4313 ((-656 (-1179)))) (-15 -1884 ((-940))) (-15 -3798 ((-940))) (-15 -1884 ((-940) (-940))) (-15 -3798 ((-940) (-940))) (-15 -4055 ((-940) (-940))) (-15 -4055 ((-940))) (-15 -3182 ((-227) (-390))) (-15 -3182 ((-227)))) +((-2960 (((-480) (-656 (-656 (-962 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-962 (-227))))) 21) (((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 20)) (-1940 (((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270))) 30) (((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 29)) (-3569 (((-1289) (-480)) 46))) +(((-1292) (-10 -7 (-15 -2960 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -2960 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -2960 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -1940 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -1940 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3569 ((-1289) (-480))))) (T -1292)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-1940 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-2960 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-2960 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292))))) +(-10 -7 (-15 -2960 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -2960 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -2960 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -1940 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -1940 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3569 ((-1289) (-480)))) +((-2916 (($) 6)) (-3569 (((-876) $) 9))) +(((-1293) (-13 (-625 (-876)) (-10 -8 (-15 -2916 ($))))) (T -1293)) +((-2916 (*1 *1) (-5 *1 (-1293)))) +(-13 (-625 (-876)) (-10 -8 (-15 -2916 ($)))) +((-3056 (($ $ |#2|) 10))) +(((-1294 |#1| |#2|) (-10 -8 (-15 -3056 (|#1| |#1| |#2|))) (-1295 |#2|) (-374)) (T -1294)) +NIL +(-10 -8 (-15 -3056 (|#1| |#1| |#2|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1972 (((-135)) 33)) (-3569 (((-876) $) 12)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2923 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 34)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1295 |#1|) (-141) (-374)) (T -1295)) +((-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-374)))) (-1972 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(-13 (-729 |t#1|) (-10 -8 (-15 -3056 ($ $ |t#1|)) (-15 -1972 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-2448 (((-656 (-1232 |#1|)) (-1197) (-1232 |#1|)) 83)) (-1508 (((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|))) 63)) (-1680 (((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))) 74)) (-1491 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 65)) (-1368 (((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197)) 32)) (-2611 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 64))) +(((-1296 |#1|) (-10 -7 (-15 -1491 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -2611 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -1508 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -1368 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -2448 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -1680 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) (-374)) (T -1296)) +((-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) (-5 *5 (-1178 *4)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5))))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(-10 -7 (-15 -1491 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -2611 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -1508 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -1368 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -2448 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -1680 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) +((-3185 (((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-3277 (((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) +(((-1297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3277 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3185 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1264 |#1|) (-1264 |#2|) (-421 |#2| |#3|)) (T -1297)) +((-3185 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-3277 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -3454 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(-10 -7 (-15 -3277 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3185 ((-2 (|:| -3454 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) +((-3488 (((-112) $ $) NIL)) (-2715 (((-1156) $) 11)) (-3444 (((-1156) $) 9)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1298) (-13 (-1104) (-10 -8 (-15 -3444 ((-1156) $)) (-15 -2715 ((-1156) $))))) (T -1298)) +((-3444 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) +(-13 (-1104) (-10 -8 (-15 -3444 ((-1156) $)) (-15 -2715 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3986 (((-1156) $) 9)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1299) (-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $))))) (T -1299)) +((-3986 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) +(-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 58)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL)) (-3215 (((-112) $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1778 (((-783)) NIL T CONST)) (-3294 (((-1293) (-783)) 16)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 37 T CONST)) (-2730 (($) 84 T CONST)) (-2923 (((-112) $ $) 87)) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) 89) (($ $ $) NIL)) (-3029 (($ $ $) 63)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1300 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1293) (-783))))) (-1070) (-861) (-805) (-968 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1300)) +((-3056 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1293)) (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) +(-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1293) (-783))))) +((-3488 (((-112) $ $) NIL)) (-2393 (((-656 (-2 (|:| -1957 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3597 (((-656 $) (-656 |#4|)) 96)) (-1966 (((-656 |#3|) $) NIL)) (-1755 (((-112) $) NIL)) (-1781 (((-112) $) NIL (|has| |#1| (-568)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2795 ((|#4| |#4| $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -3416 $) (|:| |upper| $)) $ |#3|) NIL)) (-2396 (((-112) $ (-783)) NIL)) (-1971 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3306 (($) NIL T CONST)) (-3290 (((-112) $) NIL (|has| |#1| (-568)))) (-2879 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1576 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3489 (((-112) $) NIL (|has| |#1| (-568)))) (-2947 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4356 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-3234 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 78)) (-3947 ((|#4| |#4| $) 83)) (-2800 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3599 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2813 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2873 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2153 (((-2 (|:| -1957 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-3965 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-3363 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2665 ((|#3| $) 84)) (-4252 (((-112) $ (-783)) NIL)) (-2735 (((-656 |#4|) $) 32 (|has| $ (-6 -4464)))) (-3456 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2295 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-4322 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) NIL)) (-1994 (((-656 |#3|) $) NIL)) (-1983 (((-112) |#3| $) NIL)) (-3557 (((-112) $ (-783)) NIL)) (-1413 (((-1179) $) NIL)) (-3967 (((-3 |#4| "failed") $) NIL)) (-1809 (((-656 |#4|) $) 54)) (-3455 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2860 ((|#4| |#4| $) 82)) (-1716 (((-112) $ $) 93)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3595 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3764 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 77)) (-2366 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3260 (((-3 $ "failed") $ |#4|) NIL)) (-3169 (($ $ |#4|) NIL)) (-3542 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3283 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-3509 (((-112) $ $) NIL)) (-2866 (((-112) $) 75)) (-3839 (($) 46)) (-3600 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) NIL)) (-2907 (($ $ |#3|) NIL)) (-4080 (($ $ |#3|) NIL)) (-3453 (($ $) NIL)) (-3698 (($ $ |#3|) NIL)) (-3569 (((-876) $) NIL) (((-656 |#4|) $) 63)) (-3000 (((-783) $) NIL (|has| |#3| (-379)))) (-2469 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-3623 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-2113 (((-112) $ $) NIL)) (-2516 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1324 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2170 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2370 (((-656 |#3|) $) NIL)) (-2951 (((-112) |#3| $) NIL)) (-2923 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1301 |#1| |#2| |#3| |#4|) (-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2295 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2295 ((-3 $ "failed") (-656 |#4|))) (-15 -2469 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2469 ((-3 $ "failed") (-656 |#4|))) (-15 -3623 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3623 ((-656 $) (-656 |#4|))))) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1301)) +((-2295 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-2295 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-2469 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-2469 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) (-5 *1 (-1301 *6 *7 *8 *9)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) (-5 *1 (-1301 *4 *5 *6 *7))))) +(-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2295 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2295 ((-3 $ "failed") (-656 |#4|))) (-15 -2469 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2469 ((-3 $ "failed") (-656 |#4|))) (-15 -3623 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3623 ((-656 $) (-656 |#4|))))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-2780 (((-3 $ "failed") $ $) 20)) (-3306 (($) 18 T CONST)) (-3451 (((-3 $ "failed") $) 37)) (-3215 (((-112) $) 35)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1302 |#1|) (-141) (-1070)) (T -1302)) +NIL +(-13 (-1070) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) 67)) (-1812 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 52)) (-1970 (($ $ (-783)) 46)) (-2780 (((-3 $ "failed") $ $) NIL)) (-4261 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3306 (($) NIL T CONST)) (-3556 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL)) (-2859 (((-831 |#1|) $) NIL)) (-2112 (($ $) 39)) (-3451 (((-3 $ "failed") $) NIL)) (-2521 (((-112) $) NIL)) (-3176 (($ $) NIL)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-3684 (($ (-831 |#1|) |#2|) 38)) (-4195 (($ $) 40)) (-1929 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-3875 (((-831 |#1|) $) NIL)) (-3460 (((-831 |#1|) $) 41)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1978 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-4389 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2079 (((-831 |#1|) $) 35)) (-2089 ((|#2| $) 37)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3600 (((-783) $) 43)) (-1549 (((-112) $) 47)) (-1480 ((|#2| $) NIL)) (-3569 (((-876) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-831 |#1|)) NIL)) (-1714 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 13 T CONST)) (-2730 (($) 19 T CONST)) (-2903 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2923 (((-112) $ $) 44)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1303 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1309 |#1| |#2|)) (-861) (-1070)) (T -1303)) +NIL +(-13 (-393 |#2| (-831 |#1|)) (-1309 |#1| |#2|)) +((-3744 ((|#3| |#3| (-783)) 28)) (-4103 ((|#3| |#3| (-783)) 34)) (-2004 ((|#3| |#3| |#3| (-783)) 35))) +(((-1304 |#1| |#2| |#3|) (-10 -7 (-15 -4103 (|#3| |#3| (-783))) (-15 -3744 (|#3| |#3| (-783))) (-15 -2004 (|#3| |#3| |#3| (-783)))) (-13 (-1070) (-729 (-419 (-576)))) (-861) (-1309 |#2| |#1|)) (T -1304)) +((-2004 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-4103 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) +(-10 -7 (-15 -4103 (|#3| |#3| (-783))) (-15 -3744 (|#3| |#3| (-783))) (-15 -2004 (|#3| |#3| |#3| (-783)))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3446 (((-656 |#1|) $) 47)) (-2780 (((-3 $ "failed") $ $) 20)) (-4261 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3306 (($) 18 T CONST)) (-3556 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1572 (((-3 (-831 |#1|) "failed") $) 71)) (-2859 (((-831 |#1|) $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-2521 (((-112) $) 52)) (-3176 (($ $) 51)) (-3215 (((-112) $) 35)) (-1606 (((-112) $) 57)) (-3684 (($ (-831 |#1|) |#2|) 58)) (-4195 (($ $) 56)) (-1929 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3875 (((-831 |#1|) $) 68)) (-4116 (($ (-1 |#2| |#2|) $) 48)) (-1978 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1549 (((-112) $) 54)) (-1480 ((|#2| $) 53)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1714 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1305 |#1| |#2|) (-141) (-861) (-1070)) (T -1305)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1305 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-1714 (*1 *2 *1 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-1978 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-1978 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3556 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3556 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-3556 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3684 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) (-4 *3 (-1070)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-4195 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3569 (*1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4261 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) (-4 *3 (-174)))) (-4261 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-4 *4 (-174)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-656 *3))))) +(-13 (-1070) (-1302 |t#2|) (-1059 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3875 ((-831 |t#1|) $)) (-15 -1929 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1714 (|t#2| $ (-831 |t#1|))) (-15 -1714 (|t#2| $ $)) (-15 -1978 ($ $ |t#1|)) (-15 -1978 ($ $ (-831 |t#1|))) (-15 -1978 ($ $ $)) (-15 -3556 ($ $ |t#1|)) (-15 -3556 ($ $ (-831 |t#1|))) (-15 -3556 ($ $ $)) (-15 -3684 ($ (-831 |t#1|) |t#2|)) (-15 -1606 ((-112) $)) (-15 -4195 ($ $)) (-15 -3569 ($ |t#1|)) (-15 -1549 ((-112) $)) (-15 -1480 (|t#2| $)) (-15 -2521 ((-112) $)) (-15 -3176 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -4261 ($ $ $)) (-15 -4261 ($ $ (-783)))) |%noBranch|) (-15 -4116 ($ (-1 |t#2| |t#2|) $)) (-15 -3446 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4457)) (-6 -4457) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1059 #0#) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1302 |#2|) . T)) +((-1697 (((-112) $) 15)) (-2951 (((-112) $) 14)) (-3046 (($ $) 19) (($ $ (-783)) 21))) +(((-1306 |#1| |#2|) (-10 -8 (-15 -3046 (|#1| |#1| (-783))) (-15 -3046 (|#1| |#1|)) (-15 -1697 ((-112) |#1|)) (-15 -2951 ((-112) |#1|))) (-1307 |#2|) (-374)) (T -1306)) +NIL +(-10 -8 (-15 -3046 (|#1| |#1| (-783))) (-15 -3046 (|#1| |#1|)) (-15 -1697 ((-112) |#1|)) (-15 -2951 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3717 (((-2 (|:| -2876 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2544 (($ $) 46)) (-1574 (((-112) $) 44)) (-1697 (((-112) $) 104)) (-4391 (((-783)) 100)) (-2780 (((-3 $ "failed") $ $) 20)) (-3420 (($ $) 81)) (-1770 (((-430 $) $) 80)) (-2420 (((-112) $ $) 65)) (-3306 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 111)) (-2859 ((|#1| $) 112)) (-3428 (($ $ $) 61)) (-3451 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-2304 (((-2 (|:| -1714 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-1332 (($ $ (-783)) 97 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4169 (((-112) $) 79)) (-3309 (((-845 (-940)) $) 94 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3215 (((-112) $) 35)) (-1370 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-1413 (((-1179) $) 10)) (-2048 (($ $) 78)) (-3651 (((-112) $) 103)) (-1450 (((-1141) $) 11)) (-1727 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-1683 (((-845 (-940))) 101)) (-3721 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-4397 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2411 (((-783) $) 64)) (-2935 (((-2 (|:| -3015 $) (|:| -3599 $)) $ $) 63)) (-2992 (((-3 (-783) "failed") $ $) 95 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1972 (((-135)) 109)) (-3600 (((-845 (-940)) $) 102)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3230 (((-3 $ "failed") $) 93 (-2758 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2537 (((-112) $ $) 45)) (-2951 (((-112) $) 105)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-3046 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2923 (((-112) $ $) 8)) (-3056 (($ $ $) 73) (($ $ |#1|) 108)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1307 |#1|) (-141) (-374)) (T -1307)) +((-2951 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-1683 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-4391 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-3046 (*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) +(-13 (-374) (-1059 |t#1|) (-1295 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -2951 ((-112) $)) (-15 -1697 ((-112) $)) (-15 -3651 ((-112) $)) (-15 -3600 ((-845 (-940)) $)) (-15 -1683 ((-845 (-940)))) (-15 -4391 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -3046 ($ $)) (-15 -3046 ($ $ (-783)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2758 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2758 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 98)) (-1970 (($ $ (-783)) 102)) (-2780 (((-3 $ "failed") $ $) NIL)) (-4261 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-3306 (($) NIL T CONST)) (-3556 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-908 |#1|) "failed") $) NIL)) (-2859 (((-831 |#1|) $) NIL) (((-908 |#1|) $) NIL)) (-2112 (($ $) 101)) (-3451 (((-3 $ "failed") $) NIL)) (-2521 (((-112) $) 90)) (-3176 (($ $) 93)) (-4442 (($ $ $ (-783)) 103)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-3684 (($ (-831 |#1|) |#2|) NIL) (($ (-908 |#1|) |#2|) 29)) (-4195 (($ $) 119)) (-1929 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3875 (((-831 |#1|) $) NIL)) (-3460 (((-831 |#1|) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1978 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3744 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-4389 (((-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2079 (((-908 |#1|) $) 83)) (-2089 ((|#2| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4103 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-3600 (((-783) $) 99)) (-1549 (((-112) $) 84)) (-1480 ((|#2| $) 88)) (-3569 (((-876) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-908 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1303 |#1| |#2|) $) 76) (((-1312 |#1| |#2|) $) 81)) (-2060 (((-656 |#2|) $) NIL)) (-3998 ((|#2| $ (-908 |#1|)) NIL)) (-1714 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 21 T CONST)) (-2730 (($) 28 T CONST)) (-2903 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2219 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-2923 (((-112) $ $) 77)) (-3043 (($ $) 111) (($ $ $) 110)) (-3029 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-908 |#1|)) NIL))) +(((-1308 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -3569 ($ (-676 |#1| |#2|))) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1312 |#1| |#2|) $)) (-15 -2219 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -4442 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -4103 ($ $ (-783))) (-15 -3744 ($ $ (-783)))) |%noBranch|))) (-861) (-174)) (T -1308)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1308 *3 *4)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2219 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4442 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) +(-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -3569 ($ (-676 |#1| |#2|))) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1312 |#1| |#2|) $)) (-15 -2219 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -4442 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -4103 ($ $ (-783))) (-15 -3744 ($ $ (-783)))) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-1812 (((-112) $) 17)) (-3446 (((-656 |#1|) $) 47)) (-1970 (($ $ (-783)) 80)) (-2780 (((-3 $ "failed") $ $) 20)) (-4261 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3306 (($) 18 T CONST)) (-3556 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1572 (((-3 (-831 |#1|) "failed") $) 71)) (-2859 (((-831 |#1|) $) 72)) (-3451 (((-3 $ "failed") $) 37)) (-2521 (((-112) $) 52)) (-3176 (($ $) 51)) (-3215 (((-112) $) 35)) (-1606 (((-112) $) 57)) (-3684 (($ (-831 |#1|) |#2|) 58)) (-4195 (($ $) 56)) (-1929 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3875 (((-831 |#1|) $) 68)) (-3460 (((-831 |#1|) $) 82)) (-4116 (($ (-1 |#2| |#2|) $) 48)) (-1978 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-1413 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3600 (((-783) $) 81)) (-1549 (((-112) $) 54)) (-1480 ((|#2| $) 53)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1714 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-1778 (((-783)) 32 T CONST)) (-2113 (((-112) $ $) 6)) (-2719 (($) 19 T CONST)) (-2730 (($) 34 T CONST)) (-2923 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1309 |#1| |#2|) (-141) (-861) (-1070)) (T -1309)) +((-3460 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-1970 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) +(-13 (-1305 |t#1| |t#2|) (-10 -8 (-15 -3460 ((-831 |t#1|) $)) (-15 -3600 ((-783) $)) (-15 -1970 ($ $ (-783))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1059 #0#) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1302 |#2|) . T) ((-1305 |#1| |#2|) . T)) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-3446 (((-656 (-1197)) $) NIL)) (-2138 (($ (-1303 (-1197) |#1|)) NIL)) (-1970 (($ $ (-783)) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-4261 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-3306 (($) NIL T CONST)) (-3556 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-1572 (((-3 (-831 (-1197)) "failed") $) NIL)) (-2859 (((-831 (-1197)) $) NIL)) (-3451 (((-3 $ "failed") $) NIL)) (-2521 (((-112) $) NIL)) (-3176 (($ $) NIL)) (-3215 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-3684 (($ (-831 (-1197)) |#1|) NIL)) (-4195 (($ $) NIL)) (-1929 (((-2 (|:| |k| (-831 (-1197))) (|:| |c| |#1|)) $) NIL)) (-3875 (((-831 (-1197)) $) NIL)) (-3460 (((-831 (-1197)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1978 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1942 (((-1303 (-1197) |#1|) $) NIL)) (-3600 (((-783) $) NIL)) (-1549 (((-112) $) NIL)) (-1480 ((|#1| $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1197))) NIL) (($ (-1197)) NIL)) (-1714 ((|#1| $ (-831 (-1197))) NIL) ((|#1| $ $) NIL)) (-1778 (((-783)) NIL T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) NIL T CONST)) (-3709 (((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $) NIL)) (-2730 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1197) $) NIL))) +(((-1310 |#1|) (-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -1942 ((-1303 (-1197) |#1|) $)) (-15 -2138 ($ (-1303 (-1197) |#1|))) (-15 -3709 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) (-1070)) (T -1310)) +((-1942 (*1 *2 *1) (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) (-5 *1 (-1310 *3)) (-4 *3 (-1070))))) +(-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -1942 ((-1303 (-1197) |#1|) $)) (-15 -2138 ($ (-1303 (-1197) |#1|))) (-15 -3709 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) NIL)) (-2780 (((-3 $ "failed") $ $) NIL)) (-3306 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL)) (-2859 ((|#2| $) NIL)) (-2112 (($ $) NIL)) (-3451 (((-3 $ "failed") $) 42)) (-2521 (((-112) $) 35)) (-3176 (($ $) 37)) (-3215 (((-112) $) NIL)) (-1675 (((-783) $) NIL)) (-3773 (((-656 $) $) NIL)) (-1606 (((-112) $) NIL)) (-3684 (($ |#2| |#1|) NIL)) (-3875 ((|#2| $) 24)) (-3460 ((|#2| $) 22)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-4389 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2079 ((|#2| $) NIL)) (-2089 ((|#1| $) NIL)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1549 (((-112) $) 32)) (-1480 ((|#1| $) 33)) (-3569 (((-876) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2060 (((-656 |#1|) $) NIL)) (-3998 ((|#1| $ |#2|) NIL)) (-1714 ((|#1| $ |#2|) 28)) (-1778 (((-783)) 14 T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 29 T CONST)) (-2730 (($) 11 T CONST)) (-2903 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2923 (((-112) $ $) 30)) (-3056 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 50)) (** (($ $ (-940)) NIL) (($ $ (-783)) 52)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3502 (((-783) $) 16))) +(((-1311 |#1| |#2|) (-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3502 ((-783) $)) (-15 -3460 (|#2| $)) (-15 -3875 (|#2| $)) (-15 -2112 ($ $)) (-15 -1714 (|#1| $ |#2|)) (-15 -1549 ((-112) $)) (-15 -1480 (|#1| $)) (-15 -2521 ((-112) $)) (-15 -3176 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3056 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070) (-858)) (T -1311)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-2112 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) (-4 *4 (-858)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-3460 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-3875 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-1714 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-1480 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-3176 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-3056 (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-858))))) +(-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3502 ((-783) $)) (-15 -3460 (|#2| $)) (-15 -3875 (|#2| $)) (-15 -2112 ($ $)) (-15 -1714 (|#1| $ |#2|)) (-15 -1549 ((-112) $)) (-15 -1480 (|#1| $)) (-15 -2521 ((-112) $)) (-15 -3176 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3056 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) +((-3488 (((-112) $ $) 27)) (-1812 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 132)) (-2138 (($ (-1303 |#1| |#2|)) 50)) (-1970 (($ $ (-783)) 38)) (-2780 (((-3 $ "failed") $ $) NIL)) (-4261 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-3306 (($) NIL T CONST)) (-3556 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL)) (-2859 (((-831 |#1|) $) NIL)) (-3451 (((-3 $ "failed") $) 122)) (-2521 (((-112) $) 117)) (-3176 (($ $) 118)) (-3215 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-3684 (($ (-831 |#1|) |#2|) 20)) (-4195 (($ $) NIL)) (-1929 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3875 (((-831 |#1|) $) 123)) (-3460 (((-831 |#1|) $) 126)) (-4116 (($ (-1 |#2| |#2|) $) 131)) (-1978 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1942 (((-1303 |#1| |#2|) $) 94)) (-3600 (((-783) $) 129)) (-1549 (((-112) $) 81)) (-1480 ((|#2| $) 32)) (-3569 (((-876) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1714 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-1778 (((-783)) 120 T CONST)) (-2113 (((-112) $ $) NIL)) (-2719 (($) 15 T CONST)) (-3709 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2730 (($) 33 T CONST)) (-2923 (((-112) $ $) 14)) (-3043 (($ $) 98) (($ $ $) 101)) (-3029 (($ $ $) 61)) (** (($ $ (-940)) NIL) (($ $ (-783)) 55)) (* (($ (-940) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1312 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-10 -8 (-15 -1942 ((-1303 |#1| |#2|) $)) (-15 -2138 ($ (-1303 |#1| |#2|))) (-15 -3709 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1070)) (T -1312)) +((-1942 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *1 (-1312 *3 *4)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) +(-13 (-1309 |#1| |#2|) (-10 -8 (-15 -1942 ((-1303 |#1| |#2|) $)) (-15 -2138 ($ (-1303 |#1| |#2|))) (-15 -3709 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3488 (((-112) $ $) NIL)) (-3414 (($ (-656 (-940))) 10)) (-1741 (((-992) $) 12)) (-1413 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 25) (($ (-992)) 14) (((-992) $) 13)) (-2113 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 17))) +(((-1313) (-13 (-1121) (-502 (-992)) (-10 -8 (-15 -3414 ($ (-656 (-940)))) (-15 -1741 ((-992) $))))) (T -1313)) +((-3414 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) +(-13 (-1121) (-502 (-992)) (-10 -8 (-15 -3414 ($ (-656 (-940)))) (-15 -1741 ((-992) $)))) +((-2493 (((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)) 16) (((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|))) 13))) +(((-1314 |#1|) (-10 -7 (-15 -2493 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -2493 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) (-1238)) (T -1314)) +((-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1314 *4)) (-4 *4 (-1238))))) +(-10 -7 (-15 -2493 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -2493 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) +((-4164 (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 174) (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 173) (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-1067 |#1| |#2|)) 156)) (-1452 (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|))) 85) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112)) 84) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112)) 83)) (-1770 (((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|)) 73)) (-1875 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 140) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 139) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 132)) (-3897 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 145) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 144) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 142)) (-4171 (((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) 111) (((-1193 (-1045 (-419 |#1|))) (-1193 |#1|)) 102) (((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|))) 109) (((-971 (-1045 (-419 |#1|))) (-971 |#1|)) 107) (((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|))) 33))) +(((-1315 |#1| |#2| |#3|) (-10 -7 (-15 -1452 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1452 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -1452 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -1770 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4171 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -4171 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -4171 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) (-13 (-860) (-317) (-148) (-1043)) (-656 (-1197)) (-656 (-1197))) (T -1315)) +((-4171 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-1193 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-792 *4 (-878 *6))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3897 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1875 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1875 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *4)) (|:| -1490 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4164 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-2 (|:| -3676 (-1193 *4)) (|:| -1490 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1452 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1452 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197)))))) +(-10 -7 (-15 -1452 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1452 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -1452 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -4164 ((-656 (-2 (|:| -3676 (-1193 |#1|)) (|:| -1490 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -1875 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -3897 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -1770 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4171 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -4171 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -4171 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) +((-4418 (((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|) 21)) (-1393 (((-112) (-1288 |#1|)) 12)) (-4230 (((-3 (-1288 (-576)) "failed") (-1288 |#1|)) 16))) +(((-1316 |#1|) (-10 -7 (-15 -1393 ((-112) (-1288 |#1|))) (-15 -4230 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -4418 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) (-13 (-1070) (-651 (-576)))) (T -1316)) +((-4418 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4)))) (-4230 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1316 *4))))) +(-10 -7 (-15 -1393 ((-112) (-1288 |#1|))) (-15 -4230 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -4418 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-1812 (((-112) $) 11)) (-2780 (((-3 $ "failed") $ $) NIL)) (-2096 (((-783)) 8)) (-3306 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) 58)) (-1836 (($) 49)) (-3215 (((-112) $) 57)) (-3396 (((-3 $ "failed") $) 40)) (-2460 (((-940) $) 15)) (-1413 (((-1179) $) NIL)) (-3539 (($) 32 T CONST)) (-3223 (($ (-940)) 50)) (-1450 (((-1141) $) NIL)) (-4171 (((-576) $) 13)) (-3569 (((-876) $) 27) (($ (-576)) 24)) (-1778 (((-783)) 9 T CONST)) (-2113 (((-112) $ $) 60)) (-2719 (($) 29 T CONST)) (-2730 (($) 31 T CONST)) (-2923 (((-112) $ $) 38)) (-3043 (($ $) 52) (($ $ $) 47)) (-3029 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) 54)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) +(((-1317 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1173)) (-940)) (T -1317)) +NIL +(-13 (-174) (-379) (-626 (-576)) (-1173)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3262353 3262358 3262363 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3262338 3262343 3262348 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3262323 3262328 3262333 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3262308 3262313 3262318 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1317 3261451 3262183 3262260 "ZMOD" 3262265 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1316 3260505 3260669 3260892 "ZLINDEP" 3261283 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1315 3249805 3251573 3253545 "ZDSOLVE" 3258635 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1314 3249051 3249192 3249381 "YSTREAM" 3249651 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1313 3248479 3248725 3248838 "YDIAGRAM" 3248960 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1312 3246253 3247780 3247984 "XRPOLY" 3248322 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3242806 3244124 3244699 "XPR" 3245725 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1310 3240527 3242137 3242341 "XPOLY" 3242637 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1309 3238166 3239534 3239589 "XPOLYC" 3239877 NIL XPOLYC (NIL T T) -9 NIL 3239990 NIL) (-1308 3234542 3236683 3237071 "XPBWPOLY" 3237824 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3230223 3232518 3232560 "XF" 3233181 NIL XF (NIL T) -9 NIL 3233581 NIL) (-1306 3229844 3229932 3230101 "XF-" 3230106 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1305 3225026 3226315 3226370 "XFALG" 3228542 NIL XFALG (NIL T T) -9 NIL 3229331 NIL) (-1304 3224159 3224263 3224468 "XEXPPKG" 3224918 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1303 3222268 3224009 3224105 "XDPOLY" 3224110 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3221061 3221661 3221704 "XALG" 3221709 NIL XALG (NIL T) -9 NIL 3221820 NIL) (-1301 3214503 3219038 3219532 "WUTSET" 3220653 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1300 3212759 3213555 3213878 "WP" 3214314 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1299 3212361 3212581 3212651 "WHILEAST" 3212711 T WHILEAST (NIL) -8 NIL NIL NIL) (-1298 3211833 3212078 3212172 "WHEREAST" 3212289 T WHEREAST (NIL) -8 NIL NIL NIL) (-1297 3210719 3210917 3211212 "WFFINTBS" 3211630 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1296 3208623 3209050 3209512 "WEIER" 3210291 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1295 3207655 3208105 3208147 "VSPACE" 3208283 NIL VSPACE (NIL T) -9 NIL 3208357 NIL) (-1294 3207493 3207520 3207611 "VSPACE-" 3207616 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1293 3207302 3207344 3207412 "VOID" 3207447 T VOID (NIL) -8 NIL NIL NIL) (-1292 3205438 3205797 3206203 "VIEW" 3206918 T VIEW (NIL) -7 NIL NIL NIL) (-1291 3201862 3202501 3203238 "VIEWDEF" 3204723 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1290 3191166 3193410 3195583 "VIEW3D" 3199711 T VIEW3D (NIL) -8 NIL NIL NIL) (-1289 3183417 3185077 3186656 "VIEW2D" 3189609 T VIEW2D (NIL) -8 NIL NIL NIL) (-1288 3178773 3183187 3183279 "VECTOR" 3183360 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1287 3177350 3177609 3177927 "VECTOR2" 3178503 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1286 3170748 3175054 3175097 "VECTCAT" 3176092 NIL VECTCAT (NIL T) -9 NIL 3176679 NIL) (-1285 3169762 3170016 3170406 "VECTCAT-" 3170411 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1284 3169216 3169413 3169533 "VARIABLE" 3169677 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1283 3169149 3169154 3169184 "UTYPE" 3169189 T UTYPE (NIL) -9 NIL NIL NIL) (-1282 3167979 3168133 3168395 "UTSODETL" 3168975 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1281 3165419 3165879 3166403 "UTSODE" 3167520 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1280 3157367 3163180 3163660 "UTS" 3164997 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1279 3147931 3153301 3153344 "UTSCAT" 3154456 NIL UTSCAT (NIL T) -9 NIL 3155214 NIL) (-1278 3145279 3146001 3146990 "UTSCAT-" 3146995 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1277 3144906 3144949 3145082 "UTS2" 3145230 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1276 3139107 3141716 3141759 "URAGG" 3143829 NIL URAGG (NIL T) -9 NIL 3144552 NIL) (-1275 3136046 3136909 3138032 "URAGG-" 3138037 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1274 3131755 3134681 3135146 "UPXSSING" 3135710 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1273 3123931 3131137 3131401 "UPXS" 3131549 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1272 3117004 3123835 3123907 "UPXSCONS" 3123912 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1271 3106411 3113207 3113269 "UPXSCCA" 3113843 NIL UPXSCCA (NIL T T) -9 NIL 3114076 NIL) (-1270 3106049 3106134 3106308 "UPXSCCA-" 3106313 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1269 3095308 3101877 3101920 "UPXSCAT" 3102568 NIL UPXSCAT (NIL T) -9 NIL 3103177 NIL) (-1268 3094738 3094817 3094996 "UPXS2" 3095223 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1267 3093392 3093645 3093996 "UPSQFREE" 3094481 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1266 3086600 3089660 3089715 "UPSCAT" 3090795 NIL UPSCAT (NIL T T) -9 NIL 3091560 NIL) (-1265 3085804 3086011 3086338 "UPSCAT-" 3086343 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1264 3070886 3078931 3078974 "UPOLYC" 3081075 NIL UPOLYC (NIL T) -9 NIL 3082296 NIL) (-1263 3062214 3064640 3067787 "UPOLYC-" 3067792 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1262 3061841 3061884 3062017 "UPOLYC2" 3062165 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1261 3053376 3061524 3061653 "UP" 3061760 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1260 3052715 3052822 3052986 "UPMP" 3053265 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1259 3052268 3052349 3052488 "UPDIVP" 3052628 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1258 3050836 3051085 3051401 "UPDECOMP" 3052017 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1257 3050067 3050179 3050365 "UPCDEN" 3050720 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1256 3049586 3049655 3049804 "UP2" 3049992 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1255 3048053 3048790 3049067 "UNISEG" 3049344 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1254 3047268 3047395 3047600 "UNISEG2" 3047896 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1253 3046328 3046508 3046734 "UNIFACT" 3047084 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1252 3029080 3045640 3045882 "ULS" 3046144 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1251 3016710 3028984 3029056 "ULSCONS" 3029061 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1250 2997431 3009791 3009853 "ULSCCAT" 3010491 NIL ULSCCAT (NIL T T) -9 NIL 3010780 NIL) (-1249 2996481 2996726 2997114 "ULSCCAT-" 2997119 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1248 2985545 2992028 2992071 "ULSCAT" 2992934 NIL ULSCAT (NIL T) -9 NIL 2993665 NIL) (-1247 2984975 2985054 2985233 "ULS2" 2985460 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1246 2984094 2984604 2984711 "UINT8" 2984822 T UINT8 (NIL) -8 NIL NIL 2984907) (-1245 2983212 2983722 2983829 "UINT64" 2983940 T UINT64 (NIL) -8 NIL NIL 2984025) (-1244 2982330 2982840 2982947 "UINT32" 2983058 T UINT32 (NIL) -8 NIL NIL 2983143) (-1243 2981448 2981958 2982065 "UINT16" 2982176 T UINT16 (NIL) -8 NIL NIL 2982261) (-1242 2979737 2980694 2980724 "UFD" 2980936 T UFD (NIL) -9 NIL 2981050 NIL) (-1241 2979531 2979577 2979672 "UFD-" 2979677 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1240 2978613 2978796 2979012 "UDVO" 2979337 T UDVO (NIL) -7 NIL NIL NIL) (-1239 2976429 2976838 2977309 "UDPO" 2978177 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1238 2976362 2976367 2976397 "TYPE" 2976402 T TYPE (NIL) -9 NIL NIL NIL) (-1237 2976122 2976317 2976348 "TYPEAST" 2976353 T TYPEAST (NIL) -8 NIL NIL NIL) (-1236 2975093 2975295 2975535 "TWOFACT" 2975916 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1235 2974116 2974502 2974737 "TUPLE" 2974893 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1234 2971807 2972326 2972865 "TUBETOOL" 2973599 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1233 2970656 2970861 2971102 "TUBE" 2971600 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1232 2965385 2969628 2969911 "TS" 2970408 NIL TS (NIL T) -8 NIL NIL NIL) (-1231 2954025 2958144 2958241 "TSETCAT" 2963510 NIL TSETCAT (NIL T T T T) -9 NIL 2965041 NIL) (-1230 2948757 2950357 2952248 "TSETCAT-" 2952253 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1229 2943396 2944243 2945172 "TRMANIP" 2947893 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1228 2942837 2942900 2943063 "TRIMAT" 2943328 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1227 2940703 2940940 2941297 "TRIGMNIP" 2942586 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1226 2940223 2940336 2940366 "TRIGCAT" 2940579 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1225 2939892 2939971 2940112 "TRIGCAT-" 2940117 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1224 2936740 2938750 2939031 "TREE" 2939646 NIL TREE (NIL T) -8 NIL NIL NIL) (-1223 2936014 2936542 2936572 "TRANFUN" 2936607 T TRANFUN (NIL) -9 NIL 2936673 NIL) (-1222 2935293 2935484 2935764 "TRANFUN-" 2935769 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1221 2935097 2935129 2935190 "TOPSP" 2935254 T TOPSP (NIL) -7 NIL NIL NIL) (-1220 2934445 2934560 2934714 "TOOLSIGN" 2934978 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1219 2933079 2933622 2933861 "TEXTFILE" 2934228 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1218 2930991 2931532 2931961 "TEX" 2932672 T TEX (NIL) -8 NIL NIL NIL) (-1217 2930772 2930803 2930875 "TEX1" 2930954 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1216 2930420 2930483 2930573 "TEMUTL" 2930704 T TEMUTL (NIL) -7 NIL NIL NIL) (-1215 2928574 2928854 2929179 "TBCMPPK" 2930143 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1214 2920283 2926660 2926716 "TBAGG" 2927116 NIL TBAGG (NIL T T) -9 NIL 2927327 NIL) (-1213 2915353 2916841 2918595 "TBAGG-" 2918600 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1212 2914737 2914844 2914989 "TANEXP" 2915242 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1211 2914248 2914512 2914602 "TALGOP" 2914682 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1210 2907644 2914105 2914198 "TABLE" 2914203 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1209 2907056 2907155 2907293 "TABLEAU" 2907541 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1208 2901664 2902884 2904132 "TABLBUMP" 2905842 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1207 2900886 2901033 2901214 "SYSTEM" 2901505 T SYSTEM (NIL) -8 NIL NIL NIL) (-1206 2897345 2898044 2898827 "SYSSOLP" 2900137 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1205 2897143 2897300 2897331 "SYSPTR" 2897336 T SYSPTR (NIL) -8 NIL NIL NIL) (-1204 2896179 2896684 2896803 "SYSNNI" 2896989 NIL SYSNNI (NIL NIL) -8 NIL NIL 2897074) (-1203 2895478 2895937 2896016 "SYSINT" 2896076 NIL SYSINT (NIL NIL) -8 NIL NIL 2896121) (-1202 2891810 2892756 2893466 "SYNTAX" 2894790 T SYNTAX (NIL) -8 NIL NIL NIL) (-1201 2888968 2889570 2890202 "SYMTAB" 2891200 T SYMTAB (NIL) -8 NIL NIL NIL) (-1200 2884217 2885119 2886102 "SYMS" 2888007 T SYMS (NIL) -8 NIL NIL NIL) (-1199 2881452 2883675 2883905 "SYMPOLY" 2884022 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1198 2880969 2881044 2881167 "SYMFUNC" 2881364 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1197 2876989 2878281 2879094 "SYMBOL" 2880178 T SYMBOL (NIL) -8 NIL NIL NIL) (-1196 2870528 2872217 2873937 "SWITCH" 2875291 T SWITCH (NIL) -8 NIL NIL NIL) (-1195 2863872 2869484 2869778 "SUTS" 2870292 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2856048 2863254 2863518 "SUPXS" 2863666 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2847531 2855666 2855792 "SUP" 2855957 NIL SUP (NIL T) -8 NIL NIL NIL) (-1192 2846690 2846817 2847034 "SUPFRACF" 2847399 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1191 2846311 2846370 2846483 "SUP2" 2846625 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1190 2844759 2845033 2845389 "SUMRF" 2846010 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1189 2844094 2844160 2844352 "SUMFS" 2844680 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1188 2826881 2843406 2843648 "SULS" 2843910 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2826483 2826703 2826773 "SUCHTAST" 2826833 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1186 2825778 2826008 2826148 "SUCH" 2826391 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1185 2819645 2820684 2821643 "SUBSPACE" 2824866 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1184 2819075 2819165 2819329 "SUBRESP" 2819533 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1183 2812443 2813740 2815051 "STTF" 2817811 NIL STTF (NIL T) -7 NIL NIL NIL) (-1182 2806616 2807736 2808883 "STTFNC" 2811343 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1181 2797929 2799798 2801592 "STTAYLOR" 2804857 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1180 2791065 2797793 2797876 "STRTBL" 2797881 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1179 2786026 2790774 2790873 "STRING" 2790988 T STRING (NIL) -8 NIL NIL NIL) (-1178 2778782 2783645 2784256 "STREAM" 2785450 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1177 2778292 2778369 2778513 "STREAM3" 2778699 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1176 2777274 2777457 2777692 "STREAM2" 2778105 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1175 2776962 2777014 2777107 "STREAM1" 2777216 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1174 2775978 2776159 2776390 "STINPROD" 2776778 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1173 2775516 2775726 2775756 "STEP" 2775836 T STEP (NIL) -9 NIL 2775914 NIL) (-1172 2774703 2775005 2775153 "STEPAST" 2775390 T STEPAST (NIL) -8 NIL NIL NIL) (-1171 2768141 2774602 2774679 "STBL" 2774684 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1170 2763211 2767304 2767347 "STAGG" 2767500 NIL STAGG (NIL T) -9 NIL 2767589 NIL) (-1169 2760913 2761515 2762387 "STAGG-" 2762392 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1168 2759063 2760683 2760775 "STACK" 2760856 NIL STACK (NIL T) -8 NIL NIL NIL) (-1167 2751758 2757204 2757660 "SREGSET" 2758693 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1166 2744183 2745552 2747065 "SRDCMPK" 2750364 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1165 2737020 2741542 2741572 "SRAGG" 2742875 T SRAGG (NIL) -9 NIL 2743483 NIL) (-1164 2736037 2736292 2736671 "SRAGG-" 2736676 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1163 2730221 2734984 2735405 "SQMATRIX" 2735663 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1162 2723909 2726939 2727666 "SPLTREE" 2729566 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1161 2719872 2720565 2721211 "SPLNODE" 2723335 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1160 2718919 2719152 2719182 "SPFCAT" 2719626 T SPFCAT (NIL) -9 NIL NIL NIL) (-1159 2717656 2717866 2718130 "SPECOUT" 2718677 T SPECOUT (NIL) -7 NIL NIL NIL) (-1158 2708752 2710624 2710654 "SPADXPT" 2715330 T SPADXPT (NIL) -9 NIL 2717494 NIL) (-1157 2708513 2708553 2708622 "SPADPRSR" 2708705 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1156 2706562 2708468 2708499 "SPADAST" 2708504 T SPADAST (NIL) -8 NIL NIL NIL) (-1155 2698493 2700266 2700309 "SPACEC" 2704682 NIL SPACEC (NIL T) -9 NIL 2706498 NIL) (-1154 2696623 2698425 2698474 "SPACE3" 2698479 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1153 2695375 2695546 2695837 "SORTPAK" 2696428 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1152 2693467 2693770 2694182 "SOLVETRA" 2695039 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1151 2692517 2692739 2693000 "SOLVESER" 2693240 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1150 2687821 2688709 2689704 "SOLVERAD" 2691569 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1149 2683636 2684245 2684974 "SOLVEFOR" 2687188 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1148 2677906 2682985 2683082 "SNTSCAT" 2683087 NIL SNTSCAT (NIL T T T T) -9 NIL 2683157 NIL) (-1147 2672012 2676229 2676620 "SMTS" 2677596 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1146 2666421 2671900 2671977 "SMP" 2671982 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1145 2664580 2664881 2665279 "SMITH" 2666118 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1144 2656684 2661159 2661262 "SMATCAT" 2662613 NIL SMATCAT (NIL NIL T T T) -9 NIL 2663163 NIL) (-1143 2653624 2654447 2655625 "SMATCAT-" 2655630 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1142 2651265 2652832 2652875 "SKAGG" 2653136 NIL SKAGG (NIL T) -9 NIL 2653271 NIL) (-1141 2647455 2650738 2650922 "SINT" 2651074 T SINT (NIL) -8 NIL NIL 2651236) (-1140 2647227 2647265 2647331 "SIMPAN" 2647411 T SIMPAN (NIL) -7 NIL NIL NIL) (-1139 2646506 2646762 2646902 "SIG" 2647109 T SIG (NIL) -8 NIL NIL NIL) (-1138 2645344 2645565 2645840 "SIGNRF" 2646265 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1137 2644177 2644328 2644612 "SIGNEF" 2645173 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1136 2643483 2643760 2643884 "SIGAST" 2644075 T SIGAST (NIL) -8 NIL NIL NIL) (-1135 2641173 2641627 2642133 "SHP" 2643024 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1134 2635002 2641074 2641150 "SHDP" 2641155 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1133 2634561 2634753 2634783 "SGROUP" 2634876 T SGROUP (NIL) -9 NIL 2634938 NIL) (-1132 2634419 2634445 2634518 "SGROUP-" 2634523 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1131 2631210 2631908 2632631 "SGCF" 2633718 T SGCF (NIL) -7 NIL NIL NIL) (-1130 2625578 2630657 2630754 "SFRTCAT" 2630759 NIL SFRTCAT (NIL T T T T) -9 NIL 2630798 NIL) (-1129 2618999 2620017 2621153 "SFRGCD" 2624561 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1128 2612125 2613198 2614384 "SFQCMPK" 2617932 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1127 2611745 2611834 2611945 "SFORT" 2612066 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1126 2610863 2611585 2611706 "SEXOF" 2611711 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1125 2609970 2610744 2610812 "SEX" 2610817 T SEX (NIL) -8 NIL NIL NIL) (-1124 2605751 2606466 2606561 "SEXCAT" 2609183 NIL SEXCAT (NIL T T T T T) -9 NIL 2609743 NIL) (-1123 2602904 2605685 2605733 "SET" 2605738 NIL SET (NIL T) -8 NIL NIL NIL) (-1122 2601128 2601617 2601922 "SETMN" 2602645 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1121 2600694 2600846 2600876 "SETCAT" 2600993 T SETCAT (NIL) -9 NIL 2601078 NIL) (-1120 2600474 2600526 2600625 "SETCAT-" 2600630 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1119 2596835 2598935 2598978 "SETAGG" 2599848 NIL SETAGG (NIL T) -9 NIL 2600188 NIL) (-1118 2596293 2596409 2596646 "SETAGG-" 2596651 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1117 2595736 2595989 2596090 "SEQAST" 2596214 T SEQAST (NIL) -8 NIL NIL NIL) (-1116 2594935 2595229 2595290 "SEGXCAT" 2595576 NIL SEGXCAT (NIL T T) -9 NIL 2595696 NIL) (-1115 2593941 2594601 2594783 "SEG" 2594788 NIL SEG (NIL T) -8 NIL NIL NIL) (-1114 2592920 2593134 2593177 "SEGCAT" 2593699 NIL SEGCAT (NIL T) -9 NIL 2593920 NIL) (-1113 2591852 2592283 2592491 "SEGBIND" 2592747 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1112 2591473 2591532 2591645 "SEGBIND2" 2591787 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1111 2591046 2591274 2591351 "SEGAST" 2591418 T SEGAST (NIL) -8 NIL NIL NIL) (-1110 2590265 2590391 2590595 "SEG2" 2590890 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1109 2589636 2590200 2590247 "SDVAR" 2590252 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1108 2581887 2589406 2589536 "SDPOL" 2589541 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1107 2580480 2580746 2581065 "SCPKG" 2581602 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1106 2579644 2579816 2580008 "SCOPE" 2580310 T SCOPE (NIL) -8 NIL NIL NIL) (-1105 2578864 2578998 2579177 "SCACHE" 2579499 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1104 2578496 2578682 2578712 "SASTCAT" 2578717 T SASTCAT (NIL) -9 NIL 2578730 NIL) (-1103 2577983 2578331 2578407 "SAOS" 2578442 T SAOS (NIL) -8 NIL NIL NIL) (-1102 2577548 2577583 2577756 "SAERFFC" 2577942 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1101 2571211 2577445 2577525 "SAE" 2577530 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1100 2570804 2570839 2570998 "SAEFACT" 2571170 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1099 2569125 2569439 2569840 "RURPK" 2570470 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1098 2567762 2568068 2568373 "RULESET" 2568959 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1097 2564985 2565515 2565973 "RULE" 2567443 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1096 2564597 2564779 2564862 "RULECOLD" 2564937 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1095 2564387 2564415 2564486 "RTVALUE" 2564548 T RTVALUE (NIL) -8 NIL NIL NIL) (-1094 2563858 2564104 2564198 "RSTRCAST" 2564315 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1093 2558706 2559501 2560421 "RSETGCD" 2563057 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1092 2547936 2553015 2553112 "RSETCAT" 2557231 NIL RSETCAT (NIL T T T T) -9 NIL 2558328 NIL) (-1091 2545863 2546402 2547226 "RSETCAT-" 2547231 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1090 2538249 2539625 2541145 "RSDCMPK" 2544462 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1089 2536214 2536681 2536755 "RRCC" 2537841 NIL RRCC (NIL T T) -9 NIL 2538185 NIL) (-1088 2535565 2535739 2536018 "RRCC-" 2536023 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1087 2535008 2535261 2535362 "RPTAST" 2535486 T RPTAST (NIL) -8 NIL NIL NIL) (-1086 2508484 2518120 2518187 "RPOLCAT" 2528853 NIL RPOLCAT (NIL T T T) -9 NIL 2532013 NIL) (-1085 2499982 2502322 2505444 "RPOLCAT-" 2505449 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1084 2490919 2498193 2498675 "ROUTINE" 2499522 T ROUTINE (NIL) -8 NIL NIL NIL) (-1083 2487580 2490545 2490685 "ROMAN" 2490801 T ROMAN (NIL) -8 NIL NIL NIL) (-1082 2485824 2486440 2486700 "ROIRC" 2487385 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1081 2482028 2484313 2484343 "RNS" 2484647 T RNS (NIL) -9 NIL 2484921 NIL) (-1080 2480537 2480920 2481454 "RNS-" 2481529 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1079 2479926 2480334 2480364 "RNG" 2480369 T RNG (NIL) -9 NIL 2480390 NIL) (-1078 2478929 2479291 2479493 "RNGBIND" 2479777 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1077 2478314 2478702 2478745 "RMODULE" 2478750 NIL RMODULE (NIL T) -9 NIL 2478777 NIL) (-1076 2477150 2477244 2477580 "RMCAT2" 2478215 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1075 2474000 2476496 2476793 "RMATRIX" 2476912 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1074 2466827 2469087 2469202 "RMATCAT" 2472561 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2473543 NIL) (-1073 2466202 2466349 2466656 "RMATCAT-" 2466661 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1072 2465817 2465989 2466032 "RLINSET" 2466094 NIL RLINSET (NIL T) -9 NIL 2466138 NIL) (-1071 2465384 2465459 2465587 "RINTERP" 2465736 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1070 2464428 2464982 2465012 "RING" 2465068 T RING (NIL) -9 NIL 2465160 NIL) (-1069 2464220 2464264 2464361 "RING-" 2464366 NIL RING- (NIL T) -8 NIL NIL NIL) (-1068 2463061 2463298 2463556 "RIDIST" 2463984 T RIDIST (NIL) -7 NIL NIL NIL) (-1067 2454350 2462529 2462735 "RGCHAIN" 2462909 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1066 2453686 2454092 2454133 "RGBCSPC" 2454191 NIL RGBCSPC (NIL T) -9 NIL 2454243 NIL) (-1065 2452830 2453211 2453252 "RGBCMDL" 2453484 NIL RGBCMDL (NIL T) -9 NIL 2453598 NIL) (-1064 2449824 2450438 2451108 "RF" 2452194 NIL RF (NIL T) -7 NIL NIL NIL) (-1063 2449470 2449533 2449636 "RFFACTOR" 2449755 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1062 2449195 2449230 2449327 "RFFACT" 2449429 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1061 2447312 2447676 2448058 "RFDIST" 2448835 T RFDIST (NIL) -7 NIL NIL NIL) (-1060 2446765 2446857 2447020 "RETSOL" 2447214 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1059 2446401 2446481 2446524 "RETRACT" 2446657 NIL RETRACT (NIL T) -9 NIL 2446744 NIL) (-1058 2446250 2446275 2446362 "RETRACT-" 2446367 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1057 2445852 2446072 2446142 "RETAST" 2446202 T RETAST (NIL) -8 NIL NIL NIL) (-1056 2438596 2445505 2445632 "RESULT" 2445747 T RESULT (NIL) -8 NIL NIL NIL) (-1055 2437187 2437865 2438064 "RESRING" 2438499 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1054 2436823 2436872 2436970 "RESLATC" 2437124 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1053 2436528 2436563 2436670 "REPSQ" 2436782 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1052 2433950 2434530 2435132 "REP" 2435948 T REP (NIL) -7 NIL NIL NIL) (-1051 2433647 2433682 2433793 "REPDB" 2433909 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1050 2427547 2428936 2430159 "REP2" 2432459 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1049 2423924 2424605 2425413 "REP1" 2426774 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1048 2416620 2422065 2422521 "REGSET" 2423554 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1047 2415385 2415768 2416018 "REF" 2416405 NIL REF (NIL T) -8 NIL NIL NIL) (-1046 2414762 2414865 2415032 "REDORDER" 2415269 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1045 2410730 2413975 2414202 "RECLOS" 2414590 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1044 2409782 2409963 2410178 "REALSOLV" 2410537 T REALSOLV (NIL) -7 NIL NIL NIL) (-1043 2409628 2409669 2409699 "REAL" 2409704 T REAL (NIL) -9 NIL 2409739 NIL) (-1042 2406111 2406913 2407797 "REAL0Q" 2408793 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1041 2401712 2402700 2403761 "REAL0" 2405092 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1040 2401183 2401429 2401523 "RDUCEAST" 2401640 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1039 2400588 2400660 2400867 "RDIV" 2401105 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1038 2399656 2399830 2400043 "RDIST" 2400410 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1037 2398253 2398540 2398912 "RDETRS" 2399364 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1036 2396065 2396519 2397057 "RDETR" 2397795 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1035 2394690 2394968 2395365 "RDEEFS" 2395781 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1034 2393199 2393505 2393930 "RDEEF" 2394378 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1033 2387232 2390153 2390183 "RCFIELD" 2391478 T RCFIELD (NIL) -9 NIL 2392209 NIL) (-1032 2385296 2385800 2386496 "RCFIELD-" 2386571 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1031 2381540 2383369 2383412 "RCAGG" 2384496 NIL RCAGG (NIL T) -9 NIL 2384961 NIL) (-1030 2381168 2381262 2381425 "RCAGG-" 2381430 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1029 2380503 2380615 2380780 "RATRET" 2381052 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1028 2380056 2380123 2380244 "RATFACT" 2380431 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1027 2379364 2379484 2379636 "RANDSRC" 2379926 T RANDSRC (NIL) -7 NIL NIL NIL) (-1026 2379098 2379142 2379215 "RADUTIL" 2379313 T RADUTIL (NIL) -7 NIL NIL NIL) (-1025 2371926 2377929 2378240 "RADIX" 2378821 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1024 2362386 2371768 2371898 "RADFF" 2371903 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1023 2362033 2362108 2362138 "RADCAT" 2362298 T RADCAT (NIL) -9 NIL NIL NIL) (-1022 2361815 2361863 2361963 "RADCAT-" 2361968 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1021 2359916 2361585 2361677 "QUEUE" 2361758 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1020 2356177 2359849 2359897 "QUAT" 2359902 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1019 2355808 2355851 2355982 "QUATCT2" 2356128 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1018 2348606 2352231 2352273 "QUATCAT" 2353064 NIL QUATCAT (NIL T) -9 NIL 2353830 NIL) (-1017 2344745 2345782 2347172 "QUATCAT-" 2347268 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1016 2342185 2343793 2343836 "QUAGG" 2344217 NIL QUAGG (NIL T) -9 NIL 2344392 NIL) (-1015 2341787 2342007 2342077 "QQUTAST" 2342137 T QQUTAST (NIL) -8 NIL NIL NIL) (-1014 2340800 2341300 2341465 "QFORM" 2341668 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1013 2331132 2336647 2336689 "QFCAT" 2337357 NIL QFCAT (NIL T) -9 NIL 2338358 NIL) (-1012 2326699 2327900 2329494 "QFCAT-" 2329590 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1011 2326330 2326373 2326504 "QFCAT2" 2326650 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2325785 2325895 2326027 "QEQUAT" 2326220 T QEQUAT (NIL) -8 NIL NIL NIL) (-1009 2318911 2319984 2321170 "QCMPACK" 2324718 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2316449 2316897 2317327 "QALGSET" 2318566 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1007 2315684 2315860 2316096 "QALGSET2" 2316267 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1006 2314369 2314593 2314912 "PWFFINTB" 2315457 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1005 2312544 2312712 2313068 "PUSHVAR" 2314183 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1004 2308433 2309487 2309530 "PTRANFN" 2311441 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1003 2306824 2307115 2307439 "PTPACK" 2308144 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1002 2306453 2306510 2306621 "PTFUNC2" 2306761 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1001 2300848 2305242 2305285 "PTCAT" 2305585 NIL PTCAT (NIL T) -9 NIL 2305738 NIL) (-1000 2300503 2300538 2300664 "PSQFR" 2300807 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-999 2299098 2299396 2299730 "PSEUDLIN" 2300201 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-998 2285861 2288232 2290556 "PSETPK" 2296858 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-997 2278879 2281619 2281715 "PSETCAT" 2284736 NIL PSETCAT (NIL T T T T) -9 NIL 2285550 NIL) (-996 2276715 2277349 2278170 "PSETCAT-" 2278175 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-995 2276064 2276229 2276257 "PSCURVE" 2276525 T PSCURVE (NIL) -9 NIL 2276692 NIL) (-994 2272048 2273564 2273629 "PSCAT" 2274473 NIL PSCAT (NIL T T T) -9 NIL 2274713 NIL) (-993 2271111 2271327 2271727 "PSCAT-" 2271732 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-992 2269470 2270180 2270443 "PRTITION" 2270868 T PRTITION (NIL) -8 NIL NIL NIL) (-991 2268945 2269191 2269283 "PRTDAST" 2269398 T PRTDAST (NIL) -8 NIL NIL NIL) (-990 2258035 2260249 2262437 "PRS" 2266807 NIL PRS (NIL T T) -7 NIL NIL NIL) (-989 2255821 2257357 2257397 "PRQAGG" 2257580 NIL PRQAGG (NIL T) -9 NIL 2257682 NIL) (-988 2255157 2255462 2255490 "PROPLOG" 2255629 T PROPLOG (NIL) -9 NIL 2255744 NIL) (-987 2254761 2254818 2254941 "PROPFUN2" 2255080 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-986 2254076 2254197 2254369 "PROPFUN1" 2254622 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-985 2252257 2252823 2253120 "PROPFRML" 2253812 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-984 2251726 2251833 2251961 "PROPERTY" 2252149 T PROPERTY (NIL) -8 NIL NIL NIL) (-983 2245784 2249892 2250712 "PRODUCT" 2250952 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-982 2243062 2245242 2245476 "PR" 2245595 NIL PR (NIL T T) -8 NIL NIL NIL) (-981 2242858 2242890 2242949 "PRINT" 2243023 T PRINT (NIL) -7 NIL NIL NIL) (-980 2242198 2242315 2242467 "PRIMES" 2242738 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-979 2240263 2240664 2241130 "PRIMELT" 2241777 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-978 2239992 2240041 2240069 "PRIMCAT" 2240193 T PRIMCAT (NIL) -9 NIL NIL NIL) (-977 2236110 2239930 2239975 "PRIMARR" 2239980 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-976 2235117 2235295 2235523 "PRIMARR2" 2235928 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-975 2234760 2234816 2234927 "PREASSOC" 2235055 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-974 2234235 2234368 2234396 "PPCURVE" 2234601 T PPCURVE (NIL) -9 NIL 2234737 NIL) (-973 2233830 2234030 2234113 "PORTNUM" 2234172 T PORTNUM (NIL) -8 NIL NIL NIL) (-972 2231189 2231588 2232180 "POLYROOT" 2233411 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-971 2225095 2230793 2230953 "POLY" 2231062 NIL POLY (NIL T) -8 NIL NIL NIL) (-970 2224478 2224536 2224770 "POLYLIFT" 2225031 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-969 2220753 2221202 2221831 "POLYCATQ" 2224023 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-968 2207095 2212500 2212565 "POLYCAT" 2216079 NIL POLYCAT (NIL T T T) -9 NIL 2217957 NIL) (-967 2200544 2202406 2204790 "POLYCAT-" 2204795 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-966 2200131 2200199 2200319 "POLY2UP" 2200470 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-965 2199763 2199820 2199929 "POLY2" 2200068 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-964 2198448 2198687 2198963 "POLUTIL" 2199537 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-963 2196803 2197080 2197411 "POLTOPOL" 2198170 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-962 2192269 2196737 2196784 "POINT" 2196789 NIL POINT (NIL T) -8 NIL NIL NIL) (-961 2190456 2190813 2191188 "PNTHEORY" 2191914 T PNTHEORY (NIL) -7 NIL NIL NIL) (-960 2188914 2189211 2189610 "PMTOOLS" 2190154 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-959 2188507 2188585 2188702 "PMSYM" 2188830 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-958 2188015 2188084 2188259 "PMQFCAT" 2188432 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-957 2187370 2187480 2187636 "PMPRED" 2187892 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-956 2186763 2186849 2187011 "PMPREDFS" 2187271 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-955 2185427 2185635 2186013 "PMPLCAT" 2186525 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-954 2184959 2185038 2185190 "PMLSAGG" 2185342 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-953 2184432 2184508 2184690 "PMKERNEL" 2184877 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-952 2184049 2184124 2184237 "PMINS" 2184351 NIL PMINS (NIL T) -7 NIL NIL NIL) (-951 2183491 2183560 2183769 "PMFS" 2183974 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-950 2182719 2182837 2183042 "PMDOWN" 2183368 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-949 2181886 2182044 2182225 "PMASS" 2182558 T PMASS (NIL) -7 NIL NIL NIL) (-948 2181159 2181269 2181432 "PMASSFS" 2181773 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-947 2180814 2180882 2180976 "PLOTTOOL" 2181085 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-946 2175421 2176625 2177773 "PLOT" 2179686 T PLOT (NIL) -8 NIL NIL NIL) (-945 2171225 2172269 2173190 "PLOT3D" 2174520 T PLOT3D (NIL) -8 NIL NIL NIL) (-944 2170137 2170314 2170549 "PLOT1" 2171029 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-943 2145528 2150203 2155054 "PLEQN" 2165403 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-942 2144846 2144968 2145148 "PINTERP" 2145393 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-941 2144539 2144586 2144689 "PINTERPA" 2144793 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-940 2143755 2144303 2144390 "PI" 2144430 T PI (NIL) -8 NIL NIL 2144497) (-939 2142038 2143013 2143041 "PID" 2143223 T PID (NIL) -9 NIL 2143357 NIL) (-938 2141789 2141826 2141901 "PICOERCE" 2141995 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-937 2141109 2141248 2141424 "PGROEB" 2141645 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-936 2136696 2137510 2138415 "PGE" 2140224 T PGE (NIL) -7 NIL NIL NIL) (-935 2134819 2135066 2135432 "PGCD" 2136413 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-934 2134157 2134260 2134421 "PFRPAC" 2134703 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-933 2130797 2132705 2133058 "PFR" 2133836 NIL PFR (NIL T) -8 NIL NIL NIL) (-932 2129186 2129430 2129755 "PFOTOOLS" 2130544 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-931 2127719 2127958 2128309 "PFOQ" 2128943 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-930 2126220 2126432 2126788 "PFO" 2127503 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-929 2122773 2126109 2126178 "PF" 2126183 NIL PF (NIL NIL) -8 NIL NIL NIL) (-928 2120093 2121364 2121392 "PFECAT" 2121977 T PFECAT (NIL) -9 NIL 2122361 NIL) (-927 2119538 2119692 2119906 "PFECAT-" 2119911 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-926 2118141 2118393 2118694 "PFBRU" 2119287 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-925 2116007 2116359 2116791 "PFBR" 2117792 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-924 2112053 2113519 2114166 "PERM" 2115393 NIL PERM (NIL T) -8 NIL NIL NIL) (-923 2107287 2108260 2109130 "PERMGRP" 2111216 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-922 2105351 2106311 2106352 "PERMCAT" 2106752 NIL PERMCAT (NIL T) -9 NIL 2107050 NIL) (-921 2105004 2105045 2105169 "PERMAN" 2105304 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-920 2102495 2104669 2104791 "PENDTREE" 2104915 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-919 2101424 2101639 2101680 "PDSPC" 2102213 NIL PDSPC (NIL T) -9 NIL 2102458 NIL) (-918 2100527 2100745 2101107 "PDSPC-" 2101112 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-917 2099409 2100177 2100218 "PDRING" 2100223 NIL PDRING (NIL T) -9 NIL 2100251 NIL) (-916 2098296 2098914 2098968 "PDMOD" 2098973 NIL PDMOD (NIL T T) -9 NIL 2099077 NIL) (-915 2095511 2096289 2096957 "PDEPROB" 2097648 T PDEPROB (NIL) -8 NIL NIL NIL) (-914 2093056 2093560 2094115 "PDEPACK" 2094976 T PDEPACK (NIL) -7 NIL NIL NIL) (-913 2091968 2092158 2092409 "PDECOMP" 2092855 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-912 2089533 2090376 2090404 "PDECAT" 2091191 T PDECAT (NIL) -9 NIL 2091904 NIL) (-911 2089162 2089217 2089271 "PDDOM" 2089436 NIL PDDOM (NIL T T) -9 NIL 2089516 NIL) (-910 2088981 2089011 2089118 "PDDOM-" 2089123 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-909 2088732 2088765 2088855 "PCOMP" 2088942 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-908 2086910 2087533 2087830 "PBWLB" 2088461 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-907 2079383 2080983 2082321 "PATTERN" 2085593 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-906 2079015 2079072 2079181 "PATTERN2" 2079320 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-905 2076772 2077160 2077617 "PATTERN1" 2078604 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-904 2074140 2074721 2075202 "PATRES" 2076337 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-903 2073704 2073771 2073903 "PATRES2" 2074067 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-902 2071587 2071992 2072399 "PATMATCH" 2073371 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-901 2071083 2071292 2071333 "PATMAB" 2071440 NIL PATMAB (NIL T) -9 NIL 2071523 NIL) (-900 2069601 2069937 2070195 "PATLRES" 2070888 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-899 2069147 2069270 2069311 "PATAB" 2069316 NIL PATAB (NIL T) -9 NIL 2069488 NIL) (-898 2067329 2067724 2068147 "PARTPERM" 2068744 T PARTPERM (NIL) -7 NIL NIL NIL) (-897 2066950 2067013 2067115 "PARSURF" 2067260 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-896 2066582 2066639 2066748 "PARSU2" 2066887 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-895 2066346 2066386 2066453 "PARSER" 2066535 T PARSER (NIL) -7 NIL NIL NIL) (-894 2065967 2066030 2066132 "PARSCURV" 2066277 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-893 2065599 2065656 2065765 "PARSC2" 2065904 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-892 2065238 2065296 2065393 "PARPCURV" 2065535 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-891 2064870 2064927 2065036 "PARPC2" 2065175 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-890 2063931 2064243 2064425 "PARAMAST" 2064708 T PARAMAST (NIL) -8 NIL NIL NIL) (-889 2063451 2063537 2063656 "PAN2EXPR" 2063832 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-888 2062228 2062572 2062800 "PALETTE" 2063243 T PALETTE (NIL) -8 NIL NIL NIL) (-887 2060621 2061233 2061593 "PAIR" 2061914 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-886 2054213 2059878 2060073 "PADICRC" 2060475 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-885 2047129 2053557 2053742 "PADICRAT" 2054060 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-884 2045444 2047066 2047111 "PADIC" 2047116 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-883 2042540 2044104 2044144 "PADICCT" 2044725 NIL PADICCT (NIL NIL) -9 NIL 2045007 NIL) (-882 2041497 2041697 2041965 "PADEPAC" 2042327 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-881 2040709 2040842 2041048 "PADE" 2041359 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-880 2039096 2039917 2040197 "OWP" 2040513 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-879 2038589 2038802 2038899 "OVERSET" 2039019 T OVERSET (NIL) -8 NIL NIL NIL) (-878 2037635 2038194 2038366 "OVAR" 2038457 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-877 2036899 2037020 2037181 "OUT" 2037494 T OUT (NIL) -7 NIL NIL NIL) (-876 2025771 2028008 2030208 "OUTFORM" 2034719 T OUTFORM (NIL) -8 NIL NIL NIL) (-875 2025107 2025368 2025495 "OUTBFILE" 2025664 T OUTBFILE (NIL) -8 NIL NIL NIL) (-874 2024414 2024579 2024607 "OUTBCON" 2024925 T OUTBCON (NIL) -9 NIL 2025091 NIL) (-873 2024015 2024127 2024284 "OUTBCON-" 2024289 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-872 2023395 2023744 2023833 "OSI" 2023946 T OSI (NIL) -8 NIL NIL NIL) (-871 2022898 2023236 2023264 "OSGROUP" 2023269 T OSGROUP (NIL) -9 NIL 2023291 NIL) (-870 2021643 2021870 2022155 "ORTHPOL" 2022645 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-869 2019194 2021478 2021599 "OREUP" 2021604 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-868 2016597 2018885 2019012 "ORESUP" 2019136 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-867 2014125 2014625 2015186 "OREPCTO" 2016086 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-866 2007797 2009998 2010039 "OREPCAT" 2012387 NIL OREPCAT (NIL T) -9 NIL 2013491 NIL) (-865 2004944 2005726 2006784 "OREPCAT-" 2006789 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-864 2004191 2004414 2004442 "ORDTYPE" 2004751 T ORDTYPE (NIL) -9 NIL 2004914 NIL) (-863 2003534 2003708 2003963 "ORDTYPE-" 2003968 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-862 2003148 2003417 2003503 "ORDSTRCT" 2003508 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-861 2002718 2003016 2003044 "ORDSET" 2003049 T ORDSET (NIL) -9 NIL 2003071 NIL) (-860 2001256 2002047 2002075 "ORDRING" 2002277 T ORDRING (NIL) -9 NIL 2002402 NIL) (-859 2000901 2000995 2001139 "ORDRING-" 2001144 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 2000254 2000717 2000745 "ORDMON" 2000750 T ORDMON (NIL) -9 NIL 2000771 NIL) (-857 1999416 1999563 1999758 "ORDFUNS" 2000103 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1998727 1999146 1999174 "ORDFIN" 1999239 T ORDFIN (NIL) -9 NIL 1999313 NIL) (-855 1995286 1997313 1997722 "ORDCOMP" 1998351 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1994552 1994679 1994865 "ORDCOMP2" 1995146 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1991133 1992043 1992857 "OPTPROB" 1993758 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1987935 1988574 1989278 "OPTPACK" 1990449 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1985608 1986374 1986402 "OPTCAT" 1987221 T OPTCAT (NIL) -9 NIL 1987871 NIL) (-850 1984992 1985285 1985390 "OPSIG" 1985523 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1984760 1984799 1984865 "OPQUERY" 1984946 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1981891 1983071 1983575 "OP" 1984289 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1981251 1981477 1981518 "OPERCAT" 1981730 NIL OPERCAT (NIL T) -9 NIL 1981827 NIL) (-846 1981006 1981062 1981179 "OPERCAT-" 1981184 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1977819 1979803 1980172 "ONECOMP" 1980670 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1977124 1977239 1977413 "ONECOMP2" 1977691 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1976543 1976649 1976779 "OMSERVER" 1977014 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1973405 1975983 1976023 "OMSAGG" 1976084 NIL OMSAGG (NIL T) -9 NIL 1976148 NIL) (-841 1972028 1972291 1972573 "OMPKG" 1973143 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1971458 1971561 1971589 "OM" 1971888 T OM (NIL) -9 NIL NIL NIL) (-839 1970005 1971007 1971176 "OMLO" 1971339 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1968965 1969112 1969332 "OMEXPR" 1969831 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1968256 1968511 1968647 "OMERR" 1968849 T OMERR (NIL) -8 NIL NIL NIL) (-836 1967407 1967677 1967837 "OMERRK" 1968116 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1966858 1967084 1967192 "OMENC" 1967319 T OMENC (NIL) -8 NIL NIL NIL) (-834 1960753 1961938 1963109 "OMDEV" 1965707 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1959822 1959993 1960187 "OMCONN" 1960579 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1958316 1959292 1959320 "OINTDOM" 1959325 T OINTDOM (NIL) -9 NIL 1959346 NIL) (-831 1955654 1957004 1957341 "OFMONOID" 1958011 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1955026 1955591 1955636 "ODVAR" 1955641 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1952449 1954771 1954926 "ODR" 1954931 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1944754 1952225 1952351 "ODPOL" 1952356 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1938553 1944626 1944731 "ODP" 1944736 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1937319 1937534 1937809 "ODETOOLS" 1938327 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1934286 1934944 1935660 "ODESYS" 1936652 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1929168 1930076 1931101 "ODERTRIC" 1933361 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1928594 1928676 1928870 "ODERED" 1929080 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1925482 1926030 1926707 "ODERAT" 1928017 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1922441 1922906 1923503 "ODEPRRIC" 1925011 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1920384 1920980 1921466 "ODEPROB" 1921975 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1916904 1917389 1918036 "ODEPRIM" 1919863 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1916153 1916255 1916515 "ODEPAL" 1916796 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1912315 1913106 1913970 "ODEPACK" 1915309 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1911376 1911483 1911705 "ODEINT" 1912204 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1905477 1906902 1908349 "ODEIFTBL" 1909949 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1900875 1901661 1902613 "ODEEF" 1904636 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1900224 1900313 1900536 "ODECONST" 1900780 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1898335 1898996 1899024 "ODECAT" 1899629 T ODECAT (NIL) -9 NIL 1900160 NIL) (-811 1895190 1898040 1898162 "OCT" 1898245 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1894828 1894871 1894998 "OCTCT2" 1895141 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1889435 1891871 1891911 "OC" 1893008 NIL OC (NIL T) -9 NIL 1893866 NIL) (-808 1886662 1887410 1888400 "OC-" 1888494 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1885987 1886455 1886483 "OCAMON" 1886488 T OCAMON (NIL) -9 NIL 1886509 NIL) (-806 1885491 1885832 1885860 "OASGP" 1885865 T OASGP (NIL) -9 NIL 1885885 NIL) (-805 1884725 1885214 1885242 "OAMONS" 1885282 T OAMONS (NIL) -9 NIL 1885325 NIL) (-804 1884112 1884545 1884573 "OAMON" 1884578 T OAMON (NIL) -9 NIL 1884598 NIL) (-803 1883343 1883861 1883889 "OAGROUP" 1883894 T OAGROUP (NIL) -9 NIL 1883914 NIL) (-802 1883033 1883083 1883171 "NUMTUBE" 1883287 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1876606 1878124 1879660 "NUMQUAD" 1881517 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1872362 1873350 1874375 "NUMODE" 1875601 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1869703 1870583 1870611 "NUMINT" 1871534 T NUMINT (NIL) -9 NIL 1872298 NIL) (-798 1868651 1868848 1869066 "NUMFMT" 1869505 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1855010 1857955 1860487 "NUMERIC" 1866158 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1849380 1854459 1854554 "NTSCAT" 1854559 NIL NTSCAT (NIL T T T T) -9 NIL 1854598 NIL) (-795 1848574 1848739 1848932 "NTPOLFN" 1849219 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1836375 1845399 1846211 "NSUP" 1847795 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1836007 1836064 1836173 "NSUP2" 1836312 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1825957 1835781 1835914 "NSMP" 1835919 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1824389 1824690 1825047 "NREP" 1825645 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1822980 1823232 1823590 "NPCOEF" 1824132 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1822046 1822161 1822377 "NORMRETR" 1822861 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1820087 1820377 1820786 "NORMPK" 1821754 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1819772 1819800 1819924 "NORMMA" 1820053 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1819572 1819729 1819758 "NONE" 1819763 T NONE (NIL) -8 NIL NIL NIL) (-785 1819361 1819390 1819459 "NONE1" 1819536 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1818858 1818920 1819099 "NODE1" 1819293 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1817139 1817990 1818245 "NNI" 1818592 T NNI (NIL) -8 NIL NIL 1818827) (-782 1815559 1815872 1816236 "NLINSOL" 1816807 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1811800 1812795 1813694 "NIPROB" 1814680 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1810557 1810791 1811093 "NFINTBAS" 1811562 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1809731 1810207 1810248 "NETCLT" 1810420 NIL NETCLT (NIL T) -9 NIL 1810502 NIL) (-778 1808439 1808670 1808951 "NCODIV" 1809499 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1808201 1808238 1808313 "NCNTFRAC" 1808396 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1806381 1806745 1807165 "NCEP" 1807826 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1805218 1805991 1806019 "NASRING" 1806129 T NASRING (NIL) -9 NIL 1806209 NIL) (-774 1805013 1805057 1805151 "NASRING-" 1805156 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1804106 1804631 1804659 "NARNG" 1804776 T NARNG (NIL) -9 NIL 1804867 NIL) (-772 1803798 1803865 1803999 "NARNG-" 1804004 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1802677 1802884 1803119 "NAGSP" 1803583 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1793949 1795633 1797306 "NAGS" 1801024 T NAGS (NIL) -7 NIL NIL NIL) (-769 1792497 1792805 1793136 "NAGF07" 1793638 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1787035 1788326 1789633 "NAGF04" 1791210 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1780003 1781617 1783250 "NAGF02" 1785422 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1775227 1776327 1777444 "NAGF01" 1778906 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1768855 1770421 1772006 "NAGE04" 1773662 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1760024 1762145 1764275 "NAGE02" 1766745 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1755977 1756924 1757888 "NAGE01" 1759080 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1753772 1754306 1754864 "NAGD03" 1755439 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1745522 1747450 1749404 "NAGD02" 1751838 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1739333 1740758 1742198 "NAGD01" 1744102 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1735542 1736364 1737201 "NAGC06" 1738516 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1734007 1734339 1734695 "NAGC05" 1735206 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1733383 1733502 1733646 "NAGC02" 1733883 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1732328 1732911 1732951 "NAALG" 1733030 NIL NAALG (NIL T) -9 NIL 1733091 NIL) (-755 1732163 1732192 1732282 "NAALG-" 1732287 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1726113 1727221 1728408 "MULTSQFR" 1731059 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1725432 1725507 1725691 "MULTFACT" 1726025 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1718103 1722017 1722070 "MTSCAT" 1723140 NIL MTSCAT (NIL T T) -9 NIL 1723655 NIL) (-751 1717815 1717869 1717961 "MTHING" 1718043 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1717607 1717640 1717700 "MSYSCMD" 1717775 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1713689 1716362 1716682 "MSET" 1717320 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1710758 1713250 1713291 "MSETAGG" 1713296 NIL MSETAGG (NIL T) -9 NIL 1713330 NIL) (-747 1706600 1708137 1708882 "MRING" 1710058 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1706166 1706233 1706364 "MRF2" 1706527 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1705784 1705819 1705963 "MRATFAC" 1706125 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1703396 1703691 1704122 "MPRFF" 1705489 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1697417 1703250 1703347 "MPOLY" 1703352 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1696907 1696942 1697150 "MPCPF" 1697376 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1696421 1696464 1696648 "MPC3" 1696858 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1695616 1695697 1695918 "MPC2" 1696336 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1693917 1694254 1694644 "MONOTOOL" 1695276 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1693128 1693445 1693473 "MONOID" 1693692 T MONOID (NIL) -9 NIL 1693839 NIL) (-737 1692674 1692793 1692974 "MONOID-" 1692979 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1682264 1688494 1688553 "MONOGEN" 1689227 NIL MONOGEN (NIL T T) -9 NIL 1689683 NIL) (-735 1679482 1680217 1681217 "MONOGEN-" 1681336 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1678301 1678747 1678775 "MONADWU" 1679167 T MONADWU (NIL) -9 NIL 1679405 NIL) (-733 1677673 1677832 1678080 "MONADWU-" 1678085 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1677018 1677262 1677290 "MONAD" 1677497 T MONAD (NIL) -9 NIL 1677609 NIL) (-731 1676703 1676781 1676913 "MONAD-" 1676918 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1674992 1675616 1675895 "MOEBIUS" 1676456 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1674256 1674660 1674700 "MODULE" 1674705 NIL MODULE (NIL T) -9 NIL 1674744 NIL) (-728 1673824 1673920 1674110 "MODULE-" 1674115 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1671504 1672188 1672515 "MODRING" 1673648 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1668448 1669609 1670130 "MODOP" 1671033 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1667036 1667515 1667792 "MODMONOM" 1668311 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1656804 1665327 1665741 "MODMON" 1666673 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1653960 1655648 1655924 "MODFIELD" 1656679 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1652937 1653241 1653431 "MMLFORM" 1653790 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1652463 1652506 1652685 "MMAP" 1652888 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1650528 1651295 1651336 "MLO" 1651759 NIL MLO (NIL T) -9 NIL 1652001 NIL) (-719 1647894 1648410 1649012 "MLIFT" 1650009 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1647285 1647369 1647523 "MKUCFUNC" 1647805 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1646884 1646954 1647077 "MKRECORD" 1647208 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1645931 1646093 1646321 "MKFUNC" 1646695 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1645319 1645423 1645579 "MKFLCFN" 1645814 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1644596 1644698 1644883 "MKBCFUNC" 1645212 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1641185 1644150 1644286 "MINT" 1644480 T MINT (NIL) -8 NIL NIL NIL) (-712 1639997 1640240 1640517 "MHROWRED" 1640940 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1635377 1638532 1638937 "MFLOAT" 1639612 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1634734 1634810 1634981 "MFINFACT" 1635289 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1631049 1631897 1632781 "MESH" 1633870 T MESH (NIL) -7 NIL NIL NIL) (-708 1629439 1629751 1630104 "MDDFACT" 1630736 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1626209 1628570 1628611 "MDAGG" 1628866 NIL MDAGG (NIL T) -9 NIL 1629009 NIL) (-706 1614903 1625502 1625709 "MCMPLX" 1626022 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1614040 1614186 1614387 "MCDEN" 1614752 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1611930 1612200 1612580 "MCALCFN" 1613770 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1610855 1611095 1611328 "MAYBE" 1611736 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1608467 1608990 1609552 "MATSTOR" 1610326 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1604379 1607839 1608087 "MATRIX" 1608252 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1600145 1600852 1601588 "MATLIN" 1603736 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1589971 1593202 1593279 "MATCAT" 1598311 NIL MATCAT (NIL T T T) -9 NIL 1599783 NIL) (-698 1586164 1587234 1588647 "MATCAT-" 1588652 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1584758 1584911 1585244 "MATCAT2" 1585999 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1582870 1583194 1583578 "MAPPKG3" 1584433 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1581851 1582024 1582246 "MAPPKG2" 1582694 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1580350 1580634 1580961 "MAPPKG1" 1581557 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579429 1579756 1579933 "MAPPAST" 1580193 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1579040 1579098 1579221 "MAPHACK3" 1579365 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1578632 1578693 1578807 "MAPHACK2" 1578972 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1578070 1578173 1578315 "MAPHACK1" 1578523 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1576149 1576770 1577074 "MAGMA" 1577798 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1575628 1575873 1575964 "MACROAST" 1576078 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1572049 1573867 1574328 "M3D" 1575200 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1566099 1570360 1570401 "LZSTAGG" 1571183 NIL LZSTAGG (NIL T) -9 NIL 1571478 NIL) (-685 1562057 1563230 1564687 "LZSTAGG-" 1564692 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1559144 1559948 1560435 "LWORD" 1561602 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1558720 1558948 1559023 "LSTAST" 1559089 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1551610 1558491 1558625 "LSQM" 1558630 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1550834 1550973 1551201 "LSPP" 1551465 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1548646 1548947 1549403 "LSMP" 1550523 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545425 1546099 1546829 "LSMP1" 1547948 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1539227 1544515 1544556 "LSAGG" 1544618 NIL LSAGG (NIL T) -9 NIL 1544696 NIL) (-677 1535922 1536846 1538059 "LSAGG-" 1538064 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1533521 1535066 1535315 "LPOLY" 1535717 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1533103 1533188 1533311 "LPEFRAC" 1533430 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531424 1532197 1532450 "LO" 1532935 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1531036 1531174 1531202 "LOGIC" 1531313 T LOGIC (NIL) -9 NIL 1531394 NIL) (-672 1530898 1530921 1530992 "LOGIC-" 1530997 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1530091 1530231 1530424 "LODOOPS" 1530754 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1527514 1530007 1530073 "LODO" 1530078 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1526052 1526287 1526640 "LODOF" 1527261 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1522256 1524687 1524728 "LODOCAT" 1525166 NIL LODOCAT (NIL T) -9 NIL 1525377 NIL) (-667 1521989 1522047 1522174 "LODOCAT-" 1522179 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519309 1521830 1521948 "LODO2" 1521953 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1516744 1519246 1519291 "LODO1" 1519296 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1515625 1515790 1516095 "LODEEF" 1516567 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1510903 1513791 1513832 "LNAGG" 1514694 NIL LNAGG (NIL T) -9 NIL 1515129 NIL) (-662 1510050 1510264 1510606 "LNAGG-" 1510611 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1506186 1506975 1507614 "LMOPS" 1509465 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1505575 1505963 1506004 "LMODULE" 1506009 NIL LMODULE (NIL T) -9 NIL 1506035 NIL) (-659 1502776 1505220 1505343 "LMDICT" 1505485 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502394 1502566 1502607 "LLINSET" 1502668 NIL LLINSET (NIL T) -9 NIL 1502712 NIL) (-657 1502093 1502302 1502362 "LITERAL" 1502367 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495259 1501027 1501331 "LIST" 1501822 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1494784 1494858 1494997 "LIST3" 1495179 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1493791 1493969 1494197 "LIST2" 1494602 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1491925 1492237 1492636 "LIST2MAP" 1493438 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1491556 1491744 1491785 "LINSET" 1491790 NIL LINSET (NIL T) -9 NIL 1491824 NIL) (-651 1489969 1490583 1490624 "LINEXP" 1491114 NIL LINEXP (NIL T) -9 NIL 1491387 NIL) (-650 1488546 1488806 1489117 "LINDEP" 1489721 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485313 1486032 1486809 "LIMITRF" 1487801 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1483616 1483912 1484321 "LIMITPS" 1485008 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478044 1483127 1483355 "LIE" 1483437 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1476978 1477447 1477487 "LIECAT" 1477627 NIL LIECAT (NIL T) -9 NIL 1477778 NIL) (-645 1476819 1476846 1476934 "LIECAT-" 1476939 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469412 1476359 1476515 "LIB" 1476683 T LIB (NIL) -8 NIL NIL NIL) (-643 1465047 1465930 1466865 "LGROBP" 1468529 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463045 1463319 1463669 "LF" 1464768 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1461885 1462577 1462605 "LFCAT" 1462812 T LFCAT (NIL) -9 NIL 1462951 NIL) (-640 1458787 1459417 1460105 "LEXTRIPK" 1461249 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455531 1456357 1456860 "LEXP" 1458367 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455007 1455252 1455344 "LETAST" 1455459 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453405 1453718 1454119 "LEADCDET" 1454689 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1452595 1452669 1452898 "LAZM3PK" 1453326 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447512 1450672 1451210 "LAUPOL" 1452107 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447091 1447135 1447296 "LAPLACE" 1447462 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445030 1446192 1446443 "LA" 1446924 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444010 1444594 1444635 "LALG" 1444697 NIL LALG (NIL T) -9 NIL 1444756 NIL) (-631 1443724 1443783 1443919 "LALG-" 1443924 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1443559 1443583 1443624 "KVTFROM" 1443686 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442482 1442926 1443111 "KTVLOGIC" 1443394 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442317 1442341 1442382 "KRCFROM" 1442444 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441221 1441408 1441707 "KOVACIC" 1442117 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441056 1441080 1441121 "KONVERT" 1441183 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1440891 1440915 1440956 "KOERCE" 1441018 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1438722 1439484 1439861 "KERNEL" 1440547 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438218 1438299 1438431 "KERNEL2" 1438636 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1431929 1436695 1436749 "KDAGG" 1437126 NIL KDAGG (NIL T T) -9 NIL 1437332 NIL) (-621 1431458 1431582 1431787 "KDAGG-" 1431792 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1424606 1431119 1431274 "KAFILE" 1431336 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419034 1424117 1424345 "JORDAN" 1424427 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418413 1418683 1418804 "JOINAST" 1418933 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418259 1418318 1418373 "JAVACODE" 1418378 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414486 1416436 1416490 "IXAGG" 1417419 NIL IXAGG (NIL T T) -9 NIL 1417878 NIL) (-615 1413405 1413711 1414130 "IXAGG-" 1414135 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1408938 1413327 1413386 "IVECTOR" 1413391 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1407704 1407941 1408207 "ITUPLE" 1408705 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406206 1406383 1406678 "ITRIGMNP" 1407526 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1404951 1405155 1405438 "ITFUN3" 1405982 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1404583 1404640 1404749 "ITFUN2" 1404888 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1403742 1404063 1404237 "ITFORM" 1404429 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1401703 1402762 1403040 "ITAYLOR" 1403497 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1390648 1395840 1397003 "ISUPS" 1400573 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1389752 1389892 1390128 "ISUMP" 1390495 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385130 1389697 1389738 "ISTRING" 1389743 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1384606 1384851 1384943 "ISAST" 1385058 T ISAST (NIL) -8 NIL NIL NIL) (-603 1383815 1383897 1384113 "IRURPK" 1384520 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1382751 1382952 1383192 "IRSN" 1383595 T IRSN (NIL) -7 NIL NIL NIL) (-601 1380822 1381177 1381606 "IRRF2F" 1382389 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1380569 1380607 1380683 "IRREDFFX" 1380778 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379184 1379443 1379742 "IROOT" 1380302 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1375788 1376868 1377560 "IR" 1378524 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1374993 1375281 1375432 "IRFORM" 1375657 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1372606 1373101 1373667 "IR2" 1374471 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1371706 1371819 1372033 "IR2F" 1372489 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371497 1371531 1371591 "IPRNTPK" 1371666 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368078 1371386 1371455 "IPF" 1371460 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366405 1368003 1368060 "IPADIC" 1368065 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1365717 1365965 1366095 "IP4ADDR" 1366295 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365091 1365346 1365478 "IOMODE" 1365605 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364164 1364688 1364815 "IOBFILE" 1364984 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1363652 1364068 1364096 "IOBCON" 1364101 T IOBCON (NIL) -9 NIL 1364122 NIL) (-587 1363163 1363221 1363404 "INVLAPLA" 1363588 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1352811 1355165 1357551 "INTTR" 1360827 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349146 1349888 1350753 "INTTOOLS" 1351996 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1348732 1348823 1348940 "INTSLPE" 1349049 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1346685 1348655 1348714 "INTRVL" 1348719 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344287 1344799 1345374 "INTRF" 1346170 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1343698 1343795 1343937 "INTRET" 1344185 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1341695 1342084 1342554 "INTRAT" 1343306 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1338958 1339541 1340160 "INTPM" 1341180 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1335703 1336302 1337040 "INTPAF" 1338344 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1330882 1331844 1332895 "INTPACK" 1334672 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1327694 1330679 1330788 "INT" 1330793 T INT (NIL) -8 NIL NIL NIL) (-575 1326946 1327098 1327306 "INTHERTR" 1327536 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326385 1326465 1326653 "INTHERAL" 1326860 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324231 1324674 1325131 "INTHEORY" 1325948 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1315637 1317258 1319030 "INTG0" 1322583 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296210 1301000 1305810 "INTFTBL" 1310847 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295459 1295597 1295770 "INTFACT" 1296069 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1292886 1293332 1293889 "INTEF" 1295013 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291239 1291978 1292006 "INTDOM" 1292307 T INTDOM (NIL) -9 NIL 1292514 NIL) (-567 1290608 1290782 1291024 "INTDOM-" 1291029 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1286968 1288897 1288951 "INTCAT" 1289750 NIL INTCAT (NIL T) -9 NIL 1290071 NIL) (-565 1286440 1286543 1286671 "INTBIT" 1286860 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285139 1285293 1285600 "INTALG" 1286285 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1284622 1284712 1284869 "INTAF" 1285043 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1277971 1284432 1284572 "INTABL" 1284577 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277304 1277770 1277835 "INT8" 1277869 T INT8 (NIL) -8 NIL NIL 1277914) (-560 1276636 1277102 1277167 "INT64" 1277201 T INT64 (NIL) -8 NIL NIL 1277246) (-559 1275968 1276434 1276499 "INT32" 1276533 T INT32 (NIL) -8 NIL NIL 1276578) (-558 1275300 1275766 1275831 "INT16" 1275865 T INT16 (NIL) -8 NIL NIL 1275910) (-557 1269995 1272848 1272876 "INS" 1273810 T INS (NIL) -9 NIL 1274475 NIL) (-556 1267235 1268006 1268980 "INS-" 1269053 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266010 1266237 1266535 "INPSIGN" 1266988 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265128 1265245 1265442 "INPRODPF" 1265890 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264022 1264139 1264376 "INPRODFF" 1265008 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263022 1263174 1263434 "INNMFACT" 1263858 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262219 1262316 1262504 "INMODGCD" 1262921 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1260727 1260972 1261296 "INFSP" 1261964 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1259911 1260028 1260211 "INFPROD0" 1260607 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1256766 1257976 1258491 "INFORM" 1259404 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256376 1256436 1256534 "INFORM1" 1256701 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1255899 1255988 1256102 "INFINITY" 1256282 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255075 1255619 1255720 "INETCLTS" 1255818 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1253691 1253941 1254262 "INEP" 1254823 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1252896 1253588 1253653 "INDE" 1253658 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252460 1252528 1252645 "INCRMAPS" 1252823 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251278 1251729 1251935 "INBFILE" 1252274 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1246577 1247514 1248458 "INBFF" 1250366 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245485 1245754 1245782 "INBCON" 1246295 T INBCON (NIL) -9 NIL 1246561 NIL) (-538 1244737 1244960 1245236 "INBCON-" 1245241 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244216 1244461 1244552 "INAST" 1244666 T INAST (NIL) -8 NIL NIL NIL) (-536 1243643 1243895 1244001 "IMPTAST" 1244130 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240044 1243487 1243591 "IMATRIX" 1243596 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1238752 1238875 1239191 "IMATQF" 1239900 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1236972 1237199 1237536 "IMATLIN" 1238508 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1231553 1236896 1236954 "ILIST" 1236959 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229461 1231413 1231526 "IIARRAY2" 1231531 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1224859 1229372 1229436 "IFF" 1229441 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224206 1224476 1224592 "IFAST" 1224763 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219204 1223498 1223686 "IFARRAY" 1224063 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218384 1219108 1219181 "IFAMON" 1219186 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1217968 1218033 1218087 "IEVALAB" 1218294 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1217643 1217711 1217871 "IEVALAB-" 1217876 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217233 1217557 1217620 "IDPO" 1217625 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216441 1217122 1217197 "IDPOAMS" 1217202 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1215706 1216330 1216405 "IDPOAM" 1216410 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214563 1214880 1214933 "IDPC" 1215451 NIL IDPC (NIL T T) -9 NIL 1215642 NIL) (-520 1213990 1214455 1214528 "IDPAM" 1214533 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213882 1213955 "IDPAG" 1213960 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -2035 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index be7adb0f..d19c8f79 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,8533 +1,6516 @@ -(731540 . 3486815903) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-887)) - (-5 *5 (-939)) (-5 *6 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-1291)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-1288)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-970 (-576))) (-5 *3 (-1196)) - (-5 *4 (-1114 (-419 (-576)))) (-5 *1 (-30))))) +(731541 . 3486820629) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) + (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) + (-5 *1 (-302 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-960)) (-5 *3 (-576))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-981 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) - (-4 *3 (-1069)) (-4 *2 (-804)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1192 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-991)) (-4 *2 (-132)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) - (-4 *3 (-1069)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1260 *4 *3)) (-14 *4 (-1196)) - (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1278 *3))))) -(((*1 *2 *1) (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1263 *3)) - (-5 *2 (-656 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) - (-4 *6 (-1263 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-145))))) -(((*1 *2 *1 *1) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3343 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-571))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2861 *3) (|:| |gap| (-783)) (|:| -4299 (-794 *3)) - (|:| -2960 (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 - (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -4299 *1) - (|:| -2960 *1))) - (-4 *1 (-1085 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) + (-2 + (|:| -4300 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4438 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3343 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-571)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -4299 *1) - (|:| -2960 *1))) - (-4 *1 (-1085 *3 *4 *5))))) + (-2 + (|:| -4300 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -4438 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) + (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)))) + ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) + (-4 *3 (-13 (-416) (-1223))))) + ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-970 (-419 (-576)))) (-5 *4 (-1196)) - (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120))))) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) + (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -4326 *3)))) + (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) + (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) (((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) + (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) + (-5 *2 (-656 (-2 (|:| -4438 *3) (|:| -1460 (-783)))))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-970 *4)) (-1185 (-1196) (-970 *4)))) - (|:| |eigmult| (-783)) - (|:| |eigvec| (-656 (-701 (-419 (-970 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-970 *4))))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) + (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1121))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-5 *2 (-112)) - (-5 *1 (-903 *4 *5)) (-4 *5 (-1120)))) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-906 *5)) (-4 *5 (-1120)) (-5 *2 (-112)) - (-5 *1 (-904 *5 *3)) (-4 *3 (-1237)))) + (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) - (-4 *6 (-1237)) (-5 *2 (-112)) (-5 *1 (-904 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) - (-15 -2697 ((-1145 *3 (-624 $)) $)) - (-15 -4112 ($ (-1145 *3 (-624 $)))))))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1058 (-48))) - (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1263 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1278 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1177 *4) (-656 (-1177 *4)))) (-5 *1 (-1280 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) - (-4 *3 (-568)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-568))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-783)) - (-4 *5 (-13 (-464) (-1058 (-576)))) (-4 *5 (-568)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *5 (-624 $)) $)) - (-15 -2697 ((-1145 *5 (-624 $)) $)) - (-15 -4112 ($ (-1145 *5 (-624 $)))))))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-939)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-845 (-939))) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-939)))) - ((*1 *2) - (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-939)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1012 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-384 *4)))) + (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) (-4 *2 (-384 *4)) - (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-568)) - (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1012 *3)) (-5 *1 (-1256 *3 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-989 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) + (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1067)) - (-5 *3 (-576))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1130)) (-5 *3 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1) (-5 *1 (-875))) + (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) + (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-970 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-120 *2)) (-4 *2 (-1237))))) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) + (-4 *3 (-804))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) + (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) + (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) + (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) + (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-757))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4465 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) - (-4 *4 (-699 *2 *5 *6))))) + (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) - (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-967 *3 *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-970 *6))) (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)))))))) -(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2110 *7) (|:| |sol?| (-112))) - (-576) *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) + (-2 (|:| |dpolys| (-656 (-253 *5 *6))) + (|:| |coords| (-656 (-576))))) + (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) + (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) + (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) + (-14 *6 (-1288 (-701 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) + (-14 *6 (-1288 (-701 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) + ((*1 *1) + (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) + (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2)))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1177 (-970 *4)) (-1177 (-970 *4)))) - (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-763))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-939)) (|has| *4 (-6 (-4465 "*"))) - (-4 *4 (-1069)) (-5 *1 (-1048 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-939)) - (|has| *4 (-6 (-4465 "*"))) (-4 *4 (-1069)) (-5 *1 (-1048 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1120)) - (-4 *2 (-132))))) -(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) + (-4 *3 (-968 *4 *6 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4463) (-6 -4464)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4463) (-6 -4464))))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-390)) (-5 *1 (-276)))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) + (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) + (-5 *2 (-656 (-2 (|:| -1480 *5) (|:| -4026 *3)))) + (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) + (-4 *7 (-668 (-419 *6)))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) ((*1 *2 *3) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) + (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) + (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) + (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) + (-4 *10 (-805)) + (-5 *2 + (-2 + (|:| |rgl| + (-656 + (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) + (|:| |wcond| (-656 (-971 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *8)))))))))) + (|:| |rgsz| (-576)))) + (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576))))) +(((*1 *1 *1) (-4 *1 (-883 *2)))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) + (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) + (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-656 (-2 (|:| -1828 (-576)) (|:| -4210 (-576)))))))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) + (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) + (-4 *5 (-968 *4 (-543 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) + (-5 *1 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) + (-4 *1 (-779 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) + (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) + (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-1184 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-939)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-939)) - (-5 *1 (-540 *4))))) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-783))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *6 (-568)) - (-5 *2 (-2 (|:| -2390 (-970 *6)) (|:| -1359 (-970 *6)))) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-967 (-419 (-970 *6)) *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1197)) + (|:| |arrayIndex| (-656 (-971 (-576)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) + (|:| |elseClause| (-340)))) + (|:| |returnBranch| + (-2 (|:| -2866 (-112)) + (|:| -3104 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) + (|:| |blockBranch| (-656 (-340))) + (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) + (|:| |forBranch| + (-2 (|:| -3343 (-1113 (-971 (-576)))) + (|:| |span| (-971 (-576))) (|:| -2639 (-340)))) + (|:| |labelBranch| (-1141)) + (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2639 (-340)))) + (|:| |commonBranch| + (-2 (|:| -2627 (-1197)) (|:| |contents| (-656 (-1197))))) + (|:| |printBranch| (-656 (-876))))) + (-5 *1 (-340))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4464)) (-4 *1 (-1030 *3)) - (-4 *3 (-1237))))) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) + (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -3752 (-701 *5)) (|:| |vec| (-1288 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) + (-5 *2 (-701 *4))))) +(((*1 *1) (-5 *1 (-449)))) (((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *1) (-4 *1 (-379))) + (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) + (-5 *1 (-802 *3)) (-4 *3 (-995)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| -4210 (-783)) (|:| -1714 *5) (|:| |radicand| (-656 *5)))) + (-5 *1 (-330 *5)) (-5 *4 (-783)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940)) (-4 *4 (-1070)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) ((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) - ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *1) (-12 (-5 *2 (-923 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-923 *4)) (-5 *1 (-922 *4)) - (-4 *4 (-1120)))) - ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-576)) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) - (-14 *4 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-250 (-1178))) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ *3)) (-15 -1612 ((-1292) $)) - (-15 -4229 ((-1292) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1009)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) - (-15 -4229 ((-1292) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) - (-4 *4 (-1263 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-906 *4))) (-5 *1 (-906 *4)) - (-4 *4 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-923 *4)) (-5 *1 (-922 *4)) - (-4 *4 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *2 (-1069)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-939)) (-4 *4 (-1120)) - (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) - (-5 *1 (-1096 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-939)) (-4 *4 (-1120)) - (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) - (-5 *1 (-1097 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1164))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1069)) - (-4 *2 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) - (-4 *3 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| -1595 *1) (|:| -3822 (-656 *7))))) - (-5 *3 (-656 *7)) (-4 *1 (-1230 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-5 *2 (-656 *1)) (-4 *1 (-1154 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1069))))) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1238))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1069))))) -(((*1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) + (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (-855 *3) + (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) + (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) + "failed")) + (-5 *1 (-648 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) + (-5 *2 + (-3 (-855 (-419 (-971 *5))) + (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) + "failed")) + (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-464)) + (-5 *2 + (-3 (-855 *3) + (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) + (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) + "failed")) + (-5 *1 (-649 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) + (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) + (-5 *1 (-649 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) - (-5 *2 (-656 (-1114 (-227)))) (-5 *1 (-946))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-1192 *2)) - (-4 *2 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) - (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) - (-5 *2 (-656 (-419 (-970 *4)))) (-5 *1 (-942 *4 *5 *6 *7)) - (-4 *7 (-967 *4 *6 *5))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-1110))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-970 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) - (-5 *3 (-656 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) - (-5 *3 (-656 (-576)))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1) (-5 *1 (-340)))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834))))) + (-12 + (-5 *3 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) + (-4 *4 (-1264 (-576)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) + (-5 *1 (-540 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *1 (-912)) + (-5 *3 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *2 (-1056))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) + (-4 *3 (-1238))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-970 *5)) (-1185 (-1196) (-970 *5)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-970 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-970 *5))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3954 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) - (-5 *1 (-923 *3)) (-4 *3 (-1120))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1120))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 + (-2 (|:| -3733 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *7))))) + (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) + (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1030 *3)))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-939)) (-4 *4 (-1069))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)))) + (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-875))))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-889)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-889)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1186)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-638)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1116)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1093)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-990)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1056)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-321)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-683)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1171)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1298)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1086)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1297)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-688)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1196))) - ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-939)))) - ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-939)))) - ((*1 *1) (-5 *1 (-1242))) ((*1 *1) (-5 *1 (-1243))) - ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245)))) + (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) + (-4 *4 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) + (-4 *5 (-13 (-442 *4) (-1023) (-1223))) + (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-766))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -3701 (-783)))) + (-5 *1 (-794 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3701 (-783)))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) + (-5 *1 (-1014 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *2 (-1129 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-987)))) + (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) + (-4 *2 (-1264 (-419 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-419 (-576))) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *1) (-5 *1 (-1289)))) +(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1192 (-1192 *5)))) - (-5 *1 (-1235 *5)) (-5 *3 (-1192 (-1192 *5)))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *1 *1) (-4 *1 (-1165)))) (((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *5 (-243 (-1968 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *5)) - (-2 (|:| -2409 *2) (|:| -1495 *5)))) - (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-967 *4 *5 (-877 *3)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-576)) (-5 *1 (-1130)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) - (-5 *1 (-1130))))) -(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) - ((*1 *1) (-4 *1 (-738))) - ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) - ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) + (-4 *4 (-275 *3)) (-4 *5 (-805))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1196))) (-5 *1 (-837))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) - ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) + (-5 *1 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-939))) (-5 *4 (-923 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-602)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-939))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-602)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-939))) (-5 *4 (-656 (-923 (-576)))) - (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -3014 (-430 *3)) (|:| |special| (-430 *3)))) + (-5 *1 (-739 *5 *3))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) + (-4 *2 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) - (-4 *2 - (-13 (-414) - (-10 -7 (-15 -4112 (*2 *4)) (-15 -4375 ((-939) *2)) - (-15 -3578 ((-1287 *2) (-939))) (-15 -2269 (*2 *2))))) - (-5 *1 (-367 *2 *4))))) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) + (-5 *1 (-192))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -4325)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3048)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3129)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3725)) (-5 *2 (-112)) (-5 *1 (-703 *4)) - (-4 *4 (-625 (-875))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-875))) (-5 *2 (-112)) - (-5 *1 (-703 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-889)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-889)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1116))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1110))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-990))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1201)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1273 *4 *5 *6)) + (|:| |%expon| (-329 *4 *5 *6)) + (|:| |%expTerms| + (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) + (|:| |%type| (-1179)))) + (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) + (-14 *5 (-1197)) (-14 *6 *4)))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) + (-4 *5 (-384 *2)) (-4 *2 (-1238)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1201)))) + (-12 (-5 *3 (-783)) (-4 *2 (-1121)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-940)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| -2511 (-635 *4 *5)) (|:| -2108 (-419 *5)))) + (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940)) (-4 *4 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1264 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-568)) (-4 *8 (-967 *7 *5 *6)) - (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *9) (|:| |radicand| *9))) - (-5 *1 (-971 *5 *6 *7 *8 *9)) (-5 *4 (-783)) - (-4 *9 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *8)) (-15 -2686 (*8 $)) (-15 -2697 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) - (-4 *7 (-1263 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) + (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-353 *5 *2 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) + (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) + (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) + (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-568)) + (-5 *2 (-2 (|:| -3752 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) + (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) + (-4 *6 (-568))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) + (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)) (-4 *4 (-174)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4))))) -(((*1 *1) (-5 *1 (-1199)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1058 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-887)) - (-5 *5 (-939)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *2 (-480)) - (-5 *1 (-1291)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-480)) (-5 *1 (-1291))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1230 *5 *6 *7 *8)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1120)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4299 (-783)) (|:| -2960 (-783)))) - (-5 *1 (-783)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1140)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1092 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) + (-4 *3 (-174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) + (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223)))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) + (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) + (-4 *5 (-374)) (-5 *1 (-942 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) + (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) + (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2394 *5) (|:| -2335 *5)))) + (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) + (-4 *6 (-668 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2394 *4) (|:| -2335 *4)))) + (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) + (-4 *6 (-668 (-419 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2394 *5) (|:| -2335 *5)))) + (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) + (-4 *3 (-668 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2394 *4) (|:| -2335 *4)))) + (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) + (-4 *3 (-668 (-419 *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *1)))) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *5 (-112)) (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) - (-5 *1 (-1092 *6 *7 *4 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-403))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-874))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) + (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) + (-14 *4 (-576))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) + (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) + (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) +(((*1 *1) (-5 *1 (-480)))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) + (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160))) ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))) +(((*1 *1 *1) (-4 *1 (-1165)))) +(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) +(((*1 *1) (-5 *1 (-1106)))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4004 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) + (-14 *4 (-576))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) + (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1197)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) + (-14 *4 + (-1 (-112) (-2 (|:| -3223 *3) (|:| -4210 *2)) + (-2 (|:| -3223 *3) (|:| -4210 *2))))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-997 *4 *5 *6 *7))))) + (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1264 *4)) + (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1069)) (-5 *2 (-1192 *6)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-991))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) + (-4 *4 (-360))))) (((*1 *2 *3) - (-12 (-14 *4 (-656 (-1196))) (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) - (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) - (-5 *1 (-1096 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) - (-5 *1 (-1096 *3 *4 *2)) - (-4 *2 (-13 (-442 *4) (-900 *3) (-626 (-906 *3))))))) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) + (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-5 *1 (-357 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) + (-5 *2 (-419 (-576)))))) +(((*1 *2) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) + (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) - (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-783))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *1) + (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) + (-4 *4 (-678 *3)))) + ((*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) + (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) + (-5 *2 (-940))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-586 *5 *3))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-940)) + (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) + (-5 *3 (-656 *4))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) + (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-998 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) + (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) + (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) + (-12 (-5 *3 (-656 (-1115 (-855 (-390))))) + (-5 *2 (-656 (-1115 (-855 (-227))))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-406)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-1288 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) + (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-548)))) + ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) + (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) + ((*1 *1 *2) + (-2758 + (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) + (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) + (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) + (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) + (-5 *1 (-1090 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) + (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) + (-5 *1 (-1166 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) + ((*1 *2 *3) + (-12 (-5 *3 (-792 *4 (-878 *5))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) + (-5 *2 (-792 *4 (-878 *6))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *6 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-792 *4 (-878 *6))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) + (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-1193 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6)))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) + (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) + ((*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) + (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-939))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-939)) (-14 *5 (-1013 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1263 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1069)))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-576)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1069)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1069)) (-4 *5 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1069)) - (-4 *2 (-861)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-967 *4 *5 *6)) - (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *2 (-861)))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-885 *4)) (-14 *4 *3) + (-5 *3 (-576)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-967 *4 (-543 *5) *5)) - (-5 *1 (-1146 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-861)))) + (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-886 *4 *5)) + (-5 *3 (-576)) (-4 *5 (-883 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-576))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) + (-4 *3 (-1264 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-970 *4)) (-5 *1 (-1231 *4)) - (-4 *4 (-1069))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1177 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4464)) (-4 *1 (-120 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4464)) (-4 *1 (-120 *3)) - (-4 *3 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) - (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1196)) (-5 *1 (-644)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1254 (-576))) (|has| *1 (-6 -4464)) (-4 *1 (-663 *2)) - (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4464)) (-4 *1 (-1030 *2)) - (-4 *2 (-1237)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) - (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4464)) (-4 *1 (-1275 *3)) - (-4 *3 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) - (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-994))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -2861 *4) (|:| -4299 *3) (|:| -2960 *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1085 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| -2861 *3) (|:| -4299 *1) (|:| -2960 *1))) - (-4 *1 (-1263 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1130))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) - (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) - (-5 *4 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) - (-5 *4 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) - (-5 *4 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) - (-5 *4 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-970 (-576)))) - (-5 *4 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-340)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) - (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-967 *4 *6 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) + (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3569 (*2 (-1197)))) + (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *4)) (|:| -1490 (-656 (-971 *4)))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *4)) (|:| -1490 (-656 (-971 *4)))))) + (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) - (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-586 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1055)) (-5 *1 (-767))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1046 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) + (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) + (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) + (-4 *5 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374)))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3778 (-656 *3)) (|:| -3995 (-656 *3)))) - (-5 *1 (-1238 *3)) (-4 *3 (-1120))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1263 *5)) - (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 (-576)))) (-5 *3 (-1192 (-576))) - (-5 *1 (-584)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *1))) (-5 *3 (-1192 *1)) - (-4 *1 (-927))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1060)) (-5 *3 (-390))))) -(((*1 *1) (-5 *1 (-571)))) -(((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1292))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-763))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-317)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1264 *4)) + (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2547 *1))) - (-4 *1 (-317))))) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1))) + (-4 *1 (-1086 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-1196)) (|:| |c| (-1309 *3))))) - (-5 *1 (-1309 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) - (-5 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1091 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *9 (-1085 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -3378 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1008 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1091 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *9 (-1085 *6 *7 *8)) + (-12 (-5 *2 - (-656 - (-2 (|:| -3378 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1127 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) + (-1288 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3791 (-576)) + (|:| -1888 (-576)) (|:| |spline| (-576)) (|:| -3449 (-576)) + (|:| |axesColor| (-888)) (|:| -2326 (-576)) + (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) + (-5 *1 (-1289))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070))))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) + (-5 *1 (-771)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) + (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2))))) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1) (-5 *1 (-173))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1121)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401)))) + ((*1 *1) (-5 *1 (-406))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) + ((*1 *1) + (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) + (-4 *4 (-678 *3)))) + ((*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1070)))) + ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) + ((*1 *1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1197))) + ((*1 *1) (-5 *1 (-1218)))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-961 *4)) (-4 *1 (-1154 *4)) - (-4 *4 (-1069)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-961 (-227))) (-5 *2 (-1292)) - (-5 *1 (-1289))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-783))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1292)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 (*2 $)) - (-15 -4229 (*2 $))))))) + (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) ((*1 *2 *1) - (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 (*2 $)) - (-15 -4229 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) + (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289))))) +(((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) + ((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197))))) + ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-701 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-972))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-967 *3 *5 *4)) - (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1196)))) - (-4 *5 (-805)) (-5 *1 (-942 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) + (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-4 *2 (-353 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576))))) - (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-970 *9)))) - (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) - (-4 *9 (-13 (-317) (-148))) (-4 *12 (-967 *9 *11 *10)) - (-4 *10 (-13 (-861) (-626 (-1196)))) (-4 *11 (-805)) - (-5 *2 - (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) - (|:| |wcond| (-656 (-970 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *9)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *9))))))))) - (-5 *1 (-942 *9 *10 *11 *12))))) -(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1120)) (-5 *2 (-783))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-4 *3 (-1120)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-923 *4)) (-4 *4 (-1120)) (-5 *2 (-112)) - (-5 *1 (-922 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-939)) (-5 *2 (-112)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) - (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) - (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) - (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) - (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *3))))) + (-12 (-5 *2 (-656 (-2 (|:| -4300 *3) (|:| -4438 *4)))) + (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) (((*1 *2 *3) - (-12 (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) + (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) + (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) + (-5 *1 (-921 *4 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-1012 *2)) (-4 *2 (-568)) - (-5 *1 (-705 *2 *4)))) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1012 *2)) (-4 *2 (-568)) (-5 *1 (-1256 *2 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060)))) - ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1263 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) - (-4 *10 (-967 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-656 (-1192 *10))) - (|:| |dterm| - (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) - (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-656 *6)) - (-5 *5 (-656 *10))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-861)) (-5 *1 (-997 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-1232 *3)) - (-4 *3 (-994))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-903 *3 *5)) (-5 *1 (-899 *3 *4 *5)) - (-4 *3 (-1120)) (-4 *5 (-678 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3114 (-794 *3)) (|:| |coef1| (-794 *3)) - (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3114 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-875))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *5 (-805)) (-4 *2 (-275 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) - (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1112 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1055)) (-5 *1 (-763))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-967 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) + (-5 *1 (-797 *5))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) + (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) (((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-970 *5)))) (-5 *1 (-1205 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1146 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) - (-4 *4 (-1069)) (-4 *3 (-861)) (-5 *1 (-1146 *4 *3 *5)) - (-4 *5 (-967 *4 (-543 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1196)) (-5 *1 (-1231 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1069))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1232 *3)) - (-5 *1 (-802 *3)) (-4 *3 (-994)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1232 *2)) (-4 *2 (-994))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-766))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1260 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1196)) - (-4 *5 (-374)) (-5 *1 (-941 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1192 *5)) - (-5 *1 (-941 *4 *5)) (-14 *4 (-1196)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) - (-5 *2 (-419 (-970 *6))) (-5 *1 (-1070 *5 *6)) (-14 *5 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-990)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1138))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1292)) (-5 *1 (-876))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1159))) ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1263 *4)) - (-4 *5 (-13 (-416) (-1058 *4) (-374) (-1222) (-294)))))) -(((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) - (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-688)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-1116))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1083))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-886 (-939) (-939)))) (-5 *1 (-991))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) - (-5 *2 (-875)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1114 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1153 (-227))) - (-5 *1 (-709)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-227))) - (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-709)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1153 (-227))) (-5 *3 (-1 (-961 (-227)) (-227) (-227))) - (-5 *4 (-1114 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-861)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1222))) - (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-595 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-419 (-970 *3)))) - (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) + (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) + (-5 *1 (-1026))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-656 (-1197))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4250 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-4 *5 (-1069)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-656 (-701 *5))))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) + (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-374)) (-4 *5 (-1069)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1164)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1164))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-983)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1095 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1135)))) - ((*1 *1 *1) (-5 *1 (-1196)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) - (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1069)) (-5 *1 (-1259 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-961 (-227))) (-5 *2 (-227)) (-5 *1 (-1233)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-970 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1192 (-970 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-875)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) - (|:| |f4| (-656 *5)))) - (-5 *1 (-1207 *6)) (-5 *4 (-656 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-939)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-939)))) - ((*1 *2) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-939)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) + (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-679 *5)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) + (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-245 *5 *7)) + (-5 *1 (-244 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-5 *2 (-783)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1167 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1069)) (-4 *4 (-1263 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1263 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-656 (-1196))) - (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1043)) (-5 *5 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1044 (-419 *4))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-152 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-656 (-2 (|:| -1495 (-783)) (|:| -3187 *4) (|:| |num| *4)))) - (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-5 *3 (-656 (-970 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-5 *3 (-656 (-1196))) (-5 *4 (-112)) (-5 *1 (-449)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1177 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) - (-4 *4 (-174)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) - (-4 *4 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) - (-4 *4 (-174)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1120)) - (-5 *1 (-687 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1120)) - (-14 *4 - (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *3)) - (-2 (|:| -2409 *2) (|:| -1495 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1138)) (-5 *1 (-850)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 *4)))) - (-4 *4 (-1120)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-624 *6)) + (-4 *6 (-312)) (-4 *2 (-1238)) (-5 *1 (-307 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1120) (-34))) - (-5 *2 (-656 (-1160 *3 *5))) (-5 *1 (-1160 *3 *5)) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4442 *5)))) - (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) - (-5 *2 (-656 (-1160 *4 *5))) (-5 *1 (-1160 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4442 *4))) - (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) - (-5 *1 (-1160 *3 *4)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) + (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1120) (-34))) - (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1160 *2 *3))) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1161 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1161 *2 *3))) (-5 *1 (-1161 *2 *3)) - (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *6 (-626 (-1196))) - (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-1185 (-656 (-970 *4)) (-656 (-304 (-970 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1138))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-875))) (-5 *2 (-1292)) (-5 *1 (-1158))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1120)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-809 *4)))) - ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1011 *3 *4)) - (-4 *3 (-1012 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1016 *3 *4)) - (-4 *3 (-1017 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1031 *3)) (-4 *3 (-1032)))) - ((*1 *2) (-12 (-4 *1 (-1069)) (-5 *2 (-783)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1079 *3)) (-4 *3 (-1080))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-14 *6 (-1287 (-701 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))))) - ((*1 *1 *2) (-12 (-5 *2 (-1145 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'JINT 'X 'ELAM) (-4124) (-711)))) - (-5 *1 (-61 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 'XC) (-711)))) - (-5 *1 (-63 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4124 'X) (-4124) (-711))) (-5 *1 (-64 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4124) (-4124 'XC) (-711))) (-5 *1 (-66 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'X) (-4124 '-1438) (-711)))) - (-5 *1 (-71 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 'X) (-711)))) - (-5 *1 (-74 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'X 'EPS) (-4124 '-1438) (-711)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) - (-14 *5 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'EPS) (-4124 'YA 'YB) (-711)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) - (-14 *5 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4124) (-4124 'X) (-711))) (-5 *1 (-77 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4124) (-4124 'X) (-711))) (-5 *1 (-78 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 'XC) (-711)))) - (-5 *1 (-79 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124) (-4124 'X) (-711)))) - (-5 *1 (-80 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'X '-1438) (-4124) (-711)))) - (-5 *1 (-82 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4124 'X '-1438) (-4124) (-711)))) - (-5 *1 (-83 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4124 'X) (-4124) (-711)))) (-5 *1 (-84 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'X) (-4124) (-711)))) - (-5 *1 (-85 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4124 'X) (-4124 '-1438) (-711)))) - (-5 *1 (-86 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4124 'XL 'XR 'ELAM) (-4124) (-711)))) - (-5 *1 (-87 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4124 'X) (-4124 '-1438) (-711))) (-5 *1 (-89 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) - ((*1 *1 *2) - (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1287 (-701 (-419 (-970 *4))))) (-5 *1 (-191 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1112 (-326 *4))) - (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1112 (-390))) - (-5 *1 (-265 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1272 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) - (-14 *5 (-1196)) (-14 *6 *4) - (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) - (-5 *1 (-323 *3 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) - (-4 *3 (-339 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) - (-4 *3 (-339 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-1311 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-1302 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) - (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) - (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) - ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) - (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) - ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) - (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) - (-4 *3 (-13 (-861) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-970 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-442 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-442 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-442 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1145 *3 (-624 *1))) (-4 *3 (-1069)) (-4 *3 (-1120)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) - (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-711))) (-4 *1 (-452)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3535 (-656 (-340))))) - (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-419 (-970 *3)))) (-4 *3 (-174)) - (-14 *6 (-1287 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-14 *4 (-939)) (-14 *5 (-656 (-1196))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-480)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1069)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1145 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-514)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-5 *1 (-687 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-4 *3 (-1120)) - (-5 *1 (-687 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-693)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) - (-4 *2 (-384 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722)))) - ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2861 *3) (|:| -1617 *4)))) - (-4 *3 (-1069)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -2925 (-656 (-1114 (-855 (-227))))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *1 (-781)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *1 (-781)))) - ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-836)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3650 (-656 (-227))))))) - (-5 *1 (-853)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *1 (-853)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-853)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) - ((*1 *2 *3) - (-12 (-5 *3 (-970 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-888)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 (-48)))) (-5 *2 (-326 (-576))) - (-5 *1 (-888)))) - ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *1 (-914)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-923 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-923 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-923 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-932 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-932 *3)) (-4 *3 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-937 *4)) - (-4 *4 (-568)))) - ((*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1053 *3)) (-4 *3 (-1237)))) - ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1053 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) - (-14 *6 (-656 *2)))) - ((*1 *2 *3) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-1063 *3)) (-4 *3 (-568)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-4 *4 (-861)) (-5 *1 (-1146 *3 *4 *2)) - (-4 *2 (-967 *3 (-543 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-4 *2 (-861)) (-5 *1 (-1146 *3 *2 *4)) - (-4 *4 (-967 *3 (-543 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1164)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-1069)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-1069)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209 (-1196) (-449))) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1208 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1216 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 *3)) (-4 *3 (-1069)) (-5 *1 (-1231 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) - (-4 *3 (-1069)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1114 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) - (-4 *3 (-1069)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-1279 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1288)))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1288)) (-5 *1 (-1291)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *1 (-1307 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) - (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1069)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) - (-4 *1 (-1091 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-967 *7 *5 *6)) - (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-317))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-916 *3)) (-5 *1 (-598 *2)) - (-5 *3 (-1196)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-875)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-918 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-918 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-576)) (-5 *1 (-960))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-692 *5 *6 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) - (-5 *2 (-701 *6)) (-5 *1 (-1049 *6)) (-4 *6 (-374)) (-4 *6 (-1069)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1049 *4)) - (-4 *4 (-374)) (-4 *4 (-1069)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) - (-5 *1 (-1049 *5)) (-4 *5 (-374)) (-4 *5 (-1069))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-91 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1237)) (-5 *2 (-1292))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) - (-14 *4 (-576))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (|has| *1 (-6 -4454)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1069)) (-4 *3 (-374)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1055)) (-5 *1 (-763))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-961 *4))) (-4 *1 (-1154 *4)) (-4 *4 (-1069)) - (-5 *2 (-783))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-656 *3)) - (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1129 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) - (-5 *1 (-1098 *5 *6)) (-5 *3 (-656 (-970 *5))) - (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *4)) (|:| -3435 (-656 (-970 *4)))))) - (-5 *1 (-1098 *4 *5)) (-5 *3 (-656 (-970 *4))) - (-14 *5 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) - (-5 *1 (-1098 *5 *6)) (-5 *3 (-656 (-970 *5))) - (-14 *6 (-656 (-1196)))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-5 *2 (-1192 *3)) (-5 *1 (-1211 *3)) - (-4 *3 (-374))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1122 *4)) (-4 *4 (-1120)) (-5 *2 (-1 *4)) - (-5 *1 (-1037 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1060)) (-5 *3 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1114 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1067))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-1112 (-970 (-576)))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1069)) - (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-804)) (-4 *3 (-174))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-301))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1287 *4)) - (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-923 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1278 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1177 *4) (-1177 *4) (-1177 *4))) (-5 *1 (-1280 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1032))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) - (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1055)) (-5 *1 (-760))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) - (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) - (-14 *7 (-939))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) - (-4 *5 (-1069)) (-5 *2 (-112)) (-5 *1 (-1049 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1069)) - (-5 *2 (-112)) (-5 *1 (-1049 *4))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) - (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -4244 *6))) - (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) - (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-989 *2 *4)) - (-4 *4 (-1263 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-875)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)) - (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) - ((*1 *1 *1 *1) - (-3794 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) - ((*1 *1 *1 *1) (-4 *1 (-374))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1145 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-738) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-738) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) - (-4 *3 (|SubsetCategory| (-738) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) - (-4 *2 (|SubsetCategory| (-738) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-879 *2 *3 *4 *5)) (-4 *2 (-374)) - (-4 *2 (-1069)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-783))) - (-14 *5 (-783)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1069)) (-4 *3 (-861)) - (-4 *4 (-805)) (-14 *6 (-656 *3)) - (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-967 *2 *4 *3)) - (-14 *7 (-656 (-783))) (-14 *8 (-783)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1069)) - (-4 *3 (-858))))) -(((*1 *2) - (-12 (-5 *2 (-1287 (-1121 *3 *4))) (-5 *1 (-1121 *3 *4)) - (-14 *3 (-939)) (-14 *4 (-939))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1495 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1495 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1120)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1495 (-576)))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-906 *3)) (|:| -1495 (-783)))) - (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -1495 (-783)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) - (-4 *7 (-967 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1495 (-576)))) - (-5 *1 (-968 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1055)) - (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-216 *2)) - (-4 *2 - (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) - (-15 -4229 ((-1292) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1129 *5 *6 *7 *8)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-603 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-875)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-764))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3954 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-216 *2)) - (-4 *2 - (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 ((-1292) $)) - (-15 -4229 ((-1292) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-132)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) - (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-25))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1120)) - (-5 *1 (-585 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-976 (-185 (-140)))) (-5 *1 (-343)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1120)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1120))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1120)) (-4 *4 (-1237)) (-5 *2 (-112)) - (-5 *1 (-1177 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4134 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-942 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-939)) (-5 *1 (-798))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) - (-5 *2 - (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) - (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) - (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1114 (-227))) (-5 *2 (-945)) - (-5 *1 (-943 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1114 (-227))) (-5 *2 (-945)) - (-5 *1 (-943 *3)) (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| -3589 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-944))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) - ((*1 *1 *1) (-5 *1 (-945))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-5 *2 (-656 *1)) (-4 *1 (-1154 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) - (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-967 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-934 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *6 *4 *5)) - (-5 *1 (-934 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317))))) -(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-310)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) - (-4 *1 (-381 *4 *5)) (-4 *5 (-1263 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1104 *3)) (-4 *3 (-133))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) - (|:| |polypart| *6))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1287 *5))) (-5 *4 (-576)) (-5 *2 (-1287 *5)) - (-5 *1 (-1049 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1069))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) - (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1055)) - (-5 *1 (-766))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-989 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *6 *7 *2)) (-4 *6 (-1069)) - (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) - (-5 *2 (-656 (-656 (-961 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-961 *4)))) (-5 *3 (-112)) (-4 *4 (-1069)) - (-4 *1 (-1154 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-961 *3)))) (-4 *3 (-1069)) - (-4 *1 (-1154 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) - (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-961 *4)))) (-5 *3 (-112)) - (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1154 *5)) (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-961 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1154 *5)) (-4 *5 (-1069))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) - (-4 *1 (-1091 *4 *5 *6 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-963 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1055)) (-5 *1 (-852))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2110 *4) (|:| |sol?| (-112))) - (-576) *4)) - (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-873)) (-5 *2 (-703 (-1245))) (-5 *3 (-1245))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1120)) (-4 *4 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-970 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) - (-5 *1 (-936 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 (-326 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) - (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) - (-5 *1 (-315))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-62 *3)) (-14 *3 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196)))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1292)))) - ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-409)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-875))) (-5 *2 (-1292)) (-5 *1 (-1158))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-786)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-983))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1263 (-171 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) - (-4 *2 (-1120))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) - (-5 *2 (-656 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-403))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-878))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1069))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-656 (-1196))) (-4 *2 (-174)) - (-4 *3 (-243 (-1968 *4) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *3)) - (-2 (|:| -2409 *5) (|:| -1495 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) - (-4 *7 (-967 *2 *3 (-877 *4)))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-174))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-1020 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-403)))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-942 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) - (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-656 (-656 (-961 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-656 (-656 (-961 (-227)))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1046 *3)) (-4 *3 (-1237))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) - ((*1 *1) (-5 *1 (-875))) - ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) - (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1105))) - ((*1 *1) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *1) (-5 *1 (-1199))) ((*1 *1) (-5 *1 (-1200)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *1) (-4 *1 (-360))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1192 *5))) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) - (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-970 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-978 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 *5))) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-978 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-970 *6))) (-5 *4 (-656 (-1196))) (-5 *5 (-1196)) - (-4 *6 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -2861 (-656 (-576))) (|:| |poly| (-656 (-1192 *6))) - (|:| |prim| (-1192 *6)))) - (-5 *1 (-978 *6))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1192 *4)) - (-4 *4 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1120)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1192 *4))) - (-4 *4 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1122 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1120)) (-5 *2 (-1122 (-656 *4))) (-5 *1 (-922 *4)) - (-5 *3 (-656 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1120)) (-5 *2 (-1122 (-1122 *4))) (-5 *1 (-922 *4)) - (-5 *3 (-1122 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1122 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 (-449))))) - (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) - (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) - (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1127 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-1140)) (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-970 (-171 (-576)))))) - (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-171 *5)))) - (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-786)) (-5 *1 (-115))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) - (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) - (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290))))) -(((*1 *2 *3) - (-12 (-5 *3 (-970 *5)) (-4 *5 (-1069)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-962 *4 *5)) (-14 *4 (-656 (-1196)))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3578 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -3578 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1069)) - (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) - (-4 *3 (-865 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-1120)) (-5 *1 (-661 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1241)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-939)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-158)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222))) - (-5 *1 (-229 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-861)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *6 (-243 (-1968 *3) (-783))) - (-14 *7 - (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *6)) - (-2 (|:| -2409 *5) (|:| -1495 *6)))) - (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) - (-4 *2 (-967 *4 *6 (-877 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1132)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-696 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1069)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *2 (-384 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) - (-5 *1 (-989 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1132)))) - ((*1 *1 *1 *1) (-4 *1 (-1132))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *2 (-243 *3 *4)) - (-4 *5 (-243 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1143 *3 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-861)) (-5 *1 (-1146 *3 *4 *2)) - (-4 *2 (-967 *3 (-543 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-961 (-227))) (-5 *3 (-227)) (-5 *1 (-1233)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) - (-5 *2 (-701 (-227))) (-5 *1 (-276))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-939)) (-4 *3 (-374)) - (-14 *4 (-1013 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1) (|partial| -4 *1 (-734))) - ((*1 *1 *1) (|partial| -4 *1 (-738))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1263 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1058 (-419 (-576))))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4463) (-6 -4464)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4463) (-6 -4464))))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-656 (-1196))) (-4 *2 (-174)) - (-4 *4 (-243 (-1968 *5) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *3) (|:| -1495 *4)) - (-2 (|:| -2409 *3) (|:| -1495 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) - (-4 *7 (-967 *2 *4 (-877 *5)))))) -(((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1081 (-1044 *3) (-1192 (-1044 *3)))) - (-5 *1 (-1044 *3)) (-4 *3 (-13 (-860) (-374) (-1042)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1292)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1069)) - (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-967 *2 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-861)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-861))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) - ((*1 *1 *1) (-4 *1 (-414)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1230 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) - (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-939)))) - ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245)))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-938))))) -(((*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1120)) (-5 *1 (-985 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) - (-5 *2 (-656 (-2 (|:| -2665 *5) (|:| -3378 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6)))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-878)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -3278 (-783)))) - (-5 *1 (-794 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3278 (-783)))) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-939)))) - ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245)))) -(((*1 *1) (-5 *1 (-1288)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1069)) - (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) - (-4 *3 (-865 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)) (-5 *3 (-1178))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) - (-5 *2 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) - (-5 *1 (-357 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) - (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-939)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-1208 (-656 *4))) (-5 *1 (-1207 *4)) - (-5 *3 (-656 *4))))) -(((*1 *1 *1) (-4 *1 (-1080)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-14 *5 (-656 (-1196))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *4)) (|:| -3435 (-656 (-970 *4)))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-970 *5))) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-970 *5))) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *5)) (|:| -3435 (-656 (-970 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-970 *5))) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 - (-656 (-2 (|:| -3920 (-1192 *4)) (|:| -3435 (-656 (-970 *4)))))) - (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-656 (-970 *4))) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1287 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2840 (-576)) - (|:| -3174 (-576)) (|:| |spline| (-576)) (|:| -2181 (-576)) - (|:| |axesColor| (-887)) (|:| -3479 (-576)) - (|:| |unitsColor| (-887)) (|:| |showing| (-576))))) - (-5 *1 (-1288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-877 *4)) - (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1222)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1085 *3 *4 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3954 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1263 *5)) - (-5 *2 (-701 *5))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -2960 *1))) - (-4 *1 (-1085 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -2861 *1) (|:| |gap| (-783)) (|:| -2960 *1))) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-894))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-939)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-939)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-970 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) - ((*1 *2 *3) - (-12 (-5 *3 (-970 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) - ((*1 *2 *3) (-12 (-5 *3 (-970 *1)) (-4 *1 (-1032)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1032)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1032)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-656 *1)) - (-4 *1 (-1088 *4 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) - (-5 *1 (-601 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) - (-5 *2 - (-656 - (-3 (|:| -4148 (-1196)) - (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576))))))))) - (-5 *1 (-1200))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1120)) - (-4 *4 (-1120)))) - ((*1 *1 *2) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 (-970 *6))) (-4 *6 (-568)) - (-4 *2 (-967 (-419 (-970 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) - (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $)))))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-804))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022) (-1222)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1207 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022) (-1222)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-1287 (-326 (-390)))) - (-5 *1 (-315))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-983))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-1312))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-378 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) - (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-967 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-656 (-2 (|:| -1450 (-1192 *9)) (|:| -1495 (-576))))))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *1 *1) (-5 *1 (-1195))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1055)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1149 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-970 *5)))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1149 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-304 (-419 (-970 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *9 (-374)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) + (-5 *2 (-347 *9 *10 *11 *12)) + (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-353 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1149 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-970 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1149 *4)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) + (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1264 (-419 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-970 *5))))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1149 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-970 *4))))) - (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) - (-5 *1 (-1149 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52)))) - (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-939)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-374)) (-14 *5 (-1013 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-576)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1058 *2) (-651 *2) (-464))) - (-5 *2 (-576)) (-5 *1 (-1136 *4 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1058 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1136 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) - (-4 *6 (-13 (-568) (-1058 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1136 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-464)) (-5 *2 (-576)) - (-5 *1 (-1137 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 (-419 (-970 *6)))) - (-5 *3 (-419 (-970 *6))) (-4 *6 (-464)) (-5 *2 (-576)) - (-5 *1 (-1137 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-970 *6))) (-5 *4 (-1196)) - (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1137 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1058 *4)) (-4 *3 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3561 (-1177 *4)) (|:| -3573 (-1177 *4)))) - (-5 *1 (-1182 *4)) (-5 *3 (-1177 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-967 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) - (-4 *1 (-1263 *3))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-906 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1120)) - (-4 *5 (-1237)) (-5 *1 (-904 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-906 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1120)) - (-4 *5 (-1237)) (-5 *1 (-904 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-906 *5)) (-5 *3 (-656 (-1196))) - (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1120)) (-4 *6 (-1237)) - (-5 *1 (-904 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1237)) (-4 *4 (-1120)) - (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-4 *4 (-1120)) - (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1237)) - (-5 *2 (-326 (-576))) (-5 *1 (-956 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) + (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) - (-5 *2 (-326 (-576))) (-5 *1 (-956 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1 (-112) (-656 *6))) - (-4 *6 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) - (-5 *1 (-1096 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1114 (-227)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) - (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) - (-4 *7 (-1237)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) + (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) - (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *2 (-1055)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-861)) (-4 *9 (-1085 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3378 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1008 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1091 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-861)) (-4 *9 (-1085 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3378 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1127 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1091 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-961 (-227)) (-961 (-227)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-961 (-227)) (-961 (-227)))) (-5 *1 (-270)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) + (-4 *6 (-1013 *5)) (-4 *7 (-1264 *6)) + (-4 *8 (-13 (-421 *6 *7) (-1059 *6))) (-4 *9 (-317)) + (-4 *10 (-1013 *9)) (-4 *11 (-1264 *10)) + (-5 *2 (-425 *9 *10 *11 *12)) + (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-421 *10 *11) (-1059 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) - (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-1287 *6)) - (-5 *1 (-643 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4464)) (-4 *1 (-384 *3)) - (-4 *3 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1287 (-701 (-970 *4)))) (-5 *1 (-191 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1114 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1114 (-227)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-29 *4)))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *5)) (-4 *5 (-1069)) (-5 *1 (-1074 *3 *4 *5)) - (-14 *3 (-783)) (-14 *4 (-783))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-858))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) - (-4 *3 (-13 (-374) (-148)))))) -(((*1 *1 *1 *1) (-4 *1 (-987)))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1069)) (-4 *2 (-1263 *5)) - (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1278 *5))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1036 *4 *5)) - (-5 *3 (-419 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1114 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1114 (-227)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1055)) (-5 *1 (-760))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1450 (-1192 *6)) (|:| -1495 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1) - (-12 (-4 *3 (-238)) (-4 *3 (-1069)) (-4 *4 (-861)) (-4 *5 (-275 *4)) - (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) - (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-1096 *3 *4 *5))) (-4 *3 (-1120)) - (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) - (-4 *5 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))) - (-5 *1 (-1097 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3578 (-656 *6))) - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1287 *6) "failed")) - (|:| -3578 (-656 (-1287 *6))))) - (-5 *1 (-825 *6 *7)) (-5 *4 (-1287 *6))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-627 *4 *5)) - (-5 *3 (-419 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-148) (-27) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-1192 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-939)) - (-4 *2 (-1120))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1067))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) - (-4 *2 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1067))))) -(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-875)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-991))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) - (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-1120)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-939)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-923 *4)) (-4 *4 (-1120)) (-5 *2 (-656 (-783))) - (-5 *1 (-922 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1113 *3)) (-4 *3 (-1237))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) - (-4 *2 (-1263 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) - (-5 *2 (-970 *5)) (-5 *1 (-962 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-656 (-173))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -1749 (-656 *3)) (|:| -2176 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1263 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -1749 (-656 *3)) (|:| -2176 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1032)) (-5 *2 (-875))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-906 (-576)))) - (-4 *5 (-900 (-576))) - (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-855 *2)) (-4 *2 (-1159)) - (-4 *2 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-626 (-906 (-576)))) (-4 *5 (-900 (-576))) - (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) - (-5 *1 (-579 *5 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-656 *6))) - (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1278 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-927)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) - ((*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1196)) - (-4 *5 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-976 (-1192 *4))) (-5 *1 (-368 *4)) - (-5 *3 (-1192 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1055)) (-5 *1 (-761)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-400)) (-5 *2 (-1055)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1171))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-948))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-961 (-227)))) (-5 *1 (-1288))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-970 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1192 (-970 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-132)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) + (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-372 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-861)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) + (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -4106 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-374)) (-4 *6 (-374)) + (-5 *2 (-2 (|:| -4106 *6) (|:| |coeff| *6))) + (-5 *1 (-596 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-374)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-596 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) + (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) + (-5 *1 (-611 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-613 *7)) + (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) + (-5 *1 (-611 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1178 *7)) + (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) + (-5 *1 (-611 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) + (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-656 *8)) + (-5 *1 (-655 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) + (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) + (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) + (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) + (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) + (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) + (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) + (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) + (-4 *8 (-1264 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) + (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-968 *9 *7 *5)) + (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) + (-4 *4 (-968 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) + (-4 *9 (-1070)) (-4 *2 (-968 *9 *8 *6)) + (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) + (-4 *4 (-968 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) + (-5 *1 (-746 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-661 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1069))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-984 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-873)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) - (-4 *3 (-1237))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *1 (-598 *2)) (-4 *2 (-1058 *3)) - (-4 *2 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) - (-4 *2 (-13 (-442 *4) (-1022) (-1222))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-442 *4) (-1022) (-1222))) - (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-1196)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-977))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1159)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-861)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-1000 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-747 *3 *4)) + (-4 *4 (-738)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-844 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-854 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-904 *5 *6)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-904 *5 *7)) + (-5 *1 (-903 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-5 *2 (-971 *6)) (-5 *1 (-965 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) + (-4 *8 (-1070)) (-4 *6 (-805)) + (-4 *2 + (-13 (-1121) + (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) + (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-976 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1069))) (-5 *2 (-1178)) - (-5 *1 (-838 *4)))) + (-12 (-5 *3 (-1 *2 (-971 *4))) (-4 *4 (-1070)) + (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-5 *1 (-1005 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) + (-4 *2 (-1013 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1013 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) + (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) + (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) + (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) + (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) + (-4 *12 (-243 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1069))) - (-5 *2 (-1178)) (-5 *1 (-838 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-1115 *6)) (-5 *1 (-1110 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1069))) - (-5 *2 (-1292)) (-5 *1 (-838 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-860)) + (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) + (-5 *1 (-1110 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1112 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) + (-4 *2 (-1170 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1176 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-840) (-1069))) (-5 *2 (-1292)) (-5 *1 (-838 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1178)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1178)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1292)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1292))))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-1178 *7)) + (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) + (-5 *1 (-1177 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-1191 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1197)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1254 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) + (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) + (-5 *1 (-1254 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1261 *5 *6)) (-14 *5 (-1197)) + (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1261 *7 *8)) + (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1197)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) + (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *4 *6 *2)) (-4 *4 (-1264 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5 *7 *9)) (-4 *5 (-1070)) + (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1273 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1197)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) + (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) + (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) + (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) + (-5 *1 (-1287 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) + (-4 *4 (-858))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2168 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) + (-5 *2 (-876)) (-5 *1 (-32 *4 *5))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-970 (-576))))) (-5 *2 (-656 (-326 (-576)))) - (-5 *1 (-1051))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1) (-4 *1 (-35))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) + (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) + (-14 *6 (-940))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) (-5 *3 (-227)) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) + ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| -1714 (-419 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) + (-14 *5 (-940)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1069)) - (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1069)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1069)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) + (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) + (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1345 (-576)) (|:| -1749 (-656 *3)))) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) + (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-950 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-5 *1 (-449))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3114 *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-717 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1450 *4) (|:| -1877 (-576))))) - (-4 *4 (-1263 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1069)) - (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *3 (-861)) (-5 *2 (-783))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) - (-4 *7 (-861)) (-4 *8 (-1069)) (-4 *9 (-967 *8 *6 *7)) - (-4 *6 (-805)) (-5 *2 (-1192 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) + (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) + (-5 *1 (-276))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) - (-4 *7 (-967 *3 *5 *6)) - (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *8) (|:| |radicand| *8))) - (-5 *1 (-971 *5 *6 *3 *7 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $)))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) - (-5 *2 (-2 (|:| -2861 (-576)) (|:| |var| (-624 *1)))) - (-4 *1 (-442 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1085 *3 *4 *2))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2)))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) + (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) + (-5 *2 (-112)) (-5 *1 (-679 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-112)) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) + (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) + (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) (((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *1) (-4 *1 (-1172)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1120)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) -(((*1 *1) (-5 *1 (-449)))) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-5 *1 (-607 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1178)) - (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1173 *3))))) -(((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) - (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-112)) - (-5 *1 (-942 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1263 *4)) - (-5 *1 (-940 *4 *2))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) + (-5 *1 (-709)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) + (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1237)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-861))))) + (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-1069)) - (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-4 *5 (-1069)) - (-4 *2 (-13 (-416) (-1058 *5) (-374) (-1222) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5))))) + (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) + (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) + (-4 *5 (-1264 (-419 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) - (-5 *1 (-760))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) + (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) + (-5 *1 (-563 *6 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) + (-4 *1 (-1033)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) + (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) + (-4 *3 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2) + (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-979 *3)) (-4 *3 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4004 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197)))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1263 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) + (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289))))) +(((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-861)))) + ((*1 *2 *2) + (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) + (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-595 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-598 (-419 (-971 *3)))) + (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *1) (-5 *1 (-1289)))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) - (-15 -2697 ((-1145 *3 (-624 $)) $)) - (-15 -4112 ($ (-1145 *3 (-624 $)))))))))) -(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1120))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) - (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -3014 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) + (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1069)) (-4 *2 (-1263 *4)) - (-5 *1 (-456 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) - (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1150 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) + ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) + (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4026 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1036 *6 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-989 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) + (-5 *1 (-762))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) - (-5 *1 (-315))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) - ((*1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1230 *4 *5 *3 *2)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1085 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-1234 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798))))) + (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) + (-5 *2 (-701 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-317)) - (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-768))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-112)) (-5 *1 (-899 *3 *4 *5)) - (-4 *3 (-1120)) (-4 *5 (-678 *4)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *1 *1) (-4 *1 (-1081))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) + (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3599 *1))) + (-4 *1 (-1086 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3599 *1))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1055)) (-5 *1 (-763))))) + (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) + (-5 *1 (-1202))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3498 *1) (|:| |coef2| *1))) + (-4 *1 (-1086 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) - (-4 *7 (-1263 (-419 *6))) (-5 *2 (-656 (-970 *5))) - (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) + (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) + (-4 *3 (-626 (-390))))) ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) - (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-374)) - (-5 *2 (-656 (-970 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-940)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-442 *4) (-1022))) (-4 *4 (-568)) - (-5 *1 (-285 *4 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1120)) - (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *4)) - (-4 *4 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-939)) (-5 *1 (-454 *2)) - (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-939)) (-5 *4 (-783)) (-5 *1 (-454 *2)) - (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-939)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) - (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-939)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-939)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) + (-12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-430 *2)) (-4 *2 (-1263 *5)) - (-5 *1 (-456 *5 *2)) (-4 *5 (-1069))))) + (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) + (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) + (-4 *8 (-968 *3 *7 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) + (-5 *1 (-690 *2))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1069))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) (((*1 *2 *3) - (-12 (-5 *3 (-304 (-970 (-576)))) - (-5 *2 - (-2 (|:| |varOrder| (-656 (-1196))) - (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) - (|:| |hom| (-656 (-1287 (-783)))))) - (-5 *1 (-241))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1206))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) - (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939)) (-4 *4 (-374)) (-5 *2 (-1287 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) - (-4 *1 (-421 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) - (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1058 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) - (-5 *2 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-4 *6 (-421 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-429 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1297))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *1 *1) - (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) - (-4 *1 (-1091 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1241))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) - (-4 *2 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3114 ($ $ $)))))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) + (-5 *1 (-758))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) + (-4 *4 (-928)) (-5 *1 (-675 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) + (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) + (-5 *3 (-576))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) + (-4 *2 (-861))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-276))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-764))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) - (-5 *1 (-760))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) - (-5 *1 (-1207 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *5 *3)) - (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-668 *2)) - (-4 *3 (-668 (-419 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1069)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1222))) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) - (-5 *1 (-595 *4 *5)))) + (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-970 *4)))) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1169 *3)))) + (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1169 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) + (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) + (-4 *1 (-1089 *4 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) + (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) + (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) + (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) + (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1058 (-576)))) - (-5 *2 (-2 (|:| -3241 (-783)) (|:| -2951 *8))) - (-5 *1 (-929 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) - (-5 *2 (-2 (|:| -3241 (-783)) (|:| -2951 *6))) - (-5 *1 (-930 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-923 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)) - (-4 *2 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) - (-4 *4 (-1263 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-464)))) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-1263 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-982 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-970 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) - (-5 *4 (-1178)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-967 *5 *7 *6)) - (-4 *6 (-13 (-861) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) - (-5 *1 (-942 *5 *6 *7 *8))))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) (((*1 *2 *3) - (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) - (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-112)) - (-5 *1 (-929 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1288 (-701 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) + (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) + (-5 *4 (-701 (-419 (-971 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) + (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) + (-5 *4 (-701 (-971 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-930 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1060))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1120)) (-4 *2 (-916 *4)) (-5 *1 (-704 *4 *2 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4463))))))) + (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) + (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-940)) (-14 *5 (-1014 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) + (-4 *4 (-1264 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) + (-4 *4 (-1070)) (-4 *5 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) + (-4 *2 (-861)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) + (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *2 (-861)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) + (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) + (-4 *4 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) + (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 (-576)))) - (-5 *2 (-1287 (-419 (-576)))) (-5 *1 (-1315 *4))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-994))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-970 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-970 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-970 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-970 (-171 *5)))) (-5 *4 (-939)) - (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) + (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121))))) +(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) + (-4 *3 (-1264 (-419 *4)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *1 *1) (-4 *1 (-882 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1237)) - (-4 *3 (-1120)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) - (-5 *2 (-576)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) - (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-576)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-576))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-145))))) + (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -4106 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *1) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) +(((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1196)) - (|:| |arrayIndex| (-656 (-970 (-576)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-340)) - (|:| |elseClause| (-340)))) - (|:| |returnBranch| - (-2 (|:| -1937 (-112)) - (|:| -1688 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1615 (-875)))))) - (|:| |blockBranch| (-656 (-340))) - (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) - (|:| |forBranch| - (-2 (|:| -2925 (-1112 (-970 (-576)))) - (|:| |span| (-970 (-576))) (|:| -4158 (-340)))) - (|:| |labelBranch| (-1140)) - (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4158 (-340)))) - (|:| |commonBranch| - (-2 (|:| -4148 (-1196)) (|:| |contents| (-656 (-1196))))) - (|:| |printBranch| (-656 (-875))))) - (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-983))) (-5 *1 (-301))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-576))) - (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *1 *1) (-4 *1 (-1164)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-923 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1287 (-656 (-576)))) (-5 *1 (-492)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3))))) + (-656 + (-2 + (|:| -4300 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4438 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3343 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571))))) +(((*1 *1) (-5 *1 (-1103)))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2455 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) - (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *7))) - (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6))))) -(((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) - (-14 *4 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| -4300 *3) (|:| -4438 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-734)))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-374)) (-5 *1 (-999 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-861) (-21)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) + ((*1 *1 *1) (-5 *1 (-1289)))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) + (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -1714 *4) (|:| -3015 *3) (|:| -3599 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1086 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -1714 *3) (|:| -3015 *1) (|:| -3599 *1))) + (-4 *1 (-1264 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) (((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1263 *4)) - (-4 *5 (-13 (-416) (-1058 *4) (-374) (-1222) (-294)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1135)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1138))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) + (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) + (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *1 *1 *1) (-5 *1 (-390))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) - (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-931 *4 *5)) - (-4 *5 (-1263 (-419 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) - (-14 *6 *4)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1055))))) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1120)) - (-4 *2 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) + (-5 *1 (-1200)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) + (-5 *1 (-1200))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1236))) (-5 *3 (-1236)) (-5 *1 (-693))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1105))) (-5 *1 (-301))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-568)) - (-5 *1 (-1150 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) + (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-5 *1 (-644)))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) + (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) + (-4 *3 (-1238)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) + (-5 *1 (-749 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-430 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-1069)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) - (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-769))))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) + (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) + (-4 *6 (-1264 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) + (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) + (-4 *6 (-1264 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-340))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) + (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) + (-4 *4 (-699 *2 *5 *6))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) + (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) + (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) - (-5 *2 (-1055)) (-5 *1 (-760))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) - (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *6 (-916 *5)) (-5 *2 (-701 *6)) - (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-887)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-967 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *2)) - (-2 (|:| -2409 *5) (|:| -1495 *2)))) - (-4 *2 (-243 (-1968 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-861)) (-4 *7 (-967 *4 *2 (-877 *3)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-970 *5)) (-4 *5 (-1069)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-962 *4 *5)) (-14 *4 (-656 (-1196)))))) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -4106 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-5 *1 (-1008 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-5 *1 (-1127 *3 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-967 (-419 (-970 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-967 (-970 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-4 *4 (-1069)) (-4 *5 (-805)) (-5 *1 (-1004 *4 *5 *6 *2)) - (-4 *2 (-967 (-970 *4) *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1120)) (-4 *3 (-916 *6)) - (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4463))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-970 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-927)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-927))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -4153 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))) - (-5 *2 (-419 (-576))) (-5 *1 (-1040 *4)) (-4 *4 (-1263 (-576)))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) + (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) + (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) + (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) + (-5 *2 (-1233 (-945))) (-5 *1 (-328))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-961 (-227)) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *4)) (-4 *4 (-1069)) (-5 *1 (-1162 *3 *4)) - (-14 *3 (-783))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-970 *4))) (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1058 (-576)) (-148))) (-5 *1 (-582 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) (-4 *1 (-882 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-804)) - (-4 *4 (-861))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1124))) (-5 *1 (-301))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-656 - (-3 (|:| -4148 (-1196)) - (|:| -4354 (-656 (-3 (|:| S (-1196)) (|:| P (-970 (-576)))))))))) - (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 *4)))) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) +(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) + (-4 *1 (-866 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) + (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) +(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1450 *4) (|:| -1877 (-576))))) - (-4 *4 (-1263 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1263 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *6 (-668 (-419 *2)))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1237)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-891 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-893 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-896 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069))))) -(((*1 *1) (-5 *1 (-609)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-1177 (-1177 (-970 *5)))) - (-5 *1 (-1295 *5)) (-5 *4 (-1177 (-970 *5)))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-763))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-961 (-227)) (-961 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1287 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1287 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-1287 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 (-1287 *5)) (-5 *1 (-1106 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) (-5 *3 (-576))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1196)) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)) - (-4 *2 (-464)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1263 (-576))) (-5 *2 (-656 (-576))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-464))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-14 *4 (-656 (-1196))) (-14 *5 (-783)) - (-5 *2 - (-656 - (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) - (-253 *4 (-419 (-576)))))) - (-5 *1 (-517 *4 *5)) - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) - (-253 *4 (-419 (-576)))))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3578 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -3578 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *2 (-1292)) - (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-939)) (-5 *1 (-1052 *2)) - (-4 *2 (-13 (-1120) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *2 (-1292)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6)))) -(((*1 *2) - (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-354 *3 *4)) (-14 *3 (-939)) - (-14 *4 (-939)))) - ((*1 *2) - (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-1192 *3)))) - ((*1 *2) - (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-939))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1241)) - (-4 *6 (-1263 (-419 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-353 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 - (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) - (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6))))) + (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) + (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) + (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1264 *4)) + (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) - (-5 *1 (-315))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) + (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) + (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) + (-5 *2 (-1125)) (-5 *1 (-409))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *3) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *9)) (-4 *9 (-1069)) (-4 *5 (-861)) (-4 *6 (-805)) - (-4 *8 (-1069)) (-4 *2 (-967 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-967 *8 *6 *5))))) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216))))) (((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1069)) - (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-875)))) (-5 *1 (-875)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1013 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-374)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1069)) - (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) - (-4 *7 (-243 *3 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1081 (-1044 *4) (-1192 (-1044 *4)))) (-5 *3 (-875)) - (-5 *1 (-1044 *4)) (-4 *4 (-13 (-860) (-374) (-1042)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-590))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-876)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-876)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1177 *4)) - (-4 *4 (-1120)) (-4 *4 (-1237))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) - (-5 *2 (-1055)) (-5 *1 (-758))))) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1264 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1264 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) + (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-586 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1) (-5 *1 (-1141)))) +(((*1 *1) (-5 *1 (-1290)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) + (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) - (-4 *3 (-13 (-374) (-148) (-1058 (-576)))) (-5 *1 (-580 *3 *4))))) -(((*1 *1 *1) (-4 *1 (-641))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022) (-1222)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *1) - (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1030 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-961 (-227))))) (-5 *2 (-656 (-227))) - (-5 *1 (-480))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1120)) - (-5 *1 (-690 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-903 *4 *3)) - (-4 *3 (-1120))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1114 (-227))) - (-5 *5 (-112)) (-5 *2 (-1289)) (-5 *1 (-264))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-227)) (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1120))))) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-831 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1094)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) + (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-686 *3))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1 *1) (-5 *1 (-1141)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) + (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-289))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1120)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-768))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1177 *4))) (-5 *1 (-295 *4 *5)) - (-5 *3 (-1177 *4)) (-4 *5 (-1278 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503))))) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) + (-5 *2 + (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) + (-5 *1 (-640 *5 *6))))) +(((*1 *1) (-5 *1 (-629)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1 *1) (-5 *1 (-1141)))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) + ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121))))) +(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1450 (-1192 *6)) (|:| -1495 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) (((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022) (-1222)))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) - (-4 *4 (-360)) (-5 *2 (-1292)) (-5 *1 (-540 *4))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *2 *3) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1128 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *4))))))) - (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) - (-4 *7 (-967 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *1 (-942 *4 *5 *6 *7))))) + (-656 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) + (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1192 *3)) (-5 *1 (-932 *3)) (-4 *3 (-317))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1114 *3)) (-4 *3 (-967 *7 *6 *4)) (-4 *6 (-805)) - (-4 *4 (-861)) (-4 *7 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))) - (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1188 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)))) - (-5 *2 (-419 (-970 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-970 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)))) - (-5 *2 (-3 (-419 (-970 *5)) (-326 *5))) (-5 *1 (-1189 *5)) - (-5 *3 (-419 (-970 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1112 (-970 *5))) (-5 *3 (-970 *5)) - (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-419 *3)) - (-5 *1 (-1189 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1112 (-419 (-970 *5)))) (-5 *3 (-419 (-970 *5))) - (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1189 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-961 (-227))) (-5 *2 (-1292)) (-5 *1 (-480))))) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) + ((*1 *1) (-5 *1 (-876))) + ((*1 *1) + (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) + (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1106))) + ((*1 *1) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1) (-5 *1 (-1200))) ((*1 *1) (-5 *1 (-1201)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-903 *4 *5)) (-5 *3 (-903 *4 *6)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-678 *5)) (-5 *1 (-899 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1160 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) - (-5 *1 (-1161 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1160 *3 *4))) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1069)) - (-5 *1 (-1049 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-448))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)))) - (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-142))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *3 (-861)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1122 (-783))) (-5 *6 (-783)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-419 (-970 *4))) (-5 *1 (-942 *4 *5 *6 *3)) - (-4 *3 (-967 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-967 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-701 (-419 (-970 *4)))) - (-5 *1 (-942 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-656 (-419 (-970 *4)))) - (-5 *1 (-942 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1114 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1153 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1171))))) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *2 (-656 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-939))) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1196))) - (-4 *2 (-13 (-442 (-171 *5)) (-1022) (-1222))) (-4 *5 (-568)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1022) (-1222)))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) + (-4 *4 (-1264 *2))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238))))) (((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-317)) - (-5 *2 (-419 (-430 (-970 *4)))) (-5 *1 (-1062 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-174))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-961 (-227)) (-227) (-227))) (-5 *1 (-709))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-1192 *7)) (-5 *1 (-331 *4 *5 *6 *7)) - (-4 *7 (-967 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)) - (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-701 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-340))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1280 *3 *2)) - (-4 *2 (-1278 *3))))) + (-12 (-5 *3 (-1179)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-568))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-656 (-1196))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1069) (-861))) - (-14 *3 (-656 (-1196))))) - ((*1 *1 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1120)))) - ((*1 *1 *1) - (-12 (-14 *2 (-656 (-1196))) (-4 *3 (-174)) - (-4 *5 (-243 (-1968 *2) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *4) (|:| -1495 *5)) - (-2 (|:| -2409 *4) (|:| -1495 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) - (-4 *7 (-967 *3 *5 (-877 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-861)))) - ((*1 *1 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1) - (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1069)) - (-4 *3 (-738)))) - ((*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858))))) -(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) + (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) + (-4 *2 (-660 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -1579 (-656 *3)) (|:| -3101 (-656 *3)))) + (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *3 (-1263 (-419 (-576)))) - (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) - (-5 *1 (-931 *3 *4)) (-4 *4 (-1263 (-419 *3))))) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-656 (-971 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) + ((*1 *2) + (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-931 *4 *3)) - (-4 *3 (-1263 (-419 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1120)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1120)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) - (-5 *1 (-114 *4)))) + (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) + (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1070)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-1264 *4))))) +(((*1 *1) (-4 *1 (-360))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1069)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-848 *3))))) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) + (|:| |prim| (-1193 *5)))) + (-5 *1 (-444 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) + (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) + (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) + (|:| |prim| (-1193 *5)))) + (-5 *1 (-979 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) + (|:| |prim| (-1193 *5)))) + (-5 *1 (-979 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) + (-4 *6 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) + (|:| |prim| (-1193 *6)))) + (-5 *1 (-979 *6))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) - (-14 *4 (-656 (-1196)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-1254 (-576)))))) + (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-678 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) + (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1112 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-967 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) - (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1124)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) - (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1124)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-656 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) - (-5 *2 (-1124)) (-5 *1 (-409))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) + (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) + (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) + (-5 *1 (-584)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) + (-4 *1 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) + (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) + (-5 *1 (-650 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) + (-2662 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) + (-5 *1 (-650 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) + (-4 *4 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 - (-656 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-792 *5 (-877 *6))))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-5 *1 (-1008 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-5 *1 (-1127 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) + (-4 *4 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) + (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-4 *7 (-1263 (-419 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2309 *3))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-4 *7 (-1264 (-419 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2133 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -2309 (-419 *6)) + (-2 (|:| |answer| (-419 *6)) (|:| -2133 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) + (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) + (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301))))) +(((*1 *1) (-5 *1 (-571)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) + (-5 *1 (-456 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) + (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) + (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) + (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) + (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) + (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) + (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) + (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) (((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) + (-4 *3 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) + (-4 *1 (-393 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-968 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) + (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1066 *5 *6))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3))))) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -2168 *5)))) - (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| -1450 *5) (|:| -1877 (-576))))) - (-5 *4 (-576)) (-4 *5 (-1263 *4)) (-5 *2 (-656 *5)) - (-5 *1 (-708 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))) + (-5 *1 (-815))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-374)) (-4 *3 (-1069)) - (-5 *1 (-1180 *3))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-877 *5)) - (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464)))) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1197)) + (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *1 (-1200))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-877 *5)) - (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464))))) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) + (-5 *1 (-640 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) + (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) + (-4 *5 (-464)) (-5 *2 - (-2 (|:| |zeros| (-1177 (-227))) (|:| |ones| (-1177 (-227))) - (|:| |singularities| (-1177 (-227))))) - (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-2 (|:| |gblist| (-656 (-253 *4 *5))) + (|:| |gvlist| (-656 (-576))))) + (-5 *1 (-643 *4 *5))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) + (-4 *3 (-1238)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) + (-4 *3 (-1238)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1238)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4465)) (-4 *1 (-663 *2)) + (-4 *2 (-1238)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) + (-4 *2 (-1238)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) + (-4 *2 (-1238)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) + (-4 *3 (-1238)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) + (-4 *2 (-1238))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *2)) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1298))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) + (-5 *1 (-315))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) + (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) + (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1114 (-855 (-227)))) (-5 *1 (-315))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1140)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1112 (-970 (-576)))) (-5 *3 (-970 (-576))) - (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1112 (-970 (-576)))) (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-831 *3)))) + (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *2 *3) + (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) + (-5 *2 (-656 (-2 (|:| -1714 (-783)) (|:| |logand| *4)))) + (-5 *1 (-330 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1069))))) + (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) + (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) + (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) (((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) - (-5 *1 (-925 *4 *5)) (-5 *3 (-1192 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-1069)) - (-5 *1 (-1180 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-939)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1312))))) -(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-980))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) + (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) + (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3114 *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) + (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) + (-5 *3 (-656 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) + (-5 *3 (-1123 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-1055)))) - ((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-1055))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-939)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-270))))) + (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -3329 *5)))) + (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-2 (|:| -1828 *5) (|:| -3600 (-576))))) + (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) + (-5 *1 (-708 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-939)))) + (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 *2) (-4 *5 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-940)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-940)))) + ((*1 *2) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-940)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) - (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) - (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-939))))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) + (-5 *2 (-783)) (-5 *1 (-679 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-783)) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1069)) - (-4 *3 (-861)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-861)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1058 (-576)))) - (-5 *2 (-783)) (-5 *1 (-929 *4 *5 *6 *7 *8)))) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-783))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) + (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) + (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) - (-5 *1 (-930 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) - (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) - (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) - (-5 *1 (-1038 *6 *7 *4 *8 *9)))) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-317)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-568)) - (-5 *2 (-783)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2769 *4))) (-5 *5 (-783)) - (-4 *4 (-967 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) + (-4 *1 (-317))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-461 *6 *7 *8 *4))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 (-419 (-970 *6)))) - (-5 *3 (-419 (-970 *6))) - (-4 *6 (-13 (-568) (-1058 (-576)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-582 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1069)) (-5 *1 (-607 *3)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1247 *3)) (-4 *3 (-1069)))) + (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) + (-4 *4 (-883 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1278 *3)) (-4 *3 (-1069))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1105))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-983))) (-5 *1 (-109))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) - (-4 *3 (-13 (-416) (-1222))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) + (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-1279 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2876 *1) (|:| -4451 *1) (|:| |associate| *1))) + (-4 *1 (-568))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-656 (-2 (|:| -1450 (-576)) (|:| -1495 (-576)))))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-651 *5)) - (-4 *5 (-1069)) - (-5 *2 (-2 (|:| -3608 (-701 *5)) (|:| |vec| (-1287 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1069)) - (-5 *2 (-701 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-887)))) - ((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1162 *3 *4)) (-14 *3 (-939)) (-4 *4 (-374)) - (-5 *1 (-1013 *3 *4))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4250 (-430 *3)) (|:| |special| (-430 *3)))) - (-5 *1 (-739 *5 *3))))) + (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) + (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) + (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-904 *4 *2))))) (((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-480)))) -(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-337 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) - (-14 *4 (-576))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4454)) (-4 *1 (-416)) - (-5 *2 (-939))))) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-939)) (-4 *5 (-861)) - (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-767))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) - (-5 *1 (-1025))))) + (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| -2861 (-419 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) + (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *4))) (-5 *3 (-1192 *4)) - (-4 *4 (-927)) (-5 *1 (-675 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) - (-5 *1 (-760))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 (-1178))) (-5 *3 (-576)) (-5 *4 (-1178)) - (-5 *1 (-246)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) + (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) ((*1 *2 *1) - (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069))))) -(((*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-557))))) + (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) + (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1451 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-861) (-21)))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-576))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5))))) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1114 (-855 (-390)))) (-5 *2 (-1114 (-855 (-227)))) - (-5 *1 (-315))))) + (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783)))) + (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) + (-5 *1 (-192))))) (((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) + (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) + (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) + (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4464)) + (-4 *1 (-152 *2)) (-4 *2 (-1238)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) + (-4 *2 (-1238)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) + (-4 *2 (-1238)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1070)) + (-5 *2 (-2 (|:| -4326 (-1193 *4)) (|:| |deg| (-940)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) + (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-244 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1121)))) + ((*1 *1 *1) + (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1264 *2)) + (-4 *4 (-1264 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) + (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) + ((*1 *1 *1) (-5 *1 (-507))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) + (-4 *2 (-1238)) (-5 *1 (-654 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) + (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) + (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-374)) + (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) + (-4 *2 (-1238)) (-5 *1 (-976 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) + (-14 *6 (-656 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) + (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) + (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) + (-4 *2 (-1238)) (-5 *1 (-1176 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) + (-4 *2 (-1238)) (-5 *1 (-1287 *5 *2))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) + (-4 *3 (-1070)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) + (-4 *3 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) + (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) + (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) +(((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) + (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-970 (-576))))) - (-5 *2 (-656 (-656 (-304 (-970 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-970 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-970 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 (-576)))) (-5 *2 (-656 (-304 (-970 *4)))) - (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-970 (-576))))) - (-5 *2 (-656 (-304 (-970 *4)))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) + (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1196)) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1222) (-977))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3578 (-656 *4)))) - (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -3578 (-656 (-1287 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -3578 (-656 (-1287 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -3578 (-656 (-1287 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) + (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) + (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) + (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) + (-4 *3 (-13 (-860) (-374) (-1043))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) + (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) + (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-4 *6 (-464)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) + (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2 *2) + (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) + (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) + (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-1193 (-419 (-1193 *6)))) (-5 *1 (-572 *5 *6 *7)) + (-5 *3 (-1193 *6)) (-4 *7 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1193 *11)) (-5 *6 (-656 *10)) + (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) + (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-968 *11 *9 *10)) + (-5 *2 (-656 (-1193 *5))) (-5 *1 (-754 *9 *10 *11 *5)) + (-5 *3 (-1193 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) + (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -3578 (-656 (-1287 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) - (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4464)))) + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) + (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3578 (-656 *7))))) - (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) - (-4 *3 (-699 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-977))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1287 *7)) (|:| -3578 (-656 (-1287 *7))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1287 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1196)) - (-4 *6 (-13 (-29 *5) (-1222) (-977))) - (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-1287 *6))) (-5 *1 (-814 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) - (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1287 *7)) (|:| -3578 (-656 (-1287 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) - (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1287 *7)) (|:| -3578 (-656 (-1287 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3578 (-656 *7))) *7 "failed")) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1196)) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3578 (-656 *3))) *3 "failed")) - (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-977))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-5 *1 (-814 *6 *2)) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-814 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1055)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1055)) (-5 *1 (-817)))) + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) + (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) + (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3578 (-656 *6))) "failed") - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -3578 (-701 *6)))) - (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1055)) (-5 *1 (-913)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-913)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) - (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) - (-5 *2 (-1055)) (-5 *1 (-913)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) - (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1055)) - (-5 *1 (-913)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-970 (-419 (-576)))) (-5 *2 (-656 (-390))) - (-5 *1 (-1043)) (-5 *4 (-390)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-970 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1043)) - (-5 *4 (-390)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1151 *4)) - (-5 *3 (-326 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1151 *4)) - (-5 *3 (-304 (-326 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1151 *5)) - (-5 *3 (-304 (-326 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1151 *5)) - (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1151 *5)) - (-5 *3 (-656 (-304 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) - (-5 *1 (-1205 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *5)))))) (-5 *1 (-1205 *5)) - (-5 *3 (-656 (-304 (-419 (-970 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-970 *4)))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) (-5 *1 (-1205 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-970 *4)))))) - (-5 *1 (-1205 *4)) (-5 *3 (-656 (-304 (-419 (-970 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-970 *5))))) (-5 *1 (-1205 *5)) - (-5 *3 (-419 (-970 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-970 *5))))) (-5 *1 (-1205 *5)) - (-5 *3 (-304 (-419 (-970 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-970 *4))))) - (-5 *1 (-1205 *4)) (-5 *3 (-419 (-970 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-970 *4))))) - (-5 *1 (-1205 *4)) (-5 *3 (-304 (-419 (-970 *4))))))) -(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199))))) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) (((*1 *2 *2) - (-12 (-4 *3 (-1058 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-442 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1192 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1069)) (-4 *1 (-312)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) - ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1263 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1263 *5)) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-678 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) + (-5 *1 (-986 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-988)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 - (-656 - (-2 (|:| -3578 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6))))) - (-5 *1 (-510 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3578 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6)))) - (-4 *7 (-1263 *6))))) -(((*1 *2) - (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-991))))) -(((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) + (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) + (|:| |singularities| (-1178 (-227))))) + (-5 *1 (-105))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) + (-4 *2 (-353 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) + (-4 *3 (-1121)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-105))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) + (-5 *2 (-576)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) + (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *2 (-1263 *4)) (-5 *1 (-821 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2)))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-430 *1)) (-4 *1 (-967 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) - (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) - (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1266 *4 *3)) - (-4 *3 (-13 (-1263 *4) (-568) (-10 -8 (-15 -3114 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-14 *5 (-656 (-1196))) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 - (-656 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-792 *4 (-877 *6))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196)))))) + (-2 (|:| |minor| (-656 (-940))) (|:| -4026 *3) + (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1197)) (-14 *5 *3)))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))) - (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-906 *6))) - (-5 *5 (-1 (-903 *6 *8) *8 (-906 *6) (-903 *6 *8))) (-4 *6 (-1120)) - (-4 *8 (-13 (-1069) (-626 (-906 *6)) (-1058 *7))) - (-5 *2 (-903 *6 *8)) (-4 *7 (-1069)) (-5 *1 (-959 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-923 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1058 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1058 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) - ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-918 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-918 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1083))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1231 *6)) - (-5 *2 (-1 (-1177 *4) (-1177 *4))) (-5 *1 (-1295 *6)) - (-5 *5 (-1177 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) - (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-712 *3)) - (-4 *3 (-317))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1238 *2)) - (-4 *2 (-1120)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-861)) - (-5 *1 (-1238 *2))))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1278 *4)) - (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1177 *4) (-1177 *4))) - (-5 *1 (-1280 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) + (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-480))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *8)) - (-5 *4 - (-656 - (-2 (|:| -3578 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7))))) - (-5 *5 (-783)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-360)) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) + (-4 *7 (-860)) + (-4 *8 + (-13 (-1266 *3 *7) (-374) (-1223) + (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $))))) (-5 *2 - (-2 (|:| -3578 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1196)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4153 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1222) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1058 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-656 *4)) (-5 *1 (-1034 *8 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) + (-14 *10 (-1197))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) + (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) + (-4 *4 (-1070)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) + (-5 *1 (-1290))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-678 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1177 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *3 (-576)) (-4 *1 (-882 *4))))) -(((*1 *1) (-5 *1 (-188)))) + (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) + (-5 *2 (-2 (|:| -3752 (-701 *4)) (|:| |vec| (-1288 *4)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) + (-5 *2 (-701 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 - (-2 (|:| |solns| (-656 *5)) - (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1148 *3 *5)) (-4 *3 (-1263 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1) (-4 *1 (-987)))) + (-656 + (-2 (|:| |outval| *4) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 *4)))))) + (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) + (-5 *1 (-1301 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) + (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) + (-5 *1 (-1301 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) (((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3995 (-656 (-1196))) (|:| -3778 (-656 (-1196))))) - (-5 *1 (-1239))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1055)) (-5 *1 (-761))))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) + (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-4 *3 (-1120)) (-5 *2 (-783)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *4)) - (-4 *4 (-1237)) (-5 *2 (-783))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) - (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) - (|:| |args| (-656 (-875))))) - (-5 *1 (-1196))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-1066 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-1066 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-939))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1130))))) + (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) + (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-861)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1177 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1237))))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1196)) (-5 *1 (-548))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1140))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) - (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-967 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *6 *4 *5)) - (-5 *1 (-934 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-934 *3 *4 *5 *6)))) + (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) + (-5 *1 (-1208 *4)) (-4 *4 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) + (-5 *1 (-270))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1192 *7))) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317)) (-5 *2 (-1192 *7)) (-5 *1 (-934 *4 *5 *6 *7)) - (-4 *7 (-967 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-939))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) - (-4 *2 (-1263 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4)) - (-5 *1 (-1197 *4)))) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) + (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))))) + ((*1 *2 *1) + (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)) + (-5 *2 (-656 (-887 *4 *3))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3684 *4)))) + (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-5 *2 (-1287 *3)) (-5 *1 (-1197 *3)) - (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1069)) - (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1049 *5)) (-5 *4 (-1287 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) + (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) + (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 (-861)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *2 (-804)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) + (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-783))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) + (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) + (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) + (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) + (-5 *2 (-656 (-971 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) - (-5 *1 (-269 *2)) (-4 *2 (-1237)))) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) + (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) + (-4 *10 (-1130 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-52)) - (-5 *1 (-270))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) - (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) - ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-939)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1234 *3)) (-4 *3 (-1237)))) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) + (-5 *1 (-640 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) + (-5 *2 + (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) + (-5 *1 (-640 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) + (-5 *1 (-1067 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1231 *4 *5 *6 *7))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3454 (-656 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -3454 (-656 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) - (-4 *2 (-1069))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1069)) (-4 *1 (-1263 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1688 *4) (|:| -2869 (-576))))) - (-4 *4 (-1120)) (-5 *2 (-1 *4)) (-5 *1 (-1037 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1177 *3))) (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1290))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1177 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2925 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1055)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1019 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) ((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) + (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-783))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1196)) - (-4 *4 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1120))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-374)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *2)))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) (-5 *2 - (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) - (-5 *1 (-998 *6)) (-5 *3 (-701 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3))))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) (((*1 *2 *3) - (-12 (-4 *1 (-938)) (-5 *2 (-2 (|:| -2861 (-656 *1)) (|:| -2547 *1))) - (-5 *3 (-656 *1))))) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *4 (-783)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1292)) - (-5 *1 (-1089 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *4 (-783)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1292)) - (-5 *1 (-1165 *5 *6 *7 *8 *9))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1300 *3 *4 *5 *6)))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) + (-4 *2 (-668 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-656 (-2 (|:| -4210 (-783)) (|:| -2394 *4) (|:| |num| *4)))) + (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1300 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1241)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1263 (-419 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) + (-4 *4 (-174)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) + (-4 *4 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) + (-4 *4 (-174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1121)) + (-5 *1 (-687 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) + (-14 *4 + (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *3)) + (-2 (|:| -3223 *2) (|:| -4210 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 *4)))) + (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) + (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3987 *5)))) + (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) + (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3987 *4))) + (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) + (-5 *1 (-1161 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1121) (-34))) + (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1161 *2 *3))) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) + (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-861)) + (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 (*2 $)) + (-15 -3579 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 (*2 $)) + (-15 -3579 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-270)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1287 *1)))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2610 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) + (-5 *1 (-285 *4 *2))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |val| *1) (|:| -4210 (-576)))) (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4210 (-907 *3)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-927)) - (-5 *2 (-1287 *1))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1030 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) - (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| -4153 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-939)) (-4 *5 (-861)) - (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464)))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4454)) (-4 *1 (-416)) - (-5 *2 (-939))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) -(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -4210 (-576)))) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) + ((*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'JINT 'X 'ELAM) (-3581) (-711)))) + (-5 *1 (-61 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'XC) (-711)))) + (-5 *1 (-63 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-350 (-3581 'X) (-3581) (-711))) (-5 *1 (-64 *3)) + (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-350 (-3581) (-3581 'XC) (-711))) (-5 *1 (-66 *3)) + (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'X) (-3581 '-2493) (-711)))) + (-5 *1 (-71 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'X) (-711)))) + (-5 *1 (-74 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'X 'EPS) (-3581 '-2493) (-711)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) + (-14 *5 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'EPS) (-3581 'YA 'YB) (-711)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) + (-14 *5 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-350 (-3581) (-3581 'X) (-711))) (-5 *1 (-77 *3)) + (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-350 (-3581) (-3581 'X) (-711))) (-5 *1 (-78 *3)) + (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'XC) (-711)))) + (-5 *1 (-79 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'X) (-711)))) + (-5 *1 (-80 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'X '-2493) (-3581) (-711)))) + (-5 *1 (-82 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-701 (-350 (-3581 'X '-2493) (-3581) (-711)))) + (-5 *1 (-83 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-701 (-350 (-3581 'X) (-3581) (-711)))) (-5 *1 (-84 *3)) + (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'X) (-3581) (-711)))) + (-5 *1 (-85 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-350 (-3581 'X) (-3581 '-2493) (-711)))) + (-5 *1 (-86 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-701 (-350 (-3581 'XL 'XR 'ELAM) (-3581) (-711)))) + (-5 *1 (-87 *3)) (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-350 (-3581 'X) (-3581 '-2493) (-711))) (-5 *1 (-89 *3)) + (-14 *3 (-1197)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-783)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) + ((*1 *1 *2) + (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1263 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-736 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-970 *5)))) (-5 *4 (-1196)) - (-5 *2 (-970 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) + (-5 *2 (-1288 (-701 (-419 (-971 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-970 *4)))) (-5 *2 (-970 *4)) - (-5 *1 (-302 *4)) (-4 *4 (-464)))) + (-12 (-5 *3 (-1113 (-326 *4))) + (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1113 (-390))) + (-5 *1 (-265 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1264 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1273 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) + (-14 *5 (-1197)) (-14 *6 *4) + (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *1 (-323 *3 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) + (-4 *3 (-339 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) + (-4 *3 (-339 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-1312 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-1303 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) + ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) + ((*1 *1 *2) + (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + ((*1 *1 *2) + (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) + (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) + (-4 *3 (-13 (-861) (-21))))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-971 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1121)) + (-4 *1 (-442 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1121)) + (-4 *1 (-442 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1121)) + (-4 *1 (-442 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-1070)) (-4 *3 (-1121)) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-446)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-419 (-971 *3)))) (-4 *3 (-174)) + (-14 *6 (-1288 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) + (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1070)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 (-970 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1196)) - (-5 *2 (-970 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) - (-4 *5 (-13 (-374) (-860))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-970 (-419 (-576)))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1196)) - (-5 *2 (-970 (-419 (-576)))) (-5 *1 (-791 *5)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) - (-4 *6 (-568)) (-4 *7 (-967 *6 *5 *3)) - (-5 *1 (-474 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1058 (-419 (-576))) (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) - (-4 *4 (-1120)) (-4 *5 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1058 (-576))) - (-4 *4 (-568)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-1069)) (-4 *1 (-312)) - (-5 *2 (-1192 *1))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) + (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1208 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-1007 *3 *4 *5 *6)) - (-4 *6 (-967 *3 *5 *4)))) + (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-687 *3)) + (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1121)) + (-5 *1 (-687 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-693)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) + (-4 *2 (-384 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) + ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) + ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-591))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1287 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1222) (-29 *6))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-1219 *4)) - (-4 *4 (-1069))))) -(((*1 *2 *3) + (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3684 *4)))) + (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))) + ((*1 *1 *2) (-12 (-5 *2 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| |mdnia| + (-2 (|:| |fn| (-326 (-227))) + (|:| -3343 (-656 (-1115 (-855 (-227))))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) + (-5 *1 (-781)))) + ((*1 *1 *2) (-12 (-5 *2 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))) - (-5 *4 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) - ((*1 *2 *3 *4) + (-2 (|:| |fn| (-326 (-227))) + (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *1 (-781)))) + ((*1 *1 *2) (-12 (-5 *2 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-419 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2100 *5) (|:| -2110 *5)))) (-5 *1 (-1040 *3)) - (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2100 *5) (|:| -2110 *5))))) - ((*1 *2 *3) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *1 (-781)))) + ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2) (-12 (-5 *2 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *2 *3 *4) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *1 (-820)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-419 (-576)))) - (-5 *4 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2100 *4) (|:| -2110 *4)))) (-5 *1 (-1041 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2100 *5) (|:| -2110 *5)))) (-5 *1 (-1041 *3)) - (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -2100 *5) (|:| -2110 *5)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1032))))) -(((*1 *1) (-5 *1 (-629)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-939)) (-4 *4 (-1069)) - (-5 *1 (-1048 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-939)) (-4 *4 (-1069)) - (-5 *1 (-1048 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-761))))) -(((*1 *1 *2 *2) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) + (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-656 (-326 (-227)))) + (|:| -3539 (-656 (-227))))))) + (-5 *1 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1196)) - (-4 *5 (-13 (-568) (-1058 (-576)) (-148))) - (-5 *2 - (-2 (|:| -4153 (-419 (-970 *5))) (|:| |coeff| (-419 (-970 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-970 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-442 *3))) - (-14 *4 (-1196)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-4 *2 (-13 (-27) (-1222) (-442 *3) (-10 -8 (-15 -4112 ($ *4))))) - (-4 *4 (-860)) - (-4 *5 - (-13 (-1265 *2 *4) (-374) (-1222) - (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $))))) - (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1003 *5)) - (-14 *7 (-1196))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-173)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1085 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1047 *5 *6 *7 *8))))) - (-5 *1 (-1047 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1085 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1166 *5 *6 *7 *8))))) - (-5 *1 (-1166 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) - (-5 *1 (-1149 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-970 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) - (-5 *1 (-1149 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-4 *3 (-1263 *4)) (-4 *2 (-1278 *4)) - (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 (-2 (|:| -2100 *3) (|:| -2110 *3))) (-5 *1 (-1257 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-340))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1055)) - (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) - (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) - (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1085 *4 *5 *6)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-997 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977)))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1069)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1069)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) - ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) -(((*1 *1) (-5 *1 (-1083)))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-962 *4 *5))))) -(((*1 *2 *2) + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *1 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 - (-516 (-419 (-576)) (-245 *4 (-783)) (-877 *3) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) - (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1245)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1092 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1120) (-34))) - (-5 *2 (-112)) (-5 *1 (-1160 *4 *5)) (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1297))))) -(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-5 *2 (-390)) (-5 *1 (-797 *3)) - (-4 *3 (-626 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1069)) - (-5 *1 (-1180 *4))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1196))) (-4 *6 (-374)) - (-5 *2 (-656 (-304 (-970 *6)))) (-5 *1 (-550 *5 *6 *7)) - (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -4413 *4))) (-5 *1 (-989 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1069)) (-5 *1 (-726 *2 *4)) - (-4 *4 (-660 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1114 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1153 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-970 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-970 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-970 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-970 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) - (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))))) + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *1 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) + ((*1 *2 *3) + (-12 (-5 *3 (-971 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-889)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 (-48)))) (-5 *2 (-326 (-576))) + (-5 *1 (-889)))) + ((*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-970 (-576))))) (-4 *1 (-395)))) + (-12 + (-5 *2 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *1 (-915)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-970 (-390))))) (-4 *1 (-395)))) + (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-970 (-576)))) (-4 *1 (-395)))) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-970 (-390)))) (-4 *1 (-395)))) + (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-933 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) + ((*1 *2 *3) + (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) + (-4 *4 (-568)))) + ((*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1054 *3)) (-4 *3 (-1238)))) + ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) + (-14 *6 (-656 *2)))) + ((*1 *2 *3) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-568)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) + (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) + (-4 *2 (-968 *3 (-543 *4) *4)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-970 (-576)))) (-4 *1 (-408)))) + (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) + (-4 *4 (-968 *3 (-543 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1165)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-970 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-970 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) + (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-419 (-970 (-576))))) (-4 *1 (-453)))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-419 (-970 (-390))))) (-4 *1 (-453)))) + (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) + (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) + ((*1 *2 *1) (-12 (-5 *2 (-1210 (-1197) (-449))) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1217 *3)) (-4 *3 (-1121)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-970 (-576)))) (-4 *1 (-453)))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-5 *1 (-1232 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-1070)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-970 (-390)))) (-4 *1 (-453)))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) + (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) + (-12 (-5 *2 (-1115 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) - (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) - (-4 *3 (-1263 *6)) (-14 *7 (-939)))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) + (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *1 (-996 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1058 *2)) (-4 *2 (-1237)))) + (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) + (-14 *5 *3) (-5 *1 (-1280 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1289)))) + ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1292)))) ((*1 *1 *2) - (|partial| -3794 - (-12 (-5 *2 (-970 *3)) - (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) - (-2298 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-970 *3)) - (-12 (-2298 (-4 *3 (-557))) (-2298 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-970 *3)) - (-12 (-2298 (-4 *3 (-1012 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))))) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) ((*1 *1 *2) - (|partial| -3794 - (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) - (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))) - (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) + (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *1 (-1308 *3 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1070)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) + (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-701 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) + (-5 *1 (-690 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-686 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-673)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) + (-5 *1 (-1239 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *1 *1 *1) (-4 *1 (-673)))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) + (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) + (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) + (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) + (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) + (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) + (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) + (-4 *4 (-968 *8 *6 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) + (-4 *4 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) + (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)))) + ((*1 *1) (-4 *1 (-1173)))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) + (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) + (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) + (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) + (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) + (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) + (-5 *1 (-456 *5 *2)) (-4 *5 (-1070))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 (-576))))) + (-5 *2 + (-656 + (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) + (|:| |radvect| (-656 (-701 (-326 (-576)))))))) + (-5 *1 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1) (-4 *1 (-673)))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) ((*1 *1) (-4 *1 (-557))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1) (-4 *1 (-988)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-34)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-858))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 + (-2 (|:| -3791 (-783)) (|:| |curves| (-783)) + (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) + (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-783))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) + (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) + (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-317)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1193 *7))) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-317)) (-5 *2 (-1193 *7)) (-5 *1 (-935 *4 *5 *6 *7)) + (-4 *7 (-968 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-940))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) + (-4 *2 (-1264 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-304 (-971 (-576)))) + (-5 *2 + (-2 (|:| |varOrder| (-656 (-1197))) + (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) + (|:| |hom| (-656 (-1288 (-783)))))) + (-5 *1 (-241))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) + (-4 *2 (-1248 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) + (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576))))) + (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) + (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) + (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) + (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) + (-5 *2 + (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) + (|:| |wcond| (-656 (-971 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *9))))))))) + (-5 *1 (-943 *9 *10 *11 *12))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) + (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) + (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) + (-5 *1 (-1129 *6 *7 *4 *8 *9))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-970 (-419 (-576)))) (-4 *1 (-1085 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) + (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *2 (-568)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-783))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) + (-5 *1 (-990 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) + (-5 *1 (-822 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) + (-5 *1 (-831 *3)) (-4 *3 (-861)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 *5))) - (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1287 *5)) - (-5 *1 (-650 *5 *4)))) + (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) + (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) + (-4 *4 (-1070)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 *5))) - (-2298 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1287 (-419 *5))) - (-5 *1 (-650 *5 *4))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1196)) - (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *1 (-1199))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) - (-5 *1 (-1134 *4 *5)) (-5 *3 (-1260 *5 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-884 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-884 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-885 *3 *4)) - (-4 *4 (-882 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-576)) (-5 *1 (-885 *2 *3)) (-4 *3 (-882 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1278 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1278 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -1992 (-783)) (|:| |period| (-783)))) - (-5 *1 (-1177 *4)) (-4 *4 (-1237)) (-5 *3 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-903 *3 *4)) (-5 *1 (-899 *3 *4 *5)) - (-4 *3 (-1120)) (-4 *5 (-678 *4)))) + (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) + (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) ((*1 *2 *3) - (-12 (-5 *3 (-984 *4)) (-4 *4 (-1120)) (-5 *2 (-1122 *4)) - (-5 *1 (-985 *4))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178))))) + (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-1049 *4)) (-4 *4 (-1070))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-112)) - (-5 *1 (-270))))) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) + (-5 *2 (-701 (-227))) (-5 *1 (-276))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-831 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) +(((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464)))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) - (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-4 *3 (-1121)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) + (-5 *1 (-923 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) + (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) + (-4 *1 (-421 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) + (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) + (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-4 *6 (-421 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) + (-4 *3 (-1121))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) + (-14 *4 (-1014 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *1) (|partial| -4 *1 (-734))) + ((*1 *1 *1) (|partial| -4 *1 (-738))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) + (-4 *2 (-1264 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3) - (-12 (-4 *4 (-1237)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-686 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *1 *1 *2) + (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -1701 (-656 (-875))) (|:| -2390 (-656 (-875))) - (|:| |presup| (-656 (-875))) (|:| -2792 (-656 (-875))) - (|:| |args| (-656 (-875))))) - (-5 *1 (-1196)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-875)))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1069)) - (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1196)) (-5 *1 (-548)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-716 *3)) - (-4 *3 (-626 (-548)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) - (-15 -2697 ((-1145 *3 (-624 $)) $)) - (-15 -4112 ($ (-1145 *3 (-624 $)))))))))) + (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) + (|:| |genIdeal| (-516 *3 *4 *5 *6)))) + (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) + (-5 *3 (-1197)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1197))) + (-5 *1 (-276)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-656 *3))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *4 (-1197)) + (-5 *1 (-1200)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) (((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-59 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3098 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3014 (-419 *6)) + (|:| |special| (-419 *6)))) + (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1122 *3)) (-5 *1 (-923 *3)) (-4 *3 (-379)) - (-4 *3 (-1120))))) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-913 *3 *5)) + (-4 *3 (-1264 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1112 (-855 *3))) (-4 *3 (-13 (-1222) (-977) (-29 *5))) - (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1112 (-855 *3))) (-5 *5 (-1178)) - (-4 *3 (-13 (-1222) (-977) (-29 *6))) - (-4 *6 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) + (-4 *3 (-13 (-1223) (-978) (-29 *6))) + (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1112 (-855 (-326 *5)))) - (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-970 *6))) (-5 *4 (-1112 (-855 (-326 *6)))) - (-5 *5 (-1178)) - (-4 *6 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) + (-5 *5 (-1179)) + (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1112 (-855 (-419 (-970 *5))))) (-5 *3 (-419 (-970 *5))) - (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1112 (-855 (-419 (-970 *6))))) (-5 *5 (-1178)) - (-5 *3 (-419 (-970 *6))) - (-4 *6 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) + (-5 *3 (-419 (-971 *6))) + (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) - (-4 *3 (-13 (-1222) (-977) (-29 *5))))) + (-4 *3 (-13 (-1223) (-978) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) - (-5 *5 (-390)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-855 (-390)))) - (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) - (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1114 (-855 (-390))))) - (-5 *5 (-390)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) - (-5 *5 (-1178)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) - (-5 *5 (-1196)) (-5 *2 (-1055)) (-5 *1 (-577)))) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-576)))) (-4 *5 (-1263 *4)) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069)))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-861)) + (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-970 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1069)))) + (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1070)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-4 *2 (-861)) - (-5 *1 (-1146 *3 *2 *4)) (-4 *4 (-967 *3 (-543 *2) *2)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) + (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) + (-5 *1 (-1181 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1069)))) + (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1070)))) ((*1 *1 *1 *2) - (-3794 - (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1069)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-977)) (-4 *3 (-1222)) + (-2758 + (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1069)) - (-12 (|has| *3 (-15 -1582 ((-656 *2) *3))) - (|has| *3 (-15 -2944 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) + (-12 (|has| *3 (-15 -1966 ((-656 *2) *3))) + (|has| *3 (-15 -3441 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-3794 - (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1069)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-977)) (-4 *3 (-1222)) + (-2758 + (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1069)) - (-12 (|has| *3 (-15 -1582 ((-656 *2) *3))) - (|has| *3 (-15 -2944 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) + (-12 (|has| *3 (-15 -1966 ((-656 *2) *3))) + (|has| *3 (-15 -3441 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1272 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3794 - (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1069)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-977)) (-4 *3 (-1222)) + (-2758 + (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1069)) - (-12 (|has| *3 (-15 -1582 ((-656 *2) *3))) - (|has| *3 (-15 -2944 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) + (-12 (|has| *3 (-15 -1966 ((-656 *2) *3))) + (|has| *3 (-15 -3441 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1069)) (-14 *5 *3)))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) + (|:| -2738 *6))) + (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-1181 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-1197)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) + (-4 *1 (-1092 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1242))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) + (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) ((*1 *1 *1) (|partial| -4 *1 (-734)))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) + (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) + (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464))))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) + (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) + (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) + (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) + (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) + (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) + (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-326 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) (((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) + (-5 *2 + (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) + (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) + (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) + (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) + (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) + (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1069)) (-4 *4 (-568)) - (-5 *2 (-419 (-970 *4))))) + (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) + (-5 *2 (-419 (-971 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1069)) (-4 *4 (-568)) - (-5 *2 (-419 (-970 *4)))))) + (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) + (-5 *2 (-419 (-971 *4)))))) +(((*1 *1 *1) (|partial| -4 *1 (-1173)))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4465)) (-4 *4 (-374)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4465)) (-4 *4 (-568)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) + (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) + (-4 *10 (-699 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-656 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465))))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-783)) + (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) + (-5 *1 (-251 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) + (-5 *1 (-595 *4 *2)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-419 (-971 *4)))) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-601 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) + (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *1 (-276))))) (((*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1012 *4)) (-4 *2 (-699 *7 *8 *9)) + (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) ((*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) @@ -8536,12 +6519,90 @@ ((*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4 *5 *6)) (-4 *4 (-1069)) + (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) + (-4 *4 (-243 (-3502 *5) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *3) (|:| -4210 *4)) + (-2 (|:| -3223 *3) (|:| -4210 *4)))) + (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) + (-4 *7 (-968 *2 *4 (-878 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) + (-4 *2 (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) + (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1174 *3))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3498 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) (((*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) @@ -8554,9747 +6615,11686 @@ (-5 *2 (-419 (-576))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1120)))) + (-4 *3 (-1121)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1120)))) + (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1017 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1028 *3)) - (-4 *3 (-1058 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-906 (-576)))) - (-4 *5 (-900 (-576))) - (-4 *5 (-13 (-1058 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-576)) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-997 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4413 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3)) (-4 *3 (-1120)) - (-4 *3 (-1237))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-419 (-576))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-270))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-967 *4 *6 *5)) (-4 *4 (-464)) - (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1007 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-833))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) - (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1263 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4153 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-786)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-970 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) - (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1196))) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-970 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) - (-5 *1 (-942 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-967 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-970 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *4)))))))))) - (-5 *1 (-942 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *5 (-939)) (-4 *9 (-967 *6 *8 *7)) - (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1196)))) - (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-970 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *6)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *6)))))))))) - (-5 *1 (-942 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-939)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-970 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *6)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *6)))))))))) - (-5 *1 (-942 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-939)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-970 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *5)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *5)))))))))) - (-5 *1 (-942 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1178)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-942 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-1178)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-942 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-1178)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) - (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-942 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-939)) - (-5 *6 (-1178)) (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-861) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-942 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1196))) (-5 *5 (-939)) - (-5 *6 (-1178)) (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-861) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-942 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-939)) (-5 *5 (-1178)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-942 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (|has| *1 (-6 -4454)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) - ((*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-1177 (-576)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1287 (-1287 (-576)))) (-5 *1 (-478))))) -(((*1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1159)))) -(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-833))))) -(((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-2298 (|has| *1 (-6 -4454))) - (-2298 (|has| *1 (-6 -4446))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1120)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-863)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1177 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2925 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1055)) (-5 *3 (-1196)) (-5 *1 (-194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-906 *3)) (|:| |den| (-906 *3)))) - (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-963 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *6 (-1263 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3378 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *6 (-1263 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3378 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-1048 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1069)) (-5 *1 (-1048 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) - (-5 *2 - (-3 (-1192 *4) - (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140))))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-907 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-907 *3)) (-4 *3 (-861))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-1069)) - (-5 *1 (-1180 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1120))))) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) + (-4 *3 (-1059 *2))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) + (-4 *3 (-1238))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) - (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) - (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-5 *1 (-997 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1230 *5 *6 *7 *3)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-112))))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) - (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-548)) (-5 *1 (-547 *4)) - (-4 *4 (-1237))))) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) + (-4 *5 (-901 (-576))) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| -3733 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *8))))) + (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1451 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) + (-12 (-4 *1 (-851)) + (-5 *3 + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *2 (-1056)))) + ((*1 *2 *3) + (-12 (-4 *1 (-851)) + (-5 *3 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1120)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) + (-4 *3 (-626 (-548)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-961 *5)) (-4 *5 (-1069)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-939)) (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-939))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940)) (-4 *4 (-1070))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) + ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) + (-5 *1 (-1208 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) + ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) + (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1056)) + (-5 *1 (-852)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) + (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-852)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) - (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1120))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| -2239 *3) (|:| -2904 *4)))))) -(((*1 *1 *2) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) + (-5 *2 (-1056)) (-5 *1 (-852))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) + (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) + (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) + (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| -3566 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-656 - (-2 - (|:| -2239 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2904 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1177 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2925 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) - (-4 *2 (-174)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-831 *4)) (-4 *1 (-1304 *4 *2)) (-4 *4 (-861)) - (-4 *2 (-1069)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1069)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858))))) + (-2 (|:| -4004 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1419 (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) + (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) + (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) - (-4 *7 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) - (-4 *8 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1069)) (-5 *1 (-607 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-608 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1069)) (-4 *1 (-1247 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) - (-5 *3 (-1177 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) - (-4 *4 (-1069)) (-4 *1 (-1268 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-4 *1 (-1278 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1177 (-2 (|:| |k| (-783)) (|:| |c| *3)))) - (-4 *3 (-1069)) (-4 *1 (-1278 *3))))) + (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) + (-5 *1 (-306))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-939)) (-4 *5 (-317)) (-4 *3 (-1263 *5)) - (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) - (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1069)) (-5 *2 (-576)) - (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5)) - (-4 *6 (-13 (-416) (-1058 *5) (-374) (-1222) (-294))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1263 *4)) - (-4 *5 (-13 (-416) (-1058 *4) (-374) (-1222) (-294)))))) + (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1263 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) + (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) + (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) + (-4 *3 (-861)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) ((*1 *2 *3) - (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1263 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1116)))) + (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) + (-5 *1 (-931 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) + (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) + (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) + (-5 *1 (-1039 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) + (-5 *2 (-783)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) + ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) + ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1197))) + ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940)))) + ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) + ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244))) + ((*1 *1) (-5 *1 (-1245))) ((*1 *1) (-5 *1 (-1246)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) + (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) + (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) + (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) + (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-576)) (-5 *1 (-206))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) + (-5 *1 (-431 *4)))) + ((*1 *1 *1) (-5 *1 (-945))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *1 *1) (-5 *1 (-946))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) + (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) + (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) + (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) + (-14 *8 (-656 *5)) (-5 *2 (-1293)) + (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) + (-14 *9 (-656 *3)) (-14 *10 *3)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2))))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1153 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) - (-5 *2 (-1153 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1120))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1112 (-390))) (-5 *2 (-1153 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1120))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1153 (-227))) - (-5 *1 (-266 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1069)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-1263 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-656 (-624 *3))) - (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *7 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) - (-5 *2 (-656 *4)) (-5 *1 (-1134 *4 *5))))) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) + (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)))) + (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1197))) + (-5 *4 (-1288 (-326 (-227)))) (-5 *1 (-207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1121)) + (-4 *3 (-1238)) (-5 *1 (-304 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-903 *4 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-656 (-961 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) + (-12 (-4 *2 (-319 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)) + (-5 *1 (-304 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) + (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 (-656 *1)))) + (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) + (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *6)) (-4 *7 (-967 *6 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-987)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-939)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1254 *3)) (-4 *3 (-1237))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) - (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1120)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) - (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1091 *5 *6 *7 *8)) - (-4 *10 (-1129 *5 *6 *7 *8)))) + (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1066 *5 *6))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) - (-5 *2 - (-656 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-792 *5 (-877 *6))))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-792 *5 (-877 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1066 *5 *6))) - (-5 *1 (-1066 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1230 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-961 (-227))) (-5 *4 (-887)) (-5 *2 (-1292)) - (-5 *1 (-480)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1069)) (-4 *1 (-1000 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-961 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) + (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1199 (-419 (-576)))) + (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) + (-4 *4 (-861)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) + (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) + (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) + (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) + (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) + (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1197)) + (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-626 (-548))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) + (-4 *4 (-626 (-548))))) + ((*1 *1 *1) + (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-626 (-548))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) + (-12 (-5 *2 (-656 (-1197))) (-4 *1 (-442 *3)) (-4 *3 (-1121)) + (-4 *3 (-626 (-548))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-961 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)) (-5 *3 (-227))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1069)) - (-4 *5 (-861)) (-5 *2 (-970 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1069)) - (-4 *5 (-861)) (-5 *2 (-970 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1069)) - (-5 *2 (-970 *4)))) + (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) + (-4 *4 (-1121)) (-4 *5 (-1238)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-568)) + (-5 *1 (-1064 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-1197))) (-5 *4 (-656 (-419 (-971 *5)))) + (-5 *2 (-419 (-971 *5))) (-4 *5 (-568)) (-5 *1 (-1064 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-5 *2 (-419 (-971 *4))) + (-4 *4 (-568)) (-5 *1 (-1064 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-5 *2 (-419 (-971 *4))) + (-4 *4 (-568)) (-5 *1 (-1064 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1069)) - (-5 *2 (-970 *4))))) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2) + (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) + (-5 *2 + (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1264 (-576))) + (-5 *2 + (-2 (|:| -3454 (-701 (-576))) (|:| |basisDen| (-576)) + (|:| |basisInv| (-701 (-576))))) + (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) + ((*1 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-5 *2 + (-2 (|:| -3454 (-701 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-701 *4)))) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-5 *2 + (-2 (|:| -3454 (-701 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-701 *4)))) + (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1193 (-971 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1652 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) + (-4 *9 (-968 *8 *6 *7)) + (-5 *2 (-2 (|:| -4326 (-1193 *9)) (|:| |polval| (-1193 *8)))) + (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -4106 (-419 *6)) (|:| |coeff| (-419 *6)))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) + (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4))))) +(((*1 *2) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1263 *4)))) + (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) + (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) + (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-317))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *4))))))) + (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) + (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) + (-4 *4 (-1121)))) + ((*1 *1 *2) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-656 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1165)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) + (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) + (-5 *2 + (-2 (|:| A (-701 *5)) + (|:| |eqs| + (-656 + (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -4026 *6) + (|:| |rh| *5)))))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) + (-4 *6 (-668 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1027 *3)) - (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-683)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-939)) - (-14 *4 (-939))))) -(((*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1120)) - (-5 *1 (-1126 *5 *4)) (-4 *4 (-442 *5))))) + (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) + (-5 *2 (-2 (|:| -3752 (-701 *6)) (|:| |vec| (-1288 *5)))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) + (-12 (-5 *4 (-701 (-419 (-971 (-576))))) + (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) + (-5 *3 (-326 (-576)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-1196)) (-4 *6 (-442 *5)) - (-4 *5 (-1120)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-4 *5 (-243 (-3502 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *5)) + (-2 (|:| -3223 *2) (|:| -4210 *5)))) + (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-968 *4 *5 (-878 *3)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1601 (-656 (-2 (|:| |irr| *10) (|:| -4073 (-576))))))) + (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) + (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) + (-5 *2 + (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) + (|:| |corrfact| (-656 (-1193 *3))))) + (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1263 *4)) - (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576)))))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) + (-4 *4 (-1070))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) + (-14 *3 (-656 (-1197)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-923 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) - (-5 *1 (-1048 *5)) (-4 *5 (-1069)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1048 *4)) - (-4 *4 (-1069)))) + (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-923 (-576)))) (-5 *4 (-576)) - (-5 *2 (-656 (-701 *4))) (-5 *1 (-1048 *5)) (-4 *5 (-1069)))) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *1 (-943 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1048 *4)) (-4 *4 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) - (|:| -4244 *6))) - (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1080)))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-783)) - (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) - (-5 *1 (-251 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2110 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) + (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -4153 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-877 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) + (-656 + (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) + (|:| |wcond| (-656 (-971 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *4)))))))))) + (-5 *1 (-943 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) + (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) + (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) + (-4 *8 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) + (|:| |wcond| (-656 (-971 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *6)))))))))) + (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) + (|:| |wcond| (-656 (-971 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *6)))))))))) + (-5 *1 (-943 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-961 (-227)) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-961 (-227)) (-227) (-227))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896 (-1 (-227) (-227) (-227)))) (-5 *4 (-1114 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-1196)) (-5 *5 (-656 (-270))) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1058 (-576)))) - (-5 *2 (-1288)) (-5 *1 (-263 *6 *7)))) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *1 (-943 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1120))))) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-891 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1288)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-891 *5)) (-5 *4 (-1112 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1288)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) + (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) + (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1120))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1112 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1120))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1120))) (-5 *2 (-1289)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-961 (-227)))) (-5 *2 (-1288)) (-5 *1 (-267)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-961 (-227)))) (-5 *4 (-656 (-270))) - (-5 *2 (-1288)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-267))))) -(((*1 *1 *2) - (-12 (-5 *2 (-939)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1069)) - (-4 *4 (-1237)))) - ((*1 *1 *2) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *5 (-243 (-1968 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *5)) - (-2 (|:| -2409 *2) (|:| -1495 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) - (-4 *7 (-967 *4 *5 (-877 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1069)) - (-4 *2 (-1278 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1120)) - (-4 *3 (-1237)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1192 (-970 *4)) (-970 *4))) - (-5 *1 (-1295 *4)) (-4 *4 (-374))))) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-1144 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) - (-5 *2 (-1055)) (-5 *1 (-760))))) -(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1196))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-970 *3))) (-4 *3 (-464)) - (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) + (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-792 *3 (-877 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-1058 (-419 *2)))) (-5 *2 (-576)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2239 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2904 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1177 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2925 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-571)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2239 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -2904 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2769 *3)))) - (-5 *4 (-783)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-4 *1 (-707 *3)) (-4 *3 (-1120)) - (-5 *2 (-656 (-2 (|:| -2904 *3) (|:| -3125 (-783)))))))) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-132)) - (-4 *3 (-804))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-763))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1120)) - (-5 *1 (-624 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| -1495 (-783)) (|:| -2861 *5) (|:| |radicand| (-656 *5)))) - (-5 *1 (-330 *5)) (-5 *4 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-576))))) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1055))) (-5 *2 (-1055)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) (-5 *1 (-1083))) - ((*1 *2 *3) - (-12 (-5 *3 (-1177 (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1174 *4)) - (-4 *4 (-1237)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) - (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-701 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *4)) (-4 *4 (-1069)) (-4 *1 (-1143 *3 *4 *5 *6)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *2)) (-4 *2 (-967 (-419 (-970 *6)) *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) - (-4 *6 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *1)))) - (-4 *1 (-1091 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *2) (-12 (-5 *2 (-939)) (|has| *1 (-6 -4454)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-711)))) - ((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-711))))) -(((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) - (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *1 *2 *2) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-374)) (-4 *3 (-1069)) - (-5 *1 (-1180 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-970 (-576))))) (-5 *4 (-656 (-1196))) - (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) - (-4 *5 (-13 (-860) (-374))))) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) + (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-939)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-804)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1268 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1201))) (-5 *1 (-1201))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) (-5 *3 (-227)) - (-5 *2 (-1055)) (-5 *1 (-760))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) - (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *2 (-1263 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1069) (-861))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *1 *1) (-4 *1 (-1080))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-317)) - (-4 *5 (-1069)) (-5 *2 (-701 *5)) (-5 *1 (-1049 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-887)))) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1041 *3)) + (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1120)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) - (-4 *4 (-1120)) (-14 *5 *2)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2117 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-52)) (-5 *1 (-906 *4)) - (-4 *4 (-1120))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) - (-4 *1 (-1091 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1069))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1120))))) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) + (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4239 *4) (|:| -4249 *4)))) (-5 *1 (-1042 *3)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1042 *3)) + (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5)))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576)))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) + (-5 *1 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360)))) + ((*1 *2 *1) + (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) + (-14 *4 + (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *3)) + (-2 (|:| -3223 *2) (|:| -4210 *3))))))) +(((*1 *1) (-5 *1 (-1106)))) +(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1022))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568)))) - ((*1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1222)))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (|has| *1 (-6 -4463)) - (-4 *1 (-152 *2)) (-4 *2 (-1237)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) - (-4 *2 (-1237)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4463)) (-4 *1 (-152 *2)) - (-4 *2 (-1237)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1069)) - (-5 *2 (-2 (|:| -2769 (-1192 *4)) (|:| |deg| (-939)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-568)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-244 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1120)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1263 *2)) - (-4 *4 (-1263 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) - (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) - ((*1 *1 *1) (-5 *1 (-507))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-654 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1069)) (-4 *2 (-1069)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) - (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) + (-5 *1 (-1049 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) + (-5 *1 (-1049 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478))))) +(((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-374)) - (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-975 *5 *2)))) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) + (-4 *1 (-378 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) + (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) - (-14 *6 (-656 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1069)) (-4 *2 (-1069)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) - (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *12 (-1073 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-1175 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1230 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *2 (-1085 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-1286 *5 *2))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-976 *3)) (-5 *1 (-1183 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1) (-5 *1 (-815)))) -(((*1 *2 *3) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) +(((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))) + (-5 *1 (-571)))) + ((*1 *2 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| -3608 (-701 (-419 (-970 *4)))) - (|:| |vec| (-656 (-419 (-970 *4)))) (|:| -4134 (-783)) - (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 - (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *4))))))) - (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5))))) + (-656 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227))))) + (-5 *1 (-815))))) (((*1 *2 *1) - (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) + (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) + (-4 *3 (-1238))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) + (-5 *1 (-766))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) +(((*1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-1179))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) + (-4 *2 (-374)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) + (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) + (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-783)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) + (-5 *2 + (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) + (-5 *2 + (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-5 *2 + (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-5 *2 + (-2 (|:| -3454 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-939)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-861)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)))) + (-4 *7 (-1086 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *7)))) + (-4 *1 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *6))))) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-572 *5 *6 *7)) - (-5 *3 (-1192 *6)) (-4 *7 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1069)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) + (|:| |polypart| *6))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) + (-4 *1 (-442 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-656 *10)) - (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) - (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-967 *11 *9 *10)) - (-5 *2 (-656 (-1192 *5))) (-5 *1 (-754 *9 *10 *11 *5)) - (-5 *3 (-1192 *5)))) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *2 (-967 *3 *4 *5)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) + (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) - (-253 *4 (-419 (-576))))) - (-5 *3 (-656 (-877 *4))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) - (-5 *1 (-517 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1069)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-848 *3))))) + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) - (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-815))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1012 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-317)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1058 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1120)) (-5 *2 (-1145 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) + (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) + (-5 *1 (-882 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) + (-5 *1 (-882 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) + (-5 *1 (-838 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) + (-5 *2 (-1179)) (-5 *1 (-838 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) + (-5 *2 (-1293)) (-5 *1 (-838 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) + (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1197)) + (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) + (-5 *2 + (-2 (|:| -4106 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) + (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) + (-4 *6 (-374)) + (-5 *2 + (-656 + (-2 (|:| |outval| *7) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 *7)))))) + (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) + (-4 *1 (-866 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-912 *2 *4)) - (-4 *2 (-1263 *4))))) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) + (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3329 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) + (-14 *4 (-1197)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -3569 ($ *4))))) + (-4 *4 (-860)) + (-4 *5 + (-13 (-1266 *2 *4) (-374) (-1223) + (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $))))) + (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) + (-14 *7 (-1197))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) + (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-656 - (-2 - (|:| -2239 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2904 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1177 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2925 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *1 *2) + (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) + (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) + (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) + (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) + (-4 *3 (-1092 *4 *5 *6 *2))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) - (-5 *2 (-656 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-976 (-783))) (-5 *1 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) - (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1058 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *3 (-1120)) (-5 *2 (-1145 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1292)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1196)) (-5 *2 (-624 *6)) - (-4 *6 (-442 *5)) (-4 *5 (-1120)) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) - (-15 -2697 ((-1145 *3 (-624 $)) $)) - (-15 -4112 ($ (-1145 *3 (-624 $)))))))))) -(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1153 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1153 (-227))) (-5 *3 (-1178)) (-5 *1 (-1289)))) - ((*1 *1 *1) (-5 *1 (-1289)))) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3954 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) + (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) + (-5 *1 (-766))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) + (-5 *1 (-1162 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) - (-5 *1 (-461 *5 *6 *7 *4))))) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131))))) +(((*1 *1) + (-12 (-4 *1 (-416)) (-2662 (|has| *1 (-6 -4455))) + (-2662 (|has| *1 (-6 -4447))))) + ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861)))) + ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1080)))) -(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-55))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237))))) + (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) + (-5 *2 (-701 (-576))) (-5 *1 (-602)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-602)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) + (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1120)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-397 *3))))) + (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1193 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1193 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-695 *4 *5)) (-4 *4 (-1120)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-948)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1069)))) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-967 (-419 (-970 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-967 (-970 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-4 *4 (-1069)) (-4 *5 (-805)) (-5 *1 (-1004 *4 *5 *6 *2)) - (-4 *2 (-967 (-970 *4) *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1120))))) -(((*1 *1) (-5 *1 (-449)))) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) + (-5 *1 (-1052))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1012 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1069)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1143 *2 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1207 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120))))) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) + (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) + (-5 *4 (-656 (-940))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) + ((*1 *1 *1) (-5 *1 (-480)))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) + ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010)))) + ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) + (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) + (-5 *1 (-1050 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) + (-5 *2 (-112)) (-5 *1 (-1162 *5 *6))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1069)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1237)) (-5 *2 (-576))))) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) + (-4 *3 (-1264 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1749 (-430 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1069)) (-4 *6 (-967 *5 *4 *2)) - (-4 *2 (-861)) (-5 *1 (-968 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *6)) (-15 -2686 (*6 $)) - (-15 -2697 (*6 $))))))) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) + (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) + (-4 *2 + (-13 (-414) + (-10 -7 (-15 -3569 (*2 *4)) (-15 -2460 ((-940) *2)) + (-15 -3454 ((-1288 *2) (-940))) (-15 -3046 (*2 *2))))) + (-5 *1 (-367 *2 *4))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) + (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-656 *8)) + (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) + (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-656 *8)) + (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) + (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) + (-4 *2 (-13 (-1121) (-34)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) + (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) - (-5 *2 (-1196)) (-5 *1 (-1063 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1211 *2)) (-4 *2 (-374))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1008 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) + (-12 (-5 *4 (-419 (-576))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1085 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1127 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1069)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-865 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1069)) - (-5 *1 (-866 *2 *3)) (-4 *3 (-865 *2))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-939)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1058 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1012 *3)) - (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) - (-14 *6 (-1287 *5)))) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-4 *5 (-1069)) - (-4 *2 (-13 (-416) (-1058 *5) (-374) (-1222) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-656 (-624 (-507)))) - (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-939)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) + (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) + (-4 *6 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) + (-4 *7 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) + (-4 *3 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) + (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) + (-4 *8 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) + (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) + (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-4 *3 (-1070)) (-5 *1 (-607 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-4 *3 (-1070)) (-4 *1 (-1248 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-783)) + (-5 *3 (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) + (-4 *4 (-1070)) (-4 *1 (-1269 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) + (-4 *3 (-1070)) (-4 *1 (-1279 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1263 *4)) - (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1080)))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-656 (-1231 *5))) - (-5 *1 (-1295 *5)) (-5 *4 (-1231 *5))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1060))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-768))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-884 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-885 *4 *5)) - (-5 *3 (-576)) (-4 *5 (-882 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-419 (-576))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1263 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4112 (*2 (-1196)))) - (-4 *2 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *3 (-1263 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) - (-4 *5 (-668 (-419 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) - (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) (-4 *5 (-1263 *4)) - (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-861) (-21)))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) - (-5 *1 (-679 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-374)) - (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4464)))) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464)))) - (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) - (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-939))) (-5 *1 (-897)))) - ((*1 *1 *1) (-5 *1 (-991))) - ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-939)) (-4 *1 (-416)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) + (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-805)) (-4 *6 (-967 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *4 *3 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-982 *3 *2)) (-4 *3 (-1120))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) (((*1 *2 *1) - (-12 (-5 *2 (-875)) (-5 *1 (-1177 *3)) (-4 *3 (-1120)) - (-4 *3 (-1237))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-759))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 (-656 (-656 (-962 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) + (-4 *1 (-1155 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) + (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) + (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) + (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) + (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) + (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070))))) (((*1 *2) - (-12 - (-5 *2 - (-1287 (-656 (-2 (|:| -1688 (-928 *3)) (|:| -2409 (-1140)))))) - (-5 *1 (-362 *3 *4)) (-14 *3 (-939)) (-14 *4 (-939)))) - ((*1 *2) - (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140)))))) - (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) *2)))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) + (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) + (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) +(((*1 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) + (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) ((*1 *2) - (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-939))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069))))) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) + (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1) - (-12 (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-1007 *3 *4 *5 *2)) - (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-403))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 (-656 (-656 (-656 (-783)))))))) (((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-760))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) + (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) + ((*1 *1 *1 *1) + (-2758 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) + ((*1 *1 *1 *1) (-4 *1 (-374))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1121)) + (-4 *1 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-548))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-738) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-738) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) + (-4 *3 (|SubsetCategory| (-738) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) + (-4 *2 (|SubsetCategory| (-738) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-374)) + (-4 *2 (-1070)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-783))) + (-14 *5 (-783)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-861)) + (-4 *4 (-805)) (-14 *6 (-656 *3)) + (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) + (-14 *7 (-656 (-783))) (-14 *8 (-783)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) + (-4 *3 (-858))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) +(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1010)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1238)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) + (-4 *3 (-1114 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5))))) - (-5 *1 (-998 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5))))) + (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *9) (|:| |radicand| *9))) + (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) + (-4 *9 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $)))))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4046 (-576)) (|:| -1601 (-656 *3)))) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (-5 *1 (-942 *5 *6 *7 *8))))) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) + (-5 *1 (-1150 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *5 (-1263 *4)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3378 *5)))) - (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-701 (-928 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-939)) - (-14 *4 (-939)))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1192 *3) - (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140))))))))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-939))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) - (-4 *3 (-1069))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1865 *3) (|:| -1495 (-783)))) (-5 *1 (-599 *3)) - (-4 *3 (-557))))) + (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) + (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) + (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 *3)))) + (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) + (-4 *7 (-668 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) + (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 (-666 *6 (-419 *6)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) - (-5 *2 (-656 (-2 (|:| -2861 (-783)) (|:| |logand| *4)))) - (-5 *1 (-330 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) + (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) ((*1 *2 *1) - (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-216 *2)) + (-4 *2 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) + (-15 -3579 ((-1293) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1069) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *2 (-1293)) + (-5 *1 (-480)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-961 *4)) (-4 *4 (-1069)) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-939))))) + (-12 (-5 *2 (-783)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) + (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) + ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) + (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-5 *1 (-449))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-879 *4 *5 *6 *7)) - (-4 *4 (-1069)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1069)) (-4 *5 (-861)) (-4 *6 (-805)) - (-14 *8 (-656 *5)) (-5 *2 (-1292)) - (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-967 *4 *6 *5)) - (-14 *9 (-656 *3)) (-14 *10 *3)))) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-216 *2)) + (-4 *2 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) + (-15 -3579 ((-1293) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) + (-4 *2 (-1264 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-548))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) - (-5 *1 (-1207 *6)) (-5 *5 (-656 *4))))) -(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237))))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) + (-4 *7 (-1264 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 - (-2 (|:| A (-701 *5)) - (|:| |eqs| - (-656 - (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)) (|:| -3378 *6) - (|:| |rh| *5)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) - (-4 *6 (-668 *5)))) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3498 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) + (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-1258 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) + (-5 *1 (-684 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) - (-5 *2 (-2 (|:| -3608 (-701 *6)) (|:| |vec| (-1287 *5)))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1749 (-656 (-2 (|:| |irr| *10) (|:| -2432 (-576))))))) - (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) - (-4 *10 (-967 *3 *9 *8)) (-4 *9 (-805)) - (-5 *2 - (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) - (|:| |corrfact| (-656 (-1192 *3))))) - (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1192 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-1196))))) -(((*1 *1) (-5 *1 (-1105)))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) + (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) + (-5 *2 (-1056)) (-5 *1 (-852))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-783)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1178)) (-5 *1 (-798))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) - (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) - (-5 *1 (-881 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) - (-5 *1 (-881 *5 *6 *7))))) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *1) (-5 *1 (-1200)))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 (-907 *3))))) + (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) + (-5 *1 (-907 *4)) (-4 *4 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) + (-5 *2 (-783))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-459 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4)))) + (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3600 (-576))))) + (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1192 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) + (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-635 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112))) + (-576) *4)) + (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) + (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-963 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 (-861)) (-5 *2 (-783))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) + (-4 *4 (-1121))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) - (-5 *1 (-684 *4))))) + (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) (((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *5 (-379)) - (-5 *2 (-783))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-112)) (-5 *1 (-906 *4)) - (-4 *4 (-1120))))) + (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-722))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 *2)) (-4 *4 (-1263 *2)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1069))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3114 *3))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) (-4 *4 (-464)) (-5 *2 (-112)) - (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1196))))) + (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-792 *4 (-877 *5)))) (-4 *4 (-464)) - (-14 *5 (-656 (-1196))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) + (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-1237))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1105))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2)))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-961 (-227))) (-5 *4 (-887)) (-5 *5 (-939)) - (-5 *2 (-1292)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-961 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-656 (-961 (-227)))) (-5 *4 (-887)) (-5 *5 (-939)) - (-5 *2 (-1292)) (-5 *1 (-480))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *3 (-656 (-576))) - (-5 *1 (-897))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + (-12 (-5 *2 (-2 (|:| -4004 *3) (|:| |coef1| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) + (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) ((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1192 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1120)) - (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1069))))) -(((*1 *2 *1) - (-12 (-5 *2 (-961 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-668 *3)))) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) + (-5 *1 (-1292)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3378 *3) (|:| -3961 (-656 *5)))) - (-5 *1 (-1045 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1130)) (-5 *3 (-576))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) - (-4 *3 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) - (-14 *4 (-656 (-1196))))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) - (-14 *4 (-656 (-1196))))) - ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-4 *2 (-353 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-626 (-906 *3))) (-4 *3 (-900 *3)) (-4 *3 (-464)) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-626 (-906 *3))) (-4 *2 (-900 *3)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) + (-5 *2 (-480)) (-5 *1 (-1292))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) - (-5 *1 (-1199)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) - (-5 *1 (-1199))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -3876 (-1178 *4)) (|:| -3888 (-1178 *4)))) + (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4153 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) + (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) + (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) + (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) + (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) + (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) - (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-989 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-120 *2)) (-4 *2 (-1237))))) -(((*1 *1) - (-12 (-4 *3 (-1120)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1120)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) + (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) + (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) + (-4 *6 (-668 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-656 (-970 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-970 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023))))) ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-970 *3))))) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) + (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) ((*1 *2) - (-12 (-5 *2 (-656 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-970 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) - (-14 *5 (-939)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-939)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-970 *6)) (-1185 (-1196) (-970 *6)))) - (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-970 *6))))) - (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-970 *6)))))) - ((*1 *2 *3 *4) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) + (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-970 *5)) (-1185 (-1196) (-970 *5)))) - (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-970 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-970 *5))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-5 *2 (-1192 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1177 (-991))) (-5 *1 (-991))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) - (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1177 *7))) (-4 *6 (-861)) - (-4 *7 (-967 *5 (-543 *6) *6)) (-4 *5 (-1069)) - (-5 *2 (-1 (-1177 *7) *7)) (-5 *1 (-1146 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-939))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-939)) - (-14 *4 (-939))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1120)) - (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-970 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) - (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 - (-2 (|:| |minor| (-656 (-939))) (|:| -3378 *3) - (|:| |minors| (-656 (-656 (-939)))) (|:| |ops| (-656 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-939)) (-4 *3 (-668 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) + (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) + (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) + (|:| |args| (-656 (-876))))) + (-5 *1 (-1197)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1300 *4 *5 *6 *7))) - (-5 *1 (-1300 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-568)) - (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1300 *6 *7 *8 *9))) - (-5 *1 (-1300 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1292)) (-5 *1 (-843))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1192 (-419 (-970 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *3 (-940)) (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2664 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1120)) - (-5 *1 (-690 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1120)) (-5 *1 (-694 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-764))))) + (-3 (-1193 *4) + (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141))))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-855 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1128 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *5 (-112)) (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) - (-5 *1 (-1128 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-763))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-317)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 - (-2 (|:| -1683 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -4250 (-419 *6)) - (|:| |special| (-419 *6)))) - (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-912 *3 *4)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2100 *3) (|:| -2110 *3))) (-5 *1 (-912 *3 *5)) - (-4 *3 (-1263 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) -(((*1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1055)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-939))) (-5 *2 (-783)) (-5 *1 (-602))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1292)) (-5 *1 (-246))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-833))))) + (|partial| -12 (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3015 (-783)) (|:| -3599 (-783)))) + (-5 *1 (-783)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-1258 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) - (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1292)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 (-576)))) - (-5 *2 (-112)) (-5 *1 (-1315 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-783)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-889))) (-5 *1 (-495))))) + (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1264 (-171 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-970 (-171 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-970 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-970 (-171 (-576))))))) - (-5 *2 (-656 (-656 (-304 (-970 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) + (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) + (-4 *7 (-968 *3 *5 *6)) + (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *8) (|:| |radicand| *8))) + (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) + (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-907 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1121)) + (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-907 *5)) (-5 *3 (-656 (-1197))) + (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1121)) (-4 *6 (-1238)) + (-5 *1 (-905 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1238)) (-4 *4 (-1121)) + (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-4 *4 (-1121)) + (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 (-171 (-576))))) - (-5 *2 (-656 (-304 (-970 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1238)) + (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-970 (-171 (-576)))))) - (-5 *2 (-656 (-304 (-970 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) + (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1 (-112) (-656 *6))) + (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-1097 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) - (-5 *1 (-1005 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-877 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) - (-5 *2 - (-2 (|:| |dpolys| (-656 (-253 *5 *6))) - (|:| |coords| (-656 (-576))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-970 *8)))) - (-5 *5 (-783)) (-5 *6 (-1178)) (-4 *8 (-13 (-317) (-148))) - (-4 *11 (-967 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1196)))) - (-4 *10 (-805)) - (-5 *2 - (-2 - (|:| |rgl| - (-656 - (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) - (|:| |wcond| (-656 (-970 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *8)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *8)))))))))) - (|:| |rgsz| (-576)))) - (-5 *1 (-942 *8 *9 *10 *11)) (-5 *7 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-972)) (-5 *2 (-703 (-545))) - (-5 *1 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-972)) (-4 *3 (-1120)) (-5 *2 (-703 *1)) - (-4 *1 (-779 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-783))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)) (-4 *2 (-1069)))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-648 *5 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1178)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 (-970 *5)))) (-4 *5 (-464)) - (-5 *2 - (-3 (-855 (-419 (-970 *5))) - (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-970 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-855 (-419 (-970 *5))) "failed"))) - "failed")) - (-5 *1 (-649 *5)) (-5 *3 (-419 (-970 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-970 *5)))) (-5 *3 (-419 (-970 *5))) - (-4 *5 (-464)) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) + (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) + (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) + (-5 *1 (-1093 *6 *7 *4 *8 *9))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3498 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| -1714 (-576)) (|:| |var| (-624 *1)))) + (-4 *1 (-442 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1) (-5 *1 (-1293)))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-649 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 (-419 (-970 *6)))) (-5 *5 (-1178)) - (-5 *3 (-419 (-970 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) - (-5 *1 (-649 *6))))) + (-2 (|:| |contp| (-576)) + (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) + (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) + (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4)))) +(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4134 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-942 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-841))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1069)) - (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) - (-4 *3 (-865 *5))))) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) + (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) + (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) + (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) + (-4 *6 (-464))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1058 (-576)) (-651 (-576)) (-464))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1272 *4 *5 *6)) - (|:| |%expon| (-329 *4 *5 *6)) - (|:| |%expTerms| - (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) - (|:| |%type| (-1178)))) - (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) - (-14 *5 (-1196)) (-14 *6 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1122 *3)))) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) ((*1 *2 *1) - (-12 (-5 *2 (-1122 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1022) (-1222))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1022) (-1222)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-340))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-989 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) - (-5 *1 (-1134 *4 *5)) (-5 *3 (-1260 *5 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-548))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-994))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1009)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-4 *4 (-1237)) (-5 *1 (-1077 *3 *4)) - (-4 *3 (-1113 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1114 *4)) (-4 *4 (-1237)) - (-5 *1 (-1112 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1162 *4 *2)) (-14 *4 (-939)) - (-4 *2 (-13 (-1069) (-10 -7 (-6 (-4465 "*"))))) - (-5 *1 (-920 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(((*1 *1) (-5 *1 (-1292)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1092 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) + (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1022))))) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) + (-4 *3 (-968 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) - ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1120)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) + (-5 *1 (-943 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) + (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) + (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) + (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) + (-5 *1 (-1098 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) + (-5 *1 (-937 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1022) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) - (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) - (-4 *8 (-967 *3 *7 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1069)) - (-5 *3 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) + (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) + (-5 *1 (-709))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) - (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -4153 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1177 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-804)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-656 (-1196))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) - (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1069) (-861))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-245 *5 *7)) - (-5 *1 (-244 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) + (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-623 *2 *4))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223))) + (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-624 *6)) - (-4 *6 (-312)) (-4 *2 (-1237)) (-5 *1 (-307 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *9 (-374)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) - (-5 *2 (-347 *9 *10 *11 *12)) - (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-353 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) - (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1263 (-419 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) - (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) + (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) - (-4 *6 (-1012 *5)) (-4 *7 (-1263 *6)) - (-4 *8 (-13 (-421 *6 *7) (-1058 *6))) (-4 *9 (-317)) - (-4 *10 (-1012 *9)) (-4 *11 (-1263 *10)) - (-5 *2 (-425 *9 *10 *11 *12)) - (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-421 *10 *11) (-1058 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-4 *6 (-243 (-3502 *3) (-783))) + (-14 *7 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *6)) + (-2 (|:| -3223 *5) (|:| -4210 *6)))) + (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) + (-4 *2 (-968 *4 *6 (-878 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))) + (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-548))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-696 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-384 *3)) + (-4 *4 (-384 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *2 (-384 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-861)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) - (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -4153 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 (-2 (|:| -4153 *6) (|:| |coeff| *6))) - (-5 *1 (-596 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-596 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-613 *8)) - (-5 *1 (-611 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1177 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1177 *8)) - (-5 *1 (-611 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1177 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1177 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-656 *8)) - (-5 *1 (-655 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1069)) (-4 *8 (-1069)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) - (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) - (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1069)) - (-4 *8 (-1069)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) - (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) - (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8))) - (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6))) - (-4 *8 (-1263 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1069)) (-4 *9 (-1069)) - (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-967 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-967 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) - (-4 *9 (-1069)) (-4 *2 (-967 *9 *8 *6)) - (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) - (-4 *4 (-967 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) - (-5 *1 (-746 *5 *6 *7)))) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) + (-5 *1 (-990 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-4 *1 (-1133))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-243 *3 *4)) + (-4 *5 (-243 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-747 *3 *4)) - (-4 *4 (-738)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *1 (-844 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *1 (-854 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-903 *5 *6)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-903 *5 *7)) - (-5 *1 (-902 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-970 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-970 *6)) (-5 *1 (-964 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) - (-4 *8 (-1069)) (-4 *6 (-805)) - (-4 *2 - (-13 (-1120) - (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) - (-5 *1 (-969 *6 *7 *8 *5 *2)) (-4 *5 (-967 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-976 *6)) (-5 *1 (-975 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-984 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-984 *6)) (-5 *1 (-986 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-961 *6)) (-5 *1 (-1001 *5 *6)))) + (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) + (-4 *2 (-968 *3 (-543 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-970 *4))) (-4 *4 (-1069)) - (-4 *2 (-967 (-970 *4) *5 *6)) (-4 *5 (-805)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-5 *1 (-1004 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) - (-4 *2 (-1012 *6)) (-5 *1 (-1010 *5 *6 *4 *2)) (-4 *4 (-1012 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1017 *6)) (-5 *1 (-1018 *4 *5 *2 *6)) (-4 *4 (-1017 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) - (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-962 (-227))) (-5 *3 (-227)) (-5 *1 (-1234)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) - (-4 *5 (-1069)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1069)) (-4 *10 (-1069)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *2 (-1073 *5 *6 *10 *11 *12)) - (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) - (-4 *12 (-243 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1114 *6)) (-5 *1 (-1109 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-860)) - (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) - (-5 *1 (-1109 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1112 *6)) (-5 *1 (-1111 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1169 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1177 *6)) (-5 *1 (-1175 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1177 *6)) (-5 *5 (-1177 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1177 *8)) - (-5 *1 (-1176 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-5 *2 (-1192 *6)) (-5 *1 (-1190 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1196)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-860)) - (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1177 *6)) - (-5 *1 (-1253 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1260 *5 *6)) (-14 *5 (-1196)) - (-4 *6 (-1069)) (-4 *8 (-1069)) (-5 *2 (-1260 *7 *8)) - (-5 *1 (-1255 *5 *6 *7 *8)) (-14 *7 (-1196)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *4 *6 *2)) (-4 *4 (-1263 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5 *7 *9)) (-4 *5 (-1069)) - (-4 *6 (-1069)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1272 *6 *8 *10)) (-5 *1 (-1267 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1196)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) - (-4 *2 (-1278 *6)) (-5 *1 (-1276 *5 *6 *4 *2)) (-4 *4 (-1278 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) - (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) - (-5 *1 (-1286 *5 *6)))) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1069)))) + (-12 (-5 *2 (-576)) (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-1310 *3 *4)) - (-4 *4 (-858))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-996 *4 *5 *3 *6)) (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *3 (-861)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1174 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) + (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) + (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-1181 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-1197)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) - (-5 *1 (-577)))) + (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) + (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) + (-5 *1 (-315))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) + (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) + (-4 *4 (-861)) (-5 *1 (-1208 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) + (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) + (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) + ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) + (-14 *4 (-656 *2)) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| |mdnia| + (-2 (|:| |fn| (-326 (-227))) + (|:| -3343 (-656 (-1115 (-855 (-227))))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) + (-5 *1 (-781)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *1 (-820)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) + (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-656 (-326 (-227)))) + (|:| -3539 (-656 (-227))))))) + (-5 *1 (-853)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *1 (-915)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) + (-2758 + (-12 (-5 *2 (-971 *3)) + (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) + (-2662 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861))) + (-12 (-5 *2 (-971 *3)) + (-12 (-2662 (-4 *3 (-557))) (-2662 (-4 *3 (-38 (-419 (-576))))) + (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861))) + (-12 (-5 *2 (-971 *3)) + (-12 (-2662 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) + (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861))))) + ((*1 *1 *2) + (-2758 + (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) + (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) + (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) + (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1083)) - (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) - (-5 *1 (-577)))) + (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) + (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1083)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) - (|:| |extra| (-1055)))))) + (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) + (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) + (-2662 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) + (-4 *4 (-626 (-907 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1083)) - (-5 *4 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) + (-2662 (-4 *3 (-1059 (-1197)))) (-2662 (-4 *3 (-1070))) + (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 - (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)) - (|:| |extra| (-1055)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) + (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) + (-4 *4 (-1121)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) + (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) + (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) + (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223)))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) + (-4 *3 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) + (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-624 *3)) + (-4 *3 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) + (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) + (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1083)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) + (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) + (-5 *1 (-445 *5 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-820)) + (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) + (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-5 *1 (-607 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) +(((*1 *1 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-174))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) + (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1264 (-171 *3)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) + (-4 *2 (-699 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *3) + (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1083)) + (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) + (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) + (-5 *2 (-1293)) (-5 *1 (-480)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) + (-5 *2 (-1293)) (-5 *1 (-480))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 (-656 (-656 (-656 (-962 *3)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246)))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) + (-4 *2 (-1121))))) +(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) + (-4 *7 (-968 *6 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) + (-5 *3 (-656 (-576)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) + (-4 *5 (-384 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-576)) (-14 *5 (-783)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-783)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-783)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-783)))) + ((*1 *2 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) + (-14 *4 (-783)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ *3)) (-15 -1976 ((-1293) $)) + (-15 -3579 ((-1293) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 ((-1293) $)) + (-15 -3579 ((-1293) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) + (-4 *4 (-1264 (-419 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-656 (-907 *4))) (-5 *1 (-907 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-940)) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-1097 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-940)) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-1098 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1165))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) + (-4 *2 (-374)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) + (-4 *3 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) + (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1174 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) + (-5 *1 (-898))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) + (-4 *3 (-968 *7 *5 *6)) + (-5 *2 + (-2 (|:| -4210 (-783)) (|:| -1714 *3) (|:| |radicand| (-656 *3)))) + (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *3)) (-15 -1570 (*3 $)) (-15 -1581 (*3 $)))))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) + (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) + (-4 *4 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) + (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2455 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) + (-4 *4 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-374)) (-4 *2 (-917 *3)) (-5 *1 (-598 *2)) + (-5 *3 (-1197)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) + (-4 *4 (-1121)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1083)) - (-5 *4 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1083)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) + (-4 *2 (-699 *3 *5 *6))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) ((*1 *2 *3) - (-12 (-5 *3 (-853)) - (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1083)) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) + (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-4 *7 (-1238))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) + (-5 *2 (-656 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-805)) (-4 *2 (-275 *4))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) + (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-852)))) + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) +(((*1 *2 *1) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1193 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 (-425 *4 (-419 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) + (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) + (-5 *1 (-425 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) +(((*1 *1) (-5 *1 (-590))) + ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-911)) (-5 *3 (-1083)) - (-5 *4 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -2420 (-390)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-914)) - (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-913)))) + (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) + (-4 *4 (-1121)) (-4 *4 (-1238))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-914)) (-5 *4 (-1083)) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) + (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-701 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97))))) +(((*1 *1 *1) (-5 *1 (-1196))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-913))))) + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) + ((*1 *1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) (((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1238))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) + (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) +(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) + (-5 *5 (-855 *7)) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) + (-4 *6 (-13 (-1223) (-29 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *1 *2) (-12 (-5 *2 (-939)) (-4 *1 (-379)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) + (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) + ((*1 *1) (-4 *1 (-738))) + ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) + (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) + (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) + (-5 *1 (-943 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) + (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) + (-5 *1 (-244 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) + (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) + (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) + (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1193 *3))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) ((*1 *2 *1) - (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1120)) - (-14 *4 - (-1 (-112) (-2 (|:| -2409 *2) (|:| -1495 *3)) - (-2 (|:| -2409 *2) (|:| -1495 *3))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-889))) (-5 *1 (-495))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1263 *2))))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) + (-4 *2 (-1279 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069))))) -(((*1 *1 *1) - (-12 (-4 *2 (-317)) (-4 *3 (-1012 *2)) (-4 *4 (-1263 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1058 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *6))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1022))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-548))) + ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-4 *2 (-1113 *3)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1114 *3)) (-5 *1 (-1112 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1022))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1) (-5 *1 (-518)))) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) + (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2)))))) (((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) - (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1278 *5)) - (-5 *1 (-1280 *5 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-970 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) + (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) + (-4 *3 (-243 (-3502 *4) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *3)) + (-2 (|:| -3223 *5) (|:| -4210 *3)))) + (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) + (-4 *7 (-968 *2 *3 (-878 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-792 *3 (-877 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) -(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *1 *1 *1) (-4 *1 (-805)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2117)))) - (-5 *2 (-1055)) (-5 *1 (-760))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1080)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1080)))) - ((*1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)) (-4 *2 (-1080)))) - ((*1 *1 *1) (-4 *1 (-1080))) ((*1 *1 *1) (-4 *1 (-1159)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-939)) (-5 *1 (-798))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1222) (-29 *5))))) + (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) + (-4 *2 (-442 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1058 (-576)) (-148))) - (-5 *2 (-598 (-419 (-970 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-419 (-970 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) + (-5 *1 (-949))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-912 *2 *3)) - (-4 *2 (-1263 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) + (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) + (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-861)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-923 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2140)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3858)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3512)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -1403)) (-5 *2 (-112)) (-5 *1 (-703 *4)) + (-4 *4 (-625 (-876))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) + (-5 *1 (-703 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-890)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-890)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) - (-4 *6 (-1085 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2804 *1) (|:| |upper| *1))) - (-4 *1 (-996 *4 *5 *3 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1055)) - (-5 *1 (-760))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-970 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4026 *3) (|:| -1757 (-656 *5)))) + (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) + (-5 *1 (-941 *4 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3650 (-656 (-227))))))) - (-5 *2 (-656 (-1178))) (-5 *1 (-276))))) + (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1177 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1177 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315))))) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-904 *4 *5)) (-4 *5 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1141)))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1177 (-970 *4)) (-1177 (-970 *4)))) - (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) + (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) + (-4 *4 (-699 *2 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) - (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-939)) - (-14 *4 (-939)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1192 *3) - (-1287 (-656 (-2 (|:| -1688 *3) (|:| -2409 (-1140))))))))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-939))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290))))) + (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) + (-5 *1 (-1181 *4))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1197)) (-5 *6 (-112)) + (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-1223) (-978) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-2 (|:| -3578 (-656 (-419 *6))) (|:| -3608 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) + (-2 (|:| |contp| (-576)) + (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 (-2 (|:| -3578 (-656 (-419 *6))) (|:| -3608 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-576)) (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1058 (-576))) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-135))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1278 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1249 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1247 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1270 *4 *5)) - (-4 *6 (-1003 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1120)) - (-4 *3 (-1132)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) + (-2 (|:| |contp| (-576)) + (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) + (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) + (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) + (-5 *2 + (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) + (|:| |Lfact| + (-656 (-2 (|:| -1828 (-1193 *8)) (|:| -4210 (-576))))) + (|:| |ctpol| *8))) + (-5 *1 (-754 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) + (-5 *1 (-342)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) + (-4 *3 (-1121))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1120)) - (-5 *1 (-694 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1069)) - (-5 *1 (-702 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *3 (-1069)) (-5 *1 (-726 *3 *4)) - (-4 *4 (-660 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1069)) - (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-939)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1069)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-419 (-576))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1132)) (-5 *2 (-939)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1069)) - (-5 *3 (-576))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-875))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-939)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1192 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) - (-4 *2 (-1263 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-961 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) + (-5 *1 (-540 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) - (-4 *5 (-805)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4))))) + (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-5 *2 (-656 *3)))) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-815))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *9)))) - (-5 *3 (-656 *9)) (-4 *1 (-1230 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *8)))) - (-5 *3 (-656 *8)) (-4 *1 (-1230 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *3 (-656 (-887))) - (-5 *1 (-480))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1067))))) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-970 *4)) (-1185 (-1196) (-970 *4)))) - (|:| |geneigvec| (-656 (-701 (-419 (-970 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-970 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + (-12 (-4 *3 (-1264 (-419 (-576)))) + (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) + (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1058 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-875)))) + (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) + (-4 *3 (-1264 (-419 *4)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) + (-5 *2 (-1290)) (-5 *1 (-264))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-656 (-1196))) (-4 *4 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1196))) - (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1069)) - (-4 *5 (-243 (-1968 *3) (-783))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) - (-14 *3 (-656 (-1196))) (-4 *4 (-1069))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1287 *4))) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-656 (-1287 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1026))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) - (-4 *4 (-1120)) (-4 *5 (-1120))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1069))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1060))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) - (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1192 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1263 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-903 *4 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 (-1287 (-576)))) (-5 *3 (-939)) (-5 *1 (-478))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *4 (-1196)) - (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1200)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *1 (-1200))))) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1177 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) + (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) + (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804)) (-4 *3 (-174))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1121)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3)) (-14 *3 (-576)))) - ((*1 *2 *1) - (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) - (-5 *1 (-885 *3 *4)) (-4 *4 (-882 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1278 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-4 *5 (-1263 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) - (-4 *2 (-1278 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1278 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1173 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-875)))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1121)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) + (-5 *1 (-726 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-360)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1749 (-656 (-2 (|:| |irr| *3) (|:| -2432 (-576))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1263 *5))))) + (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) + (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-970 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-970 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1058 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) - (-14 *4 (-656 *2)) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-970 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-970 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-970 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-970 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-970 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-970 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-970 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-970 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-970 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-970 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-970 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -2925 (-656 (-1114 (-855 (-227))))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) ((*1 *2 *1) - (-12 + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) + (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) + (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) + (|:| -3454 (-656 (-1288 (-419 *8)))))) + (-5 *1 (-681 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3650 (-656 (-227))))))) - (-5 *1 (-853)))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -1652 *4))) (-5 *1 (-990 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) + (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-767)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -4249 *7) (|:| |sol?| (-112))) + (-576) *7)) + (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) + (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-4 *7 (-1238)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) + (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) + ((*1 *1 *1) (-5 *1 (-1197)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-861))))) +(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197)))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1293)))) + ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-409)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) + (-4 *3 (-13 (-442 *4) (-1023)))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-397 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *1 (-914)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-996 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (-3794 - (-12 (-5 *2 (-970 *3)) - (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) - (-2298 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-970 *3)) - (-12 (-2298 (-4 *3 (-557))) (-2298 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-970 *3)) - (-12 (-2298 (-4 *3 (-1012 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))))) - ((*1 *1 *2) - (-3794 - (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) - (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))) - (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 (-419 (-576)))) (-4 *1 (-1085 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1196)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4153 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1222) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1058 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2110 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1033 *8 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-873)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) + (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))) + (-5 *2 (-1056)) (-5 *1 (-315))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) + (-4 *4 (-660 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) + (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3343 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-571))))) +(((*1 *2 *3) + (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *3)) - (|:| |logand| (-1192 *3))))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1069))))) + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576)))))) + (-5 *1 (-517 *4 *5)) + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) + ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1757 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) + (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) + (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) + (-4 *4 (-1092 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) + (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) + (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) + (-4 *4 (-1092 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) + (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *6)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) + (-4 *2 (-968 (-971 *4) *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) + (-5 *1 (-709))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3454 (-656 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -3454 (-656 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) + (-4 *4 (-384 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) + (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) + (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 (-449))))) + (-5 *1 (-1201))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) + (-4 *8 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -4210 (-783)) (|:| -1714 *3) (|:| |radicand| *3))) + (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *4 (-624 $)) $)) - (-15 -2697 ((-1145 *4 (-624 $)) $)) - (-15 -4112 ($ (-1145 *4 (-624 $)))))))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) + (-13 (-374) + (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $)))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) + (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) + (-5 *1 (-643 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1120))))) + (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) + (-5 *1 (-269 *2)) (-4 *2 (-1238)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) + (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) + (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) + (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1085 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) + (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -4106 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -4106 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) + (-4 *2 (-132))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) + (-4 *3 (-1238))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) + ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) + ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-805)) (-4 *2 (-967 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-861))))) + (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) + (-5 *3 (-576))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1207 *3))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1069) (-861))) - (-14 *3 (-656 (-1196)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-598 *3) *3 (-1196))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1196))) - (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1058 *4)) (-4 *3 (-442 *7)) - (-5 *4 (-1196)) (-4 *7 (-626 (-906 (-576)))) (-4 *7 (-464)) - (-4 *7 (-900 (-576))) (-4 *7 (-1120)) (-5 *2 (-598 *3)) - (-5 *1 (-585 *7 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-861)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-194))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) - (-5 *2 (-656 (-961 *4))) (-5 *1 (-1233)) (-5 *3 (-961 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-701 (-419 (-970 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1051)) - (-5 *3 (-326 (-576)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) + (-5 *2 + (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) + (-253 *3 (-419 (-576))))) + (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) + (-5 *1 (-1198 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) + (-4 *3 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-1156))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1237))))) + (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) + (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) - (-5 *2 - (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) + (-5 *1 (-1239 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) + (-5 *1 (-1239 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1263 *3)) - (-5 *2 - (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) + (-4 *3 (-626 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) - (-5 *2 - (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1005 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) + (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) - (-5 *2 - (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-939)) (-4 *5 (-1069))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) - (-4 *3 (-1120)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-967 *3 *4 *5)))) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-968 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1192 *6)) (-1192 *6))) - (-4 *6 (-374)) - (-5 *2 - (-656 - (-2 (|:| |outval| *7) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1069)) - (-5 *3 (-419 (-576))) (-5 *1 (-1180 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-656 *3)) (-5 *5 (-939)) (-4 *3 (-1263 *4)) - (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1192 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1263 *4)) - (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-939)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177 (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1180 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1069))))) -(((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 (-1155))) (-5 *1 (-1171))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-960)) (-5 *3 (-576))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-576)))) + (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $))))) + (-4 *3 (-568)) (-5 *1 (-1267 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-317)) - (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-997 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1192 *3)) - (-4 *3 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) + (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) + (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) - (-4 *2 (-699 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-939)) (-5 *1 (-1050 *2)) - (-4 *2 (-13 (-1120) (-10 -8 (-15 -4026 ($ $ $)))))))) -(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *2 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-970 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-750))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1257 *3 *2)) - (-4 *2 (-1263 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-576)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-1085 *3 *4 *2)) (-4 *2 (-861)))) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) +(((*1 *1 *1) (-4 *1 (-568)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) + (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-886 (-1201) (-783)))) (-5 *1 (-343))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-321)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-990)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1056)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1093))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-767)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) - (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) + (-4 *2 (-1264 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *3) (-12 (-5 *3 (-970 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2547 *1))) - (-4 *1 (-865 *3))))) -(((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-713)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-713))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1044 (-419 *4))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-970 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-656 (-656 (-1044 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-686 *3))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1055)) (-5 *1 (-768))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-805)) (-4 *3 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *1 (-461 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *2 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) + (-5 *1 (-540 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465))))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *3) (-12 (-5 *3 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *2 (-656 (-227))) (-5 *1 (-315))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1073 *4 *5 *6 *2 *7)) (-4 *6 (-1069)) - (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1287 *2)) (-4 *5 (-317)) - (-4 *6 (-1012 *5)) (-4 *2 (-13 (-421 *6 *7) (-1058 *6))) - (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1196))) (-5 *1 (-643 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-932 *3)) (-4 *3 (-317))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-390)) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) +(((*1 *1 *2) + (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) + (-14 *3 (-783)) (-14 *4 (-783))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-759))))) + (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-409))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-875) (-875) (-875))) (-5 *4 (-576)) (-5 *2 (-875)) - (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1120)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-875)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1069)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-875)) (-5 *1 (-1192 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1044 *3)) - (-4 *3 (-13 (-860) (-374) (-1042))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) - (-4 *3 (-1263 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) + (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-132)) - (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1120)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1120)) (-5 *2 (-783)))) + (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940)))) ((*1 *2) - (-12 (-4 *4 (-1120)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) - (-4 *3 (-437 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-23)) (-14 *5 *4))) + (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-1193 *3)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-783)) - (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1069)) - (-5 *2 (-2 (|:| -3608 (-701 *4)) (|:| |vec| (-1287 *4)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1069)) - (-5 *2 (-701 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1) (-5 *1 (-1140)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-764))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) + (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-940))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1069)) (-4 *3 (-1120)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1495 (-576)))) (-4 *1 (-442 *3)))) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-906 *3)) (|:| -1495 (-906 *3)))) - (-5 *1 (-906 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-858))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1601 (-430 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) + (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *9)))) + (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *8)))) + (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) + (-4 *6 (-1264 (-419 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-353 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) - (-4 *7 (-967 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1495 (-576)))) - (-5 *1 (-968 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) + (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) + (-10 -8 (-15 -3569 ($ *6)) (-15 -1570 (*6 $)) + (-15 -1581 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) + (-5 *2 (-1197)) (-5 *1 (-1064 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) + (-4 *3 (-13 (-374) (-148)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) + (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 + (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) + (|:| |genIdeal| (-516 *4 *5 *6 *7)))) + (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) + (-5 *1 (-480))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) + (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-4 *1 (-988)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) + (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) + (-14 *7 (-940))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) + (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) + (-5 *1 (-1314 *4)) (-4 *4 (-1238)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) + (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238))))) (((*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -3104 *4) (|:| -2724 (-576))))) + (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-656 (-227))) (-5 *1 (-206))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-970 (-576))))) + (-12 (-4 *4 (-464)) (-5 *2 (-656 - (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) - (|:| |radvect| (-656 (-701 (-326 (-576)))))))) - (-5 *1 (-1051))))) -(((*1 *2 *2 *2) + (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) + (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) + (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) + (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) + (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) + (-5 *2 (-112)) (-5 *1 (-1050 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) + (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) + (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) + (-14 *6 (-1288 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) + (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) + (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) + (-5 *3 (-419 *5))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-1301 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) +(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) + (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2738 *6))) + (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) + (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-876)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-374)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) + (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) + (-4 *7 (-243 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) + (-5 *1 (-540 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) + (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) + (-4 *3 (-421 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) + (-4 *4 (-421 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) + (-14 *3 (-656 (-1197))) (-4 *4 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) + (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) + (-4 *5 (-243 (-3502 *3) (-783))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) + (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) + (-4 *2 (-861)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4465)) + (-4 *1 (-384 *3)) (-4 *3 (-1238))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) + (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) + (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1140)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1069)) - (-4 *2 (-1247 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + (-2 (|:| -2310 (-656 (-876))) (|:| -1685 (-656 (-876))) + (|:| |presup| (-656 (-876))) (|:| -1408 (-656 (-876))) + (|:| |args| (-656 (-876))))) + (-5 *1 (-1197))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) + (-5 *1 (-937 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) + (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) ((*1 *2) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-887)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-656 (-1288 *3)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) + (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) + (-5 *7 (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| *13))))) + (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) + (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) + (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) - (-5 *1 (-963 *4 *5)) (-4 *5 (-1263 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) - (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-927)) (-4 *5 (-805)) - (-4 *6 (-861)) (-5 *1 (-924 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) - (-4 *5 (-1263 *4)) (-4 *4 (-927)) (-5 *1 (-925 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1178))) (-5 *3 (-1178)) (-5 *2 (-322)) - (-5 *1 (-306))))) + (-12 (-4 *4 (-805)) + (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) + (-5 *2 (-2 (|:| -1685 (-971 *6)) (|:| -1443 (-971 *6)))) + (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -4210 (-576))))) + (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4464)) (-4 *4 (-374)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4464)) (-4 *4 (-568)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-4 *7 (-1012 *4)) (-4 *8 (-384 *7)) - (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) - (-4 *10 (-699 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) + ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1235 *3)) (-4 *3 (-1238)))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-656 *7))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1140)))) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) + (-4 *2 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1222))) - (-5 *1 (-595 *4 *2)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))))) + (-12 + (-5 *3 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *2 (-1056)) (-5 *1 (-315)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-970 *4)))) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-601 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| -4134 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *8))))) - (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-783))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1 *1) (-12 - (-5 *2 - (-2 (|:| -3954 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) - (-4 *2 (-13 (-416) (-1058 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1082)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1060))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *4 (-1085 *6 *7 *8)) (-5 *2 (-1292)) - (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1091 *6 *7 *8 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) + (-5 *3 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) + (-5 *2 (-1056)) (-5 *1 (-315))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1177 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *2) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340))))) +(((*1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3343 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1056)) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *1) + (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) + (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) + (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) - (-14 *5 (-939)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-1097 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) + (-5 *1 (-1097 *3 *4 *2)) + (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) + (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4465)) (-4 *1 (-1031 *3)) + (-4 *3 (-1238))))) +(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) + (-4 *5 (-668 (-419 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1069) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1237))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1069))))) + (-12 (-5 *3 (-419 *5)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) + (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) + (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) + (-5 *1 (-950 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) + (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) + (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) + (-5 *1 (-951 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) + (-5 *1 (-952 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) + (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) + (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) + (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) + (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) + (-5 *1 (-955 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) + (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) + (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) + (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) + (-5 *1 (-958 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) + (-4 *5 (-1121)) (-5 *1 (-959 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) + (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) + (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) + (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) + (-5 *1 (-960 *7 *8 *9))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-576)) (-5 *1 (-246))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-480))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-240 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-861)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-939)) (-4 *4 (-1069)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1196))) - (-5 *4 (-1287 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1120)) - (-4 *3 (-1237)) (-5 *1 (-304 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-1237)) - (-5 *1 (-304 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1198 (-419 (-576)))) - (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) - (-4 *4 (-861)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) - (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1120)) - (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1120)) - (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1196)) - (-4 *1 (-442 *5)) (-4 *5 (-1120)) (-4 *5 (-626 (-548))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-442 *4)) (-4 *4 (-1120)) - (-4 *4 (-626 (-548))))) - ((*1 *1 *1) - (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120)) (-4 *2 (-626 (-548))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1196))) (-4 *1 (-442 *3)) (-4 *3 (-1120)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1120)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) - (-4 *4 (-1120)) (-4 *5 (-1237)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-970 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) - (-5 *1 (-1063 *4)))) + (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) + (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-1196))) (-5 *4 (-656 (-419 (-970 *5)))) - (-5 *2 (-419 (-970 *5))) (-4 *5 (-568)) (-5 *1 (-1063 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-304 (-419 (-970 *4)))) (-5 *2 (-419 (-970 *4))) - (-4 *4 (-568)) (-5 *1 (-1063 *4)))) + (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) + (-5 *1 (-246)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| -1957 *1) (|:| -3256 (-656 *7))))) + (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-970 *4))))) (-5 *2 (-419 (-970 *4))) - (-4 *4 (-568)) (-5 *1 (-1063 *4)))) + (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) + (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) + (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) + (|:| |vals| (-656 *3)))) + (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) + (-4 *4 (-1264 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) + (-4 *4 (-1121)) (-4 *5 (-1121))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) + (-4 *5 (-861)) (-5 *2 (-971 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) + (-4 *5 (-861)) (-5 *2 (-971 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) + (-5 *2 (-971 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1177 *3))))) + (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) + (-5 *2 (-971 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3454 (-656 *6))) + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1288 *6) "failed")) + (|:| -3454 (-656 (-1288 *6))))) + (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1223) (-29 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-701 (-970 *4))) (-5 *1 (-1048 *4)) - (-4 *4 (-1069))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) + (-5 *3 (-419 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-861) (-21)))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1238))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-939))) (-5 *4 (-112)) - (-5 *1 (-1130))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) + (-5 *2 (-1056)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876))))) (((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| -3747 (-635 *4 *5)) (|:| -1676 (-419 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-939)) (-4 *4 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1263 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1069)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1069)) - (-4 *3 (-174))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-861)) - (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-4 *3 (-1085 *7 *8 *9)) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) + (-5 *1 (-679 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-374)) + (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4465)))) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))) + (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) + (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -3600 *4)))) + (-5 *1 (-708 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) + ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) + ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) + (-5 *2 (-701 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) + (-4 *4 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1089 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) + (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) + ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) + ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) + (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) + (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-4 *4 (-1238)) (-5 *1 (-1078 *3 *4)) + (-4 *3 (-1114 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) + (-5 *1 (-1113 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) + (-4 *2 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-462 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-4 *3 (-1085 *7 *8 *9)) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1165 *7 *8 *9 *3 *4)) (-4 *4 (-1129 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1085 *6 *7 *8)) + (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) + (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) + (-5 *1 (-411 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) + (-3 (|:| |overq| (-1193 (-419 (-576)))) + (|:| |overan| (-1193 (-48))) (|:| -4196 (-112)))) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) +(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898)))) + ((*1 *1 *1) (-5 *1 (-992))) + ((*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) + (-5 *1 (-905 *4 *5)) (-4 *5 (-1238))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-304 (-845 *3))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1) (-4 *1 (-1164)))) + (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) + (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) + (-5 *3 (-419 (-971 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) + ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-961 *5)) (-5 *3 (-783)) (-4 *5 (-1069)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-939))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946))))) +(((*1 *2 *3) + (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -1714 (-656 *1)) (|:| -4128 *1))) + (-5 *3 (-656 *1))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-799)) (-5 *2 (-1056)) + (-5 *3 + (-2 (|:| |fn| (-326 (-227))) + (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-799)) (-5 *2 (-1056)) + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-541))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)) (-5 *3 (-1178)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) - (-5 *1 (-276))))) + (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) + (-14 *3 (-940)) (-14 *4 (-940))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) + (-5 *1 (-480))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1264 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) + (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-656 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) + (-5 *1 (-461 *4 *3 *5 *6))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-1301 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1060))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) - (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-767))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4210 (-576)))) + (-4 *1 (-442 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4210 (-576)))) + (-4 *1 (-442 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1178) (-1201))) - (-5 *1 (-1201))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1055)) - (-5 *1 (-758))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-1083))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) + (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4210 (-576)))) + (-4 *1 (-442 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1287 (-701 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 (-701 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) - (-5 *2 (-1287 (-701 (-419 (-970 *5))))) (-5 *1 (-1106 *5)) - (-5 *4 (-701 (-419 (-970 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) - (-5 *2 (-1287 (-701 (-970 *5)))) (-5 *1 (-1106 *5)) - (-5 *4 (-701 (-970 *5))))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4210 (-783)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -4210 (-783)))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) - (-5 *2 (-1287 (-701 *4))) (-5 *1 (-1106 *4))))) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -4210 (-576)))) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) + (-4 *3 (-1086 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) + (-4 *3 (-1086 *5 *6 *7))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) + (-4 *2 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) + (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1264 (-419 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-931 *4 *3)) - (-4 *3 (-1263 (-419 *4)))))) -(((*1 *1) (-5 *1 (-1102)))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-939)) (-5 *1 (-711)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-374)) (-5 *1 (-998 *5))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1055)) (-5 *1 (-757))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-5 *1 (-644)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1081 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1196)) (-5 *1 (-687 *3)) (-4 *3 (-1120))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-158))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) + (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-818 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1022) (-1222))) - (-5 *1 (-612 *4 *2 *3)) - (-4 *3 (-13 (-442 (-171 *4)) (-1022) (-1222)))))) + (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) + (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) + (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1178)) (|:| -4148 (-1178)))) - (-5 *1 (-834))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *2)) - (|:| |logand| (-1192 *2))))) - (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-374)) (-5 *1 (-598 *2))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-970 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1085 *7 *8 *9)) - (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-5 *1 (-1089 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1085 *7 *8 *9)) - (-4 *11 (-1129 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-5 *1 (-1165 *7 *8 *9 *10 *11))))) + (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) + ((*1 *2 *1) + (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) + (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-310))))) -(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1055))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) + (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1120))))) + (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) + (-4 *3 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-576)) (-4 *4 (-1069)) - (-5 *1 (-1180 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1069)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-769))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-887)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 - (-656 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 (-171 *4))))))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1177 *4))) (-4 *4 (-374)) - (-4 *4 (-1069)) (-5 *2 (-1177 *4)) (-5 *1 (-1180 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-984 *3))) (-5 *1 (-984 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-548))))) -(((*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4112 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1265 *3 *7) (-374) (-1222) - (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1003 *8)) - (-14 *10 (-1196))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1208 (-656 *4))) (-4 *4 (-861)) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1120)) - (-4 *2 (-861))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) - (-15 -2697 ((-1145 *3 (-624 $)) $)) - (-15 -4112 ($ (-1145 *3 (-624 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *3 (-624 $)) $)) - (-15 -2697 ((-1145 *3 (-624 $)) $)) - (-15 -4112 ($ (-1145 *3 (-624 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *4 (-624 $)) $)) - (-15 -2697 ((-1145 *4 (-624 $)) $)) - (-15 -4112 ($ (-1145 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-624 *2))) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2686 ((-1145 *4 (-624 $)) $)) - (-15 -2697 ((-1145 *4 (-624 $)) $)) - (-15 -4112 ($ (-1145 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1196)) - (-4 *6 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1222) (-977))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3578 (-656 *4)))) - (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290))))) + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) + (-4 *2 (-1279 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) + (-4 *2 (-1279 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1174 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-923 *4)) (-4 *4 (-1120)) (-5 *2 (-656 (-783))) - (-5 *1 (-922 *4))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-763))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1091 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) - (-5 *3 (-227)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1233))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) - (-5 *2 (-112)) (-5 *1 (-1160 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1209 (-939) (-783)))))) + (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) + (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) + (-4 *5 (-13 (-374) (-860)))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) (((*1 *2 *3) - (-12 (-5 *3 (-945)) + (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) + (-5 *2 (-1288 *1))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) - (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-945)) (-5 *4 (-419 (-576))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) + (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *1 *1) (-5 *1 (-548)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) - (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) - (-5 *1 (-154)))) + (-2 (|:| |cont| *5) + (|:| -1601 (-656 (-2 (|:| |irr| *3) (|:| -4073 (-576))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) + (-5 *3 (-656 (-576))))) ((*1 *2 *3) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) + (-5 *3 (-656 (-576)))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) + (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) - (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-961 (-227)))))) - ((*1 *2 *3) + (-656 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) + (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) + (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) + (-5 *1 (-923 *4))))) +(((*1 *2) (-12 (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) - (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-961 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1114 (-390)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3))))) + (-1288 (-656 (-2 (|:| -3104 (-929 *3)) (|:| -3223 (-1141)))))) + (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) + (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) + (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) + (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) + (-4 *7 (-1264 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) + (-4 *2 (-1264 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1223) (-978)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) + (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| -4106 (-419 *5)) (|:| |coeff| (-419 *5)))) + (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *1 (-676 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) + (-4 *3 (-861)) (-4 *4 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *1) + (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) + (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805))))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) + (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) + (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) + (-5 *1 (-1281 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-603 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1197)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-656 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -4106 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1223) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1034 *8 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173))))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403))))) +(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) - (-12 (-5 *3 (-945)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) - (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-945)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 (-227))))) - (|:| |xValues| (-1114 (-227))) (|:| |yValues| (-1114 (-227))))) - (-5 *1 (-154))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-656 (-1192 *11))) (-5 *3 (-1192 *11)) - (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) - (-5 *7 (-1287 (-656 (-1192 *8)))) (-4 *10 (-861)) - (-4 *8 (-317)) (-4 *11 (-967 *8 *9 *10)) (-4 *9 (-805)) - (-5 *1 (-719 *9 *10 *8 *11))))) -(((*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1178))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) (((*1 *2 *2) - (-12 + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-576)))) - (-4 *4 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3114 ($ $ $))))) - (-4 *3 (-568)) (-5 *1 (-1266 *3 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1134 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1300 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1300 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-963 *5 *6)) (-4 *6 (-1263 *5))))) + (-2 (|:| |brans| (-656 (-656 (-962 *4)))) + (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) + (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) - (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| -4299 *1) (|:| -2960 *1))) (-4 *1 (-865 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1069)) - (-5 *2 (-2 (|:| -4299 *3) (|:| -2960 *3))) (-5 *1 (-866 *5 *3)) - (-4 *3 (-865 *5))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1153 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-270))))) -(((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) + (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) + (-5 *2 (-656 (-2 (|:| -1601 (-656 *3)) (|:| -3313 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-374) (-860))) + (-5 *2 (-656 (-2 (|:| -1601 (-656 *3)) (|:| -3313 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) + (-5 *1 (-1050 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) + (-5 *2 (-940))))) +(((*1 *2) + (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) + (-4 *4 (-1238)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) + (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) - (|:| |vals| (-656 *3)))) - (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) + (-656 + (-2 + (|:| -4300 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) + (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) + (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4438 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390))))))) + (-5 *1 (-815))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) + (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) + (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4004 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1237))))) + (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1450 *3) (|:| -1877 *4)))) - (-5 *1 (-708 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-4 *5 (-374)) + (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) + (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *2 (-2 (|:| -1957 (-656 *6)) (|:| -3256 (-656 *6))))))) +(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4004 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) +(((*1 *1) (-5 *1 (-188)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1085 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (-5 *1 (-943 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-304 (-845 *3))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) + (-4 *5 (-901 (-576))) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) + (-4 *2 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *1 (-579 *5 *2))))) +(((*1 *1) (-4 *1 (-988)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *1 (-1312 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-736 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) + (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) + (-5 *1 (-302 *4)) (-4 *4 (-464)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) + (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-845 (-970 *5)))) (-4 *5 (-464)) - (-5 *2 (-845 (-419 (-970 *5)))) (-5 *1 (-649 *5)) - (-5 *3 (-419 (-970 *5))))) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) + (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) + (-4 *5 (-13 (-374) (-860))))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) + (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-970 *5)))) (-5 *3 (-419 (-970 *5))) - (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114 (-227))) (-5 *1 (-945))))) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) + (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) + (-4 *5 (-13 (-374) (-860)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) (((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) + (|:| |logand| (-1193 *3))))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) (((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-783))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-4 *1 (-921 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) + (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-948))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875))))) -(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-133))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) - (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1058 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-701 (-1192 *8))) (-4 *5 (-1069)) (-4 *8 (-1069)) - (-4 *6 (-1263 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) - (-4 *7 (-1263 *6))))) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-1058 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1222) (-977)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) + (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) + (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) + (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4026 *5)))) + (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) + (-4 *6 (-668 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) + (-5 *1 (-1200)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1197)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) + (-5 *1 (-1200))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) + (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) + (-5 *1 (-474 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1059 (-419 (-576))) (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1069)) (-5 *2 (-701 *4)) - (-5 *1 (-1049 *4))))) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1120)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) - (-4 *3 (-1120)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-967 *3 *4 *5)))) + (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) + (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-968 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) - (-5 *2 (-2 (|:| -1595 (-656 *6)) (|:| -3822 (-656 *6))))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1069)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) - (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *2 (-1292)) - (-5 *1 (-1199)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1196)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2434 "void"))) (-5 *2 (-1292)) - (-5 *1 (-1199))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) + (-4 *4 (-1121)) (-4 *5 (-1121))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-783)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) + (-14 *3 (-656 (-1197))))) + ((*1 *1 *1) + (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) + ((*1 *1 *1) + (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) + (-4 *5 (-243 (-3502 *2) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *4) (|:| -4210 *5)) + (-2 (|:| -3223 *4) (|:| -4210 *5)))) + (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) + (-4 *7 (-968 *3 *5 (-878 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) + ((*1 *1 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1) + (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) + (-4 *3 (-738)))) + ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-374) (-148))) + (-5 *2 (-656 (-2 (|:| -4210 (-783)) (|:| -2394 *4) (|:| |num| *4)))) + (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1120)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))) - ((*1 *1) (-5 *1 (-406))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1) - (-12 (-4 *3 (-1120)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1120)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1162 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1069)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-939)) (-4 *3 (-1069)))) - ((*1 *1 *1) (-5 *1 (-1196))) ((*1 *1) (-5 *1 (-1196))) - ((*1 *1) (-5 *1 (-1217)))) + (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) + (-15 -1581 ((-1146 *4 (-624 $)) $)) + (-15 -3569 ($ (-1146 *4 (-624 $)))))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120)))) + (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) + (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-927)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1))))) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) + (-5 *2 (-1193 *1))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) + (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-766))))) (((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) - (-5 *2 (-656 (-1096 *3 *4 *5))) (-5 *1 (-1097 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-900 *3) (-626 (-906 *3))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-656 *7) *7 (-1192 *7))) (-5 *5 (-1 (-430 *7) *7)) - (-4 *7 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3378 *3)))) - (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) - (-4 *8 (-668 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-5 *2 - (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3378 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1178)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *1) (-4 *1 (-360)))) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-968 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4))))))) + (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1121))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) + (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) + ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) + (-4 *3 (-437 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-783)) + (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1193 *3) + (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141))))))))) + ((*1 *2) + (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-940))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1120)))) + (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1120)))) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2))))) -(((*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-557))))) -(((*1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2239 *3) (|:| -2904 *4)))) - (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *1 (-1213 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-374)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) - (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1263 *2)) - (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) - (-4 *6 (-353 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) - (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) - (-4 *1 (-346 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-656 (-1196))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1069) (-861))) - (-14 *3 (-656 (-1196)))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-927))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1003 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-34)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-991)))) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) + ((*1 *2 *1) + (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-3502 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *4) (|:| -4210 *5)) + (-2 (|:| -3223 *4) (|:| -4210 *5)))) + (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) + (-4 *7 (-968 *2 *5 (-878 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-576)))) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-858))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1055)) - (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) + (-4 *3 (-738)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) + (-4 *2 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) + (-5 *1 (-1178 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-939)) (-4 *5 (-568)) (-5 *2 (-701 *5)) - (-5 *1 (-974 *5 *3)) (-4 *3 (-668 *5))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *3 (-656 (-887))) - (-5 *4 (-656 (-939))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *3 (-656 (-887))) - (-5 *4 (-656 (-939))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-961 (-227))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) -(((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 *2))) - (-5 *2 (-906 *3)) (-5 *1 (-1096 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-900 *3) (-626 *2)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1083))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1160 *3 *2)) (-4 *3 (-13 (-1120) (-34))) - (-4 *2 (-13 (-1120) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) - (-5 *2 (-576)) (-5 *1 (-1134 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) - (-5 *2 (-656 (-656 (-656 (-783)))))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 (-419 (-970 (-576))))) - (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1051))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1120))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-960)) (-5 *3 (-576))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1197)) + (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-2 (|:| -4106 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120)))) + (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) ((*1 *2 *3) - (-12 (-4 *1 (-927)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-923 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-568)) - (-4 *4 (-1069)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) - (-4 *6 (-668 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-783))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) - (-5 *1 (-989 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-960)) (-5 *3 (-576)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-877 *4))) - (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) + (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1120))))) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-4 *6 (-243 (-3502 *3) (-783))) + (-14 *7 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *6)) + (-2 (|:| -3223 *5) (|:| -4210 *6)))) + (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) + (-4 *3 (-1070)))) + ((*1 *1 *1) + (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *4 (-861))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) - (-4 *5 (-13 (-568) (-1058 (-576)))) (-5 *2 (-1192 (-419 (-576)))) - (-5 *1 (-445 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1177 (-656 (-939)))) (-5 *1 (-897))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) - (-5 *2 (-656 (-656 (-656 (-961 *3)))))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) - (-5 *1 (-831 *3)) (-4 *3 (-861)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) - (-4 *3 (-967 *7 *5 *6)) - (-5 *2 - (-2 (|:| -1495 (-783)) (|:| -2861 *3) (|:| |radicand| (-656 *3)))) - (-5 *1 (-971 *5 *6 *7 *3 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *3)) (-15 -2686 (*3 $)) (-15 -2697 (*3 $)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5))))) + (-12 + (-5 *3 + (-656 + (-2 (|:| -3733 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *7))))) + (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) + (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) - (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) - (-4 *7 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-421 *4 *5) (-1058 *4))) - (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) - (-5 *1 (-425 *3 *4 *5 *6)))) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1115 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-315)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-970 *6)) (-5 *4 (-1196)) - (-5 *5 (-855 *7)) - (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) - (-4 *6 (-13 (-1222) (-29 *5))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) - (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-245 *6 *5)) - (-5 *1 (-244 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) - (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) - (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-976 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-976 *5)) (-5 *1 (-975 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1177 *6)) (-4 *6 (-1237)) - (-4 *3 (-1237)) (-5 *2 (-1177 *3)) (-5 *1 (-1175 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1286 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) - (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-805)) + (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) + (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4026 *3)))) + (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) + (-4 *8 (-668 (-419 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 - (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-656 *8)) - (|:| |Lfact| - (-656 (-2 (|:| -1450 (-1192 *8)) (|:| -1495 (-576))))) - (|:| |ctpol| *8))) - (-5 *1 (-754 *6 *7 *8 *9))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022) (-1222)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576)))) - ((*1 *1 *1) (-4 *1 (-1080)))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-861))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177 (-1177 *4))) (-5 *2 (-1177 *4)) (-5 *1 (-1180 *4)) - (-4 *4 (-1069))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887))))) + (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4026 (-666 *6 (-419 *6)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 *4)))) - (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1120)) - (-4 *2 (-1237))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *2 (-783)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-939)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-939)) (-4 *5 (-1069)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-939))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-749 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1120)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-759))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1022)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) + ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121))))) +(((*1 *2) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) + (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) + (-4 *3 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) - (-4 *3 (-1237))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) + (-5 *1 (-749 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) + (-4 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) + (-5 *3 (-1193 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) (((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-1120)) (-5 *2 (-656 *1)) - (-4 *1 (-393 *3 *4)))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-967 *3 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-970 *5)))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1149 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1149 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-927)) (-4 *6 (-805)) - (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-430 (-1192 *8))) - (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-1192 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) - (-5 *1 (-925 *4 *5)) (-5 *3 (-1192 *5))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-289))))) + (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) + (-4 *2 (-668 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1024 *3)) (-14 *3 (-576))))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -4288 *1) (|:| -4450 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1198 (-419 (-576)))) - (-5 *1 (-192))))) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) +(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3515 *3) (|:| -4210 (-783)))) (-5 *1 (-599 *3)) + (-4 *3 (-557))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) + (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) + (-4 *6 (-968 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *1) (-4 *1 (-360)))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1) (-4 *1 (-248))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-2758 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) + (-4 *4 (-464)) (-4 *6 (-861))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1056)) (-5 *1 (-761)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-5 *1 (-1207 *4)) (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-804)))) + (-3 (|:| I (-326 (-576))) (|:| -1959 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) - (-14 *4 (-656 (-1196))))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1069) (-861))) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) - (-4 *8 (-967 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1069)) - (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-939)))) + (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-419 (-576))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) + (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) + (-4 *8 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) + (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) + (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) + (-4 *3 (-1248 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -4210 (-576))))) + (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) + (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) + (-14 *3 (-656 (-1197)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-590)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1059 *4) (-651 *4))) + (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-1059 *5) (-651 *5))) (-5 *5 (-576)) + (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) + (-4 *7 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) + (-4 *3 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *4 (-1070)) (-4 *1 (-1250 *4 *3)) + (-4 *3 (-1279 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) + (-4 *4 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) + ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) + (-4 *4 (-1121)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1197))) + (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) + (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) + (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) + (-5 *1 (-585 *7 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) + (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-805)) - (-4 *3 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *2 *4)) (-4 *3 (-1069)) (-4 *4 (-861)) - (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1278 *3)) - (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1247 *3)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-939))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) + (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) + (-4 *4 (-1121)) (-14 *5 *2)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-317)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) + (-5 *1 (-601 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-970 *6))) (-5 *4 (-656 (-1196))) - (-4 *6 (-13 (-568) (-1058 *5))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-970 *6)))))) (-5 *1 (-1059 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1026))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1069)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1069)) (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-939)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-1085 *2 *3 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *1 *1) (|partial| -4 *1 (-1172)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-548))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1173 *3))))) + (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) + (-4 *6 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-783))) + (-4 *7 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-783))) + (-4 *3 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-194))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) + (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) - (-5 *2 - (-2 (|:| -2840 (-783)) (|:| |curves| (-783)) - (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) -(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1290))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1223) (-29 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-226 *6 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1187))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) + (-4 *4 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-1177 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) - (-4 *7 (-967 *5 *6 *4)) (-4 *5 (-927)) (-4 *6 (-805)) - (-4 *4 (-861)) (-5 *1 (-924 *5 *6 *4 *7))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1192 *9))) - (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) - (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-967 *9 *10 *11)) - (-4 *10 (-805)) (-5 *2 (-656 (-1192 *12))) - (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1192 *12))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2)))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) - (-4 *9 (-967 *8 *6 *7)) - (-5 *2 (-2 (|:| -2769 (-1192 *9)) (|:| |polval| (-1192 *8)))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1120)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287 (-711))) (-5 *1 (-315))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-449)) (-5 *1 (-1200))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 (-1196))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-939)) - (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-939)) - (-14 *6 (-656 *2)) (-14 *7 (-1287 (-701 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) - (-14 *6 (-1287 (-701 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -1770 ((-430 $) $))))) + (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) + (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) + (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) + (-4 *6 (-353 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) + (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-939)) (-14 *5 (-656 (-1196))) - (-14 *6 (-1287 (-701 *3))))) + (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-939)) (-14 *5 (-656 *2)) (-14 *6 (-1287 (-701 *3))))) - ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-939)) - (-14 *4 (-656 (-1196))) (-14 *5 (-1287 (-701 *2)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-576))) (-5 *5 (-576)) - (-4 *6 (-1120)) (-5 *2 (-1 *6)) (-5 *1 (-1037 *6))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) - (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) - (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-939))) (-5 *4 (-656 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -2100 (-419 (-576))) (|:| -2110 (-419 (-576)))))) - (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1040 *4)) - (-4 *4 (-1263 (-576)))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022) (-1222)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -3608 (-701 *5)) (|:| |vec| (-1287 (-656 (-939)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-939)) (-4 *3 (-668 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-887))))) + (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) + (-4 *1 (-346 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1976 (*2 $)) + (-15 -3579 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -3187 *5) (|:| -2440 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5))))) + (-12 (-5 *3 (-781)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -3187 *4) (|:| -2440 *4)))) - (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) - (-4 *6 (-668 (-419 *4))))) + (-12 (-5 *3 (-781)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) + (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-799)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) + (|:| -3343 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) + (|:| |extra| (-1056)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-799)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)) + (|:| |extra| (-1056)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-812)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -3187 *5) (|:| -2440 *5)))) - (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) - (-4 *3 (-668 (-419 *5))))) + (-12 (-5 *3 (-820)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -3187 *4) (|:| -2440 *4)))) - (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) - (-4 *3 (-668 (-419 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1196)) (-4 *5 (-442 *4)) - (-4 *4 (-1120)) (-5 *1 (-585 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1069)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3954 *4))) - (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-939)) - (-5 *2 (-1287 (-656 (-2 (|:| -1688 *4) (|:| -2409 (-1140)))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) - (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3114 (-794 *3)) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3114 *1) (|:| |coef1| *1))) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-970 (-576)))) (-5 *1 (-449)))) + (-12 (-5 *3 (-820)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-227))) (-5 *2 (-1124)) - (-5 *1 (-771)))) + (-12 (-4 *1 (-851)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-576))) (-5 *2 (-1124)) - (-5 *1 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2 *3) (-12 (-5 *3 (-991)) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) - (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) - (-14 *6 (-939))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1120) (-1058 *5))) - (-4 *5 (-900 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-949 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) - (-5 *2 (-112)) (-5 *1 (-679 *5)))) + (-12 (-4 *1 (-851)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-853)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-853)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-912)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -1973 (-390)) (|:| |explanations| (-1179)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-915)) + (-5 *2 + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-914)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4464)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))) (-5 *2 (-112)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-939)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) - (-4 *6 (-13 (-374) (-148) (-1058 *4))) (-5 *4 (-576)) + (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3378 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1035 *6 *3))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) - (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-961 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1196))) - (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-2 (|:| -1973 (-390)) (|:| -2627 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-914))))) +(((*1 *2) + (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) + ((*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) + (-4 *3 (-1238)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070))))) +(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) (((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4465 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) - (-4 *4 (-699 *2 *5 *6))))) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1193 (-971 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1114 (-227))) (-5 *6 (-576)) (-5 *2 (-1232 (-944))) - (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1114 (-227))) (-5 *6 (-576)) (-5 *7 (-1178)) - (-5 *2 (-1232 (-944))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1114 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) - (-5 *2 (-1232 (-944))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1114 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1178)) - (-5 *2 (-1232 (-944))) (-5 *1 (-328))))) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *6)))) - (-5 *4 (-1046 (-855 (-576)))) (-5 *5 (-1196)) (-5 *7 (-419 (-576))) - (-4 *6 (-1069)) (-5 *2 (-875)) (-5 *1 (-607 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) - ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-875))) (-5 *2 (-1292)) (-5 *1 (-1158))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-638)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-656 *5)) + (-5 *1 (-331 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-1120)) - (-4 *2 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))) - (-5 *1 (-1096 *3 *4 *2)) - (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))))) + (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-399)))) ((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-1197))))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-769))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1263 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1069)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-961 (-227))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1069))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-638)))) + (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-656 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *5)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *3 (-1120)) - (-4 *2 (-13 (-442 *4) (-900 *3) (-626 (-906 *3)))) - (-5 *1 (-1096 *3 *4 *2)) - (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))))) + (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-656 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1120))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) + (-5 *1 (-1064 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4004 *3) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-446)) + (-5 *2 + (-656 + (-3 (|:| -2627 (-1197)) + (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) + (-5 *1 (-1201))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) (((*1 *2 *2) - (-12 + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) + (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) + (-4 *2 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1121)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *3 (-861)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193 *4)) (-4 *4 (-1070)) (-4 *1 (-968 *4 *5 *3)) + (-4 *5 (-805)) (-4 *3 (-861)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-1193 *2))) (-4 *5 (-805)) (-4 *4 (-861)) + (-4 *6 (-1070)) + (-4 *2 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) + (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) + (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568))))) +(((*1 *2 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(((*1 *1) + (-12 (-4 *1 (-416)) (-2662 (|has| *1 (-6 -4455))) + (-2662 (|has| *1 (-6 -4447))))) + ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) + ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-1007 (-419 (-576)) (-877 *3) (-245 *4 (-783)) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-1006 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1055)) (-5 *1 (-769))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *4)) (-4 *4 (-568))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-587 *4 *2)) - (-4 *2 (-13 (-1222) (-977) (-1159) (-29 *4)))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-976 (-1140))) - (-5 *1 (-357 *4))))) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) - (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1085 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) + (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) + (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) + (-4 *5 (-805)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1263 *4)) (-4 *4 (-1069)) - (-5 *2 (-1287 *4))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-738))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-656 *3)) (-5 *1 (-997 *4 *5 *6 *3)) - (-4 *3 (-1085 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1120))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1120)) (-4 *3 (-861)) - (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1237)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-594))))) + (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) + (|:| |f4| (-656 *5)))) + (-5 *1 (-1208 *6)) (-5 *4 (-656 *5))))) (((*1 *1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-576))))) - (-4 *2 (-568)) (-5 *1 (-430 *2)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-656 (-940))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) + (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) + (-4 *6 (-243 (-3502 *4) (-783))) + (-14 *7 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *6)) + (-2 (|:| -3223 *5) (|:| -4210 *6)))) + (-14 *4 (-656 (-1197))) (-4 *2 (-174)) + (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) + (-4 *4 (-1264 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-738)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) + (-4 *4 (-1070)) (-4 *5 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) + (-4 *2 (-861)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) + (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *2 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-994 *4 *5 *6)) + (-4 *4 (-1070)) (-4 *5 (-804)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) + (-4 *2 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-576)) - (|:| -1749 (-656 (-2 (|:| |irr| *4) (|:| -2432 (-576))))))) - (-4 *4 (-1263 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 (-576))))) - (-5 *1 (-372 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-397 *3)) (-4 *3 (-1120)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 (-783))))))) + (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1223))) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) + (-5 *1 (-595 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-419 (-971 *4)))) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1450 *3) (|:| -1495 (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) + (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1170 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) + (-4 *2 (-1170 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223))))) ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-112)))) + (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-858))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1196)))) - (-4 *5 (-805)) (-5 *1 (-942 *3 *4 *5 *2)) (-4 *2 (-967 *3 *5 *4))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1022) (-1222))) - (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1022) (-1222))) - (-5 *1 (-612 *4 *5 *2))))) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) + (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) + (-5 *1 (-1292)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) + (-5 *2 (-1289)) (-5 *1 (-1292))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) - (-5 *3 (-656 *4))))) + (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) + (-5 *1 (-315))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) + (-4 *2 (-699 *3 *5 *6))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) + (-5 *1 (-1151 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) + (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) + (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *7 (-1263 *5)) (-4 *4 (-736 *5 *7)) - (-5 *2 (-2 (|:| -3608 (-701 *6)) (|:| |vec| (-1287 *5)))) - (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1164)))) + (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) + (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) + (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6))))) +(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1179)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1187)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-638)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-321)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-683)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-693)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-618)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1298)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *1) (-5 *1 (-815)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-656 (-419 (-971 (-576))))) + (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) + (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) + (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 (-576))))) + (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1197)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1223) (-978))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3454 (-656 *4)))) + (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 - (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-14 *6 (-1196)) (-14 *7 *3)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1046 (-855 (-576)))) - (-5 *3 (-1177 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1069)) - (-5 *1 (-607 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-812)) - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1055))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1247 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-837))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) - (-4 *6 (-1069)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1049 *6)) - (-5 *3 (-656 (-701 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1069)) - (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1049 *4)) - (-5 *3 (-656 (-701 *4))))) + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -3454 (-656 (-1288 *5))))) + (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1069)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-656 (-701 *5))))) + (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -3454 (-656 (-1288 *5))))) + (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1069)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-656 (-701 *5)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1196)) - (-4 *2 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-286 *5 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805)) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-970 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-970 *4)))) - (|:| -3578 (-656 (-1287 (-419 (-970 *4)))))))))) - (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-970 *4)) (-4 *4 (-13 (-317) (-148))) - (-4 *2 (-967 *4 *6 *5)) (-5 *1 (-942 *4 *5 *6 *2)) - (-4 *5 (-13 (-861) (-626 (-1196)))) (-4 *6 (-805))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-921 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1058 (-576)))) - (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1069))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1120)) (-5 *1 (-947 *4 *2)) - (-4 *2 (-442 *4)))) + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -3454 (-656 (-1288 *5)))))) + (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) - (-5 *1 (-948))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-384 *2)) (-4 *2 (-1237)) - (-4 *2 (-861)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4464)) - (-4 *1 (-384 *3)) (-4 *3 (-1237))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-656 (-1192 *13))) (-5 *3 (-1192 *13)) - (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) - (-5 *7 (-656 (-656 (-2 (|:| -3421 (-783)) (|:| |pcoef| *13))))) - (-5 *8 (-656 (-783))) (-5 *9 (-1287 (-656 (-1192 *10)))) - (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-967 *10 *11 *12)) - (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-877 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1069) (-861))) (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *5 (-243 (-1968 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2409 *4) (|:| -1495 *5)) - (-2 (|:| -2409 *4) (|:| -1495 *5)))) - (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) - (-4 *7 (-967 *2 *5 (-877 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1069)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) - (-4 *3 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) - ((*1 *2 *1) - (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) - (-4 *2 (-1069)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-656 + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -3454 (-656 (-1288 *5)))))) + (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1080)) (-5 *2 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-875))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1177 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2925 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-4 *5 (-442 *4)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 - (-3 (|:| |overq| (-1192 (-419 (-576)))) - (|:| |overan| (-1192 (-48))) (|:| -2532 (-112)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-148) (-1058 (-576)) (-651 (-576)))) + (-656 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3454 (-656 *7))))) + (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) + (-4 *3 (-699 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1047 *5 *6 *7 *3))) (-5 *1 (-1047 *5 *6 *7 *3)) - (-4 *3 (-1085 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1091 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1166 *5 *6 *7 *3))) (-5 *1 (-1166 *5 *6 *7 *3)) - (-4 *3 (-1085 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *6 (-243 (-1968 *3) (-783))) - (-14 *7 - (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *6)) - (-2 (|:| -2409 *5) (|:| -1495 *6)))) - (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-861)) (-4 *8 (-967 *4 *6 (-877 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) - (-4 *3 (-1069)))) - ((*1 *1 *1) - (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-804)) - (-4 *4 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) + (-2 (|:| |particular| (-1288 *7)) (|:| -3454 (-656 (-1288 *7))))) + (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) + (-4 *6 (-13 (-29 *5) (-1223) (-978))) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) + (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1288 *7)) (|:| -3454 (-656 (-1288 *7))))) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) + (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1288 *7)) (|:| -3454 (-656 (-1288 *7))))) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3578 (-656 *4)))) - (-5 *1 (-818 *5 *6 *7 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-852)))) - ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) - (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1055)) - (-5 *1 (-852)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) - (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1055)) (-5 *1 (-852)))) + (-3 (-2 (|:| |particular| *7) (|:| -3454 (-656 *7))) *7 "failed")) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1197)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3454 (-656 *3))) *3 "failed")) + (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-814 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1055)) - (-5 *1 (-852)))) + (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3454 (-656 *6))) "failed") + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -3454 (-701 *6)))) + (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1055)) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-871)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-983)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1009)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1160 *2 *3)) - (-4 *3 (-13 (-1120) (-34)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-922 *4)) - (-4 *4 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-961 *4)))) - (|:| |xValues| (-1114 *4)) (|:| |yValues| (-1114 *4)))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-961 *4))))))) -(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *4)) - (-4 *4 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-112)) (-5 *1 (-624 *4)) - (-4 *4 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1120)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-112)))) + (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) + (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) + (-5 *2 (-1056)) (-5 *1 (-914)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) + (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) + (-5 *1 (-914)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3 *4)) - (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5))))) + (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) + (-5 *1 (-1044)) (-5 *4 (-390)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-900 *5)) (-4 *5 (-1120)) - (-5 *2 (-112)) (-5 *1 (-901 *5 *6 *4)) (-4 *4 (-626 (-906 *5)))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069)))) + (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) + (-5 *4 (-390)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) + (-5 *3 (-326 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) + (-5 *3 (-304 (-326 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) + (-5 *3 (-304 (-326 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) + (-5 *3 (-326 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) + (-5 *3 (-656 (-304 (-326 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) + (-5 *1 (-1206 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) + (-5 *3 (-656 (-304 (-419 (-971 *5))))))) ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4465 "*"))) (-4 *2 (-1069))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) - (-5 *2 (-656 (-2 (|:| -1495 (-783)) (|:| -3187 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1104 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1104 *2))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) + (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1114 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4463)) (-4 *1 (-240 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-240 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1120)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1161 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) -(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-568)) + (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) + (-5 *3 (-419 (-971 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-568)) + (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) + (-5 *3 (-304 (-419 (-971 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) + (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) + (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4))))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) + (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) + (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-939)) - (-4 *4 (-1069))))) -(((*1 *1 *1) (-4 *1 (-248))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3794 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) + (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-390)) (-5 *1 (-1083))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1155))) (-5 *1 (-1086))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1069) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-1069)) - (-5 *2 (-701 *3))))) + (-12 + (-5 *3 + (-2 (|:| -3752 (-701 (-419 (-971 *4)))) + (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -3733 (-783)) + (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) + (-5 *2 + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *4))))))) + (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1069)) (-5 *1 (-908 *2 *3)) (-4 *2 (-1263 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1069)) (-5 *1 (-1180 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-932 *3)) (-4 *3 (-317))))) + (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-590)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-254))))) -(((*1 *2) - (-12 (-14 *4 (-783)) (-4 *5 (-1237)) (-5 *2 (-135)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4438 *4)))) + (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) + (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) + (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) + (-4 *3 (-1070))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *1) + (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-442 *3)))) ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) + (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) + ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1069)) (-5 *2 (-939)))) - ((*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-2298 (|has| *1 (-6 -4454))) - (-2298 (|has| *1 (-6 -4446))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1120)) (-4 *2 (-861)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-863))) - ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-861))))) -(((*1 *1 *1) (-5 *1 (-1083)))) -(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) + (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) + (-4 *2 (-1264 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1264 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-877 *3)) (-14 *3 (-656 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1009)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1237)) (-5 *2 (-1196)) (-5 *1 (-1077 *3 *4)) - (-4 *3 (-1113 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1112 *3)) (-4 *3 (-1237)))) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) + ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-5 *2 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) + (-5 *1 (-612 *4 *2 *3)) + (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -2627 (-1179)))) + (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) + (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-769))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) + (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) + (-4 *6 (-1264 *5))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1290))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-656 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) + (|:| |logand| (-1193 *2))))) + (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-374)) (-5 *1 (-598 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1264 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1714 *3) (|:| |gap| (-783)) (|:| -3015 (-794 *3)) + (|:| -3599 (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) + (-5 *2 + (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3015 *1) + (|:| -3599 *1))) + (-4 *1 (-1086 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 + (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3015 *1) + (|:| -3599 *1))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) + (-5 *2 + (-656 + (-2 (|:| -3454 (-701 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-701 *6))))) + (-5 *1 (-510 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3454 (-701 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-701 *6)))) + (-4 *7 (-1264 *6))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) + (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) + (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202))))) (((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861))))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) + ((*1 *1 *1) (-4 *1 (-1023))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1033)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) + ((*1 *1 *1) (-4 *1 (-1033)))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360)))) + ((*1 *1) (-4 *1 (-379))) + ((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360)))) + ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-5 *1 (-783))) + ((*1 *2 *1) (-12 (-5 *2 (-924 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) + (-4 *4 (-1121)))) + ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) + (-5 *1 (-315))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-656 *11)) + (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) + (-5 *6 (-783)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) + (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) + (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-656 *11)) + (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) + (-5 *6 (-783)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) + (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) + (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) + (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) + (-5 *1 (-516 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1264 (-48))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) + (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) + (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) + (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1264 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) - (-4 *8 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1069)) (-4 *1 (-1270 *4 *3)) - (-4 *3 (-1247 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1069)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2547 *1))) - (-4 *1 (-865 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1058 *4)) (-4 *3 (-317)) - (-4 *4 (-1012 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-421 *4 *5)) - (-14 *7 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1012 *3)) - (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1130))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-763))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1160 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) - (-5 *2 (-112)) (-5 *1 (-1161 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1069) (-900 *3) (-626 (-906 *3)))) - (-5 *2 (-656 (-1196))) (-5 *1 (-1096 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-900 *3) (-626 (-906 *3))))))) -(((*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1264 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1058 *4) (-651 *4))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1058 *5) (-651 *5))) (-5 *5 (-576)) - (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) - (-4 *7 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *4 (-1069)) (-4 *1 (-1249 *4 *3)) - (-4 *3 (-1278 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1247 *3))))) -(((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-927)) - (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-927)) - (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-927)) (-5 *1 (-925 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) - (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) + (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) - (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *3) (-12 (-5 *3 (-939)) (-5 *2 (-1178)) (-5 *1 (-798))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2110 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) + (-5 *3 (-171 (-576))))) ((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) - (-5 *1 (-925 *4 *5)) (-5 *3 (-1192 *5))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1177 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) - (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-310)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) - (-5 *5 (-1114 (-855 (-227)))) (-5 *2 (-1177 (-227))) (-5 *1 (-310))))) -(((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) + (-4 *4 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) + (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) + (-4 *3 (-968 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) + (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1193 *4))) (-5 *1 (-470 *4)) + (-5 *3 (-1193 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) + (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) + (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) + (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) + (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) + (-4 *3 (-968 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-783))) - (-4 *7 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-783))) - (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1058 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1278 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1114 (-227))) (-5 *2 (-945)) - (-5 *1 (-943 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) + (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) + (-4 *8 (-968 *7 *6 *5)) (-5 *2 (-430 (-1193 *8))) + (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1193 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-945)) (-5 *1 (-943 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-945)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1114 (-227))) - (-5 *1 (-945))))) -(((*1 *2) - (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) - (-4 *4 (-1069)) (-14 *5 (-1196)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1279 *4 *5 *6)) - (-4 *4 (-1069)) (-14 *5 (-1196)) (-14 *6 *4)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-623 *2 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-4 *4 (-861)) (-5 *1 (-1207 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1085 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-624 *3)) - (-4 *3 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4153 *3) (|:| |coeff| *3))) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1120))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1120)))) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-5 *2 (-656 (-665 (-419 *6)))) + (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) + (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) + (-5 *1 (-684 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-1177 *3)) (-5 *1 (-1180 *3)) - (-4 *3 (-1069)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1304 *4 *3)) - (-4 *3 (-1069))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) + (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) + (-4 *3 (-1264 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) + (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) + (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *2)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1122 (-1122 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-875))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-656 (-875)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-875) (-656 (-875)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) - (-4 *3 + (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) + (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *5 (-13 (-861) - (-10 -8 (-15 -4368 ((-1178) $ (-1196))) (-15 -1612 (*2 $)) - (-15 -4229 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-406)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-722)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1217)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1217))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1177 (-656 (-576)))) (-5 *1 (-897)) - (-5 *3 (-656 (-576)))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1120)) (-5 *1 (-985 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) - (-4 *4 (-805)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1139)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *3 (-916 *5)) (-5 *2 (-1287 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-939)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *6 (-112)) - (-4 *7 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-1222) (-977) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1287 *5)) (-5 *3 (-783)) (-5 *4 (-1140)) (-4 *5 (-360)) - (-5 *1 (-540 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1114 (-227))) - (-5 *2 (-1289)) (-5 *1 (-264))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) - (-4 *8 (-967 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) + (-4 *3 (-968 (-971 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) + (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) + (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) + (-4 *3 (-968 (-419 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) + (-4 *3 (-968 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) + (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1062 *3)) + (-4 *3 (-1264 (-419 (-971 (-576))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1264 (-419 (-576)))) + (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) + (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1264 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1264 (-419 (-971 (-576))))) + (-4 *5 (-13 (-374) (-148) (-736 (-419 (-971 (-576))) *4))) + (-5 *2 (-430 *3)) (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) + (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) - (|:| -3578 (-656 (-1287 (-419 *8)))))) - (-5 *1 (-681 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-442 *4) (-1022)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) + (-253 *3 (-419 (-576))))) + (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-2 (|:| -1688 *4) (|:| -2176 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (-656 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) + (-5 *1 (-461 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -3961 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1069)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) - (-4 *8 (-967 *7 *5 *6)) - (-5 *2 (-2 (|:| -1495 (-783)) (|:| -2861 *3) (|:| |radicand| *3))) - (-5 *1 (-971 *5 *6 *7 *8 *3)) (-5 *4 (-783)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *8)) (-15 -2686 (*8 $)) (-15 -2697 (*8 $)))))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4153 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -4153 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) + (-5 *1 (-585 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *1) - (-12 (-4 *1 (-1058 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) - (-5 *1 (-1238 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) - (-5 *1 (-1238 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1069)) (-5 *1 (-726 *4 *2)) - (-4 *2 (-660 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1069))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290))))) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -4210 *2)) + (-2 (|:| -3223 *5) (|:| -4210 *2)))) + (-4 *2 (-243 (-3502 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1069)) (-5 *2 (-656 *5)) - (-5 *1 (-331 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-399)))) - ((*1 *2 *1) - (-12 (-4 *1 (-442 *3)) (-4 *3 (-1120)) (-5 *2 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-656 *5)) - (-5 *1 (-968 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-4 *5 (-861)) (-5 *2 (-656 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1196))) - (-5 *1 (-1063 *4))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1069)) - (-5 *1 (-866 *5 *2)) (-4 *2 (-865 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1192 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) - (-4 *3 (-374))))) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *1 (-815))))) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) + (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-769))))) +(((*1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) - (-4 *5 (-464)) + (-12 (-4 *4 (-464)) (-5 *2 - (-2 (|:| |gblist| (-656 (-253 *4 *5))) - (|:| |gvlist| (-656 (-576))))) - (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1081 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939))))) -(((*1 *1 *1) (-5 *1 (-548)))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1120)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-624 *2)) - (-4 *2 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1120)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 *1)) (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *3 (-861)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1069)) (-4 *1 (-967 *4 *5 *3)) - (-4 *5 (-805)) (-4 *3 (-861)))) + (-656 + (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) + (|:| |eigmult| (-783)) + (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) + (-5 *1 (-517 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) + (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-1193 (-419 (-1193 *3)))) (-5 *1 (-572 *6 *3 *7)) + (-5 *5 (-1193 *3)) (-4 *7 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-805)) (-4 *4 (-861)) - (-4 *6 (-1069)) - (-4 *2 + (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1070)) + (-5 *2 (-1261 *5 (-971 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-971 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-1193 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1193 *1)) + (-4 *1 (-968 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1193 *3))) + (-5 *1 (-969 *5 *4 *6 *7 *3)) + (-4 *3 (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))) - (-5 *1 (-968 *5 *4 *6 *7 *2)) (-4 *7 (-967 *6 *5 *4)))) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1193 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) + (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) + (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1192 (-419 (-970 *5))))) (-5 *4 (-1196)) - (-5 *2 (-419 (-970 *5))) (-5 *1 (-1063 *5)) (-4 *5 (-568))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1085 *3 *4 *2))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1069)) - (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390)))) - (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4175 (-390)))) - (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-568)) + (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) + (-5 *3 (-419 (-971 *5)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1058 (-576)))) - (-4 *7 (-1263 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-353 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-997 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4112 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1265 *3 *7) (-374) (-1222) - (-10 -8 (-15 -4106 ($ $)) (-15 -2944 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1003 *8)) - (-14 *10 (-1196))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) - (-5 *2 - (-656 - (-2 (|:| |outval| *4) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *4)))))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-804)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-939))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-939)) - (-4 *2 (-374)) (-14 *5 (-1013 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) - (-4 *6 (-243 (-1968 *4) (-783))) - (-14 *7 - (-1 (-112) (-2 (|:| -2409 *5) (|:| -1495 *6)) - (-2 (|:| -2409 *5) (|:| -1495 *6)))) - (-14 *4 (-656 (-1196))) (-4 *2 (-174)) - (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-967 *2 *6 (-877 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-861)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1263 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1069)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1069)) (-4 *5 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1069)) - (-4 *2 (-861)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-967 *4 *5 *6)) - (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *6 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1069)) - (-4 *5 (-805)) (-4 *2 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-993 *4 *5 *6)) - (-4 *4 (-1069)) (-4 *5 (-804)) (-4 *6 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-993 *4 *3 *2)) (-4 *4 (-1069)) (-4 *3 (-804)) - (-4 *2 (-861))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-932 *2)))) + (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) + (-4 *6 (-1086 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3416 *1) (|:| |upper| *1))) + (-4 *1 (-997 *4 *5 *3 *6))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) + (-5 *1 (-904 *4 *5)) (-4 *5 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-933 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-430 (-970 *6))) (-5 *5 (-1196)) (-5 *3 (-970 *6)) - (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-933 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-132)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2155 *4)))))) - ((*1 *2 *1) - (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-861)) - (-5 *2 (-656 (-886 *4 *3))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -2861 *3) (|:| -1617 *4)))) - (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-5 *2 (-1177 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1) (-5 *1 (-835)))) + (-12 (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) + (-5 *1 (-905 *5 *3)) (-4 *3 (-1238)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) + (-5 *1 (-726 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1128 *3 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *4)) (-4 *4 (-568))))) +(((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1080)) (-4 *3 (-1222)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1120)) (-5 *2 (-112)) - (-5 *1 (-1238 *3))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *5 (-668 (-419 *2)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) + (-4 *3 (-442 *4)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) + ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) + (-4 *3 (-809 *4)))) + ((*1 *2) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) + (-4 *3 (-1013 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) + (-4 *3 (-1018 *4)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033)))) + ((*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) + (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *6)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) + (-4 *2 (-968 (-971 *4) *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-442 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-442 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-164)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) + (-4 *4 (-13 (-442 *3) (-1023))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) + ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-441 *3 *4)) + (-4 *3 (-442 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) + (-4 *4 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) (((*1 *1 *1) - (-12 (-4 *2 (-360)) (-4 *2 (-1069)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-1263 *2))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-906 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1120)) (-4 *3 (-167 *5)))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815))))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1114 (-855 (-390))))) - (-5 *2 (-656 (-1114 (-855 (-227))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-875)) (-5 *3 (-576)) (-5 *1 (-406)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1263 *3)))) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-1287 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) - (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 *3)) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) - (-4 *5 (-626 (-1196))) (-4 *4 (-805)) (-4 *5 (-861)))) - ((*1 *1 *2) - (-3794 - (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) - (-12 (-2298 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))) - (-12 (-5 *2 (-970 (-576))) (-4 *1 (-1085 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-12 (-5 *2 (-970 (-419 (-576)))) (-4 *1 (-1085 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1069)) - (-4 *4 (-805)) (-4 *5 (-861)))) + (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1178)) - (-5 *1 (-1089 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1129 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1178)) - (-5 *1 (-1165 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1201)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-576)) (-5 *1 (-1217)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-875)) (-5 *3 (-576)) (-5 *1 (-1217)))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-877 *5))) - (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *5 (-656 (-1196))) - (-5 *2 (-792 *4 (-877 *6))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-970 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-970 (-1044 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-877 *6))) - (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *6 (-656 (-1196))) - (-5 *2 (-970 (-1044 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1042))) - (-5 *2 (-1192 (-1044 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) + (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) + (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) ((*1 *2 *3) - (-12 - (-5 *3 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-792 *4 (-877 *6)))) - (-4 *4 (-13 (-860) (-317) (-148) (-1042))) (-14 *6 (-656 (-1196))) - (-5 *2 (-656 (-792 *4 (-877 *6)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-687 *2)) (-4 *2 (-1069)) (-4 *2 (-1120))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-301)) (-5 *1 (-169))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) + (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) + (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3498 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) + (-5 *2 + (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) + (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464))))))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) (((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1120)) (-4 *7 (-916 *6)) - (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4463))))))) + (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1287 (-656 *3))) (-4 *4 (-317)) - (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1177 *3))))) + (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) + (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-587 *4 *2)) + (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-962 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-932 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) + (|partial| -12 (-4 *5 (-1059 (-48))) + (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1264 *5))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1069)) (-5 *1 (-702 *3))))) -(((*1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1178)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196))))) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1085 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3015 (-656 *7)))) - (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1055)) - (-5 *1 (-760))))) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3163 ((-430 $) $))))) - (-4 *4 (-1263 *3)) - (-5 *2 - (-2 (|:| -3578 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1263 (-576))) - (-5 *2 - (-2 (|:| -3578 (-701 (-576))) (|:| |basisDen| (-576)) - (|:| |basisInv| (-701 (-576))))) - (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) - (-5 *2 - (-2 (|:| -3578 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) - (-5 *2 - (-2 (|:| -3578 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -2239 (-1196)) (|:| -2904 *4)))) - (-5 *1 (-903 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *7 (-1120)) (-5 *2 (-656 *1)) (-4 *1 (-1123 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1159)))) -(((*1 *1) (-5 *1 (-1083)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-970 *4)))) (-4 *4 (-464)) - (-5 *2 (-656 (-3 (-419 (-970 *4)) (-1185 (-1196) (-970 *4))))) - (-5 *1 (-302 *4))))) + (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-1181 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-1197)) (-14 *5 *3)))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) + (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) + (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) + (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) + (-5 *1 (-1281 *5 *2))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) + (-5 *1 (-357 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) + (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) + (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) + (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-769))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1263 *4)) - (-5 *2 (-1287 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-906 *4)) (-4 *4 (-1120)) (-5 *1 (-903 *4 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1055)) (-5 *1 (-757))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) - ((*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-942 *4 *5 *6 *3)) - (-4 *3 (-967 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-939)) - (-5 *1 (-931 *4 *5)) (-4 *5 (-1263 (-419 *4)))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-4 *1 (-911)) - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *2 (-1055))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-442 *4) (-1022) (-1222))) - (-4 *3 (-13 (-442 (-171 *4)) (-1022) (-1222)))))) + (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) + (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -4106 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) + (-4 *2 (-174)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-831 *4)) (-4 *1 (-1305 *4 *2)) (-4 *4 (-861)) + (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) (((*1 *2 *2) - (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *1 (-931 *3 *2)) - (-4 *2 (-1263 (-419 *3)))))) + (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1085 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-939))) (-5 *2 (-1198 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289))))) + (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) + (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-317))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) + (-5 *2 (-1288 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) + (-4 *3 (-568)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) + (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1121))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1121))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) + (-5 *1 (-266 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1263 (-419 *2))) - (-4 *2 (-1263 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-353 *5 *2 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-887)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-5 *2 + (-656 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 (-171 *4))))))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-783)) + (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *5 (-624 $)) $)) + (-15 -1581 ((-1146 *5 (-624 $)) $)) + (-15 -3569 ($ (-1146 *5 (-624 $)))))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) + (-4 *2 (-1264 *4))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) +(((*1 *2 *3) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1120))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-783))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-651 (-576)))) - (-5 *2 (-1287 (-576))) (-5 *1 (-1315 *4))))) -(((*1 *1) (-5 *1 (-1105)))) + (-12 (-5 *3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576)))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *1 *1 *1) (-4 *1 (-805)))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) + ((*1 *2) + (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940)))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) (((*1 *2 *1) - (-12 (-5 *2 (-1272 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1196)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + (-12 + (-5 *2 + (-656 + (-2 + (|:| -4300 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3343 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4438 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3343 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571)))) ((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) - (-14 *4 - (-1 (-112) (-2 (|:| -2409 *3) (|:| -1495 *2)) - (-2 (|:| -2409 *3) (|:| -1495 *2))))))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) + (-5 *2 (-656 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) + (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) + (-5 *5 (-1178 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) + (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) + (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) + (-4 *4 (-374)) (-4 *4 (-1070)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) + (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) (((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1247 *3)) - (-5 *2 (-419 (-576)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-586 *5 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1085 *4 *5 *6)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-997 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-243 *3 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1138)) (-5 *1 (-1135))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-783)))) ((*1 *2 *1) - (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1288))))) + (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-384 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-997 *5 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-970 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1196)) (-4 *2 (-442 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-939)) (-4 *1 (-1032)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-939)) (-5 *4 (-875)) - (-4 *1 (-1032)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-939)) (-4 *4 (-13 (-860) (-374))) - (-4 *1 (-1088 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-939)) (-5 *2 (-480)) (-5 *1 (-1288))))) -(((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-5 *1 (-1223 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-939)) (-5 *1 (-1290))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3114 (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1069)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1069)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3114 *1) (|:| |coef2| *1))) - (-4 *1 (-1085 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1237)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) + (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1058 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) + (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1058 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-922 (-576))) (-5 *1 (-935)))) - ((*1 *2) (-12 (-5 *2 (-922 (-576))) (-5 *1 (-935))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1069)) (-4 *2 (-374))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1055)) (-5 *1 (-770))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *1 *1) (-5 *1 (-1288)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1130)) (-5 *3 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1069)) - (-4 *7 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) - (-4 *6 (-1263 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) - (-4 *4 (-1263 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) - (-4 *6 (-1263 *4))))) + (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1120)) - (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1120)) - (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1120)) - (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1120)) - (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) - (-4 *5 (-1120)) (-4 *6 (-1237)) (-5 *1 (-653 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1120)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-145)) (-5 *2 (-783))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-576)))) - ((*1 *1 *1) (-4 *1 (-1022))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1032)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1032)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-939)))) - ((*1 *1 *1) (-4 *1 (-1032)))) -(((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-340))))) + (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1121)) + (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) + (-5 *1 (-1097 *3 *4 *2)) + (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) +(((*1 *1 *2) + (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-783))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + ((*1 *1 *1) (-4 *1 (-860))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + ((*1 *1 *1) (-4 *1 (-1081))) ((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-656 (-227))) (-5 *1 (-206))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-1096 *4 *5 *2))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1069) (-900 *4) (-626 (-906 *4)))) - (-4 *2 (-13 (-442 *5) (-900 *4) (-626 (-906 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 (-1096 *5 *6 *2))) (-5 *4 (-939)) (-4 *5 (-1120)) - (-4 *6 (-13 (-1069) (-900 *5) (-626 (-906 *5)))) - (-4 *2 (-13 (-442 *6) (-900 *5) (-626 (-906 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 *4)) (-5 *1 (-1161 *3 *4)) - (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1051))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1263 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) - (-4 *3 (-421 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1263 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) - (-4 *4 (-421 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1263 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-967 (-48) *6 *5)))) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) + (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) - (-4 *7 (-967 (-48) *6 *5)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1263 (-171 *4))))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1289)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) + (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) + (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1289)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) + (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) - (-5 *3 (-171 (-576))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) - (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) - (-4 *3 (-967 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1192 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1192 *4)))) + (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7)))) + (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-1197)) (-5 *5 (-656 (-270))) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1059 (-576)))) + (-5 *2 (-1289)) (-5 *1 (-263 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) - (-4 *3 (-967 *7 *6 *5)))) + (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1121))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) - (-4 *8 (-967 *7 *6 *5)) (-5 *2 (-430 (-1192 *8))) - (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) + (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-5 *2 (-656 (-665 (-419 *6)))) - (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1058 (-576)) (-1058 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) + (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1121))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) + (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) - (-5 *1 (-684 *4)))) + (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *2 (-1289)) (-5 *1 (-267)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) - (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) - (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 - (-13 (-861) - (-10 -8 (-15 -1554 ((-1196) $)) - (-15 -1652 ((-3 $ "failed") (-1196)))))) - (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-967 (-970 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-861) (-10 -8 (-15 -1554 ((-1196) $))))) (-4 *6 (-568)) - (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) - (-4 *3 (-967 (-419 (-970 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) - (-4 *3 (-967 (-419 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) - (-4 *3 (-967 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1027 *3)) - (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1061 *3)) - (-4 *3 (-1263 (-419 (-970 (-576))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 (-576)))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 (-970 (-576))))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-970 (-576))) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) - (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) + (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-656 (-270))) + (-5 *2 (-1289)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1290)) + (-5 *1 (-267))))) +(((*1 *2 *1) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) + (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-712 *3)) + (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1121)) + (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) + (-5 *1 (-1097 *3 *4 *2)) + (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1238)) (-5 *2 (-1293))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) + (-4 *7 (-860)) + (-4 *8 + (-13 (-1266 *3 *7) (-374) (-1223) + (-10 -8 (-15 -2773 ($ $)) (-15 -3441 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) + (-14 *10 (-1197))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) + (-5 *1 (-624 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) + (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-656 (-2 (|:| -1828 (-1193 *9)) (|:| -4210 (-576))))))) + (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) + (-4 *2 (-1121)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-970 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) - (-5 *1 (-936 *4))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) + (-5 *1 (-1239 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *2 (-1055)) (-5 *1 (-315)))) + (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) + (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) + (-14 *4 (-576))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2420 (-390)) (|:| -4148 (-1178)) - (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1055)))) - (-5 *2 (-1055)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-939)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-887)) - (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) - (-4 *3 (-167 *6)) (-4 (-970 *6) (-900 *5)) - (-4 *6 (-13 (-900 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-903 *4 *1)) (-5 *3 (-906 *4)) (-4 *1 (-900 *4)) - (-4 *4 (-1120)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *6)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) - (-4 *6 (-13 (-1120) (-1058 *3))) (-4 *3 (-900 *5)) - (-5 *1 (-949 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1120)) - (-4 *3 (-13 (-442 *6) (-626 *4) (-900 *5) (-1058 (-624 $)))) - (-5 *4 (-906 *5)) (-4 *6 (-13 (-568) (-900 *5))) - (-5 *1 (-950 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 (-576) *3)) (-5 *4 (-906 (-576))) (-4 *3 (-557)) - (-5 *1 (-951 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1120)) - (-4 *6 (-13 (-1120) (-1058 (-624 $)) (-626 *4) (-900 *5))) - (-5 *4 (-906 *5)) (-5 *1 (-952 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *6 *3)) (-5 *4 (-906 *5)) (-4 *5 (-1120)) - (-4 *6 (-900 *5)) (-4 *3 (-678 *6)) (-5 *1 (-953 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-903 *6 *3) *8 (-906 *6) (-903 *6 *3))) - (-4 *8 (-861)) (-5 *2 (-903 *6 *3)) (-5 *4 (-906 *6)) - (-4 *6 (-1120)) (-4 *3 (-13 (-967 *9 *7 *8) (-626 *4))) - (-4 *7 (-805)) (-4 *9 (-13 (-1069) (-900 *6))) - (-5 *1 (-954 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1120)) - (-4 *3 (-13 (-967 *8 *6 *7) (-626 *4))) (-5 *4 (-906 *5)) - (-4 *7 (-900 *5)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-13 (-1069) (-900 *5))) (-5 *1 (-954 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-1012 *6)) - (-4 *6 (-13 (-568) (-900 *5) (-626 *4))) (-5 *4 (-906 *5)) - (-5 *1 (-957 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-906 *5)) - (-4 *5 (-1120)) (-5 *1 (-958 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-656 (-906 *7))) (-5 *5 (-1 *9 (-656 *9))) - (-5 *6 (-1 (-903 *7 *9) *9 (-906 *7) (-903 *7 *9))) (-4 *7 (-1120)) - (-4 *9 (-13 (-1069) (-626 (-906 *7)) (-1058 *8))) - (-5 *2 (-903 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1069)) - (-5 *1 (-959 *7 *8 *9))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-939)) (-4 *5 (-1069))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) (-4 *1 (-883 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *4 (-861))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148) (-1058 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1222) (-29 *5)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1120)) (-5 *2 (-624 *5)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1177 *4) (-1177 *4))) (-5 *2 (-1177 *4)) - (-5 *1 (-1313 *4)) (-4 *4 (-1237)))) + (-4 *3 (-13 (-1223) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) + (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) + (-5 *3 (-419 (-971 *5)))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) + (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) + (-5 *1 (-1281 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 (-1177 *5)) (-656 (-1177 *5)))) (-5 *4 (-576)) - (-5 *2 (-656 (-1177 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1237))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1120)) (-4 *1 (-240 *3)))) - ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1055)) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) + (-5 *3 (-576))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) + (-4 *2 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) (-5 *1 (-1084))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1175 *4)) + (-4 *4 (-1238)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) + (-4 *2 (-1264 *3))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2925 (-656 (-1114 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1055)) + (-656 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-576))))) + (-4 *2 (-568)) (-5 *1 (-430 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2925 (-1114 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *1) (-5 *1 (-142)))) + (-2 (|:| |contp| (-576)) + (|:| -1601 (-656 (-2 (|:| |irr| *4) (|:| -4073 (-576))))))) + (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) - (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-1215))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) + (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) + (-5 *1 (-1150 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-4 *7 (-967 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) - (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-112))))) (((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) + (-15 -1581 ((-1146 *4 (-624 $)) $)) + (-15 -3569 ($ (-1146 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-624 *2))) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) + (-15 -1581 ((-1146 *4 (-624 $)) $)) + (-15 -3569 ($ (-1146 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *1 (-676 *3 *4)))) + (-656 + (-3 (|:| -2627 (-1197)) + (|:| -2267 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) + (-5 *1 (-1201))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-576))))) + (-5 *1 (-372 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1307 *3 *4)) - (-4 *3 (-861)) (-4 *4 (-174))))) + (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) + (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-783))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -4210 (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568)))) + ((*1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1223)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) - (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1278 *5)) (-5 *2 (-656 *6)) - (-5 *1 (-1280 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-967 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *1 (-942 *4 *5 *6 *7))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1069)) - (-5 *2 (-970 *5)) (-5 *1 (-962 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -2239 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) - (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) - (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2904 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390))))))) - (-5 *1 (-815))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1120)) - (-4 *4 (-568)) (-5 *2 (-419 (-1192 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1058 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-572 *6 *3 *7)) - (-5 *5 (-1192 *3)) (-4 *7 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1069)) - (-5 *2 (-1260 *5 (-970 *6))) (-5 *1 (-965 *5 *6)) (-5 *3 (-970 *6)))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) + (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) + (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1197)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1223) (-978))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3454 (-656 *4)))) + (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) + (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-1192 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1069)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1192 *1)) - (-4 *1 (-967 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1069)) - (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-419 (-1192 *3))) - (-5 *1 (-968 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1192 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4112 ($ *7)) (-15 -2686 (*7 $)) (-15 -2697 (*7 $))))) - (-4 *7 (-967 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) - (-4 *6 (-1069)) (-5 *1 (-968 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) - (-5 *2 (-419 (-1192 (-419 (-970 *5))))) (-5 *1 (-1063 *5)) - (-5 *3 (-419 (-970 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-944))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1069)) (-5 *1 (-1309 *3)))) + (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) + (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) + (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) + (-5 *2 (-783))))) +(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3600 (-576))))) + (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) + (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) + (-5 *2 (-1193 (-1193 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) + (-4 *3 (-1264 *6)) (-14 *7 (-940)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *1 (-997 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) + (|partial| -2758 + (-12 (-5 *2 (-971 *3)) + (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) + (-2662 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861))) + (-12 (-5 *2 (-971 *3)) + (-12 (-2662 (-4 *3 (-557))) (-2662 (-4 *3 (-38 (-419 (-576))))) + (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861))) + (-12 (-5 *2 (-971 *3)) + (-12 (-2662 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) + (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861))))) ((*1 *1 *2) - (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *1 (-1311 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-212)) - (-5 *3 (-1196)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1196))) - (-5 *1 (-276)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-907 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1069)) - (-5 *2 (-656 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1055)) (-5 *1 (-764))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) - (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1055)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1055)) - (-5 *1 (-759))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1055)) (-5 *1 (-765))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-804)) - (-5 *2 (-656 *3)))) + (|partial| -2758 + (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) + (-12 (-2662 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) + (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) + (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) +(((*1 *1) (-5 *1 (-145)))) +(((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1120)) - (-5 *2 (-656 *3)))) + (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) + (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-1177 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1069)))) + (-12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1069)) - (-4 *4 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-656 *3)))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-738) *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1069)) (-5 *2 (-1177 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1055)) (-5 *1 (-768))))) + (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-738) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1134 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200))))) + (-12 (-5 *3 (-701 (-419 (-971 (-576))))) + (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) + (-5 *1 (-923 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) + (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) + (-5 *1 (-819 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) + (-5 *1 (-819 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *6 (-668 (-419 *2)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3) + (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) (((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1069)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1069))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1120))))) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) + (-5 *1 (-461 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-858))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-164)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1022))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1120)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1120)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1022) (-1222))))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1120))))) + (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *1) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1193 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) + (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1085 *5 *6 *7)) - (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) + (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *4)) (|:| -1490 (-656 (-971 *4)))))) + (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) + (-14 *5 (-656 (-1197))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -3676 (-1193 *5)) (|:| -1490 (-656 (-971 *5)))))) + (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) - (-12 (-5 *3 (-970 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4464)) (-4 *1 (-1275 *3)) - (-4 *3 (-1237))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-939)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) + ((*1 *1 *1) (-5 *1 (-1290)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *8)) + (-5 *4 + (-656 + (-2 (|:| -3454 (-701 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-701 *7))))) + (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) + (-5 *2 + (-2 (|:| -3454 (-701 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-701 *7)))) + (-5 *1 (-510 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3))))) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-317)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 *7)) (-5 *3 (-576)) (-4 *7 (-967 *6 *4 *5)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1069)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1222))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1159)))) + (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) + (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-576)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) + (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1137 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) + (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) + (-5 *1 (-1138 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) + (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) + (-5 *1 (-1138 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) + (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1192 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-994))))) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1197)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-656 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -4106 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1223) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) + (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) + (-4 *3 (-374))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) (((*1 *2 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) - (-5 *2 (-576)) (-5 *1 (-1134 *4 *5))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) + (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-656 (-326 (-227)))) + (|:| -3539 (-656 (-227))))))) + (-5 *2 (-656 (-1179))) (-5 *1 (-276))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4004 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1059 *4)) (-4 *3 (-568))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) + (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) + (-5 *1 (-612 *4 *5 *2))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) + (-5 *1 (-461 *5 *6 *7 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234))))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-939)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) + (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) + (-5 *1 (-1038 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) + (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) + (-5 *3 (-656 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -4005 (-1178 *4)) (|:| -4013 (-1178 *4)))) + (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) + (-5 *2 (-112)) (-5 *1 (-1161 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1069)) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) - (-5 *1 (-411 *3 *4))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 + (-2 (|:| |solns| (-656 *5)) + (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-906 *4)) (-4 *4 (-1120)) (-5 *2 (-656 *5)) - (-5 *1 (-904 *4 *5)) (-4 *5 (-1237))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) + (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783)))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) - (-4 *4 (-1263 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-537))))) -(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1120)) (-4 *2 (-379))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))) + (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) + (-5 *1 (-705 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) + (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1288 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-1288 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) - (-5 *1 (-797 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-374) (-1222) (-1022))) - (-5 *1 (-178 *3))))) + (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) + (-5 *2 (-2 (|:| -3752 (-701 *6)) (|:| |vec| (-1288 *5)))) + (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) + (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) (-4 *1 (-968 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -3015 *1) (|:| -3599 *1))) + (-4 *1 (-1264 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3) + (-12 (-5 *3 (-946)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1165)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) +(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3101 (-656 (-1197))) (|:| -1579 (-656 (-1197))))) + (-5 *1 (-1240))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-14 *6 (-1197)) (-14 *7 *3)))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1193 *3) + (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141))))))))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-940))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1047 (-855 (-576)))) + (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) + (-5 *1 (-607 *4))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-656 (-983))) (-5 *1 (-301))))) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-4 *3 (-1121)) (-5 *2 (-783)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) + (-4 *4 (-1238)) (-5 *2 (-783))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) + (-4 *10 (-968 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-656 (-1193 *10))) + (|:| |dterm| + (-656 (-656 (-2 (|:| -2543 (-783)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) + (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) + (-5 *5 (-656 *10))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) + (-4 *2 (-464)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) + (-5 *1 (-498 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-464))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-939)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) - (-4 *3 (-626 (-390))))) + (-12 (-4 *1 (-812)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1056))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-384 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-939)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-970 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) + (-5 *1 (-705 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-970 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) + (-5 *2 (-2 (|:| -4026 *7) (|:| |rh| (-656 (-419 *6))))) + (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) + (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-970 *4)) (-4 *4 (-1069)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) + (-4 *3 (-1264 *5))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -4106 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-135))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) + (-4 *5 (-1279 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) + (-4 *5 (-1248 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) + (-4 *6 (-1004 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-5 *1 (-390))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) + (-4 *3 (-1133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1121)) + (-5 *1 (-694 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) + (-5 *1 (-702 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)) + (-4 *4 (-660 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1070)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1070)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-576))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-940)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1182 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) + (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-822 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-970 *5)) (-5 *4 (-939)) (-4 *5 (-1069)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-2 (|:| -3454 (-656 (-419 *6))) (|:| -3752 (-701 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-2 (|:| -3454 (-656 (-419 *6))) (|:| -3752 (-701 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) + (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) + (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-1131))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-132))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3) + (-12 (-5 *3 (-946)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) + (-4 *3 (-995))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -3015 *3) (|:| -3599 *3))) (-5 *1 (-1259 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *5 (-668 (-419 *2))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 *5))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) + (-4 *3 (-668 (-419 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) + (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) + (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) + (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) + (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) + (-5 *1 (-719 *9 *10 *8 *11))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) + (-4 *4 (-275 *3)) (-4 *5 (-805))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)) + (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837))))) +(((*1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) + (-4 *4 (-1238)))) + ((*1 *1 *2) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-4 *5 (-243 (-3502 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *2) (|:| -4210 *5)) + (-2 (|:| -3223 *2) (|:| -4210 *5)))) + (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) + (-4 *7 (-968 *4 *5 (-878 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) + (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) + (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) + (-5 *3 (-656 (-701 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-970 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) + (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) + (-5 *3 (-656 (-701 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-970 (-171 *5)))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-939)) (-4 *5 (-568)) (-4 *5 (-861)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) + (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *2 (-2 (|:| -3309 (-783)) (|:| -3339 *8))) + (-5 *1 (-930 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-939)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1069))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-5 *2 (-1178))))) + (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) + (-5 *2 (-2 (|:| -3309 (-783)) (|:| -3339 *6))) + (-5 *1 (-931 *4 *5 *6))))) +(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) + (-4 *2 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *5 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) + (-4 *2 (-1279 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-869 *2)) (-4 *2 (-174))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3)))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) + (-5 *2 (-112)) (-5 *1 (-1316 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1120)) (-5 *1 (-1208 *3))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3))))) +(((*1 *1) (-5 *1 (-340)))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) - (-5 *1 (-705 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1058 (-419 (-576))))) - (-4 *6 (-1263 *5)) - (-5 *2 (-2 (|:| -3378 *7) (|:| |rh| (-656 (-419 *6))))) - (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) - (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1012 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1256 *4 *5 *3)) - (-4 *3 (-1263 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-132))))) + (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) + (|:| |wcond| (-656 (-971 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *4)))))))))) + (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-374)) (-14 *5 (-1014 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1153 (-227))) (-5 *1 (-1220))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1055)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1055)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) - (-4 *3 (-1120))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) + (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -4326 *4))) (-5 *5 (-783)) + (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-461 *6 *7 *8 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-970 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-939)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) + (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805))))) +(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *3 (-916 *5)) (-5 *2 (-701 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1200))))) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) + (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) +(((*1 *1 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *2 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) + (-4 *4 (-1264 (-419 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) + (-4 *2 (-1264 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1115 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-805)) + (-4 *4 (-861)) (-4 *7 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) + (-5 *1 (-606 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) + (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1189 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) + (-5 *2 (-419 (-971 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-971 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) + (-5 *2 (-3 (-419 (-971 *5)) (-326 *5))) (-5 *1 (-1190 *5)) + (-5 *3 (-419 (-971 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1113 (-971 *5))) (-5 *3 (-971 *5)) + (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 *3)) + (-5 *1 (-1190 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1113 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 *3 (-326 *5))) + (-5 *1 (-1190 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) + (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) (((*1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) - (-4 *2 (-1069))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1178)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1055)) - (-5 *1 (-762))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1022)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *2 (-1085 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) - (-4 *3 (-1091 *4 *5 *6 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1160 *4 *5)) (-4 *4 (-13 (-1120) (-34))) - (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *5))))) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) + (-5 *3 (-419 (-971 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-582 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) + (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) + (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) + (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1121)) + (-4 *5 (-1238)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) + (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) + (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-653 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-783))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3454 (-656 *4)))) + (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 (-906 *3))))) - (-5 *1 (-906 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-906 *4))) - (-5 *1 (-906 *4)) (-4 *4 (-1120))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448))))) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -3454 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) + (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3411 (-1177 *4)) (|:| -3423 (-1177 *4)))) - (-5 *1 (-1182 *4)) (-5 *3 (-1177 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1083)) (-5 *3 (-1178))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1263 (-171 *3)))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *1) (-5 *1 (-449)))) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) + (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1959)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) + (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) + (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246))))) +(((*1 *2 *3) + (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) + (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) + (-5 *1 (-930 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-931 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1278 *3)))) + (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) + (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) ((*1 *2 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1173 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *2 (-916 *5)) (-5 *1 (-704 *5 *2 *3 *4)) - (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463))))))) + (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) + (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) + (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) + ((*1 *1 *1) (-4 *1 (-414)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061))))) +(((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1056)) (-5 *1 (-766))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *6 (-900 *5)) (-5 *2 (-899 *5 *6 (-656 *6))) - (-5 *1 (-901 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-906 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-901 *5 *3 *4)) - (-4 *3 (-1058 (-1196))) (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-656 (-304 (-970 *3)))) - (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-1069)) - (-2298 (-4 *3 (-1058 (-1196)))) (-4 *3 (-900 *5)) - (-4 *4 (-626 (-906 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-903 *5 *3)) (-5 *1 (-901 *5 *3 *4)) - (-2298 (-4 *3 (-1058 (-1196)))) (-2298 (-4 *3 (-1069))) - (-4 *3 (-900 *5)) (-4 *4 (-626 (-906 *5)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-1287 *4)) (-5 *1 (-650 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-246))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1060)) (-5 *3 (-390))))) -(((*1 *1) (-5 *1 (-340)))) -((-1321 . 731512) (-1322 . 731321) (-1323 . 731251) (-1324 . 731141) - (-1325 . 731091) (-1326 . 731020) (-1327 . 730874) (-1328 . 730164) - (-1329 . 730011) (-1330 . 729565) (-1331 . 729537) (-1332 . 729463) - (-1333 . 729399) (-1334 . 729297) (-1335 . 729215) (-1336 . 729060) - (-1337 . 728991) (-1338 . 728848) (-1339 . 728592) (-1340 . 728476) - (-1341 . 728342) (-1342 . 728197) (-1343 . 728036) (-1344 . 727941) - (-1345 . 727857) (-1346 . 727611) (-1347 . 727517) (-1348 . 727463) - (-1349 . 727289) (-1350 . 727110) (-1351 . 727007) (-1352 . 726934) - (-1353 . 726751) (-1354 . 726698) (-1355 . 726542) (-1356 . 726484) - (-1357 . 726331) (-1358 . 726230) (-1359 . 726161) (-1360 . 726059) - (-1361 . 725185) (-1362 . 725127) (-1363 . 724785) (-1364 . 724701) - (-1365 . 724628) (-1366 . 724525) (-1367 . 724372) (-1368 . 724276) - (-1369 . 724206) (-1370 . 724120) (-1371 . 721988) (-1372 . 721909) - (-1373 . 721809) (-1374 . 720969) (-1375 . 720901) (-1376 . 720830) - (-1377 . 720777) (-1378 . 720676) (-1379 . 720606) (-1380 . 720490) - (-1381 . 720377) (-1382 . 720271) (-1383 . 720164) (-1384 . 719776) - (-1385 . 719658) (-1386 . 719602) (-1387 . 719500) (-1388 . 719285) - (-1389 . 719223) (-1390 . 719053) (-1391 . 718986) (-1392 . 718822) - (-1393 . 718356) (-1394 . 718273) (-1395 . 718169) (-1396 . 718067) - (-1397 . 717984) (-1398 . 717871) (-1399 . 717447) (-1400 . 716280) - (-1401 . 716143) (-1402 . 715856) (-1403 . 715690) (-1404 . 715595) - (-1405 . 715473) (-1406 . 715340) (-1407 . 715067) (-1408 . 714929) - (-1409 . 714876) (-1410 . 714365) (-1411 . 714328) (-1412 . 714048) - (-1413 . 713947) (-1414 . 713742) (-1415 . 713629) (-1416 . 713492) - (-1417 . 712676) (-1418 . 712490) (-1419 . 712424) (-1420 . 711022) - (-1421 . 710942) (-1422 . 710396) (-1423 . 710288) (-1424 . 710161) - (-1425 . 709962) (-1426 . 709791) (-1427 . 709567) (-1428 . 709436) - (-1429 . 709200) (-1430 . 708936) (-1431 . 708856) (-1432 . 708788) - (-1433 . 708736) (-1434 . 708614) (-1435 . 708586) (-1436 . 708179) - (-1437 . 708054) (-1438 . 707785) (-1439 . 707628) (-1440 . 707503) - (-1441 . 707433) (-1442 . 707356) (-1443 . 707177) (-1444 . 707053) - (-1445 . 704825) (-1446 . 704667) (-1447 . 704615) (-1448 . 704279) - (-1449 . 704168) (-1450 . 698654) (-1451 . 697951) (-1452 . 697884) - (-1453 . 697761) (-1454 . 697331) (-1455 . 697089) (-1456 . 697036) - (-1457 . 696985) (-1458 . 696747) (-1459 . 696568) (-1460 . 696513) - (-1461 . 696456) (-1462 . 696063) (-1463 . 695982) (-1464 . 695109) - (-1465 . 695014) (-1466 . 694680) (-1467 . 694597) (-1468 . 694487) - (-1469 . 694399) (-1470 . 694151) (-1471 . 694080) (-1472 . 693943) - (-1473 . 693501) (-1474 . 693403) (-1475 . 693332) (-1476 . 693032) - (-1477 . 692931) (-1478 . 692713) (-1479 . 692642) (-1480 . 691905) - (-1481 . 691877) (-1482 . 691678) (-1483 . 691343) (-1484 . 691270) - (-1485 . 691107) (-1486 . 690945) (-1487 . 690844) (-1488 . 690756) - (-1489 . 690663) (-1490 . 690591) (-1491 . 690511) (-1492 . 690202) - (-1493 . 690044) (-1494 . 689938) (-1495 . 689470) (-1496 . 689441) - (-1497 . 689304) (-1498 . 689220) (-1499 . 689168) (-1500 . 689089) - (-1501 . 688926) (-1502 . 688686) (-1503 . 688592) (-1504 . 688373) - (-1505 . 688269) (-1506 . 688095) (-1507 . 687666) (-1508 . 687608) - (-1509 . 687580) (-1510 . 687552) (-1511 . 687479) (-1512 . 687349) - (-1513 . 687171) (-1514 . 686956) (-1515 . 686837) (-1516 . 686733) - (-1517 . 686637) (-1518 . 686477) (-1519 . 686324) (-1520 . 686166) - (-1521 . 686137) (-1522 . 685922) (-1523 . 685633) (-1524 . 685453) - (-1525 . 685367) (-1526 . 685311) (-1527 . 684312) (-1528 . 684154) - (-1529 . 684050) (-1530 . 683892) (-1531 . 683659) (-1532 . 683338) - (-1533 . 683259) (-1534 . 683206) (-1535 . 683133) (-1536 . 683003) - (-1537 . 682926) (-1538 . 682781) (-1539 . 682693) (-1540 . 682446) - (-1541 . 682251) (-1542 . 682070) (-1543 . 681999) (-1544 . 681763) - (-1545 . 681710) (-1546 . 681586) (-1547 . 681500) (-1548 . 681429) - (-1549 . 681370) (-1550 . 681102) (-1551 . 681048) (-1552 . 680995) - (-1553 . 680918) (-1554 . 677251) (-1555 . 677153) (-1556 . 676892) - (-1557 . 676759) (-1558 . 676731) (-1559 . 676697) (-1560 . 676211) - (-1561 . 675854) (-1562 . 674224) (-1563 . 674007) (-1564 . 673524) - (-1565 . 673361) (-1566 . 673122) (-1567 . 672579) (-1568 . 672487) - (-1569 . 672374) (-1570 . 672246) (-1571 . 671387) (-1572 . 671299) - (-1573 . 671203) (-1574 . 671172) (-1575 . 671020) (-1576 . 670906) - (-1577 . 670699) (-1578 . 670220) (-1579 . 670123) (-1580 . 670017) - (-1581 . 669890) (-1582 . 668594) (-1583 . 668493) (-1584 . 668398) - (-1585 . 668226) (-1586 . 667834) (-1587 . 667754) (-1588 . 667561) - (-1589 . 667365) (-1590 . 667035) (-1591 . 666704) (-1592 . 666215) - (-1593 . 665946) (-1594 . 665727) (-1595 . 665568) (-1596 . 665458) - (-1597 . 665218) (-1598 . 664940) (-1599 . 664841) (-1600 . 664713) - (-1601 . 664597) (-1602 . 664262) (-1603 . 664174) (-1604 . 664066) - (-1605 . 663989) (-1606 . 663814) (-1607 . 663743) (-1608 . 663351) - (-1609 . 663269) (-1610 . 663199) (-1611 . 663102) (-1612 . 662348) - (-1613 . 662245) (-1614 . 662160) (-1615 . 662022) (-1616 . 661774) - (-1617 . 661498) (-1618 . 661233) (-1619 . 661006) (-1620 . 660885) - (-1621 . 660774) (-1622 . 660658) (-1623 . 660386) (-1624 . 660314) - (-1625 . 660186) (-1626 . 659805) (-1627 . 658039) (-1628 . 657988) - (-1629 . 657918) (-1630 . 657404) (-1631 . 657108) (-1632 . 656828) - (-1633 . 656760) (-1634 . 656665) (-1635 . 656391) (-1636 . 656081) - (-1637 . 654626) (-1638 . 654471) (-1639 . 654277) (-1640 . 654100) - (-1641 . 653990) (-1642 . 653934) (-1643 . 653853) (-1644 . 653490) - (-1645 . 653346) (-1646 . 651856) (-1647 . 651597) (-1648 . 651499) - (-1649 . 651383) (-1650 . 651288) (-1651 . 650946) (-1652 . 650427) - (-1653 . 650395) (-1654 . 650117) (-1655 . 649998) (-1656 . 649262) - (-1657 . 649209) (-1658 . 649051) (-1659 . 648870) (-1660 . 648800) - (-1661 . 648638) (-1662 . 648539) (-1663 . 648386) (-1664 . 648267) - (-1665 . 648195) (-1666 . 648096) (-1667 . 647360) (-1668 . 647264) - (-1669 . 647012) (-1670 . 646945) (-1671 . 646893) (-1672 . 646150) - (-1673 . 645806) (-1674 . 645774) (-1675 . 645605) (-1676 . 645438) - (-1677 . 645275) (-1678 . 645223) (-1679 . 644699) (-1680 . 644671) - (-1681 . 644008) (-1682 . 643884) (-1683 . 643828) (-1684 . 643610) - (-1685 . 643482) (-1686 . 643409) (-1687 . 643241) (-1688 . 642928) - (-1689 . 642875) (-1690 . 642196) (-1691 . 642145) (-1692 . 642050) - (-1693 . 641991) (-1694 . 641850) (-1695 . 641793) (-1696 . 641719) - (-1697 . 641426) (-1698 . 640782) (-1699 . 640122) (-1700 . 639780) - (-1701 . 639746) (-1702 . 639513) (-1703 . 638217) (-1704 . 638165) - (-1705 . 637937) (-1706 . 637868) (-1707 . 637509) (-1708 . 637360) - (-1709 . 636188) (-1710 . 636129) (-1711 . 635998) (-1712 . 635776) - (-1713 . 635578) (-1714 . 635157) (-1715 . 634949) (-1716 . 634700) - (-1717 . 634663) (-1718 . 634526) (-1719 . 634438) (-1720 . 634353) - (-1721 . 634115) (-1722 . 634041) (-1723 . 633985) (-1724 . 633951) - (-1725 . 633773) (-1726 . 633346) (-1727 . 633138) (-1728 . 632461) - (-1729 . 632401) (-1730 . 632264) (-1731 . 632183) (-1732 . 632131) - (-1733 . 631838) (-1734 . 631690) (-1735 . 631371) (-1736 . 631285) - (-1737 . 631073) (-1738 . 630940) (-1739 . 630836) (-1740 . 630662) - (-1741 . 630612) (-1742 . 630455) (-1743 . 630349) (-1744 . 630042) - (-1745 . 630008) (-1746 . 629980) (-1747 . 629913) (-1748 . 629839) - (-1749 . 629499) (-1750 . 629128) (-1751 . 629059) (-1752 . 629027) - (-1753 . 628414) (-1754 . 628354) (-1755 . 628282) (-1756 . 628122) - (-1757 . 627843) (-1758 . 627777) (-1759 . 627684) (-1760 . 627585) - (-1761 . 626942) (-1762 . 626515) (-1763 . 626397) (-1764 . 626295) - (-1765 . 626110) (-1766 . 625912) (-1767 . 625853) (-1768 . 625707) - (-1769 . 625587) (-1770 . 625504) (-1771 . 625384) (-1772 . 625313) - (-1773 . 625131) (-1774 . 624572) (-1775 . 624520) (-1776 . 624323) - (-1777 . 624137) (-1778 . 624008) (-1779 . 623937) (-1780 . 623690) - (-1781 . 623552) (-1782 . 622993) (-1783 . 622848) (-1784 . 622693) - (-1785 . 622483) (-1786 . 622346) (-1787 . 621592) (-1788 . 621511) - (-1789 . 621325) (-1790 . 621273) (-1791 . 620994) (-1792 . 620721) - (-1793 . 620600) (-1794 . 620484) (-1795 . 620403) (-1796 . 620156) - (-1797 . 620041) (-1798 . 619953) (-1799 . 619925) (-1800 . 619819) - (-1801 . 619709) (-1802 . 619365) (-1803 . 619273) (-1804 . 619239) - (-1805 . 618924) (-1806 . 618757) (-1807 . 618584) (-1808 . 618522) - (-1809 . 618367) (-1810 . 618107) (-1811 . 617807) (-1812 . 617648) - (-1813 . 617557) (-1814 . 617400) (-1815 . 617205) (-1816 . 617111) - (-1817 . 616961) (-1818 . 616752) (-1819 . 616626) (-1820 . 615738) - (-1821 . 615686) (-1822 . 615516) (-1823 . 615407) (-1824 . 615091) - (-1825 . 614959) (-1826 . 614906) (-1827 . 614847) (-1828 . 614648) - (-1829 . 614468) (-1830 . 614411) (-1831 . 614276) (-1832 . 614164) - (-1833 . 613889) (-1834 . 613748) (-1835 . 612752) (-1836 . 612537) - (-1837 . 612453) (-1838 . 612276) (-1839 . 612194) (-1840 . 612120) - (-1841 . 611981) (-1842 . 611909) (-1843 . 611825) (-1844 . 611748) - (-1845 . 611693) (-1846 . 611443) (-1847 . 611221) (-1848 . 611016) - (-1849 . 610685) (-1850 . 610492) (-1851 . 610440) (-1852 . 610357) - (-1853 . 610213) (-1854 . 610112) (-1855 . 609937) (-1856 . 609491) - (-1857 . 609438) (-1858 . 609235) (-1859 . 609193) (-1860 . 609107) - (-1861 . 609073) (-1862 . 609001) (-1863 . 608928) (-1864 . 608803) - (-1865 . 608557) (-1866 . 608505) (-1867 . 608273) (-1868 . 608140) - (-1869 . 608043) (-1870 . 607891) (-1871 . 607790) (-1872 . 607594) - (-1873 . 607214) (-1874 . 607147) (-1875 . 607003) (-1876 . 606907) - (-1877 . 604793) (-1878 . 604675) (-1879 . 604598) (-1880 . 604379) - (-1881 . 604324) (-1882 . 604199) (-1883 . 604057) (-1884 . 603713) - (-1885 . 603616) (-1886 . 603517) (-1887 . 603411) (-1888 . 603330) - (-1889 . 603277) (-1890 . 603176) (-1891 . 602859) (-1892 . 602492) - (-1893 . 602395) (-1894 . 602079) (-1895 . 601997) (-1896 . 601770) - (-1897 . 601670) (-1898 . 601552) (-1899 . 601426) (-1900 . 601267) - (-1901 . 601213) (-1902 . 601034) (-1903 . 600937) (-1904 . 600865) - (-1905 . 600501) (-1906 . 600447) (-1907 . 600329) (-1908 . 600097) - (-1909 . 600015) (-1910 . 599872) (-1911 . 599820) (-1912 . 599712) - (-1913 . 599638) (-1914 . 599287) (-1915 . 599235) (-1916 . 599117) - (-1917 . 598985) (-1918 . 598619) (-1919 . 598495) (-1920 . 598464) - (-1921 . 598433) (-1922 . 598267) (-1923 . 598185) (-1924 . 598126) - (-1925 . 596945) (-1926 . 596499) (-1927 . 596020) (-1928 . 595855) - (-1929 . 595695) (-1930 . 595368) (-1931 . 595205) (-1932 . 595104) - (-1933 . 595037) (-1934 . 594941) (-1935 . 594663) (-1936 . 594297) - (-1937 . 593991) (-1938 . 593830) (-1939 . 593750) (-1940 . 593570) - (-1941 . 593365) (-1942 . 593310) (-1943 . 592449) (-1944 . 592286) - (-1945 . 592215) (-1946 . 591997) (-1947 . 591902) (-1948 . 591765) - (-1949 . 591575) (-1950 . 591435) (-1951 . 591341) (-1952 . 591254) - (-1953 . 591133) (-1954 . 591035) (-1955 . 590914) (-1956 . 590806) - (-1957 . 590749) (-1958 . 590574) (-1959 . 590189) (-1960 . 590090) - (-1961 . 589991) (-1962 . 589833) (-1963 . 589703) (-1964 . 589651) - (-1965 . 589565) (-1966 . 589512) (-1967 . 589398) (-1968 . 588981) - (-1969 . 588907) (-1970 . 588344) (-1971 . 588112) (-1972 . 587983) - (-1973 . 587800) (-1974 . 587042) (-1975 . 586820) (-1976 . 586618) - (-1977 . 586566) (-1978 . 586413) (-1979 . 586270) (-1980 . 586239) - (-1981 . 586184) (-1982 . 585470) (-1983 . 585272) (-1984 . 585244) - (-1985 . 585145) (-1986 . 584571) (-1987 . 584368) (-1988 . 584150) - (-1989 . 583380) (-1990 . 583297) (-1991 . 583188) (-1992 . 583126) - (-1993 . 583032) (-1994 . 582977) (-1995 . 582604) (-1996 . 582553) - (-1997 . 582395) (-1998 . 582339) (-1999 . 582154) (-2000 . 581544) - (-2001 . 581437) (-2002 . 581349) (-2003 . 581207) (-2004 . 581122) - (-2005 . 580938) (-2006 . 580709) (-2007 . 580400) (-2008 . 580276) - (-2009 . 580205) (-2010 . 580152) (-2011 . 580099) (-2012 . 579945) - (-2013 . 579862) (-2014 . 579519) (-2015 . 579435) (-2016 . 579317) - (-2017 . 578821) (-2018 . 578574) (-2019 . 578507) (-2020 . 578473) - (-2021 . 578341) (-2022 . 578241) (-2023 . 578099) (-2024 . 577847) - (-2025 . 577777) (-2026 . 577725) (-2027 . 577691) (-2028 . 577523) - (-2029 . 577112) (-2030 . 576961) (-2031 . 576927) (-2032 . 576551) - (-2033 . 576519) (-2034 . 576462) (-2035 . 576403) (-2036 . 576267) - (-2037 . 576152) (-2038 . 576118) (-2039 . 576036) (-2040 . 575801) - (-2041 . 575752) (-2042 . 575682) (-2043 . 575628) (-2044 . 575283) - (-2045 . 574885) (-2046 . 574797) (-2047 . 574702) (-2048 . 574635) - (-2049 . 574545) (-2050 . 574471) (-2051 . 574412) (-2052 . 573496) - (-2053 . 573412) (-2054 . 573228) (-2055 . 573144) (-2056 . 573006) - (-2057 . 572383) (-2058 . 572242) (-2059 . 572110) (-2060 . 571997) - (-2061 . 571893) (-2062 . 571792) (-2063 . 571540) (-2064 . 571410) - (-2065 . 570446) (-2066 . 570351) (-2067 . 570278) (-2068 . 570166) - (-2069 . 569683) (-2070 . 569626) (-2071 . 569563) (-2072 . 569480) - (-2073 . 569331) (-2074 . 569243) (-2075 . 569005) (-2076 . 568926) - (-2077 . 568822) (-2078 . 568767) (-2079 . 568549) (-2080 . 568351) - (-2081 . 568235) (-2082 . 568151) (-2083 . 567993) (-2084 . 567940) - (-2085 . 567867) (-2086 . 567657) (-2087 . 567528) (-2088 . 566726) - (-2089 . 566424) (-2090 . 566199) (-2091 . 565953) (-2092 . 565859) - (-2093 . 565703) (-2094 . 565630) (-2095 . 565493) (-2096 . 565444) - (-2097 . 565417) (-2098 . 565337) (-2099 . 565285) (-2100 . 564947) - (-2101 . 564852) (-2102 . 564767) (-2103 . 564648) (-2104 . 564454) - (-2105 . 564308) (-2106 . 564279) (-2107 . 564164) (-2108 . 563463) - (-2109 . 563290) (-2110 . 562952) (-2111 . 562865) (-2112 . 562685) - (-2113 . 562532) (-2114 . 562422) (-2115 . 562232) (-2116 . 562056) - (-2117 . 561978) (-2118 . 561894) (-2119 . 561787) (-2120 . 561735) - (-2121 . 561666) (-2122 . 561480) (-2123 . 561424) (-2124 . 561328) - (-2125 . 561226) (-2126 . 561103) (-2127 . 561036) (-2128 . 560981) - (-2129 . 560929) (-2130 . 560726) (-2131 . 560641) (-2132 . 560609) - (-2133 . 560549) (-2134 . 558819) (-2135 . 558657) (-2136 . 558448) - (-2137 . 558025) (-2138 . 557917) (-2139 . 557823) (-2140 . 557771) - (-2141 . 557669) (-2142 . 557561) (-2143 . 553611) (-2144 . 553073) - (-2145 . 553022) (-2146 . 552831) (-2147 . 552536) (-2148 . 552393) - (-2149 . 552307) (-2150 . 552191) (-2151 . 552139) (-2152 . 552053) - (-2153 . 551994) (-2154 . 551787) (-2155 . 550586) (-2156 . 550507) - (-2157 . 550438) (-2158 . 550239) (-2159 . 550182) (-2160 . 550022) - (-2161 . 549972) (-2162 . 549841) (-2163 . 549689) (-2164 . 549640) - (-2165 . 549535) (-2166 . 549392) (-2167 . 549230) (-2168 . 549133) - (-2169 . 548719) (-2170 . 548649) (-2171 . 548122) (-2172 . 548034) - (-2173 . 547738) (-2174 . 547646) (-2175 . 546758) (-2176 . 546449) - (-2177 . 546118) (-2178 . 545988) (-2179 . 545936) (-2180 . 545840) - (-2181 . 545586) (-2182 . 544873) (-2183 . 544732) (-2184 . 544635) - (-2185 . 544462) (-2186 . 544370) (-2187 . 544124) (-2188 . 543911) - (-2189 . 543825) (-2190 . 543600) (-2191 . 543545) (-2192 . 542959) - (-2193 . 542840) (-2194 . 542718) (-2195 . 542632) (-2196 . 542546) - (-2197 . 542444) (-2198 . 542207) (-2199 . 541271) (-2200 . 541216) - (-2201 . 541099) (-2202 . 541017) (-2203 . 540710) (-2204 . 540146) - (-2205 . 540086) (-2206 . 539827) (-2207 . 539701) (-2208 . 539649) - (-2209 . 539582) (-2210 . 539463) (-2211 . 539377) (-2212 . 539304) - (-2213 . 539144) (-2214 . 538959) (-2215 . 538812) (-2216 . 538560) - (-2217 . 538417) (-2218 . 538279) (-2219 . 538040) (-2220 . 537893) - (-2221 . 537798) (-2222 . 537746) (-2223 . 536863) (-2224 . 536764) - (-2225 . 536620) (-2226 . 536546) (-2227 . 536391) (-2228 . 535853) - (-2229 . 535542) (-2230 . 535468) (-2231 . 535310) (-2232 . 535089) - (-2233 . 535036) (-2234 . 534962) (-2235 . 534909) (-2236 . 534809) - (-2237 . 534697) (-2238 . 534628) (-2239 . 534474) (-2240 . 534422) - (-2241 . 534342) (-2242 . 534047) (-2243 . 533837) (-2244 . 533722) - (-2245 . 533672) (-2246 . 533576) (-2247 . 533523) (-2248 . 533418) - (-2249 . 533265) (-2250 . 533183) (-2251 . 533085) (-2252 . 532295) - (-2253 . 532132) (-2254 . 532014) (-2255 . 531880) (-2256 . 531609) - (-2257 . 531553) (-2258 . 531457) (-2259 . 531366) (-2260 . 531313) - (-2261 . 531252) (-2262 . 531193) (-2263 . 531137) (-2264 . 531001) - (-2265 . 530932) (-2266 . 530861) (-2267 . 530797) (-2268 . 530744) - (-2269 . 530442) (-2270 . 530296) (-2271 . 530172) (-2272 . 530020) - (-2273 . 529957) (-2274 . 529834) (-2275 . 529705) (-2276 . 529132) - (-2277 . 529029) (-2278 . 528739) (-2279 . 528131) (-2280 . 528075) - (-2281 . 527951) (-2282 . 527071) (-2283 . 526948) (-2284 . 526860) - (-2285 . 526789) (-2286 . 526710) (-2287 . 526423) (-2288 . 526395) - (-2289 . 526237) (-2290 . 526094) (-2291 . 525923) (-2292 . 525781) - (-2293 . 525729) (-2294 . 525519) (-2295 . 525401) (-2296 . 525023) - (-2297 . 524922) (-2298 . 524863) (-2299 . 524780) (-2300 . 524557) - (-2301 . 524441) (-2302 . 524347) (-2303 . 524285) (-2304 . 524127) - (-2305 . 524039) (-2306 . 523987) (-2307 . 523740) (-2308 . 523671) - (-2309 . 523493) (-2310 . 523428) (-2311 . 523366) (-2312 . 523313) - (-2313 . 523230) (-2314 . 523134) (-2315 . 523055) (-2316 . 522544) - (-2317 . 517205) (-2318 . 517110) (-2319 . 517036) (-2320 . 516883) - (-2321 . 516684) (-2322 . 516619) (-2323 . 516094) (-2324 . 515585) - (-2325 . 515099) (-2326 . 515011) (-2327 . 514907) (-2328 . 514727) - (-2329 . 514654) (-2330 . 514592) (-2331 . 514470) (-2332 . 514335) - (-2333 . 514285) (-2334 . 514129) (-2335 . 514026) (-2336 . 513913) - (-2337 . 513844) (-2338 . 513737) (-2339 . 513642) (-2340 . 513573) - (-2341 . 513373) (-2342 . 512999) (-2343 . 512718) (-2344 . 512606) - (-2345 . 512325) (-2346 . 512083) (-2347 . 511998) (-2348 . 511895) - (-2349 . 511843) (-2350 . 511325) (-2351 . 510730) (-2352 . 510574) - (-2353 . 510447) (-2354 . 510072) (-2355 . 510016) (-2356 . 509916) - (-2357 . 509842) (** . 506847) (-2359 . 506443) (-2360 . 506365) - (-2361 . 506334) (-2362 . 506269) (-2363 . 505241) (-2364 . 505124) - (-2365 . 504645) (-2366 . 504559) (-2367 . 504425) (-2368 . 504300) - (-2369 . 504248) (-2370 . 504075) (-2371 . 503824) (-2372 . 503649) - (-2373 . 503250) (-2374 . 503164) (-2375 . 503023) (-2376 . 502925) - (-2377 . 502760) (-2378 . 502708) (-2379 . 502277) (-2380 . 502178) - (-2381 . 502049) (-2382 . 501727) (-2383 . 501629) (-2384 . 501520) - (-2385 . 501176) (-2386 . 501108) (-2387 . 500979) (-2388 . 500493) - (-2389 . 500327) (-2390 . 500226) (-2391 . 500155) (-2392 . 500103) - (-2393 . 499286) (-2394 . 499231) (-2395 . 499085) (-2396 . 498927) - (-2397 . 498787) (-2398 . 498759) (-2399 . 498663) (-2400 . 498571) - (-2401 . 498301) (-2402 . 498209) (-2403 . 498066) (-2404 . 497921) - (-2405 . 497843) (-2406 . 497748) (-2407 . 497635) (-2408 . 497556) - (-2409 . 497229) (-2410 . 497201) (-2411 . 497173) (-2412 . 497077) - (-2413 . 497012) (-2414 . 496921) (-2415 . 496798) (-2416 . 496711) - (-2417 . 496596) (-2418 . 496467) (-2419 . 496362) (-2420 . 493063) - (-2421 . 492920) (-2422 . 478687) (-2423 . 478604) (-2424 . 478423) - (-2425 . 478282) (-2426 . 478203) (-2427 . 478135) (-2428 . 478035) - (-2429 . 477855) (-2430 . 477461) (-2431 . 476619) (-2432 . 476511) - (-2433 . 476119) (-2434 . 476090) (-2435 . 476038) (-2436 . 475955) - (-2437 . 475902) (-2438 . 475765) (-2439 . 475693) (-2440 . 475364) - (-2441 . 475290) (-2442 . 475192) (-2443 . 474803) (-2444 . 474750) - (-2445 . 474695) (-2446 . 474560) (-2447 . 474480) (-2448 . 474427) - (-2449 . 474324) (-2450 . 474169) (-2451 . 474096) (-2452 . 474037) - (-2453 . 473884) (-2454 . 473732) (-2455 . 473269) (-2456 . 473089) - (-2457 . 472803) (-2458 . 472732) (-2459 . 472339) (-2460 . 471041) - (-2461 . 470915) (-2462 . 470802) (-2463 . 470610) (-2464 . 469990) - (-2465 . 469910) (-2466 . 469660) (-2467 . 469519) (-2468 . 469441) - (-2469 . 469374) (-2470 . 469245) (-2471 . 469149) (-2472 . 468497) - (-2473 . 468382) (-2474 . 468329) (-2475 . 468176) (-2476 . 468093) - (-2477 . 468025) (-2478 . 467928) (-2479 . 467812) (-2480 . 467673) - (-2481 . 467555) (-2482 . 467263) (-2483 . 467115) (-2484 . 466918) - (-2485 . 466755) (-2486 . 466659) (-2487 . 466588) (-2488 . 466164) - (-2489 . 466070) (-2490 . 466018) (-2491 . 465873) (-2492 . 465757) - (-2493 . 465538) (-2494 . 465464) (-2495 . 465219) (-2496 . 465044) - (-2497 . 463467) (-2498 . 462940) (-2499 . 462784) (-2500 . 462254) - (-2501 . 462182) (-2502 . 462024) (-2503 . 461911) (-2504 . 461859) - (-2505 . 461792) (-2506 . 461665) (-2507 . 461592) (-2508 . 461402) - (-2509 . 460062) (-2510 . 459875) (-2511 . 459803) (-2512 . 459699) - (-2513 . 459593) (-2514 . 459176) (-2515 . 459117) (-2516 . 458980) - (-2517 . 458741) (-2518 . 458195) (-2519 . 458128) (-2520 . 458032) - (-2521 . 457907) (-2522 . 457804) (-2523 . 457613) (-2524 . 457499) - (-2525 . 457320) (-2526 . 457243) (-2527 . 457176) (-2528 . 457098) - (-2529 . 456613) (-2530 . 456458) (-2531 . 455790) (-2532 . 455622) - (-2533 . 455539) (-2534 . 455432) (-2535 . 455379) (-2536 . 455256) - (-2537 . 454862) (-2538 . 454723) (-2539 . 454627) (-2540 . 454441) - (-2541 . 454227) (-2542 . 454090) (-2543 . 453830) (-2544 . 453658) - (-2545 . 453378) (-2546 . 453193) (-2547 . 452582) (-2548 . 452479) - (-2549 . 452410) (-2550 . 452382) (-2551 . 452323) (-2552 . 452240) - (-2553 . 452007) (-2554 . 451908) (-2555 . 451817) (-2556 . 451609) - (-2557 . 451515) (-2558 . 451356) (-2559 . 451312) (-2560 . 451215) - (-2561 . 450888) (-2562 . 450725) (-2563 . 450564) (-2564 . 450504) - (-2565 . 450402) (-2566 . 450325) (-2567 . 450202) (-2568 . 450020) - (-2569 . 449758) (-2570 . 449608) (-2571 . 449539) (-2572 . 449261) - (-2573 . 449193) (-2574 . 448901) (-2575 . 448800) (-2576 . 448642) - (-2577 . 448549) (-2578 . 448472) (-2579 . 448375) (-2580 . 448301) - (-2581 . 448162) (-2582 . 448004) (-2583 . 447931) (-2584 . 447800) - (-2585 . 447582) (-2586 . 447380) (-2587 . 447313) (-2588 . 447042) - (-2589 . 446506) (-2590 . 446451) (-2591 . 446383) (-2592 . 446216) - (-2593 . 446164) (-2594 . 445957) (-2595 . 445928) (-2596 . 445865) - (-2597 . 445414) (-2598 . 444942) (-2599 . 444890) (-2600 . 444793) - (-2601 . 444740) (-2602 . 444542) (-2603 . 444162) (-2604 . 444060) - (-2605 . 443988) (-2606 . 443844) (-2607 . 442617) (-2608 . 442427) - (-2609 . 442323) (-2610 . 442264) (-2611 . 442191) (-2612 . 441832) - (-2613 . 441585) (-2614 . 441441) (-2615 . 441212) (-2616 . 440906) - (-2617 . 440744) (-2618 . 440644) (-2619 . 440562) (-2620 . 440462) - (-2621 . 440412) (-2622 . 440288) (-2623 . 440210) (-2624 . 439770) - (-2625 . 439641) (-2626 . 439564) (-2627 . 439471) (-2628 . 439394) - (-2629 . 439293) (-2630 . 439054) (-2631 . 438896) (-2632 . 438634) - (-2633 . 438354) (-2634 . 438293) (-2635 . 438183) (-2636 . 437600) - (-2637 . 437481) (-2638 . 437453) (-2639 . 437354) (-2640 . 437001) - (-2641 . 436325) (-2642 . 436122) (-2643 . 436072) (-2644 . 435991) - (-2645 . 435866) (-2646 . 435767) (-2647 . 433981) (-2648 . 433923) - (-2649 . 433532) (-2650 . 432794) (-2651 . 432720) (-2652 . 432611) - (-2653 . 432133) (-2654 . 431976) (-2655 . 431904) (-2656 . 431746) - (-2657 . 431158) (-2658 . 430191) (-2659 . 430163) (-2660 . 430104) - (-2661 . 430033) (-2662 . 429978) (-2663 . 429319) (-2664 . 429040) - (-2665 . 428623) (-2666 . 428501) (-2667 . 428444) (-2668 . 428378) - (-2669 . 428265) (-2670 . 428195) (-2671 . 428094) (-2672 . 428012) - (-2673 . 427924) (-2674 . 427668) (-2675 . 427518) (-2676 . 427433) - (-2677 . 427235) (-2678 . 427173) (-2679 . 426888) (-2680 . 426793) - (-2681 . 426719) (-2682 . 426572) (-2683 . 426412) (-2684 . 426024) - (-2685 . 425996) (-2686 . 425292) (-2687 . 425218) (-2688 . 425159) - (-2689 . 425073) (-2690 . 424825) (-2691 . 424758) (-2692 . 423216) - (-2693 . 423116) (-2694 . 423021) (-2695 . 422890) (-2696 . 422786) - (-2697 . 422105) (-2698 . 421999) (-2699 . 421947) (-2700 . 421794) - (-2701 . 421741) (-2702 . 421691) (-2703 . 421593) (-2704 . 421411) - (-2705 . 420971) (-2706 . 420904) (-2707 . 420844) (-2708 . 420002) - (-2709 . 419763) (-2710 . 418803) (-2711 . 418695) (-2712 . 418599) - (-2713 . 418465) (-2714 . 418370) (-2715 . 418276) (-2716 . 418197) - (-2717 . 417749) (-2718 . 417721) (-2719 . 417617) (-2720 . 416957) - (-2721 . 413348) (-2722 . 413095) (-2723 . 412876) (-2724 . 412817) - (-2725 . 412625) (-2726 . 412591) (-2727 . 412431) (-2728 . 412327) - (-2729 . 412155) (-2730 . 412077) (-2731 . 411805) (-2732 . 411678) - (-2733 . 411536) (-2734 . 411429) (-2735 . 411355) (-2736 . 411164) - (-2737 . 411086) (-2738 . 410967) (-2739 . 410794) (-2740 . 410596) - (-2741 . 410424) (-2742 . 410294) (-2743 . 410100) (-2744 . 409966) - (-2745 . 409898) (-2746 . 409755) (-2747 . 409500) (-2748 . 409213) - (-2749 . 409088) (-2750 . 408984) (-2751 . 408885) (-2752 . 408713) - (-2753 . 408618) (-2754 . 408540) (-2755 . 408482) (-2756 . 408171) - (-2757 . 407953) (-2758 . 407707) (-2759 . 407378) (-2760 . 407277) - (-2761 . 407073) (-2762 . 406629) (-2763 . 406530) (-2764 . 406446) - (-2765 . 406274) (-2766 . 405644) (-2767 . 405570) (-2768 . 405348) - (-2769 . 405250) (-2770 . 405019) (-2771 . 404924) (-2772 . 404678) - (-2773 . 404622) (-2774 . 404313) (-2775 . 404243) (-2776 . 404133) - (-2777 . 404037) (-2778 . 403940) (-2779 . 403825) (-2780 . 403751) - (-2781 . 403547) (-2782 . 401132) (-2783 . 401011) (-2784 . 400753) - (-2785 . 400638) (-2786 . 400472) (-2787 . 400261) (-2788 . 400143) - (-2789 . 400020) (-2790 . 399884) (-2791 . 399787) (-2792 . 399753) - (-2793 . 399315) (-2794 . 395252) (-2795 . 395136) (-2796 . 395081) - (-2797 . 394882) (-2798 . 394532) (-2799 . 394455) (-2800 . 394390) - (-2801 . 394244) (-2802 . 394113) (-2803 . 394057) (-2804 . 393956) - (-2805 . 393840) (-2806 . 393565) (-2807 . 393512) (-2808 . 393038) - (-2809 . 392720) (-2810 . 392637) (-2811 . 392493) (-2812 . 392275) - (-2813 . 392155) (-2814 . 392098) (-2815 . 391937) (-2816 . 391139) - (-2817 . 390713) (-2818 . 390653) (-2819 . 390012) (-2820 . 389955) - (-2821 . 389900) (-2822 . 387932) (-2823 . 387898) (-2824 . 387299) - (-2825 . 387227) (-2826 . 387098) (-2827 . 386806) (-2828 . 386677) - (-2829 . 386643) (-2830 . 386473) (-2831 . 386137) (-2832 . 385845) - (-2833 . 385731) (-2834 . 385600) (-2835 . 385529) (-2836 . 385326) - (-2837 . 385166) (-2838 . 384986) (-2839 . 384862) (-2840 . 384769) - (-2841 . 384482) (-2842 . 384359) (-2843 . 382014) (-2844 . 381936) - (-2845 . 381850) (-2846 . 381598) (-2847 . 381510) (-2848 . 381415) - (-2849 . 381041) (-2850 . 379263) (-2851 . 379179) (-2852 . 378847) - (-2853 . 378732) (-2854 . 378578) (-2855 . 378488) (-2856 . 378436) - (-2857 . 378254) (-2858 . 378204) (-2859 . 378123) (-2860 . 375282) - (-2861 . 374924) (-2862 . 374851) (-2863 . 373405) (-2864 . 373267) - (-2865 . 373062) (-2866 . 372966) (-2867 . 372599) (-2868 . 372480) - (-2869 . 372042) (-2870 . 371956) (-2871 . 371907) (-2872 . 371724) - (-2873 . 371577) (-2874 . 371485) (-2875 . 371367) (-2876 . 370946) - (-2877 . 370807) (-2878 . 370751) (-2879 . 369998) (-2880 . 369921) - (-2881 . 369703) (-2882 . 369532) (-2883 . 369148) (-2884 . 369089) - (-2885 . 369012) (-2886 . 368846) (-2887 . 368680) (-2888 . 368538) - (-2889 . 368216) (-2890 . 368139) (-2891 . 368066) (-2892 . 367951) - (-2893 . 367899) (-2894 . 367380) (-2895 . 367284) (-2896 . 367126) - (-2897 . 366994) (-2898 . 366894) (-2899 . 366690) (-2900 . 366594) - (-2901 . 366517) (-2902 . 366271) (-2903 . 366201) (-2904 . 364999) - (-2905 . 364721) (-2906 . 364558) (-2907 . 364458) (-2908 . 364405) - (-2909 . 364178) (-2910 . 364088) (-2911 . 364003) (-2912 . 363897) - (-2913 . 363582) (-2914 . 359422) (-2915 . 359352) (-2916 . 359299) - (-2917 . 359158) (-2918 . 358955) (-2919 . 358882) (-2920 . 358786) - (-2921 . 358575) (-2922 . 358492) (-2923 . 358439) (-2924 . 358294) - (-2925 . 358155) (-2926 . 358065) (-2927 . 357958) (-2928 . 357793) - (-2929 . 357605) (-2930 . 357552) (-2931 . 357342) (-2932 . 357246) - (-2933 . 357172) (-2934 . 357053) (-2935 . 356742) (-2936 . 355924) - (-2937 . 355782) (-2938 . 354963) (-2939 . 354825) (-2940 . 354584) - (-2941 . 354343) (-2942 . 354222) (-2943 . 354131) (-2944 . 347188) - (-2945 . 347093) (-2946 . 346938) (-2947 . 346794) (-2948 . 346636) - (-2949 . 346408) (-2950 . 346356) (-2951 . 345910) (-2952 . 345482) - (-2953 . 345204) (-2954 . 345111) (-2955 . 345059) (-2956 . 344992) - (-2957 . 344895) (-2958 . 344801) (-2959 . 344658) (-2960 . 344450) - (-2961 . 344352) (-2962 . 344299) (-2963 . 344216) (-2964 . 344130) - (-2965 . 344076) (-2966 . 343990) (-2967 . 343772) (-2968 . 343669) - (-2969 . 343506) (-2970 . 343432) (-2971 . 342836) (-2972 . 342705) - (-2973 . 342570) (-2974 . 342471) (-2975 . 342358) (-2976 . 342302) - (-2977 . 342206) (-2978 . 342046) (-2979 . 341693) (-2980 . 337150) - (-2981 . 337098) (-2982 . 336935) (-2983 . 336798) (-2984 . 336730) - (-2985 . 336567) (-2986 . 336514) (-2987 . 336415) (-2988 . 336365) - (-2989 . 336304) (-2990 . 336127) (-2991 . 335939) (-2992 . 335748) - (-2993 . 335695) (-2994 . 335547) (-2995 . 335494) (-2996 . 335306) - (-2997 . 335205) (-2998 . 335108) (-2999 . 335001) (-3000 . 334917) - (-3001 . 333996) (-3002 . 333942) (-3003 . 333848) (-3004 . 333696) - (-3005 . 333619) (-3006 . 333227) (-3007 . 333177) (-3008 . 333006) - (-3009 . 332946) (-3010 . 332804) (-3011 . 332624) (-3012 . 332494) - (-3013 . 332465) (-3014 . 332232) (-3015 . 332175) (-3016 . 331591) - (-3017 . 331426) (-3018 . 331090) (-3019 . 331038) (-3020 . 330943) - (-3021 . 330909) (-3022 . 330835) (-3023 . 330447) (-3024 . 330246) - (-3025 . 330115) (-3026 . 330062) (-3027 . 330006) (-3028 . 329920) - (-3029 . 329762) (-3030 . 329635) (-3031 . 329417) (-3032 . 329106) - (-3033 . 328912) (-3034 . 328845) (-3035 . 328335) (-3036 . 328258) - (-3037 . 328085) (-3038 . 328032) (-3039 . 327951) (-3040 . 327443) - (-3041 . 327203) (-3042 . 327031) (-3043 . 326737) (-3044 . 326709) - (-3045 . 326599) (-3046 . 326455) (-3047 . 326254) (-3048 . 326226) - (-3049 . 326159) (-3050 . 324727) (-3051 . 324634) (-3052 . 324143) - (-3053 . 324061) (-3054 . 323982) (-3055 . 323839) (-3056 . 323622) - (-3057 . 323541) (-3058 . 323471) (-3059 . 323418) (-3060 . 323269) - (-3061 . 322993) (-3062 . 322910) (-3063 . 322719) (-3064 . 322617) - (-3065 . 322268) (-3066 . 322035) (-3067 . 321919) (-3068 . 321613) - (-3069 . 320528) (-3070 . 320476) (-3071 . 320424) (-3072 . 320330) - (-3073 . 320274) (-3074 . 320173) (-3075 . 320086) (-3076 . 319965) - (-3077 . 319750) (-3078 . 319666) (-3079 . 319611) (-3080 . 319420) - (-3081 . 318992) (-3082 . 318904) (-3083 . 318789) (-3084 . 318413) - (-3085 . 317909) (-3086 . 317799) (-3087 . 317721) (-3088 . 317362) - (-3089 . 317302) (-3090 . 316992) (-3091 . 316893) (-3092 . 316819) - (-3093 . 316055) (-3094 . 315848) (-3095 . 315693) (-3096 . 315634) - (-3097 . 314569) (-3098 . 314510) (-3099 . 314395) (-3100 . 314311) - (-3101 . 314168) (-3102 . 314032) (-3103 . 313938) (-3104 . 313806) - (-3105 . 313728) (-3106 . 313696) (-3107 . 313020) (-3108 . 312992) - (-3109 . 312769) (-3110 . 312555) (-3111 . 312500) (-3112 . 312349) - (-3113 . 312153) (-3114 . 311051) (-3115 . 310997) (-3116 . 310934) - (-3117 . 310857) (-3118 . 310774) (-9 . 310746) (-3120 . 310628) - (-3121 . 310401) (-3122 . 310307) (-3123 . 309663) (-3124 . 309396) - (-3125 . 309157) (-3126 . 309061) (-3127 . 308797) (-3128 . 308687) - (-3129 . 308659) (-3130 . 308607) (-3131 . 308351) (-8 . 308323) - (-3133 . 308180) (-3134 . 308018) (-3135 . 307737) (-3136 . 307222) - (-3137 . 306636) (-3138 . 306542) (-3139 . 306469) (-3140 . 306326) - (-3141 . 306274) (-3142 . 306113) (-3143 . 306062) (-7 . 306034) - (-3145 . 305939) (-3146 . 305404) (-3147 . 305351) (-3148 . 305198) - (-3149 . 304996) (-3150 . 304901) (-3151 . 304604) (-3152 . 304538) - (-3153 . 304380) (-3154 . 304303) (-3155 . 303629) (-3156 . 303062) - (-3157 . 302988) (-3158 . 302724) (-3159 . 302564) (-3160 . 302480) - (-3161 . 302385) (-3162 . 302307) (-3163 . 301034) (-3164 . 300865) - (-3165 . 300729) (-3166 . 300672) (-3167 . 300324) (-3168 . 300169) - (-3169 . 300117) (-3170 . 299962) (-3171 . 299633) (-3172 . 299453) - (-3173 . 299401) (-3174 . 299308) (-3175 . 298824) (-3176 . 298773) - (-3177 . 289323) (-3178 . 289197) (-3179 . 289095) (-3180 . 288954) - (-3181 . 288832) (-3182 . 288704) (-3183 . 288627) (-3184 . 288508) - (-3185 . 288381) (-3186 . 288326) (-3187 . 287995) (-3188 . 287830) - (-3189 . 287372) (-3190 . 287313) (-3191 . 287192) (-3192 . 287068) - (-3193 . 286980) (-3194 . 286831) (-3195 . 286743) (-3196 . 286645) - (-3197 . 286397) (-3198 . 286231) (-3199 . 286134) (-3200 . 285955) - (-3201 . 285806) (-3202 . 285778) (-3203 . 285559) (-3204 . 285432) - (-3205 . 285355) (-3206 . 285261) (-3207 . 285092) (-3208 . 284922) - (-3209 . 284863) (-3210 . 284835) (-3211 . 284692) (-3212 . 284604) - (-3213 . 284518) (-3214 . 284416) (-3215 . 284248) (-3216 . 284138) - (-3217 . 284036) (-3218 . 283978) (-3219 . 283771) (-3220 . 283594) - (-3221 . 283535) (-3222 . 283278) (-3223 . 283114) (-3224 . 283017) - (-3225 . 282890) (-3226 . 282812) (-3227 . 282717) (-3228 . 282651) - (-3229 . 282623) (-3230 . 282390) (-3231 . 282006) (-3232 . 281927) - (-3233 . 281394) (-3234 . 281338) (-3235 . 281088) (-3236 . 280762) - (-3237 . 280658) (-3238 . 280368) (-3239 . 280186) (-3240 . 280149) - (-3241 . 277893) (-3242 . 277764) (-3243 . 277678) (-3244 . 277308) - (-3245 . 277212) (-3246 . 277082) (-3247 . 277008) (-3248 . 276842) - (-3249 . 276723) (-3250 . 276599) (-3251 . 276498) (-3252 . 276438) - (-3253 . 276309) (-3254 . 276091) (-3255 . 275795) (-3256 . 275622) - (-3257 . 275513) (-3258 . 275345) (-3259 . 275222) (-3260 . 275121) - (-3261 . 275035) (-3262 . 274961) (-3263 . 274715) (-3264 . 274620) - (-3265 . 274536) (-3266 . 274469) (-3267 . 274291) (-3268 . 273764) - (-3269 . 273616) (-3270 . 273408) (-3271 . 273380) (-3272 . 273292) - (-3273 . 273196) (-3274 . 273125) (-3275 . 272948) (-3276 . 272627) - (-3277 . 272507) (-3278 . 272408) (-3279 . 272329) (-3280 . 272181) - (-3281 . 271869) (-3282 . 271786) (-3283 . 271614) (-3284 . 271054) - (-3285 . 271002) (-3286 . 270906) (-3287 . 270455) (-3288 . 270381) - (-3289 . 270295) (-3290 . 270235) (-3291 . 269883) (-3292 . 269660) - (-3293 . 269544) (-3294 . 269392) (-3295 . 268789) (-3296 . 268674) - (-3297 . 268362) (-3298 . 268295) (-3299 . 268234) (-3300 . 268161) - (-3301 . 268066) (-3302 . 267850) (-3303 . 267248) (-3304 . 266974) - (-3305 . 266407) (-3306 . 266326) (-3307 . 266215) (-3308 . 266089) - (-3309 . 264952) (-3310 . 264875) (-3311 . 264776) (-3312 . 264723) - (-3313 . 264390) (-3314 . 264316) (-3315 . 264242) (-3316 . 264190) - (-3317 . 264025) (-3318 . 263734) (-3319 . 263564) (-3320 . 263468) - (-3321 . 263350) (-3322 . 263140) (-3323 . 263057) (-3324 . 263003) - (-3325 . 262875) (-3326 . 262655) (-3327 . 262048) (-3328 . 261814) - (-3329 . 261676) (-3330 . 261621) (-3331 . 261409) (-3332 . 261357) - (-3333 . 261098) (-3334 . 260983) (-3335 . 260905) (-3336 . 260795) - (-3337 . 260577) (-3338 . 260521) (-3339 . 260472) (-3340 . 260234) - (-3341 . 260184) (-3342 . 260095) (-3343 . 259987) (-3344 . 259936) - (-3345 . 259626) (-3346 . 259559) (-3347 . 259413) (-3348 . 259121) - (-3349 . 259041) (-3350 . 257613) (-3351 . 257553) (-3352 . 257474) - (-3353 . 257418) (-3354 . 257245) (-3355 . 257030) (-3356 . 256978) - (-3357 . 256683) (-3358 . 256389) (-3359 . 256213) (-3360 . 256071) - (-3361 . 256039) (-3362 . 255907) (-3363 . 255840) (-3364 . 255637) - (-3365 . 255456) (-3366 . 255361) (-3367 . 255308) (-3368 . 255178) - (-3369 . 255085) (-3370 . 254969) (-3371 . 254902) (-3372 . 254839) - (-3373 . 254724) (-3374 . 254600) (-3375 . 254548) (-3376 . 254462) - (-3377 . 254374) (-3378 . 254164) (-3379 . 254068) (-3380 . 253972) - (-3381 . 253901) (-3382 . 253513) (-3383 . 253339) (-3384 . 253090) - (-3385 . 252944) (-3386 . 252788) (-3387 . 252681) (-3388 . 252629) - (-3389 . 252531) (-3390 . 252396) (-3391 . 252295) (-3392 . 252236) - (-3393 . 252136) (-3394 . 252042) (-3395 . 251965) (-3396 . 251850) - (-3397 . 251734) (-3398 . 251602) (-3399 . 251461) (-3400 . 251301) - (-3401 . 250943) (-3402 . 250662) (-3403 . 250504) (-3404 . 250426) - (-3405 . 250343) (-3406 . 250245) (-3407 . 250173) (-3408 . 250027) - (-3409 . 249441) (-3410 . 249361) (-3411 . 248631) (-3412 . 248537) - (-3413 . 248136) (-3414 . 248084) (-3415 . 247956) (-3416 . 247863) - (-3417 . 247609) (-3418 . 247383) (-3419 . 247085) (-3420 . 246929) - (-3421 . 246818) (-3422 . 246730) (-3423 . 246000) (-3424 . 245639) - (-3425 . 245524) (-3426 . 245447) (-3427 . 245039) (-3428 . 244754) - (-3429 . 244680) (-3430 . 244298) (-3431 . 244226) (-3432 . 244001) - (-3433 . 243917) (-3434 . 243240) (-3435 . 242048) (-3436 . 241935) - (-3437 . 241795) (-3438 . 241767) (-3439 . 241431) (-3440 . 241345) - (-3441 . 241127) (-3442 . 240995) (-3443 . 240742) (-3444 . 240339) - (-3445 . 240134) (-3446 . 240052) (-3447 . 239487) (-3448 . 239407) - (-3449 . 239264) (-3450 . 239190) (-3451 . 239013) (-3452 . 238930) - (-3453 . 238881) (-3454 . 238563) (-3455 . 238317) (-3456 . 238260) - (-3457 . 238115) (-3458 . 238016) (-3459 . 237599) (-3460 . 237034) - (-3461 . 236878) (-3462 . 236756) (-3463 . 236688) (-3464 . 236221) - (-3465 . 235962) (-3466 . 235889) (-3467 . 235816) (-3468 . 235414) - (-3469 . 235222) (-3470 . 234563) (-3471 . 234211) (-3472 . 234051) - (-3473 . 233486) (-3474 . 233359) (-3475 . 233267) (-3476 . 232983) - (-3477 . 232712) (-3478 . 232584) (-3479 . 232200) (-3480 . 231901) - (-3481 . 231722) (-3482 . 231556) (-3483 . 231455) (-3484 . 231297) - (-3485 . 231213) (-3486 . 230538) (-3487 . 230384) (-3488 . 230247) - (-3489 . 230147) (-3490 . 230087) (-3491 . 230013) (-3492 . 229882) - (-3493 . 229786) (-3494 . 229595) (-3495 . 229509) (-3496 . 229428) - (-3497 . 228753) (-3498 . 228681) (-3499 . 228586) (-3500 . 228531) - (-3501 . 228436) (-3502 . 228383) (-3503 . 228288) (-3504 . 227861) - (-3505 . 227790) (-3506 . 227611) (-3507 . 227481) (-3508 . 227354) - (-3509 . 226616) (-3510 . 226537) (-3511 . 226488) (-3512 . 226201) - (-3513 . 225891) (-3514 . 225839) (-3515 . 225681) (-3516 . 225581) - (-3517 . 225471) (-3518 . 225374) (-3519 . 224792) (-3520 . 224740) - (-3521 . 224627) (-3522 . 224064) (-3523 . 224005) (-3524 . 223841) - (-3525 . 223693) (-3526 . 223662) (-3527 . 223486) (-3528 . 223171) - (-3529 . 223137) (-3530 . 223054) (-3531 . 223022) (-3532 . 222858) - (-3533 . 222776) (-3534 . 222566) (-3535 . 221385) (-3536 . 220822) - (-3537 . 220712) (-3538 . 220191) (-3539 . 220117) (-3540 . 219994) - (-3541 . 219934) (-3542 . 219900) (-3543 . 219832) (-3544 . 219713) - (-3545 . 217857) (-3546 . 217736) (-3547 . 217221) (-3548 . 217074) - (-3549 . 216511) (-3550 . 216423) (-3551 . 216270) (-3552 . 216205) - (-3553 . 216137) (-3554 . 215710) (-3555 . 215262) (-3556 . 215182) - (-3557 . 214587) (-3558 . 214454) (-3559 . 214371) (-3560 . 213830) - (-3561 . 213154) (-3562 . 213089) (-3563 . 213036) (-3564 . 212069) - (-3565 . 211727) (-3566 . 211613) (-3567 . 211480) (-3568 . 211309) - (-3569 . 211196) (-3570 . 210977) (-3571 . 210821) (-3572 . 210742) - (-3573 . 210066) (-3574 . 209913) (-3575 . 209466) (-3576 . 209380) - (-3577 . 209326) (-3578 . 208458) (-3579 . 208291) (-3580 . 208210) - (-3581 . 208160) (-3582 . 207943) (-3583 . 207884) (-3584 . 207832) - (-3585 . 207156) (-3586 . 206405) (-3587 . 206281) (-3588 . 206209) - (-3589 . 206110) (-3590 . 205943) (-3591 . 205764) (-3592 . 204646) - (-3593 . 204294) (-3594 . 204160) (-3595 . 204056) (-3596 . 203847) - (-3597 . 203495) (-3598 . 202931) (-3599 . 202848) (-3600 . 202764) - (-3601 . 202646) (-3602 . 202566) (-3603 . 202079) (-3604 . 202009) - (-3605 . 201828) (-3606 . 201652) (-3607 . 201520) (-3608 . 201416) - (-3609 . 201189) (-3610 . 201086) (-3611 . 200522) (-3612 . 200444) - (-3613 . 200203) (-3614 . 200132) (-3615 . 199987) (-3616 . 199847) - (-3617 . 199746) (-3618 . 199461) (-3619 . 199408) (-3620 . 199379) - (-3621 . 198992) (-3622 . 198428) (-3623 . 198283) (-3624 . 198205) - (-3625 . 198125) (-3626 . 197861) (-3627 . 197784) (-3628 . 197631) - (-3629 . 197463) (-3630 . 197327) (-3631 . 196764) (-3632 . 196462) - (-3633 . 195958) (-3634 . 195875) (-3635 . 195772) (-3636 . 195647) - (-3637 . 195423) (-3638 . 195327) (-3639 . 195240) (-3640 . 195084) - (-3641 . 194521) (-3642 . 194469) (-3643 . 194023) (-3644 . 193882) - (-3645 . 193741) (-3646 . 193629) (-3647 . 193487) (-3648 . 193459) - (-3649 . 193328) (-3650 . 193203) (-3651 . 192953) (-3652 . 192390) - (-3653 . 192288) (-3654 . 192175) (-3655 . 192047) (-3656 . 191899) - (-3657 . 191583) (-3658 . 191488) (-3659 . 191281) (-3660 . 191209) - (-3661 . 190746) (-3662 . 190481) (-3663 . 189918) (-3664 . 189788) - (-3665 . 189675) (-3666 . 189545) (-3667 . 189452) (-3668 . 189330) - (-3669 . 188936) (-3670 . 188866) (-3671 . 188405) (-3672 . 187842) - (-3673 . 187747) (-3674 . 187639) (-3675 . 187544) (-3676 . 187444) - (-3677 . 187305) (-3678 . 186529) (-3679 . 185330) (-3680 . 185115) - (-3681 . 184607) (-3682 . 184506) (-3683 . 184427) (-3684 . 184353) - (-3685 . 184123) (-3686 . 184066) (-3687 . 183696) (-3688 . 183628) - (-3689 . 183246) (-3690 . 183179) (-3691 . 183025) (-3692 . 182970) - (-3693 . 182867) (-3694 . 182617) (-3695 . 182074) (-3696 . 182022) - (-3697 . 181970) (-3698 . 181865) (-3699 . 181412) (-3700 . 180996) - (-3701 . 180761) (-3702 . 180684) (-3703 . 180555) (-3704 . 180464) - (-3705 . 180380) (-3706 . 180227) (-3707 . 179641) (-3708 . 179578) - (-3709 . 179449) (-3710 . 179103) (-3711 . 179008) (-3712 . 178920) - (-3713 . 178793) (-3714 . 178687) (-3715 . 178610) (-3716 . 178506) - (-3717 . 178474) (-3718 . 178066) (-3719 . 177634) (-3720 . 177512) - (-3721 . 177236) (-3722 . 177002) (-3723 . 176821) (-3724 . 176594) - (-3725 . 176535) (-3726 . 176450) (-3727 . 176354) (-3728 . 176084) - (-3729 . 175964) (-3730 . 175902) (-3731 . 175801) (-3732 . 175368) - (-3733 . 174764) (-3734 . 174558) (-3735 . 174268) (-3736 . 174213) - (-3737 . 174104) (-3738 . 173738) (-3739 . 173477) (-3740 . 173285) - (-3741 . 173167) (-3742 . 173069) (-3743 . 172890) (-3744 . 172745) - (-3745 . 172686) (-3746 . 172652) (-3747 . 172557) (-3748 . 172369) - (-3749 . 172251) (-3750 . 171978) (-3751 . 171950) (-3752 . 171782) - (-3753 . 171664) (-3754 . 171545) (-3755 . 171514) (-3756 . 171462) - (-3757 . 171358) (-3758 . 171013) (-3759 . 170936) (-3760 . 170296) - (-3761 . 170076) (-3762 . 169931) (-3763 . 169619) (-3764 . 169559) - (-3765 . 169488) (-3766 . 168336) (-3767 . 168268) (-3768 . 168016) - (-3769 . 167900) (-3770 . 167745) (-3771 . 167650) (-3772 . 167533) - (-3773 . 166190) (-3774 . 166104) (-3775 . 165957) (-3776 . 165856) - (-3777 . 165779) (-3778 . 165722) (-3779 . 165606) (-3780 . 165486) - (-3781 . 165352) (-3782 . 164129) (-3783 . 163991) (-3784 . 163792) - (-3785 . 163743) (-3786 . 163425) (-3787 . 163360) (-3788 . 163332) - (-3789 . 163255) (-3790 . 163203) (-3791 . 163132) (-3792 . 163075) - (-3793 . 163022) (-3794 . 162850) (-3795 . 162822) (-3796 . 162727) - (-3797 . 162674) (-3798 . 162595) (-3799 . 162372) (-3800 . 162158) - (-3801 . 162105) (-3802 . 161962) (-3803 . 161934) (-3804 . 161832) - (-12 . 161660) (-3806 . 161537) (-3807 . 161467) (-3808 . 161365) - (-3809 . 161272) (-3810 . 161198) (-3811 . 161083) (-3812 . 160951) - (-3813 . 160849) (-3814 . 160778) (-3815 . 160620) (-3816 . 160477) - (-3817 . 160232) (-3818 . 160149) (-3819 . 160017) (-3820 . 159916) - (-3821 . 159705) (-3822 . 159531) (-3823 . 159350) (-3824 . 159294) - (-3825 . 159242) (-3826 . 159108) (-3827 . 159053) (-3828 . 158887) - (-3829 . 158556) (-3830 . 158470) (-3831 . 157881) (-3832 . 157455) - (-3833 . 157377) (-3834 . 157044) (-3835 . 156885) (-3836 . 156755) - (-3837 . 156627) (-3838 . 156539) (-3839 . 156467) (-3840 . 156271) - (-3841 . 156132) (-3842 . 156044) (-3843 . 155967) (-3844 . 155607) - (-3845 . 154305) (-3846 . 154273) (-3847 . 154168) (-3848 . 153792) - (-3849 . 153647) (-3850 . 153619) (-3851 . 153541) (-3852 . 153255) - (-3853 . 153185) (-3854 . 153128) (-3855 . 153058) (-3856 . 152887) - (-3857 . 152728) (-3858 . 152699) (-3859 . 152477) (-3860 . 152374) - (-3861 . 152058) (-3862 . 151883) (-3863 . 151823) (-3864 . 151725) - (-3865 . 151629) (-3866 . 151570) (-3867 . 151511) (-3868 . 151459) - (-3869 . 151205) (-3870 . 151131) (-3871 . 151063) (-3872 . 150841) - (-3873 . 150657) (-3874 . 150560) (-3875 . 150508) (-3876 . 150456) - (-3877 . 150277) (-3878 . 150193) (-3879 . 150112) (-3880 . 149985) - (-3881 . 149767) (-3882 . 149515) (-3883 . 149362) (-3884 . 149204) - (-3885 . 149066) (-3886 . 148927) (-3887 . 148840) (-3888 . 148699) - (-3889 . 148569) (-3890 . 148481) (-3891 . 148430) (-3892 . 148157) - (-3893 . 147864) (-3894 . 147568) (-3895 . 147427) (-3896 . 147281) - (-3897 . 147196) (-3898 . 146545) (-3899 . 146464) (-3900 . 145247) - (-3901 . 145136) (-3902 . 145021) (-3903 . 144833) (-3904 . 144746) - (* . 140633) (-3906 . 140385) (-3907 . 140100) (-3908 . 139679) - (-3909 . 139612) (-3910 . 139516) (-3911 . 139230) (-3912 . 139050) - (-3913 . 138642) (-3914 . 138590) (-3915 . 138463) (-3916 . 138362) - (-3917 . 138222) (-3918 . 138084) (-3919 . 137939) (-3920 . 137624) - (-3921 . 137532) (-3922 . 137453) (-3923 . 137023) (-3924 . 136955) - (-3925 . 136853) (-3926 . 136481) (-3927 . 136429) (-3928 . 136362) - (-3929 . 136267) (-3930 . 136215) (-3931 . 136120) (-3932 . 135480) - (-3933 . 134332) (-3934 . 134208) (-3935 . 133831) (-3936 . 133644) - (-3937 . 133577) (-3938 . 133305) (-3939 . 133185) (-3940 . 133012) - (-3941 . 132893) (-3942 . 132777) (-3943 . 132703) (-3944 . 132559) - (-3945 . 132384) (-3946 . 132325) (-3947 . 131934) (-3948 . 131799) - (-3949 . 131697) (-3950 . 131645) (-3951 . 131592) (-3952 . 131515) - (-3953 . 131376) (-3954 . 130989) (-3955 . 130647) (-3956 . 130354) - (-3957 . 130265) (-3958 . 130035) (-3959 . 129898) (-3960 . 129848) - (-3961 . 129769) (-3962 . 129538) (-3963 . 129440) (-3964 . 129088) - (-3965 . 128993) (-3966 . 128894) (-3967 . 128824) (-3968 . 128722) - (-3969 . 128493) (-3970 . 128426) (-3971 . 128373) (-3972 . 127822) - (-3973 . 127603) (-3974 . 127516) (-3975 . 127303) (-3976 . 127192) - (-3977 . 127121) (-3978 . 127008) (-3979 . 126755) (-3980 . 126612) - (-3981 . 126531) (-3982 . 126468) (-3983 . 126309) (-3984 . 126009) - (-3985 . 125791) (-3986 . 125613) (-3987 . 125540) (-3988 . 125437) - (-3989 . 125342) (-3990 . 125181) (-3991 . 124374) (-3992 . 124122) - (-3993 . 124035) (-3994 . 123932) (-3995 . 123875) (-3996 . 123478) - (-3997 . 123291) (-3998 . 123136) (-3999 . 123077) (-4000 . 122855) - (-4001 . 122703) (-4002 . 122525) (-4003 . 122473) (-4004 . 122404) - (-4005 . 121807) (-4006 . 121588) (-4007 . 121388) (-4008 . 121298) - (-4009 . 121227) (-4010 . 120816) (-4011 . 120739) (-4012 . 120626) - (-4013 . 120468) (-4014 . 119398) (-4015 . 119285) (-4016 . 119078) - (-4017 . 117898) (-4018 . 117661) (-4019 . 117593) (-4020 . 117489) - (-4021 . 117096) (-4022 . 116982) (-4023 . 116654) (-4024 . 116530) - (-4025 . 116168) (-4026 . 114982) (-4027 . 114911) (-4028 . 114821) - (-4029 . 114737) (-4030 . 114607) (-4031 . 114488) (-4032 . 114317) - (-4033 . 114255) (-4034 . 114199) (-4035 . 113989) (-4036 . 112807) - (-4037 . 112612) (-4038 . 112516) (-4039 . 112463) (-4040 . 112310) - (-4041 . 112243) (-4042 . 112069) (-4043 . 111946) (-4044 . 110868) - (-4045 . 110760) (-4046 . 108552) (-4047 . 108491) (-4048 . 108403) - (-4049 . 108290) (-4050 . 108130) (-4051 . 108064) (-4052 . 107573) - (-4053 . 107515) (-4054 . 107412) (-4055 . 107288) (-4056 . 107224) - (-4057 . 107169) (-4058 . 107052) (-4059 . 106953) (-4060 . 106886) - (-4061 . 106733) (-4062 . 106420) (-4063 . 106170) (-4064 . 106063) - (-4065 . 105898) (-4066 . 105703) (-4067 . 105602) (-4068 . 105458) - (-4069 . 105288) (-4070 . 105257) (-4071 . 105009) (-4072 . 104975) - (-4073 . 104769) (-4074 . 104702) (-4075 . 104535) (-4076 . 104452) - (-4077 . 104380) (-4078 . 104185) (-4079 . 104048) (-4080 . 103969) - (-4081 . 103854) (-4082 . 103492) (-4083 . 103188) (-4084 . 102934) - (-4085 . 102856) (-4086 . 102758) (-4087 . 102696) (-4088 . 101832) - (-4089 . 101606) (-4090 . 101520) (-4091 . 101415) (-4092 . 101281) - (-4093 . 101209) (-4094 . 101088) (-4095 . 101011) (-4096 . 100801) - (-4097 . 100612) (-4098 . 100448) (-4099 . 100378) (-4100 . 100254) - (-4101 . 100181) (-4102 . 99762) (-4103 . 99646) (-4104 . 99503) - (-4105 . 99426) (-4106 . 98364) (-4107 . 98202) (-4108 . 97940) - (-4109 . 97487) (-4110 . 97364) (-4111 . 97292) (-4112 . 78717) - (-4113 . 78640) (-4114 . 78575) (-4115 . 77709) (-4116 . 77564) - (-4117 . 77536) (-4118 . 77417) (-4119 . 77365) (-4120 . 77328) - (-4121 . 77101) (-4122 . 77048) (-4123 . 76942) (-4124 . 74121) - (-4125 . 74038) (-4126 . 72776) (-4127 . 72723) (-4128 . 72564) - (-4129 . 72480) (-4130 . 72271) (-4131 . 72194) (-4132 . 72100) - (-4133 . 71944) (-4134 . 70694) (-4135 . 70469) (-4136 . 70356) - (-4137 . 69974) (-4138 . 69905) (-4139 . 69589) (-4140 . 69455) - (-4141 . 69347) (-4142 . 69202) (-4143 . 69147) (-4144 . 68970) - (-4145 . 68872) (-4146 . 68784) (-4147 . 68606) (-4148 . 67960) - (-4149 . 66868) (-4150 . 66812) (-4151 . 66267) (-4152 . 65926) - (-4153 . 65871) (-4154 . 65758) (-4155 . 65685) (-4156 . 65608) - (-4157 . 65556) (-4158 . 64964) (-4159 . 64879) (-4160 . 64790) - (-4161 . 64652) (-4162 . 64620) (-4163 . 64526) (-4164 . 64368) - (-4165 . 64295) (-4166 . 63940) (-4167 . 63756) (-4168 . 63682) - (-4169 . 63423) (-4170 . 63033) (-4171 . 62948) (-4172 . 62875) - (-4173 . 62583) (-4174 . 62477) (-4175 . 62421) (-4176 . 62333) - (-4177 . 62226) (-4178 . 62011) (-4179 . 61883) (-4180 . 61652) - (-4181 . 61463) (-4182 . 61148) (-4183 . 61093) (-4184 . 60942) - (-4185 . 60865) (-4186 . 60706) (-4187 . 60323) (-4188 . 60256) - (-4189 . 60091) (-4190 . 59963) (-4191 . 59379) (-4192 . 59247) - (-4193 . 59064) (-4194 . 58946) (-4195 . 58843) (-4196 . 58706) - (-4197 . 58650) (-4198 . 58547) (-4199 . 58467) (-4200 . 58414) - (-4201 . 58277) (-4202 . 57924) (-4203 . 57699) (-4204 . 57577) - (-4205 . 57480) (-4206 . 57221) (-4207 . 56993) (-4208 . 56584) - (-4209 . 56512) (-4210 . 56177) (-4211 . 56118) (-4212 . 55692) - (-4213 . 53911) (-4214 . 53816) (-4215 . 53713) (-4216 . 53660) - (-4217 . 53344) (-4218 . 53295) (-4219 . 53224) (-4220 . 52590) - (-4221 . 52379) (-4222 . 52306) (-4223 . 52216) (-4224 . 52150) - (-4225 . 51965) (-4226 . 51474) (-4227 . 51421) (-4228 . 51201) - (-4229 . 50779) (-4230 . 50536) (-4231 . 50469) (-4232 . 50242) - (-4233 . 50172) (-4234 . 49971) (-4235 . 49885) (-4236 . 49797) - (-4237 . 49163) (-4238 . 49110) (-4239 . 48885) (-4240 . 48629) - (-4241 . 48416) (-4242 . 48312) (-4243 . 48260) (-4244 . 48187) - (-4245 . 48116) (-4246 . 48067) (-4247 . 48014) (-4248 . 47957) - (-4249 . 47929) (-4250 . 47851) (-4251 . 47363) (-4252 . 47247) - (-4253 . 47145) (-4254 . 47057) (-4255 . 46907) (-4256 . 46836) - (-4257 . 46533) (-4258 . 46499) (-4259 . 46432) (-4260 . 46225) - (-4261 . 43444) (-4262 . 43354) (-4263 . 43302) (-4264 . 43223) - (-4265 . 42796) (-4266 . 42725) (-4267 . 41421) (-4268 . 41339) - (-4269 . 39750) (-4270 . 39713) (-4271 . 39325) (-4272 . 39218) - (-4273 . 38966) (-4274 . 38861) (-4275 . 38727) (-4276 . 38641) - (-4277 . 38498) (-4278 . 38123) (-4279 . 37995) (-4280 . 37797) - (-4281 . 37685) (-4282 . 37520) (-4283 . 37360) (-4284 . 37280) - (-4285 . 37034) (-4286 . 36707) (-4287 . 36630) (-4288 . 36441) - (-4289 . 36338) (-4290 . 36280) (-4291 . 35750) (-4292 . 35652) - (-4293 . 35231) (-4294 . 35028) (-4295 . 34661) (-4296 . 34465) - (-4297 . 34356) (-4298 . 34327) (-4299 . 34077) (-4300 . 33834) - (-4301 . 33637) (-4302 . 33299) (-4303 . 33232) (-4304 . 29569) - (-4305 . 29428) (-4306 . 29131) (-4307 . 28905) (-4308 . 28821) - (-4309 . 28748) (-4310 . 28423) (-4311 . 28233) (-4312 . 28162) - (-4313 . 28064) (-4314 . 27893) (-4315 . 27813) (-4316 . 27733) - (-4317 . 27652) (-4318 . 27580) (-4319 . 27527) (-4320 . 27280) - (-4321 . 27089) (-4322 . 26925) (-4323 . 26638) (-4324 . 26498) - (-4325 . 26470) (-4326 . 26396) (-4327 . 26258) (-4328 . 26187) - (-4329 . 26101) (-4330 . 25912) (-4331 . 25378) (-4332 . 23317) - (-4333 . 23114) (-4334 . 23030) (-4335 . 22845) (-4336 . 22493) - (-4337 . 22341) (-4338 . 22288) (-4339 . 22177) (-4340 . 22037) - (-4341 . 21912) (-4342 . 21860) (-4343 . 21805) (-4344 . 21675) - (-4345 . 21482) (-4346 . 21429) (-4347 . 21378) (-4348 . 21036) - (-4349 . 20659) (-4350 . 20610) (-4351 . 20539) (-4352 . 20350) - (-4353 . 20156) (-4354 . 20095) (-4355 . 19988) (-4356 . 19770) - (-4357 . 19178) (-4358 . 19070) (-4359 . 19018) (-4360 . 18962) - (-4361 . 18715) (-4362 . 18656) (-4363 . 18587) (-4364 . 18480) - (-4365 . 18337) (-4366 . 18260) (-4367 . 18054) (-4368 . 14054) - (-4369 . 13431) (-4370 . 13326) (-4371 . 13248) (-4372 . 13162) - (-4373 . 12923) (-4374 . 12827) (-4375 . 12683) (-4376 . 12655) - (-4377 . 12602) (-4378 . 12384) (-4379 . 12277) (-4380 . 12005) - (-4381 . 11953) (-4382 . 11735) (-4383 . 11439) (-4384 . 11217) - (-4385 . 11160) (-4386 . 11063) (-4387 . 11001) (-4388 . 10744) - (-4389 . 10637) (-4390 . 10512) (-4391 . 10366) (-4392 . 9880) - (-4393 . 9825) (-4394 . 9632) (-4395 . 9559) (-4396 . 9471) - (-4397 . 9092) (-4398 . 8909) (-4399 . 8615) (-4400 . 8385) - (-4401 . 8261) (-4402 . 8178) (-4403 . 8095) (-4404 . 7980) - (-4405 . 7644) (-4406 . 7507) (-4407 . 7424) (-4408 . 7336) - (-4409 . 7154) (-4410 . 6849) (-4411 . 6733) (-4412 . 6681) - (-4413 . 6581) (-4414 . 6514) (-4415 . 6070) (-4416 . 5739) - (-4417 . 5415) (-4418 . 5144) (-4419 . 4971) (-4420 . 4843) - (-4421 . 4737) (-4422 . 4570) (-4423 . 4370) (-4424 . 4085) - (-4425 . 3999) (-4426 . 3944) (-4427 . 3569) (-4428 . 3301) - (-4429 . 3188) (-4430 . 2710) (-4431 . 2643) (-4432 . 2498) - (-4433 . 1952) (-4434 . 1842) (-4435 . 1507) (-4436 . 1426) - (-4437 . 1360) (-4438 . 863) (-4439 . 707) (-4440 . 493) (-4441 . 372) - (-4442 . 310) (-4443 . 30)) \ No newline at end of file + (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) + (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) + (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-171 (-576))))) + (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) + (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) + (-4 *2 (-1070))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) + (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) +((-1322 . 731420) (-1323 . 731351) (-1324 . 731172) (-1325 . 731078) + (-1326 . 730998) (-1327 . 730346) (-1328 . 730207) (-1329 . 729886) + (-1330 . 729818) (-1331 . 729686) (-1332 . 729602) (-1333 . 729069) + (-1334 . 728870) (-1335 . 728612) (-1336 . 728558) (-1337 . 728486) + (-1338 . 728433) (-1339 . 728006) (-1340 . 727861) (-1341 . 727678) + (-1342 . 727504) (-1343 . 727447) (-1344 . 727391) (-1345 . 727310) + (-1346 . 727144) (-1347 . 727021) (-1348 . 726937) (-1349 . 726489) + (-1350 . 726336) (-1351 . 726233) (-1352 . 726106) (-1353 . 725946) + (-1354 . 725696) (-1355 . 725517) (-1356 . 725306) (-1357 . 725033) + (-1358 . 724160) (-1359 . 724077) (-1360 . 724000) (-1361 . 723920) + (-1362 . 723814) (-1363 . 723677) (-1364 . 723351) (-1365 . 723248) + (-1366 . 723198) (-1367 . 722980) (-1368 . 722862) (-1369 . 721434) + (-1370 . 721366) (-1371 . 720771) (-1372 . 720715) (-1373 . 720684) + (-1374 . 720553) (-1375 . 720480) (-1376 . 720376) (-1377 . 720253) + (-1378 . 720001) (-1379 . 719823) (-1380 . 719690) (-1381 . 719593) + (-1382 . 719199) (-1383 . 719096) (-1384 . 718806) (-1385 . 718670) + (-1386 . 718518) (-1387 . 718335) (-1388 . 718182) (-1389 . 718066) + (-1390 . 717639) (-1391 . 717611) (-1392 . 717528) (-1393 . 717412) + (-1394 . 717332) (-1395 . 717248) (-1396 . 717066) (-1397 . 716928) + (-1398 . 716879) (-1399 . 716826) (-1400 . 716729) (-1401 . 716521) + (-1402 . 716382) (-1403 . 716323) (-1404 . 715782) (-1405 . 715729) + (-1406 . 715590) (-1407 . 715434) (-1408 . 715400) (-1409 . 714723) + (-1410 . 714658) (-1411 . 714540) (-1412 . 714403) (-1413 . 714349) + (-1414 . 714266) (-1415 . 714179) (-1416 . 714121) (-1417 . 713683) + (-1418 . 713623) (-1419 . 713566) (-1420 . 713274) (-1421 . 713221) + (-1422 . 712868) (-1423 . 712750) (-1424 . 712405) (-1425 . 712289) + (-1426 . 712148) (-1427 . 711995) (-1428 . 711858) (-1429 . 711805) + (-1430 . 711463) (-1431 . 711315) (-1432 . 711218) (-1433 . 710820) + (-1434 . 710593) (-1435 . 710492) (-1436 . 710437) (-1437 . 710307) + (-1438 . 710226) (-1439 . 709967) (-1440 . 709879) (-1441 . 709785) + (-1442 . 709586) (-1443 . 709517) (-1444 . 709429) (-1445 . 709377) + (-1446 . 708349) (-1447 . 708275) (-1448 . 708047) (** . 705052) + (-1450 . 704998) (-1451 . 704903) (-1452 . 704259) (-1453 . 703909) + (-1454 . 703858) (-1455 . 702984) (-1456 . 702691) (-1457 . 702309) + (-1458 . 702192) (-1459 . 701783) (-1460 . 701544) (-1461 . 701448) + (-1462 . 701381) (-1463 . 701323) (-1464 . 701050) (-1465 . 700973) + (-1466 . 700825) (-1467 . 700753) (-1468 . 700274) (-1469 . 700202) + (-1470 . 700128) (-1471 . 699864) (-1472 . 699545) (-1473 . 699459) + (-1474 . 699234) (-1475 . 698899) (-1476 . 698840) (-1477 . 698730) + (-1478 . 698662) (-1479 . 698592) (-1480 . 698175) (-1481 . 698089) + (-1482 . 698005) (-1483 . 697871) (-1484 . 697812) (-1485 . 696896) + (-1486 . 696844) (-1487 . 696743) (-1488 . 696491) (-1489 . 696279) + (-1490 . 695087) (-1491 . 694962) (-1492 . 694860) (-1493 . 694434) + (-1494 . 694350) (-1495 . 694094) (-1496 . 694012) (-1497 . 693896) + (-1498 . 693763) (-1499 . 693711) (-1500 . 693598) (-1501 . 693492) + (-1502 . 693349) (-1503 . 693165) (-1504 . 693077) (-1505 . 692922) + (-1506 . 692818) (-1507 . 692567) (-1508 . 692427) (-1509 . 692173) + (-1510 . 692066) (-1511 . 691982) (-1512 . 691820) (-1513 . 691725) + (-1514 . 691469) (-1515 . 691295) (-1516 . 691267) (-1517 . 691092) + (-1518 . 691014) (-1519 . 690733) (-1520 . 690595) (-1521 . 690478) + (-1522 . 690328) (-1523 . 690278) (-1524 . 689879) (-1525 . 689543) + (-1526 . 689445) (-1527 . 688930) (-1528 . 688307) (-1529 . 686964) + (-1530 . 686879) (-1531 . 686722) (-1532 . 686636) (-1533 . 686550) + (-1534 . 686488) (-1535 . 685902) (-1536 . 685761) (-1537 . 685675) + (-1538 . 685477) (-1539 . 685353) (-1540 . 685247) (-1541 . 685106) + (-1542 . 684888) (-1543 . 684024) (-1544 . 683930) (-1545 . 683798) + (-1546 . 683736) (-1547 . 683589) (-1548 . 683506) (-1549 . 683199) + (-1550 . 683101) (-1551 . 682848) (-1552 . 682622) (-1553 . 682234) + (-1554 . 682161) (-1555 . 682048) (-1556 . 681763) (-1557 . 681662) + (-1558 . 681579) (-1559 . 681545) (-1560 . 681380) (-1561 . 680977) + (-1562 . 680891) (-1563 . 680773) (-1564 . 680649) (-1565 . 680506) + (-1566 . 680402) (-1567 . 680307) (-1568 . 680230) (-1569 . 680115) + (-1570 . 679411) (-1571 . 679383) (-1572 . 674840) (-1573 . 674635) + (-1574 . 674583) (-1575 . 674478) (-1576 . 674317) (-1577 . 674216) + (-1578 . 674142) (-1579 . 674085) (-1580 . 673948) (-1581 . 673267) + (-1582 . 673200) (-1583 . 673101) (-1584 . 672958) (-1585 . 672824) + (-1586 . 672572) (-1587 . 672521) (-1588 . 672374) (-1589 . 672254) + (-1590 . 672171) (-1591 . 672097) (-1592 . 672023) (-1593 . 671894) + (-1594 . 671822) (-1595 . 671727) (-1596 . 671597) (-1597 . 671437) + (-1598 . 671303) (-1599 . 671215) (-1600 . 670962) (-1601 . 670622) + (-1602 . 670300) (-1603 . 670123) (-1604 . 670002) (-1605 . 669038) + (-1606 . 668503) (-1607 . 668115) (-1608 . 666892) (-1609 . 666710) + (-1610 . 666603) (-1611 . 666232) (-1612 . 666149) (-1613 . 666051) + (-1614 . 665841) (-1615 . 665211) (-1616 . 665157) (-1617 . 665062) + (-1618 . 665009) (-1619 . 664981) (-1620 . 664843) (-1621 . 664538) + (-1622 . 664469) (-1623 . 664420) (-1624 . 664311) (-1625 . 664122) + (-1626 . 664049) (-1627 . 663896) (-1628 . 663847) (-1629 . 663773) + (-1630 . 663657) (-1631 . 663625) (-1632 . 663281) (-1633 . 662963) + (-1634 . 662799) (-1635 . 662687) (-1636 . 662485) (-1637 . 662426) + (-1638 . 662108) (-1639 . 661799) (-1640 . 661747) (-1641 . 661687) + (-1642 . 661619) (-1643 . 661373) (-1644 . 661303) (-1645 . 661243) + (-1646 . 661148) (-1647 . 660665) (-1648 . 660579) (-1649 . 660464) + (-1650 . 660399) (-1651 . 660286) (-1652 . 660186) (-1653 . 660114) + (-1654 . 659985) (-1655 . 659840) (-1656 . 659716) (-1657 . 659157) + (-1658 . 658860) (-1659 . 658803) (-1660 . 658775) (-1661 . 658527) + (-1662 . 654464) (-1663 . 654397) (-1664 . 654237) (-1665 . 653751) + (-1666 . 653652) (-1667 . 653583) (-1668 . 653510) (-1669 . 652951) + (-1670 . 652885) (-1671 . 652802) (-1672 . 652725) (-1673 . 652658) + (-1674 . 652214) (-1675 . 651935) (-1676 . 651769) (-1677 . 651352) + (-1678 . 650933) (-1679 . 650784) (-1680 . 650626) (-1681 . 649084) + (-1682 . 649032) (-1683 . 648701) (-1684 . 648635) (-1685 . 648534) + (-1686 . 648378) (-1687 . 648262) (-1688 . 648234) (-1689 . 647988) + (-1690 . 647900) (-1691 . 647823) (-1692 . 647752) (-1693 . 647652) + (-1694 . 647328) (-1695 . 647235) (-1696 . 647113) (-1697 . 647042) + (-1698 . 646965) (-1699 . 646719) (-1700 . 646481) (-1701 . 645914) + (-1702 . 645819) (-1703 . 645762) (-1704 . 643417) (-1705 . 643146) + (-1706 . 643047) (-1707 . 642995) (-1708 . 642927) (-1709 . 642765) + (-1710 . 642686) (-1711 . 642612) (-1712 . 642481) (-1713 . 642428) + (-1714 . 642070) (-1715 . 641897) (-1716 . 641254) (-1717 . 640787) + (-1718 . 639970) (-1719 . 639708) (-1720 . 639604) (-1721 . 639340) + (-1722 . 639312) (-1723 . 639208) (-1724 . 639080) (-1725 . 638962) + (-1726 . 638907) (-1727 . 638648) (-1728 . 638195) (-1729 . 638035) + (-1730 . 637980) (-1731 . 637885) (-1732 . 637779) (-1733 . 637673) + (-1734 . 637571) (-1735 . 637498) (-1736 . 637352) (-1737 . 637229) + (-1738 . 637145) (-1739 . 636927) (-1740 . 636875) (-1741 . 636822) + (-1742 . 636655) (-1743 . 636470) (-1744 . 636312) (-1745 . 636239) + (-1746 . 636167) (-1747 . 636065) (-1748 . 635970) (-1749 . 635772) + (-1750 . 635693) (-1751 . 635540) (-1752 . 635340) (-1753 . 635142) + (-1754 . 634740) (-1755 . 634600) (-1756 . 634523) (-1757 . 634444) + (-1758 . 634328) (-1759 . 634250) (-1760 . 634027) (-1761 . 633974) + (-1762 . 633689) (-1763 . 633627) (-1764 . 633568) (-1765 . 633540) + (-1766 . 633348) (-1767 . 633283) (-1768 . 633227) (-1769 . 633143) + (-1770 . 631869) (-1771 . 631819) (-1772 . 631605) (-1773 . 631519) + (-1774 . 631373) (-1775 . 630206) (-1776 . 629547) (-1777 . 629451) + (-1778 . 628585) (-1779 . 628483) (-1780 . 628314) (-1781 . 628156) + (-1782 . 628058) (-1783 . 628005) (-1784 . 627950) (-1785 . 627775) + (-1786 . 627655) (-1787 . 627563) (-1788 . 627211) (-1789 . 627066) + (-1790 . 627013) (-1791 . 626877) (-1792 . 626695) (-1793 . 626552) + (-1794 . 626177) (-1795 . 625746) (-1796 . 625654) (-1797 . 625571) + (-1798 . 625411) (-1799 . 624009) (-1800 . 623981) (-1801 . 623924) + (-1802 . 623851) (-1803 . 623411) (-1804 . 623383) (-1805 . 623115) + (-1806 . 623084) (-1807 . 622964) (-1808 . 622837) (-1809 . 622694) + (-1810 . 622642) (-1811 . 622432) (-1812 . 622084) (-1813 . 621982) + (-1814 . 621915) (-1815 . 621802) (-1816 . 621731) (-1817 . 621586) + (-1818 . 621302) (-1819 . 621265) (-1820 . 620903) (-1821 . 620748) + (-1822 . 620619) (-1823 . 620380) (-1824 . 620310) (-1825 . 619832) + (-1826 . 619561) (-1827 . 619379) (-1828 . 613865) (-1829 . 613787) + (-1830 . 613560) (-1831 . 613508) (-1832 . 612706) (-1833 . 612604) + (-1834 . 611644) (-1835 . 611577) (-1836 . 610954) (-1837 . 610859) + (-1838 . 610807) (-1839 . 610414) (-1840 . 610286) (-1841 . 610233) + (-1842 . 609931) (-1843 . 609776) (-1844 . 609702) (-1845 . 609594) + (-1846 . 609449) (-1847 . 609306) (-1848 . 609193) (-1849 . 608996) + (-1850 . 608697) (-1851 . 608255) (-1852 . 608149) (-1853 . 607820) + (-1854 . 607595) (-1855 . 607480) (-1856 . 607384) (-1857 . 606838) + (-1858 . 606759) (-1859 . 606573) (-1860 . 606394) (-1861 . 606059) + (-1862 . 605976) (-1863 . 605942) (-1864 . 605819) (-1865 . 605573) + (-1866 . 605393) (-1867 . 605259) (-1868 . 605127) (-1869 . 604792) + (-1870 . 604465) (-1871 . 604385) (-1872 . 604256) (-1873 . 604090) + (-1874 . 604062) (-1875 . 602800) (-1876 . 602748) (-1877 . 602654) + (-1878 . 602409) (-1879 . 602307) (-1880 . 602212) (-1881 . 602131) + (-1882 . 602060) (-1883 . 602032) (-1884 . 601931) (-1885 . 601878) + (-1886 . 601722) (-1887 . 601581) (-1888 . 601488) (-1889 . 601394) + (-1890 . 601323) (-1891 . 601257) (-1892 . 601099) (-1893 . 600852) + (-1894 . 600637) (-1895 . 600541) (-1896 . 600382) (-1897 . 599898) + (-1898 . 599825) (-1899 . 599746) (-1900 . 599588) (-1901 . 599091) + (-1902 . 599026) (-1903 . 598888) (-1904 . 598599) (-1905 . 598515) + (-1906 . 598431) (-1907 . 598294) (-1908 . 598243) (-1909 . 597795) + (-1910 . 597652) (-1911 . 597496) (-1912 . 597351) (-1913 . 597197) + (-1914 . 597106) (-1915 . 596897) (-1916 . 596823) (-1917 . 596774) + (-1918 . 587324) (-1919 . 587241) (-1920 . 587213) (-1921 . 586999) + (-1922 . 584938) (-1923 . 584728) (-1924 . 584605) (-1925 . 584468) + (-1926 . 584374) (-1927 . 584347) (-1928 . 584267) (-1929 . 584141) + (-1930 . 584009) (-1931 . 583905) (-1932 . 583784) (-1933 . 583697) + (-1934 . 583597) (-1935 . 583441) (-1936 . 583339) (-1937 . 583259) + (-1938 . 583158) (-1939 . 582498) (-1940 . 582218) (-1941 . 582186) + (-1942 . 581219) (-1943 . 581104) (-1944 . 581044) (-1945 . 579414) + (-1946 . 579189) (-1947 . 579137) (-1948 . 578996) (-1949 . 578785) + (-1950 . 578566) (-1951 . 578288) (-1952 . 578121) (-1953 . 578047) + (-1954 . 577918) (-1955 . 577059) (-1956 . 576946) (-1957 . 576787) + (-1958 . 576692) (-1959 . 576614) (-1960 . 576492) (-1961 . 576433) + (-1962 . 576252) (-1963 . 576085) (-1964 . 575966) (-1965 . 575835) + (-1966 . 574539) (-1967 . 574434) (-1968 . 574052) (-1969 . 573996) + (-1970 . 573804) (-1971 . 573317) (-1972 . 572581) (-1973 . 569282) + (-1974 . 569186) (-1975 . 569117) (-1976 . 568363) (-1977 . 567605) + (-1978 . 567114) (-1979 . 567080) (-1980 . 567028) (-1981 . 566870) + (-1982 . 566679) (-1983 . 566536) (-1984 . 566220) (-1985 . 566141) + (-1986 . 565919) (-1987 . 565785) (-1988 . 565625) (-1989 . 565555) + (-1990 . 565472) (-1991 . 565386) (-1992 . 565252) (-1993 . 565200) + (-1994 . 565057) (-1995 . 564953) (-1996 . 564898) (-1997 . 564736) + (-1998 . 564628) (-1999 . 564455) (-2000 . 564238) (-2001 . 564085) + (-2002 . 563919) (-2003 . 563841) (-2004 . 563688) (-2005 . 563478) + (-2006 . 563446) (-2007 . 563394) (-2008 . 561628) (-2009 . 561483) + (-2010 . 561402) (-2011 . 561259) (-2012 . 560928) (-2013 . 560656) + (-2014 . 560574) (-2015 . 560502) (-2016 . 560124) (-2017 . 560057) + (-2018 . 559383) (-2019 . 557928) (-2020 . 557747) (-2021 . 557692) + (-2022 . 557622) (-2023 . 557567) (-2024 . 557481) (-2025 . 557354) + (-2026 . 557255) (-2027 . 557154) (-2028 . 556951) (-2029 . 555461) + (-2030 . 555409) (-2031 . 555232) (-2032 . 554959) (-2033 . 554906) + (-2034 . 554192) (-2035 . 554020) (-2036 . 553924) (-2037 . 553743) + (-2038 . 553660) (-2039 . 553562) (-2040 . 553424) (-2041 . 553226) + (-2042 . 553077) (-2043 . 552534) (-2044 . 552390) (-2045 . 552138) + (-2046 . 552043) (-2047 . 551820) (-2048 . 551084) (-2049 . 550996) + (-2050 . 550943) (-2051 . 550915) (-2052 . 550639) (-2053 . 550449) + (-2054 . 550397) (-2055 . 550330) (-2056 . 550277) (-2057 . 550161) + (-2058 . 549998) (-2059 . 549820) (-2060 . 549309) (-2061 . 549226) + (-2062 . 549127) (-2063 . 549022) (-2064 . 548918) (-2065 . 548175) + (-2066 . 548045) (-2067 . 547951) (-2068 . 547823) (-2069 . 547694) + (-2070 . 547657) (-2071 . 547466) (-2072 . 546892) (-2073 . 546833) + (-2074 . 546380) (-2075 . 546036) (-2076 . 545878) (-2077 . 545785) + (-2078 . 545392) (-2079 . 544748) (-2080 . 544468) (-2081 . 544366) + (-2082 . 544148) (-2083 . 543913) (-2084 . 543840) (-2085 . 543808) + (-2086 . 543692) (-2087 . 543604) (-2088 . 543490) (-2089 . 542318) + (-2090 . 542203) (-2091 . 542102) (-2092 . 542019) (-2093 . 541670) + (-2094 . 541311) (-2095 . 541234) (-2096 . 540298) (-2097 . 540129) + (-2098 . 540077) (-2099 . 540010) (-2100 . 539682) (-2101 . 539567) + (-2102 . 539362) (-2103 . 539129) (-2104 . 539035) (-2105 . 538944) + (-2106 . 538697) (-2107 . 538450) (-2108 . 538283) (-2109 . 538220) + (-2110 . 538149) (-2111 . 538030) (-2112 . 536893) (-2113 . 536838) + (-2114 . 536725) (-2115 . 536651) (-2116 . 536535) (-2117 . 536391) + (-2118 . 536307) (-2119 . 536182) (-2120 . 536130) (-2121 . 536015) + (-2122 . 535946) (-2123 . 535872) (-2124 . 535782) (-2125 . 535645) + (-2126 . 535339) (-2127 . 534966) (-2128 . 534737) (-2129 . 534584) + (-2130 . 534532) (-2131 . 534008) (-2132 . 533884) (-2133 . 533706) + (-2134 . 533622) (-2135 . 533552) (-2136 . 533394) (-2137 . 532309) + (-2138 . 532123) (-2139 . 532067) (-2140 . 532039) (-2141 . 531453) + (-2142 . 531147) (-9 . 531119) (-2144 . 531064) (-2145 . 531036) + (-2146 . 530984) (-2147 . 530922) (-2148 . 530836) (-2149 . 530706) + (-8 . 530678) (-2151 . 530612) (-2152 . 530560) (-2153 . 530375) + (-2154 . 530213) (-2155 . 530150) (-2156 . 529996) (-2157 . 529866) + (-2158 . 529203) (-2159 . 529117) (-2160 . 529064) (-2161 . 528945) + (-2162 . 528893) (-2163 . 528347) (-2164 . 527737) (-2165 . 527681) + (-2166 . 527581) (-2167 . 527452) (-7 . 527424) (-2169 . 527231) + (-2170 . 527107) (-2171 . 527024) (-2172 . 526936) (-2173 . 526765) + (-2174 . 526609) (-2175 . 526501) (-2176 . 526407) (-2177 . 526300) + (-2178 . 525954) (-2179 . 525872) (-2180 . 525819) (-2181 . 525601) + (-2182 . 525505) (-2183 . 525409) (-2184 . 525347) (-2185 . 525254) + (-2186 . 525127) (-2187 . 525071) (-2188 . 524983) (-2189 . 524883) + (-2190 . 524788) (-2191 . 524737) (-2192 . 524664) (-2193 . 524585) + (-2194 . 524489) (-2195 . 524399) (-2196 . 524343) (-2197 . 524144) + (-2198 . 524043) (-2199 . 523901) (-2200 . 523851) (-2201 . 523763) + (-2202 . 523421) (-2203 . 523359) (-2204 . 523191) (-2205 . 523120) + (-2206 . 522609) (-2207 . 522399) (-2208 . 521973) (-2209 . 521802) + (-2210 . 521681) (-2211 . 521596) (-2212 . 521469) (-2213 . 521345) + (-2214 . 520968) (-2215 . 520915) (-2216 . 520820) (-2217 . 520432) + (-2218 . 520237) (-2219 . 520013) (-2220 . 519798) (-2221 . 519614) + (-2222 . 519508) (-2223 . 519430) (-2224 . 519381) (-2225 . 519330) + (-2226 . 519256) (-2227 . 519082) (-2228 . 518986) (-2229 . 518855) + (-2230 . 518626) (-2231 . 518574) (-2232 . 518490) (-2233 . 518050) + (-2234 . 517946) (-2235 . 517875) (-2236 . 517780) (-2237 . 517634) + (-2238 . 517481) (-2239 . 517428) (-2240 . 517192) (-2241 . 517161) + (-2242 . 516852) (-2243 . 516797) (-2244 . 516668) (-2245 . 516636) + (-2246 . 516447) (-2247 . 516388) (-2248 . 516189) (-2249 . 516082) + (-2250 . 515929) (-2251 . 515898) (-2252 . 515634) (-2253 . 515510) + (-2254 . 515319) (-2255 . 515242) (-2256 . 514834) (-2257 . 514640) + (-2258 . 514499) (-2259 . 514447) (-2260 . 513922) (-2261 . 513855) + (-2262 . 513787) (-2263 . 513359) (-2264 . 513306) (-2265 . 513213) + (-2266 . 513091) (-2267 . 513030) (-2268 . 512956) (-2269 . 512858) + (-2270 . 512349) (-2271 . 512175) (-2272 . 511971) (-2273 . 511919) + (-2274 . 511831) (-2275 . 511748) (-2276 . 511514) (-2277 . 511437) + (-2278 . 511219) (-2279 . 510926) (-2280 . 510791) (-2281 . 510703) + (-2282 . 510580) (-2283 . 510458) (-2284 . 510343) (-2285 . 510000) + (-2286 . 509819) (-2287 . 509718) (-2288 . 509126) (-2289 . 508466) + (-2290 . 508407) (-2291 . 508303) (-2292 . 507225) (-2293 . 507197) + (-2294 . 507113) (-2295 . 506737) (-2296 . 506498) (-2297 . 506271) + (-2298 . 506163) (-2299 . 505821) (-2300 . 505641) (-2301 . 505541) + (-2302 . 505433) (-2303 . 505026) (-2304 . 504916) (-2305 . 504798) + (-2306 . 504640) (-2307 . 504555) (-2308 . 504502) (-2309 . 504450) + (-2310 . 504416) (-2311 . 504322) (-2312 . 504249) (-2313 . 504188) + (-2314 . 504063) (-2315 . 503567) (-2316 . 503489) (-2317 . 503373) + (-2318 . 503093) (-2319 . 502997) (-2320 . 502941) (-2321 . 502879) + (-2322 . 502646) (-2323 . 502558) (-2324 . 502481) (-2325 . 502053) + (-2326 . 501669) (-2327 . 501472) (-2328 . 501359) (-2329 . 501202) + (-2330 . 500955) (-2331 . 500596) (-2332 . 500326) (-2333 . 500265) + (-2334 . 500018) (-2335 . 499689) (-2336 . 499637) (-2337 . 499522) + (-2338 . 499400) (-2339 . 499287) (-2340 . 499162) (-2341 . 498940) + (-2342 . 498873) (-2343 . 498813) (-2344 . 498703) (-2345 . 498583) + (-2346 . 498524) (-2347 . 498296) (-2348 . 498155) (-2349 . 498020) + (-2350 . 497860) (-2351 . 497783) (-2352 . 497473) (-2353 . 497374) + (-2354 . 497304) (-2355 . 497082) (-2356 . 496950) (-2357 . 496888) + (-2358 . 496305) (-2359 . 496014) (-2360 . 495945) (-2361 . 495876) + (-2362 . 495716) (-2363 . 495666) (-2364 . 495175) (-2365 . 495098) + (-2366 . 494998) (-2367 . 494899) (-2368 . 494780) (-2369 . 494347) + (-2370 . 494204) (-2371 . 493845) (-2372 . 493742) (-2373 . 493461) + (-2374 . 493403) (-2375 . 493332) (-2376 . 493258) (-2377 . 493079) + (-2378 . 493051) (-2379 . 492909) (-2380 . 492305) (-2381 . 491879) + (-2382 . 491802) (-2383 . 491653) (-2384 . 491495) (-2385 . 491382) + (-2386 . 491279) (-2387 . 491168) (-2388 . 491044) (-2389 . 490792) + (-2390 . 490028) (-2391 . 489738) (-2392 . 489639) (-2393 . 489433) + (-2394 . 489102) (-2395 . 489043) (-2396 . 488974) (-2397 . 488896) + (-2398 . 488772) (-2399 . 486544) (-2400 . 486474) (-2401 . 486319) + (-2402 . 485966) (-2403 . 485911) (-2404 . 485806) (-2405 . 485675) + (-2406 . 485592) (-2407 . 485485) (-2408 . 485421) (-2409 . 485362) + (-2410 . 485204) (-2411 . 485152) (-2412 . 484949) (-2413 . 484840) + (-2414 . 484465) (-2415 . 484387) (-2416 . 484310) (-2417 . 484088) + (-2418 . 483993) (-2419 . 483895) (-2420 . 483840) (-2421 . 483474) + (-2422 . 483422) (-2423 . 482357) (-2424 . 482323) (-2425 . 482242) + (-2426 . 482192) (-2427 . 482106) (-2428 . 481908) (-2429 . 481839) + (-2430 . 481767) (-2431 . 481668) (-2432 . 481500) (-2433 . 481164) + (-2434 . 480488) (-2435 . 480373) (-2436 . 480292) (-2437 . 480031) + (-2438 . 479792) (-2439 . 479371) (-2440 . 479171) (-2441 . 479025) + (-2442 . 478958) (-2443 . 478874) (-2444 . 478763) (-2445 . 478496) + (-2446 . 478085) (-2447 . 477893) (-2448 . 477768) (-2449 . 477672) + (-2450 . 477464) (-2451 . 477122) (-2452 . 476748) (-2453 . 476668) + (-2454 . 476515) (-2455 . 475812) (-2456 . 475669) (-2457 . 475518) + (-2458 . 475419) (-2459 . 475321) (-2460 . 475177) (-2461 . 475083) + (-2462 . 475046) (-2463 . 474962) (-2464 . 474681) (-2465 . 474095) + (-2466 . 473782) (-2467 . 473715) (-2468 . 473579) (-2469 . 473203) + (-2470 . 473024) (-2471 . 471238) (-2472 . 471210) (-2473 . 471073) + (-2474 . 471021) (-2475 . 470740) (-2476 . 470490) (-2477 . 470060) + (-2478 . 469966) (-2479 . 469934) (-2480 . 469196) (-2481 . 469051) + (-2482 . 468998) (-2483 . 468910) (-2484 . 468668) (-2485 . 468540) + (-2486 . 468433) (-2487 . 468191) (-2488 . 468059) (-2489 . 468002) + (-2490 . 467943) (-2491 . 467869) (-2492 . 467651) (-2493 . 467382) + (-2494 . 467297) (-2495 . 467204) (-2496 . 467119) (-2497 . 466954) + (-2498 . 466901) (-2499 . 466842) (-2500 . 466764) (-2501 . 466730) + (-2502 . 466696) (-2503 . 466587) (-2504 . 466480) (-2505 . 466242) + (-2506 . 466139) (-2507 . 465885) (-2508 . 465690) (-2509 . 465658) + (-2510 . 465522) (-2511 . 465427) (-2512 . 464949) (-2513 . 464677) + (-2514 . 464603) (-2515 . 464377) (-2516 . 463859) (-2517 . 463758) + (-2518 . 463730) (-2519 . 463615) (-2520 . 463458) (-2521 . 463270) + (-2522 . 463218) (-2523 . 463162) (-2524 . 462864) (-2525 . 462708) + (-2526 . 462564) (-2527 . 462530) (-2528 . 462316) (-2529 . 462158) + (-2530 . 462000) (-2531 . 461882) (-2532 . 461664) (-2533 . 461630) + (-2534 . 461474) (-2535 . 461347) (-2536 . 461177) (-2537 . 461122) + (-2538 . 461040) (-2539 . 461012) (-2540 . 460424) (-2541 . 460128) + (-2542 . 459753) (-2543 . 459642) (-2544 . 459611) (-2545 . 459443) + (-2546 . 459292) (-2547 . 459057) (-2548 . 458136) (-2549 . 457169) + (-2550 . 456947) (-2551 . 456754) (-2552 . 456666) (-2553 . 456610) + (-2554 . 456362) (-2555 . 456313) (-2556 . 456194) (-2557 . 455998) + (-2558 . 455970) (-2559 . 455790) (-2560 . 455733) (-2561 . 455537) + (-2562 . 455437) (-2563 . 455076) (-2564 . 454921) (-2565 . 454887) + (-2566 . 454817) (-2567 . 454754) (-2568 . 454650) (-2569 . 454591) + (-2570 . 454494) (-2571 . 454164) (-2572 . 454090) (-2573 . 453975) + (-2574 . 453769) (-2575 . 453698) (-2576 . 453639) (-2577 . 453416) + (-2578 . 453071) (-2579 . 453009) (-2580 . 452678) (-2581 . 452576) + (-2582 . 452523) (-2583 . 452119) (-2584 . 452042) (-2585 . 451975) + (-2586 . 451925) (-2587 . 451807) (-2588 . 451752) (-2589 . 451675) + (-2590 . 451418) (-2591 . 450929) (-2592 . 450521) (-2593 . 450443) + (-2594 . 450276) (-2595 . 450194) (-2596 . 450017) (-2597 . 449358) + (-2598 . 448718) (-2599 . 448611) (-2600 . 448342) (-2601 . 448207) + (-2602 . 447922) (-2603 . 446626) (-2604 . 446561) (-2605 . 446478) + (-2606 . 446335) (-2607 . 446147) (-2608 . 445927) (-2609 . 445797) + (-2610 . 445518) (-2611 . 445393) (-2612 . 445343) (-2613 . 445124) + (-2614 . 445052) (-2615 . 444861) (-2616 . 444753) (-2617 . 444631) + (-2618 . 444486) (-2619 . 444340) (-2620 . 444230) (-2621 . 443679) + (-2622 . 443524) (-2623 . 443451) (-2624 . 443256) (-2625 . 443182) + (-2626 . 443129) (-2627 . 442483) (-2628 . 442417) (-2629 . 442351) + (-2630 . 442039) (-2631 . 441553) (-2632 . 441313) (-2633 . 441218) + (-2634 . 440680) (-2635 . 440543) (-2636 . 440433) (-2637 . 440285) + (-2638 . 439934) (-2639 . 439342) (-2640 . 439271) (-2641 . 439158) + (-2642 . 439103) (-2643 . 438825) (-2644 . 438609) (-2645 . 438535) + (-2646 . 438456) (-2647 . 438346) (-2648 . 438293) (-2649 . 438241) + (-2650 . 438170) (-2651 . 437977) (-2652 . 437878) (-2653 . 437720) + (-2654 . 437118) (-2655 . 437003) (-2656 . 436926) (-2657 . 436738) + (-2658 . 436620) (-2659 . 436484) (-2660 . 436381) (-2661 . 436308) + (-2662 . 436249) (-2663 . 436121) (-2664 . 435847) (-2665 . 435626) + (-2666 . 435264) (-2667 . 435187) (-2668 . 435055) (-2669 . 434954) + (-2670 . 434885) (-2671 . 434583) (-2672 . 434495) (-2673 . 434430) + (-2674 . 434314) (-2675 . 434261) (-2676 . 433694) (-2677 . 433390) + (-2678 . 433316) (-2679 . 432950) (-2680 . 432853) (-2681 . 432794) + (-2682 . 432290) (-2683 . 432225) (-2684 . 431846) (-2685 . 431511) + (-2686 . 431458) (-2687 . 431377) (-2688 . 431253) (-2689 . 431146) + (-2690 . 431063) (-2691 . 430980) (-2692 . 430797) (-2693 . 430699) + (-2694 . 430611) (-2695 . 430511) (-2696 . 430385) (-2697 . 430043) + (-2698 . 429676) (-2699 . 429592) (-2700 . 429489) (-2701 . 429407) + (-2702 . 429174) (-2703 . 428887) (-2704 . 428835) (-2705 . 425172) + (-2706 . 424878) (-2707 . 424770) (-2708 . 424658) (-2709 . 424581) + (-2710 . 424332) (-2711 . 424039) (-2712 . 423920) (-2713 . 423861) + (-2714 . 423808) (-2715 . 423754) (-2716 . 423629) (-2717 . 423530) + (-2718 . 423355) (-2719 . 423184) (-2720 . 422954) (-2721 . 422877) + (-2722 . 422825) (-2723 . 422726) (-2724 . 422288) (-2725 . 422199) + (-2726 . 422105) (-2727 . 420924) (-2728 . 420833) (-2729 . 420609) + (-2730 . 420362) (-2731 . 420187) (-2732 . 420134) (-2733 . 420054) + (-2734 . 419968) (-2735 . 419738) (-2736 . 419292) (-2737 . 419221) + (-2738 . 419148) (-2739 . 418996) (-2740 . 418788) (-2741 . 418692) + (-2742 . 418443) (-2743 . 418338) (-2744 . 418139) (-2745 . 418090) + (-2746 . 418019) (-2747 . 417686) (-2748 . 417391) (-2749 . 417254) + (-2750 . 416896) (-2751 . 416843) (-2752 . 416364) (-2753 . 416287) + (-2754 . 416193) (-2755 . 416106) (-2756 . 415972) (-2757 . 415789) + (-2758 . 415617) (-2759 . 415225) (-2760 . 415148) (-2761 . 415074) + (-2762 . 415024) (-2763 . 414906) (-2764 . 414808) (-2765 . 414643) + (-2766 . 414251) (-2767 . 414092) (-2768 . 413936) (-2769 . 413850) + (-2770 . 413797) (-12 . 413625) (-2772 . 413543) (-2773 . 412481) + (-2774 . 412407) (-2775 . 412311) (-2776 . 412164) (-2777 . 411812) + (-2778 . 411652) (-2779 . 411602) (-2780 . 411558) (-2781 . 411506) + (-2782 . 411363) (-2783 . 411268) (-2784 . 411198) (-2785 . 411145) + (-2786 . 411093) (-2787 . 411001) (-2788 . 410881) (-2789 . 410318) + (-2790 . 410147) (-2791 . 409820) (-2792 . 409723) (-2793 . 409277) + (-2794 . 409086) (-2795 . 408958) (-2796 . 404958) (-2797 . 404861) + (-2798 . 404696) (-2799 . 404591) (-2800 . 404492) (-2801 . 404374) + (-2802 . 403811) (-2803 . 403751) (-2804 . 403650) (-2805 . 403509) + (-2806 . 403182) (-2807 . 403112) (-2808 . 402914) (-2809 . 402811) + (-2810 . 402658) (-2811 . 402488) (-2812 . 402386) (-2813 . 401965) + (-2814 . 401402) (-2815 . 401256) (-2816 . 401189) (-2817 . 401047) + (-2818 . 400884) (-2819 . 400743) (-2820 . 400693) (-2821 . 400581) + (-2822 . 400496) (-2823 . 400414) (-2824 . 400318) (-2825 . 400089) + (-2826 . 399950) (-2827 . 399820) (-2828 . 399724) (-2829 . 399563) + (-2830 . 399451) (-2831 . 399286) (-2832 . 399215) (-2833 . 398967) + (-2834 . 398869) (-2835 . 398751) (-2836 . 398695) (-2837 . 398628) + (-2838 . 398474) (-2839 . 398357) (-2840 . 398079) (-2841 . 398050) + (-2842 . 397908) (-2843 . 397848) (-2844 . 397702) (-2845 . 397542) + (-2846 . 397277) (-2847 . 396487) (-2848 . 396277) (-2849 . 396224) + (-2850 . 395471) (-2851 . 395055) (-2852 . 394953) (-2853 . 394720) + (-2854 . 394354) (-2855 . 394241) (-2856 . 394213) (-2857 . 393503) + (-2858 . 393257) (-2859 . 387918) (-2860 . 387691) (-2861 . 387608) + (-2862 . 387445) (-2863 . 387226) (-2864 . 387149) (-2865 . 386565) + (-2866 . 386259) (-2867 . 386128) (-2868 . 386051) (-2869 . 385898) + (-2870 . 385821) (-2871 . 385700) (-2872 . 385582) (-2873 . 385454) + (-2874 . 385241) (-2875 . 385023) (-2876 . 384834) (-2877 . 384584) + (-2878 . 384419) (-2879 . 384258) (-2880 . 384135) (-2881 . 384068) + (-2882 . 383936) (-2883 . 383490) (* . 379377) (-2885 . 379266) + (-2886 . 379046) (-2887 . 378912) (-2888 . 378741) (-2889 . 378630) + (-2890 . 378424) (-2891 . 378322) (-2892 . 378158) (-2893 . 378078) + (-2894 . 377742) (-2895 . 377714) (-2896 . 377532) (-2897 . 377475) + (-2898 . 377372) (-2899 . 377256) (-2900 . 376649) (-2901 . 376378) + (-2902 . 376307) (-2903 . 375923) (-2904 . 375743) (-2905 . 375691) + (-2906 . 375429) (-2907 . 375301) (-2908 . 375243) (-2909 . 375169) + (-2910 . 374897) (-2911 . 374663) (-2912 . 374567) (-2913 . 374508) + (-2914 . 374395) (-2915 . 374276) (-2916 . 374247) (-2917 . 374152) + (-2918 . 373947) (-2919 . 373799) (-2920 . 373649) (-2921 . 373585) + (-2922 . 373055) (-2923 . 372783) (-2924 . 372711) (-2925 . 372573) + (-2926 . 372482) (-2927 . 372229) (-2928 . 372152) (-2929 . 371000) + (-2930 . 370926) (-2931 . 370871) (-2932 . 370802) (-2933 . 370486) + (-2934 . 370384) (-2935 . 369963) (-2936 . 369835) (-2937 . 369669) + (-2938 . 369616) (-2939 . 369561) (-2940 . 369418) (-2941 . 369140) + (-2942 . 368752) (-2943 . 368589) (-2944 . 368494) (-2945 . 368216) + (-2946 . 368134) (-2947 . 367931) (-2948 . 367700) (-2949 . 367319) + (-2950 . 367258) (-2951 . 367046) (-2952 . 366965) (-2953 . 366799) + (-2954 . 366692) (-2955 . 366491) (-2956 . 366420) (-2957 . 366213) + (-2958 . 366145) (-2959 . 365990) (-2960 . 365623) (-2961 . 365520) + (-2962 . 365433) (-2963 . 365382) (-2964 . 365330) (-2965 . 365274) + (-2966 . 365132) (-2967 . 365069) (-2968 . 365000) (-2969 . 364893) + (-2970 . 364762) (-2971 . 364544) (-2972 . 364252) (-2973 . 364180) + (-2974 . 364111) (-2975 . 363915) (-2976 . 363845) (-2977 . 363586) + (-2978 . 363427) (-2979 . 363291) (-2980 . 362969) (-2981 . 362669) + (-2982 . 362608) (-2983 . 362349) (-2984 . 362254) (-2985 . 362198) + (-2986 . 362097) (-2987 . 361634) (-2988 . 361525) (-2989 . 361382) + (-2990 . 360868) (-2991 . 360781) (-2992 . 360666) (-2993 . 360597) + (-2994 . 360520) (-2995 . 360302) (-2996 . 360037) (-2997 . 359951) + (-2998 . 359814) (-2999 . 359348) (-3000 . 359190) (-3001 . 358934) + (-3002 . 358905) (-3003 . 358767) (-3004 . 358471) (-3005 . 358400) + (-3006 . 358322) (-3007 . 358249) (-3008 . 358071) (-3009 . 357988) + (-3010 . 357895) (-3011 . 357705) (-3012 . 357547) (-3013 . 357434) + (-3014 . 357356) (-3015 . 357106) (-3016 . 356990) (-3017 . 356710) + (-3018 . 356600) (-3019 . 356536) (-3020 . 356421) (-3021 . 356348) + (-3022 . 356208) (-3023 . 356081) (-3024 . 356004) (-3025 . 355874) + (-3026 . 355740) (-3027 . 355497) (-3028 . 355429) (-3029 . 354243) + (-3030 . 354190) (-3031 . 353972) (-3032 . 353920) (-3033 . 353817) + (-3034 . 353764) (-3035 . 353670) (-3036 . 353452) (-3037 . 353359) + (-3038 . 353262) (-3039 . 353065) (-3040 . 352920) (-3041 . 352825) + (-3042 . 352184) (-3043 . 351002) (-3044 . 350740) (-3045 . 350684) + (-3046 . 350382) (-3047 . 350287) (-3048 . 349768) (-3049 . 349647) + (-3050 . 349336) (-3051 . 349214) (-3052 . 349140) (-3053 . 348802) + (-3054 . 348283) (-3055 . 348009) (-3056 . 345801) (-3057 . 345655) + (-3058 . 345606) (-3059 . 345445) (-3060 . 345349) (-3061 . 345251) + (-3062 . 345057) (-3063 . 344918) (-3064 . 344524) (-3065 . 344457) + (-3066 . 344338) (-3067 . 344028) (-3068 . 343904) (-3069 . 343666) + (-3070 . 343508) (-3071 . 342701) (-3072 . 342634) (-3073 . 342476) + (-3074 . 342355) (-3075 . 342068) (-3076 . 341998) (-3077 . 341701) + (-3078 . 341546) (-3079 . 338705) (-3080 . 338655) (-3081 . 338503) + (-3082 . 338371) (-3083 . 338119) (-3084 . 338011) (-3085 . 337501) + (-3086 . 337428) (-3087 . 336967) (-3088 . 336741) (-3089 . 336547) + (-3090 . 336484) (-3091 . 336395) (-3092 . 336295) (-3093 . 336192) + (-3094 . 336135) (-3095 . 336058) (-3096 . 335963) (-3097 . 335832) + (-3098 . 335776) (-3099 . 335692) (-3100 . 335515) (-3101 . 335458) + (-3102 . 335350) (-3103 . 335227) (-3104 . 334914) (-3105 . 334818) + (-3106 . 334433) (-3107 . 334295) (-3108 . 334122) (-3109 . 334014) + (-3110 . 333796) (-3111 . 333723) (-3112 . 333666) (-3113 . 333556) + (-3114 . 333505) (-3115 . 333376) (-3116 . 333299) (-3117 . 332902) + (-3118 . 332807) (-3119 . 332708) (-3120 . 332655) (-3121 . 332453) + (-3122 . 332142) (-3123 . 331817) (-3124 . 331539) (-3125 . 331483) + (-3126 . 330910) (-3127 . 330600) (-3128 . 330413) (-3129 . 330167) + (-3130 . 330067) (-3131 . 329968) (-3132 . 329887) (-3133 . 329677) + (-3134 . 329610) (-3135 . 329420) (-3136 . 329259) (-3137 . 328896) + (-3138 . 328724) (-3139 . 328621) (-3140 . 328554) (-3141 . 328484) + (-3142 . 328329) (-3143 . 328171) (-3144 . 327663) (-3145 . 327524) + (-3146 . 327253) (-3147 . 327158) (-3148 . 327087) (-3149 . 326943) + (-3150 . 326771) (-3151 . 326481) (-3152 . 326335) (-3153 . 326276) + (-3154 . 326113) (-3155 . 325873) (-3156 . 325743) (-3157 . 324967) + (-3158 . 324431) (-3159 . 324333) (-3160 . 324074) (-3161 . 323902) + (-3162 . 323610) (-3163 . 323002) (-3164 . 322902) (-3165 . 322680) + (-3166 . 322628) (-3167 . 322334) (-3168 . 322279) (-3169 . 321080) + (-3170 . 321000) (-3171 . 320902) (-3172 . 320730) (-3173 . 320650) + (-3174 . 320526) (-3175 . 320473) (-3176 . 320321) (-3177 . 320293) + (-3178 . 320207) (-3179 . 320139) (-3180 . 319924) (-3181 . 319844) + (-3182 . 319728) (-3183 . 319550) (-3184 . 319490) (-3185 . 318610) + (-3186 . 318383) (-3187 . 318230) (-3188 . 318120) (-3189 . 318067) + (-3190 . 317900) (-3191 . 317392) (-3192 . 317311) (-3193 . 317216) + (-3194 . 317164) (-3195 . 317041) (-3196 . 316962) (-3197 . 316866) + (-3198 . 316776) (-3199 . 316724) (-3200 . 316580) (-3201 . 316466) + (-3202 . 316365) (-3203 . 315770) (-3204 . 315698) (-3205 . 315356) + (-3206 . 315268) (-3207 . 315212) (-3208 . 314615) (-3209 . 314530) + (-3210 . 314456) (-3211 . 314255) (-3212 . 314048) (-3213 . 313969) + (-3214 . 313916) (-3215 . 313629) (-3216 . 313456) (-3217 . 313350) + (-3218 . 313131) (-3219 . 312899) (-3220 . 312832) (-3221 . 312758) + (-3222 . 312729) (-3223 . 312402) (-3224 . 312211) (-3225 . 312182) + (-3226 . 311967) (-3227 . 311939) (-3228 . 311739) (-3229 . 311424) + (-3230 . 311295) (-3231 . 309863) (-3232 . 309633) (-3233 . 309570) + (-3234 . 309406) (-3235 . 309191) (-3236 . 309033) (-3237 . 308981) + (-3238 . 308891) (-3239 . 304731) (-3240 . 304548) (-3241 . 304455) + (-3242 . 304004) (-3243 . 303947) (-3244 . 303660) (-3245 . 303480) + (-3246 . 303185) (-3247 . 303042) (-3248 . 302971) (-3249 . 302918) + (-3250 . 302548) (-3251 . 302076) (-3252 . 301996) (-3253 . 301856) + (-3254 . 301770) (-3255 . 301552) (-3256 . 301378) (-3257 . 301207) + (-3258 . 300913) (-3259 . 300502) (-3260 . 300361) (-3261 . 300306) + (-3262 . 300199) (-3263 . 300013) (-3264 . 299961) (-3265 . 299893) + (-3266 . 299755) (-3267 . 299699) (-3268 . 299523) (-3269 . 299381) + (-3270 . 299178) (-3271 . 299101) (-3272 . 298851) (-3273 . 298686) + (-3274 . 298589) (-3275 . 298207) (-3276 . 298136) (-3277 . 297137) + (-3278 . 297085) (-3279 . 296943) (-3280 . 296830) (-3281 . 296757) + (-3282 . 296535) (-3283 . 292585) (-3284 . 292397) (-3285 . 292199) + (-3286 . 292132) (-3287 . 292046) (-3288 . 291888) (-3289 . 291792) + (-3290 . 291634) (-3291 . 291429) (-3292 . 291376) (-3293 . 291321) + (-3294 . 290941) (-3295 . 290752) (-3296 . 290693) (-3297 . 290589) + (-3298 . 290552) (-3299 . 290447) (-3300 . 290236) (-3301 . 289166) + (-3302 . 288956) (-3303 . 288625) (-3304 . 288522) (-3305 . 288420) + (-3306 . 287886) (-3307 . 287728) (-3308 . 287585) (-3309 . 285329) + (-3310 . 285209) (-3311 . 285126) (-3312 . 285013) (-3313 . 284704) + (-3314 . 284608) (-3315 . 284415) (-3316 . 284165) (-3317 . 284093) + (-3318 . 283890) (-3319 . 283657) (-3320 . 283528) (-3321 . 283366) + (-3322 . 283159) (-3323 . 283106) (-3324 . 283054) (-3325 . 282980) + (-3326 . 282896) (-3327 . 282817) (-3328 . 282731) (-3329 . 282634) + (-3330 . 281454) (-3331 . 281309) (-3332 . 280630) (-3333 . 280547) + (-3334 . 280428) (-3335 . 280265) (-3336 . 280151) (-3337 . 279933) + (-3338 . 279748) (-3339 . 279302) (-3340 . 279249) (-3341 . 278879) + (-3342 . 278465) (-3343 . 278326) (-3344 . 278258) (-3345 . 278114) + (-3346 . 277803) (-3347 . 277670) (-3348 . 277574) (-3349 . 277222) + (-3350 . 277149) (-3351 . 277079) (-3352 . 276983) (-3353 . 276879) + (-3354 . 276789) (-3355 . 275971) (-3356 . 275870) (-3357 . 275699) + (-3358 . 275628) (-3359 . 275462) (-3360 . 275310) (-3361 . 275180) + (-3362 . 275050) (-3363 . 274523) (-3364 . 274410) (-3365 . 274268) + (-3366 . 273822) (-3367 . 273619) (-3368 . 273195) (-3369 . 273080) + (-3370 . 273027) (-3371 . 272950) (-3372 . 272876) (-3373 . 272788) + (-3374 . 272495) (-3375 . 272430) (-3376 . 272377) (-3377 . 271558) + (-3378 . 271339) (-3379 . 271245) (-3380 . 271134) (-3381 . 270989) + (-3382 . 270823) (-3383 . 270527) (-3384 . 270381) (-3385 . 270085) + (-3386 . 269947) (-3387 . 269744) (-3388 . 269692) (-3389 . 269536) + (-3390 . 269396) (-3391 . 269308) (-3392 . 268420) (-3393 . 268296) + (-3394 . 268155) (-3395 . 268024) (-3396 . 267982) (-3397 . 267741) + (-3398 . 267662) (-3399 . 267546) (-3400 . 267299) (-3401 . 266968) + (-3402 . 266867) (-3403 . 266811) (-3404 . 266665) (-3405 . 266616) + (-3406 . 266379) (-3407 . 266138) (-3408 . 266052) (-3409 . 265899) + (-3410 . 265680) (-3411 . 263899) (-3412 . 263704) (-3413 . 263574) + (-3414 . 263514) (-3415 . 263429) (-3416 . 263328) (-3417 . 263207) + (-3418 . 263173) (-3419 . 263099) (-3420 . 262652) (-3421 . 262557) + (-3422 . 262376) (-3423 . 262247) (-3424 . 262195) (-3425 . 262079) + (-3426 . 261428) (-3427 . 261149) (-3428 . 261052) (-3429 . 260961) + (-3430 . 260889) (-3431 . 260803) (-3432 . 260558) (-3433 . 260455) + (-3434 . 260384) (-3435 . 260288) (-3436 . 260070) (-3437 . 259989) + (-3438 . 259714) (-3439 . 259641) (-3440 . 259544) (-3441 . 252601) + (-3442 . 252548) (-3443 . 250971) (-3444 . 250917) (-3445 . 250431) + (-3446 . 249615) (-3447 . 249379) (-3448 . 249083) (-3449 . 248829) + (-3450 . 248776) (-3451 . 247559) (-3452 . 247464) (-3453 . 247339) + (-3454 . 246471) (-3455 . 245944) (-3456 . 245628) (-3457 . 245541) + (-3458 . 245488) (-3459 . 244775) (-3460 . 244602) (-3461 . 244491) + (-3462 . 244017) (-3463 . 243861) (-3464 . 243698) (-3465 . 243543) + (-3466 . 243491) (-3467 . 243335) (-3468 . 243254) (-3469 . 243183) + (-3470 . 243059) (-3471 . 242918) (-3472 . 242809) (-3473 . 242694) + (-3474 . 242376) (-3475 . 241515) (-3476 . 241371) (-3477 . 241139) + (-3478 . 240609) (-3479 . 240559) (-3480 . 239925) (-3481 . 239855) + (-3482 . 239687) (-3483 . 239601) (-3484 . 239542) (-3485 . 239445) + (-3486 . 239362) (-3487 . 239174) (-3488 . 239087) (-3489 . 238929) + (-3490 . 238796) (-3491 . 238579) (-3492 . 238507) (-3493 . 238296) + (-3494 . 238183) (-3495 . 238010) (-3496 . 237951) (-3497 . 237828) + (-3498 . 236726) (-3499 . 236582) (-3500 . 236495) (-3501 . 236320) + (-3502 . 235903) (-3503 . 235675) (-3504 . 235578) (-3505 . 235420) + (-3506 . 235361) (-3507 . 235288) (-3508 . 234864) (-3509 . 234810) + (-3510 . 234564) (-3511 . 234463) (-3512 . 234435) (-3513 . 234187) + (-3514 . 233969) (-3515 . 233723) (-3516 . 233692) (-3517 . 233640) + (-3518 . 233488) (-3519 . 233375) (-3520 . 233323) (-3521 . 233233) + (-3522 . 233180) (-3523 . 233094) (-3524 . 232881) (-3525 . 232596) + (-3526 . 232539) (-3527 . 232423) (-3528 . 232322) (-3529 . 232229) + (-3530 . 231478) (-3531 . 231426) (-3532 . 231360) (-3533 . 231090) + (-3534 . 231013) (-3535 . 230927) (-3536 . 230681) (-3537 . 230260) + (-3538 . 230099) (-3539 . 229974) (-3540 . 229922) (-3541 . 229726) + (-3542 . 229602) (-3543 . 229535) (-3544 . 229134) (-3545 . 228949) + (-3546 . 228851) (-3547 . 228756) (-3548 . 228531) (-3549 . 228464) + (-3550 . 227666) (-3551 . 227632) (-3552 . 227252) (-3553 . 227185) + (-3554 . 227113) (-3555 . 226986) (-3556 . 226495) (-3557 . 226234) + (-3558 . 226179) (-3559 . 226095) (-3560 . 226035) (-3561 . 225939) + (-3562 . 225905) (-3563 . 225808) (-3564 . 225741) (-3565 . 225551) + (-3566 . 225452) (-3567 . 225232) (-3568 . 224841) (-3569 . 206266) + (-3570 . 206133) (-3571 . 206066) (-3572 . 205480) (-3573 . 205194) + (-3574 . 205137) (-3575 . 204993) (-3576 . 204899) (-3577 . 204720) + (-3578 . 203380) (-3579 . 202958) (-3580 . 202345) (-3581 . 199524) + (-3582 . 199496) (-3583 . 199377) (-3584 . 199199) (-3585 . 199144) + (-3586 . 198964) (-3587 . 198821) (-3588 . 198725) (-3589 . 198538) + (-3590 . 197420) (-3591 . 197177) (-3592 . 196750) (-3593 . 196716) + (-3594 . 196594) (-3595 . 196067) (-3596 . 195659) (-3597 . 193691) + (-3598 . 193339) (-3599 . 193131) (-3600 . 191017) (-3601 . 190749) + (-3602 . 190677) (-3603 . 190610) (-3604 . 190518) (-3605 . 190032) + (-3606 . 189946) (-3607 . 189798) (-3608 . 189746) (-3609 . 189712) + (-3610 . 189614) (-3611 . 189496) (-3612 . 189392) (-3613 . 189258) + (-3614 . 189031) (-3615 . 188674) (-3616 . 188572) (-3617 . 188544) + (-3618 . 188417) (-3619 . 188345) (-3620 . 188262) (-3621 . 188185) + (-3622 . 188081) (-3623 . 187664) (-3624 . 187594) (-3625 . 187377) + (-3626 . 187140) (-3627 . 187052) (-3628 . 186923) (-3629 . 186822) + (-3630 . 186736) (-3631 . 186517) (-3632 . 186458) (-3633 . 186249) + (-3634 . 186048) (-3635 . 185921) (-3636 . 185438) (-3637 . 185383) + (-3638 . 185287) (-3639 . 184995) (-3640 . 184855) (-3641 . 184799) + (-3642 . 184690) (-3643 . 184635) (-3644 . 184581) (-3645 . 184444) + (-3646 . 184092) (-3647 . 184006) (-3648 . 183954) (-3649 . 183791) + (-3650 . 183674) (-3651 . 183603) (-3652 . 183474) (-3653 . 183336) + (-3654 . 183250) (-3655 . 183125) (-3656 . 182886) (-3657 . 182803) + (-3658 . 182715) (-3659 . 182194) (-3660 . 181955) (-3661 . 181778) + (-3662 . 181696) (-3663 . 181551) (-3664 . 181517) (-3665 . 181299) + (-3666 . 181157) (-3667 . 181073) (-3668 . 180527) (-3669 . 179893) + (-3670 . 179820) (-3671 . 178978) (-3672 . 178435) (-3673 . 178269) + (-3674 . 177948) (-3675 . 177641) (-3676 . 177326) (-3677 . 177156) + (-3678 . 177053) (-3679 . 176709) (-3680 . 176597) (-3681 . 176479) + (-3682 . 176412) (-3683 . 176359) (-3684 . 176083) (-3685 . 172474) + (-3686 . 172379) (-3687 . 172287) (-3688 . 172167) (-3689 . 171603) + (-3690 . 171511) (-3691 . 171175) (-3692 . 171078) (-3693 . 170915) + (-3694 . 170835) (-3695 . 170739) (-3696 . 170514) (-3697 . 170444) + (-3698 . 170316) (-3699 . 170194) (-3700 . 170134) (-3701 . 170035) + (-3702 . 169956) (-3703 . 169664) (-3704 . 169449) (-3705 . 169375) + (-3706 . 169276) (-3707 . 169206) (-3708 . 169081) (-3709 . 168825) + (-3710 . 168692) (-3711 . 168604) (-3712 . 168345) (-3713 . 168266) + (-3714 . 168152) (-3715 . 167722) (-3716 . 167552) (-3717 . 167446) + (-3718 . 166850) (-3719 . 166669) (-3720 . 166566) (-3721 . 166353) + (-3722 . 166257) (-3723 . 166131) (-3724 . 165983) (-3725 . 165852) + (-3726 . 165784) (-3727 . 165721) (-3728 . 165590) (-3729 . 165509) + (-3730 . 165333) (-3731 . 165142) (-3732 . 165038) (-3733 . 163788) + (-3734 . 163636) (-3735 . 163584) (-3736 . 163272) (-3737 . 163201) + (-3738 . 162829) (-3739 . 162728) (-3740 . 162593) (-3741 . 162461) + (-3742 . 162347) (-3743 . 162295) (-3744 . 161068) (-3745 . 160954) + (-3746 . 160887) (-3747 . 160804) (-3748 . 160752) (-3749 . 160549) + (-3750 . 160232) (-3751 . 160133) (-3752 . 160029) (-3753 . 159850) + (-3754 . 159779) (-3755 . 158475) (-3756 . 158268) (-3757 . 158149) + (-3758 . 157977) (-3759 . 157817) (-3760 . 157750) (-3761 . 157383) + (-3762 . 157270) (-3763 . 157193) (-3764 . 156966) (-3765 . 156917) + (-3766 . 156814) (-3767 . 156335) (-3768 . 156249) (-3769 . 155689) + (-3770 . 155594) (-3771 . 155414) (-3772 . 155358) (-3773 . 155042) + (-3774 . 154975) (-3775 . 154872) (-3776 . 154819) (-3777 . 154722) + (-3778 . 154670) (-3779 . 154597) (-3780 . 154545) (-3781 . 154421) + (-3782 . 154339) (-3783 . 154243) (-3784 . 154165) (-3785 . 154087) + (-3786 . 154030) (-3787 . 153924) (-3788 . 153764) (-3789 . 153668) + (-3790 . 153573) (-3791 . 153480) (-3792 . 153320) (-3793 . 153220) + (-3794 . 152735) (-3795 . 152494) (-3796 . 152466) (-3797 . 152387) + (-3798 . 152286) (-3799 . 152101) (-3800 . 151650) (-3801 . 151363) + (-3802 . 150723) (-3803 . 150605) (-3804 . 150252) (-3805 . 150097) + (-3806 . 150026) (-3807 . 149538) (-3808 . 149486) (-3809 . 149364) + (-3810 . 149264) (-3811 . 149169) (-3812 . 149095) (-3813 . 148948) + (-3814 . 147800) (-3815 . 147677) (-3816 . 147551) (-3817 . 147499) + (-3818 . 146831) (-3819 . 146686) (-3820 . 146570) (-3821 . 146398) + (-3822 . 146312) (-3823 . 146060) (-3824 . 145982) (-3825 . 145858) + (-3826 . 145726) (-3827 . 145643) (-3828 . 145480) (-3829 . 145321) + (-3830 . 145181) (-3831 . 144974) (-3832 . 144873) (-3833 . 144771) + (-3834 . 144546) (-3835 . 144154) (-3836 . 144011) (-3837 . 143951) + (-3838 . 143865) (-3839 . 143488) (-3840 . 143351) (-3841 . 143297) + (-3842 . 143190) (-3843 . 143089) (-3844 . 143019) (-3845 . 142931) + (-3846 . 142851) (-3847 . 142599) (-3848 . 142360) (-3849 . 142008) + (-3850 . 141821) (-3851 . 141689) (-3852 . 141404) (-3853 . 141336) + (-3854 . 141157) (-3855 . 141104) (-3856 . 141012) (-3857 . 140862) + (-3858 . 140834) (-3859 . 140611) (-3860 . 140464) (-3861 . 140376) + (-3862 . 140309) (-3863 . 140177) (-3864 . 140054) (-3865 . 139891) + (-3866 . 139819) (-3867 . 139766) (-3868 . 139674) (-3869 . 139603) + (-3870 . 139530) (-3871 . 139479) (-3872 . 139384) (-3873 . 139268) + (-3874 . 139173) (-3875 . 139000) (-3876 . 138270) (-3877 . 138217) + (-3878 . 138078) (-3879 . 137714) (-3880 . 137685) (-3881 . 137599) + (-3882 . 137296) (-3883 . 137058) (-3884 . 137006) (-3885 . 136854) + (-3886 . 136735) (-3887 . 134957) (-3888 . 134227) (-3889 . 134128) + (-3890 . 134074) (-3891 . 133687) (-3892 . 133591) (-3893 . 133557) + (-3894 . 133378) (-3895 . 133042) (-3896 . 132439) (-3897 . 131556) + (-3898 . 131224) (-3899 . 131108) (-3900 . 130431) (-3901 . 130286) + (-3902 . 130100) (-3903 . 130033) (-3904 . 129978) (-3905 . 129666) + (-3906 . 129567) (-3907 . 129493) (-3908 . 129378) (-3909 . 128813) + (-3910 . 128676) (-3911 . 128598) (-3912 . 128384) (-3913 . 128177) + (-3914 . 128120) (-3915 . 127976) (-3916 . 127909) (-3917 . 127755) + (-3918 . 127611) (-3919 . 127046) (-3920 . 126292) (-3921 . 126212) + (-3922 . 126075) (-3923 . 123294) (-3924 . 123213) (-3925 . 123139) + (-3926 . 123078) (-3927 . 122903) (-3928 . 122813) (-3929 . 122248) + (-3930 . 122167) (-3931 . 121907) (-3932 . 121643) (-3933 . 121553) + (-3934 . 121458) (-3935 . 121276) (-3936 . 121217) (-3937 . 120542) + (-3938 . 120356) (-3939 . 120325) (-3940 . 120248) (-3941 . 120076) + (-3942 . 120024) (-3943 . 119509) (-3944 . 119175) (-3945 . 118576) + (-3946 . 118491) (-3947 . 118363) (-3948 . 118313) (-3949 . 117922) + (-3950 . 117247) (-3951 . 117195) (-3952 . 117042) (-3953 . 116762) + (-3954 . 116683) (-3955 . 116600) (-3956 . 116481) (-3957 . 116404) + (-3958 . 116352) (-3959 . 116271) (-3960 . 115533) (-3961 . 115260) + (-3962 . 115178) (-3963 . 115010) (-3964 . 114825) (-3965 . 114549) + (-3966 . 114122) (-3967 . 113748) (-3968 . 113638) (-3969 . 113519) + (-3970 . 113325) (-3971 . 113252) (-3972 . 113199) (-3973 . 112636) + (-3974 . 112515) (-3975 . 112444) (-3976 . 112306) (-3977 . 112218) + (-3978 . 112091) (-3979 . 112062) (-3980 . 110616) (-3981 . 110539) + (-3982 . 109976) (-3983 . 109795) (-3984 . 109679) (-3985 . 109598) + (-3986 . 109390) (-3987 . 109328) (-3988 . 109246) (-3989 . 108998) + (-3990 . 108883) (-3991 . 108828) (-3992 . 108623) (-3993 . 108484) + (-3994 . 107921) (-3995 . 107840) (-3996 . 107699) (-3997 . 107627) + (-3998 . 106038) (-3999 . 105967) (-4000 . 105802) (-4001 . 105101) + (-4002 . 105039) (-4003 . 104943) (-4004 . 104556) (-4005 . 103880) + (-4006 . 103633) (-4007 . 103538) (-4008 . 103459) (-4009 . 103422) + (-4010 . 103285) (-4011 . 102827) (-4012 . 102654) (-4013 . 101978) + (-4014 . 101863) (-4015 . 101795) (-4016 . 101740) (-4017 . 101352) + (-4018 . 101254) (-4019 . 101195) (-4020 . 101108) (-4021 . 100966) + (-4022 . 100377) (-4023 . 100326) (-4024 . 99650) (-4025 . 99562) + (-4026 . 99352) (-4027 . 99257) (-4028 . 99157) (-4029 . 99050) + (-4030 . 98979) (-4031 . 98858) (-4032 . 98678) (-4033 . 98604) + (-4034 . 98526) (-4035 . 98455) (-4036 . 97891) (-4037 . 97790) + (-4038 . 97684) (-4039 . 97504) (-4040 . 97451) (-4041 . 97199) + (-4042 . 95067) (-4043 . 94943) (-4044 . 94643) (-4045 . 94490) + (-4046 . 94406) (-4047 . 94073) (-4048 . 93882) (-4049 . 93318) + (-4050 . 93208) (-4051 . 93113) (-4052 . 92719) (-4053 . 92615) + (-4054 . 92537) (-4055 . 92436) (-4056 . 92326) (-4057 . 92238) + (-4058 . 92079) (-4059 . 91833) (-4060 . 91269) (-4061 . 90925) + (-4062 . 90083) (-4063 . 89656) (-4064 . 88564) (-4065 . 88493) + (-4066 . 88344) (-4067 . 88154) (-4068 . 88035) (-4069 . 87905) + (-4070 . 87342) (-4071 . 87250) (-4072 . 87179) (-4073 . 87071) + (-4074 . 87015) (-4075 . 86913) (-4076 . 86776) (-4077 . 86039) + (-4078 . 85863) (-4079 . 85775) (-4080 . 85647) (-4081 . 85474) + (-4082 . 84911) (-4083 . 84877) (-4084 . 84698) (-4085 . 84306) + (-4086 . 84223) (-4087 . 83678) (-4088 . 83650) (-4089 . 83566) + (-4090 . 83468) (-4091 . 83270) (-4092 . 83182) (-4093 . 82867) + (-4094 . 82815) (-4095 . 82685) (-4096 . 82344) (-4097 . 82145) + (-4098 . 82038) (-4099 . 81790) (-4100 . 81660) (-4101 . 81588) + (-4102 . 81421) (-4103 . 80220) (-4104 . 80137) (-4105 . 80010) + (-4106 . 79955) (-4107 . 79882) (-4108 . 79716) (-4109 . 79664) + (-4110 . 79468) (-4111 . 79274) (-4112 . 79101) (-4113 . 79048) + (-4114 . 78969) (-4115 . 78856) (-4116 . 64623) (-4117 . 64460) + (-4118 . 64391) (-4119 . 64294) (-4120 . 64160) (-4121 . 64021) + (-4122 . 63181) (-4123 . 63119) (-4124 . 62982) (-4125 . 62933) + (-4126 . 62860) (-4127 . 62658) (-4128 . 62047) (-4129 . 61885) + (-4130 . 61706) (-4131 . 61650) (-4132 . 61562) (-4133 . 61494) + (-4134 . 61441) (-4135 . 61373) (-4136 . 61218) (-4137 . 61146) + (-4138 . 60836) (-4139 . 60759) (-4140 . 59989) (-4141 . 59888) + (-4142 . 59739) (-4143 . 59643) (-4144 . 59566) (-4145 . 59423) + (-4146 . 59371) (-4147 . 59111) (-4148 . 59031) (-4149 . 58957) + (-4150 . 58905) (-4151 . 58817) (-4152 . 58715) (-4153 . 58687) + (-4154 . 58432) (-4155 . 58072) (-4156 . 57772) (-4157 . 57674) + (-4158 . 57516) (-4159 . 57431) (-4160 . 57338) (-4161 . 57119) + (-4162 . 56996) (-4163 . 56709) (-4164 . 55407) (-4165 . 54731) + (-4166 . 54631) (-4167 . 54472) (-4168 . 54444) (-4169 . 54055) + (-4170 . 53966) (-4171 . 50299) (-4172 . 50227) (-4173 . 50100) + (-4174 . 50033) (-4175 . 50001) (-4176 . 49876) (-4177 . 49818) + (-4178 . 49727) (-4179 . 49674) (-4180 . 49564) (-4181 . 49426) + (-4182 . 49117) (-4183 . 49062) (-4184 . 48985) (-4185 . 48881) + (-4186 . 48776) (-4187 . 48619) (-4188 . 48522) (-4189 . 48467) + (-4190 . 48435) (-4191 . 48277) (-4192 . 48225) (-4193 . 48131) + (-4194 . 48032) (-4195 . 47656) (-4196 . 47488) (-4197 . 47293) + (-4198 . 46711) (-4199 . 46576) (-4200 . 46482) (-4201 . 46376) + (-4202 . 46207) (-4203 . 46004) (-4204 . 45909) (-4205 . 45764) + (-4206 . 45670) (-4207 . 45618) (-4208 . 45565) (-4209 . 45407) + (-4210 . 44939) (-4211 . 44769) (-4212 . 44684) (-4213 . 44656) + (-4214 . 44578) (-4215 . 44428) (-4216 . 44325) (-4217 . 44212) + (-4218 . 44139) (-4219 . 44067) (-4220 . 44038) (-4221 . 43979) + (-4222 . 43947) (-4223 . 43889) (-4224 . 43811) (-4225 . 43602) + (-4226 . 43543) (-4227 . 43388) (-4228 . 43033) (-4229 . 42976) + (-4230 . 42839) (-4231 . 42811) (-4232 . 42751) (-4233 . 42440) + (-4234 . 42154) (-4235 . 42028) (-4236 . 41864) (-4237 . 41791) + (-4238 . 41607) (-4239 . 41269) (-4240 . 41185) (-4241 . 41042) + (-4242 . 39312) (-4243 . 39242) (-4244 . 38913) (-4245 . 38025) + (-4246 . 37966) (-4247 . 37818) (-4248 . 37428) (-4249 . 37090) + (-4250 . 37038) (-4251 . 36950) (-4252 . 36788) (-4253 . 36731) + (-4254 . 36630) (-4255 . 36578) (-4256 . 36425) (-4257 . 36394) + (-4258 . 36309) (-4259 . 36230) (-4260 . 36144) (-4261 . 35935) + (-4262 . 35865) (-4263 . 35661) (-4264 . 35491) (-4265 . 35315) + (-4266 . 35163) (-4267 . 35090) (-4268 . 34927) (-4269 . 34756) + (-4270 . 34654) (-4271 . 34231) (-4272 . 33799) (-4273 . 33355) + (-4274 . 33246) (-4275 . 33163) (-4276 . 32700) (-4277 . 32408) + (-4278 . 32314) (-4279 . 32213) (-4280 . 32045) (-4281 . 31937) + (-4282 . 31778) (-4283 . 31679) (-4284 . 31561) (-4285 . 31245) + (-4286 . 31065) (-4287 . 31033) (-4288 . 30927) (-4289 . 30843) + (-4290 . 30624) (-4291 . 30530) (-4292 . 30420) (-4293 . 30302) + (-4294 . 30273) (-4295 . 30217) (-4296 . 30164) (-4297 . 30000) + (-4298 . 29714) (-4299 . 29626) (-4300 . 29472) (-4301 . 29420) + (-4302 . 29316) (-4303 . 29214) (-4304 . 29140) (-4305 . 29022) + (-4306 . 28706) (-4307 . 28647) (-4308 . 28565) (-4309 . 28494) + (-4310 . 28387) (-4311 . 28213) (-4312 . 28111) (-4313 . 28053) + (-4314 . 27878) (-4315 . 27656) (-4316 . 27596) (-4317 . 27397) + (-4318 . 27004) (-4319 . 26794) (-4320 . 26579) (-4321 . 26520) + (-4322 . 26293) (-4323 . 25864) (-4324 . 25657) (-4325 . 25549) + (-4326 . 25451) (-4327 . 25391) (-4328 . 25211) (-4329 . 23913) + (-4330 . 23803) (-4331 . 23675) (-4332 . 23443) (-4333 . 23385) + (-4334 . 23208) (-4335 . 22670) (-4336 . 22439) (-4337 . 22341) + (-4338 . 22284) (-4339 . 22210) (-4340 . 22084) (-4341 . 21853) + (-4342 . 21774) (-4343 . 21746) (-4344 . 21489) (-4345 . 21438) + (-4346 . 21343) (-4347 . 21247) (-4348 . 21112) (-4349 . 19931) + (-4350 . 19808) (-4351 . 19695) (-4352 . 19506) (-4353 . 19191) + (-4354 . 19163) (-4355 . 18972) (-4356 . 18808) (-4357 . 18752) + (-4358 . 18693) (-4359 . 18581) (-4360 . 18521) (-4361 . 18329) + (-4362 . 18014) (-4363 . 17941) (-4364 . 17844) (-4365 . 17549) + (-4366 . 17497) (-4367 . 17427) (-4368 . 17152) (-4369 . 17118) + (-4370 . 16498) (-4371 . 16443) (-4372 . 16355) (-4373 . 16225) + (-4374 . 16082) (-4375 . 15955) (-4376 . 15845) (-4377 . 15591) + (-4378 . 15450) (-4379 . 15382) (-4380 . 15302) (-4381 . 15151) + (-4382 . 15073) (-4383 . 14895) (-4384 . 14809) (-4385 . 14735) + (-4386 . 14639) (-4387 . 14076) (-4388 . 13080) (-4389 . 12961) + (-4390 . 12711) (-4391 . 12552) (-4392 . 12457) (-4393 . 12338) + (-4394 . 12222) (-4395 . 11718) (-4396 . 11621) (-4397 . 11553) + (-4398 . 11338) (-4399 . 11197) (-4400 . 9341) (-4401 . 8958) + (-4402 . 8854) (-4403 . 8788) (-4404 . 8736) (-4405 . 8552) + (-4406 . 8437) (-4407 . 8353) (-4408 . 8275) (-4409 . 8154) + (-4410 . 8087) (-4411 . 7991) (-4412 . 7963) (-4413 . 7877) + (-4414 . 7780) (-4415 . 7706) (-4416 . 7529) (-4417 . 7462) + (-4418 . 7315) (-4419 . 7075) (-4420 . 6910) (-4421 . 6706) + (-4422 . 6546) (-4423 . 6313) (-4424 . 6254) (-4425 . 6047) + (-4426 . 5995) (-4427 . 5943) (-4428 . 5861) (-4429 . 5708) + (-4430 . 5579) (-4431 . 5451) (-4432 . 5298) (-4433 . 5219) + (-4434 . 4835) (-4435 . 4783) (-4436 . 2368) (-4437 . 2288) + (-4438 . 1086) (-4439 . 1012) (-4440 . 947) (-4441 . 851) + (-4442 . 267) (-4443 . 188) (-4444 . 30)) \ No newline at end of file -- cgit v1.2.3